WorldWideScience

Sample records for thermodynamic casimir effect

  1. Influence of van-der-Waals like interactions on the thermodynamic Casimir effect; Einfluss van-der-Waals-artiger Wechselwirkungen auf den thermodynamischen Casimir-Effekt

    Energy Technology Data Exchange (ETDEWEB)

    Grueneberg, Daniel

    2008-02-15

    To study how the behavior of the thermodynamic Casimir force changes qualitatively and quantitatively due to the presence of such interactions - compared to systems with purely short-range interactions - is the aim of this work. Considering d-dimensional models belonging to the universality class of the O(n)-symmetrical systems, the thermodynamic Casimir force and its leading corrections are derived for temperatures at and above the transition temperature (T{>=}T{sub c,{infinity}}). The underlying pair potential is assumed to be isotropic and long-ranged, decaying asymptotically proportional to x{sup -(d+{sigma}}{sup )} for large separations x, where the value of the parameter {sigma} is restricted to the interval 2<{sigma}<4. By solving an appropriate spherical model in 2thermodynamic Casimir force and its leading corrections are obtained. To study the case n<{infinity}, which in 2thermodynamic Casimir force and its leading corrections are evaluated to two-loop order. It is shown that both in the spherical model and in the O(n)-symmetrical case with n<{infinity} to two-loop order, the thermodynamic Casimir force in the presence of the long-range interaction decays algebraically {proportional_to}L{sup -(d+{sigma}}{sup )} at fixed temperature T>T{sub c,{infinity}} on sufficiently large length scales. (orig.)

  2. Microscopic dynamical Casimir effect

    Science.gov (United States)

    Souza, Reinaldo de Melo e.; Impens, François; Neto, Paulo A. Maia

    2018-03-01

    We consider an atom in its ground state undergoing a nonrelativistic oscillation in free space. The interaction with the electromagnetic quantum vacuum leads to two effects to leading order in perturbation theory. When the mechanical frequency is larger than the atomic transition frequency, the dominant effect is the motion-induced transition to an excited state with the emission of a photon carrying the excess energy. We compute the angular distribution of emitted photons and the excitation rate. On the other hand, when the mechanical frequency is smaller than the transition frequency, the leading-order effect is the parametric emission of photon pairs, which constitutes the microscopic counterpart of the dynamical Casimir effect. We discuss the properties of the microscopic dynamical Casimir effect and build a connection with the photon production by an oscillating macroscopic metallic mirror.

  3. Casimir effect for interacting fields

    International Nuclear Information System (INIS)

    Kay, B.S.

    1982-01-01

    The author discusses some recent work on the Casimir effect: that is the problem of renormalizing Tsub(μγ) on locally-flat space-times. That is on space-times which, while topologically non-trivial are locally Minkowskian - with vanishing local curvature. The author has developed a systematic method for calculating this Casimir effect for interacting fields to arbitrary order in perturbation theory - and for arbitrary components of Tsub(μγ) which he describes in general and then illustrates it by describing first order perturbation theory calculations for a lambdaphi 4 theory for the two models: the cylinder space-time and the parallel plates. (Auth.)

  4. Temperature dependence of the Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Brevik, I [Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Aarseth, J B [Department of Structural Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2006-05-26

    In view of the increasing accuracy of Casimir experiments, there is a need for performing accurate theoretical calculations. Using accurate experimental data for the permittivities we present, via the Lifshitz formula applied to the standard Casimir setup with two parallel plates, accurate theoretical results in the case of the metals Au, Cu and Al. Both similar and dissimilar cases are considered. Concentrating in particular on the finite temperature effect, we show how the Casimir pressure varies with separation for three different temperatures, T = {l_brace}1, 300, 350{r_brace}K. The metal surfaces are taken to be perfectly plane. The experimental data for the permittivities generally yield results that are in a good agreement with those calculated from the Drude relation with finite relaxation frequency. We give the results in a tabular form, in order to facilitate the assessment of the temperature correction which is on the 1% level. We emphasize two points: (i) the most promising route for a definite experimental verification of the finite temperature correction appears to be to concentrate on the case of large separations (optimum around 2 {mu}m); and (ii) there is no conflict between the present kind of theory and the Nernst theorem in thermodynamics.

  5. Casimir Effect on the Worldline

    CERN Document Server

    Gies, Holger; Moyaerts, L; Gies, Holger; Langfeld, Kurt; Moyaerts, Laurent

    2003-01-01

    We develop a method to compute the Casimir effect for arbitrary geometries. The method is based on the string-inspired worldline approach to quantum field theory and its numerical realization with Monte-Carlo techniques. Concentrating on Casimir forces between rigid bodies induced by a fluctuating scalar field, we test our method with the parallel-plate configuration. For the experimentally relevant sphere-plate configuration, we study curvature effects quantitatively and perform a comparison with the ``proximity force approximation'', which is the standard approximation technique. Sizable curvature effects are found for a distance-to-curvature-radius ratio of a/R >~ 0.02. Our method is embedded in renormalizable quantum field theory with a controlled treatment of the UV divergencies. As a technical by-product, we develop various efficient algorithms for generating closed-loop ensembles with Gaussian distribution.

  6. The Casimir effect: medium and geometry

    International Nuclear Information System (INIS)

    Marachevsky, Valery N

    2012-01-01

    Theory of the Casimir effect is presented in several examples. Casimir–Polder-type formulas, Lifshitz theory and theory of the Casimir effect for two gratings separated by a vacuum slit are derived. Equations for the electromagnetic field in the presence of a medium and dispersion are discussed. The Casimir effect for systems with a layer of 2 + 1 fermions is studied. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (paper)

  7. Casimir effect in spherical shells

    International Nuclear Information System (INIS)

    Ruggiero, J.R.

    1985-01-01

    The analytic regularization method is applied to study the Casimir effect for spherical cavities. Although many works have been presented in the past few years, problems related to the elimination of the regulator parameter still remain. A way to calculate the zero point energy of a perfectly conducting spherical shell which is a miscellaneous of those presented early is here proposed, How a cancelation of divergent terms occurs and how a finite parte is obtained after the elimination of the regulator parameter is shown. As a by-product the zero point energy of the interior vibration modes is obtained and this has some relevance to the quarks bag model. This relev ance is also discussed. The calculation of the energy fom the density view is also discussed. Some works in this field are criticized. The logarithmic divergent terms in the zero point energy are studied when the interior and exterior of the sphere are considered as a medium not dispersive and characterized by a dielectric constants ε 1 and ε 2 and peermeability constants μ 1 and μ 2 respectivelly. The logarithmic divergent terms are not present in the case of ε i μ i =K, with K some constant and i=1,2. (author) [pt

  8. Johnson noise and the thermal Casimir effect

    International Nuclear Information System (INIS)

    Bimonte, Giuseppe

    2007-01-01

    We study the thermal interaction between two nearby thin metallic wires, at finite temperature. It is shown that the Johnson currents in the wires give rise, via inductive coupling, to a repulsive force between them. This thermal interaction exhibits all the puzzling features found recently in the thermal Casimir effect for lossy metallic plates, suggesting that the physical origin of the difficulties encountered in the Casimir problem resides in the inductive coupling between the Johnson currents inside the plates. We show that in our simple model all puzzles are resolved if account is taken of capacitive effects associated with the end points of the wires. Our findings suggest that capacitive finite-size effects may play an important role in the resolution of the analogous problems met in the thermal Casimir effect

  9. Dynamical Casimir effect with semi-transparent mirrors, and cosmology

    International Nuclear Information System (INIS)

    Elizalde, Emilio

    2008-01-01

    After reviewing some essential features of the Casimir effect and, specifically, of its regularization by zeta function and Hadamard methods, we consider the dynamical Casimir effect (or Fulling-Davies theory), where related regularization problems appear, with a view to an experimental verification of this theory. We finish with a discussion of the possible contribution of vacuum fluctuations to dark energy, in a Casimir-like fashion, that might involve the dynamical version

  10. Reducing detrimental electrostatic effects in Casimir-force measurements and Casimir-force-based microdevices

    Science.gov (United States)

    Xu, Jun; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2018-03-01

    It is well known that residual electrostatic forces create significant difficulties in precise measurements of the Casimir force and the wide use of Casimir-operated microdevices. We experimentally demonstrate that, with the help of Ar-ion cleaning of the surfaces, it is possible to make electrostatic effects negligibly small compared to the Casimir interaction. Our experimental setup consists of a dynamic atomic force microscope supplemented with an Ar-ion gun and argon reservoir. The residual potential difference between the Au-coated surfaces of a sphere and those of a plate was measured both before and after in situ Ar-ion cleaning. It is shown that this cleaning decreases the magnitude of the residual potential by up to an order of magnitude and makes it almost independent of the separation. The gradient of the Casimir force was measured using ordinary samples subjected to Ar-ion cleaning. The obtained results are shown to be in good agreement both with previous precision measurements using specially selected samples and with theoretical predictions of the Lifshitz theory. The conclusion is made that the suggested method of in situ Ar-ion cleaning is effective in reducing the electrostatic effects and therefore is a great resource for experiments on measuring the Casimir interaction and for Casimir-operated microdevices.

  11. Gravitational Casimir-Polder effect

    Science.gov (United States)

    Hu, Jiawei; Yu, Hongwei

    2017-04-01

    The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir-Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z-5 in the near zone, and z-6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose-Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10-21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.

  12. What is the temperature dependence of the Casimir effect?

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, J S [Department of Physics, Norwegian University of Science and Technology, N-7491, Trondheim (Norway); Brevik, I [Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491, Trondheim (Norway); Aarseth, J B [Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491, Trondheim (Norway); Milton, K A [Department of Physics, Washington University, St. Louis, MO 63130 (United States)

    2006-05-19

    There has been recent criticism of our approach to the Casimir force between real metallic surfaces at finite temperature, saying it is in conflict with the third law of thermodynamics and in contradiction with experiment. We show that these claims are unwarranted, and that our approach has strong theoretical support, while the experimental situation is still unclear.

  13. Mode Contributions to the Casimir Effect

    Science.gov (United States)

    Intravaia, F.; Henkel, C.

    2010-04-01

    Applying a sum-over-modes approach to the Casimir interaction between two plates with finite conductivity, we isolate and study the contributions of surface plasmons and Foucault (eddy current) modes. We show in particular that for the TE-polarization eddy currents provide a repulsive force that cancels, at high temperatures, the Casimir free energy calculated with the plasma model.

  14. Nonperturbative Dynamical Casimir Effect in Optomechanical Systems: Vacuum Casimir-Rabi Splittings

    Directory of Open Access Journals (Sweden)

    Vincenzo Macrì

    2018-02-01

    Full Text Available We study the dynamical Casimir effect using a fully quantum-mechanical description of both the cavity field and the oscillating mirror. We do not linearize the dynamics, nor do we adopt any parametric or perturbative approximation. By numerically diagonalizing the full optomechanical Hamiltonian, we show that the resonant generation of photons from the vacuum is determined by a ladder of mirror-field vacuum Rabi splittings. We find that vacuum emission can originate from the free evolution of an initial pure mechanical excited state, in analogy with the spontaneous emission from excited atoms. By considering a coherent drive of the mirror, using a master-equation approach to take losses into account, we are able to study the dynamical Casimir effect for optomechanical coupling strengths ranging from weak to ultrastrong. We find that a resonant production of photons out of the vacuum can be observed even for mechanical frequencies lower than the cavity-mode frequency. Since high mechanical frequencies, which are hard to achieve experimentally, were thought to be imperative for realizing the dynamical Casimir effect, this result removes one of the major obstacles for the observation of this long-sought effect. We also find that the dynamical Casimir effect can create entanglement between the oscillating mirror and the radiation produced by its motion in the vacuum field, and that vacuum Casimir-Rabi oscillations can occur. Finally, we also show that all these findings apply not only to optomechanical systems, but also to parametric amplifiers operating in the fully quantum regime.

  15. The Casimir effect for pistons with transmittal boundary conditions

    Science.gov (United States)

    Fucci, Guglielmo

    2017-11-01

    This work focuses on the analysis of the Casimir effect for pistons subject to transmittal boundary conditions. In particular we consider, as piston configuration, a direct product manifold of the type I × N where I is a closed interval of the real line and N is a smooth compact Riemannian manifold. By utilizing the spectral zeta function regularization technique, we compute the Casimir energy of the system and the Casimir force acting on the piston. Explicit results for the force are provided when the manifold N is a d-dimensional sphere.

  16. Casimir effect in presence of spontaneous Lorentz symmetry breaking

    Science.gov (United States)

    Escobar, C. A.

    2018-01-01

    The Casimir effect is one of the most remarkable consequences of the nonzero vacuum energy predicted by quantum field theory. In this contribution we study the Lorentz-violation effects of the minimal standard-model extension on the Casimir force between two parallel conducting plates in the vacuum. Using a perturbative method, we compute the relevant Green’s function which satisfies given boundary conditions. The standard point-splitting technique allow us to express the vacuum expectation value of the stress-energy tensor in terms of this Green’s function. Finally, we study the Casimir energy and the Casimir force paying particular attention to the quantum effects as approaching the plates.

  17. An ``Anatomic approach" to study the Casimir effect

    Science.gov (United States)

    Intravaia, Francesco; Haakh, Harald; Henkel, Carsten

    2010-03-01

    The Casimir effect, in its simplest definition, is a quantum mechanical force between two objects placed in vacuum. In recent years the Casimir force has been the object of an exponentially growing attention both from theorists and experimentalists. A new generation of experiments paved the way for new challenges and spotted some shadows in the comparison to theory. Here we are going to isolate different contributions to the Casimir interaction and perform a detailed study to shine new light on this phenomenon. As an example, the contributions of Foucault (eddy current) modes will be discussed in different configurations. This ``anatomic approach'' allows to clearly put into evidence special features and to explain unusual behaviors. This brings new physical understanding on the undergoing physical mechanisms and suggests new ways to engineer the Casimir effect.

  18. Casimir Effect and Black Hole Radiation

    Science.gov (United States)

    Rahbardehghan, S.

    2018-03-01

    The gravitational field of a black hole intrinsically creates a potential barrier consisted of two reflecting boundaries; the first one far from the hole and the second one in the vicinity of its horizon. With respect to this fact and assuming the boundaries as good conductors (in view of an observer near the horizon just outside the second boundary), in a series of papers, R.M. Nugayev by considering a conformally coupled massless scalar field and based on the calculations of Candelas and Deutsch (the accelerated-mirror results) has claimed that " ...the existence of the potential barrier is as crucial for Hawking evaporation as the existence of the horizon". In this paper, by taking the same assumptions, through straightforward reasonings, we explicitly show that contrary to this claim, the effects of the first boundary on the black hole radiation are quite negligible. Moreover, the inclusion of the second boundary makes the situation more complicated, because the induced Casimir energy-momentum tensor by this boundary in its vicinity is divergent of order δ ^{-4} ( δ is the distance to the boundary).

  19. Evanescent radiation, quantum mechanics and the Casimir effect

    Science.gov (United States)

    Schatten, Kenneth H.

    1989-01-01

    An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.

  20. On the global Casimir effect in the Schwarzschild spacetime

    Science.gov (United States)

    Muniz, C. R.; Tahim, M. O.; Cunha, M. S.; Vieira, H. S.

    2018-01-01

    In this paper we study the vacuum quantum fluctuations of the stationary modes of an uncharged scalar field with mass m around a Schwarzschild black hole with mass M, at zero and non-zero temperatures. The procedure consists of calculating the energy eigenvalues starting from the exact solutions found for the dynamics of the scalar field, considering a frequency cutoff in which the particle is not absorbed by the black hole. From this result, we obtain the exterior contributions for the vacuum energy associated to the stationary states of the scalar field, by considering the half-summing of the levels of energy and taking into account the respective degeneracies, in order to better capture the nontrivial topology of the black hole spacetime. Then we use the Riemann's zeta function to regularize the vacuum energy thus found. Such a regularized quantity is the Casimir energy, whose analytic computation we show to yield a convergent series. The Casimir energy obtained does not take into account any boundaries artificially imposed on the system, just the nontrivial spacetime topology associated to the source and its singularity. We suggest that this latter manifests itself through the vacuum tension calculated on the event horizon. We also investigate the problem by considering the thermal corrections via Helmholtz free energy calculation, computing the Casimir internal energy, the corresponding tension on the event horizon, the Casimir entropy, and the thermal capacity of the regularized quantum vacuum, analyzing their behavior at low and high temperatures, pointing out the thermodynamic instability of the system in the considered regime, i.e. mMll 1.

  1. Interplay between geometry and temperature in the Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Alexej

    2010-06-23

    In this thesis, we investigate the interplay between geometry and temperature in the Casimir effect for the inclined-plates, sphere-plate and cylinder-plate configurations. We use the worldline approach, which combines the string-inspired quantum field theoretical formalism with Monte Carlo techniques. The approach allows the precise computation of Casimir energies in arbitrary geometries. We analyze the dependence of the Casimir energy, force and torque on the separation parameter and temperature T, and find Casimir phenomena which are dominated by long-range fluctuations. We demonstrate that for open geometries, thermal energy densities are typically distributed on scales of thermal wavelengths. As an important consequence, approximation methods for thermal corrections based on local energy-density estimates, such as the proximity-force approximation, are found to become unreliable even at small surface-separations. Whereas the hightemperature behavior is always found to be linear in T, richer power-law behaviors at small temperatures emerge. In particular, thermal forces can develop a non-monotonic behavior. Many novel numerical as well as analytical results are presented. (orig.)

  2. Cosmology in nonlinear multidimensional gravity and the Casimir effect

    International Nuclear Information System (INIS)

    Bolokhov, S V; Bronnikov, K A

    2017-01-01

    We study the possible cosmological models in Kaluza-Klein-type multidimensional gravity with a curvature-nonlinear Lagrangian and a spherical extra space, taking into account the Casimir energy. First, we find a minimum of the effective potential of extra dimensions, leading to a physically reasonable value of the effective cosmological constant in our 4D space-time. In this model, the huge Casimir energy density is compensated by a fine-tuned contribution of the curvature-nonlinear terms in the original action. Second, we present a viable model with slowly evolving extra dimensions and power-law inflation in our space-time. In both models, the results formulated in Einstein and Jordan frames are compared. (paper)

  3. Attractive Casimir effect in an infrared modified gluon bag model

    International Nuclear Information System (INIS)

    Oxman, L.E.; Amaral, R.L.P.G.; Svaiter, N.F.

    2005-01-01

    In this work, we are motivated by previous attempts to derive the vacuum contribution to the bag energy in terms of familiar Casimir energy calculations for spherical geometries. A simple infrared modified model is introduced which allows studying the effects of the analytic structure as well as the geometry in a clear manner. In this context, we show that if a class of infrared vanishing effective gluon propagators is considered, then the renormalized vacuum energy for a spherical bag is attractive, as required by the bag model to adjust hadron spectroscopy

  4. Hide it to see it better: a robust setup to probe the thermal Casimir effect.

    Science.gov (United States)

    Bimonte, Giuseppe

    2014-06-20

    We describe a Casimir setup consisting of two aligned sinusoidally corrugated Ni surfaces, one of which is "hidden" by a thin opaque layer of gold with a flat exposed surface. The gold layer acts as a low-pass filter that allows for a clean observation of the controversial thermal Casimir force between the corrugations, with currently available Casimir apparatuses. The proposed scheme of measurement, based on the phase-dependent modulation of the Casimir force, requires no electrostatic calibrations of the apparatus, and is unaffected by uncertainties in the knowledge of the optical properties of the surfaces. This scheme should allow for an unambiguous discrimination between alternative theoretical prescriptions that have been proposed in the literature for the thermal Casimir effect.

  5. Casimir effect in multidimensional quantum supergravities and supersymmetry breaking

    International Nuclear Information System (INIS)

    Odintsov, S.D.

    1988-01-01

    The one-loop effective action (the Casimir gravitational energy) of the aribitrary Einstein supergravity on the background M/sub 4/ X T/sub D-4/, where M/sub 4/ is the Minkowski space with non-zero temperature, T/sub d/ is the d-dimensional torus, is calculated. The problem of quantum breaking of supersymmetry is discussed. The Vilkovisky-De Witt effective action in the D-dimensional Einstein gravity with the Λ-term on the background M/sub 4/ X T/sub D-4/ is found. An idea is expressed that a temperature phase transition in Kaluza-Klein theories is possible. For d=5 gravity, the Vilkovisky-De Witt effective a< ction on the R/sub 4/ X S/sub 1/, where R/sub 4/ is fourdimensional curved space-time with non-zero temperature, is found

  6. Casimir effect in the rainbow Einstein's universe

    Science.gov (United States)

    Bezerra, V. B.; Mota, H. F.; Muniz, C. R.

    2017-10-01

    In the present paper we investigate the effects caused by the modification of the dispersion relation obtained by solving the Klein-Gordon equation in the closed Einstein's universe in the context of rainbow's gravity models. Thus, we analyse how the quantum vacuum fluctuations of the scalar field are modified when compared with the results obtained in the usual General Relativity scenario. The regularization, and consequently the renormalization, of the vacuum energy is performed adopting the Epstein-Hurwitz and Riemann's zeta functions.

  7. Speeding up the antidynamical Casimir effect with nonstationary qutrits

    Science.gov (United States)

    Dodonov, A. V.; Díaz-Guevara, J. J.; Napoli, A.; Militello, B.

    2017-09-01

    The antidynamical Casimir effect (ADCE) is a term coined to designate the coherent annihilation of excitations due to resonant external perturbation of system parameters, allowing for extraction of quantum work from nonvacuum states of some field. Originally proposed for a two-level atom (qubit) coupled to a single-cavity mode in the context of the nonstationary quantum Rabi model, it suffered from a very low transition rate and correspondingly narrow resonance linewidth. In this paper we show analytically and numerically that the ADCE rate can be increased by at least one order of magnitude by replacing the qubit by an artificial three-level atom (qutrit) in a properly chosen configuration. For the cavity thermal state we demonstrate that the dynamics of the average photon number and atomic excitation is completely different from the qubit's case, while the behavior of the total number of excitations is qualitatively similar yet significantly faster.

  8. Effective field theory of thermal Casimir interactions between anisotropic particles.

    Science.gov (United States)

    Haussman, Robert C; Deserno, Markus

    2014-06-01

    We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles' boundaries from the calculation of the interaction free energy by constructing an equivalent point particle description. The finite-size information is captured in a derivative expansion that encodes the particles' response to external fields. The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by matching the results of a linear response boundary value problem computed in both the full and effective theories. We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive a complete description for elliptical particles. We compute the pairwise interaction energies to several orders for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are exponentially suppressed by the leading-order interaction energies.

  9. Casimir effect in rugby-ball type flux compactifications

    International Nuclear Information System (INIS)

    Elizalde, Emilio; Minamitsuji, Masato; Naylor, Wade

    2007-01-01

    As a continuation of the work by Minamitsuji, Naylor, and Sasaki [J. High Energy Phys. 12 (2006) 079], we discuss the Casimir effect for a massless bulk scalar field in a 4D toy model of a 6D warped flux compactification model, to stabilize the volume modulus. The one-loop effective potential for the volume modulus has a form similar to the Coleman-Weinberg potential. The stability of the volume modulus against quantum corrections is related to an appropriate heat kernel coefficient. However, to make any physical predictions after volume stabilization, knowledge of the derivative of the zeta function, ζ ' (0) (in a conformally related spacetime) is also required. By adding up the exact mass spectrum using zeta-function regularization, we present a revised analysis of the effective potential. Finally, we discuss some physical implications, especially concerning the degree of the hierarchy between the fundamental energy scales on the branes. For a larger degree of warping our new results are very similar to the ones given by Minamitsuji, Naylor, and Sasaki [J. High Energy Phys. 12 (2006) 079] and imply a larger hierarchy. In the nonwarped (rugby ball) limit the ratio tends to converge to the same value, independently of the bulk dilaton coupling

  10. A Toy Cosmology Using a Hubble-Scale Casimir Effect

    Directory of Open Access Journals (Sweden)

    Michael E. McCulloch

    2014-02-01

    Full Text Available The visible mass of the observable universe agrees with that needed for a flat cosmos, and the reason for this is not known. It is shown that this can be explained by modelling the Hubble volume as a black hole that emits Hawking radiation inwards, disallowing wavelengths that do not fit exactly into the Hubble diameter, since partial waves would allow an inference of what lies outside the horizon. This model of “horizon wave censorship” is equivalent to a Hubble-scale Casimir effect. This incomplete toy model is presented to stimulate discussion. It predicts a minimum mass and acceleration for the observable universe which are in agreement with the observed mass and acceleration, and predicts that the observable universe gains mass as it expands and was hotter in the past. It also predicts a suppression of variation on the largest cosmic scales that agrees with the low-l cosmic microwave background anomaly seen by the Planck satellite.

  11. The Casimir effect in rugby-ball type flux compactifications

    Science.gov (United States)

    Minamitsuji, M.

    2008-04-01

    We discuss volume stabilization in a 6D braneworld model based on 6D supergravity theory. The internal space is compactified by magnetic flux and contains codimension two 3-branes (conical singularities) as its boundaries. In general the external 4D spacetime is warped and in the unwrapped limit the shape of the internal space looks like a 'rugby ball'. The size of the internal space is not fixed due to the scale invariance of the supergravity theory. We discuss the possibility of volume stabilization by the Casimir effect for a massless, minimally coupled bulk scalar field. The main obstacle in studying this case is that the brane (conical) part of the relevant heat kernel coefficient (a6) has not been formulated. Thus as a first step, we consider the 4D analog model with boundary codimension two 1-branes. The spacetime structure of the 4D model is very similar to that of the original 6D model, where now the relevant heat kernel coefficient is well known. We derive the one-loop effective potential induced by a scalar field in the bulk by employing zeta function regularization with heat kernel analysis. As a result, the volume is stabilized for most possible choices of the parameters. Especially, for a larger degree of warping, our results imply that a large hierarchy between the mass scales and a tiny amount of effective cosmological constant can be realized on the brane. In the non-warped limit the ratio tends to converge to the same value, independently of the bulk gauge coupling constant. Finally, we will analyze volume stabilization in the original model 6D by employing the same mode-sum technique.

  12. The Casimir effect in rugby-ball type flux compactifications

    International Nuclear Information System (INIS)

    Minamitsuji, M

    2008-01-01

    We discuss volume stabilization in a 6D braneworld model based on 6D supergravity theory. The internal space is compactified by magnetic flux and contains codimension two 3-branes (conical singularities) as its boundaries. In general the external 4D spacetime is warped and in the unwrapped limit the shape of the internal space looks like a 'rugby ball'. The size of the internal space is not fixed due to the scale invariance of the supergravity theory. We discuss the possibility of volume stabilization by the Casimir effect for a massless, minimally coupled bulk scalar field. The main obstacle in studying this case is that the brane (conical) part of the relevant heat kernel coefficient (a 6 ) has not been formulated. Thus as a first step, we consider the 4D analog model with boundary codimension two 1-branes. The spacetime structure of the 4D model is very similar to that of the original 6D model, where now the relevant heat kernel coefficient is well known. We derive the one-loop effective potential induced by a scalar field in the bulk by employing zeta function regularization with heat kernel analysis. As a result, the volume is stabilized for most possible choices of the parameters. Especially, for a larger degree of warping, our results imply that a large hierarchy between the mass scales and a tiny amount of effective cosmological constant can be realized on the brane. In the non-warped limit the ratio tends to converge to the same value, independently of the bulk gauge coupling constant. Finally, we will analyze volume stabilization in the original model 6D by employing the same mode-sum technique

  13. Thermal Casimir effect in Kerr spacetime with quintessence and massive gravitons

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, V.B. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Christiansen, H.R. [Ciencia e Tecnologia do Ceara (IFCE), Departamento de Fisica, Instituto Federal de Educacao, Sobral, CE (Brazil); Cunha, M.S. [Universidade Estadual do Ceara, Grupo de Fisica Teorica (GFT), Fortaleza, CE (Brazil); Muniz, C.R.; Tahim, M.O. [Universidade Estadual do Ceara, Faculdade de Educacao, Ciencias e Letras do Sertao Central, Quixada, CE (Brazil)

    2017-11-15

    Starting from an analytical expression for the Helmholtz free energy we calculate the thermal corrections to the Casimir energy density and entropy within nearby ideal parallel plates in the vacuum of a massless scalar field. Our framework is the Kerr spacetime in the presence of quintessence and massive gravitons. The high and low temperature regimes are especially analyzed in order to distinguish the main contributions. For instance, in the high temperature regime, we show that the force between the plates is repulsive and grows with both the quintessence and the massive gravitons. Regarding the Casimir entropy, our results are in agreement with the Nernst heat theorem and therefore confirm the third law of thermodynamics in the present scenario. (orig.)

  14. Finite temperature Casimir effect for a massless fractional Klein-Gordon field with fractional Neumann conditions

    International Nuclear Information System (INIS)

    Eab, C. H.; Lim, S. C.; Teo, L. P.

    2007-01-01

    This paper studies the Casimir effect due to fractional massless Klein-Gordon field confined to parallel plates. A new kind of boundary condition called fractional Neumann condition which involves vanishing fractional derivatives of the field is introduced. The fractional Neumann condition allows the interpolation of Dirichlet and Neumann conditions imposed on the two plates. There exists a transition value in the difference between the orders of the fractional Neumann conditions for which the Casimir force changes from attractive to repulsive. Low and high temperature limits of Casimir energy and pressure are obtained. For sufficiently high temperature, these quantities are dominated by terms independent of the boundary conditions. Finally, validity of the temperature inversion symmetry for various boundary conditions is discussed

  15. On the static Casimir effect with parity-breaking mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, C.D. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina); Remaggi, M.L. [Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Mendoza (Argentina)

    2017-03-15

    We study the Casimir interaction energy due to the vacuum fluctuations of the electromagnetic (EM) field in the presence of two mirrors, described by 2+1-dimensional, generally nonlocal actions, which may contain both parity-conserving and parity-breaking terms. We compare the results with the ones corresponding to Chern-Simons boundary conditions and evaluate the interaction energy for several particular situations. (orig.)

  16. The energy–momentum tensor, the trace identity and the Casimir effect

    Indian Academy of Sciences (India)

    physics pp. 345–360. The energy–momentum tensor, the trace identity and the Casimir effect. S G KAMATH. Department of Mathematics, Indian Institute of Technology Madras, Chennai 600 036,. India. E-mail: kamath@iitm.ac.in. MS received 11 July 2005; revised 10 October 2005; accepted 18 November 2005. Abstract.

  17. Nanoparticle separation based on size-dependent aggregation of nanoparticles due to the critical Casimir effect.

    Science.gov (United States)

    Guo, Hongyu; Stan, Gheorghe; Liu, Yun

    2018-02-21

    Nanoparticles typically have an inherent wide size distribution that may affect the performance and reliability of many nanomaterials. Because the synthesis and purification of nanoparticles with desirable sizes are crucial to the applications of nanoparticles in various fields including medicine, biology, health care, and energy, there is a great need to search for more efficient and generic methods for size-selective nanoparticle purification/separation. Here we propose and conclusively demonstrate the effectiveness of a size-selective particle purification/separation method based on the critical Casimir force. The critical Casimir force is a generic interaction between colloidal particles near the solvent critical point and has been extensively studied in the past several decades due to its importance in reversibly controlling the aggregation and stability of colloidal particles. Combining multiple experimental techniques, we found that the critical Casimir force-induced aggregation depends on relative particle sizes in a system with larger ones aggregating first and the smaller ones remaining in solution. Based on this observation, a new size-dependent nanoparticle purification/separation method is proposed and demonstrated to be very efficient in purifying commercial silica nanoparticles in the lutidine/water binary solvent. Due to the ubiquity of the critical Casimir force for many colloidal particles in binary solvents, this method might be applicable to many types of colloidal particles.

  18. Casimir effect due to a single boundary as a manifestation of the Weyl problem

    Science.gov (United States)

    Kolomeisky, Eugene B.; Straley, Joseph P.; Langsjoen, Luke S.; Zaidi, Hussain

    2010-09-01

    The Casimir self-energy of a boundary is ultraviolet-divergent. In many cases, the divergences can be eliminated by methods such as zeta-function regularization or through physical arguments (ultraviolet transparency of the boundary would provide a cutoff). Using the example of a massless scalar field theory with a single Dirichlet boundary, we explore the relationship between such approaches, with the goal of better understanding of the origin of the divergences. We are guided by the insight due to Dowker and Kennedy (1978 J. Phys. A: Math. Gen. 11 895) and Deutsch and Candelas (1979 Phys. Rev. D 20 3063) that the divergences represent measurable effects that can be interpreted with the aid of the theory of the asymptotic distribution of eigenvalues of the Laplacian discussed by Weyl. In many cases, the Casimir self-energy is the sum of cutoff-dependent (Weyl) terms having a geometrical origin, and an 'intrinsic' term that is independent of the cutoff. The Weyl terms make a measurable contribution to the physical situation even when regularization methods succeed in isolating the intrinsic part. Regularization methods fail when the Weyl terms and intrinsic parts of the Casimir effect cannot be clearly separated. Specifically, we demonstrate that the Casimir self-energy of a smooth boundary in two dimensions is a sum of two Weyl terms (exhibiting quadratic and logarithmic cutoff dependence), a geometrical term that is independent of cutoff and a non-geometrical intrinsic term. As by-products, we resolve the puzzle of the divergent Casimir force on a ring and correct the sign of the coefficient of linear tension of the Dirichlet line predicted in earlier treatments.

  19. Resolution of an apparent inconsistency in the electromagnetic Casimir effect

    International Nuclear Information System (INIS)

    Alnes, H; Olaussen, K; Ravndal, F; Wehus, I K

    2007-01-01

    The vacuum expectation value of the electromagnetic energy-momentum tensor between two parallel plates in spacetime dimensions D > 4 is calculated in the axial gauge. While the pressure between the plates agrees with the global Casimir force, the energy density is divergent at the plates and not compatible with the total energy which follows from the force. However, subtracting the divergent self-energies of the plates, the resulting energy is finite and consistent with the force. In analogy with the corresponding scalar case for spacetime dimensions D > 2, the divergent self-energy of a single plate can be related to the lack of conformal invariance of the electromagnetic Lagrangian for dimensions D > 4. (fast track communication)

  20. Quantum theories on noncommutative spaces with nontrivial topology: Aharonov-Bohm and Casimir effects

    International Nuclear Information System (INIS)

    Chaichian, M.; Tureanu, A.; Demichev, A.; Presnajder, P.; Sheikh-Jabbari, M.M.

    2001-02-01

    After discussing the peculiarities of quantum systems on noncommutative (NC) spaces with nontrivial topology and the operator representation of the *-product on them, we consider the Aharonov-Bohm and Casimir effects for such spaces. For the case of the Aharonov-Bohm effect, we have obtained an explicit expression for the shift of the phase, which is gauge invariant in the NC sense. The Casimir energy of a field theory on a NC cylinder is divergent, while it becomes finite on a torus, when the dimensionless parameter of noncommutativity is a rational number. The latter corresponds to a well-defined physical picture. Certain distinctions from other treatments based on a different way of taking the noncommutativity into account are also discussed. (author)

  1. Vortex loops in the critical Casimir effect in superfluid and superconducting films

    International Nuclear Information System (INIS)

    Williams, Gary A.

    2004-01-01

    Vortex-loop renormalization techniques are used to calculate the magnitude of the critical Casimir forces in superfluid and superconducting thin films. The force is found to become appreciable when the size of the thermally excited vortex loops is comparable to the film thickness, and the results for T c are found to match very well with perturbative renormalization-group theories that can only be carried out for T>T c . In helium films the Casimir force leads to a change in the film thickness close to T c that has been observed experimentally. A similar effect is predicted to occur near the transition temperature of high-T c superconducting films, which is also a vortex-loop phase transition. In this case the Casimir force takes the form of a voltage difference that will appear at the junction between a thin film and a bulk sample. Estimates show that this voltage can be appreciable (tens of microvolts), and it may be possible to observe the effect by measuring the voltage across two Josephson tunnel junctions to the film and to the bulk, using a SQUID voltmeter

  2. Determination of the Contact Angle Based on the Casimir Effect

    Science.gov (United States)

    Mazuruk, Konstantin; Volz, Martin P.

    2015-01-01

    On a macroscopic scale, a nonreactive liquid partially covering a homogeneous solid surface will intersect the solid at an angle called the contact angle. For molten metals and semiconductors, the contact angle is materially dependent upon both the solid and liquid and typical values fall in the range 80-170 deg, depending on the crucible material. On a microscopic scale, there does not exist a precise and sharp contact angle but rather the liquid and solid surfaces merge smoothly and continuously. Consider the example of the so called detached Bridgman crystal growth process. In this technique, a small gap is formed between the growing crystal and the crucible. At the crystal/melt interface, a meniscus ring is formed. Its width can be in the range of a few micrometers, approaching a microscopic scale. It then becomes questionable to describe the shape of this meniscus by the contact angle. A more advanced treatment of the interface is needed and here we propose such a refined model. The interaction of the liquid surface with the solid can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir or van der Waals force.

  3. Particle creation by a black hole as a consequence of the Casimir effect

    Science.gov (United States)

    Nugayev, R. M.

    1987-12-01

    Particle creation by a black hole is investigated in terms of temperature corrections to the Casimir effect. The reduction of the Hawking effect to more familiar effects observed in the laboratory enables us to reveal the mechanism of particle creation. The blackbody nature of the Hawking radiation is due to the interaction of virtual particles with the surface of a “cavity” formed by the Schwarzschild gravitational field potential barrier. These particles are “squeezed out” by the contraction of the potential barrier and appear to an observer at J + as the real blackbody ones.

  4. The Dirichlet Casimir problem

    International Nuclear Information System (INIS)

    Graham, N.; Jaffe, R.L.; Khemani, V.; Quandt, M.; Schroeder, O.; Weigel, H.

    2004-01-01

    Casimir forces are conventionally computed by analyzing the effects of boundary conditions on a fluctuating quantum field. Although this analysis provides a clean and calculationally tractable idealization, it does not always accurately capture the characteristics of real materials, which cannot constrain the modes of the fluctuating field at all energies. We study the vacuum polarization energy of renormalizable, continuum quantum field theory in the presence of a background field, designed to impose a Dirichlet boundary condition in a particular limit. We show that in two and three space dimensions, as a background field becomes concentrated on the surface on which the Dirichlet boundary condition would eventually hold, the Casimir energy diverges. This result implies that the energy depends in detail on the properties of the material, which are not captured by the idealized boundary conditions. This divergence does not affect the force between rigid bodies, but it does invalidate calculations of Casimir stresses based on idealized boundary conditions

  5. Zeta Function Regularization in Casimir Effect Calculations and J. S. Dowker's Contribution

    Science.gov (United States)

    Elizalde, Emilio

    2012-07-01

    A summary of relevant contributions, ordered in time, to the subject of operator zeta functions and their application to physical issues is provided. The description ends with the seminal contributions of Stephen Hawking and Stuart Dowker and collaborators, considered by many authors as the actual starting point of the introduction of zeta function regularization methods in theoretical physics, in particular, for quantum vacuum fluctuation and Casimir effect calculations. After recalling a number of the strengths of this powerful and elegant method, some of its limitations are discussed. Finally, recent results of the so called operator regularization procedure are presented.

  6. Atomic physics and quantum optics using superconducting circuits: from the Dynamical Casimir effect to Majorana fermions

    Science.gov (United States)

    Nori, Franco

    2012-02-01

    This talk will present an overview of some of our recent results on atomic physics and quantum optics using superconducting circuits. Particular emphasis will be given to photons interacting with qubits, interferometry, the Dynamical Casimir effect, and also studying Majorana fermions using superconducting circuits.[4pt] References available online at our web site:[0pt] J.Q. You, Z.D. Wang, W. Zhang, F. Nori, Manipulating and probing Majorana fermions using superconducting circuits, (2011). Arxiv. J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in a superconducting coplanar waveguide, Phys. Rev. Lett. 103, 147003 (2009). [0pt] J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in superconducting microwave circuits, Phys. Rev. A 82, 052509 (2010). [0pt] C.M. Wilson, G. Johansson, A. Pourkabirian, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Observation of the Dynamical Casimir Effect in a superconducting circuit. Nature, in press (Nov. 2011). P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys., in press (2011). [0pt] J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011). [0pt] S.N. Shevchenko, S. Ashhab, F. Nori, Landau-Zener-Stuckelberg interferometry, Phys. Reports 492, 1 (2010). [0pt] I. Buluta, S. Ashhab, F. Nori. Natural and artificial atoms for quantum computation, Reports on Progress in Physics 74, 104401 (2011). [0pt] I.Buluta, F. Nori, Quantum Simulators, Science 326, 108 (2009). [0pt] L.F. Wei, K. Maruyama, X.B. Wang, J.Q. You, F. Nori, Testing quantum contextuality with macroscopic superconducting circuits, Phys. Rev. B 81, 174513 (2010). [0pt] J.Q. You, X.-F. Shi, X. Hu, F. Nori, Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuit, Phys. Rev. A 81, 063823 (2010).

  7. The generalized Abel-Plana formula. Applications to Bessel functions and Casimir effect

    International Nuclear Information System (INIS)

    Saharian, A.A.; Institute of Applied Problems in Physics NAS RA, Yerevan; Abdus Salam International Centre for Theoretical Physics, Trieste

    2000-02-01

    One of the most efficient methods to obtain the vacuum expectation values for the physical observables in the Casimir effect is based on using the Abel-Plana summation formula. This allows us to derive the regularized quantities in a manifestly cutoff independent way and present them in the form of strongly convergent integrals. However, the application of Abel-Plana formula, in its usual form, is restricted by simple geometries when the eigenmodes have a simple dependence on quantum numbers. The author generalized the Abel-Plana formula which essentially enlarges its application range. Based on this generalization, formulae have been obtained for various types of series over the zeros of some combinations of Bessel functions and for integrals involving these functions. It has been shown that these results generalize the special cases existing in literature. Further, the derived summation formulae have been used to summarize series arising in the mode summation approach to the Casimir effect for spherically and cylindrically symmetric boundaries. This allows us to extract the divergent parts from the vacuum expectation values for the local physical observables in a manifestly cutoff independent way. The present paper reviews these results. Some new considerations are also added. (author)

  8. Casimir torque

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Guzman, Jose C [Centro de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Mochan, W Luis [Centro de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62251 Cuernavaca, Morelos (Mexico)

    2006-05-26

    We develop a formalism for the calculation of the flow of angular momentum carried by the fluctuating electromagnetic field within a cavity bounded by two flat anisotropic materials. By generalizing a procedure employed recently for the calculation of the Casimir force between arbitrary materials, we obtain an expression for the torque between anisotropic plates in terms of their reflection amplitude matrices. We evaluate the torque in 1D for ideal and dispersive model materials.

  9. Relativistic effects in the particle creation via dynamical Casimir effect in a superconducting circuit

    International Nuclear Information System (INIS)

    Rego, Andreson L.C.; Farina, Carlos; Alves, J.P.S.; Alves, Danilo T.

    2012-01-01

    Full text: The creation of real particles from vacuum induced by moving mirrors with non-uniform acceleration is a quantum vacuum effect usually called dynamical Casimir effect (DCE). The radiation reaction force acting on this moving plate is an alternative manner to explain this fascinating effect. The theoretical prediction of the DCE was made by Moore in 1970 (J Math. Phys. 11, 2679, (1970)), considering a cavity with a moving boundary, and a real massless scalar field in a two-dimensional space-time. DeWitt (Phys. Rep. 19, 295 (1975)), Fulling and Davies (Proc. R. Soc. London, A 348, 393 (1976)) also investigated the DCE with the same two-dimensional model, but with just a single moving mirror, the simplest way to produce the Casimir radiation. The experimental measure of the DCE can be treated as a direct confirmation of existence of vacuum fluctuations. In the single mirror problem, for realistic parameters, the amount of created particles is not appreciable. In order to remove this difficulty, several experimental proposals were presented to detect the radiation generated by the DCE. More than 40 years after its first theoretical prediction, the DCE was observed by Wilson and collaborators (Nature, 479, 376, (2011)) in the context of circuit Quantum Electrodynamics (circuit-QED). The experiment was based on a superconducting circuit consisting in a coplanar waveguide terminated by a SQUID (a sensitive magnetometer). The presence of time-dependent magnetic fluxes enable fast modulations in the electrical length of the transmission line. This setup simulates a moving mirror whose effective velocity can achieve 0:1 of velocity of light. In the present work, taking into account the fact of the effective velocity implemented on the first experimental observation of the DCE is a substantial fraction of velocity of light, we investigate relativistic effects in the particle creation via DCE in a superconducting circuit. Considering a massless scalar field in 1

  10. Amplification of the parametric dynamical Casimir effect via optimal control

    Science.gov (United States)

    Hoeb, Fabian; Angaroni, Fabrizio; Zoller, Jonathan; Calarco, Tommaso; Strini, Giuliano; Montangero, Simone; Benenti, Giuliano

    2017-09-01

    We introduce different strategies to enhance photon generation in a cavity within the Rabi model in the ultrastrong coupling regime. We show that a bang-bang strategy allows one to enhance the effect up to 1 order of magnitude with respect to simply driving the system in resonance for a fixed time. Moreover, up to about another order of magnitude can be gained by exploiting quantum optimal control strategies. Finally, we show that such optimized protocols are robust with respect to systematic errors and noise, paving the way to future experimental implementations of such strategies.

  11. Casimir-Foucault interaction: Free energy and entropy at low temperature

    International Nuclear Information System (INIS)

    Intravaia, Francesco; Ellingsen, Simen A.; Henkel, Carsten

    2010-01-01

    It was recently found that thermodynamic anomalies which arise in the Casimir effect between metals described by the Drude model can be attributed to the interaction of fluctuating Foucault (or eddy) currents [F. Intravaia and C. Henkel, Phys. Rev. Lett. 103, 130405 (2009).] We focus on the transverse electric (TE) polarization, where the anomalies occur, and show explicitly that the two leading terms of the low-temperature correction to the Casimir free energy of interaction between two plates are identical to those pertaining to the Foucault current interaction alone, up to a correction which is very small for good metals. Moreover, a mode density along real frequencies is introduced, showing that the TE contribution to the Casimir free energy, as given by the Lifshitz theory, separates in a natural manner into contributions from eddy currents and propagating cavity modes, respectively. The latter have long been known to be of little importance to the low-temperature Casimir anomalies. This convincingly demonstrates that eddy current modes are responsible for the large temperature correction to the Casimir effect between Drude metals, predicted by the Lifshitz theory, but not observed in experiments.

  12. Casimir-Foucault interaction: Free energy and entropy at low temperature

    Science.gov (United States)

    Intravaia, Francesco; Ellingsen, Simen Å.; Henkel, Carsten

    2010-09-01

    It was recently found that thermodynamic anomalies which arise in the Casimir effect between metals described by the Drude model can be attributed to the interaction of fluctuating Foucault (or eddy) currents [F. Intravaia and C. Henkel, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.130405 103, 130405 (2009).] We focus on the transverse electric (TE) polarization, where the anomalies occur, and show explicitly that the two leading terms of the low-temperature correction to the Casimir free energy of interaction between two plates are identical to those pertaining to the Foucault current interaction alone, up to a correction which is very small for good metals. Moreover, a mode density along real frequencies is introduced, showing that the TE contribution to the Casimir free energy, as given by the Lifshitz theory, separates in a natural manner into contributions from eddy currents and propagating cavity modes, respectively. The latter have long been known to be of little importance to the low-temperature Casimir anomalies. This convincingly demonstrates that eddy current modes are responsible for the large temperature correction to the Casimir effect between Drude metals, predicted by the Lifshitz theory, but not observed in experiments.

  13. The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy.

    Science.gov (United States)

    Garrett, Joseph L; Somers, David; Munday, Jeremy N

    2015-06-03

    Measurements of the Casimir force require the elimination of the electrostatic force between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential of e-beamed, sputtered, sputtered and annealed, and template stripped gold surfaces with Heterodyne amplitude modulated Kelvin probe force microscopy (HAM-KPFM). It is demonstrated that HAM-KPFM improves the spatial resolution of surface potential measurements compared to amplitude modulated Kelvin probe force microscopy. We find that patch potentials vary depending on sample preparation, and that the calculated pressure can be similar to the pressure difference between Casimir force calculations employing the plasma and Drude models.

  14. Oscillating Casimir force between two slabs in a Fermi sea

    DEFF Research Database (Denmark)

    Li-Wei, Chen; Guo-Zhen, Su; Jin-Can, Chen

    2012-01-01

    The Casimir effect for two parallel slabs immersed in an ideal Fermi sea is investigated at both zero and nonzero temperatures. It is found that the Casimir effect in a Fermi gas is distinctly different from that in an electromagnetic field or a massive Bose gas. In contrast to the familiar result...... that the Casimir force decreases monotonically with the increase of the separation L between two slabs in an electromagnetic field and a massive Bose gas, the Casimir force in a Fermi gas oscillates as a function of L. The Casimir force can be either attractive or repulsive, depending sensitively on the magnitude...... of L. In addition, it is found that the amplitude of the Casimir force in a Fermi gas decreases with the increase of the temperature, which also is contrary to the case in a Bose gas, since the bosonic Casimir force increases linearly with the increase of the temperature in the region T

  15. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    International Nuclear Information System (INIS)

    Fosco, Cesar D.; Lombardo, Fernando C.

    2015-01-01

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation. (orig.)

  16. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, Cesar D. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche, Instituto Balseiro, Bariloche (Argentina); Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA y IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2015-12-15

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation. (orig.)

  17. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, César D. [Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, R8402AGP, Bariloche (Argentina); Lombardo, Fernando C., E-mail: lombardo@df.uba.ar [Departamento de Física Juan José Giambiagi, FCEyN UBA and IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)

    2015-12-17

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation.

  18. The Casimir Effect from the Point of View of Algebraic Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, Claudio, E-mail: claudio.dappiaggi@unipv.it; Nosari, Gabriele [Università degli Studi di Pavia, Dipartimento di Fisica (Italy); Pinamonti, Nicola [Università di Genova, Dipartimento di Matematica (Italy)

    2016-06-15

    We consider a region of Minkowski spacetime bounded either by one or by two parallel, infinitely extended plates orthogonal to a spatial direction and a real Klein-Gordon field satisfying Dirichlet boundary conditions. We quantize these two systems within the algebraic approach to quantum field theory using the so-called functional formalism. As a first step we construct a suitable unital ∗-algebra of observables whose generating functionals are characterized by a labelling space which is at the same time optimal and separating and fulfils the F-locality property. Subsequently we give a definition for these systems of Hadamard states and we investigate explicit examples. In the case of a single plate, it turns out that one can build algebraic states via a pull-back of those on the whole Minkowski spacetime, moreover inheriting from them the Hadamard property. When we consider instead two plates, algebraic states can be put in correspondence with those on flat spacetime via the so-called method of images, which we translate to the algebraic setting. For a massless scalar field we show that this procedure works perfectly for a large class of quasi-free states including the Poincaré vacuum and KMS states. Eventually Wick polynomials are introduced. Contrary to the Minkowski case, the extended algebras, built in globally hyperbolic subregions can be collected in a global counterpart only after a suitable deformation which is expressed locally in terms of a *-isomorphism. As a last step, we construct explicitly the two-point function and the regularized energy density, showing, moreover, that the outcome is consistent with the standard results of the Casimir effect.

  19. Casimir entropy for a ball in front of a plane

    Science.gov (United States)

    Bordag, M.; Pirozhenko, I. G.

    2010-12-01

    The violation of the third law of thermodynamics for metals described by the Drude model and for dielectrics with finite dc conductivity is one of the most interesting problems in the field of the Casimir effect. It manifests itself as a nonvanishing of the entropy for vanishing temperature. We review the relevant calculations for plane surfaces and calculate the corresponding contributions for a ball in front of a plane. In this geometry, these appear in much the same way as for parallel planes. We conclude that the violation of the 3rd law is not related to the infinite size of the planes.

  20. Out-of-equilibrium relaxation of the thermal Casimir effect in a model polarizable material.

    Science.gov (United States)

    Dean, David S; Démery, Vincent; Parsegian, V Adrian; Podgornik, Rudolf

    2012-03-01

    Relaxation of the thermal Casimir or van der Waals force (the high temperature limit of the Casimir force) for a model dielectric medium is investigated. We start with a model of interacting polarization fields with a dynamics that leads to a frequency dependent dielectric constant of the Debye form. In the static limit, the usual zero frequency Matsubara mode component of the Casimir force is recovered. We then consider the out-of-equilibrium relaxation of the van der Waals force to its equilibrium value when two initially uncorrelated dielectric bodies are brought into sudden proximity. For the interaction between dielectric slabs, it is found that the spatial dependence of the out-of-equilibrium force is the same as the equilibrium one, but it has a time dependent amplitude, or Hamaker coefficient, which increases in time to its equilibrium value. The final relaxation of the force to its equilibrium value is exponential in systems with a single or finite number of polarization field relaxation times. However, in systems, such as those described by the Havriliak-Negami dielectric constant with a broad distribution of relaxation times, we observe a much slower power law decay to the equilibrium value.

  1. Dispersion forces in micromechanics: Casimir and Casimir-Polder forces affected by geometry and non-zero temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ellingsen, Simen Andreas Aadnoey

    2011-01-15

    The present thesis focuses on several topics within three separate but related branches of the overall field of dispersion forces. The three branches are: temperature corrections to the Casimir force between real materials (Part 1), explicit calculation of Casimir energy in wedge geometries (Part 2), and Casimir-Polder forces on particles out of thermal equilibrium (Part 3). Part 1 deals primarily with analysis of a previously purported thermodynamic inconsistency in the Casimir-Lifshitz free energy of the interaction of two plane mirrors - violation of the third law of thermodynamics - when the latter's dielectric response is described with dissipative models. It is shown analytically and numerically that the Casimir entropy of the interaction between two metallic mirrors described by the Drude model does tend to zero at zero temperature, provided electronic relaxation does not vanish. The leading order terms at low temperature are found. A similar calculation is carried out for the interaction of semiconductors with small but non-zero DC conductivity. In a generalisation, it is shown that a violation of the third law can only occur for permittivities whose low-frequency behaviour is temperature dependent near zero temperature. A calculation using path integral methods shows that the low temperature behaviour of the interaction of fluctuating Foucault currents in two mirrors of Drude metal is identical to that of the full Casimir-Lifshitz free energy, reasserting a previous finding by Intravaia and Henkel that such fluctuating bulk currents are the physical reason for the anomalous entropy behaviour. In a related effort, an analysis of the frequency dependence of the Casimir force by Ford is generalised to imperfectly reflecting mirrors. A paradox is pointed out, in that the effects of a perturbation of the reflecting properties of the mirrors in a finite frequency window can be calculated in two ways giving different results. It is concluded that optimistic

  2. Archimedes force on Casimir apparatus

    Directory of Open Access Journals (Sweden)

    Shevchenko V.

    2016-01-01

    Full Text Available The talk addresses a problem of Casimir apparatus in weak gravitational field, surrounded by a dense medium. The falling of the apparatus has to be governed by the equivalence principle, taking into account proper contributions to the weight of the apparatus from its material part and from distorted quantum fields. We discuss general ex pression for the corresponding force in terms of the effective action. By way of example we compute explicit expression for Archimedes force, acting on the Casimir apparatus of finite size, immersed into thermal bath of free scalar field. It is shown that besides universal term, proportional to the volume of the apparatus, there are non-universal quantum corrections, depending on the boundary conditions.

  3. The Reality of Casimir Friction

    Directory of Open Access Journals (Sweden)

    Kimball A. Milton

    2016-04-01

    Full Text Available For more than 35 years theorists have studied quantum or Casimir friction, which occurs when two smooth bodies move transversely to each other, experiencing a frictional dissipative force due to quantum electromagnetic fluctuations, which break time-reversal symmetry. These forces are typically very small, unless the bodies are nearly touching, and consequently such effects have never been observed, although lateral Casimir forces have been seen for corrugated surfaces. Partly because of the lack of contact with observations, theoretical predictions for the frictional force between parallel plates, or between a polarizable atom and a metallic plate, have varied widely. Here, we review the history of these calculations, show that theoretical consensus is emerging, and offer some hope that it might be possible to experimentally confirm this phenomenon of dissipative quantum electrodynamics.

  4. Nonlinear (Anharmonic Casimir Oscillator

    Directory of Open Access Journals (Sweden)

    Habibollah Razmi

    2011-01-01

    Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.

  5. Surface dependency in thermodynamics of ideal gases

    International Nuclear Information System (INIS)

    Sisman, Altug

    2004-01-01

    The Casimir-like size effect rises in ideal gases confined in a finite domain due to the wave character of atoms. By considering this effect, thermodynamic properties of an ideal gas confined in spherical and cylindrical geometries are derived and compared with those in rectangular geometry. It is seen that an ideal gas exhibits an unavoidable quantum surface free energy and surface over volume ratio becomes a control variable on thermodynamic state functions in microscale. Thermodynamics turns into non-extensive thermodynamics and geometry difference becomes a driving force since the surface over volume ratio depends on the geometry

  6. Casimir effect for parallel plates in a Friedmann-Robertson-Walker universe

    Science.gov (United States)

    Bezerra de Mello, E. R.; Saharian, A. A.; Setare, M. R.

    2017-03-01

    We evaluate the Hadamard function, the vacuum expectation values (VEVs) of the field squared and the energy-momentum tensor for a massive scalar field with a general curvature coupling parameter in the geometry of two parallel plates on a spatially flat Friedmann-Robertson-Walker background with a general scale factor. On the plates, the field operator obeys the Robin boundary conditions with the coefficients depending on the scale factor. In all the spatial regions, the VEVs are decomposed into the boundary-free and boundary-induced contributions. Unlike the problem with the Minkowski bulk, in the region between the plates, the normal stress is not homogeneous and does not vanish in the geometry of a single plate. Near the plates, it has different signs for accelerated and decelerated expansions of the Universe. The VEV of the energy-momentum tensor, in addition to the diagonal components, has a nonzero off-diagonal component describing an energy flux along the direction normal to the boundaries. Expressions are derived for the Casimir forces acting on the plates. Depending on the Robin coefficients and on the vacuum state, these forces can be either attractive or repulsive. An important difference from the corresponding result in the Minkowski bulk is that the forces on the separate plates, in general, are different if the corresponding Robin coefficients differ. We give the applications of general results for the class of α vacua in the de Sitter bulk. It is shown that, compared with the Bunch-Davies vacuum state, the Casimir forces for a given α vacuum may change the sign.

  7. On the Casimir effect. Energy density of the free Klein-Gordon-field in front of static classical backgrounds; Zum Casimir-Effekt. Energiedichte des freien Klein-Gordon-Feldes vor statischen klassischen Hintergruenden

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.J.

    2008-01-15

    We study the Casimir energy density of the Klein-Gordon-field in the case of two static geometries. We model the effect by coupling the free quantum field to a static classical scalar field. We work out the dependence on the coupling {lambda}, including the limit {lambda}={infinity} (Dirichlet boundary condition). The chosen geometries are described by a {delta}-funktion ({sigma}(x)={delta}(x{sub 3})) and a step function of finite height ({sigma}(x)= (1)/(2{epsilon})1{sub [{epsilon},{epsilon}]}(x{sub 3})), respectively. In the area outside the support of the background the density energy converges; calculations for the distorted area lead to divergent surface terms. (orig.)

  8. Investigating the effect of Casimir and van der Waals attractions on the electrostatic pull-in instability of nano-actuators

    International Nuclear Information System (INIS)

    Soroush, R; Koochi, A; Haddadpour, H; Kazemi, A S; Noghrehabadi, A; Abadyan, M

    2010-01-01

    This paper investigates the effect of dispersion (van der Waals and Casimir) forces on the pull-in instability of cantilever nano-actuators by considering their range of application. Adomian decomposition is introduced to obtain an analytical solution of the distributed parameter model. Dispersion forces decrease the pull-in deflection and voltage of a nano-actuator. However, the fringing field increases the pull-in deflection while decreasing the pull-in voltage of the actuator. The minimum initial gap and the detachment length of the actuator that does not stick to the substrate due to van der Waals and Casimir attractions were determined. Furthermore, the proposed approach is capable of determining the stress distribution of the actuator at the onset of instability. It is seen that Casimir and van der Waals attractions effectively reduce the maximum value of stress resultants at the onset of instability. The results indicate that Adomian decomposition is a reliable method for simulating nano-structures at submicrometer ranges.

  9. Johnson-Nyquist noise and the Casimir force between real metals at nonzero temperature

    International Nuclear Information System (INIS)

    Bimonte, Giuseppe

    2008-01-01

    It has been well known for a long time that all lossy conductors at finite temperature display an electronic noise, the Johnson-Nyquist noise, arising from the thermal agitation of electric charges inside the conductor. The existence of this noise implies that two nearby discharged conductors at finite temperature should repel each other, as a result of the electrodynamic interaction between the Johnson-Nyquist currents in either conductor and the eddy currents they induce in the other. It is suggested that this force is at the origin of the recently discovered large repulsive correction to the thermal Casimir force between two lossy metallic plates. Further support for this physical picture is obtained by studying a simple system of two linear noisy antennas. Using elementary concepts from circuit theory, we show that the repulsive force engendered by the Johnson-Nyquist noise results in the same kind of thermodynamic inconsistencies found in the Casimir problem. We show that all inconsistencies are however resolved if account is taken of capacitive effects associated with the end points of the antennas. Our findings therefore suggest that capacitive effects resulting from the finite size of the plates may be essential for a resolution of the analogous problems met in the thermal Casimir effect

  10. Johnson Nyquist noise and the Casimir force between real metals at nonzero temperature

    Science.gov (United States)

    Bimonte, Giuseppe

    2008-04-01

    It has been well known for a long time that all lossy conductors at finite temperature display an electronic noise, the Johnson-Nyquist noise, arising from the thermal agitation of electric charges inside the conductor. The existence of this noise implies that two nearby discharged conductors at finite temperature should repel each other, as a result of the electrodynamic interaction between the Johnson-Nyquist currents in either conductor and the eddy currents they induce in the other. It is suggested that this force is at the origin of the recently discovered large repulsive correction to the thermal Casimir force between two lossy metallic plates. Further support for this physical picture is obtained by studying a simple system of two linear noisy antennas. Using elementary concepts from circuit theory, we show that the repulsive force engendered by the Johnson-Nyquist noise results in the same kind of thermodynamic inconsistencies found in the Casimir problem. We show that all inconsistencies are however resolved if account is taken of capacitive effects associated with the end points of the antennas. Our findings therefore suggest that capacitive effects resulting from the finite size of the plates may be essential for a resolution of the analogous problems met in the thermal Casimir effect.

  11. Halving the Casimir force with Conductive Oxides

    NARCIS (Netherlands)

    de Man, S.P.J.; Heeck, K.; Wijngaarden, R.J.; Iannuzzi, D.

    2009-01-01

    The possibility to modify the strength of the Casimir effect by tailoring the dielectric functions of the interacting surfaces is regarded as a unique opportunity in the development of micro- and nanoelectromechanical systems. In air, however, one expects that, unless noble metals are used, the

  12. Casimir energy and the possibility of higher dimensional manipulation

    OpenAIRE

    Obousy, R. K.; Saharian, A. A.

    2009-01-01

    It is well known that the Casimir effect is an excellent candidate for the stabilization of the extra dimensions. It has also been suggested that the Casimir effect in higher dimensions may be the underlying phenomenon that is responsible for the dark energy which is currently driving the accelerated expansion of the universe. In this paper we suggest that, in principle, it may be possible to directly manipulate the size of an extra dimension locally using Standard Model fields in the next ge...

  13. Casimir Energy, Extra Dimensions and Exotic Propulsion

    Science.gov (United States)

    Obousy, R.; Saharian, A.

    It is well known that the Casimir effect is an excellent candidate for the stabilization of the extra dimensions. It has also been suggested that the Casimir effect in higher dimensions may be the underlying phenomenon that is responsible for the dark energy which is currently driving the accelerated expansion of the universe. In this paper we suggest that, in principle, it may be possible to directly manipulate the size of an extra dimension locally using Standard Model fields in the next generation of particle accelerators. This adjustment of the size of the higher dimension could serve as a technological mechanism to locally adjust the dark energy density and change the local expansion of spacetime. This idea holds tantalizing possibilities in the context of exotic spacecraft propulsion.

  14. Casimir interactions between graphene sheets and metamaterials

    International Nuclear Information System (INIS)

    Drosdoff, D.; Woods, Lilia M.

    2011-01-01

    The Casimir force between graphene sheets and metamaterials is studied. Theoretical results based on the Lifshitz theory for layered, planar, two-dimensional systems in media are presented. We consider graphene-graphene, graphene-metamaterial, and metal-graphene-metamaterial configurations. We find that quantum effects of the temperature-dependent force are not apparent until the submicron range. In contrast to results with bulk dielectric and bulk metallic materials, no Casimir repulsion is found when graphene is placed on top of a magnetically active metamaterial substrate, regardless of the strength of the low-frequency magnetic response. In the case of the metal-graphene-metamaterial setting, repulsion between the metamaterial and the metal-graphene system is possible only when the dielectric response from the metal contributes significantly.

  15. Graphene cantilever under Casimir force

    Science.gov (United States)

    Derras-Chouk, Amel; Chudnovsky, Eugene M.; Garanin, Dmitry A.; Jaafar, Reem

    2018-05-01

    The stability of graphene cantilever under Casimir attraction to an underlying conductor is investigated. The dependence of the instability threshold on temperature and flexural rigidity is obtained. Analytical work is supplemented by numerical computation of the critical temperature above which the graphene cantilever irreversibly bends down and attaches to the conductor. The geometry of the attachment and exfoliation of the graphene sheet is discussed. It is argued that graphene cantilever can be an excellent tool for precision measurements of the Casimir force.

  16. Casimir-Polder interaction in second quantization

    Energy Technology Data Exchange (ETDEWEB)

    Schiefele, Juergen

    2011-03-21

    The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone of cavity quantum electrodynamics (cQED), and theoretically well established. Recently, Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predictions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with the many-body theory needed to describe trapped atomic BECs. Tools and methods are developed in a second-quantized picture that treats atom and photon fields on the same footing. We formulate a diagrammatic expansion using correlation functions for both the electromagnetic field and the atomic system. The formalism is applied to investigate, for BECs trapped near surfaces, dispersion interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in spontaneous decay of excited atomic states. We also discuss a phononic Casimir effect, which arises from the quantum fluctuations in an interacting BEC. (orig.)

  17. Casimir-Polder interaction in second quantization

    International Nuclear Information System (INIS)

    Schiefele, Juergen

    2011-01-01

    The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone of cavity quantum electrodynamics (cQED), and theoretically well established. Recently, Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predictions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with the many-body theory needed to describe trapped atomic BECs. Tools and methods are developed in a second-quantized picture that treats atom and photon fields on the same footing. We formulate a diagrammatic expansion using correlation functions for both the electromagnetic field and the atomic system. The formalism is applied to investigate, for BECs trapped near surfaces, dispersion interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in spontaneous decay of excited atomic states. We also discuss a phononic Casimir effect, which arises from the quantum fluctuations in an interacting BEC. (orig.)

  18. On convergence generation in computing the electro-magnetic Casimir force

    International Nuclear Information System (INIS)

    Schuller, F.

    2008-01-01

    We tackle the very fundamental problem of zero-point energy divergence in the context of the Casimir effect. We calculate the Casimir force due to field fluctuations by using standard cavity radiation modes. The validity of convergence generation by means of an exponential energy cut-off factor is discussed in detail. (orig.)

  19. Thermodynamics

    CERN Document Server

    Fermi, Enrico

    1956-01-01

    Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr

  20. Measurement of Casimir force with magnetic materials Alexandr Banishev, Chia-Cheng Chang, Umar Mohideen Department of Physics and Astronomy, University of California, Riverside, USA

    Science.gov (United States)

    Banishev, Alexandr; Chang, Chia-Cheng; Mohideen, Umar

    2012-02-01

    The Casimir effect is important in various fields from atomic physics to nanotechnology. According to the Lifshitz theory of the Casimir force, the interaction between two objects depends both on their dielectric permittivity and magenetic permeability. Thus the role of magnetic properties on the Casimir force is interesting particularly due to the possibility of a reduction the Casimir force. In this report we will present the results of a Casimir force measurement between a magnetic material such as nickel coated on SiO2 plate and a Au-coated sphere.

  1. Some new results of the Casimir force for rectangular cavity

    International Nuclear Information System (INIS)

    Zhai, X.-H.; Li, X.-Z.

    2001-01-01

    The Casimir effect giving rise to an attractive or repulsive force between the configuration boundaries that confine the massless scalar field is analytically approached for a p-dimensional rectangular cavity with the Dirichlet boundary conditions and different spacetime dimensions D. The Casimir force is attractive in the cases: i) p-odd hypercube when D is less than the critical dimension D c and p ≤ 29; ii) o =2 and the length ratio is less than a critical value; iii) p = 1. The Casimir force is repulsive in the cases: i) p = 2 and the length ratio is larger than a critical value; ii) the length of q edges is equal and others are much longer than q edges, in the direction of (p-q) edges; iii) (p-q) edges are much longer than q edges, in the direction of (p-q) edges

  2. Thermal Fluctuations in Casimir Pistons

    Science.gov (United States)

    Lomnitz, M.; Villarreal, C.

    2012-07-01

    We present analytical and simple expressions to determine the free energy, internal energy, entropy, as well as the pressure acting at the interface of a perfectly conducting rectangular Casimir piston. We show that infrared divergencies linear in temperature become cancelled within the piston configuration, and show a continuous behavior consistent with intuitive expectations.

  3. Thermodynamics of silicon nitridation - Effect of hydrogen

    Science.gov (United States)

    Shaw, N. J.; Zeleznik, F. J.

    1982-01-01

    Equilibrium compositions for the nitridization of Si were calculated to detect the effectiveness of H2 in removal of the oxide film and in increasing the concentration of SiO and reducing the proportions of O2. Gibbs free energy for the formation of SiN2O was computed above 1685 K, and at lower temperatures. The thermodynamic properties of SiN2O2 were then considered from 1000-3000 K, taking into account the known thermodynamic data for 39 molecular combinations of the Si, Ni, and O. The gases formed were assumed ideal mixtures with pure phase condensed species. The mole fractions were obtained for a system of SiO2 with each Si particle covered with a thin layer of SiO2 before nitridation, and a system in which the nitriding atmosphere had access to the Si. The presence of H2 was determined to enhance the removal of NiO2 in the first system, decrease the partial pressure of O2, increase the partial pressures of SiO, Si, H2O, NH3, and SiH4, while its effects were negligible in the Si system.

  4. Thermodynamics

    International Nuclear Information System (INIS)

    Zanchini, E.

    1988-01-01

    The definition of energy, in thermodynamics, is dependent by starting operative definitions of the basic concepts of physics on which it rests, such as those of isolated systems, ambient of a system, separable system and set of separable states. Then the definition of energy is rigorously extended to open systems. The extension gives a clear physical meaning to the concept of energy difference between two states with arbitrary different compositions

  5. Effective Thermodynamics for a Marginal Observer

    Science.gov (United States)

    Polettini, Matteo; Esposito, Massimiliano

    2017-12-01

    Thermodynamics is usually formulated on the presumption that the observer has complete information about the system he or she deals with: no parasitic current, exact evaluation of the forces that drive the system. For example, the acclaimed fluctuation relation (FR), relating the probability of time-forward and time-reversed trajectories, assumes that the measurable transitions suffice to characterize the process as Markovian (in our case, a continuous-time jump process). However, most often the observer only measures a marginal current. We show that he or she will nonetheless produce an effective description that does not dispense with the fundamentals of thermodynamics, including the FR and the 2nd law. Our results stand on the mathematical construction of a hidden time reversal of the dynamics, and on the physical requirement that the observed current only accounts for a single transition in the configuration space of the system. We employ a simple abstract example to illustrate our results and to discuss the feasibility of generalizations.

  6. Dissipation effects in mechanics and thermodynamics

    Science.gov (United States)

    Güémez, J.; Fiolhais, M.

    2016-07-01

    With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to heat transfer to the surroundings. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned, the effects of the dissipative forces are included in Newton’s equations as impulses and pseudo-works.

  7. Supersymmetry Breaking Casimir Warp Drive

    Science.gov (United States)

    Obousy, Richard K.; Cleaver, Gerald

    2007-01-01

    This paper utilizes a recent model which relates the cosmological constant to the Casimir energy of the extra dimensions in brane-world theories. The objective of this paper is to demonstrate that, given some sufficiently advanced civilization with the ability to manipulate the radius of the extra dimension, a local adjustment of the cosmological constant could be created. This adjustment would facilitate an expansion/contraction of the spacetime around a spacecraft creating an exotic form of field-propulsion. This idea is analogous to the Alcubierre bubble, but differs entirely in the approach, utilizing the physics of higher dimensional quantum field theory, instead of general relativity.

  8. Theoretical ingredients of a Casimir analog computer.

    Science.gov (United States)

    Rodriguez, Alejandro W; McCauley, Alexander P; Joannopoulos, John D; Johnson, Steven G

    2010-05-25

    We derive a correspondence between the contour integration of the Casimir stress tensor in the complex-frequency plane and the electromagnetic response of a physical dissipative medium in a finite real-frequency bandwidth. The consequences of this correspondence are at least threefold: First, the correspondence makes it easier to understand Casimir systems from the perspective of conventional classical electromagnetism, based on real-frequency responses, in contrast to the standard imaginary-frequency point of view based on Wick rotations. Second, it forms the starting point of finite-difference time-domain numerical techniques for calculation of Casimir forces in arbitrary geometries. Finally, this correspondence is also key to a technique for computing quantum Casimir forces at micrometer scales using antenna measurements at tabletop (e.g., centimeter) scales, forming a type of analog computer for the Casimir force. Superficially, relationships between the Casimir force and the classical electromagnetic Green's function are well known, so one might expect that any experimental measurement of the Green's function would suffice to calculate the Casimir force. However, we show that the standard forms of this relationship lead to infeasible experiments involving infinite bandwidth or exponentially growing fields, and a fundamentally different formulation is therefore required.

  9. Casimir Interaction from Magnetically Coupled Eddy Currents

    Science.gov (United States)

    Intravaia, Francesco; Henkel, Carsten

    2009-09-01

    We study the quantum and thermal fluctuations of eddy (Foucault) currents in thick metallic plates. A Casimir interaction between two plates arises from the coupling via quasistatic magnetic fields. As a function of distance, the relevant eddy current modes cross over from a quantum to a thermal regime. These modes alone reproduce previously discussed thermal anomalies of the electromagnetic Casimir interaction between good conductors. In particular, they provide a physical picture for the Casimir entropy whose nonzero value at zero temperature arises from a correlated, glassy state.

  10. Casimir interaction between spheres in (D+1)-dimensional Minkowski spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Teo, L.P. [Department of Applied Mathematics, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan (Malaysia)

    2014-05-06

    We consider the Casimir interaction between two spheres in (D+1)-dimensional Minkowski spacetime due to the vacuum fluctuations of scalar fields. We consider combinations of Dirichlet and Neumann boundary conditions. The TGTG formula of the Casimir interaction energy is derived. The computations of the T matrices of the two spheres are straightforward. To compute the two G matrices, known as translation matrices, which relate the hyper-spherical waves in two spherical coordinate frames differ by a translation, we generalize the operator approach employed in R.C. Wittman, Spherical Wave Operators and the Translation Formulas, IEEE Trans. Antennas Propag. 36 (1988) 1078. . The result is expressed in terms of an integral over Gegenbauer polynomials. In contrast to the D=3 case, we do not re-express the integral in terms of 3j-symbols and hyper-spherical waves, which in principle, can be done but does not simplify the formula. Using our expression for the Casimir interaction energy, we derive the large separation and small separation asymptotic expansions of the Casimir interaction energy. In the large separation regime, we find that the Casimir interaction energy is of order L{sup −2D+3}, L{sup −2D+1} and L{sup −2D−1} respectively for Dirichlet-Dirichlet, Dirichlet-Neumann and Neumann-Neumann boundary conditions, where L is the center-to-center distance of the two spheres. In the small separation regime, we confirm that the leading term of the Casimir interaction agrees with the proximity force approximation, which is of order d{sup −((D+1)/2)}, where d is the distance between the two spheres. Another main result of this work is the analytic computations of the next-to-leading order term in the small separation asymptotic expansion. This term is computed using careful order analysis as well as perturbation method. In the case the radius of one of the sphere goes to infinity, we find that the results agree with the one we derive for sphere-plate configuration

  11. Casimir force between two Aharonov-Bohm selenoids

    International Nuclear Information System (INIS)

    Duru, I.H.

    1989-06-01

    We show that a force of Casimir type case be associated with the Aharonov-Bohm effect. We consider two parallel, infinitely long and thin selenoids confining the quantized fluxes n 1 and n 2 within them. Using the Green function method, the vacuum expectation value of the system's energy which includes ''self interaction'' terms and a finite ''mutual interaction'' term is calculated. 8 refs

  12. Tuning the Mass of Chameleon Fields in Casimir Force Experiments

    CERN Document Server

    Brax, Ph; Davis, A C; Shaw, D J; Iannuzzi, D

    2010-01-01

    We have calculated the chameleon pressure between two parallel plates in the presence of an intervening medium that affects the mass of the chameleon field. As intuitively expected, the gas in the gap weakens the chameleon interaction mechanism with a screening effect that increases with the plate separation and with the density of the intervening medium. This phenomenon might open up new directions in the search of chameleon particles with future long range Casimir force experiments.

  13. Non-equilibrium Casimir force between vibrating plates.

    Directory of Open Access Journals (Sweden)

    Andreas Hanke

    Full Text Available We study the fluctuation-induced, time-dependent force between two plates confining a correlated fluid which is driven out of equilibrium mechanically by harmonic vibrations of one of the plates. For a purely relaxational dynamics of the fluid we calculate the fluctuation-induced force generated by the vibrating plate on the plate at rest. The time-dependence of this force is characterized by a positive lag time with respect to the driving. We obtain two distinctive contributions to the force, one generated by diffusion of stress in the fluid and another related to resonant dissipation in the cavity. The relation to the dynamic Casimir effect of the electromagnetic field and possible experiments to measure the time-dependent Casimir force are discussed.

  14. Isotope effect in thermodynamic parameters of styrene polymerization

    International Nuclear Information System (INIS)

    Lebedev, B.V.; Lebedev, N.K.; Smirnova, N.N.

    1985-01-01

    Isotope effects in the enthalpy, entropy and Gibbs energy of the styrene polymerization process are detected by adiabatic- and isothermal calorimetry methods. Thermodynamic parameters of styrene- and deuterostyrene polymerization are calculated in the range from 0 to 350 K. Differences in thermodynamic quantities of these processes are explained by the influence of hydrogen substitution by deuterium and constitute: for enthalpy and Gibbs energy 2-3 kJ/mol, for entropy - 2-3 J/(mol x k)

  15. Casimir force in noncommutative Randall-Sundrum models revisited

    International Nuclear Information System (INIS)

    Teo, L. P.

    2010-01-01

    We propose another method to compute the Casimir force in noncommutative Randall-Sundrum braneworld model considered by K. Nouicer and Y. Sabri, Phys. Rev. D 80, 086013 (2009). recently. Our method can be used to compute the Casimir force to any order in the noncommutative parameter. Contrary to the claim made by K. Nouicer and Y. Sabri that repulsive Casimir force can appear in the first order approximation, we show that the Casimir force is always attractive at any order of approximation.

  16. Casimir force experiments with quartz tuning forks and an atomic force microscope (AFM)

    International Nuclear Information System (INIS)

    Ludwig, T

    2008-01-01

    The aim of the measurement series is to study the Casimir force, specifically the effects of different materials and geometries. The art of measuring sub-nano Newton forces has been engineered to a great extent in the material sciences, especially for the atomic force microscope. In today's scanning microscope technologies there are several common methods used to measure sub-nano Newton forces. While the commercial atomic force microscopes (AFM) mostly work with soft silicon cantilevers, there are a large number of reports from university groups on the use of quartz tuning forks to get high resolution AFM pictures, to measure shear forces or to create new force sensors. The quartz tuning fork based force sensor has a number of advantages over the silicon cantilever, but also has some disadvantages. In this report the method based on quartz tuning forks is described with respect to their usability for Casimir force measurements and compared with other successful techniques. Furthermore, a design for Casimir force measurements that was set up in Berlin will be described and practical experimental aspects will be discussed. A status report on the Casimir experiments in Berlin will be given, including the experimental setup. In order to study the details of the Casimir effect the apparatus and active surfaces have to be improved further. The surfaces have to be flatter and cleaner. For better resolution, cantilevers and tuning forks with a low spring constant have to be employed

  17. Modelling critical Casimir force induced self-assembly experiments on patchy colloidal dumbbells.

    Science.gov (United States)

    Newton, Arthur C; Nguyen, T Anh; Veen, Sandra J; Kraft, Daniela J; Schall, Peter; Bolhuis, Peter G

    2017-07-19

    Colloidal particles suspended in a binary liquid mixture can interact via solvent mediated interactions, known as critical Casimir forces. For anisotropic colloids this interaction becomes directional, which leads to rich phase behavior. While experimental imaging and particle tracking techniques allow determination of isotropic effective potentials via Boltzmann inversion, the modeling of effective interaction in anisotropic systems is non-trivial precisely because of this directionality. Here we extract effective interaction potentials for non-spherical dumbbell particles from observed radial and angular distributions, by employing reference interaction site model (RISM) theory and direct Monte Carlo simulations. For colloidal dumbbell particles dispersed in a binary liquid mixture and interacting via induced critical Casimir forces, we determine the effective site-site potentials for a range of experimental temperatures. Using these potentials to simulate the system for strong Casimir forces, we reproduce the experimentally observed collapse, and provide a qualitative explanation for this behavior.

  18. Detecting chameleons through Casimir force measurements

    International Nuclear Information System (INIS)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine; Shaw, Douglas; Mota, David F.

    2007-01-01

    The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces; however, this sheet masks any detectable signal due to the presence of a strongly coupled chameleon field. As a result of this shielding, experiments that are designed to specifically test the behavior of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter coupling than tests of gravity. Motivated by this, we perform a full investigation on the possibility of testing chameleon models with both present and future Casimir experiments. We find that present-day measurements are not able to detect the chameleon. However, future experiments have a strong possibility of detecting or rule out a whole class of chameleon models

  19. Casimir energy density for spherical universes in n-dimensional spacetime

    International Nuclear Information System (INIS)

    Oezcan, Mustafa

    2006-01-01

    We consider the Casimir effect for the massless conformal scalar field in an n-dimensional, closed, static universe. We calculate the renormalized vacuum energy density using the covariant point-splitting method, the mode-sum regularization and the renormalized vacuum energy with the zeta-function regularization. We observe that all odd spacetime dimensions give us the zero renormalized vacuum energy density. For even spacetime dimensions the renormalized vacuum energy density oscillates in sign. The result agrees with three regularization techniques. The Casimir energy density for spherical universes in n-dimensional spacetime is regarded as interesting both to understand the correspondence between the sign of the effect and the dimension of manifold in topology and as a key to confirming the Casimir energy for half spherical universes (manifold with boundary) in n-dimensional spacetime

  20. Thermodynamics, diffusion and the Kirkendall effect in solids

    CERN Document Server

    Paul, Aloke; Vuorinen, Vesa; Divinski, Sergiy V

    2014-01-01

    Covering both basic and advanced thermodynamic and phase  principles,  as well as providing stability diagrams relevant for diffusion studies, Thermodynamics, Diffusion and the Kirkendall Effect in Solids maximizes reader insights into Fick’s laws of diffusion, atomic mechanisms, interdiffusion, intrinsic diffusion, tracer diffusion and the Kirkendall effect. Recent advances in the area of interdiffusion will be introduced, while the many practical examples and large number of illustrations given will serve to aid researches working in this area in learning the practical evaluation of various diffusion parameters from experimental results. With a unique approach to the two main focal points in solid state transformations, energetics (thermodynamics) and kinetics (interdiffusion) are extensively studied and their combined use in practise is discussed. Recent developments in the area of Kirkendall effect, grain boundary diffusion and multicomponent diffusion are also covered extensively. This book will appe...

  1. Casimir elements of epsilon Lie algebras

    International Nuclear Information System (INIS)

    Scheunert, M.

    1982-10-01

    The classical framework for investigating the Casimir elements of a Lie algebra is generalized to the case of an epsilon Lie algebra L. We construct the standard L-module isomorphism of the epsilon-symmetric algebra of L onto its enveloping algebra and we introduce the Harish-Chandra homomorphism. In case the generators of L can be written in a canonical two-index form, we construct the associated standard sequence of Casimir elements and derive a formula for their eigenvalues in an arbitrary highest weight module. (orig.)

  2. Effects of non-local thermodynamic equilibrium conditions on ...

    Indian Academy of Sciences (India)

    Abstract. Effects of non-local thermodynamic equilibrium (non-LTE) condition on emission and hydrodynamics of typical inertial confinement fusion (ICF) plasmas are studied. The average degree of ionization at high temperatures is seen to be much lower compared to the values obtained from. Thomas–Fermi scaling or ...

  3. Casimir free energy of dielectric films: classical limit, low-temperature behavior and control.

    Science.gov (United States)

    Klimchitskaya, G L; Mostepanenko, V M

    2017-07-12

    The Casimir free energy of dielectric films, both free-standing in vacuum and deposited on metallic or dielectric plates, is investigated. It is shown that the values of the free energy depend considerably on whether the calculation approach used neglects or takes into account the dc conductivity of film material. We demonstrate that there are material-dependent and universal classical limits in the former and latter cases, respectively. The analytic behavior of the Casimir free energy and entropy for a free-standing dielectric film at low temperature is found. According to our results, the Casimir entropy goes to zero when the temperature vanishes if the calculation approach with neglected dc conductivity of a film is employed. If the dc conductivity is taken into account, the Casimir entropy takes the positive value at zero temperature, depending on the parameters of a film, i.e. the Nernst heat theorem is violated. By considering the Casimir free energy of SiO 2 and Al 2 O 3 films deposited on a Au plate in the framework of two calculation approaches, we argue that physically correct values are obtained by disregarding the role of dc conductivity. A comparison with the well known results for the configuration of two parallel plates is made. Finally, we compute the Casimir free energy of SiO 2 , Al 2 O 3 and Ge films deposited on high-resistivity Si plates of different thicknesses and demonstrate that it can be positive, negative and equal to zero. The effect of illumination of a Si plate with laser light is considered. Possible applications of the obtained results to thin films used in microelectronics are discussed.

  4. Repulsive electromagnetic stresses in the Casimir piston

    OpenAIRE

    García, L.; González, L. E.; Lomnitz, M.; Villarreal, C.

    2008-01-01

    This manuscript has been withdrawn, since the authors have detected numerical inaccuracies that invalidate their main results concerning the existence of repulsive Casimir forces within a rectangular piston. Formulas presented in the manuscript keep still valid. The authors deeply apologize for this mistake.

  5. Kinetic Roughening and Material Optical Properties Influence on Van der Waals/Casimir Forces

    NARCIS (Netherlands)

    van Zwol, P. J.; Palasantzas, G.

    Atomic force microscopy measurements and force theory calculations using the Lifshitz theory show that van der Waals/Casimir dispersive forces have a strong dependence on surface roughness and material optical properties. It is found that at separations below 100 nm the roughness effect is

  6. Casimir force for a scalar field in warped brane worlds

    International Nuclear Information System (INIS)

    Linares, Roman; Morales-Tecotl, Hugo A.; Pedraza, Omar

    2008-01-01

    In looking for imprints of extra dimensions in braneworld models one usually builds these so that they are compatible with known low energy physics and thus focuses on high energy effects. Nevertheless, just as submillimeter Newton's law tests probe the mode structure of gravity other low energy tests might apply to matter. As a model example, in this work we determine the 4D Casimir force corresponding to a scalar field subject to Dirichlet boundary conditions on two parallel planes lying within the single brane of a Randall-Sundrum scenario extended by one compact extra dimension. Using the Green's function method such a force picks the contribution of each field mode as if it acted individually but with a weight given by the square of the mode wave functions on the brane. In the low energy regime one regains the standard 4D Casimir force that is associated to a zero mode in the massless case or to a quasilocalized or resonant mode in the massive one while the effect of the extra dimensions gets encoded as an additional term.

  7. Cellular cryobiology: thermodynamic and mechanical effects

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, J. [University of New South Wales, Sydney (Australia). School of Physics; Bryant, G. [RMIT University, Melbourne (Australia). Dept. of Applied Physics

    2001-07-01

    Several physical stresses kill cells at low temperatures. Intracellular ice is usually fatal, so survival of freezing temperatures involves combinations of dehydration, freezing point depression, supercooling and intracellular vitrification. Artificial cryopreservation achieves intracellular vitrification with rapid cooling, modest osmotic contraction and, often, added cryoprotectants. High warming rates are required to avoid crystallization during warming. Environmental cooling is much slower and temperatures less cold, but environmental freezing damage is important ecologically and agronomically. For modest sub-freezing temperatures, supercooling sometimes allows survival. At lower temperatures, extracellular water usually freezes and cells may suffer large osmotic contractions. This contraction concentrates solutes and thus assists vitrification, but is not necessarily reversible: the rapid osmotic expansion during thawing may rupture membranes. Further, membranes and other ultrastructural elements may be damaged by the large, anisotropic mechanical stresses produced when their surfaces interact via hydration forces. Solutes reduce these stresses by osmotic, volumetric and other effects. (author)

  8. Understanding the edge effect in wetting: a thermodynamic approach.

    Science.gov (United States)

    Fang, Guoping; Amirfazli, A

    2012-06-26

    Edge effect is known to hinder spreading of a sessile drop. However, the underlying thermodynamic mechanisms responsible for the edge effect still is not well-understood. In this study, a free energy model has been developed to investigate the energetic state of drops on a single pillar (from upright frustum to inverted frustum geometries). An analysis of drop free energy levels before and after crossing the edge allows us to understand the thermodynamic origin of the edge effect. In particular, four wetting cases for a drop on a single pillar with different edge angles have been determined by understanding the characteristics of FE plots. A wetting map describing the four wetting cases is given in terms of edge angle and intrinsic contact angle. The results show that the free energy barrier observed near the edge plays an important role in determining the drop states, i.e., (1) stable or metastable drop states at the pillar's edge, and (2) drop collapse by liquid spilling over the edge completely or staying at an intermediate sidewall position of the pillar. This thermodynamic model presents an energetic framework to describe the functioning of the so-called "re-entrant" structures. Results show good consistency with the literature and expand the current understanding of Gibbs' inequality condition.

  9. Thermodynamic effects of commercially available ice boots

    Directory of Open Access Journals (Sweden)

    Madison N. Quintanar

    2018-01-01

    Full Text Available The limb of the equine athlete is subjected to all types of various stressors during exercise. To ensure the health of the horse and to prevent the possibility of lameness, it has been a common practice to apply cold therapy to the distal limb of the horse pre- and post-exercise. Commercially available boots are widely available for the application of cold therapy. To test the effectiveness of the boot, 6 healthy performance level sport type horses were exercised at a walk, trot, and canter in a round-pen and then subjected to the application of the ice boot for 20 minutes on a treatment leg, and no ice boot on an untreated leg. Thermal images were taken of the 3rd metacarpal region pre-exercise, post-exercise, post-ice boot, and every 2 minutes after until the difference between the temperatures of the control leg and the treatment leg became zero. The images were analyzed using an analysis software (FLIR Tools to determine the average temperature of the 3rd metacarpal region at each time point. The measured temperatures between treatments were found to be significantly different due to the application of the ice boot, providing evidence that the boot sufficiently cools the leg (P<.01. Thereafter, a 95% confidence interval was created to depict the average time it took for the cooled leg to return to average temperature post-ice boot, suggesting that it takes about 14.67 minutes for the difference between the temperatures of the cooled leg versus the non-cooled leg to become zero. This finding is significant to horse owners, trainers, and veterinarians that use this commonly available tool. These findings lend evidence to support the common practice of using cold therapy in treatment of disease in the horse.

  10. Selective decay by Casimir dissipation in inviscid fluids

    International Nuclear Information System (INIS)

    Gay-Balmaz, François; Holm, Darryl D

    2013-01-01

    The problem of parameterizing the interactions of larger scales and smaller scales in fluid flows is addressed by considering a property of two-dimensional (2D) incompressible turbulence. The property we consider is selective decay, in which a Casimir of the ideal formulation (enstrophy in 2D flows, helicity in three-dimensional flows) decays in time, while the energy stays essentially constant. This paper introduces a mechanism that produces selective decay by enforcing Casimir dissipation in fluid dynamics. This mechanism turns out to be related in certain cases to the numerical method of anticipated vorticity discussed in Sadourny and Basdevant (1981 C. R. Acad. Sci. Paris 292 1061–4, 1985 J. Atm. Sci. 42 1353–63). Several examples are given and a general theory of selective decay is developed that uses the Lie–Poisson structure of the ideal theory. A scale-selection operator allows the resulting modifications of the fluid motion equations to be interpreted in several examples as parametrizing the nonlinear, dynamical interactions between disparate scales. The type of modified fluid equation systems derived here may be useful in modelling turbulent geophysical flows where it is computationally prohibitive to rely on the slower, indirect effects of a realistic viscosity, such as in large-scale, coherent, oceanic flows interacting with much smaller eddies. (paper)

  11. Casimir apparatuses in a weak gravitational field

    DEFF Research Database (Denmark)

    Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero

    2009-01-01

    We review and assess a part of the recent work on Casimir apparatuses in the weak gravitational field of the Earth. For a free, real massless scalar field subject to Dirichlet or Neumann boundary conditions on the parallel plates, the resulting regularized and renormalized energy-momentum tensor...... is covariantly conserved, while the trace anomaly vanishes if the massless field is conformally coupled to gravity. Conformal coupling also ensures a finite Casimir energy and finite values of the pressure upon parallel plates. These results have been extended to an electromagnetic field subject to perfect...... conductor (hence idealized) boundary conditions on parallel plates, by various authors. The regularized and renormalized energy-momentum tensor has beene valuated up to second order in the gravity acceleration. In both the scalar and the electromagnetic case, studied to first order in the gravity...

  12. Casimir energy for a piecewise uniform string

    International Nuclear Information System (INIS)

    Brevik, I.; Nielsen, H.B.

    1989-07-01

    The Casimir energy for the transverse oscillations of a piecewise uniform closed string is calculated. The string consists of two parts I and II, endowed in general with different tensions and mass densities, although adjusted in such a way that the velocity of sound always equals the velocity of light. The dispersion equation is worked out under general conditions, and the frequency spectrum is determined in special cases. When the ratio L II /L I between the string lengths is an integer, it is in principle possible to determine the frequency spectrum through solving algebraic equations of increasingly high degree. The Casimir energy relative to the uniform string is in general found to be negative, although in the special case L I =L II the energy is equal to zero. Delicate points in the regularization procedure are discussed; they point toward an anomaly in the theory. (orig.)

  13. Casimir pistons with general boundary conditions

    Directory of Open Access Journals (Sweden)

    Guglielmo Fucci

    2015-02-01

    Full Text Available In this work we analyze the Casimir energy and force for a scalar field endowed with general self-adjoint boundary conditions propagating in a higher dimensional piston configuration. The piston is constructed as a direct product I×N, with I=[0,L]⊂R and N a smooth, compact Riemannian manifold with or without boundary. The study of the Casimir energy and force for this configuration is performed by employing the spectral zeta function regularization technique. The obtained analytic results depend explicitly on the spectral zeta function associated with the manifold N and the parameters describing the general boundary conditions imposed. These results are then specialized to the case in which the manifold N is a d-dimensional sphere.

  14. Casimir forces from a loop integral formulation

    International Nuclear Information System (INIS)

    Babington, James

    2010-01-01

    We reformulate the Casimir force between bodies in non-trivial background media. The force may be written in terms of loop variables, the loop being a curve around the scattering sites. A natural path ordering of exponentials takes place when a particular representation of the scattering centres is given. The basic object to be evaluated is a reduced (or abbreviated) classical pseudo-action that can be operator valued, and can be obtained from a classical path integral description.

  15. On Casimir elements of simple Lie algebras

    International Nuclear Information System (INIS)

    El Houari, M.

    1996-08-01

    In this letter, we recall briefly the generalized Casimir elements of a finite dimensional Lie algebra. We specify those of orders two and three: when the Lie algebra is simple (even semisimple), we begin by normalizing the former (the quadratic), and then we study some actions of the latter (the cubic). In particular, we introduce a graphical formalism, translating rigorously the tensorial calculus. This allows us to prove the main theorem in a graphic theoretic manner. (author). 11 refs, 1 tab

  16. Statistical field theory with constraints: Application to critical Casimir forces in the canonical ensemble.

    Science.gov (United States)

    Gross, Markus; Gambassi, Andrea; Dietrich, S

    2017-08-01

    The effect of imposing a constraint on a fluctuating scalar order parameter field in a system of finite volume is studied within statistical field theory. The canonical ensemble, corresponding to a fixed total integrated order parameter (e.g., the total number of particles), is obtained as a special case of the theory. A perturbative expansion is developed which allows one to systematically determine the constraint-induced finite-volume corrections to the free energy and to correlation functions. In particular, we focus on the Landau-Ginzburg model in a film geometry (i.e., in a rectangular parallelepiped with a small aspect ratio) with periodic, Dirichlet, or Neumann boundary conditions in the transverse direction and periodic boundary conditions in the remaining, lateral directions. Within the expansion in terms of ε=4-d, where d is the spatial dimension of the bulk, the finite-size contribution to the free energy of the confined system and the associated critical Casimir force are calculated to leading order in ε and are compared to the corresponding expressions for an unconstrained (grand canonical) system. The constraint restricts the fluctuations within the system and it accordingly modifies the residual finite-size free energy. The resulting critical Casimir force is shown to depend on whether it is defined by assuming a fixed transverse area or a fixed total volume. In the former case, the constraint is typically found to significantly enhance the attractive character of the force as compared to the grand canonical case. In contrast to the grand canonical Casimir force, which, for supercritical temperatures, vanishes in the limit of thick films, in the canonical case with fixed transverse area the critical Casimir force attains for thick films a negative value for all boundary conditions studied here. Typically, the dependence of the critical Casimir force both on the temperaturelike and on the fieldlike scaling variables is different in the two ensembles.

  17. Symmetries and casimir of an extended classical long wave system

    Indian Academy of Sciences (India)

    We discuss the construction of a sequence of negative ranking symmetries through the property of uniformity in rank. More interestingly, we obtain the conserved quantities directly from the casimir of Poisson pencil. Keywords. Dispersionless equations; symmetries; casimir; conserved quantities. PACS Nos 02.30.Ik; 02.30.

  18. Reply to 'Comment on 'Temperature dependence of the Casimir force for lossy bulk media''

    Energy Technology Data Exchange (ETDEWEB)

    Yampol' skii, V. A.; Maizelis, Z. A.; Apostolov, S. S. [Advanced Science Institute, RIKEN, Saitama, 351-0198 (Japan); A. Ya. Usikov Institute for Radiophysics and Electronics, NASU, 61085 Kharkov (Ukraine); Savel' ev, Sergey [Advanced Science Institute, RIKEN, Saitama, 351-0198 (Japan); Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Nori, Franco [Advanced Science Institute, RIKEN, Saitama, 351-0198 (Japan); Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2011-09-15

    Here, we present an estimate of the characteristic wavelengths of the evanescent modes, which define the main contribution to the thermal part of the Casimir force. This estimate is more precise than the one in the preceding Comment by Bimonte et al.[Phys. Rev. A 84, 036501 (2011)]. The wavelengths we derive are indeed smaller than the sizes of the interacting bodies. We also discuss the results of several experiments on the thermal effects in the Casimir force.

  19. Thermodynamics of solvation and solvophobic effect in formamide

    International Nuclear Information System (INIS)

    Sedov, I.A.; Stolov, M.A.; Solomonov, B.N.

    2013-01-01

    Highlights: • Enthalpies of solution of apolar organic compounds in formamide were measured. • Gibbs free energies of solution were experimentally determined. • Influence of the solvophobic effect on solvation thermodynamics was studied. • Thermodynamic features of solutions in formamide resemble those of aqueous solutions. -- Abstract: Using semi-adiabatic calorimetry, we measured the enthalpies of solution for various low-polar compounds including alkanes, aromatic hydrocarbons and their halogenated derivatives in formamide at temperature of 298 K. For the same compounds, the values of limiting activity coefficients in formamide were determined using GC headspace analysis at 298 K, and Gibbs free energies of solution and solvation were calculated. Based on these data and the available literature values of the Gibbs free energy of solvation in formamide for a number of other low-polar solutes, a study of the solvophobic effect in this solvent is performed, and its resemblance to the hydrophobic effect in aqueous solutions is demonstrated. It is shown that the contribution of the solvophobic effect into the solvation Gibbs free energy in formamide is much higher than that in aliphatic alcohols, but lower than that in water. Like in water, the magnitude of this contribution for different solutes linearly increases with the solute molecular volume. Solvophobic effect also significantly affects the enthalpies of dissolution in formamide, causing them to be more negative in the case of alkanes and more positive in the case of arenes

  20. Repulsive Casimir force at zero and finite temperature

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2009-01-01

    We study the zero and finite temperature Casimir force acting on a perfectly conducting piston with arbitrary cross section moving inside a closed cylinder with infinitely permeable walls. We show that at any temperature, the Casimir force always tends to move the piston away from the walls and toward its equilibrium position. In the case of a rectangular piston, exact expressions for the Casimir force are derived. In the high-temperature regime, we show that the leading term of the Casimir force is linear in temperature and therefore the Casimir force has a classical limit. Due to duality, all these results also hold for an infinitely permeable piston moving inside a closed cylinder with perfectly conducting walls.

  1. A microscopic approach to Casimir and Casimir-Polder forces between metallic bodies

    Science.gov (United States)

    Barcellona, Pablo; Passante, Roberto

    2015-04-01

    We consider the Casimir-Polder interaction energy between a metallic nanoparticle and a metallic plate, as well as the Casimir interaction energy between two macroscopic metal plates, in terms of the many-body dispersion interactions between their constituents. Expressions for two- and three-body dispersion interactions between the microscopic parts of a real metal are first obtained, both in the retarded and non-retarded limits. These expressions are then used to evaluate the overall two- and three-body contributions to the macroscopic Casimir-Polder and Casimir force, and to compare them with each other, for the two following geometries: metal nanoparticle/half-space and half-space/half-space, where all the materials are assumed perfect conductors. The above evaluation is obtained by summing up the contributions from the microscopic constituents of the bodies (metal nanoparticles). In the case of nanoparticle/half-space, our results fully agree with those that can be extracted from the corresponding macroscopic results, and explicitly show the non-applicability of the pairwise approximation for the geometry considered. In both cases, we find that, while the overall two-body contribution yields an attractive force, the overall three-body contribution is repulsive. Also, they turn out to be of the same order, consistently with the known non applicability of the pairwise approximation. The issue of the rapidity of convergence of the many-body expansion is also briefly discussed.

  2. Zeta-function approach to Casimir energy with singular potentials

    International Nuclear Information System (INIS)

    Khusnutdinov, Nail R.

    2006-01-01

    In the framework of zeta-function approach the Casimir energy for three simple model system: single delta potential, step function potential and three delta potentials are analyzed. It is shown that the energy contains contributions which are peculiar to the potentials. It is suggested to renormalize the energy using the condition that the energy of infinitely separated potentials is zero which corresponds to subtraction all terms of asymptotic expansion of zeta-function. The energy obtained in this way obeys all physically reasonable conditions. It is finite in the Dirichlet limit, and it may be attractive or repulsive depending on the strength of potential. The effective action is calculated, and it is shown that the surface contribution appears. The renormalization of the effective action is discussed

  3. Thermodynamic stabilization of precipitates through interface segregation: Chemical effects

    Science.gov (United States)

    Kadambi, Sourabh B.; Patala, Srikanth

    2017-09-01

    Precipitation hardening, which relies on a high density of intermetallic precipitates, is a commonly utilized technique for strengthening structural alloys. At high temperatures, however, the precipitates often coarsen to reduce the excess energy of the interface, resulting in a significant reduction in the strengthening achieved. In certain ternary alloys, secondary solute segregation to the interface has been observed to result in the formation of a high density of nanosized precipitates that provide enhanced strength and are resistant to coarsening. To understand the chemical effects involved, and to identify such segregating systems, we develop a thermodynamic model using the framework of the regular nanocrystalline solution model. For various global compositions, temperatures, and thermodynamic parameters, we evaluate equilibrium configurations of a Mg-Sn-Zn alloy by minimizing the Gibbs free energy function with respect to region-specific (bulk solid solution, interface, and precipitate) concentrations and sizes. The results show that Mg2Sn precipitates can be stabilized to nanoscale sizes through Zn segregation to the Mg /Mg2Sn interface, and the precipitates can be stabilized against coarsening at high temperatures through strong Mg-Zn interface interaction. Together with the inclusion of elastic strain energy effects, kinetic contributions, and the input of computationally informed interface parameters in the future, the model is expected to provide a more realistic prediction of segregation and precipitate stabilization in ternary alloys of structural importance.

  4. Influence of the chemical potential on the Casimir-Polder interaction between an atom and gapped graphene or a graphene-coated substrate

    Science.gov (United States)

    Henkel, C.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2018-03-01

    We present a formalism based on first principles of quantum electrodynamics at nonzero temperature which permits us to calculate the Casimir-Polder interaction between an atom and a graphene sheet with arbitrary mass gap and chemical potential, including graphene-coated substrates. The free energy and force of the Casimir-Polder interaction are expressed via the polarization tensor of graphene in (2 +1 ) -dimensional space-time in the framework of the Dirac model. The obtained expressions are used to investigate the influence of the chemical potential of graphene on the Casimir-Polder interaction. Computations are performed for an atom of metastable helium interacting with either a freestanding graphene sheet or a graphene-coated substrate made of amorphous silica. It is shown that the impacts of the nonzero chemical potential and the mass gap on the Casimir-Polder interaction are in opposite directions, by increasing and decreasing the magnitudes of the free energy and force, respectively. It turns out, however, that the temperature-dependent part of the Casimir-Polder interaction is decreased by a nonzero chemical potential, whereas the mass gap increases it compared to the case of undoped, gapless graphene. The physical explanation for these effects is provided. Numerical computations of the Casimir-Polder interaction are performed at various temperatures and atom-graphene separations.

  5. Thermal Casimir-Polder forces on a V-type three-level atom

    Science.gov (United States)

    Xu, Chen-Ran; Xu, Jing-Ping; Al-amri, M.; Zhu, Cheng-Jie; Xie, Shuang-Yuan; Yang, Ya-Ping

    2017-09-01

    We study the thermal Casimir-Polder (CP) forces on a V-type three-level atom. The competition between the thermal effect and the quantum interference of the two transition dipoles on the force is investigated. To shed light onto the role of the quantum interference, we analyze two kinds of initial states of the atom, i.e., the superradiant state and the subradiant state. Considering the atom being in the thermal reservoir, the resonant CP force arising from the real photon emission dominates in the evolution of the CP force. Under the zero-temperature condition, the quantum interference can effectively modify the amplitude and the evolution of the force, leading to a long-time force or even the cancellation of the force. Our results reveal that in the finite-temperature case, the thermal photons can enhance the amplitude of all force elements, but have no influence on the net resonant CP force in the steady state, which means that the second law of thermodynamics still works. For the ideal degenerate V-type atom with parallel dipoles under the initial subradiant state, the robust destructive quantum interference overrides the thermal fluctuations, leading to the trapping of the atom in the subradiant state and the disappearance of the CP force. However, in terms of a realistic Zeeman atom, the thermal photons play a significant role during the evolution of the CP force. The thermal fluctuations can enhance the amplitude of the initial CP force by increasing the temperature, and weaken the influence of the quantum interference on the evolution of the CP force from the initial superradiant (subradiant) state to the steady state.

  6. Irreversible dynamics, Onsager-Casimir symmetry, and an application to turbulence.

    Science.gov (United States)

    Ottinger, Hans Christian

    2014-10-01

    Irreversible contributions to the dynamics of nonequilibrium systems can be formulated in terms of dissipative, or irreversible, brackets. We discuss the structure of such irreversible brackets in view of a degeneracy implied by energy conservation, where we consider different types of symmetries of the bracket corresponding to the Onsager and Casimir symmetries of linear irreversible thermodynamics. Slip and turbulence provide important examples of antisymmetric irreversible brackets and offer guidance for the more general modeling of irreversible dynamics without entropy production. Conversely, turbulence modeling could benefit from elucidating thermodynamic structure. The examples suggest constructing antisymmetric irreversible brackets in terms of completely antisymmetric functions of three indices. Irreversible brackets without well-defined symmetry properties can arise for rare events, causing big configurational changes.

  7. Local thermodynamic mapping for effective liquid density-functional theory

    Science.gov (United States)

    Kyrlidis, Agathagelos; Brown, Robert A.

    1992-01-01

    The structural-mapping approximation introduced by Lutsko and Baus (1990) in the generalized effective-liquid approximation is extended to include a local thermodynamic mapping based on a spatially dependent effective density for approximating the solid phase in terms of the uniform liquid. This latter approximation, called the local generalized effective-liquid approximation (LGELA) yields excellent predictions for the free energy of hard-sphere solids and for the conditions of coexistence of a hard-sphere fcc solid with a liquid. Moreover, the predicted free energy remains single valued for calculations with more loosely packed crystalline structures, such as the diamond lattice. The spatial dependence of the weighted density makes the LGELA useful in the study of inhomogeneous solids.

  8. Sign and other aspects of semiclassical Casimir energies

    International Nuclear Information System (INIS)

    Schaden, Martin

    2006-01-01

    The Casimir energy of a massless scalar field is semiclassically given by contributions due to classical periodic rays. The required subtractions in the spectral density are determined explicitly. The semiclassical Casimir energies so defined coincide with those of zeta function regularization in the cases studied. Poles in the analytic continuation of zeta function regularization are related to nonuniversal subtractions in the spectral density. The sign of the Casimir energy of a scalar field on a smooth manifold is estimated by the sign of the contribution due to the shortest periodic rays only. Demanding continuity of the Casimir energy under small deformations of the manifold, the method is extended to integrable systems. The Casimir energy of a massless scalar field on a manifold with boundaries includes contributions due to periodic rays that lie entirely within the boundaries. These contributions in general depend on the boundary conditions. Although the Casimir energy due to a massless scalar field may be sensitive to the physical dimensions of manifolds with boundary. In favorable cases its sign can, contrary to conventional wisdom, be inferred without calculation of the Casimir energy

  9. Thermodynamic extremal principle and its application to Dufour and Soret effects and plasticity

    OpenAIRE

    Svoboda, Jirì; Fischer, Franz Dieter; Vala, Jirì

    2008-01-01

    An extremal principle is formulated for thermodynamic systems near equilibrium subjected to various external conditions. It is shown that the principle describes unambiguously the kinetics of the thermodynamic system and replaces classical phenomenological equations. Thus the principle can be considered as an effective tool for the treatment of non-equilibrium thermodynamic systems. In two examples the principle is used for the description of Dufour and Soret effects and plasticity.

  10. Repulsive Casimir and Casimir–Polder forces

    International Nuclear Information System (INIS)

    Milton, Kimball A; Abalo, E K; Parashar, Prachi; Pourtolami, Nima; Brevik, Iver; Ellingsen, Simen Å

    2012-01-01

    Casimir and Casimir–Polder repulsions have been known for more than 50 years. The general ‘Lifshitz’ configuration of parallel semi-infinite dielectric slabs permits repulsion if they are separated by a dielectric fluid that has a value of permittivity that is intermediate between those of the dielectric slabs. This was indirectly confirmed in the 1970s, and more directly by Capasso’s group recently. It has also been known for many years that electrically and magnetically polarizable bodies can experience a repulsive quantum vacuum force. More amenable to practical application are situations where repulsion could be achieved between ordinary conducting and dielectric bodies in vacuum. The status of the field of Casimir repulsion with emphasis on some recent developments will be surveyed. Here, stress will be placed on analytic developments, especially on Casimir–Polder (CP) interactions between anisotropically polarizable atoms, and CP interactions between anisotropic atoms and bodies that also exhibit anisotropy, either because of anisotropic constituents, or because of geometry. Repulsion occurs for wedge-shaped and cylindrical conductors, provided the geometry is sufficiently asymmetric, that is, either the wedge is sufficiently sharp or the atom is sufficiently far from the cylinder. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (review)

  11. Casimir amplitudes in topological quantum phase transitions.

    Science.gov (United States)

    Griffith, M A; Continentino, M A

    2018-01-01

    Topological phase transitions constitute a new class of quantum critical phenomena. They cannot be described within the usual framework of the Landau theory since, in general, the different phases cannot be distinguished by an order parameter, neither can they be related to different symmetries. In most cases, however, one can identify a diverging length at these topological transitions. This allows us to describe them using a scaling approach and to introduce a set of critical exponents that characterize their universality class. Here we consider some relevant models of quantum topological transitions associated with well-defined critical exponents that are related by a quantum hyperscaling relation. We extend to these models a finite-size scaling approach based on techniques for calculating the Casimir force in electromagnetism. This procedure allows us to obtain universal Casimir amplitudes at their quantum critical points. Our results verify the validity of finite-size scaling in these systems and confirm the values of the critical exponents obtained previously.

  12. Casimir amplitudes in topological quantum phase transitions

    Science.gov (United States)

    Griffith, M. A.; Continentino, M. A.

    2018-01-01

    Topological phase transitions constitute a new class of quantum critical phenomena. They cannot be described within the usual framework of the Landau theory since, in general, the different phases cannot be distinguished by an order parameter, neither can they be related to different symmetries. In most cases, however, one can identify a diverging length at these topological transitions. This allows us to describe them using a scaling approach and to introduce a set of critical exponents that characterize their universality class. Here we consider some relevant models of quantum topological transitions associated with well-defined critical exponents that are related by a quantum hyperscaling relation. We extend to these models a finite-size scaling approach based on techniques for calculating the Casimir force in electromagnetism. This procedure allows us to obtain universal Casimir amplitudes at their quantum critical points. Our results verify the validity of finite-size scaling in these systems and confirm the values of the critical exponents obtained previously.

  13. Edge corrections to electromagnetic Casimir energies from general-purpose Mathieu-function routines

    Science.gov (United States)

    Blose, Elizabeth Noelle; Ghimire, Biswash; Graham, Noah; Stratton-Smith, Jeremy

    2015-01-01

    Scattering theory methods make it possible to calculate the Casimir energy of a perfectly conducting elliptic cylinder opposite a perfectly conducting plane in terms of Mathieu functions. In the limit of zero radius, the elliptic cylinder becomes a finite-width strip, which allows for the study of edge effects. However, existing packages for computing Mathieu functions are insufficient for this calculation because none can compute Mathieu functions of both the first and second kind for complex arguments. To address this shortcoming, we have written a general-purpose Mathieu-function package, based on algorithms developed by Alhargan. We use these routines to find edge corrections to the proximity force approximation for the Casimir energy of a perfectly conducting strip opposite a perfectly conducting plane.

  14. Casimir stress in materials: Hard divergency at soft walls

    Science.gov (United States)

    Griniasty, Itay; Leonhardt, Ulf

    2017-11-01

    The Casimir force between macroscopic bodies is well understood, but not the Casimir stress inside bodies. Suppose empty space or a uniform medium meets a soft wall where the refractive index is continuous but its derivative jumps. For this situation we predict a characteristic power law for the stress inside the soft wall and close to its edges. Our result shows that such edges are not tolerated in the aggregation of liquids at surfaces, regardless whether the liquid is attracted or repelled.

  15. Towards a Casimir Force Measurement between Micromachined Parallel Plate Structures

    Directory of Open Access Journals (Sweden)

    Remco J. Wiegerink

    2012-11-01

    Full Text Available Ever since its prediction, experimental investigation of the Casimir force has been of great scientific interest. Many research groups have successfully attempted quantifying the force with different device geometries; however, measurement of the Casimir force between parallel plates with sub-micron separation distance is still a challenging task, since it becomes extremely difficult to maintain sufficient parallelism between the plates. The Casimir force can significantly influence the operation of micro devices and to realize reliable and reproducible devices it is necessary to understand and experimentally verify the influence of the Casimir force at sub-micron scale. In this paper, we present the design principle, fabrication and characterization of micromachined parallel plate structures that could allow the measurement of the Casimir force with tunable separation distance in the range of 100 to 1000 nm. Initially, a gold coated parallel plate structure is explored to measure the Casimir force, but also other material combinations could be investigated. Using gold-silicon eutectic bonding, a reliable approach to bond chips with integrated suspended plates together with a well-defined separation distance in the order of 1–2 μm is developed.

  16. Casimir scaling and Yang-Mills glueballs

    Science.gov (United States)

    Hong, Deog Ki; Lee, Jong-Wan; Lucini, Biagio; Piai, Maurizio; Vadacchino, Davide

    2017-12-01

    We conjecture that in Yang-Mills theories the ratio between the ground-state glueball mass squared and the string tension is proportional to the ratio of the eigenvalues of quadratic Casimir operators in the adjoint and the fundamental representations. The proportionality constant depends on the dimension of the space-time only, and is henceforth universal. We argue that this universality, which is supported by available lattice results, is a direct consequence of area-law confinement. In order to explain this universal behavior, we provide three analytical arguments, based respectively on a Bethe-Salpeter analysis, on the saturation of the scale anomaly by the lightest scalar glueball and on QCD sum rules, commenting on the underlying assumptions that they entail and on their physical implications.

  17. Casimir Energies for Isorefractive or Diaphanous Balls

    Directory of Open Access Journals (Sweden)

    Kimball A. Milton

    2018-03-01

    Full Text Available It is known that the Casimir self-energy of a homogeneous dielectric ball is divergent, although a finite self-energy can be extracted through second order in the deviation of the permittivity from the vacuum value. The exception occurs when the speed of light inside the spherical boundary is the same as that outside, so the self-energy of a perfectly conducting spherical shell is finite, as is the energy of a dielectric-diamagnetic sphere with ε μ = 1 , a so-called isorefractive or diaphanous ball. Here we re-examine that example and attempt to extend it to an electromagnetic δ -function sphere, where the electric and magnetic couplings are equal and opposite. Unfortunately, although the energy expression is superficially ultraviolet finite, additional divergences appear that render it difficult to extract a meaningful result in general, but some limited results are presented.

  18. Casimir scaling, glueballs, and hybrid gluelumps

    International Nuclear Information System (INIS)

    Mathieu, V.; Semay, C.; Brau, F.

    2006-01-01

    Assuming that the Casimir scaling hypothesis is well verified in QCD, masses of glueballs and hybrid gluelumps (gluon attached to a point-like c anti c pair) are computed within the framework of the rotating string formalism. In our model, two gluons are attached by an adjoint string in a glueball, while the gluon and the colour octet c anti c pair are attached by two fundamental strings in a hybrid gluelump. Masses for such exotic hadrons are computed with very few free parameters. These predictions can serve as a guide for experimental searches. In particular, the ground-state glueballs lie on a Regge trajectory and the lightest 2 ++ state has a mass compatible with some experimental candidates. (orig.)

  19. Zero-mode effects in the lattice thermodynamics of massless bose field

    International Nuclear Information System (INIS)

    Gorenstein, M.I.; Lipskikh, S.I.; Sorin, A.S.

    1985-01-01

    The thermodynamics of free massless Bose field on a lattice is discussed. The coefficients characterizing the finite size effects are obtained. The use of these coefficients in the Yang-Mills thermodynamics allows one to make Monte-Carlo calculations, carried out on the different size lattices, self-consistent

  20. (Amino acid + silica) adsorption thermodynamics: Effects of temperature

    International Nuclear Information System (INIS)

    Sebben, Damien; Pendleton, Phillip

    2015-01-01

    Highlights: • High resolution, low concentration Gly, Lys and Glu solution adsorption isotherms. • All isotherms fitted with Langmuir–Freundlich isotherm model. • Gly, Lys and Glu show exothermic adsorption processes. • Isosteric heat analyses reveal changes in interaction strength with surface coverage. - Abstract: A thorough understanding of amino acid adsorption by mineral and oxide surfaces has a major impact on a variety of industrial and biomedical applications. Little information currently exists regarding temperature effects on most of these adsorption processes. Deeper thermodynamic analyses of their multiple temperature adsorption isotherms would aid the interpretation of the interfacial interactions. Low solution concentration adsorption isotherms for glycine, lysine and glutamic acid on a silica adsorbent were generated for T = (291, 298 and 310) K. Data analysis via the Clausius–Clapeyron method yielded the isosteric heat of adsorption as a function of fractional monolayer coverage for each adsorptive. Each amino acid showed an exothermic adsorption response. Glycine and lysine experienced a greater negative effect of increased temperature compared with glutamic acid, indicating a greater number of adsorbed molecules than glutamic acid, with the former undergoing intermolecular clustering within the adsorbed phase. Isosteric heat analyses suggest ionic interactions for lysine and hydrogen bonding for glutamic acid, both weakening with increased coverage. In contrast, initial hydrogen bonding led to ionic bonding for glycine with increasing coverage

  1. The Effect of Learning Based on Technology Model and Assessment Technique toward Thermodynamic Learning Achievement

    Science.gov (United States)

    Makahinda, T.

    2018-02-01

    The purpose of this research is to find out the effect of learning model based on technology and assessment technique toward thermodynamic achievement by controlling students intelligence. This research is an experimental research. The sample is taken through cluster random sampling with the total respondent of 80 students. The result of the research shows that the result of learning of thermodynamics of students who taught the learning model of environmental utilization is higher than the learning result of student thermodynamics taught by simulation animation, after controlling student intelligence. There is influence of student interaction, and the subject between models of technology-based learning with assessment technique to student learning result of Thermodynamics, after controlling student intelligence. Based on the finding in the lecture then should be used a thermodynamic model of the learning environment with the use of project assessment technique.

  2. Repulsive Casimir force from fractional Neumann boundary conditions

    International Nuclear Information System (INIS)

    Lim, S.C.; Teo, L.P.

    2009-01-01

    This Letter studies the finite temperature Casimir force acting on a rectangular piston associated with a massless fractional Klein-Gordon field at finite temperature. Dirichlet boundary conditions are imposed on the walls of a d-dimensional rectangular cavity, and a fractional Neumann condition is imposed on the piston that moves freely inside the cavity. The fractional Neumann condition gives an interpolation between the Dirichlet and Neumann conditions, where the Casimir force is known to be always attractive and always repulsive respectively. For the fractional Neumann boundary condition, the attractive or repulsive nature of the Casimir force is governed by the fractional order which takes values from zero (Dirichlet) to one (Neumann). When the fractional order is larger than 1/2, the Casimir force is always repulsive. For some fractional orders that are less than but close to 1/2, it is shown that the Casimir force can be either attractive or repulsive depending on the aspect ratio of the cavity and the temperature.

  3. Switching Colloidal Superstructures by Critical Casimir Forces.

    Science.gov (United States)

    Nguyen, Truc A; Newton, Arthur; Veen, Sandra J; Kraft, Daniela J; Bolhuis, Peter G; Schall, Peter

    2017-09-01

    Recent breakthroughs in colloidal synthesis promise the bottom-up assembly of superstructures on nano- and micrometer length scales, offering molecular analogues on the colloidal scale. However, a structural control similar to that in supramolecular chemistry remains very challenging. Here, colloidal superstructures are built and controlled using critical Casimir forces on patchy colloidal particles. These solvent-mediated forces offer direct analogues of molecular bonds, allowing patch-to-patch binding with exquisite temperature control of bond strength and stiffness. Particles with two patches are shown to form linear chains undergoing morphological changes with temperature, resembling a polymer collapse under poor-solvent conditions. This reversible temperature switching carries over to particles with higher valency, exhibiting a variety of patch-to-patch bonded structures. Using Monte Carlo simulations, it is shown that the collapse results from the growing interaction range favoring close-packed configurations. These results offer new opportunities for the active control of complex structures at the nano and micrometer scale, paving the way to novel temperature-switchable materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Casimir force for 2d sinusoidal gratings

    Directory of Open Access Journals (Sweden)

    Marachevsky Valery N.

    2016-01-01

    Full Text Available The Casimir free energy for 2d gratings separated by a vacuum slit is expressed in terms of Rayleigh coefficients, a novel general approach valid for arbitrary 2d surface profiles of gratings is outlined. The normal Casimir force in the system of two identical Si gratings with 2d sinusoidal surface profiles separated by a vacuum slit is computed for several amplitudes of surface profiles, distance dependence of the force is studied. A comparison with results for flat boundaries is performed.

  5. The mathematics of the Casimir effect

    International Nuclear Information System (INIS)

    Dowling, J.P.

    1987-02-01

    We show how a famous problem in theoretical physics leads to two classical formulas which allow one to compute the difference between a definite integral and an infinite sum of the same functional form f. (author). 5 refs, 3 figs

  6. Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation

    Energy Technology Data Exchange (ETDEWEB)

    Peter R Zalupski; Leigh R Martin; Ken Nash; Yoshinobu Nakamura; Masahiko Yamamoto

    2009-07-01

    The ingenious combination of lactate and diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) as an aqueous actinide-complexing medium forms the basis of the successful separation of americium and curium from lanthanides known as the TALSPEAK process. While numerous reports in the prior literature have focused on the optimization of this solvent extraction system, considerably less attention has been devoted to the understanding of the basic thermodynamic features of the complex fluids responsible for the separation. The available thermochemical information of both lactate and DTPA protonation and metal complexation reactions are representative of the behavior of these ions under idealized conditions. Our previous studies of medium effects on lactate protonation suggest that significant departures from the speciation predicted based on reported thermodynamic values should be expected in the TALSPEAK aqueous environment. Thermodynamic parameters describing the separation chemistry of this process thus require further examination at conditions significantly removed from conventional ideal systems commonly employed in fundamental solution chemistry. Such thermodynamic characterization is the key to predictive modelling of TALSPEAK. Improved understanding will, in principle, allow process technologists to more efficiently respond to off-normal conditions during large scale process operation. In this report, the results of calorimetric and potentiometric investigations of the effects of aqueous electrolytes on the thermodynamic parameters for lactate protonation and lactate complexation of americium and neodymium will be presented. Studies on the lactate protonation equilibrium will clearly illustrate distinct thermodynamic variations between strong electrolyte aqueous systems and buffered lactate environment.

  7. Thermal corrections to the Casimir energy in a general weak gravitational field

    Science.gov (United States)

    Nazari, Borzoo

    2016-12-01

    We calculate finite temperature corrections to the energy of the Casimir effect of a two conducting parallel plates in a general weak gravitational field. After solving the Klein-Gordon equation inside the apparatus, mode frequencies inside the apparatus are obtained in terms of the parameters of the weak background. Using Matsubara’s approach to quantum statistical mechanics gravity-induced thermal corrections of the energy density are obtained. Well-known weak static and stationary gravitational fields are analyzed and it is found that in the low temperature limit the energy of the system increases compared to that in the zero temperature case.

  8. Casimir densities for parallel plate in the domain wall background

    International Nuclear Information System (INIS)

    Setare, M R

    2003-01-01

    The Casimir forces on two parallel plates in the conformally flat domain wall background due to a conformally coupled massless scalar field satisfying mixed boundary conditions on the plates are investigated. In the general case of mixed boundary conditions, formulae are derived for the vacuum expectation values of the energy-momentum tensor and vacuum forces acting on the boundaries

  9. Casimir-Lifshitz force out of thermal equilibrium

    NARCIS (Netherlands)

    Antezza, M.; Pitaevskii, L.P.; Stringari, S.; Svetovoy, Vitaly

    We study the Casimir-Lifshitz interaction out of thermal equilibrium, when the interacting objects are at different temperatures. The analysis is focused on the surface-surface, surface-rarefied body, and surface-atom configurations. A systematic investigation of the contributions to the force

  10. Switching Casimir forces with phase-change materials

    NARCIS (Netherlands)

    Torricelli, G.; van Zwol, P. J.; Shpak, O.; Binns, C.; Palasantzas, G.; Kooi, B. J.; Svetovoy, V. B.; Wuttig, M.

    2010-01-01

    We demonstrate here a controllable variation in the Casimir force. Changes in the force of up to 20% at separations of similar to 100 nm between Au and Ag-In-Sb-Te (AIST) surfaces were achieved on crystallization of an amorphous sample of AIST. This material is well known for its structural

  11. Casimir theory of the relativistic composite string revisited, and a formally related problem in scalar QFT

    Science.gov (United States)

    Brevik, Iver

    2012-09-01

    The main part of this paper is to present an updated review of the Casimir energy at zero and finite temperature for the transverse oscillations of a piecewise uniform closed string. We make use of three different regularizations: the cutoff method, the complex contour integration method and the zeta-function method. The string model is relativistic, in the sense that the velocity of sound is for each string piece set equal to the velocity of light. In this sense the theory is analogous to the electromagnetic theory in a dielectric medium in which the product of permittivity and permeability is equal to unity (an isorefractive medium). We demonstrate how the formalism works for a two-piece string, and for a 2N-piece string, and show how in the latter case a compact recursion relation serves to facilitate the formalism considerably. The Casimir energy turns out to be negative, and the more so the larger the number of pieces in the string. The two-piece string is quantized in D-dimensional spacetime, in the limit when the ratio between the two tensions is very small. We calculate the free energy and other thermodynamic quantities, demonstrate scaling properties, and comment finally on the meaning of the Hagedorn critical temperature for the two-piece string. Thereafter, as a novel development we present a scalar field theory for a real field in three-dimensional space in a potential rising linearly with a longitudinal coordinate z in the interval 0 birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.

  12. Vacuum energy density fluctuations in Minkowski and Casimir states via smeared quantum fields and point separation

    Science.gov (United States)

    Phillips, Nicholas G.; Hu, B. L.

    2000-10-01

    We present calculations of the variance of fluctuations and of the mean of the energy momentum tensor of a massless scalar field for the Minkowski and Casimir vacua as a function of an intrinsic scale defined by a smeared field or by point separation. We point out that, contrary to prior claims, the ratio of variance to mean-squared being of the order unity is not necessarily a good criterion for measuring the invalidity of semiclassical gravity. For the Casimir topology we obtain expressions for the variance to mean-squared ratio as a function of the intrinsic scale (defined by a smeared field) compared to the extrinsic scale (defined by the separation of the plates, or the periodicity of space). Our results make it possible to identify the spatial extent where negative energy density prevails which could be useful for studying quantum field effects in worm holes and baby universes, and for examining the design feasibility of real-life ``time machines.'' For the Minkowski vacuum we find that the ratio of the variance to the mean-squared, calculated from the coincidence limit, is identical to the value of the Casimir case at the same limit for spatial point separation while identical to the value of a hot flat space result with a temporal point separation. We analyze the origin of divergences in the fluctuations of the energy density and discuss choices in formulating a procedure for their removal, thus raising new questions about the uniqueness and even the very meaning of regularization of the energy momentum tensor for quantum fields in curved or even flat spacetimes when spacetime is viewed as having an extended structure.

  13. Theoretical Analysis of Thermodynamic Effect of Cavitation in Cryogenic Inducer Using Singularity Method

    Directory of Open Access Journals (Sweden)

    S. Watanabe

    2008-01-01

    Full Text Available Vapor production in cavitation extracts the latent heat of evaporation from the surrounding liquid, which decreases the local temperature, and hence the local vapor pressure in the vicinity of cavity. This is called thermodynamic/thermal effect of cavitation and leads to the good suction performance of cryogenic turbopumps. We have already established the simple analysis of partially cavitating flow with the thermodynamic effect, where the latent heat extraction and the heat transfer between the cavity and the ambient fluid are taken into account. In the present study, we carry out the analysis for cavitating inducer and compare it with the experimental data available from literatures using Freon R-114 and liquid nitrogen. It is found that the present analysis can simulate fairly well the thermodynamic effect of cavitation and some modification of the analysis considering the real fluid properties, that is, saturation characteristic, is favorable for more qualitative agreement.

  14. The isotope effect in the thermodynamic parameters of polymerization of styrene

    International Nuclear Information System (INIS)

    Lebedev, B.V.; Kirillin, A.I.; Kozyreva, N.M.; Lebedev, N.K.; Smirnova, N.N.

    1985-01-01

    This paper studies the effect of substitution of hydrogen by deuterium on the thermodynamic criteria of polymerization processes. The isotope effects in the enthalpy, entropy, and Gibbs energy of the polymerization of styrene are studied by the methods of adiabatic and isothermal calorimetry. The heat capacity of polystyrenes and polydeuterostyrenes are shown

  15. Dynamical, thermodynamical and hydrological effects of the third pole (Invited)

    Science.gov (United States)

    Webster, P. J.

    2013-12-01

    The Himalayan-Tibetan Plateau (HTP) can be described as a mechanical barrier and a thermodynamical heat source or combinations of both affects, during both the summer and the winter, and, particularly during transitions seasons. The upper troposphere above the HTP is anomalously moister and warmer than any other tropical and subtropical land mass. The HTP is the source of almost all major Asian rivers and snow-melt is a major component of fresh water for a large percentage of the world's population. We examine the exceptional physics of thermal and mechanical forcing associated with the HTP and compare them with forcing occurring at similar latitudes in other locations especially Africa and Australia. We also examine how the forcing from the HTP may change in a warming world especially with respect to the vigor of the South Asian monsoon and fresh water availability. Noting that other monsoon regions were more vigorous during the hypsithermal of the Holocene, we attempt to determine changes that may occur in a warmer world.

  16. Effect of various drying bed on thermodynamic characteristics

    Directory of Open Access Journals (Sweden)

    Ali Motevali

    2017-09-01

    Full Text Available In this study thermodynamic parameter and energy consumption in drying of two plant dill and mint in three bed drying including fix, semi fix and fluid with using a hot air drying was investigated. Experimental was conducted in three bed drying including fix, semi fix and fluid and four levels temperature (30, 40, 50 and 60 °C. Maximum energy consumption in dill drying at 40 °C and fluid bed to be 16.41 MJ and minimum energy consumption at 30 °C and fix bed to be 2.77 MJ. Also minimum energy consumption in mint drying at 60 °C and fix bed to be 3.64 MJ and maximum energy consumption at 40 °C and fluid bed to be 28.65 MJ. The highest energy, drying and thermal efficiency for both mint and dill was achieved at 60 °C on the fixed bed, whereas the lowest efficiency was at 40 °C and on the fluidized bed. Also the highest power and specific heat consumption for both mint and dill was achieved at 40 °C on the fluid bed, whereas the lowest efficiency was at 30 °C and on the fluidized bed.

  17. Free vibration of geometrically nonlinear micro-switches under electrostatic and Casimir forces

    International Nuclear Information System (INIS)

    Jia, X L; Kitipornchai, S; Lim, C W; Yang, J

    2010-01-01

    This paper investigates the free vibration characteristics of micro-switches under combined electrostatic, intermolecular forces and axial residual stress, with an emphasis on the effect of geometric nonlinear deformation due to mid-plane stretching and the influence of Casimir force. The micro-switch considered in this study is made of either homogeneous material or non-homogeneous functionally graded material with two material phases. The Euler–Bernoulli beam theory with von Karman type nonlinear kinematics is applied in the theoretical formulation. The principle of virtual work is used to derive the nonlinear governing differential equation. The eigenvalue problem which describes free vibration of the micro-beam at its statically deflected state is then solved using the differential quadrature method. The natural frequencies and mode shapes of micro-switches for four different boundary conditions (i.e. clamped–clamped, clamped–simply supported, simply supported and clamped–free) are obtained. The solutions are validated through direct comparisons with experimental and other existing results reported in previous studies. A parametric study is conducted to show the significant effects of geometric nonlinearity, Casimir force, axial residual stress and material composition for the natural frequencies

  18. Fluorination effects on the thermodynamic, thermophysical and surface properties of ionic liquids

    International Nuclear Information System (INIS)

    Vieira, N.S.M.; Luís, A.; Reis, P.M.; Carvalho, P.J.; Lopes-da-Silva, J.A.; Esperança, J.M.S.S.; Araújo, J.M.M.; Rebelo, L.P.N.; Freire, M.G.; Pereiro, A.B.

    2016-01-01

    Highlights: • Surface tension of fluorinated ionic liquids. • Thermophysical properties of fluorinated ionic liquids. • Thermal properties and thermodynamic functions. - Abstract: This paper reports the thermal, thermodynamic, thermophysical and surface properties of eight ionic liquids with fluorinated alkyl side chain lengths equal or greater than four carbon atoms. Melting and decomposition temperatures were determined together with experimental densities, surface tensions, refractive indices, dynamic viscosities and ionic conductivities in a temperature interval ranging from (293.15 to 353.15) K. The surface properties of these fluorinated ionic liquids were discussed and several thermodynamic functions, as well as critical temperatures, were estimated. Coefficients of isobaric thermal expansion, molecular volumes and free volume effects were calculated from experimental values of density and refractive index and compared with previous data. Finally, Walden plots were used to evaluate the ionicity of the investigated ionic liquids.

  19. Thermodynamic network model for predicting effects of substrate addition and other perturbations on subsurface microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Jack Istok; Melora Park; James McKinley; Chongxuan Liu; Lee Krumholz; Anne Spain; Aaron Peacock; Brett Baldwin

    2007-04-19

    The overall goal of this project is to develop and test a thermodynamic network model for predicting the effects of substrate additions and environmental perturbations on microbial growth, community composition and system geochemistry. The hypothesis is that a thermodynamic analysis of the energy-yielding growth reactions performed by defined groups of microorganisms can be used to make quantitative and testable predictions of the change in microbial community composition that will occur when a substrate is added to the subsurface or when environmental conditions change.

  20. Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation

    International Nuclear Information System (INIS)

    Zalupski, Peter R.; Martin, Leigh R.; Nash, Ken; Nakamura, Yoshinobu; Yamamoto, Masahiko

    2009-01-01

    The ingenious combination of lactate and diethylenetriamine-N,N,N',N(double p rime),N(double p rime)-pentaacetic acid (DTPA) as an aqueous actinide-complexing medium forms the basis of the successful separation of americium and curium from lanthanides known as the TALSPEAK process. While numerous reports in the prior literature have focused on the optimization of this solvent extraction system, considerably less attention has been devoted to the understanding of the basic thermodynamic features of the complex fluids responsible for the separation. The available thermochemical information of both lactate and DTPA protonation and metal complexation reactions are representative of the behavior of these ions under idealized conditions. Our previous studies of medium effects on lactate protonation suggest that significant departures from the speciation predicted based on reported thermodynamic values should be expected in the TALSPEAK aqueous environment. Thermodynamic parameters describing the separation chemistry of this process thus require further examination at conditions significantly removed from conventional ideal systems commonly employed in fundamental solution chemistry. Such thermodynamic characterization is the key to predictive modelling of TALSPEAK. Improved understanding will, in principle, allow process technologists to more efficiently respond to off-normal conditions during large scale process operation. In this report, the results of calorimetric and potentiometric investigations of the effects of aqueous electrolytes on the thermodynamic parameters for lactate protonation and lactate complexation of americium and neodymium will be presented. Studies on the lactate protonation equilibrium will clearly illustrate distinct thermodynamic variations between strong electrolyte aqueous systems and buffered lactate environment.

  1. Thermodynamic effect of elastic stress on grain boundary segregation of phosphorus in a low alloy steel

    International Nuclear Information System (INIS)

    Zheng, Lei; Lejček, Pavel; Song, Shenhua; Schmitz, Guido; Meng, Ye

    2015-01-01

    Grain boundary (GB) segregation of P in 2.25Cr1Mo steel induced by elastic stress shows that the P equilibrium concentration, after reaching the non-equilibrium concentration maximum at critical time, returns to its initial thermal equilibrium level. This finding confirms the interesting phenomenon that the effect of elastic stress on GB segregation of P is significant in kinetics while slight in thermodynamics. Through extending the “pressure” in classical theory of chemical potential to the “elastic stress”, the thermodynamic effect of elastic stress on GB segregation is studied, and the relationship between elastic stress and segregation Gibbs energy is formulated. The formulas reveal that the difference in the segregation Gibbs energy between the elastically-stressed and non-stressed states depends on the excess molar volume of GB segregation and the magnitude of elastic stress. Model calculations in segregation Gibbs energy confirm that the effect of elastic stress on the thermodynamics of equilibrium GB segregation is slight, and the theoretical analyses considerably agree with the experimental results. The confirmation indicates that the nature of the thermodynamic effect is well captured. - Highlights: • GB segregation of P after stress aging returns to its initial thermal equilibrium level. • Relationship between elastic stress and segregation energy is formulated. • Thermodynamic effect relies on excess molar volume and magnitude of elastic stress. • Effect of elastic stress on Gibbs energy of GB segregation is estimated to be slight. • Complete theory of the effect of elastic stress on grain boundary segregation is setup

  2. Casimir scaling and Yang–Mills glueballs

    Directory of Open Access Journals (Sweden)

    Deog Ki Hong

    2017-12-01

    Full Text Available We conjecture that in Yang–Mills theories the ratio between the ground-state glueball mass squared and the string tension is proportional to the ratio of the eigenvalues of quadratic Casimir operators in the adjoint and the fundamental representations. The proportionality constant depends on the dimension of the space-time only, and is henceforth universal. We argue that this universality, which is supported by available lattice results, is a direct consequence of area-law confinement. In order to explain this universal behavior, we provide three analytical arguments, based respectively on a Bethe–Salpeter analysis, on the saturation of the scale anomaly by the lightest scalar glueball and on QCD sum rules, commenting on the underlying assumptions that they entail and on their physical implications. Keywords: Glueballs, Yang–Mills theories, Confinement, Casimir scaling

  3. Influence of Thermodynamic Effect on Blade Load in a Cavitating Inducer

    Directory of Open Access Journals (Sweden)

    Kengo Kikuta

    2010-01-01

    Full Text Available Distribution of the blade load is one of the design parameters for a cavitating inducer. For experimental investigation of the thermodynamic effect on the blade load, we conducted experiments in both cold water and liquid nitrogen. The thermodynamic effect on cavitation notably appears in this cryogenic fluid although it can be disregarded in cold water. In these experiments, the pressure rise along the blade tip was measured. In water, the pressure increased almost linearly from the leading edge to the trailing edge at higher cavitation number. After that, with a decrease of cavitation number, pressure rise occurred only near the trailing edge. On the other hand, in liquid nitrogen, the pressure distribution was similar to that in water at a higher cavitation number, even if the cavitation number as a cavitation parameter decreased. Because the cavitation growth is suppressed by the thermodynamic effect, the distribution of the blade load does not change even at lower cavitation number. By contrast, the pressure distribution in liquid nitrogen has the same tendency as that in water if the cavity length at the blade tip is taken as a cavitation indication. From these results, it was found that the shift of the blade load to the trailing edge depended on the increase of cavity length, and that the distribution of blade load was indicated only by the cavity length independent of the thermodynamic effect.

  4. Student Oriented Approaches in the Teaching of Thermodynamics at Universities--Developing an Effective Course Structure

    Science.gov (United States)

    Partanen, Lauri

    2016-01-01

    The aim of this study was to apply current pedagogical research in order to develop an effective course and exercise structure for a physical chemistry thermodynamics course intended for second or third year university students of chemistry. A mixed-method approach was used to measure the impact the changes had on student learning. In its final…

  5. Effect of temperature on microbial growth rate - thermodynamic analysis, the arrhenius and eyring-polanyi connection

    Science.gov (United States)

    The objective of this work is to develop a new thermodynamic mathematical model for evaluating the effect of temperature on the rate of microbial growth. The new mathematical model is derived by combining the Arrhenius equation and the Eyring-Polanyi transition theory. The new model, suitable for ...

  6. Attractive electromagnetic Casimir stress on a spherical dielectric shell

    International Nuclear Information System (INIS)

    Graham, N.; Quandt, M.; Weigel, H.

    2013-01-01

    Based on calculations involving an idealized boundary condition, it has long been assumed that the stress on a spherical conducting shell is repulsive. We use the more realistic case of a Drude dielectric to show that the stress is attractive, matching the generic behavior of Casimir forces in electromagnetism. We trace the discrepancy between these two cases to interactions between the electromagnetic quantum fluctuations and the dielectric material

  7. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Hwang, Jeong Ui; Jang, Jong Jae; Jee, Jong Gi

    1987-01-01

    The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.

  8. Eigenvalues of Casimir operators for the general linear, the special linear, and the orthosymplectic Lie superalgebras

    International Nuclear Information System (INIS)

    Scheunert, M.

    1982-10-01

    The generators of the algebras under consideration can be written in a canonical two-index form and hence the associated standard seuqence of Casimir elements can be constructed. Following the classical approach by Perelomov and Popov, we obtain the eigenvalues of these Casimir elements in an arbitrary highest weight module by calculating the corresponding generating functions. (orig.)

  9. A verification of quantum field theory – measurement of Casimir force

    Indian Academy of Sciences (India)

    Abstract. Here we review our work on measurement of the Casimir force between a large alu- minum coated a sphere and flat plate using an atomic force microscope. The average statistical pre- cision is 1% of the force measured at the closest separation. We have also shown nontrival boundary dependence of the Casimir ...

  10. Towards measurement of the Casimir force between parallel plates separated at sub-mircon distance

    NARCIS (Netherlands)

    Syed Nawazuddin, M.B.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Berenschot, Johan W.; de Boer, Meint J.; Elwenspoek, Michael Curt

    2011-01-01

    Ever since its prediction, experimental investigation of the Casimir force has been of great scientific interest. Many research groups have successfully attempted quantifying the force with different device geometries; however measurement of the Casimir force between parallel plates with sub-micron

  11. Effects of surfactants and thermodynamic activity of model active ingredient on transport over plant leaf cuticle.

    Science.gov (United States)

    Fagerström, Anton; Kocherbitov, Vitaly; Ruzgas, Tautgirdas; Westbye, Peter; Bergström, Karin; Engblom, Johan

    2013-03-01

    The main objective of this study was to investigate the mechanism of molecular transport across the cuticle of Clivia leaves. In vitro diffusion methodology was used to investigate the transport of a systemic fungicide, tebuconazole, over a model silicone membrane, enzymatically isolated cuticle membranes, and dermatomed leaves. It was shown that dermatomed leaves may replace enzymatically isolated cuticles. Furthermore, the effects of two surfactants, C(10)EO(7) and C(8)G(1.6), on the fungicide transport were investigated. Tebuconazole cuticle permeation was described using Fick's first law of diffusion, expressed by the thermodynamic activity of the solute in the membrane. A new method for calculation of diffusion coefficients in the membrane is proposed. To access the thermodynamic activity of the fungicide in the membranes, sorption isotherms of tebuconazole in the membrane materials studied were recorded. The thermodynamic activity of the fungicide in aqueous solutions was calculated from solubility data. For that purpose, the effect of surfactants on tebuconazole solubility was studied. The results show that addition of surfactants allows for higher concentrations of tebuconazole available for penetration. Nonetheless, at a fixed fungicide thermodynamic activity, all formulations produced the same flux over the silicone membrane independently on the fungicide concentration. This shows that the driving force across non-responding membranes is the gradient of thermodynamic activity, rather than the gradient of the fungicide concentration. In case of leaves, surfactants induced the same quantitative increase in both flux and diffusion coefficient of solute in the cuticle, while the cuticle-water partition coefficient was unaffected. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Effects of non-local thermodynamic equilibrium conditions on ...

    Indian Academy of Sciences (India)

    The effects of one group and multigroup, LTE and non-LTE approximations of radiation transport on hydrodynamic parameters are studied for laser-driven aluminium and gold foils. It is further seen that non-LTE and multigroup effects play an important role in predicting conversion efficiency of laser light to X-rays ...

  13. On the Casimir of the group ISL(n,R) and its algebraic decomposition

    International Nuclear Information System (INIS)

    Pecina-Cruz, J.N.

    2005-01-01

    In this paper, an explicit expression for the Casimir operator (or the Casimir invariant) of the inhomogeneous group ISL(n,R) in its enveloping algebra is proposed, which using contractions of the tensorial indices of the generating operators P ρ and E μ ν may be presented in the following [slightly more comprehensible as Eq. (1)] form. The Casimir is obtained by symmetrizing this expression. This tensor form is useful in the classification of particles in affine gravitational gauge theories; such as that based on ISL(4,R). It is also proven that the Casimir of ISL(n,R) can be decomposed in terms of the Casimirs of its little groups, a key point in the posterior construction of its irreducible representations

  14. Thermodynamic isotope effects of D2 and T2 reaction with uranium

    International Nuclear Information System (INIS)

    Huang Gang; Long Xinggui; Liang Jianhua; Yang Benfu; Liu Wenke

    2010-01-01

    The p-c-T curves of deuterium and tritium absorption by uranium and p-t curves of desorption were measured. The balance pressure of absorption and desorption on different temperatures were got and then the thermodynamic parameters were determined according to the Van't Hoff equation. It shows that the balance pressure of deuterium absorption is lower than that of tritium absorption on the same temperature and atom ratio. It has the same phenomena for desorption but there are obvious hysteresis effect for reversible process of absorption and desorption. There are a little thermodynamic isotope effects when deuterium and tritium absorption and desorption by uranium estimating from enthalpy and entropy values. (authors)

  15. Casimir Forces and Quantum Friction from Ginzburg Radiation in Atomic Bose-Einstein Condensates.

    Science.gov (United States)

    Marino, Jamir; Recati, Alessio; Carusotto, Iacopo

    2017-01-27

    We theoretically propose an experimentally viable scheme to use an impurity atom in an atomic Bose-Einstein condensate, in order to realize condensed-matter analogs of quantum vacuum effects. In a suitable atomic level configuration, the collisional interaction between the impurity atom and the density fluctuations in the condensate can be tailored to closely reproduce the electric-dipole coupling of quantum electrodynamics. By virtue of this analogy, we recover and extend the paradigm of electromagnetic vacuum forces to the domain of cold atoms, showing in particular the emergence, at supersonic atomic speeds, of a novel power-law scaling of the Casimir force felt by the atomic impurity, as well as the occurrence of a quantum frictional force, accompanied by the Ginzburg emission of Bogoliubov quanta. Observable consequences of these quantum vacuum effects in realistic spectroscopic experiments are discussed.

  16. Influence of shell effects on thermodynamic properties of matter at high pressures

    Science.gov (United States)

    Levashov, P. R.; Minakov, D. V.

    2018-01-01

    We analyze the influence of shell effects on thermodynamic properties of matter at high pressures. Spherically symmetric average atom models show significant contribution of electronic transitions to cold pressure which is not confirmed by more accurate density functional theory models. In particular, the s–d transition in aluminum and potassium does not reveal itself on the shock Hugoniots. Oscillations on shock Hugoniots at very high pressures predicted earlier by many authors should be confirmed by precise first-principle calculations.

  17. Casimir energy of massless fermions in the Slab-bag

    International Nuclear Information System (INIS)

    Paola, R.D.M. de; Rodrigues, R.B.; Svaiter, N.F.

    1999-04-01

    The zero-point energy of a massless fermion field in the interior of two parallel plates in a D-dimensional space-time at zero temperature is calculated. In order to regularize the model, a mix between dimensional and zeta function regularization procedure is used and it is founded that the regularized zero-point energy density is finite for any number of space-time dimensions. We present a general expression for the Casimir energy for the fermionic field in such a situation. (author)

  18. Thermodynamic analysis and experimental study of the effect of atmospheric pressure on the ice point

    International Nuclear Information System (INIS)

    Harvey, A. H.; McLinden, M. O.; Tew, W. L.

    2013-01-01

    We present a detailed thermodynamic analysis of the temperature of the ice point as a function of atmospheric pressure. This analysis makes use of accurate international standards for the properties of water and ice, and of available high-accuracy data for the Henry's constants of atmospheric gases in liquid water. The result is an ice point of 273.150 019(5) K at standard atmospheric pressure, with higher ice-point temperatures (varying nearly linearly with pressure) at lower pressures. The effect of varying ambient CO 2 concentration is analyzed and found to be significant in comparison to other uncertainties in the model. The thermodynamic analysis is compared with experimental measurements of the temperature difference between the ice point and the triple point of water performed at elevations ranging from 145 m to 4302 m, with atmospheric pressures from 101 kPa to 60 kPa

  19. Understanding the Thermodynamic Properties of the Elastocaloric Effect Through Experimentation and Modelling

    DEFF Research Database (Denmark)

    Tušek, Jaka; Engelbrecht, Kurt; Mañosa, Lluis

    2016-01-01

    This paper presents direct and indirect methods for studying the elastocaloric effect (eCE) in shape memory materials and its comparison. The eCE can be characterized by the adiabatic temperature change or the isothermal entropy change (both as a function of applied stress/strain). To get...... these quantities, the evaluation of the eCE can be done using either direct methods, where one measures (adiabatic) temperature changes or indirect methods where one can measure the stress–strain–temperature characteristics of the materials and from these deduce the adiabatic temperature and isothermal entropy...... changes. The former can be done using the basic thermodynamic relations, i.e. Maxwell relation and Clausius–Clapeyron equation. This paper further presents basic thermodynamic properties of shape memory materials, such as the adiabatic temperature change, isothermal entropy change and total entropy...

  20. Numerical investigations on cavitating flows with thermodynamic effects in a diffuser-type centrifugal pump

    Energy Technology Data Exchange (ETDEWEB)

    Xuelin, Tang Xue; Liyuan, Bian; Fujun, Wang; Xiaoqin, Lin; Man, Hao [China Agricultural University, Beijing (China)

    2013-06-15

    A cavitation model with thermodynamic effects for cavitating flows in a diffuser-type centrifugal pump is developed based on the bubble two-phase flow model. The proposed cavitation model includes mass, momentum, and energy transportations according to the thermodynamic mechanism of cavitation. Numerical simulations are conducted inside the entire passage of the centrifugal pump by using the proposed cavitation model and the renormalization group-based k - ε turbulent model coupled with the energy transportation equation. By using the commercial computational fluid dynamics software FLUENT 6.3, we have shown that the predicted performance characteristics of the pump, as well as the pressure, vapor, and density distributions in the impeller, agree well with that calculated by the full cavitation model. Simulation results show that cavitation initially occurs slightly behind the inlet of the blade suction surface, i.e., the area with maximum vapor concentration and minimum pressure. The predicted temperature field shows that the reduction in temperature restrains the growth of cavitating bubbles. Therefore, the thermodynamic effect should be treated as a necessary factor in cavitation models. Comparison results validate the efficiency and accuracy of the numerical technique in simulating cavitation flows in centrifugal pumps.

  1. Numerical investigations on cavitating flows with thermodynamic effects in a diffuser-type centrifugal pump

    International Nuclear Information System (INIS)

    Xuelin, Tang Xue; Liyuan, Bian; Fujun, Wang; Xiaoqin, Lin; Man, Hao

    2013-01-01

    A cavitation model with thermodynamic effects for cavitating flows in a diffuser-type centrifugal pump is developed based on the bubble two-phase flow model. The proposed cavitation model includes mass, momentum, and energy transportations according to the thermodynamic mechanism of cavitation. Numerical simulations are conducted inside the entire passage of the centrifugal pump by using the proposed cavitation model and the renormalization group-based k - ε turbulent model coupled with the energy transportation equation. By using the commercial computational fluid dynamics software FLUENT 6.3, we have shown that the predicted performance characteristics of the pump, as well as the pressure, vapor, and density distributions in the impeller, agree well with that calculated by the full cavitation model. Simulation results show that cavitation initially occurs slightly behind the inlet of the blade suction surface, i.e., the area with maximum vapor concentration and minimum pressure. The predicted temperature field shows that the reduction in temperature restrains the growth of cavitating bubbles. Therefore, the thermodynamic effect should be treated as a necessary factor in cavitation models. Comparison results validate the efficiency and accuracy of the numerical technique in simulating cavitation flows in centrifugal pumps.

  2. Lateral Casimir-Polder forces by breaking time-reversal symmetry

    Science.gov (United States)

    Oude Weernink, Ricardo R. Q. P. T.; Barcellona, Pablo; Buhmann, Stefan Yoshi

    2018-03-01

    We examine the lateral Casimir-Polder force acting on a circular rotating emitter near a dielectric plane surface. As the circular motion breaks time-reversal symmetry, the spontaneous emission in a direction parallel to the surface is in general anisotropic. We show that a lateral force arises which can be interpreted as a recoil force because of this asymmetric emission. The force is an oscillating function of the distance between the emitter and the surface, and the lossy character of the dielectric strongly influences the results in the near-field regime. The force exhibits also a population-induced dynamics, decaying exponentially with respect to time on time scales of the inverse of the spontaneous decay rate. We propose that this effect could be detected measuring the velocity acquired by the emitter, following different cycles of excitation and spontaneous decay. Our results are expressed in terms of the Green's tensor and can therefore easily be applied to more complex geometries.

  3. Intensifying the Casimir force between two silicon substrates within three different layers of materials

    International Nuclear Information System (INIS)

    Seyedzahedi, A.; Moradian, A.; Setare, M.R.

    2016-01-01

    We investigate the Casimir force for a system composed of two thick slabs as substrates within three different homogeneous layers. We use the scattering approach along with the Matsubara formalism in order to calculate the Casimir force at finite temperature. First, we focus on constructing the reflection matrices and then we calculate the Casimir force for a water–lipid system. According to the conventional use of silicon as a substrate, we apply the formalism to calculate the Casimir force for layers of Au, VO 2 , mica, KCl and foam rubber on the thick slabs of silicon. Afterwards, introducing an increasing factor, we compare our results with Lifshitz force in the vacuum between two semispaces of silicon in order to illustrate the influence of the layers on intensifying the Casimir force. We also calculate the Casimir force between two slabs of the forementioned materials with finite thicknesses to indicate the substrate's role in increasing the obtained Casimir force. Our simple calculation is interesting since one can extend it along with the Rigorous Coupled Wave Analysis to systems containing inhomogeneous layers as good candidates for designing nanomechanical devices.

  4. Intensifying the Casimir force between two silicon substrates within three different layers of materials

    Energy Technology Data Exchange (ETDEWEB)

    Seyedzahedi, A. [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Moradian, A., E-mail: a.moradian@uok.ac.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Setare, M.R., E-mail: rezakord@ipm.ir [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2016-04-01

    We investigate the Casimir force for a system composed of two thick slabs as substrates within three different homogeneous layers. We use the scattering approach along with the Matsubara formalism in order to calculate the Casimir force at finite temperature. First, we focus on constructing the reflection matrices and then we calculate the Casimir force for a water–lipid system. According to the conventional use of silicon as a substrate, we apply the formalism to calculate the Casimir force for layers of Au, VO{sub 2}, mica, KCl and foam rubber on the thick slabs of silicon. Afterwards, introducing an increasing factor, we compare our results with Lifshitz force in the vacuum between two semispaces of silicon in order to illustrate the influence of the layers on intensifying the Casimir force. We also calculate the Casimir force between two slabs of the forementioned materials with finite thicknesses to indicate the substrate's role in increasing the obtained Casimir force. Our simple calculation is interesting since one can extend it along with the Rigorous Coupled Wave Analysis to systems containing inhomogeneous layers as good candidates for designing nanomechanical devices.

  5. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2008-03-01

    This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics

  6. Modulation of the Casimir force by laser pulses: Influence of oxide films on the silicon surface

    Science.gov (United States)

    Klimchitskaya, G. L.; Bukina, M. N.; Churkin, Yu. V.; Yurova, V. A.

    2010-10-01

    The possibility of modulating the Casimir force that acts in an air medium between a gold sphere and a silicon plate irradiated by laser pulses has been studied. It has been demonstrated that the oxide film that is formed on the silicon surface in air hardly affects the possibility of modulating the Casimir force when the distances between interacting bodies are of the order of 100 nm. With an increase in the distance, the modulation depth decreases; however, this region is of less practical interest, because the Casimir forces become too weak.

  7. Rectification of a Casimir Nanomachine with a Triangular Wave Signal

    Directory of Open Access Journals (Sweden)

    ali moradian

    2017-11-01

    Full Text Available In this paper, we investigate the Casimir nano system composed of two quadrisected dielectric disks separated by a thin gap. Initially the two disks have the same surface dielectric distributions. We use scatting approach in the weak coupling limit and show that the top plate experiences a torque  if it rotates about its axes by an angle. Consequently, we will be able to calculate. Quite interesting, such a nanomachine may be used to examine the dielectric dependence of the Casimir torque. Our small system can be used to measure small torques. We assume that the top disk is mounted on an axle and part of the rotational friction in the system comes from the axial friction and an external load is mounted on it. For such a system with specified parameters, we can estimate inertia and axial friction. Therefor we can neglect the inertia term and use the over damped regime to describe the dynamics of our system. We show that our small system can rectify a periodic square-wave angular velocity and we obtain the average angular velocity of the top plate.

  8. Thermodynamic Analysis of TEG-TEC Device Including Influence of Thomson Effect

    Science.gov (United States)

    Feng, Yuanli; Chen, Lingen; Meng, Fankai; Sun, Fengrui

    2018-01-01

    A thermodynamic model of a thermoelectric cooler driven by thermoelectric generator (TEG-TEC) device is established considering Thomson effect. The performance is analyzed and optimized using numerical calculation based on non-equilibrium thermodynamic theory. The influence characteristics of Thomson effect on the optimal performance and variable selection are investigated by comparing the condition with and without Thomson effect. The results show that Thomson effect degrades the performance of TEG-TEC device, it decreases the cooling capacity by 27 %, decreases the coefficient of performance (COP) by 19 %, decreases the maximum cooling temperature difference by 11 % when the ratio of thermoelectric elements number is 0.6, the cold junction temperature of thermoelectric cooler (TEC) is 285 K and the hot junction temperature of thermoelectric generator (TEG) is 450 K. Thomson effect degrades the optimal performance of TEG-TEC device, it decreases the maximum cooling capacity by 28 % and decreases the maximum COP by 28 % under the same junction temperatures. Thomson effect narrows the optimal variable range and optimal working range. In the design of the devices, limited-number thermoelectric elements should be more allocated appropriately to TEG when consider Thomson effect. The results may provide some guidelines for the design of TEG-TEC devices.

  9. The effectiveness of problem-based learning on teaching the first law of thermodynamics

    Science.gov (United States)

    Tatar, Erdal; Oktay, Münir

    2011-11-01

    Background: Problem-based learning (PBL) is a teaching approach working in cooperation with self-learning and involving research to solve real problems. The first law of thermodynamics states that energy can neither be created nor destroyed, but that energy is conserved. Students had difficulty learning or misconceptions about this law. This study is related to the teaching of the first law of thermodynamics within a PBL environment. Purpose: This study examined the effectiveness of PBL on candidate science teachers' understanding of the first law of thermodynamics and their science process skills. This study also examined their opinions about PBL. Sample: The sample consists of 48 third-grade university students from the Department of Science Education in one of the public universities in Turkey. Design and methods: A one-group pretest-posttest experimental design was used. Data collection tools included the Achievement Test, Science Process Skill Test, Constructivist Learning Environment Survey and an interview with open-ended questions. Paired samples t-test was conducted to examine differences in pre/post tests. Results: The PBL approach has a positive effect on the students' learning abilities and science process skills. The students thought that the PBL environment supports effective and permanent learning, and self-learning planning skills. On the other hand, some students think that the limited time and unfamiliarity of the approach impede learning. Conclusions: The PBL is an active learning approach supporting students in the process of learning. But there are still many practical disadvantages that could reduce the effectiveness of the PBL. To prevent the alienation of the students, simple PBL activities should be applied from the primary school level. In order to overcome time limitations, education researchers should examine short-term and effective PBL activities.

  10. Energy effects on the structure and thermodynamic properties of nanoconfined fluids (a density functional theory study).

    Science.gov (United States)

    Keshavarzi, Ezat; Kamalvand, Mohammad

    2009-04-23

    The structure and properties of fluids confined in nanopores may show a dramatic departure from macroscopic bulk fluids. The main reason for this difference lies in the influence of system walls. In addition to the entropic wall effect, system walls can significantly change the energy of the confined fluid compared to macroscopic bulk fluids. The energy effect of the walls on a nanoconfined fluid appears in two forms. The first effect is the cutting off of the intermolecular interactions by the walls, which appears for example in the integrals for calculation of the thermodynamic properties. The second wall effect involves the wall-molecule interactions. In such confined fluids, the introduction of wall forces and the competition between fluid-wall and fluid-fluid forces could lead to interesting thermodynamic properties, including new kinds of phase transitions not observed in the macroscopic fluid systems. In this article, we use the perturbative fundamental measure density functional theory to study energy effects on the structure and properties of a hard core two-Yukawa fluid confined in a nanoslit. Our results show the changes undergone by the structure and phase transition of the nanoconfined fluids as a result of energy effects.

  11. Investigating the Role of Ferromagnetic Materials on the Casimir Force & Investigation of the Van Der Waals/Casimir Force with Graphene

    Energy Technology Data Exchange (ETDEWEB)

    Mohideen, Umar [Univ. of California, Riverside, CA (United States)

    2015-04-14

    Duration of award was from 4/15/10-4/14/15. In this grant period our contributions to the field of VdW/Casimir forces are 24 refereed publications in journals such as Physical Review Letters (4) [1-4], Physical Review B (10) [5-14], Physical Review D (2) [15,16], Applied Physics Letters (1) [17], Review of Scientific Instruments (1) [18] and the International Journal of Modern Physics A (5) [19-23] and B(1) (invited review article [24]). We presented 2 plenary conference talks, 3 lectures at the Pan American School on Frontiers in Casimir Physics, 2 conferences, 1 colloquium and 11 APS talks. If publications are restricted to only those with direct connection to the aims proposed in the prior grant period, then it will be a total of 12: Physical Review Letters (3) [2-4], Physical Review B (6) [6-8,12,13,25], Review of Scientific Instruments (1) [18], International Journal of Modern Physics A (1) [19] and B(1) [169]. A brief aggregated description of the directly connected accomplishments is below. The following topics are detailed: dispersion force measurements with graphene, dispersion force from ferromagnetic metals, conclusion on role of electrostatic patches, UV radiation induced modification of the Casimir force, low temperature measurement of the Casimir force, and Casimir force from thin fluctuating membranes.

  12. Modelling and thermodynamic analysis of a multi effect distillation (MED) plant for seawater desalination

    Energy Technology Data Exchange (ETDEWEB)

    Hatzikioseyian, A.; Vidali, R.; Kousi, P.

    2004-07-01

    The present paper focuses on the modelling and thermodynamic analysis of the Multi Effect Distillation plant (MED) installed in PSA. the plant has been used as a demonstration unit for seawater desalination in many European Research projects. The authors have reviewed and developed a modelling and simulation program based on the design parameters of the plant. The model is based on the mass and energy balances for the streams flowing through each stage of the MED unit to predict the performance of the unit in terms of energy requirements. (Author) 5 refs.

  13. Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields

    Science.gov (United States)

    Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.

    2016-12-01

    Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field’s thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability.

  14. The strong specific effect of coions on micellar growth from molecular-thermodynamic theory.

    Science.gov (United States)

    Koroleva, S V; Victorov, A I

    2014-09-07

    Viscoelastic solutions of ionic surfactants with an added salt exhibit a surprisingly strong dependence of their behavior on the nature of the added coion. We apply a recently proposed molecular-thermodynamic model to elucidate the effect of a coion's specificity on the aggregation of cationic and anionic surfactants. We show that micellar growth and branching are opposed by penetration of coions inside a micelle's corona leading to an increase of the aggregate's preferential curvature. These effects result from hydration/dehydration and dispersion attraction of coions and are only important at high salinity where electrostatic repulsion of coions from the micelle is screened and where branching of micelles and viscosity maxima are observed. At low and medium salinity, the coion plays a minor role; its effect on critical micelle concentration and sphere-to-rod transitions is insignificant. Our molecular-thermodynamic approach describes the specific effects of both counterions and coions and their different roles at different salinity levels based on a unified physical picture.

  15. Surface thermodynamics

    International Nuclear Information System (INIS)

    Garcia-Moliner, F.

    1975-01-01

    Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions

  16. Casimir force in the Goedel space-time and its possible induced cosmological inhomogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Khodabakhshi, Sh. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Shojai, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of)

    2017-07-15

    The Casimir force between two parallel plates in the Goedel universe is computed for a scalar field at finite temperature. It is observed that when the plates' separation is comparable with the scale given by the rotation of the space-time, the force becomes repulsive and then approaches zero. Since it has been shown previously that the universe may experience a Goedel phase for a small period of time, the induced inhomogeneities from the Casimir force are also studied. (orig.)

  17. Whole-Genome Thermodynamic Analysis Reduces siRNA Off-Target Effects

    Science.gov (United States)

    Chen, Xi; Liu, Peng; Chou, Hui-Hsien

    2013-01-01

    Small interfering RNAs (siRNAs) are important tools for knocking down targeted genes, and have been widely applied to biological and biomedical research. To design siRNAs, two important aspects must be considered: the potency in knocking down target genes and the off-target effect on any nontarget genes. Although many studies have produced useful tools to design potent siRNAs, off-target prevention has mostly been delegated to sequence-level alignment tools such as BLAST. We hypothesize that whole-genome thermodynamic analysis can identify potential off-targets with higher precision and help us avoid siRNAs that may have strong off-target effects. To validate this hypothesis, two siRNA sets were designed to target three human genes IDH1, ITPR2 and TRIM28. They were selected from the output of two popular siRNA design tools, siDirect and siDesign. Both siRNA design tools have incorporated sequence-level screening to avoid off-targets, thus their output is believed to be optimal. However, one of the sets we tested has off-target genes predicted by Picky, a whole-genome thermodynamic analysis tool. Picky can identify off-target genes that may hybridize to a siRNA within a user-specified melting temperature range. Our experiments validated that some off-target genes predicted by Picky can indeed be inhibited by siRNAs. Similar experiments were performed using commercially available siRNAs and a few off-target genes were also found to be inhibited as predicted by Picky. In summary, we demonstrate that whole-genome thermodynamic analysis can identify off-target genes that are missed in sequence-level screening. Because Picky prediction is deterministic according to thermodynamics, if a siRNA candidate has no Picky predicted off-targets, it is unlikely to cause off-target effects. Therefore, we recommend including Picky as an additional screening step in siRNA design. PMID:23484018

  18. Magneto-elastic effects and thermodynamic properties of ferromagnetic hcp Co

    International Nuclear Information System (INIS)

    Kuang, Fang-Guang; Kuang, Xiao-Yu; Kang, Shu-Ying; Mao, Ai-Jie

    2014-01-01

    Using first principles projector augmented wave (PAW) potential method, the magneto-elastic effects and thermodynamic properties of ferromagnetic hcp Cobalt at high pressure and temperature are investigated. The calculated elastic constants from PBE+U method demonstrate a noticeable improvement with regard to experimental data. Various physical quantities under high pressure also present significant improvements, such as the bulk modulus, shear modulus, Young's modulus, Debye temperature, various sound velocities and the normalized acoustic velocities in the meridian plane. That is due to the fact that Cobalt system possesses large correlation effects. Meanwhile, the phonon dispersion curves are in excellent agreement with experimental data. It is not observed any anomaly or instability under compression. However, according to the E 2g -phonon frequencies, the obtained pressure variation of C 44 elastic modulus also suggests that the system has miraculous magneto-elastic effects. Moreover, the pressure and temperature dependence of thermodynamic properties are derived within the quasi-harmonic approximation for the first time. The obtained Grüneisen ratio, Anderon–Grüneisen parameter and the volume dependence of Grüneisen ratio display manifestly temperature and pressure dependences.

  19. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chen [School of Aeronautics and Astronautics, Shanghai Jiaotong University, Shanghai 200240 (China); Liu, Hong, E-mail: hongliu@sjtu.edu.cn [J. C. Wu Center of Aerodynamics, Shanghai Jiaotong University, Shanghai 200240 (China)

    2016-06-15

    Supercooled large droplet (SLD), which can cause abnormal icing, is a well-known issue in aerospace engineering. Although efforts have been exerted to understand large droplet impact dynamics and the supercooled feature in the film/substrate interface, respectively, the thermodynamic effect during the SLD impact process has not received sufficient attention. This work conducts experimental studies to determine the effects of drop size on the thermodynamics for supercooled large droplet impingement. Through phenomenological reproduction, the rapid-freezing characteristics are observed in diameters of 400, 800, and 1300 μm. The experimental analysis provides information on the maximum spreading rate and the shrinkage rate of the drop, the supercooled diffusive rate, and the freezing time. A physical explanation of this unsteady heat transfer process is proposed theoretically, which indicates that the drop size is a critical factor influencing the supercooled heat exchange and effective heat transfer duration between the film/substrate interface. On the basis of the present experimental data and theoretical analysis, an impinging heating model is developed and applied to typical SLD cases. The model behaves as anticipated, which underlines the wide applicability to SLD icing problems in related fields.

  20. Thermodynamic study of multi-effect thermal vapour-compression desalination systems

    International Nuclear Information System (INIS)

    Samaké, Oumar; Galanis, Nicolas; Sorin, Mikhail

    2014-01-01

    The parametric analysis of a multi-effect-evaporation (MEE) desalination system combined with a thermal-vapour-compression (TVC) process activated by a gaseous stream of specified flowrate and temperature was performed based on the principles of classical (1st and 2nd laws) and finite-size thermodynamics. The MEE subsystem was treated as a black box and therefore the results are valid for any combination of physical characteristics and internal operational conditions of this subsystem. They show the effects of four design variables (the motive fluid pressure and the compression ratio of the ejector, the condenser temperature pinch and the ratio of rejected to supplied seawater) on significant operating quantities and performance indicators such as: energy supplied by the heat source; motive fluid flowrate; flowrates of the supplied seawater and produced potable water; specific heat consumption; thermal conductance of the vapour generator and the condenser; exergy destruction by the MEE, the ejector and the vapour generator. Based on the obtained results recommendations are formulated for the optimal choice of values for the four design variables. - Highlights: • Model of a MEE-TVC desalination system independent of MEE characteristics. • Parametric study based on classical (1st and 2nd law) and finite-size thermodynamics. • Effect of 4 design parameters on operating conditions and performance indicators. • Recommended values for the design parameters

  1. Effects of Cholesterol on the Thermodynamics and Kinetics of Passive Transport of Water through Lipid Membranes.

    Science.gov (United States)

    Issack, Bilkiss B; Peslherbe, Gilles H

    2015-07-23

    While it has long been known that cholesterol reduces the permeability of biological membranes to water, the exact mechanism by which cholesterol influences transmembrane permeation is still unclear. The thermodynamic and kinetic contributions to the transport of water across mixed DPPC/cholesterol bilayers of different composition are thus examined by molecular dynamics simulations. Our analyses show that cholesterol decreases transmembrane permeability to water mainly by altering the thermodynamics of water transport. In particular, the free-energy barrier to permeation is magnified in the dense bilayer interior and the partitioning of water is significantly lowered. The changes are observed to correlate quantitatively well with the cholesterol-dependent density and thickness of the bilayers. In contrast, diffusion coefficients are relatively insensitive to cholesterol concentration, except in the sparsely populated center of the bilayer. Diffusion of water in cholesterol-containing bilayers appears to be related to changes in the free area in the middle of the bilayer and to the solute cross-sectional area in the denser hydrophobic regions. Overall, cholesterol is found to have an inhibitory effect on the permeation of water at all concentrations investigated, although bilayers containing cholesterol concentrations up to 20 mol % display a more dramatic dependence on cholesterol content than at higher concentrations. Our results show that it is possible to quantitatively reproduce the relative effects of cholesterol on lipid bilayer permeability from molecular dynamics simulations.

  2. Many-Body Effects on the Thermodynamics of Fluids, Mixtures, and Nanoconfined Fluids.

    Science.gov (United States)

    Desgranges, Caroline; Delhommelle, Jerome

    2015-11-10

    Using expanded Wang-Landau simulations, we show that taking into account the many-body interactions results in sharp changes in the grand-canonical partition functions of single-component systems, binary mixtures, and nanoconfined fluids. The many-body contribution, modeled with a 3-body Axilrod-Teller-Muto term, results in shifts toward higher chemical potentials of the phase transitions from low-density phases to high-density phases and accounts for deviations of more than, e.g., 20% of the value of the partition function for a single-component liquid. Using the statistical mechanics formalism, we analyze how this contribution has a strong impact on some properties (e.g., pressure, coexisting densities, and enthalpy) and a moderate impact on others (e.g., Gibbs or Helmholtz free energies). We also characterize the effect of the 3-body terms on adsorption isotherms and adsorption thermodynamic properties, thereby providing a full picture of the effect of the 3-body contribution on the thermodynamics of nanoconfined fluids.

  3. Analysis of water sorption isotherms of amorphous food materials by solution thermodynamics with relevance to glass transition: evaluation of plasticizing effect of water by the thermodynamic parameters.

    Science.gov (United States)

    Shimazaki, Eriko; Tashiro, Akiko; Kumagai, Hitomi; Kumagai, Hitoshi

    2017-04-01

    Relation between the thermodynamic parameters obtained from water sorption isotherms and the degree of reduction in the glass transition temperature (T g ), accompanied by water sorption, was quantitatively studied. Two well-known glassy food materials namely, wheat gluten and maltodextrin were used as samples. The difference between the chemical potential of water in a solution and that of pure water ([Formula: see text]), the difference between the chemical potential of solid in a solution and that of a pure solid ([Formula: see text]), and the change in the integral Gibbs free energy ([Formula: see text]) were obtained by analyzing the water sorption isotherms using solution thermodynamics. The parameter [Formula: see text] correlated well with ΔT g (≡T g  - T g0 ; where T g0 is the glass transition temperature of dry material), which had been taken to be an index of plasticizing effect. This indicates that plasticizing effect of water on foods can be evaluated through the parameter [Formula: see text].

  4. Differential Effects of Hydrophobic Core Packing Residues for Thermodynamic and Mechanical Stability of a Hyperthermophilic Protein.

    Science.gov (United States)

    Tych, Katarzyna M; Batchelor, Matthew; Hoffmann, Toni; Wilson, Michael C; Hughes, Megan L; Paci, Emanuele; Brockwell, David J; Dougan, Lorna

    2016-07-26

    Proteins from organisms that have adapted to environmental extremes provide attractive systems to explore and determine the origins of protein stability. Improved hydrophobic core packing and decreased loop-length flexibility can increase the thermodynamic stability of proteins from hyperthermophilic organisms. However, their impact on protein mechanical stability is not known. Here, we use protein engineering, biophysical characterization, single-molecule force spectroscopy (SMFS), and molecular dynamics (MD) simulations to measure the effect of altering hydrophobic core packing on the stability of the cold shock protein TmCSP from the hyperthermophilic bacterium Thermotoga maritima. We make two variants of TmCSP in which a mutation is made to reduce the size of aliphatic groups from buried hydrophobic side chains. In the first, a mutation is introduced in a long loop (TmCSP L40A); in the other, the mutation is introduced on the C-terminal β-strand (TmCSP V62A). We use MD simulations to confirm that the mutant TmCSP L40A shows the most significant increase in loop flexibility, and mutant TmCSP V62A shows greater disruption to the core packing. We measure the thermodynamic stability (ΔGD-N) of the mutated proteins and show that there is a more significant reduction for TmCSP L40A (ΔΔG = 63%) than TmCSP V62A (ΔΔG = 47%), as might be expected on the basis of the relative reduction in the size of the side chain. By contrast, SMFS measures the mechanical stability (ΔG*) and shows a greater reduction for TmCSP V62A (ΔΔG* = 8.4%) than TmCSP L40A (ΔΔG* = 2.5%). While the impact on the mechanical stability is subtle, the results demonstrate the power of tuning noncovalent interactions to modulate both the thermodynamic and mechanical stability of a protein. Such understanding and control provide the opportunity to design proteins with optimized thermodynamic and mechanical properties.

  5. Towards a probabilistic definition of entropy: An investigation of the effects of a new curriculum on students' understanding of thermodynamics

    Science.gov (United States)

    Colon-Garcia, Evy B.

    Thermodynamics is a vital tool in understanding why reactions happen; nevertheless, it is often considered a difficult topic. Prior studies have shown that students struggle with fundamental thermodynamic concepts such as entropy, enthalpy and Gibbs energy even in upper level physical chemistry courses. Thermodynamics, as a general chemistry topic, can be more math-intensive than other topics such as bonding or intermolecular forces. As a result, it is possible for students to get lost in the algorithms and overlook the important underlying theoretical concepts. Students' difficulties in understanding thermodynamics may be contributing to their inability to explain phenomena such as phase changes and manipulations of equilibrium systems. Current chemistry curricula split the thermodynamic chapters over a span of two semesters as well as splitting it over different units. This division fails to make explicit the connection between Enthalpy, Entropy and Gibbs Energy and how they affect how and why every reaction or process happens. The reason for this division of topics is not based on any educational research rather than opinions as to what will not overwhelm the students. Additionally, students who take only one semester of General Chemistry will leave without being instructed in what is considered to be one of the most fundamental concepts in Chemistry, Thermodynamics. Chemistry, Life, the Universe and Everything (CLUE) is a general chemistry course developed with the explicit goal of addressing the major obstacles that inhibit students from acquiring an appreciation and mastery of the chemical principles upon which other sciences depend. Using a control and treatment group, the effectiveness of this new curriculum was evaluated for two main aspects: 1. What is students' understanding of entropy?, 2. Can an alternative instructional approach to teaching Thermodynamics (Chemistry, Life, the Universe and Everything - CLUE) improve students' understanding of Entropy

  6. Casimir amplitudes and capillary condensation of near-critical fluids between parallel plates: renormalized local functional theory.

    Science.gov (United States)

    Okamoto, Ryuichi; Onuki, Akira

    2012-03-21

    We investigate the critical behavior of a near-critical fluid confined between two parallel plates in contact with a reservoir by calculating the order parameter profile and the Casimir amplitudes (for the force density and for the grand potential). Our results are applicable to one-component fluids and binary mixtures. We assume that the walls absorb one of the fluid components selectively for binary mixtures. We propose a renormalized local functional theory accounting for the fluctuation effects. Analysis is performed in the plane of the temperature T and the order parameter in the reservoir ψ(∞). Our theory is universal if the physical quantities are scaled appropriately. If the component favored by the walls is slightly poor in the reservoir, there appears a line of first-order phase transition of capillary condensation outside the bulk coexistence curve. The excess adsorption changes discontinuously between condensed and noncondensed states at the transition. With increasing T, the transition line ends at a capillary critical point T=T(c) (ca) slightly lower than the bulk critical temperature T(c) for the upper critical solution temperature. The Casimir amplitudes are larger than their critical point values by 10-100 times at off-critical compositions near the capillary condensation line. © 2012 American Institute of Physics

  7. Effect of long- and short-range interactions on the thermodynamics of dipolar spin ice

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, Yuriy, E-mail: shevchenko.ya@dvfu.ru [School of Natural Sciences, Far Eastern Federal University, Vladivostok (Russian Federation); Makarov, Aleksandr, E-mail: makarov.ag@dvfu.ru [School of Natural Sciences, Far Eastern Federal University, Vladivostok (Russian Federation); Nefedev, Konstantin, E-mail: nefedev.kv@dvfu.ru [School of Natural Sciences, Far Eastern Federal University, Vladivostok (Russian Federation); Institute of Applied Mathematics of Far Eastern Branch, Russian Academy of Science, 7 Radio Str, Vladivostok (Russian Federation)

    2017-02-05

    The thermodynamic properties of dipolar spin ice on square, honeycomb and shakti lattices in the long-range and short-range dipole interaction models are studied. Exact solutions for the density of states, temperature dependencies of heat capacity, and entropy are obtained for these lattices with a finite number of point dipoles by means of complete enumeration. The magnetic susceptibility and average size of the largest low-energy cluster are calculated for square spin ice by means of Wang–Landau and Metropolis methods. We show that the long-range interaction leads to a blurring of the energy spectrum for all considered lattices. The inclusion of the long-range interaction leads to a significant change in the thermodynamic behaviour. An additional peak of heat capacity appears in the case of the honeycomb lattice. The critical temperature shifts in the direction of low or high temperatures; the direction depends on the lattice geometry. The critical temperature of the phase transition of square spin ice in the long-range model with frustrated ground states is obtained with the Wang–Landau and Metropolis methods independently. - Highlights: • The long-range and short-range dipole interaction effects are compared. • Differences are showed for Honeycomb, Shakti and Square spin ice lattices. • The additional heat capacity peaks appear for long-range interaction. • The temperature of heat capacity peak shifts while changing the interaction range.

  8. Molecular crowding has no effect on the dilution thermodynamics of the biologically relevant cation mixtures.

    Science.gov (United States)

    Głogocka, Daria; Przybyło, Magdalena; Langner, Marek

    2017-04-01

    The ionic composition of intracellular space is rigorously maintained in the expense of high-energy expenditure. It has been recently postulated that the cytoplasmic ionic composition is optimized so the energy cost of the fluctuations of calcium ion concentration is minimized. Specifically, thermodynamic arguments have been produced to show that the presence of potassium ions at concentrations higher than 100 mM reduce extend of the energy dissipation required for the dilution of calcium cations. No such effect has been measured when sodium ions were present in the solution or when the other divalent cation magnesium was diluted. The experimental observation has been interpreted as the indication of the formation of ionic clusters composed of calcium, chloride and potassium. In order to test the possibility that such clusters may be preserved in biological space, the thermodynamics of ionic mixtures dilution in solutions containing albumins and model lipid bilayers have been measured. Obtained thermograms clearly demonstrate that the energetics of calcium/potassium mixture is qualitatively different from calcium/sodium mixture indicating that the presence of the biologically relevant quantities of proteins and membrane hydrophilic surfaces do not interfere with the properties of the intracellular aqueous phase.

  9. An engineering thermodynamic approach to select the electromagnetic wave effective on cell growth.

    Science.gov (United States)

    Lucia, Umberto; Grisolia, Giulia; Ponzetto, Antonio; Silvagno, Francesca

    2017-09-21

    To date, the choice of the characteristics of the extremely low-frequency electromagnetic field beneficial in proliferative disorders is still empirical. In order to make the ELF interaction selective, we applied the thermodynamic and biochemical principles to the analysis of the thermo-chemical output generated by the cell in the environment. The theoretical approach applied an engineering bio-thermodynamic approach recently developed in order to obtain a physical-mathematical model that calculated the frequency of the field able to maximize the mean entropy changes as a function of cellular parameters. The combined biochemical approach envisioned the changes of entropy as a metabolic shift leading to a reduction of cell growth. The proliferation of six human cancer cell lines was evaluated as the output signal able to confirm the correctness of the mathematical model. By considering the cell as a reactive system able to respond to the unbalancing external stimuli, for the first time we could calculate and validate the frequencies of the field specifically effective on distinct cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Thermodynamic properties of non-conformal soft-sphere fluids with effective hard-sphere diameters.

    Science.gov (United States)

    Rodríguez-López, Tonalli; del Río, Fernando

    2012-01-28

    In this work we study a set of soft-sphere systems characterised by a well-defined variation of their softness. These systems represent an extension of the repulsive Lennard-Jones potential widely used in statistical mechanics of fluids. This type of soft spheres is of interest because they represent quite accurately the effective intermolecular repulsion in fluid substances and also because they exhibit interesting properties. The thermodynamics of the soft-sphere fluids is obtained via an effective hard-sphere diameter approach that leads to a compact and accurate equation of state. The virial coefficients of soft spheres are shown to follow quite simple relationships that are incorporated into the equation of state. The approach followed exhibits the rescaling of the density that produces a unique equation for all systems and temperatures. The scaling is carried through to the level of the structure of the fluids.

  11. Effect of the vitamin D photosynthesis products on thermodynamic parameters of model lipid membranes

    Directory of Open Access Journals (Sweden)

    Lisetski L. N.

    2012-04-01

    Full Text Available Aim. To compare effects of vitamin D (VitD, provitamin D (ProD and its photo- and thermoisomerization products on thermodynamical parameters of hydrated dipalmitoylphoshpatidylcholine (DPPC multilayers. Methods. Differential scanning calorimetry, UV spectroscopy. Results. A regular decrease was established in the melting temperature accompanied with the pronounced broadening of the appropriate peaks for DPPC multilayers doped with the sterols in the order ProD3 < < ProD3 + UV < ProD3 + UV + dark storage < VitD3. Conclusions. The destabilizing effect of VitD3 on the membrane appeared to be stronger than that of ProD3 and its photoisomerization products. This can facilitate VitD3 withdrawal from the membrane into intercellular space under its biosinthesis in vivo. A possible molecular mechanism of the phenomena observed is related to the higher conformational flexibility and anisometry of VitD3 as compared to ProD3.

  12. Size and interface effects on several kinetic and thermodynamic properties of polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lang, X.Y. [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and Department of Materials Science and Engineering, Jilin University, Changchun 130025 (China); Zhu, Y.F. [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and Department of Materials Science and Engineering, Jilin University, Changchun 130025 (China); Jiang, Q. [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and Department of Materials Science and Engineering, Jilin University, Changchun 130025 (China)]. E-mail: jiangq@jlu.edu.cn

    2006-12-05

    Size and interface effects on kinetic and thermodynamic properties (shear viscosity [{eta}(T,D)], surface tension [{gamma}(T,D)] and thermal expansion coefficient [{beta}(T,D)]) of thin polymer films at temperature T have been modeled based on free volume model and size-dependent function for mean-square displacement of molecules in thin polymer films at glass transition temperature {sigma} {sub g} {sup 2}(D), where D denotes the thickness of thin films. In terms of these models, {eta}(T,D), {beta}(T,D) and {gamma}(T,D) functions are predicted to decrease or increase as D decreases in comparison with the corresponding bulk values, depending on free surface effect and film/substrate interface interaction strength. The predictions are in agreement with available experimental measurements of polystyrene and polybutadiene thin films.

  13. Extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1993-01-01

    Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...

  14. Thermodynamics for the practicing engineer

    CERN Document Server

    Theodore, Louis; Vanvliet, Timothy

    2009-01-01

    This book concentrates specifically on the applications of thermodynamics, rather than the theory. It addresses both technical and pragmatic problems in the field, and covers such topics as enthalpy effects, equilibrium thermodynamics, non-ideal thermodynamics and energy conversion applications. Providing the reader with a working knowledge of the principles of thermodynamics, as well as experience in their application, it stands alone as an easy-to-follow self-teaching aid to practical applications and contains worked examples.

  15. Effects of ammonia concentration on the thermodynamic performances of ammonia–water based power cycles

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Han, Chul Ho; Kim, Kyoungjin

    2012-01-01

    The power generation systems using a binary working fluid such as ammonia–water mixture are proven to be the feasible method for utilizing a low-temperature waste heat source. In this work, ammonia–water based Rankine (AWR) regenerative Rankine (AWRR) power generation cycles are comparatively analyzed by investigating the effects of ammonia mass concentration in the working fluid on the thermodynamic performances of systems. Temperature distributions of fluid streams in the heat exchanging devices are closely examined at different levels of ammonia concentration and they might be the most important design consideration in optimizing the power systems using a binary working fluid. The analysis shows that the lower limit of workable ammonia concentration decreases with increasing turbine inlet pressure. Results also show that both the thermal and exergy efficiencies of AWRR system are generally better than those of AWR system, and can have peaks at the minimum allowable ammonia concentrations in the working range of system operation.

  16. Effects of thermodynamics parameters on mass transfer of volatile pollutants at air-water interface

    Directory of Open Access Journals (Sweden)

    Li-ping Chen

    2015-07-01

    Full Text Available A transient three-dimensional coupling model based on the compressible volume of fluid (VOF method was developed to simulate the transport of volatile pollutants at the air-water interface. VOF is a numerical technique for locating and tracking the free surface of water flow. The relationships between Henry's constant, thermodynamics parameters, and the enlarged topological index were proposed for nonstandard conditions. A series of experiments and numerical simulations were performed to study the transport of benzene and carbinol. The simulation results agreed with the experimental results. Temperature had no effect on mass transfer of pollutants with low transfer free energy and high Henry's constant. The temporal and spatial distribution of pollutants with high transfer free energy and low Henry's constant was affected by temperature. The total enthalpy and total transfer free energy increased significantly with temperature, with significant fluctuations at low temperatures. The total enthalpy and total transfer free energy increased steadily without fluctuation at high temperatures.

  17. Thermodynamics of higher dimensional black holes

    Energy Technology Data Exchange (ETDEWEB)

    Accetta, F.S.; Gleiser, M.

    1986-05-01

    We discuss the thermodynamics of higher dimensional black holes with particular emphasis on a new class of spinning black holes which, due to the increased number of Casimir invariants, have additional spin degrees of freedom. In suitable limits, analytic solutions in arbitrary dimensions are presented for their temperature, entropy, and specific heat. In 5 + 1 and 9 + 1 dimensions, more general forms for these quantities are given. It is shown that the specific heat for a higher dimensional black hole is negative definite if it has only one non-zero spin parameter, regardless of the value of this parameter. We also consider equilibrium configurations with both massless particles and massive string modes. 16 refs., 3 figs.

  18. Thermodynamics of higher dimensional black holes

    International Nuclear Information System (INIS)

    Accetta, F.S.; Gleiser, M.

    1986-05-01

    We discuss the thermodynamics of higher dimensional black holes with particular emphasis on a new class of spinning black holes which, due to the increased number of Casimir invariants, have additional spin degrees of freedom. In suitable limits, analytic solutions in arbitrary dimensions are presented for their temperature, entropy, and specific heat. In 5 + 1 and 9 + 1 dimensions, more general forms for these quantities are given. It is shown that the specific heat for a higher dimensional black hole is negative definite if it has only one non-zero spin parameter, regardless of the value of this parameter. We also consider equilibrium configurations with both massless particles and massive string modes. 16 refs., 3 figs

  19. Thermodynamic extermal principle and its application to Dufour and Soret effect and plasticity

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Fischer, F. D.; Vala, J.

    2008-01-01

    Roč. 86, č. 1 (2008), s. 1-11 ISSN 1825-1242 R&D Projects: GA AV ČR IAA200410601 Institutional research plan: CEZ:AV0Z20410507 Keywords : extremal principle * thermodynamic s * plasticity Subject RIV: BJ - Thermodynamic s

  20. General thermodynamics

    CERN Document Server

    Olander, Donald

    2007-01-01

    The book’s methodology is unified, concise, and multidisciplinary, allowing students to understand how the principles of thermodynamics apply to all technical fields that touch upon this most fundamental of scientific theories. It also offers a rigorous approach to the quantitative aspects of thermodynamics, accompanied by clear explanations to help students transition smoothly from the physical concepts to their mathematical representations

  1. Measuring and modelling of the combined thermodynamic promoting effect of tetrahydrofuran and cyclopentane on carbon dioxide hydrates

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Daraboina, Nagu; Thomsen, Kaj

    2014-01-01

    .A thermodynamic model, based on the van der Waals–Platteeuw model and the cubic-plus-association equation of state is applied to model the mixed promoter system. The model accurately predicts the data measured in this work. Furthermore, the model explains the synergistic effect by the fact that tetrahydrofuran...

  2. Thermodynamic estimation: Ionic materials

    International Nuclear Information System (INIS)

    Glasser, Leslie

    2013-01-01

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  3. High-throughput protein precipitation and hydrophobic interaction chromatography: salt effects and thermodynamic interrelation.

    Science.gov (United States)

    Nfor, Beckley K; Hylkema, Nienke N; Wiedhaup, Koenraad R; Verhaert, Peter D E M; van der Wielen, Luuk A M; Ottens, Marcel

    2011-12-09

    Salt-induced protein precipitation and hydrophobic interaction chromatography (HIC) are two widely used methods for protein purification. In this study, salt effects in protein precipitation and HIC were investigated for a broad combination of proteins, salts and HIC resins. Interrelation between the critical thermodynamic salting out parameters in both techniques was equally investigated. Protein precipitation data were obtained by a high-throughput technique employing 96-well microtitre plates and robotic liquid handling technology. For the same protein-salt combinations, isocratic HIC experiments were performed using two or three different commercially available stationary phases-Phenyl Sepharose low sub, Butyl Sepharose and Resource Phenyl. In general, similar salt effects and deviations from the lyotropic series were observed in both separation methods, for example, the reverse Hofmeister effect reported for lysozyme below its isoelectric point and at low salt concentrations. The salting out constant could be expressed in terms of the preferential interaction parameter in protein precipitation, showing that the former is, in effect, the net result of preferential interaction of a protein with water molecules and salt ions in its vicinity. However, no general quantitative interrelation was found between salting out parameters or the number of released water molecules in protein precipitation and HIC. In other words, protein solubility and HIC retention factor could not be quantitatively interrelated, although for some proteins, regular trends were observed across the different resins and salt types. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. The Casimir interaction of a massive vector field between concentric spherical bodies

    International Nuclear Information System (INIS)

    Teo, L.P.

    2011-01-01

    The Casimir interaction energy due to the vacuum fluctuations of a massive vector field between two perfectly conducting concentric spherical bodies is computed. The TE contribution to the Casimir interaction energy is a direct generalization of the massless case but the TM contribution is much more complicated. Each TM mode is a linear combination of a transverse mode which is the generalization of a TM mode in the massless case and a longitudinal mode that does not appear in the massless case. In contrast to the case of two parallel perfectly conducting plates, there are no TM discrete modes that vanish identically in the perfectly conducting spherical bodies. Numerical simulations show that the Casimir interaction force between the two bodies is always attractive.

  5. Elastic, mechanical, and thermodynamic properties of Bi-Sb binaries: Effect of spin-orbit coupling

    Science.gov (United States)

    Singh, Sobhit; Valencia-Jaime, Irais; Pavlic, Olivia; Romero, Aldo H.

    2018-02-01

    Using first-principles calculations, we systematically study the elastic stiffness constants, mechanical properties, elastic wave velocities, Debye temperature, melting temperature, and specific heat of several thermodynamically stable crystal structures of BixSb1 -x (0 effects, and topological features in the electronic band structure. We analyze the bulk modulus (B ), Young's modulus (E ), shear modulus (G ), B /G ratio, and Poisson's ratio (ν ) as a function of the Bi concentration in BixSb1 -x . The effect of SOC on the above-mentioned properties is further investigated. In general, we observe that the SOC effects cause elastic softening in most of the studied structures. Three monoclinic structures of Bi-Sb binaries are found to exhibit significantly large auxetic behavior due to the hingelike geometric structure of bonds. The Debye temperature and the magnitude of the elastic wave velocities monotonically increase with increasing Sb concentration. However, anomalies were observed at very low Sb concentration. We also discuss the specific-heat capacity versus temperature data for all studied binaries. Our theoretical results are in excellent agreement with the existing experimental and theoretical data. The comprehensive understanding of the material properties such as hardness, mechanical strength, melting temperature, propagation of the elastic waves, auxeticity, and heat capacity is vital for practical applications of the studied binaries.

  6. Thermodynamics and Cloud Radiative Effect from the First Year of GoAmazon

    Science.gov (United States)

    Collow, Allie Marquardt; Miller, Mark; Trabachino, Lynne

    2015-01-01

    Deforestation is an ongoing concern for the Amazon Rainforest of Brazil and associated changes to the land surface have been hypothesized to alter the climate in the region. A comprehensive set of meteorological observations at the surface and within the lower troposphere above Manacapuru, Brazil and data from the Modern Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) are used to evaluate the seasonal cycle of cloudiness, thermodynamics, and the radiation budget. While ample moisture is present in the Amazon Rainforest year round, the northward progression of the Hadley circulation during the dry season contributes to a drying of the middle troposphere and inhibits the formation of deep convection. This results in a reduction in cloudiness and precipitation as well as an increase in the height of the lifting condensation level, which is shown to have a negative correlation to the fraction of low clouds. Frequent cloudiness prevents solar radiation from reaching the surface and clouds are often reflective with high values of shortwave cloud radiative effect at the surface and top of the atmosphere. Cloud radiative effect is reduced during the dry season however the dry season surface shortwave cloud radiative effect is still double what is observed during the wet season in other tropical locations. Within the column, the impact of clouds on the radiation budget is more prevalent in the longwave part of the spectrum, with a net warming in the wet season.

  7. On the Casimir scaling violation in the cusp anomalous dimension at small angle

    Science.gov (United States)

    Grozin, Andrey; Henn, Johannes; Stahlhofen, Maximilian

    2017-10-01

    We compute the four-loop n f contribution proportional to the quartic Casimir of the QCD cusp anomalous dimension as an expansion for small cusp angle ϕ. This piece is gauge invariant, violates Casimir scaling, and first appears at four loops. It requires the evaluation of genuine non-planar four-loop Feynman integrals. We present results up to O({φ}^4) . One motivation for our calculation is to probe a recent conjecture on the all-order structure of the cusp anomalous dimension. As a byproduct we obtain the four-loop HQET wave function anomalous dimension for this color structure.

  8. Casimir force in the Gödel space-time and its possible induced cosmological inhomogeneity

    Science.gov (United States)

    Khodabakhshi, Sh.; Shojai, A.

    2017-07-01

    The Casimir force between two parallel plates in the Gödel universe is computed for a scalar field at finite temperature. It is observed that when the plates' separation is comparable with the scale given by the rotation of the space-time, the force becomes repulsive and then approaches zero. Since it has been shown previously that the universe may experience a Gödel phase for a small period of time, the induced inhomogeneities from the Casimir force are also studied.

  9. Thermodynamics and economics

    International Nuclear Information System (INIS)

    Mansson, B.A.

    1990-01-01

    Economics, as the social science most concerned with the use and distribution of natural resources, must start to make use of the knowledge at hand in the natural sciences about such resources. In this, thermodynamics is an essential part. In a physicists terminology, human economic activity may be described as a dissipative system which flourishes by transforming and exchanging resources, goods and services. All this involves complex networks of flows of energy and materials. This implies that thermodynamics, the physical theory of energy and materials flows, must have implications for economics. On another level, thermodynamics has been recognized as a physical theory of value, with value concepts similar to those of economic theory. This paper discusses some general aspects of the significance of non-equilibrium thermodynamics for economics. The role of exergy, probably the most important of the physical measures of value, is elucidated. Two examples of integration of thermodynamics with economic theory are reviewed. First, a simple model of a steady-state production system is sued to illustrate the effects of thermodynamic process constraints. Second, the framework of a simple macroeconomic growth model is used to illustrate how some thermodynamic limitations may be integrated in macroeconomic theory

  10. Thermodynamic holography.

    Science.gov (United States)

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-10-19

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics.

  11. Green thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cengel, Y.A. [Nevada Univ., Reno, NV (United States). Dept. of Mechanical Engineering

    2006-07-01

    Green components of thermodynamics were identified and general aspects of green practices associated with thermodynamics were assessed. Energy uses associated with fossil fuels were reviewed. Green energy sources such as solar, wind, geothermal and hydropower were discussed, as well as biomass plantations. Ethanol production practices were reviewed. Conservation practices in the United States were outlined. Energy efficiency and exergy analyses were discussed. Energy intensity measurements and insulation products for houses were also reviewed. Five case studies were presented to illustrate aspects of green thermodynamics: (1) light in a classroom; (2) fuel saved by low-resistance tires; and (3) savings with high-efficiency motors; (4) renewable energy; and (5) replacing a valve with a turbine at a cryogenic manufacturing facility. It was concluded that the main principles of green thermodynamics are to ensure that all material and energy inputs minimize the depletion of energy resources; prevent waste; and improve or innovate technologies that achieve sustainability. 17 refs., 2 tabs., 9 figs.

  12. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  13. Thermodynamic holography

    Science.gov (United States)

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-01-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214

  14. Modeling finite-volume effects and chiral symmetry breaking in two-flavor QCD thermodynamics

    Science.gov (United States)

    Klein, Bertram

    2017-11-01

    Finite-volume effects in Quantum Chromodynamics (QCD) have been a subject of much theoretical interest for more than two decades. They are in particular important for the analysis and interpretation of QCD simulations on a finite, discrete space-time lattice. Most of these effects are closely related to the phenomenon of spontaneous breaking of the chiral flavor symmetry and the emergence of pions as light Goldstone bosons. These long-range fluctuations are strongly affected by putting the system into a finite box, and an analysis with different methods can be organized according to the interplay between pion mass and box size. The finite volume also affects critical behavior at the chiral phase transition in QCD. In the present review, I will be mainly concerned with modeling such finite volume effects as they affect the thermodynamics of the chiral phase transition for two quark flavors. I review recent work on the analysis of finite-volume effects which makes use of the quark-meson model for dynamical chiral symmetry breaking. To account for the effects of critical long-range fluctuations close to the phase transition, most of the calculations have been performed using non-perturbative Renormalization Group (RG) methods. I give an overview over the application of these methods to a finite volume. The method, the model and the results are put into the context of related work in random matrix theory for very small volumes, chiral perturbation theory for larger volumes, and related methods and approaches. They are applied towards the analysis of finite-volume effects in lattice QCD simulations and their interpretation, mainly in the context of the chiral phase transition for two quark flavors.

  15. Why is RCM favoured over dimerisation? Predicting and estimating thermodynamic effective molarities by solution experiments and electronic structure calculations.

    Science.gov (United States)

    Nelson, David J; Ashworth, Ian W; Hillier, Ian H; Kyne, Sara H; Pandian, Shanthi; Parkinson, John A; Percy, Jonathan M; Rinaudo, Giuseppe; Vincent, Mark A

    2011-11-11

    The thermodynamic effective molarities of a series of simple cycloalkenes, synthesised from α,ω-dienes by reaction with Grubbs' second generation precatalyst, have been evaluated. Effective molarities were measured from a series of small scale metathesis reactions and agreed well with empirical predictions derived from the number of rotors and the product ring strain. The use of electronic structure calculations (at the M06-L/6-311G** level of theory) was explored for predicting thermodynamic effective molarities in ring-closing metathesis. However, it was found that it was necessary to apply a correction to DFT-derived free energies to account for the entropic effects of solvation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The super greenhouse effect in a warming world: the role of dynamics and thermodynamics

    Science.gov (United States)

    Kashinath, Karthik; O'Brien, Travis; Collins, William

    2016-04-01

    Over warm tropical oceans the increase in greenhouse trapping with increasing SST can be faster than that of the surface emission, resulting in a decrease in clear sky outgoing longwave radiation at the top of the atmosphere (OLR) when SST increases, also known as the super greenhouse effect (SGE). If the SGE is directly linked to SST changes, there are profound implications for positive climate feedbacks in the tropics. We show that CMIP5 models perform well in simulating the observed clear-sky greenhouse effect in the present day. Using global warming experiments we show that the onset and shutdown SST of the SGE, as well as the magnitude of the SGE, increase as the convective threshold SST increases. To account for an increasing convective threshold SST we use an invariant coordinate for convection proposed in a recent study [Williams et al., GRL (2009)]. However, even after accounting for the increase in tropical SST (by normalizing the SGE by surface emission) and accounting for the increase in the threshold temperature for convection (by using the invariant coordinate) we find that the models predict a distinct increase in the clear-sky greenhouse effect in a warmed world. This suggests that thermodynamics (i.e. SST) plays a crucial role in regulating the increasing clear sky greenhouse effect in a warming world. We use theoretical arguments to estimate this increase in SGE and derive its dependence on SST. Finally, as shown in previous studies, we confirm that the increase in the clear-sky greenhouse effect is primarily due to upper tropospheric moistening. Although the absolute increase in upper tropospheric water vapor is small compared to that of the lower troposphere, since the absorptivity scales with fractional changes in water vapor, the contribution of the upper troposphere is more significant, as shown by Chung et al., PNAS (2014).

  17. Hydrotropic effect and thermodynamic analysis on the solubility and mass transfer coefficient enhancement of ethylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Antony Bertie; Jayakumar, Chinnakannu; Gandhi, Nagarajan Nagendra [Anna University, Chennai (India)

    2013-04-15

    Concentrated aqueous solutions of a large number of hydrotropic agents, urea, nicotinamide, and sodium salicylate, have been employed to enhance the aqueous solubilities of poorly water soluble organic compounds. The influence of a wide range of hydrotrope concentrations (0-3.0mol·L{sup −1}) and different system temperatures (303-333 K) on the solubility of ethylbenzene has been studied. The solubility of ethylbenzene increases with increase in hydrotrope concentration and also with system temperature. Consequent to the increase in the solubility of ethylbenzene, the mass transfer coefficient was also found to increase with increase in hydrotrope concentration at 303 K. The enhancement factor, which is the ratio of the value in the presence and absence of a hydrotrope, is reported for both solubility and mass transfer coefficient of ethylbenzene. The Setschenow constant, K{sub s}, a measure of the effectiveness of a hydrotrope, was determined for each case. To ascertain the hydrotropic aggregation behavior of ethylbenzene, thermodynamic parameters such as Gibb’s free energy, enthalpy, and entropy of ethylbenzene were determined.

  18. Effect of heavy ion irradiation on thermodynamically equilibrium Zr-Excel alloy

    Science.gov (United States)

    Yu, Hongbing; Liang, Jianlie; Yao, Zhongwen; Kirk, Mark A.; Daymond, Mark R.

    2017-05-01

    The thermodynamically equilibrium state was achieved in a Zr-Sn-Nb-Mo alloy by long-term annealing at an intermediate temperature. The fcc intermetallic Zr(Mo, Nb)2 enriched with Fe was observed at the equilibrium state. In-situ 1 MeV Kr2+ heavy ion irradiation was performed in a TEM to study the stability of the intermetallic particles under irradiation and the effects of the intermetallic particle on the evolution of type dislocation loops at different temperatures from 80 to 550 °C. Chemi-STEM elemental maps were made at the same particles before and after irradiation up to 10 dpa. It was found that no elemental redistribution occurs at 200 °C and below. Selective depletion of Fe was observed from some precipitates under irradiation at higher temperatures. No change in the morphology of particles and no evidence showing a crystalline to amorphous transformation were observed at all irradiation temperatures. The formation of type dislocation loops was observed under irradiation at 80 and 200 °C, but not at 450 and 550 °C. The loops were non-uniformly distributed; a localized high density of type dislocation loops were observed near the second phase particles; we suggest that loop nucleation is favored as a result of the stress induced by the particles, rather than by elemental redistribution. The stability of the second phase particles and the formation of the type loops under heavy ion irradiation are discussed.

  19. Effects of sulfur on lead partitioning during sludge incineration based on experiments and thermodynamic calculations.

    Science.gov (United States)

    Liu, Jing-yong; Huang, Shu-jie; Sun, Shui-yu; Ning, Xun-an; He, Rui-zhe; Li, Xiao-ming; Chen, Tao; Luo, Guang-qian; Xie, Wu-ming; Wang, Yu-Jie; Zhuo, Zhong-xu; Fu, Jie-wen

    2015-04-01

    Experiments in a tubular furnace reactor and thermodynamic equilibrium calculations were conducted to investigate the impact of sulfur compounds on the migration of lead (Pb) during sludge incineration. Representative samples of typical sludge with and without the addition of sulfur compounds were combusted at 850 °C, and the partitioning of Pb in the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that three types of sulfur compounds (S, Na2S and Na2SO4) added to the sludge could facilitate the volatilization of Pb in the gas phase (fly ash and flue gas) into metal sulfates displacing its sulfides and some of its oxides. The effect of promoting Pb volatilization by adding Na2SO4 and Na2S was superior to that of the addition of S. In bottom ash, different metallic sulfides were found in the forms of lead sulfide, aluminosilicate minerals, and polymetallic-sulfides, which were minimally volatilized. The chemical equilibrium calculations indicated that sulfur stabilizes Pb in the form of PbSO4(s) at low temperatures (sludge incineration process mainly depended on the gas phase reaction, the surface reaction, the volatilization of products, and the concentration of Si, Ca and Al-containing compounds in the sludge. These findings provide useful information for understanding the partitioning behavior of Pb, facilitating the development of strategies to control the volatilization of Pb during sludge incineration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Molecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics

    Science.gov (United States)

    Dupuis, Nicholas F.; Holmstrom, Erik D.; Nesbitt, David J.

    2014-01-01

    The effects of “molecular crowding” on elementary biochemical processes due to high solute concentrations are poorly understood and yet clearly essential to the folding of nucleic acids and proteins into correct, native structures. The present work presents, to our knowledge, first results on the single-molecule kinetics of solute molecular crowding, specifically focusing on GAAA tetraloop–receptor folding to isolate a single RNA tertiary interaction using time-correlated single-photon counting and confocal single-molecule FRET microscopy. The impact of crowding by high–molecular-weight polyethylene glycol on the RNA folding thermodynamics is dramatic, with up to ΔΔG° ∼ −2.5 kcal/mol changes in free energy and thus >60-fold increase in the folding equilibrium constant (Keq) for excluded volume fractions of 15%. Most importantly, time-correlated single-molecule methods permit crowding effects on the kinetics of RNA folding/unfolding to be explored for the first time (to our knowledge), which reveal that this large jump in Keq is dominated by a 35-fold increase in tetraloop–receptor folding rate, with only a modest decrease in the corresponding unfolding rate. This is further explored with temperature-dependent single-molecule RNA folding measurements, which identify that crowding effects are dominated by entropic rather than enthalpic contributions to the overall free energy change. Finally, a simple “hard-sphere” treatment of the solute excluded volume is invoked to model the observed kinetic trends, and which predict ΔΔG° ∼ −5 kcal/mol free-energy stabilization at excluded volume fractions of 30%. PMID:24850865

  1. Finite size effects in the thermodynamics of a free neutral scalar field

    Science.gov (United States)

    Parvan, A. S.

    2018-04-01

    The exact analytical lattice results for the partition function of the free neutral scalar field in one spatial dimension in both the configuration and the momentum space were obtained in the framework of the path integral method. The symmetric square matrices of the bilinear forms on the vector space of fields in both configuration space and momentum space were found explicitly. The exact lattice results for the partition function were generalized to the three-dimensional spatial momentum space and the main thermodynamic quantities were derived both on the lattice and in the continuum limit. The thermodynamic properties and the finite volume corrections to the thermodynamic quantities of the free real scalar field were studied. We found that on the finite lattice the exact lattice results for the free massive neutral scalar field agree with the continuum limit only in the region of small values of temperature and volume. However, at these temperatures and volumes the continuum physical quantities for both massive and massless scalar field deviate essentially from their thermodynamic limit values and recover them only at high temperatures or/and large volumes in the thermodynamic limit.

  2. Recent breakthrough and outlook in constraining the non-Newtonian gravity and axion-like particles from Casimir physics

    Energy Technology Data Exchange (ETDEWEB)

    Klimchitskaya, G.L. [Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences, Saint Petersburg (Russian Federation); Peter the Great Saint Petersburg Polytechnic University, Institute of Physics, Nanotechnology and Telecommunications, Saint Petersburg (Russian Federation)

    2017-05-15

    The strongest constraints on the Yukawa-type corrections to Newton's gravitational law and on the coupling constants of axion-like particles to nucleons, following from recently performed experiments of Casimir physics, are presented. Specifically, the constraints obtained from measurements of the lateral and normal Casimir forces between sinusoidally corrugated surfaces, and from the isoelectronic experiment are considered, and the ranges of their greatest strength are refined. Minor modifications in the experimental setups are proposed which allow for strengthening the resultant constraints up to an order of magnitude. The comparison with some weaker constraints derived in the Casimir regime is also made. (orig.)

  3. Uma introdução aos métodos de cálculo da energia de Casimir

    Directory of Open Access Journals (Sweden)

    Passos Sobrinho J.J.

    2001-01-01

    Full Text Available O efeito Casimir é um dos aspectos mais intrigantes da física moderna. A previsão da existência de uma força macroscópica de origem quântica entre condutores neutros e sua posterior comprovação experimental é sem dúvida um dos triunfos da teoria quântica dos campos. Complementando uma introdução conceitual publicada recentemente nesta revista, apresentamos alguns métodos de cálculo da energia de Casimir, que é a grandeza fundamental que origina o efeito Casimir.

  4. Optical properties and kinetic roughening influence on dispersive casimir and van der Waals forces

    NARCIS (Netherlands)

    Palasantzas, G.; Svetovoy, Vitaly; van Zwol, P.J.

    2010-01-01

    Casimir and van der Waals dispersive forces between real material surfaces can be strongly influenced by surface roughness and the frequency dependent dielectric functions of the interacting materials. The Lifshitz theory allows calculations of these forces between two flat plates if the frequency

  5. Optical Properties and Kinetic Roughening Influence on Dispersive Casimir and van der Waals Forces

    NARCIS (Netherlands)

    Palasantzas, G.; Svetovoy, V. B.; Van Zwol, P. J.

    2010-01-01

    Casimir and van der Waals dispersive forces between real material surfaces can be strongly influenced by surface roughness and the frequency dependent dielectric functions of the interacting materials. The Lifshitz theory allows calculations of these forces between two flat plates if the frequency

  6. Casimir-lifshitz force out of thermal equilibrium and asymptotic nonadditivity

    NARCIS (Netherlands)

    Antezza, Mauro; Pitaevskii, Lev P.; Stringari, Sandro; Svetovoy, Vitaly

    2006-01-01

    We investigate the force acting between two parallel plates held at different temperatures. The force reproduces, as limiting cases, the well-known Casimir-Lifshitz surface-surface force at thermal equilibrium and the surface-atom force out of thermal equilibrium recently derived by M. Antezza et

  7. Tailoring optical metamaterials to tune the atom-surface Casimir-Polder interaction.

    Science.gov (United States)

    Chan, Eng Aik; Aljunid, Syed Abdullah; Adamo, Giorgio; Laliotis, Athanasios; Ducloy, Martial; Wilkowski, David

    2018-02-01

    Metamaterials are fascinating tools that can structure not only surface plasmons and electromagnetic waves but also electromagnetic vacuum fluctuations. The possibility of shaping the quantum vacuum is a powerful concept that ultimately allows engineering the interaction between macroscopic surfaces and quantum emitters such as atoms, molecules, or quantum dots. The long-range atom-surface interaction, known as Casimir-Polder interaction, is of fundamental importance in quantum electrodynamics but also attracts a significant interest for platforms that interface atoms with nanophotonic devices. We perform a spectroscopic selective reflection measurement of the Casimir-Polder interaction between a Cs(6P 3/2 ) atom and a nanostructured metallic planar metamaterial. We show that by engineering the near-field plasmonic resonances of the metamaterial, we can successfully tune the Casimir-Polder interaction, demonstrating both a strong enhancement and reduction with respect to its nonresonant value. We also show an enhancement of the atomic spontaneous emission rate due to its coupling with the evanescent modes of the nanostructure. Probing excited-state atoms next to nontrivial tailored surfaces is a rigorous test of quantum electrodynamics. Engineering Casimir-Polder interactions represents a significant step toward atom trapping in the extreme near field, possibly without the use of external fields.

  8. Constraints on axionlike particles and non-Newtonian gravity from measuring the difference of Casimir forces

    Science.gov (United States)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2017-06-01

    We derive constraints on the coupling constants of axionlike particles to nucleons and on the Yukawa-type corrections to Newton's gravitational law from the results of recent experiment on measuring the difference of Casimir forces between a Ni-coated sphere and Au and Ni sectors of a structured disc. Over the wide range of axion masses from 2.61 meV to 0.9 eV the obtained constraints on the axion-to-nucleon coupling are up to a factor of 14.6 stronger than all previously known constraints following from experiments on measuring the Casimir interaction. The constraints on non-Newtonian gravity found here are also stronger than all that following from the Casimir- and Cavendish-type experiments over the interaction range from 30 nm to 5.4 μ m . They are up to a factor of 177 stronger than the constraints derived recently from measuring the difference of lateral forces. Our constraints confirm previous somewhat stronger limits obtained from the isoelectronic experiment, where the contribution of the Casimir force was nullified.

  9. Generalized Riemann zeta-function regularization and Casimir energy for a piecewise uniform string

    International Nuclear Information System (INIS)

    Li Xinzhou; Shi Xin; Zhang Jianzu.

    1990-12-01

    The generalized zeta-function techniques will be utilized to investigate the Casimir energy for the transverse oscillations of a piecewise uniform closed string. We find that zeta-function regularization method can lead straightforwardly to a correct result. (author). 6 refs

  10. The casimir free energy in high- and low-temperature limits

    NARCIS (Netherlands)

    Svetovoy, Vitaly; Esquivel, R.

    2006-01-01

    The problem with the temperature dependence of the Casimir force is investigated. We analyse high-temperature limit analytically making calculations at real frequencies. The purpose is to answer the questionwhy there is no continuous transition between real and ideal metals and why the result does

  11. Chaotic behavior in Casimir oscillators: A case study for phase-change materials.

    Science.gov (United States)

    Tajik, Fatemeh; Sedighi, Mehdi; Khorrami, Mohammad; Masoudi, Amir Ali; Palasantzas, George

    2017-10-01

    Casimir forces between material surfaces at close proximity of less than 200 nm can lead to increased chaotic behavior of actuating devices depending on the strength of the Casimir interaction. We investigate these phenomena for phase-change materials in torsional oscillators, where the amorphous to crystalline phase transitions lead to transitions between high and low Casimir force and torque states, respectively, without material compositions. For a conservative system bifurcation curve and Poincare maps analysis show the absence of chaotic behavior but with the crystalline phase (high force-torque state) favoring more unstable behavior and stiction. However, for a nonconservative system chaotic behavior can take place introducing significant risk for stiction, which is again more pronounced for the crystalline phase. The latter illustrates the more general scenario that stronger Casimir forces and torques increase the possibility for chaotic behavior. The latter is making it impossible to predict whether stiction or stable actuation will occur on a long-term basis, and it is setting limitations in the design of micronano devices operating at short-range nanoscale separations.

  12. On the Effectiveness of Nature-Inspired Metaheuristic Algorithms for Performing Phase Equilibrium Thermodynamic Calculations

    Directory of Open Access Journals (Sweden)

    Seif-Eddeen K. Fateen

    2014-01-01

    Full Text Available The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS, intelligent firefly (IFA, bat (BA, artificial bee colony (ABC, MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES, magnetic charged system search (MCSS, and bare bones particle swarm optimization (BBPSO. The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design.

  13. On the effectiveness of nature-inspired metaheuristic algorithms for performing phase equilibrium thermodynamic calculations.

    Science.gov (United States)

    Fateen, Seif-Eddeen K; Bonilla-Petriciolet, Adrian

    2014-01-01

    The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design.

  14. A thermodynamic evaluation on high pressure condenser of double effect absorption refrigeration system

    International Nuclear Information System (INIS)

    Yılmaz, İbrahim Halil; Saka, Kenan; Kaynakli, Omer

    2016-01-01

    One of the parameters affecting the COP of the absorption system can be considered as the thermal balance between the high pressure condenser (HPC) and the low pressure generator (LPG) since heat rejected from the HPC is utilized as an energy source by the LPG. Condensation of the water vapor in the HPC depends on the heat removal via the LPG. This circumstance is significant for making an appropriate design and a controllable system with high performance in practical applications. For this reason, a thermodynamic analysis for the HPC of a double effect series flow water/lithium bromide absorption refrigeration system was emphasized in this study. A simulation was developed to investigate the energy transfer between the HPC and LPG. The results show that the proper designation of the HPC temperature improves the COP and ECOP due its significant impact, and its value necessarily has to be higher than the outlet temperature of the LPG based on the operating scheme. Furthermore, the COP and ECOP of the absorption system can be raised in the range of 9.72–35.09% in case of 2 °C-temperature increment in the HPC under the described conditions to be applied. - Highlights: • Thermal balance in HPC/LPG unit of a double effect absorption system was studied. • A simulation program was developed and its outputs were validated. • A parametric study was conducted for a wide range of component temperatures. • Proper designation of the HPC temperature improves the COP and ECOP. • The system performance raised 9.72–35.09% by controlling the HPC temperature.

  15. Effect of the additives on clouding behavior and thermodynamics of coenzyme Q10-Kolliphor HS15 micelle aqueous solutions

    Science.gov (United States)

    Hu, Li; Zhang, Jing; Zhu, Chao; Pan, Hong-chun; Liu, Hong

    2017-11-01

    Herein we investigate the effect of different additives (electrolytes, amino acids, PEG, and sugars) on the cloud points (CP) of coenzyme Q10 (CoQ10) - Kolliphor HS15 (HS15) micelle aqueous solutions. The CP values were decreased with the increase of electrolytes and sugars, following: CPAl3+ reduced the CP. A depression of CP for CoQ10-HS15 micelle solution with PEG was molecular weight of PEG dependent. The significant thermodynamic parameters were also evaluated and discussed.

  16. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  17. Modern thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    2017-01-01

    This textbook introduces thermodynamics with a modern approach, starting from four fundamental physical facts (the atomic nature of matter, the indistinguishability of atoms and molecules of the same species, the uncertainty principle, and the existence of equilibrium states) and analyzing the behavior of complex systems with the tools of information theory, in particular with Shannon's measure of information (or SMI), which can be defined on any probability distribution. SMI is defined and its properties and time evolution are illustrated, and it is shown that the entropy is a particular type of SMI, i.e. the SMI related to the phase-space distribution for a macroscopic system at equilibrium. The connection to SMI allows the reader to understand what entropy is and why isolated systems follow the Second Law of Thermodynamics. The Second Llaw is also formulated for other systems, not thermally isolated and even open with respect to the transfer of particles. All the fundamental aspects of thermodynamics are d...

  18. Effective site-energy model: A thermodynamic approach applied to size-mismatched alloys

    Science.gov (United States)

    Berthier, F.; Creuze, J.; Legrand, B.

    2017-06-01

    We present a novel energetic model that takes into account atomistic relaxations to describe the thermodynamic properties of AcB1 -c binary alloys. It requires the calculation of the energies on each site of a random solid solution after relaxation as a function of both the local composition and the nominal concentration. These site energies are obtained by molecular static simulations using N -body interatomic potentials derived from the second-moment approximation (SMA) of the tight-binding scheme. This new model allows us to determine the effective pair interactions (EPIs) that drive the short-range order (SRO) and to analyze the relative role of the EPIs' contribution to the mixing enthalpy, with respect to the contribution due to the lattice mismatch between the constituents. We apply this formalism to Au-Ni and Ag-Cu alloys, both of them tending to phase separate in the bulk and exhibiting a large size mismatch. Rigid-lattice Monte Carlo (MC) simulations lead to phase diagrams that are in good agreement with both those obtained by off-lattice SMA-MC simulations and the experimental ones. While the phase diagrams of Au-Ni and Ag-Cu alloys are very similar, we show that phase separation is mainly driven by the elastic contribution for Au-Ni and by the EPIs' contribution for Ag-Cu. Furthermore, for Au-Ni, the analysis of the SRO shows an inversion between the tendency to order and the tendency to phase separate as a function of the concentration.

  19. The nearest neighbor and next nearest neighbor effects on the thermodynamic and kinetic properties of RNA base pair

    Science.gov (United States)

    Wang, Yujie; Wang, Zhen; Wang, Yanli; Liu, Taigang; Zhang, Wenbing

    2018-01-01

    The thermodynamic and kinetic parameters of an RNA base pair with different nearest and next nearest neighbors were obtained through long-time molecular dynamics simulation of the opening-closing switch process of the base pair near its melting temperature. The results indicate that thermodynamic parameters of GC base pair are dependent on the nearest neighbor base pair, and the next nearest neighbor base pair has little effect, which validated the nearest-neighbor model. The closing and opening rates of the GC base pair also showed nearest neighbor dependences. At certain temperature, the closing and opening rates of the GC pair with nearest neighbor AU is larger than that with the nearest neighbor GC, and the next nearest neighbor plays little role. The free energy landscape of the GC base pair with the nearest neighbor GC is rougher than that with nearest neighbor AU.

  20. Thermodynamic behavior and enhanced magnetocaloric effect in a frustrated spin-1/2 Ising-Heisenberg triangular tube

    Science.gov (United States)

    Alécio, Raphael Cavalcante; Strečka, Jozef; Lyra, Marcelo L.

    2018-04-01

    The thermodynamic behavior of an Ising-Heisenberg triangular tube with Heisenberg intra-rung and Ising inter-rung interactions is exactly obtained in an external magnetic field within the framework of the transfer-matrix method. We report rigorous results for the temperature dependence of the magnetization, entropy, pair correlations and specific heat, as well as typical iso-entropic curves. The discontinuous field-driven ground-state phase transitions are reflected in some anomalous thermodynamic behavior as for instance a striking low-temperature peak of the specific heat and an enhanced magnetocaloric effect. It is demonstrated that the intermediate magnetization plateaus shrink in and the relevant sharp edges associated with the magnetization jump round off upon increasing temperature.

  1. Fluctuations, Finite-Size Effects and the Thermodynamic Limit in Computer Simulations: Revisiting the Spatial Block Analysis Method

    Directory of Open Access Journals (Sweden)

    Maziar Heidari

    2018-03-01

    Full Text Available The spatial block analysis (SBA method has been introduced to efficiently extrapolate thermodynamic quantities from finite-size computer simulations of a large variety of physical systems. In the particular case of simple liquids and liquid mixtures, by subdividing the simulation box into blocks of increasing size and calculating volume-dependent fluctuations of the number of particles, it is possible to extrapolate the bulk isothermal compressibility and Kirkwood–Buff integrals in the thermodynamic limit. Only by explicitly including finite-size effects, ubiquitous in computer simulations, into the SBA method, the extrapolation to the thermodynamic limit can be achieved. In this review, we discuss two of these finite-size effects in the context of the SBA method due to (i the statistical ensemble and (ii the finite integration domains used in computer simulations. To illustrate the method, we consider prototypical liquids and liquid mixtures described by truncated and shifted Lennard–Jones (TSLJ potentials. Furthermore, we show some of the most recent developments of the SBA method, in particular its use to calculate chemical potentials of liquids in a wide range of density/concentration conditions.

  2. A thermodynamic potential, energy storage performances, and electrocaloric effects of Ba1-xSrxTiO3 single crystals

    Science.gov (United States)

    Huang, Y. H.; Wang, J. J.; Yang, T. N.; Wu, Y. J.; Chen, X. M.; Chen, L. Q.

    2018-03-01

    A thermodynamic potential for Ba1-xSrxTiO3 solid solutions is developed, and the corresponding thermodynamic properties of Ba1-xSrxTiO3 single crystals are calculated. The predicted temperature-composition phase diagram from the thermodynamic potential agrees well with the experimental measurements. Based on this potential, the energy storage performances and electrocaloric effects of Ba1-xSrxTiO3 single crystals are obtained using the phase-field method. It is found that there is an optimal Sr concentration which maximizes the discharged energy density of a Ba1-xSrxTiO3 single crystal under an applied electric field. The electrocaloric effects of Ba0.8Sr0.2TiO3, Ba0.7Sr0.3TiO3, Ba0.6Sr0.4TiO3, and Ba0.5Sr0.5TiO3 single crystals are also predicted, from which the corresponding optimal temperatures are identified.

  3. Solvent effect on thermodynamics of Ag(I) coordination to tripodal polypyridine ligands

    DEFF Research Database (Denmark)

    Del Piero, Silvia; Melchior, Andrea; Menotti, Davide

    2009-01-01

      An investigation on the thermodynamics of complex formation between Ag(I) ion and different tripodal ligands (tris[(2-pyridyl)methyl]amine) (TPA) and 6,6'-bis[bis(2-pyridylmethyl)aminomethyl]-2,2'-bipyridine (BTPA) has been carried out in the aprotic solvents dimethylsulfoxide (DMSO) and dimeth...

  4. Thermodynamic effect of elastic stress on grain boundary segregation of phosphorus in a low alloy steel

    Czech Academy of Sciences Publication Activity Database

    Zheng, L.; Lejček, Pavel; Song, S.; Schmitz, G.; Meng, Y.

    2015-01-01

    Roč. 647, Oct (2015), s. 172-178 ISSN 0925-8388 R&D Projects: GA ČR GAP108/12/0144 Institutional support: RVO:68378271 Keywords : grain boundaries * segregation * elastic stress * thermodynamics * chemical potential * molar volume Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.014, year: 2015

  5. An Easy and Effective Demonstration of Enzyme Stereospecificity and Equilibrium Thermodynamics

    Science.gov (United States)

    Herdman, Chelsea; Dickman, Michael

    2011-01-01

    Enzyme stereospecificity and equilibrium thermodynamics can be demonstrated using the coupling of two amino acid derivatives by Thermoase C160. This protease will catalyze peptide bond formation between Z-L-AspOH and L-PheOMe to form the Aspartame precursor Z-L-Asp-L-PheOMe. Reaction completion manifests itself by precipitation of the product. As…

  6. The trace identity and the planar Casimir effect

    Indian Academy of Sciences (India)

    Abstract. The familiar trace identity associated with the scale transformation xµ → x µ = e−λxµ on the Lagrangian density for a noninteracting massive real scalar field in 2 + 1 dimensions is shown to be violated on a single plate on which the Dirichlet boundary condition φ(t, x1, x2 = −a) = 0 is imposed. It is however respected ...

  7. The trace identity and the planar Casimir effect

    Indian Academy of Sciences (India)

    The familiar trace identity associated with the scale transformation → ′ = - on the Lagrangian density for a noninteracting massive real scalar field in 2 + 1 dimensions is shown to be violated on a single plate on which the Dirichlet boundary condition (, 1, 2 = -) = 0 is imposed. It is however respected ...

  8. Casimir effect for closed cavities with conducting and permeable walls

    International Nuclear Information System (INIS)

    Ferreira, L.A.; Zimerman, A.H.; Ruggiero, J.R.

    1980-01-01

    The quantum electromagnetic zero point energy is calculated for rectangular cavities where some of the walls are perfect conductors and the others are made of infinitely permeable materials. It is found that for cubic systems, for some configurations the zero point electromagnetic energy is positive, while in other configurations this zero point energy is negative. The consequences of these results on possible models for the electron are discussed. (Author) [pt

  9. The trace identity and the planar Casimir effect

    Indian Academy of Sciences (India)

    S G Kamath the derivative operators in (24) acting on ∆(x−y), the latter being now defined by. (18a) but with the δ-function appropriate to three space–time dimensions. Rewrit- ing (24) as exp iZ[J(x),Kµ,Dαβ,Lµν]. = 1. W0. ∞. ∑. 0. (−i)n n! {∫. d3yDµν(y)Gµν. }n. × exp −. {. 1. 2 i. ∫. d3xd3yM(x)∆(x − y)M(y). } (25) with. Gµν = 3.

  10. Statistical thermodynamics

    CERN Document Server

    Schrödinger, Erwin

    1952-01-01

    Nobel Laureate's brilliant attempt to develop a simple, unified standard method of dealing with all cases of statistical thermodynamics - classical, quantum, Bose-Einstein, Fermi-Dirac, and more.The work also includes discussions of Nernst theorem, Planck's oscillator, fluctuations, the n-particle problem, problem of radiation, much more.

  11. From optical lattice clocks to the measurement of forces in the Casimir regime

    International Nuclear Information System (INIS)

    Wolf, Peter; Lemonde, Pierre; Bize, Sebastien; Landragin, Arnaud; Clairon, Andre; Lambrecht, Astrid

    2007-01-01

    We describe an experiment based on atoms trapped close to a macroscopic surface, to study the interactions between the atoms and the surface at very small separations (0.6-10 μm). In this range the dominant potential is the QED interaction (Casimir-Polder and van der Waals) between the surface and the atom. Additionally, several theoretical models suggest the possibility of Yukawa-type potentials with sub-millimeter range, arising from new physics related to gravity. The proposed setup is very similar to neutral atom optical lattice clocks, but with the atoms trapped in lattice sites close to the reflecting mirror. A sequence of pulses of the probe laser at different frequencies is then used to create an interferometer with a coherent superposition between atomic states at different distances from the mirror (in different lattice sites). Assuming atom interferometry state-of-the-art measurement of the phase difference and a duration of the superposition of about 0.1 s, we expect to be able to measure the potential difference between separated states with an uncertainty of ≅10 -4 Hz. An analysis of systematic effects for different atoms and surfaces indicates no fundamentally limiting effect at the same level of uncertainty, but does influence the choice of atom and surface material. Based on those estimates, we expect that such an experiment would improve the best existing measurements of the atom-wall QED interaction by ≥ 2 orders of magnitude, while gaining up to four orders of magnitude on the best present limits on new interactions in the range between 100 nm and 100 μm

  12. Effects of some salts on H2O as probed by a thermodynamic signature of glycerol: towards understanding the Hofmeister effects (VII)

    DEFF Research Database (Denmark)

    Koga, Yoshikata; Westh, Peter

    2014-01-01

    . Namely, we devised a methodology whereby the effect of an ion on H2O is characterized by two orthogonal indices, hydrophobicity and hydrophilicity, by using a third order thermodynamic signature of hydrophobic 1-propanol (1P) as a probe, the 1P-probing methodology. The results indicated that the common...

  13. Predicting the effects of basepair mutations in DNA-protein complexes by thermodynamic integration.

    Science.gov (United States)

    Beierlein, Frank R; Kneale, G Geoff; Clark, Timothy

    2011-09-07

    Thermodynamically rigorous free energy methods in principle allow the exact computation of binding free energies in biological systems. Here, we use thermodynamic integration together with molecular dynamics simulations of a DNA-protein complex to compute relative binding free energies of a series of mutants of a protein-binding DNA operator sequence. A guanine-cytosine basepair that interacts strongly with the DNA-binding protein is mutated into adenine-thymine, cytosine-guanine, and thymine-adenine. It is shown that basepair mutations can be performed using a conservative protocol that gives error estimates of ∼10% of the change in free energy of binding. Despite the high CPU-time requirements, this work opens the exciting opportunity of being able to perform basepair scans to investigate protein-DNA binding specificity in great detail computationally. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Shape-Selection of Thermodynamically Stabilized Colloidal Pd and Pt Nanoparticles Controlled via Support Effects

    DEFF Research Database (Denmark)

    Ahmadi, M.; Behafarid, F.; Holse, Christian

    2015-01-01

    Colloidal chemistry, in combination with nanoparticle (NP)/support epitaxial interactions is used here to synthesize shape-selected and thermodynamically stable metallic NPs over a broad range of NP sizes. The morphology of three-dimensional palladium and platinum NPs supported on TiO2(110) was i......Colloidal chemistry, in combination with nanoparticle (NP)/support epitaxial interactions is used here to synthesize shape-selected and thermodynamically stable metallic NPs over a broad range of NP sizes. The morphology of three-dimensional palladium and platinum NPs supported on TiO2...... rows and was found to be responsible for the shape control. The ability of synthesizing thermally stable shape-selected metal NPs demonstrated here is expected to be of relevance for applications in the field of catalysis, since the activity and selectivity of NP catalysts has been shown to strongly...

  15. Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Matschei, Thomas; Moeschner, Goeril; Glasser, Fred P.

    2008-01-01

    The composition of the phase assemblage and the pore solution of Portland cements hydrated between 0 and 60 deg. C were modelled as a function of time and temperature. The results of thermodynamic modelling showed a good agreement with the experimental data gained at 5, 20, and 50 deg. C. At 5 and at 20 deg. C, a similar phase assemblage was calculated to be present, while at approximately 50 deg. C, thermodynamic calculations predicted the conversion of ettringite and monocarbonate to monosulphate. Modelling showed that in Portland cements which have an Al 2 O 3 /SO 3 ratio of > 1.3 (bulk weight), above 50 deg. C monosulphate and monocarbonate are present. In Portland cements which contain less Al (Al 2 O 3 /SO 3 < 1.3), above 50 deg. C monosulphate and small amounts of ettringite are expected to persist. A good correlation between calculated porosity and measured compressive strength was observed

  16. Structural, Mechanical and Thermodynamic Properties under Pressure Effect of Rubidium Telluride: First Principle Calculations

    Directory of Open Access Journals (Sweden)

    Bidai K.

    2017-06-01

    Full Text Available First-principles density functional theory calculations have been performed to investigate the structural, elastic and thermodynamic properties of rubidium telluride in cubic anti-fluorite (anti-CaF2-type structure. The calculated ground-state properties of Rb2Te compound such as equilibrium lattice parameter and bulk moduli are investigated by generalized gradient approximation (GGA-PBE that are based on the optimization of total energy. The elastic constants, Young’s and shear modulus, Poisson ratio, have also been calculated. Our results are in reasonable agreement with the available theoretical and experimental data. The pressure dependence of elastic constant and thermodynamic quantities under high pressure are also calculated and discussed.

  17. EFFECT OF HEATING RATE ON THE THERMODYNAMIC PROPERTIES OF PULVERIZED COAL

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan Sampath

    2000-01-01

    This final technical report describes work performed under DOE Grant No. DE-FG22-96PC96224 during the period September 24, 1996 to September 23, 1999 which covers the entire performance period of the project. During this period, modification, alignment, and calibration of the measurement system, measurement of devolatilization time-scales for single coal particles subjected to a range of heating rates and temperature data at these time-scales, and analysis of the temperature data to understand the effect of heating rates on coal thermal properties were carried out. A new thermodynamic model was developed to predict the heat transfer behavior for single coal particles using one approach based on the analogy for thermal property of polymers. Results of this model suggest that bituminous coal particles behave like polymers during rapid heating on the order of 10{sup 4}-10{sup 5} K/s. At these heating rates during the early stages of heating, the vibrational part of the heat capacity of the coal molecules appears to be still frozen but during the transition from heat-up to devolatilization, the heat capacity appears to attain a sudden jump in its value as in the case of polymers. There are a few data available in the coal literature for low heating rate experiments (10{sup 2}-10{sup 3} K/s) conducted by UTRC, our industrial partner, in this project. These data were obtained for a longer heating duration on the order of several seconds as opposed to the 10 milliseconds heating time of the single particle experiments discussed above. The polymer analogy model was modified to include longer heating time on the order of several seconds to test these data. However, the model failed to predict these low heating rate data. It should be noted that UTRC's work showed reasonably good agreement with Merrick model heat capacity predictions at these low heating rates, but at higher heating rates UTRC observed that coal thermal response was heat flux dependent. It is concluded

  18. Thermodynamics of the hydrophobic effect. III. Condensation and aggregation of alkanes, alcohols, and alkylamines.

    Science.gov (United States)

    Matulis, D

    2001-10-18

    Knowledge of the energetics of the low solubility of non-polar compounds in water is critical for the understanding of such phenomena as protein folding and biomembrane formation. Solubility in water can be considered as one leg of the three-part thermodynamic cycle - vaporization from the pure liquid, hydration of the vapor in aqueous solution, and aggregation of the substance back into initial pure form as an immiscible phase. Previous studies on the model compounds n-alkanes, 1-alcohols, and 1-aminoalkanes have noted that the thermodynamic parameters (Gibbs free energy, DeltaG; enthalpy, DeltaH; entropy, DeltaS; and heat capacity, DeltaC(p)) associated with these three processes are generally linear functions of the number of carbons in the alkyl chains. Here we assess the accuracy and limitations of the assumption of additivity of CH(2) group contributions to the thermodynamic parameters for vaporization, hydration, and aggregation. Processes of condensation from pure gas to liquid and aqueous solution to aggregate are compared. Hydroxy, amino, and methyl headgroup contributions are estimated, liquid and solid aggregates are distinguished. Most data in the literature were obtained for compounds with short aliphatic hydrocarbon tails. Here we emphasize long aliphatic chain behavior and include our recent experimental data on long chain alkylamine aggregation in aqueous solution obtained by titration calorimetry and van't Hoff analysis. Contrary to what is observed for short compounds, long aliphatic compound aggregation has a large exothermic enthalpy and negative entropy.

  19. Quantum and thermodynamic aspects of Black Holes

    International Nuclear Information System (INIS)

    Sande e Lemos, J.P. de; Videira, A.L.L.

    1983-01-01

    The main results originating from the attempts of trying to incorporate quantum and thermodynamic properties and concepts to the gravitational system black hole, essentially the Hawking effect and the four laws of thermodynamics are reviewed. (Author) [pt

  20. Solvation thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    1987-01-01

    This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen­ tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther­ modynamics alone. However, solvation is inherently a molecular pro­ cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 b...

  1. Phosphorus Control in DRI-EAF Steelmaking: Thermodynamics, Effect of Alumina, and Process Modeling

    Science.gov (United States)

    Tayeb, Mohammed A.

    improve. Alumina becomes less acidic acting as a diluting agent and probably forming [AlO6 9-]-octahedra according to which alumina is hypothesized to behave amphoterically. While understanding the equilibrium and kinetics of the phosphorus reaction is important in order to improve the ability to remove phosphorus from the melt, practical use of this understanding in industry is limited. Modeling the phosphorus reaction in steelmaking, however, would result in a better and easier use of conceptual understanding by operators and engineers in plants. This work describes dynamic process models for phosphorus and sulfur reactions when using DRI, scrap, and pig iron in EAF steelmaking. The present models are based on the assumption that thermodynamic equilibrium is locally established at the steel-slag interface, the bulk liquid steel and slag remain homogeneous throughout the reaction, and the rate is predominantly controlled by the mass transfer of phosphorus in the metal and slag boundary layers. The models, which consist of a series of rate and mass balance equations, were converted into a Python code and are capable of predicting trajectories of steel and slag phosphorus and sulfur levels as well as slag chemistry and slag liquid and solid phases. The effect of operating variables on the final phosphorus and sulfur contents, for instance the effect of DRI and pig iron P and S concentrations, oxygen use, temperature, melting rates, and flux addition were tested. The results imply that dephosphorization could be improved by maintaining lower bath temperatures for period of time. Additionally, dephosphorization and desulfurization were improved by higher flux addition.

  2. Thermodynamics in Loop Quantum Cosmology

    International Nuclear Information System (INIS)

    Li, L.F.; Zhu, J.Y.

    2009-01-01

    Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. Moreover, the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but also are actually found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.

  3. Effect of relative humidity and temperature control on in-cabin thermal comfort state: Thermodynamic and psychometric analyses

    International Nuclear Information System (INIS)

    Alahmer, A.; Omar, M.A.; Mayyas, A.; Dongri, Shan

    2011-01-01

    This manuscript discusses the effect of manipulating the Relative Humidity RH of in-cabin environment on the thermal comfort and human occupants' thermal sensation. The study uses thermodynamic and psychometric analyses, to incorporate the effect of changing RH along with the dry bulb temperature on human comfort. Specifically, the study computes the effect of changing the relative humidity on the amount of heat rejected from the passenger compartment and the effect of relative humidity on occupants comfort zone. A practical system implementation is also discussed in terms of an evaporative cooler design. The results show that changing the RH along with dry bulb temperature inside vehicular cabins can improve the air conditioning efficiency by reducing the heat removed while improving the Human comfort sensations as measured by the Predicted Mean Value PMV and the Predicted Percentage Dissatisfied PPD indices. - Highlights: → Investigates the effect of controlling the RH and dry bulb temperature on in-cabin thermal comfort and sensation. → Conducts the thermodynamic and psychometric analyses for changing the RH and temperature for in-cabin air conditioning. → Discusses a possible system implementation through an evaporative cooler design.

  4. Thermodynamics for engineers

    CERN Document Server

    Wong, Kaufui Vincent

    2011-01-01

    Praise for the First Edition from Students: "It is a great thermodynamics text…I loved it!-Mathew Walters "The book is comprehensive and easy to understand. I love the real world examples and problems, they make you feel like you are learning something very practical."-Craig Paxton"I would recommend the book to friends."-Faure J. Malo-Molina"The clear diction, as well as informative illustrations and diagrams, help convey the material clearly to the reader."-Paul C. Start"An inspiring and effective tool for any aspiring scientist or engineer. Definitely the best book on Classical Thermodynamics out."-Seth Marini.

  5. Thermodynamic analysis of a trigeneration system consisting of a micro gas turbine and a double effect absorption chiller

    International Nuclear Information System (INIS)

    Huicochea, Armando; Rivera, Wilfrido; Gutierrez-Urueta, Geydy; Bruno, Joan Carles; Coronas, Alberto

    2011-01-01

    Combining heating and power systems represent an option to improve the efficiency of energy usage and to reduce thermal pollution toward environment. Microturbines generate electrical power and usable residual heat which can be partially used to activate a thermally driven chiller. The purpose of this paper is to analyze theoretically the thermodynamic performance of a trigeneration system formed by a microturbine and a double-effect water/LiBr absorption chiller. The heat data supplied to the generator of the double effect air conditioning system was acquired from experimental data of a 28 kW E microturbine, obtained at CREVER facilities. A thermodynamic simulator was developed at Centro de Investigacion en Energia in the Universidad Nacional Autonoma de Mexico by using a MATLAB programming language. Mass and energy balances of the main components of the cooling system were obtained with water-lithium bromide solution as working fluid. The trigeneration system was evaluated at different operating conditions: ambient temperatures, generation temperatures and microturbine fuel mass flow rate. The results demonstrated that this system represents an attractive technological alternative to use the energy from the microturbine exhaust gases for electric power generation, cooling and heating produced simultaneously. - Highlights: → The thermodynamic performance of a trigeneration system is analyzed theoretically. → A microturbine and a double-effect H 2 O-LiBr absorption chiller integrate the system. → The heat data supplied to generator was obtained from experimental data. → The trigeneration system was evaluated at different operating conditions. → Results show that this system is an attractive option to use exhaust energy for electricity, cooling and heating generation.

  6. Representations of the exceptional and other Lie algebras with integral eigenvalues of the Casimir operator

    International Nuclear Information System (INIS)

    Macfarlane, A J; Pfeiffer, Hendryk

    2003-01-01

    The uniformity, for the family of exceptional Lie algebras g, of the decompositions of the powers of their adjoint representations is now well known for powers up to four. The paper describes an extension of this uniformity for the totally antisymmetrized nth powers up to n = 9, identifying families of representations with integer eigenvalues 5, ..., 9 for the quadratic Casimir operator, in each case providing a formula for the dimensions of the representations in the family as a function of D = dim g. This generalizes previous results for powers j and Casimir eigenvalues j, j ≤ 4. Many intriguing, perhaps puzzling, features of the dimension formulae are discussed and the possibility that they may be valid for a wider class of not necessarily simple Lie algebras is considered

  7. Microscopic approach to critical behaviour in 3He-4He mixtures (II). Thermodynamics of the effective Hamiltonian

    International Nuclear Information System (INIS)

    Singh, K.K.; Goswami, P.

    1984-08-01

    Thermodynamics of a weakly interacting fermion-boson mixture has been worked out on the basis of the effective Hamiltonian derived in an earlier paper. Tricritical point behaviour is discussed in terms of the fields (T,μ 3 ,μ 4 ). For the degenerate phase of the mixture, the theory reproduces the classical Landau expansion near a tricritical point. For the non-degenerate phase, the theory differs materially from the Landau theory; it predicts tricritical exponents in agreement with those calculated by applying renormalization group theory to phenomenological models, and a slope for the upper line larger than that of the lambda-line in the chi-T plane. (author)

  8. Thermodynamics and statistical mechanics

    CERN Document Server

    Landsberg, Peter T

    1990-01-01

    Exceptionally articulate treatment combines precise mathematical style with strong physical intuition. Wide range of applications includes negative temperatures, negative heat capacities, special and general relativistic effects, black hole thermodynamics, gravitational collapse, more. Over 100 problems with worked solutions. Advanced undergraduate, graduate level. Table of applications. Useful formulas and other data.

  9. Stability Analysis of a Rigid Body with a Flexible Attachment Using the Energy-Casimir Method

    OpenAIRE

    Posbergh, T. A.; Krishnaprasad, Perinkulam S.; Marsden, Jerrold E.

    1987-01-01

    We consider a system consisting of a rigid body to which a linear extensible shear beam is attached. For such a system the Energy-Casimir method can be used to investigate the stability of the equilibria. In the case we consider, it can be shown that a test for (formal) stability reduces to checking the positive definiteness of two matrices which depend on the parameters of the system and the particular equilibrium about which the stability is to be ascertained.

  10. Energy loss mechanism for suspended micro- and nanoresonators due to the Casimir force

    OpenAIRE

    Gusso, André

    2011-01-01

    A so far not considered energy loss mechanism in suspended micro- and nanoresonators due to noncontact acoustical energy loss is investigated theoretically. The mechanism consists on the conversion of the mechanical energy from the vibratory motion of the resonator into acoustic waves on large nearby structures, such as the substrate, due to the coupling between the resonator and those structures resulting from the Casimir force acting over the separation gaps. Analytical expressions for the ...

  11. Derivation of the Lifshitz-Matsubara sum formula for the Casimir pressure between metallic plane mirrors

    Science.gov (United States)

    Guérout, R.; Lambrecht, A.; Milton, K. A.; Reynaud, S.

    2014-10-01

    We carefully reexamine the conditions of validity for the consistent derivation of the Lifshitz-Matsubara sum formula for the Casimir pressure between metallic plane mirrors. We recover the usual expression for the lossy Drude model but not for the lossless plasma model. We give an interpretation of this new result in terms of the modes associated with the Foucault currents, which play a role in the limit of vanishing losses, in contrast to common expectations.

  12. Remote Sensing the Vertical Profile of Cloud Droplet Effective Radius, Thermodynamic Phase, and Temperature

    Science.gov (United States)

    Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.

    2011-01-01

    Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.

  13. Effect of secondary structure on the thermodynamics and kinetics of PNA hybridization to DNA hairpins

    DEFF Research Database (Denmark)

    Kushon, S A; Jordan, J P; Seifert, J L

    2001-01-01

    The binding of a series of PNA and DNA probes to a group of unusually stable DNA hairpins of the tetraloop motif has been observed using absorbance hypochromicity (ABS), circular dichroism (CD), and a colorimetric assay for PNA/DNA duplex detection. These results indicate that both stable PNA...... structures in both target and probe molecules are shown to depress the melting temperatures and free energies of the probe-target duplexes. Kinetic analysis of hybridization yields reaction rates that are up to 160-fold slower than hybridization between two unstructured strands. The thermodynamic and kinetic...

  14. Effect of secondary structure on the thermodynamics and kinetics of PNA hybridization to DNA hairpins

    DEFF Research Database (Denmark)

    Kushon, S A; Jordan, J P; Seifert, J L

    2001-01-01

    structures in both target and probe molecules are shown to depress the melting temperatures and free energies of the probe-target duplexes. Kinetic analysis of hybridization yields reaction rates that are up to 160-fold slower than hybridization between two unstructured strands. The thermodynamic and kinetic......-DNA and DNA-DNA duplexes can be formed with these target hairpins, even when the melting temperatures for the resulting duplexes are up to 50 degrees C lower than that of the hairpin target. Both hairpin/single-stranded and hairpin/hairpin interactions are considered in the scope of these studies. Secondary...

  15. Casimir friction and near-field radiative heat transfer in graphene structures

    International Nuclear Information System (INIS)

    Volokitin, A.I.; Samara State Technical Univ.

    2017-01-01

    The dependence of the Casimir friction force between a graphene sheet and a (amorphous) SiO 2 substrate on the drift velocity of the electrons in the graphene sheet is studied. It is shown that the Casimir friction is strongly enhanced for the drift velocity above the threshold velocity when the friction is determined by the resonant excitation of the surface phonon-polaritons in the SiO 2 substrate and the electron-hole pairs in graphene. The theory agrees well with the experimental data for the current-voltage dependence for unsuspended graphene on the SiO 2 substrate. The theories of the Casimir friction and the near-field radiative energy transfer are used to study the heat generation and dissipation in graphene due to the interaction with phonon-polaritons in the (amorphous) SiO 2 substrate and acoustic phonons in graphene. For suspended graphene, the energy transfer coefficient at nanoscale gap is ∝ three orders of magnitude larger than the radiative heat transfer coefficient of the blackbody radiation limit.

  16. Casimir energy of a scalar field with a space-dependent mass distribution

    International Nuclear Information System (INIS)

    Aoyama, H.

    1984-01-01

    The Casimir energy is evaluated for a free scalar field that has a mass term m 2 (x 1 ), depending on one space coordinate x 1 . The formalism for evaluating the Casimir energy is developed for the case of m 2 (x 1 ) finite everywhere in d-dimensional space-time. The case with m 2 (x 1 )=m 0 2 theta((1/2)L-vertical strokex 1 vertical stroke)+msub(infinite) 2 theta(vertical strokex 1 vertical stroke(-1/2)L) is explicitly evaluated for any value of m 0 and msub(infinite) without any approximation. The result consists of volume energy terms, a surface term, and a non-leading term. Most of the UV divergences are in the volume energy terms and renormalize the coupling constants of the underlying theory. The surface energy term is finite for d =5 due to the boundaries being sharp. A closed finite expression is obtained for the non-leading term. Our results are shown to reproduce the known Casimir energies for the limiting cases, m 0 ->infinite and msub(infinite)->infinite. (orig.)

  17. Thermodynamic study of the effects of ethanol on the interaction of ochratoxin A with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yin [Department of General and Physical Chemistry, University of Pécs, Ifjúság 6, H-7624 Pécs (Hungary); János Szentágothai Research Center, Ifjúság 20, H-7624 Pécs (Hungary); Czibulya, Zsuzsanna [Department of General and Physical Chemistry, University of Pécs, Ifjúság 6, H-7624 Pécs (Hungary); János Szentágothai Research Center, Ifjúság 20, H-7624 Pécs (Hungary); Chimie et Biologie des Membranes et Nanoobjets, CNRS-Université de Bordeaux, UMR 52478, ENITAB, Pessac (France); Poór, Miklós [Institute of Laboratory Medicine, University of Pécs, Ifjúság 13, H-7624, Pécs (Hungary); Lecomte, Sophie [Chimie et Biologie des Membranes et Nanoobjets, CNRS-Université de Bordeaux, UMR 52478, ENITAB, Pessac (France); Kiss, László [Department of General and Physical Chemistry, University of Pécs, Ifjúság 6, H-7624 Pécs (Hungary); János Szentágothai Research Center, Ifjúság 20, H-7624 Pécs (Hungary); and others

    2014-04-15

    Ethanol effect on the interaction of ochratoxin A (OTA) with human serum albumin (HSA) was investigated by using fluorescence spectroscopy and Raman spectroscopy. The Raman results showed that after the binding of OTA, the microenvironment of tryptophan residue on HSA became less hydrophobic. The fluorescence quenching observations revealed that the binding constant for the binding of OTA to HSA decreased as ethanol concentration increased. The thermodynamic studies showed that the binding process of OTA to HSA switched from being entropy-driven to enthalpy-driven in the presence of increasing concentrations (0.7–24.7%, vol/vol) of ethanol. Enthalpy–entropy compensation effect for the binding of OTA to HSA in the presence of different ethanol concentrations had been found. Based on the thermodynamic analyses, we concluded that the ethanol-induced variation of the shape of binding site of OTA on HSA and the solvent reorganization surrounding the OTA–HSA complex are the two dominant effects. -- Highlights: • The presence of ethanol can prohibit the binding of OTA to HSA. • Microenvironment of Trp214 on HSA becomes less hydrophobic after the binding of OTA. • Ethanol induces the interaction from being entropy-driven to enthalpy-driven. • Enthalpy–entropy compensation for the interaction was found.

  18. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    International Nuclear Information System (INIS)

    Zhang, Bo; Edwards, Brian J.

    2015-01-01

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes

  19. Ecosystem thermodynamics

    International Nuclear Information System (INIS)

    Gomez Palacio, German Rau

    1998-01-01

    Ecology is no more a descriptive and self-sufficient science. Many viewpoints are needed simultaneously to give a full coverage of such complex systems: ecosystems. These viewpoints come from physics, chemistry, and nuclear physics, without a new far from equilibrium thermodynamics and without new mathematical tools such as catastrophe theory, fractal theory, cybernetics and network theory, the development of ecosystem science would never have reached the point of today. Some ideas are presented about the importance that concept such as energy, entropy, exergy information and none equilibrium have in the analysis of processes taking place in ecosystems

  20. Inhibitory effect of different product analogues on β-alanine synthase: A thermodynamic and fluorescence analysis

    International Nuclear Information System (INIS)

    Andujar-Sanchez, Montserrat; Martinez-Gomez, Ana Isabel; Martinez-Rodriguez, Sergio; Clemente-Jimenez, Josefa Maria; Heras-Vazquez, Francisco Javier Las; Rodriguez-Vico, Felipe; Jara-Perez, Vicente

    2009-01-01

    The enzyme N-carbamoyl-β-alanine amidohydrolase catalyse the hydrolysis of N-carbamoyl-β-alanine or N-carbamoyl-β-aminoisobutyric acid to β-alanine or 3-aminoisobutyric acid, under the release of carbon-dioxide and ammonia. This work studies the inhibition of N-carbamoyl-β-alanine amidohydrolase from Agrobacterium tumefaciens C58 (Atβcar) by different carboxylic acid compounds that differ in number of carbons, and position and size of ramification, while the binding thermodynamics of the inhibitors are studied by isothermal titration calorimetry (ITC) and fluorescence. From the binding constants and inhibition studies, we conclude that propionate is the most efficient inhibitor among those tested. Substitution of the linear alkyl acids in positions 2 and 3 resulted in a drastic decrease of the affinity. The thermodynamic parameters show that a conformational change is triggered upon ligand binding. Binding enthalpy ΔH b is negative in all cases for all ligands, and thus, Van der Waals interactions and hydrogen bonding are most probably the major sources for this term. The process is entropically favoured at all temperatures and pH studied, most probably due to the liberation of water molecules accompanying the conformational change of the enzyme

  1. Inhibitory effect of different product analogues on {beta}-alanine synthase: A thermodynamic and fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Andujar-Sanchez, Montserrat; Martinez-Gomez, Ana Isabel; Martinez-Rodriguez, Sergio; Clemente-Jimenez, Josefa Maria; Heras-Vazquez, Francisco Javier Las; Rodriguez-Vico, Felipe [Departamento de Quimica Fisica, Bioquimica y Quimica Inorganica, Facultad de Ciencias Experimentales, Universidad de Almeria, Carretera de Sacramento s/n, La Canada de San Urbano, Almeria 04120 (Spain); Jara-Perez, Vicente [Departamento de Quimica Fisica, Bioquimica y Quimica Inorganica, Facultad de Ciencias Experimentales, Universidad de Almeria, Carretera de Sacramento s/n, La Canada de San Urbano, Almeria 04120 (Spain)], E-mail: vjara@ual.es

    2009-02-15

    The enzyme N-carbamoyl-{beta}-alanine amidohydrolase catalyse the hydrolysis of N-carbamoyl-{beta}-alanine or N-carbamoyl-{beta}-aminoisobutyric acid to {beta}-alanine or 3-aminoisobutyric acid, under the release of carbon-dioxide and ammonia. This work studies the inhibition of N-carbamoyl-{beta}-alanine amidohydrolase from Agrobacterium tumefaciens C58 (At{beta}car) by different carboxylic acid compounds that differ in number of carbons, and position and size of ramification, while the binding thermodynamics of the inhibitors are studied by isothermal titration calorimetry (ITC) and fluorescence. From the binding constants and inhibition studies, we conclude that propionate is the most efficient inhibitor among those tested. Substitution of the linear alkyl acids in positions 2 and 3 resulted in a drastic decrease of the affinity. The thermodynamic parameters show that a conformational change is triggered upon ligand binding. Binding enthalpy {delta}H{sub b} is negative in all cases for all ligands, and thus, Van der Waals interactions and hydrogen bonding are most probably the major sources for this term. The process is entropically favoured at all temperatures and pH studied, most probably due to the liberation of water molecules accompanying the conformational change of the enzyme.

  2. Effect of Material Property Variations at Near Critical Thermodynamic Conditions on Pipe Flow Heat Transfer

    Science.gov (United States)

    Barney, Rebecca; Nourgaliev, Robert; Delplanque, Jean-Pierre; McCallen, Rose

    2017-11-01

    Heat transfer is quantified and contrasted for the Poiseuille flow of a fluid at both subcritical and supercritical thermodynamic conditions in a circular pipe subject to a uniform wall heat flux. The conditions considered are relevant to Supercritical Water Reactor (SCWR) applications. In the supercritical thermodynamic regime, a fluid can exhibit large density variations of density, thermal conductivity, and viscosity, which will affect flow and heat transfer characteristics significantly. An advanced equation of state for supercritical water was implemented in a 2D and 3D Arbitrary Lagrangian-Eurlerian multi-physics simulation tool called ALE3D developed at Lawrence Livermore National Laboratory. A newly developed, robust, high-order in space and time, fully implicit reconstructed discontinuous Galerkin (rDG) method is used to enable the numerical simulation of convective heat transfer with supercritical water. Results demonstrate the capability of this approach to accurately capture the non-linear behavior and enhanced heat transfer with supercritical water. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Information management release number LLNL-ABS-736004. Work is supported by the Integrated University Program Graduate Fellowship. Opinions, findings, conclusions or recommendations expressed are of the authors and do not necessarily reflect the views of DOE office of NE.

  3. Thermodynamic analysis of the effect of channel geometry on heat transfer in double-layered microchannel heat sinks

    International Nuclear Information System (INIS)

    Zhai, Yuling; Li, Zhouhang; Wang, Hua; Xu, Jianxin

    2017-01-01

    Highlights: • A novel geometry with rectangular and complex channels in each layer is presented. • It shows lower pressure drop and more uniform temperature distribution. • The essence of enhanced heat transfer is analyzed from thermodynamics. - Abstract: Novel double-layered microchannel heat sinks with different channel geometries in each layer (Structure 2 for short) are designed to reduce pressure drop and maintain good heat transfer performance, which is compared with structure 1 (the same of complex channel geometry in each layer). The effect of parallel flow, counter flow and different channel geometries on heat transfer is studied numerically. Moreover, the essence of heat transfer enhancement is analyzed by thermodynamics. On one hand, the synergy relationship between flow field and temperature field is analyzed by field synergy principle. On the other hand, the irreversibility of heat transfer is studied by transport efficiency of thermal energy. The results show that the temperature distribution of counter flow is more uniform than that of parallel flow. Furthermore, heat dissipation and pressure drop of structure 2 are both better and lower than that of structure 1. Form the viewpoint of temperature distribution, structure C2 (i.e., counter flow with rectangular channels in upper layer and complex channels in bottom layer) presents the most uniform bottom temperature for microelectronic cooling. However, comprehensive heat transfer performance of structure P2 (i.e., parallel flow with rectangular channels in upper layer and complex channels in bottom layer) shows the best from the viewpoint of thermodynamics. The reasons can be ascribed to the channel geometry of structure P2 can obviously improve the synergy relationship between temperature and velocity fields, reduce fluid temperature gradient and heat transfer irreversibility.

  4. Assessing life's effects on the interior dynamics of planet Earth using non-equilibrium thermodynamics

    Science.gov (United States)

    Dyke, J. G.; Gans, F.; Kleidon, A.

    2010-09-01

    Vernadsky described life as the geologic force, while Lovelock noted the role of life in driving the Earth's atmospheric composition to a unique state of thermodynamic disequilibrium. Here, we use these notions in conjunction with thermodynamics to quantify biotic activity as a driving force for geologic processes. Specifically, we explore the hypothesis that biologically-mediated processes operating on the surface of the Earth, such as the biotic enhancement of weathering of continental crust, affect interior processes such as mantle convection and have therefore shaped the evolution of the whole Earth system beyond its surface and atmosphere. We set up three simple models of mantle convection, oceanic crust recycling and continental crust recycling. We describe these models in terms of non-equilibrium thermodynamics in which the generation and dissipation of gradients is central to driving their dynamics and that such dynamics can be affected by their boundary conditions. We use these models to quantify the maximum power that is involved in these processes. The assumption that these processes, given a set of boundary conditions, operate at maximum levels of generation and dissipation of free energy lead to reasonable predictions of core temperature, seafloor spreading rates, and continental crust thickness. With a set of sensitivity simulations we then show how these models interact through the boundary conditions at the mantle-crust and oceanic-continental crust interfaces. These simulations hence support our hypothesis that the depletion of continental crust at the land surface can affect rates of oceanic crust recycling and mantle convection deep within the Earth's interior. We situate this hypothesis within a broader assessment of surface-interior interactions by setting up a work budget of the Earth's interior to compare the maximum power estimates that drive interior processes to the power that is associated with biotic activity. We estimate that the

  5. Kinetic and thermodynamic modelling of geochemical effects of a nuclear waste storage in granitic environment

    International Nuclear Information System (INIS)

    Made, B.; Fritz, B.

    1993-01-01

    In the world, various experimental sites are selected to study the behavior of different types of source rocks under nuclear waste storage influence. The surrounding rock tested to receive the waste storage must be a stable geological formation. In France, four geological formations are preselected for the feasibility study of repository for spent nuclear fuel at long term: shale, salt, clay and granite. At present time, numerous studies are carried out in Europe (Germany, Belgium, Sweden, Switzerland, United-Kingdom...), in North America (U.S.A. and Canada) and in Japan. Water-rock interactions control the most of rock transformations near the surface of the earth. The rock forming minerals react with the aqueous solutions, the primary minerals dissolution releases ionic species in solution and secondary minerals precipitate if equilibrium or oversaturation is reached. The weathering processes (hydrothermal or not) are always very complicated thus, geochemical codes has been developed to simulate the water-rock interactions. The first generation of codes is based on purely thermodynamic laws without reference to the time dependence of chemical reactions and then the dissolution path calculation refer to the irreversible dissolution of reactants and reversible precipitation of products ([1] to [4]). The system evolution is followed according to the reaction progress ξ which has been introduced in chemical system by Gibbs. Since few years, the experimental studies on the kinetics of minerals dissolution have allowed to take into account of dissolution rates data for the major minerals (silicates, carbonates...). More recently, a new geochemical codes generation appears based on thermodynamic potential and kinetic laws ([5] to [8]). The system evolution is followed according to the reaction time. (authors). 8 figs., 4 tabs., 24 refs

  6. Equilibrium thermodynamics

    CERN Document Server

    de Oliveira, Mário J

    2017-01-01

    This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...

  7. Advances in theoretical and experimental XAFS studies of thermodynamic properties, anharmonic effects and structural determination of fcc crystals

    Science.gov (United States)

    Hung, Nguyen Van; Thang, Cu Sy; Duc, Nguyen Ba; Vuong, Dinh Quoc; Tien, Tong Sy

    2017-12-01

    Thermodynamic properties, anharmonic effects and structural determination of fcc crystals have been studied based on the theoretical and experimental Debye-Waller factors presented in terms of cumulant expansion up to the third order, thermal expansion coefficient, X-ray absorption fine structure (XAFS) spectra and their Fourier transform magnitudes. The advances in these studies are performed by the further development of the anharmonic correlated Einstein model primary only for approximating three first XAFS cumulants into the method using that all the considered theoretical and experimental XAFS parameters have been provided based on only the calculated and measured second cumulants. The obtained cumulants describe the anharmonic effects in XAFS contributing to the accurate structural determination. Numerical results for Cu are found to be in good agreement with the experimental values extracted by using the present advanced method and with those obtained by the other measurements.

  8. Effect of different sulfides on cadmium distribution during sludge combustion based on experimental and thermodynamic calculation approaches.

    Science.gov (United States)

    Liu, Jing-Yong; Fu, Jie-Wen; Sun, Shui-Yu; Ning, Xun-An; Wang, Yu-Jie; Chen, Tao; Luo, Guang-Qian; Xie, Wu-Ming; Yang, Zuo-Yi; Zhuo, Zhong-Xu

    2015-01-01

    The effects of sulfur compounds on the migration of a semi-volatile heavy metal (cadmium) during sludge incineration were investigated with two methods, i.e., experiments in a tubular furnace reactor and thermodynamic equilibrium calculations. The representative typical sludge with and without the addition of sulfur compounds was incinerated at 850 °C. The partitioning of Cd among the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that sulfur compounds in the elemental form and a reduced state could stabilize Cd in the form of CdS, aluminosilicate minerals, and polymetallic sulfides, whereas sulfur in the oxidized forms slightly increases Cd volatilization during incineration. For Cd solidification points, the inhibition effect on the volatilization of Cd is as follows: S > Na2SO4 > Na2S. Chemical equilibrium calculations indicate that sulfur binds with Cd and alters Cd speciation at low temperatures (sludge incineration.

  9. Effect of pressure variation on structural, elastic, mechanical, optoelectronic and thermodynamic properties of SrNaF3 fluoroperovskite

    Science.gov (United States)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-12-01

    The effect of pressure variation on structural, electronic, elastic, mechanical, optical and thermodynamic characteristics of cubic SrNaF3 fluoroperovskite have been investigated by employing first-principles method within the framework of gradient approximation (GGA). For the total energy calculations, we have used the full-potential linearized augmented plane wave (FP-LAPW) method. Thermodynamic properties are computed in terms of quasi-harmonic Debye model. The pressure effects are determined in the range of 0–25 GPa, in which mechanical stability of SrNaF3 fluoroperovskite remains valid. A prominent decrease in lattice constant and bonds length is observed with the increase in pressure from 0 to 25 GPa. The effect of increase in pressure on band structure calculations with GGA and GGA plus Tran–Blaha modified Becke–Johnson (TB-mBJ) potential reveals a predominant characteristic associated with widening of bandgap. The influence of pressure on set of isotropic elastic parameters and their related properties are numerically estimated for SrNaF3 polycrystalline aggregate. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is observed as pressure is increased from 0 to 25 GPa. We have successfully obtained variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities with pressure and temperature in the range of 0–25 GPa and 0–600 K. All the calculated optical properties such as the complex dielectric function ε(ω), optical conductivity σ(ω), energy loss function L(ω), absorption coefficient α(w), refractive index n(ω), reflectivity R(ω), and effective number of electrons n eff, via sum rules shift towards the higher energies under the application of pressure.

  10. Effects of solution composition on the theoretical prediction of ice nucleation kinetics and thermodynamics.

    Science.gov (United States)

    Karlsson, Jens O M

    2010-02-01

    Predictions by various mathematical models of intracellular ice formation (proposed by Mazur, Pitt, Toner, and Karlsson, respectively) were compared to the known thermodynamic and kinetic behavior of ice formation in supercooled aqueous systems. The older models (Mazur, Pitt, and Toner) significantly underestimated the magnitude of colligative nonequilibrium freezing point depression in response to increased concentration of solutes, such as salts or cryoprotectants. Furthermore, kinetics predicted using phenomenological models (by Mazur and Pitt) exhibited implausible temperature-dependence, with the probability of intracellular ice formation being allowed to increase even at temperatures below the glass transition point. The Toner model, on the other hand, produced invalid results at temperatures below -48 degrees C. The Karlsson model was the only model that consistently yielded realistic predictions over a wide range of temperatures and solute concentrations, especially in the presence of cryoprotectant additives. To facilitate adoption of the Karlsson model of intracellular ice nucleation, the complete set of model equations has been collected and described in detail. Copyright 2009 Elsevier Inc. All rights reserved.

  11. Principles of Considering the Effect of the Limited Volume of a System on Its Thermodynamic State

    Science.gov (United States)

    Tovbin, Yu. K.

    2018-01-01

    The features of a system with a finite volume that affect its thermodynamic state are considered in comparison to describing small bodies in macroscopic phases. Equations for unary and pair distribution functions are obtained using difference derivatives of a discrete statistical sum. The structure of the equation for the free energy of a system consisting of an ensemble of volume-limited regions with different sizes and a full set of equations describing a macroscopic polydisperse system are discussed. It is found that the equations can be applied to molecular adsorption on small faces of microcrystals, to bound and isolated pores of a polydisperse material, and to describe the spinodal decomposition of a fluid in brief periods of time and high supersaturations of the bulk phase when each local region functions the same on average. It is shown that as the size of a system diminishes, corrections must be introduced for the finiteness of the system volume and fluctuations of the unary and pair distribution functions.

  12. Thermodynamic inhibitor performance extender that, effectively and economically prevent hydrate formation in the oil field production systems

    Energy Technology Data Exchange (ETDEWEB)

    Allenson, Stephen; Johnston, Angela [Nalco Energy Services, Sugar Land, TX (United States)

    2008-07-01

    This paper presents the development of a new additive that was developed to improve the effectiveness of the treatment two to four fold when added to the thermodynamic hydrate inhibitor (THI). Consequently, the THI/additive treatment can now enable the system to handle two to four times the amount of water production or can allow treatment of the same amount of water at half to quarter the dosage of THI. This new additive extends the performance of the THI and allows for a significant increase in production or a significant drop in the amount of THI usage with a corresponding drop in cost. This paper will further discuss the overall process of THI enhancement and will present several case studies where the enhanced THI has been successfully applied. (author)

  13. Rigorous analysis of Casimir and van der Waals forces on a silicon nano-optomechanical device actuated by optical forces.

    Science.gov (United States)

    Rodrigues, Janderson R; Gusso, Andre; Rosa, Felipe S S; Almeida, Vilson R

    2018-02-22

    Nano-optomechanical devices have enabled a lot of interesting scientific and technological applications. However, due to their nanoscale dimensions, they are vulnerable to the action of Casimir and van der Waals (dispersion) forces. This work presents a rigorous analysis of the dispersion forces on a nano-optomechanical device based on a silicon waveguide and a silicon dioxide substrate, surrounded by air and driven by optical forces. The dispersion forces are calculated using a modified Lifshitz theory with experimental optical data and validated by means of a rigorous 3D FDTD simulation. The mechanical nonlinearity of the nanowaveguide is taken into account and validated using a 3D FEM simulation. The results show that it is possible to attain a no pull-in critical point due to only the optical forces; however, the dispersion forces usually impose a pull-in critical point to the device and establish a minimal initial gap between the waveguide and the substrate. Furthermore, it is shown that the geometric nonlinearity effect may be exploited in order to avoid or minimize the pull-in and, therefore, the device collapse.

  14. Thermodynamics of Radiation Modes

    Science.gov (United States)

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  15. Efficient evaluation of Casimir force in arbitrary three-dimensional geometries by integral equation methods

    International Nuclear Information System (INIS)

    Xiong, Jie L.; Tong, M.S.; Atkins, Phillip; Chew, W.C.

    2010-01-01

    In this Letter, we generalized the surface integral equation method for the evaluation of Casimir force in arbitrary three-dimensional geometries. Similar to the two-dimensional case, the evaluation of the mean Maxwell stress tensor is cast into solving a series of three-dimensional scattering problems. The formulation and solution of the three-dimensional scattering problems are well-studied in classical computational electromagnetics. This Letter demonstrates that this quantum electrodynamic phenomenon can be studied using the knowledge and techniques of classical electrodynamics.

  16. Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic mirrors

    Science.gov (United States)

    Guérout, R.; Lambrecht, A.; Milton, K. A.; Reynaud, S.

    2016-02-01

    We examine the conditions of validity for the Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic plane mirrors. As in the previously studied case of nonmagnetic materials [Guérout et al., Phys. Rev. E 90, 042125 (2014), 10.1103/PhysRevE.90.042125], we recover the usual expression for the lossy model of optical response, but not for the lossless plasma model. We also show that the modes associated with the Foucault currents play a crucial role in the limit of vanishing losses, in contrast to expectations.

  17. Calculation of nonzero-temperature Casimir forces in the time domain

    International Nuclear Information System (INIS)

    Pan, Kai; Reid, M. T. Homer; McCauley, Alexander P.; Rodriguez, Alejandro W.; White, Jacob K.; Johnson, Steven G.

    2011-01-01

    We show how to compute Casimir forces at nonzero temperatures with time-domain electromagnetic simulations, for example, using a finite-difference time-domain (FDTD) method. Compared to our previous zero-temperature time-domain method, only a small modification is required, but we explain that some care is required to properly capture the zero-frequency contribution. We validate the method against analytical and numerical frequency-domain calculations, and show a surprising high-temperature disappearance of a nonmonotonic behavior previously demonstrated in a pistonlike geometry.

  18. Casimir problem of spherical dielectrics: quantum statistical and field theoretical approaches.

    Science.gov (United States)

    Høye, J S; Brevik, I; Aarseth, J B

    2001-05-01

    The Casimir free energy for a system of two dielectric concentric nonmagnetic spherical bodies is calculated with use of a quantum statistical mechanical method, at arbitrary temperature. By means of this rather novel method, which turns out to be quite powerful (we have shown this to be true in other situations also), we consider first an explicit evaluation of the free energy for the static case, corresponding to zero Matsubara frequency (n=0). Thereafter, the time-dependent case is examined. For comparison we consider the calculation of the free energy with use of the more commonly known field theoretical method, assuming for simplicity metallic boundary surfaces.

  19. Effect of phosphines on the thermodynamics of the cobalt catalyzed hydroformylation system.

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, R. J.; Chen, M. J.; Rathke, J. W.; Kramarz, K. W.; Chemical Engineering; BASF Corp.

    2007-01-01

    Thermodynamic parameters relevant to the phosphine-modified cobalt hydroformylation reaction are reported. Equilibrium constants for the hydrogenation of Co{sub 2}(CO){sub 6}L{sub 2} to yield HCo(CO){sub 3}L were determined using in situ {sup 1}H and {sup 31}P NMR spectroscopy between 75 and 175 C for various solvents and phosphine ligands. Special emphasis was placed on n-Bu{sub 3}P, as this ligand is prototypical of the Shell hydroformylation process. The resultant van't Hoff plots yield the enthalpy and entropy change (H = 7.0 {+-} 0.4 kcal/mol and {Delta}S = 2 {+-} 1 cal/mol {center_dot} K) for the case of L = n-Bu{sub 3}P in benzene solvent. These parameters were found to be relatively insensitive to changes in the solvent, suggesting that the hydride product is not very polar. Even for isobutyl alcohol solvent, the resultant enthalpy and entropy changes (H = 5.8 {+-} 0.4 kcal/mol and S = -2 {+-} 1 cal/mol {center_dot} K) were found to be similar to those obtained in benzene and dioxane. Analysis of the {sup 31}P NMR line widths allows rigorous lower limits to be established for the catalytically relevant Co-Co and Co-H bond energies in the case of L = n-Bu{sub 3}P (Co-Co 23 kcal/mol and Co-H 60 kcal/mol) relative to the previously reported values for the case of L = CO (Co-Co = 19 {+-} 2 kcal/mol and Co-H = 59 {+-} 1 kcal/mol).

  20. The effect of substrate orientation on the kinetics and thermodynamics of initial oxide-film growth on metals

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, Friederike

    2007-11-19

    This thesis addresses the effect of the parent metal-substrate orientation on the thermodynamics and kinetics of ultra-thin oxide-film growth on bare metals upon their exposure to oxygen gas at low temperatures (up to 650 K). A model description has been developed to predict the thermodynamically stable microstructure of a thin oxide film grown on its bare metal substrate as function of the oxidation conditions and the substrate orientation. For Mg and Ni, the critical oxide-film thickness is less than 1 oxide monolayer and therefore the initial development of an amorphous oxide phase on these metal substrates is unlikely. Finally, for Cu and densely packed Cr and Fe metal surfaces, oxide overgrowth is predicted to proceed by the direct formation and growth of a crystalline oxide phase. Further, polished Al single-crystals with {l_brace}111{r_brace}, {l_brace}100{r_brace} and {l_brace}110{r_brace} surface orientations were introduced in an ultra-high vacuum system for specimen processing and analysis. After surface cleaning and annealing, the bare Al substrates have been oxidized by exposure to pure oxygen gas. During the oxidation, the oxide-film growth kinetics has been established by real-time in-situ spectroscopic ellipsometry. After the oxidation, the oxide-film microstructures were investigated by angle-resolved X-ray photoelectron spectroscopy and low energy electron diffraction. Finally, high-resolution transmission electron microscopic analysis was applied to study the microstructure and morphology of the grown oxide films on an atomic scale. (orig.)

  1. Effects of multi-frequency power ultrasound on the enzymolysis of corn gluten meal: Kinetics and thermodynamics study.

    Science.gov (United States)

    Jin, Jian; Ma, Haile; Qu, Wenjuan; Wang, Kai; Zhou, Cunshan; He, Ronghai; Luo, Lin; Owusu, John

    2015-11-01

    The effects of multi-frequency power ultrasound (MPU) pretreatment on the kinetics and thermodynamics of corn gluten meal (CGM) were investigated in this research. The apparent constant (KM), apparent break-down rate constant (kA), reaction rate constants (k), energy of activation (Ea), enthalpy of activation (ΔH), entropy of activation (ΔS) and Gibbs free energy of activation (ΔG) were determined by means of the Michaelis-Menten equation, first-order kinetics model, Arrhenius equation and transition state theory, respectively. The results showed that MPU pretreatment can accelerate the enzymolysis of CGM under different enzymolysis conditions, viz. substrate concentration, enzyme concentration, pH, and temperature. Kinetics analysis revealed that MPU pretreatment decreased the KM value by 26.1% and increased the kA value by 7.3%, indicating ultrasound pretreatment increased the affinity between enzyme and substrate. In addition, the values of k for ultrasound pretreatment were increased by 84.8%, 41.9%, 28.9%, and 18.8% at the temperature of 293, 303, 313 and 323 K, respectively. For the thermodynamic parameters, ultrasound decreased Ea, ΔH and ΔS by 23.0%, 24.3% and 25.3%, respectively, but ultrasound had little change in ΔG value in the temperature range of 293-323 K. In conclusion, MPU pretreatment could remarkably enhance the enzymolysis of CGM, and this method can be applied to protein proteolysis industry to produce peptides. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Dynamically tunable transformation thermodynamics

    International Nuclear Information System (INIS)

    García-Meca, Carlos; Barceló, Carlos

    2016-01-01

    Recently, the introduction of transformation thermodynamics has provided a way to design thermal media that alter the flow of heat according to any spatial deformation, enabling the construction of novel devices such as thermal cloaks or concentrators. However, in its current version, this technique only allows static deformations of space. Here, we develop a space–time theory of transformation thermodynamics that incorporates the possibility of performing time-varying deformations. This extra freedom greatly widens the range of achievable effects, providing an additional degree of control for heat management applications. As an example, we design a reconfigurable thermal cloak that can be opened and closed dynamically, therefore being able to gradually adjust the temperature distribution of a given region. (paper)

  3. Fragile Thermodynamic Order

    International Nuclear Information System (INIS)

    Bernhoeft, N.; Lander, G.H.; Colineau, E.

    2003-01-01

    An asymmetric shift in the position of the magnetic Bragg peak with respect to the fiducial lattice has been observed by resonant X-ray scattering in a diverse series of antiferromagnetic compounds. This apparent violation of Bragg's law is interpreted in terms of a dynamically phased order parameter. We demonstrate the use of this effect as a novel probe of fragile or dynamic thermodynamic order in strongly correlated electronic systems. In particular, fresh light is shed on the paradoxical situation encountered in URu 2 Si 2 where the measured entropy gain on passing through T Neel is incompatible with the ground state moment estimated by neutron diffraction. The intrinsic space-time averaging of the probe used to characterise the thermodynamic macroscopic state may play a crucial and previously neglected role. In turn, this suggests the further use of resonant X-ray scattering in investigations of systems dominated by quantum fluctuations. (author)

  4. A thermodynamic study of 1-propanol-glycerol-H2O at 25 degrees C: Effect of glycerol on molecular organization of H2O

    DEFF Research Database (Denmark)

    Parsons, M.T.; Westh, Peter; Davies, J.V.

    2001-01-01

    The excess chemical potential, partial molar enthalpy, and volume of 1-propanol were determined in ternary mixtures of 1-propanol-glycerol-H2O at 25degreesC. The mole fraction dependence of all these thermodynamic functions was used to elucidate the effect of glycerol on the molecular organization...

  5. Mathematical foundations of thermodynamics

    CERN Document Server

    Giles, R; Stark, M; Ulam, S

    2013-01-01

    Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn

  6. Thermodynamic investigation of the effect of alkali metal impuries on the processing of aluminum and magnesium alloys

    Science.gov (United States)

    Zhang, Shengjun

    2006-12-01

    Aluminum and magnesium alloys are widely used in the automobile and aerospace industries as structural materials due to their light weight, high specific strength and good formability. However, they suffer from the poor hot rolling characteristics due to undesired impurities like calcium, potassium, lithium and sodium. They increase the hydrogen solubility in the melt and promote the formation of porosity in aluminum castings. During fabrication of aluminum alloys, they cause the hot-shortness and embrittlement due to cracking. They also led to "blue haze" corrosion which promotes the discoloration of aluminum under humid condition. The removal of these elements increases overall melt loss of aluminum alloys when aluminum products are remelted and recast. Na is one of the common impurities in the Al and Mg alloys. In industry, primary Al is produced by the Hall-Heroult process, through the electrolysis of the mixture of molten alumina and cryolite (Al2O3+Na 3AlF6), the latter being added to lower the melting point. Therefore, Al inevitably contains some Na (>0.002%) without further treatment. The Na content in Al is influenced by the thermodynamics and kinetics of the electrolysis. Similarly, in the electrolytic production and subsequent processing of Mg, Mg is commonly in contact with molten salt mixtures of NaCl and MgCl 2. Consequently, 2--20 wt. ppm Na is often found in Mg alloys. Besides originating from the industrial production process, Na can be introduced in laboratory experiments from alumina crucibles by the reaction between the molten Al-Mg alloys and the Na2O impurity in the alumina crucible. The trace element K plays a similar role in Al alloys although it is seldom discussed. No systematic theoretic research has been carried out to investigate the behavior of these impurities during the processing of aluminum alloys. The thermodynamic description of the Al-Ca-K-Li-Mg-Na system is needed to understand the effects of Ca, K, Li and Na on phase stability

  7. The effects of organic solvents on the folding pathway and associated thermodynamics of proteins: a microscopic view.

    Science.gov (United States)

    Yu, Yuqi; Wang, Jinan; Shao, Qiang; Shi, Jiye; Zhu, Weiliang

    2016-01-18

    Protein folding is subject to the effects of solvation environment. A variety of organic solvents are used as additives for in vitro refolding of denatured proteins. Examination of the solvent effects on protein folding could be of fundamental importance to understand the molecular interactions in determining protein structure. This article investigated the folding of α-helix and β-hairpin structures in water and the solutions of two representative refolding additives (methanol (MeOH) and 1-Ethyl-3-methylimidazolium chloride (EMIM-Cl) ionic liquid) using REMD simulations. For both α-helix and β-hairpin in MeOH/water solution or α-helix in EMIM-Cl/water solution, the transient structures along the folding pathway are consistent with the counterparts in water but the relative statistical weights are changed, leading to the decrease in the overall folding free energy barrier. Accordingly, MeOH promotes the folding of both α-helix and β-hairpin but EMIM-Cl ionic liquid only promotes the folding of α-helix, consistent with experimental observations. The present study reveals for the first time the trivial effects on folding route but significant effects on folding thermodynamics from MeOH and EMIM-Cl, explaining the function of protein refolding additives and testifying the validity of the folding mechanism revealed by in vitro protein folding study using refolding additives.

  8. Thermodynamic tables to accompany Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2011-01-01

    This booklet is provided at no extra charge with new copies of Balmer's Modern Engineering Thermodynamics. It contains two appendices. Appendix C contains 40 thermodynamic tables, and Appendix D consists of 6 thermodynamic charts. These charts and tables are provided in a separate booklet to give instructors the flexibility of allowing students to bring the tables into exams. The booklet may be purchased separately if needed.

  9. Poincare-Birkhoff-Witt theorems and generalized Casimir invariants for some infinite-dimensional Lie groups: II

    International Nuclear Information System (INIS)

    Ton-That, Tuong

    2005-01-01

    In a previous paper we gave a generalization of the notion of Casimir invariant differential operators for the infinite-dimensional Lie groups GL ∞ (C) (or equivalently, for its Lie algebra gj ∞ (C)). In this paper we give a generalization of the Casimir invariant differential operators for a class of infinite-dimensional Lie groups (or equivalently, for their Lie algebras) which contains the infinite-dimensional complex classical groups. These infinite-dimensional Lie groups, and their Lie algebras, are inductive limits of finite-dimensional Lie groups, and their Lie algebras, with some additional properties. These groups or their Lie algebras act via the generalized adjoint representations on projective limits of certain chains of vector spaces of universal enveloping algebras. Then the generalized Casimir operators are the invariants of the generalized adjoint representations. In order to be able to explicitly compute the Casimir operators one needs a basis for the universal enveloping algebra of a Lie algebra. The Poincare-Birkhoff-Witt (PBW) theorem gives an explicit construction of such a basis. Thus in the first part of this paper we give a generalization of the PBW theorem for inductive limits of Lie algebras. In the last part of this paper a generalization of the very important theorem in representation theory, namely the Chevalley-Racah theorem, is also discussed

  10. Pull-in voltage of microswitch rough plates in the presence of electromagnetic and acoustic Casimir forces

    NARCIS (Netherlands)

    Palasantzas, George

    2007-01-01

    In this work, we investigate the combined influence of electromagnetic and acoustic Casimir forces on the pull-in voltage of microswitches with self-affine rough plates. It is shown that for plate separations within the micron range the acoustic term arising from pressure fluctuations can influence

  11. Casimir energies in M4≥/sup N/ for even N. Green's-function and zeta-function techniques

    International Nuclear Information System (INIS)

    Kantowski, R.; Milton, K.A.

    1987-01-01

    The Green's-function technique developed in the first paper in this series is generalized to apply to massive scalar, vector, second-order tensor, and Dirac spinor fields, as a preliminary to a full graviton calculation. The Casimir energies are of the form u/sub Casimir/ = (1/a 4 )[α/sub N/lna/b)+β/sub N/], where N (even) is the dimension of the internal sphere, a is its radius, and b/sup -1/ is an ultraviolet cutoff (presumably at the Planck scale). The coefficient of the divergent logarithm, α/sub N/, is unambiguously obtained for each field considered. The Green's-function technique gives rise to no difficulties in the evaluation of imaginary-mass-mode contributions to the Casimir energy. In addition, a new, simplified zeta-function technique is presented which is very easily implemented by symbolic programs, and which, of course, gives the same results. An error in a previous zeta-function calculation of the Casimir energy for even N is pointed out

  12. Plasma versus Drude Modeling of the Casimir Force: Beyond the Proximity Force Approximation

    Science.gov (United States)

    Hartmann, Michael; Ingold, Gert-Ludwig; Neto, Paulo A. Maia

    2017-07-01

    We calculate the Casimir force and its gradient between a spherical and a planar gold surface. Significant numerical improvements allow us to extend the range of accessible parameters into the experimental regime. We compare our numerically exact results with those obtained within the proximity force approximation (PFA) employed in the analysis of all Casimir force experiments reported in the literature so far. Special attention is paid to the difference between the Drude model and the dissipationless plasma model at zero frequency. It is found that the correction to PFA is too small to explain the discrepancy between the experimental data and the PFA result based on the Drude model. However, it turns out that for the plasma model, the corrections to PFA lie well outside the experimental bound obtained by probing the variation of the force gradient with the sphere radius [D. E. Krause et al., Phys. Rev. Lett. 98, 050403 (2007), 10.1103/PhysRevLett.98.050403]. The corresponding corrections based on the Drude model are significantly smaller but still in violation of the experimental bound for small distances between plane and sphere.

  13. On electrostatic and Casimir force measurements between conducting surfaces in a sphere-plane configuration

    International Nuclear Information System (INIS)

    Kim, W J; Brown-Hayes, M; Brownell, J H; Dalvit, D A R; Onofrio, R

    2009-01-01

    We report on measurements of forces acting between two conducting surfaces in a spherical-plane configuration in the 35 nm-1 μm separation range. The measurements are obtained by performing electrostatic calibrations followed by a residuals analysis after subtracting the electrostatic-dependent component. We find in all runs optimal fitting of the calibrations for exponents smaller than the one predicted by electrostatics for an ideal sphere-plane geometry. We also find that the external bias potential necessary to minimize the electrostatic contribution depends on the sphere-plane distance. In spite of these anomalies, by implementing a parametrization-dependent subtraction of the electrostatic contribution we have found evidence for short-distance attractive forces of magnitude comparable to the expected Casimir-Lifshitz force. We finally discuss the relevance of our findings in the more general context of Casimir-Lifshitz force measurements, with particular regard to the critical issues of the electrical and geometrical characterization of the involved surfaces.

  14. Energy-exergy analysis of compressor pressure ratio effects on thermodynamic performance of ammonia water combined cycle

    International Nuclear Information System (INIS)

    Mohtaram, Soheil; Chen, Wen; Zargar, T.; Lin, Ji

    2017-01-01

    Highlights: • Energy exergy analysis is conducted to find the effects of RP. • EES software is utilized to perform the detailed energy-exergy analyses. • Effects investigated through energy and exergy destruction, enthalpy, yields, etc. • Detailed results are reported showing the performance of gas and combined cycle. - Abstract: The purpose of this study is to investigate the effect of compressor pressure ratio (RP) on the thermodynamic performances of ammonia-water combined cycle through energy and exergy destruction, enthalpy temperature, yields, and flow velocity. The energy-exergy analysis is conducted on the ammonia water combined cycle and the Rankine cycle, respectively. Engineering Equation Solver (EES) software is utilized to perform the detailed analyses. Values and ratios regarding heat drop and exergy loss are presented in separate tables for different equipments. The results obtained by the energy-exergy analysis indicate that by increasing the pressure ratio compressor, exergy destruction of high-pressure compressors, intercooler, gas turbine and the special produced work of gas turbine cycle constantly increase and the exergy destruction of recuperator, in contrast, decreases continuously. In addition, the least amount of input fuel into the combined cycle is observed when the pressure ratio is no less than 7.5. Subsequently, the efficiency of the cycle in gas turbine and combined cycle is reduced because the fuel input into the combined cycle is increased.

  15. Thermodynamic Investigation of the Effect of Interface Curvature on the Solid-Liquid Equilibrium and Eutectic Point of Binary Mixtures.

    Science.gov (United States)

    Liu, Fanghui; Zargarzadeh, Leila; Chung, Hyun-Joong; Elliott, Janet A W

    2017-10-12

    Thermodynamic phase behavior is affected by curved interfaces in micro- and nanoscale systems. For example, capillary freezing point depression is associated with the pressure difference between the solid and liquid phases caused by interface curvature. In this study, the thermal, mechanical, and chemical equilibrium conditions are derived for binary solid-liquid equilibrium with a curved solid-liquid interface due to confinement in a capillary. This derivation shows the equivalence of the most general forms of the Gibbs-Thomson and Ostwald-Freundlich equations. As an example, the effect of curvature on solid-liquid equilibrium is explained quantitatively for the water/glycerol system. Considering the effect of a curved solid-liquid interface, a complete solid-liquid phase diagram is developed over a range of concentrations for the water/glycerol system (including the freezing of pure water or precipitation of pure glycerol depending on the concentration of the solution). This phase diagram is compared with the traditional phase diagram in which the assumption of a flat solid-liquid interface is made. We show the extent to which nanoscale interface curvature can affect the composition-dependent freezing and precipitating processes, as well as the change in the eutectic point temperature and concentration with interface curvature. Understanding the effect of curvature on solid-liquid equilibrium in nanoscale capillaries has applications in the food industry, soil science, cryobiology, nanoporous materials, and various nanoscience fields.

  16. Modelling the effect of acoustic waves on the thermodynamics and kinetics of phase transformation in a solution: Including mass transportation

    Science.gov (United States)

    Haqshenas, S. R.; Ford, I. J.; Saffari, N.

    2018-01-01

    Effects of acoustic waves on a phase transformation in a metastable phase were investigated in our previous work [S. R. Haqshenas, I. J. Ford, and N. Saffari, "Modelling the effect of acoustic waves on nucleation," J. Chem. Phys. 145, 024315 (2016)]. We developed a non-equimolar dividing surface cluster model and employed it to determine the thermodynamics and kinetics of crystallisation induced by an acoustic field in a mass-conserved system. In the present work, we developed a master equation based on a hybrid Szilard-Fokker-Planck model, which accounts for mass transportation due to acoustic waves. This model can determine the kinetics of nucleation and the early stage of growth of clusters including the Ostwald ripening phenomenon. It was solved numerically to calculate the kinetics of an isothermal sonocrystallisation process in a system with mass transportation. The simulation results show that the effect of mass transportation for different excitations depends on the waveform as well as the imposed boundary conditions and tends to be noticeable in the case of shock waves. The derivations are generic and can be used with any acoustic source and waveform.

  17. Classical and statistical thermodynamics

    CERN Document Server

    Rizk, Hanna A

    2016-01-01

    This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.

  18. Time and Thermodynamics

    CERN Document Server

    Kirkland, Kyle

    2007-01-01

    Temperature is vital to the health and welfare of all living beings, and Earth's temperature varies considerably from place to place. Early humans could only live in warm areas such as the tropics. Although modern humans have the technology to keep their houses and offices warm even in cold environments, the growth and development of civilization has created unintentional effects. Cities are warmer than their surrounding regions, and on a global scale, Earth is experiencing rising temperatures. Thus, the science of thermodynamics offers an important tool to study these effects. "Time and

  19. Tritium aging effect on thermodynamic functions of LaNi4.9Al0.1

    International Nuclear Information System (INIS)

    Xiong Yifu; Li Rong; Luo Deli

    2001-01-01

    The influence of tritium aging on thermodynamic function of LaNi 4.9 Al 0.1 is measured. The results show that plateau pressures and reversible hydrogen capacity decrease with aging time, thermodynamics parameters such as ΔH, ΔS and plateau slopes of the P-T curve increase with aging time, tritium heel formed after 1120 d tritium exposure

  20. Thermodynamic mixing effects of liquid ternary Au–Fe–Pd alloys by computer-aided Knudsen cell mass spectrometry

    International Nuclear Information System (INIS)

    Tomiska, Josef

    2012-01-01

    Highlights: ► Thermodynamic mixing behavior of liquid Au–Fe–Pd alloys over the whole range of composition. ► Experimental investigations by means of the computer-aided Knudsen cell mass spectrometry. ► Algebraic representation of the molar excess properties by TAP series concept. ► The corresponding TAP parameters are presented. ► The values of all molar excess functions, and thermodynamic activities at 1850 K are given. - Abstract: Thermodynamic investigations on liquid ternary Au–Fe–Pd alloys have been performed by means of the computer-aided Knudsen cell mass spectrometry. The “Digital Intensity-Ratio” (DIR) – method has been applied for the determination of the thermodynamic mixing behaviour. The ternary thermodynamically adapted power (TAP) series concept is used for the algebraic representation of the molar excess properties. The corresponding TAP parameters, and the values of the molar excess quantities Z E (Z = Gibbs energy G, heat of mixing H, and entropy S) as well as the thermodynamic activities of all three constituents at 1850 K are presented.

  1. Thermodynamic Studies for Drug Design and Screening

    Science.gov (United States)

    Garbett, Nichola C.; Chaires, Jonathan B.

    2012-01-01

    Introduction A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. Areas covered This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 – 2011 using the Science Citation Index and PUBMED and the keywords listed below. Expert opinion The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically-driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development towards an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. PMID:22458502

  2. Thermodynamic studies for drug design and screening.

    Science.gov (United States)

    Garbett, Nichola C; Chaires, Jonathan B

    2012-04-01

    A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 - 2011 using the Science Citation Index and PUBMED and the keywords listed below. The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development toward an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in the design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. © 2012 Informa UK, Ltd.

  3. The Effect of Temperature on the Enzyme-Catalyzed Reaction: Insights from Thermodynamics

    Science.gov (United States)

    Aledo, Juan Carlos; Jimenez-Riveres, Susana; Tena, Manuel

    2010-01-01

    When teaching the effect of temperature on biochemical reactions, the problem is usually oversimplified by confining the thermal effect to the catalytic constant, which is identified with the rate constant of the elementary limiting step. Therefore, only positive values for activation energies and values greater than 1 for temperature coefficients…

  4. Thermodynamics in Einstein's thought

    International Nuclear Information System (INIS)

    Klein, M.J.

    1983-01-01

    The role of the thermodynamical approach in the Einstein's scientific work is analyzed. The Einstein's development of a notion about statistical fluctuations of thermodynamical systems that leads him to discovery of corpuscular-wave dualism is retraced

  5. Effect of High Pressure and Temperature on Structural, Thermodynamic and Thermoelectric Properties of Quaternary CoFeCrAl Alloy

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2018-03-01

    Employing first-principles based on density functional theory we have investigated the structural, magneto-electronic, thermoelectric and thermodynamic properties of quaternary Heusler alloy CoFeCrAl. Electronic band structure displays that CoFeCrAl is an indirect band gap semiconductor in spin-down state with the band gap value of 0.65 eV. Elastic constants reveal CoFeCrAl is a mechanically stable structure having a Debye temperature of 648 K along with a high melting temperature (2130 K). The thermoelectric properties in the temperature range 50-800 K have been calculated. CoFeCrAl possesses a high Seebeck coefficient of - 46 μV/K at room temperature along with the huge power factor of ˜ 4.8 (1012 μW cm-1 K-2 s-1) which maximizes the figure-of-merit up to ˜ 0.75 at 800 K temperature and suggesting CoFeCrAl as potential thermoelectric material. The effect of high pressure and high temperature on the thermal expansion, Grüneisen parameter and heat capacity were also studied by using the quasi-harmonic Debye model.

  6. Activity and Synergy Effects on a Cu/ZnO(0001) Surface Studied Using First-Principle Thermodynamics.

    Science.gov (United States)

    Xiao, Jianping; Frauenheim, Thomas

    2012-09-20

    Using first-principle thermodynamics, we have studied surface phase diagrams of Cu substitutional ZnO(0001) surfaces under industrial conditions. On the one hand, the Cu substituted on Zn sites can promote efficient formation of oxygen vacancies on the ZnO(0001) surface. It can improve the activity on the Cu/ZnO(0001) surface. On the other hand, metallic monolayers containing certain Cu and Zn atoms can be also formed, accompanied by the oxygen vacancies formation. We have further investigated CO2 adsorption and reduction on these metallic monolayers. These metallic monolayers prefer to have an intermediate binding strength with the CO2 molecule. The intermediate binding strength was expected to be optimized for subsequent CO2 reduction. We have performed further studies and demonstrated successfully the improved catalysis for the subsequent CO2 reduction on these metallic monolayers. The relevant mechanism can be interpreted with the second synergy effect. The d-band states of these metallic monolayers, supported on the ZnO(0001) surface, are tuned to shift upward, that is, more close to Fermi level. Therefore, these metallic monolayers indeed exhibit promoted catalysis, in comparison with reported metallic surfaces in the literature.

  7. Effective Remediation of Lead Ions from Aqueous Solution by Chemically Carbonized Rubber Wood Sawdust: Equilibrium, Kinetics, and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Swarup Biswas

    2015-01-01

    Full Text Available Rubber wood sawdust was carbonized into charcoal by chemical treatment which was used for removal of lead ion from aqueous solution. The work involves batch experiments to investigate the pH effect, initial concentration of adsorbate, contact time, and adsorbent dose. Experimental data confirmed that the adsorption capacities increased with increasing inlet concentration and bed height and decreased with increasing flow rate. Adsorption results showed a maximum adsorption capacity of 37 mg/g at 308 K. Langmuir, Freundlich, and Temkin model adsorption isotherm models were applied to analyze the process where Temkin was found as a best fitted model for present study. Simultaneously kinetics of adsorption like pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were investigated. Thermodynamic parameters were used to analyze the adsorption experiment. Fourier transform infrared spectroscopy, scanning electron microscope, and energy dispersive X-ray spectroscopy confirmed the batch adsorption of lead ion onto chemically carbonized rubber wood sawdust.

  8. Effect of backbone chemistry on hybridization thermodynamics of oligonucleic acids: a coarse-grained molecular dynamics simulation study.

    Science.gov (United States)

    Ghobadi, Ahmadreza F; Jayaraman, Arthi

    2016-02-28

    In this paper we study how varying oligonucleic acid backbone chemistry affects the hybridization/melting thermodynamics of oligonucleic acids. We first describe the coarse-grained (CG) model with tunable parameters that we developed to enable the study of both naturally occurring oligonucleic acids, such as DNA, and their chemically-modified analogues, such as peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). The DNA melting curves obtained using such a CG model and molecular dynamics simulations in an implicit solvent and with explicit ions match with the melting curves obtained using the empirical nearest-neighbor models. We use these CG simulations to then elucidate the effect of backbone flexibility, charge, and nucleobase spacing along the backbone on the melting curves, potential energy and conformational entropy change upon hybridization and base-pair hydrogen bond residence time. We find that increasing backbone flexibility decreases duplex thermal stability and melting temperature mainly due to increased conformational entropy loss upon hybridization. Removing charges from the backbone enhances duplex thermal stability due to the elimination of electrostatic repulsion and as a result a larger energetic gain upon hybridization. Lastly, increasing nucleobase spacing decreases duplex thermal stability due to decreasing stacking interactions that are important for duplex stability.

  9. Effects of temperature and pressure on thermodynamic properties of Cd0.50 Zn0.50 Se alloy

    Science.gov (United States)

    Aarifeen, Najm ul; Afaq, A.

    2017-09-01

    Thermodynamic properties of \\text{C}{{\\text{d}}0.50} \\text{Z}{{\\text{n}}0.50} Se alloy are studied using quasi harmonic model for pressure range 0-10 GPa and temperature range 0-1000 K. The structural optimization is obtained by self consistent field calculations and full-potential linear muffin-tin orbital method with GGA+U as an exchange correlation functional where U=2.3427 eV is the hubbard potential. The effects of temperature and pressure on the bulk modulus, Helmholtz free energy, internal energy, entropy, Debye temperature, Grüneisen parameter, thermal expansion coefficient and heat capacities of the material are observed and discussed. The bulk modulus, Helmholtz free energy and Debye temperature are found to decrease with increasing temperature while there is an increasing behavior when the pressure rises. Whereas internal energy has increasing trend with rises in temperature and it almost remains insensitive to pressure. The entropy of the system increases (decreases) with a rise of pressure (temperature).

  10. Breadnut peel as a highly effective low-cost biosorbent for methylene blue: Equilibrium, thermodynamic and kinetic studies

    Directory of Open Access Journals (Sweden)

    Linda B.L. Lim

    2017-05-01

    Full Text Available This work reports the potential use of peel of breadnut, Artocarpus camansi, as an effective low-cost biosorbent for the removal of methylene blue (MB. Oven dried A. camansi peel (ACP, which had a point of zero charge at pH = 4.8, showed maximum biosorption capacity which was far superior to most literature reported fruit biomasses, including samples that have been activated. Isotherm studies on biosorption of MB onto ACP gave a maximum biosorption capacity of 409 mg g−1. The Langmuir model was found to give the best fit among various isotherm models investigated and error analyses performed. Kinetics studies were fast with 50% dye being removed in less than 8 min from a 50 mg L−1 dye solution and further, kinetics followed the pseudo second order. Thermodynamic studies indicated that the biosorption process was both spontaneous and exothermic. Fourier transform infrared (FT-IR of ACP before and after MB adsorption was investigated. It can be concluded that oven dried breadnut peel is a highly promising low-cost biosorbent with great potential for the removal of MB.

  11. Composition effects on chemical durability and viscosity of nuclear waste glasses - systematic studies and structural thermodynamic models

    International Nuclear Information System (INIS)

    Feng, X.

    1988-01-01

    Two of the primary criteria for the acceptability of nuclear waste glasses are their durability, i.e. chemical resistance to aqueous attack for 10 4 to 10 5 years, and processability, which requires their viscosity at the desired melt temperature to be sufficiently low. Chapter 3 presents the results of systematic composition variation studies around the preliminary reference glass composition WV205 and an atomistic interpretation of the effects of individual oxides. Chapter 4 is concerned with modifications of the Jantzen-Plodinec hydration model which takes into account formation of complex aluminosilicate compounds in the glass. Chapter 5 is devoted to the development and validation of the structural-thermodynamic model for both durability and viscosity. This model assumes the strength of bonds between atoms to be the controlling factor in the composition dependence of these glass properties. The binding strengths are derived from the known heats of formation and the structural roles of constituent oxides. Since the coordination state of various oxides in the glass is temperature dependent and cation size has opposite effects on the two properties, the correlation between melt viscosity and rate of corrosion at low temperature is not simply linear. Chapter 6 surveys the effects of aqueous phase composition on the leach behavior of glasses. These studies provide a comprehensive view of the effects of both glass composition and leachant composition on leaching. The models developed correlate both durability and viscosity with glass composition. A major implication is that these findings can be used in the systematic optimization of the properties of complex oxide glasses

  12. Thermodynamic analysis of feed water pre-heaters in multiple effect distillation systems

    International Nuclear Information System (INIS)

    Kouhikamali, R.

    2013-01-01

    The purpose of this article is to investigate the influence of using feed water pre-heaters in multiple effect distillation systems with thermal vapor compression (MED-TVC). By using these heat exchangers, temperature difference between feed water and steam in each effect would be constant. In this way, the required energy for preheating the feed water will decrease and the feed water evaporates as soon as it enters the effect. In this article, it is shown preheating the feed water has a great influence on decreasing the energy consumption of MED-TVC distillation systems. The influence of different configurations of feed water preheating on energy consumption of MED-TVC process is investigated as well. Results show that the energy consumption will be minimum if the pre-heaters increase the feed water temperature in such a way that their temperature difference is equal to that of effects. - Highlights: ► A modified process design of MED-TVC packages has been presented in this article. ► Preheating the feed water results in a remarkable decrease in energy consumption. ► Using feed pre-heaters for warmer effects have more effect on increasing in GOR.

  13. Microbial diversity arising from thermodynamic constraints

    Science.gov (United States)

    Großkopf, Tobias; Soyer, Orkun S

    2016-01-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments. PMID:27035705

  14. Microbial diversity arising from thermodynamic constraints.

    Science.gov (United States)

    Großkopf, Tobias; Soyer, Orkun S

    2016-11-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments.

  15. Effectiveness of cooling production with a combined power and cooling thermodynamic cycle

    International Nuclear Information System (INIS)

    Martin, C.; Goswami, D.Y.

    2006-01-01

    The combined production of power and cooling with an ammonia-water based cycle is under investigation. Cooling is produced by expanding an ammonia-rich vapor in an expander to sub-ambient temperatures and it is shown that a compromise exists between cooling and work production. A new parameter, termed the effective COP, is used to relate the gain in cooling to the compromise in work production. When the parameter is used to optimize conditions for the rectifier, the effective COP values are good, having values of up to 5. However, when combined operation is compared to work-optimized results, the maximum effective COP values are near 1.1. This implies that per unit of cooling production, nearly equal amounts of work are compromised for combined operation

  16. Fermions on the low-buckled honey-comb structured lattice plane and classical Casimir-Polder force

    Science.gov (United States)

    Goswami, Partha

    2016-05-01

    We start with the well-known expression for the vacuum polarization and suitably modify it for 2+1-dimensional spin-orbit coupled (SOC) fermions on the low-buckled honey-comb structured lattice plane described by the low-energy Liu-Yao-Feng-Ezawa (LYFE) model Hamiltonian involving the Dirac matrices in the chiral representation obeying the Clifford algebra. The silicene and germanene fit this description suitably. They have the Dirac cones similar to those of graphene and SOC is much stronger. The system could be normal or ferromagnetic in nature. The silicene turns into the latter type if there is exchange field arising due to the proximity coupling to a ferromagnet (FM) such as depositing Fe atoms to the silicene surface. For the silicene, we find that the many-body effects considerably change the bare Coulomb potential by way of the dependence of the Coulomb propagator on the real-spin, iso-spin and the potential due to an electric field applied perpendicular to the silicene plane. The computation aspect of the Casimir-Polder force (CPF) needs to be investigated in this paper. An important quantity in this process is the dielectric response function (DRF) of the material. The plasmon branch was obtained by finding the zeros of DRF in the long-wavelength limit. This leads to the plasmon frequencies. We find that the collective charge excitations at zero doping, i.e., intrinsic plasmons, in this system, are absent in the Dirac limit. The valley-spin-split intrinsic plasmons, however, come into being in the case of the massive Dirac particles with characteristic frequency close to 10 THz. Our scheme to calculate the Casimir-Polder interaction (CPI) of a micro-particle with a sheet involves replacing the dielectric constant of the sample in the CPI expression obtained on the basis of the Lifshitz theory by the static DRF obtained using the expressions for the polarization function we started with. Though the approach replaces a macroscopic constant by a microscopic

  17. Effects of pH and ionic strength on the thermodynamics of human serum albumin-photosensitizer binding

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Cecil L., E-mail: jonesce@savannahstate.edu [Department of Natural Sciences, Chemistry Program, Savannah State University, Savannah, GA 31404 (United States); Dickson, TiReJe; Hayes, Ronald; Thomas, Lana [Department of Natural Sciences, Chemistry Program, Savannah State University, Savannah, GA 31404 (United States)

    2012-10-10

    Highlights: Black-Right-Pointing-Pointer The pH dependence of entropy and enthalpy changes was determined for zinc phthalocyanine tetrasulfonic acid, ZnPcS{sub 4} binding to human serum albumin, HSA. Black-Right-Pointing-Pointer The ionic strength dependence of entropy and enthalpy changes was determined for ZnPcS{sub 4} acid binding to HSA. Black-Right-Pointing-Pointer The primary driving force governing the interaction between ZnPcS{sub 4} and HSA over the range of pH and ionic strength was solution dynamics. Black-Right-Pointing-Pointer The interplay between entropy and enthalpy changes was demonstrated. - Abstract: Fluorescence spectroscopy was used to measure the effects of pH and ionic strength on thermodynamic parameters governing the interaction of human serum albumin with zinc phthalocyanine tetrasulfonic acid. Fluorescence emission of zinc phthalocyanine increases at 686 nm with increasing concentrations of the protein. The non-linear correlation between protein concentration and emission of the photosensitizer was fitted using Chipman's analysis to calculate the binding affinities. The standard enthalpy and entropy changes were estimated from van't Hoff analysis of data that were acquired from temperature ramping studies. Results show that reaction is primarily driven by solution dynamics and that the change in enthalpy for the system becomes increasingly unfavorable with increasing pH and ionic strength. The effect of ionic strength on the entropy change for binding is shown to be significantly greater than the effects of pH. The interplay between entropy and enthalpy changes is demonstrated.

  18. First principle investigation of the linker length effects on the thermodynamics of divalent pseudorotaxanes.

    Science.gov (United States)

    Achazi, Andreas J; Mollenhauer, Doreen; Paulus, Beate

    2015-01-01

    The Gibbs energies of association (Gibbs free (binding) energies) for divalent crown-8/ammonium pseudorotaxanes are determined by investigating the influence of different linkers onto the binding. Calculations are performed with density functional theory including dispersion corrections. The translational, rotational and vibrational contributions are taken into account and solvation effects including counter ions are investigated by applying the COSMO-RS method, which is based on a continuum solvation model. The calculated energies agree well with the experimentally determined ones. The shortest investigated linker shows an enhanced binding strength due to electronic effects, namely the dispersion interaction between the linkers from the guest and the host. For the longer linkers this ideal packing is not possible due to steric hindrance.

  19. Introduction to applied thermodynamics

    CERN Document Server

    Helsdon, R M; Walker, G E

    1965-01-01

    Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o

  20. Boron effect on the thermodynamic properties of EhI703 steel

    International Nuclear Information System (INIS)

    Belyakova, P.E.; Korytina, S.F.; Nejmark, B.E.

    1976-01-01

    A reliable determination of boron effect on the physical properties of steel grade EI 703 dictated experimental studies of the real calorific capacity csub(p), thermal conduction lambda, resistivity π, modulus of normal elastisity E, internal friction delta, thermal expansion Δ 1/1, together with the calculation of the mean calorific capacity csub(p20-t), enthalpy Hsub(20-t), Lorentz's number L, real and mean coefficients of linear expansion (α and αsub(20-t), respectively ), and also temperature conductivity a in the interval from 20 to 950 deg C

  1. Interferometric vs Spectral IASI Radiances: Effective Data-Reduction Approaches for the Satellite Sounding of Atmospheric Thermodynamical Parameters

    Directory of Open Access Journals (Sweden)

    Giuseppe Grieco

    2010-09-01

    Full Text Available Abstract: Two data-reduction approaches for the Infrared Atmospheric Sounder Interferometer satellite instrument are discussed and compared. The approaches are intended for the purpose of devising and implementing fast near real time retrievals of atmospheric thermodynamical parameters. One approach is based on the usual selection of sparse channels or portions of the spectrum. This approach may preserve the spectral resolution, but at the expense of the spectral coverage. The second approach considers a suitable truncation of the interferogram (the Fourier transform of the spectrum at points below the nominal maximum optical path difference. This second approach is consistent with the Shannon-Whittaker sampling theorem, preserves the full spectral coverage, but at the expense of the spectral resolution. While the first data-reduction acts within the spectraldomain, the second can be performed within the interferogram domain and without any specific need to go back to the spectral domain for the purpose of retrieval. To assess the impact of these two different data-reduction strategies on retrieval of atmospheric parameters, we have used a statistical retrieval algorithm for skin temperature, temperature, water vapour and ozone profiles. The use of this retrieval algorithm is mostly intended for illustrative purposes and the user could choose a different inverse strategy. In fact, the interferogram-based data-reduction strategy is generic and independent of any inverse algorithm. It will be also shown that this strategy yields subset of interferometric radiances, which are less sensitive to potential interfering effects such as those possibly introduced by the day-night cycle (e.g., the solar component, and spectroscopic effect induced by sun energy and unknown trace gases variability.

  2. Effects of atmospheric dusty plasma generated by natural radioactivity on the atmosphere thermodynamics and electrodynamics

    Science.gov (United States)

    Pulinets, Sergey; Ouzounov, Dimitar

    Natural radioactivity of the Earth through ionization creates a large number of new ions in the boundary layer of atmosphere from the ground surface up to near 1 km altitude. In specific conditions the ion concentration can reach 10 (6) -10 (7) cm (-3) . This sharp increase of ion concentration leads to the process of so called Ion Induced Nucleation (IIN) when due to ion's hydration the large complex ion clusters are formed with the very low recombination rate, i.e. we deal with formation of dusty atmospheric plasma in the boundary layer. Our theoretical estimates and experimental results of ground based and remote sensing satellite monitoring revealed two main consequences of IIN: release of large amount of the latent heat leading to the changes of air temperature and humidity, and sharp changes of air conductivity in the vertical column of the Global Electric Circuit (GEC) leading to formation of large scale irregularities of electron concentration in the ionosphere. The mechanism has universal character and its effects are observed in different natural and anthropogenic disasters like hurricanes, earthquakes, volcano eruption, artificial ionization, emergencies at atomic power plants, etc. Experimental evidences for many cases demonstrating effects of IIN are presented.

  3. Computer simulations of ionenes, hydrophobic ions with unusual solution thermodynamic properties. The ion-specific effects.

    Science.gov (United States)

    Druchok, M; Vlachy, V; Dill, K A

    2009-10-29

    Ionenes are alkyl polymer chains in which different numbers of methylene groups separate quaternary ammonium groups. They are ideal molecules for studying the balance between hydrophobic and charge effects in water. Implicit-solvent models predict osmotic coefficients that are too high (too low water vapor pressures), compared to experiments. We present a molecular dynamics simulation, in explicit SPC/E water, of a solution of aliphatic 6,6 ionene oligocations with sodium co-ions and fluorine, chlorine, bromine, or iodine counterions. In the 6,6 ionene solution, the latter polyion has more hydrophobic groups than its 3,3 counterpart, the waters are displaced more from the oligoion surface. Also, we find that the large ions, such as iodine, act like hydrophobic groups insofar as they bind to ionene's methylene groups. The water-mediated attraction between fluorine ions is enhanced in presence of weakly charged 6,6 ionene molecules. This effect may additionally reduce the osmotic pressure in such systems. Our results can explain some experimental trends in ionene solutions and weakly charged polyelectrolytes in general.

  4. Gauge dynamics in the PNJL model: Color neutrality and Casimir scaling

    International Nuclear Information System (INIS)

    Abuki, Hiroaki; Fukushima, Kenji

    2009-01-01

    We discuss a gauge-invariant prescription to take the mean-field approximation self-consistently in the PNJL model (Nambu-Jona-Lasinio model with the Polyakov loop). We first address the problem of non-vanishing color density in normal quark matter, which is an artifact arising from gauge-fixed treatment of the Polyakov loop mean-fields. We then confirm that the gauge average incorporated in our prescription resolves this problem and ensures color neutrality. We point out that the proposed method has an advantage in computing the expectation value of any function of the Polyakov loop matrix. We discuss the Casimir scaling as an immediate application of the method.

  5. Dynamics of the Vacuum and Casimir Analogs to the Hydrogen Atom

    Science.gov (United States)

    White, Harold; Vera, Jerry; Bailey, Paul; March, Paul; Lawrence, Tim; Sylvester, Andre; Brady, David

    2015-01-01

    This paper will discuss the current viewpoint of the vacuum state and explore the idea of a "natural" vacuum as opposed to immutable, non-degradable vacuum. This concept will be explored for all primary quantum numbers to show consistency with observation at the level of Bohr theory. A comparison with the Casimir force per unit area will be made, and an explicit function for the spatial variation of the vacuum density around the atomic nucleus will be derived. This explicit function will be numerically modeled using the industry multi-physics tool, COMSOL(trademark), and the eigenfrequencies for the n = 1 to n = 7 states will be found and compared to expectation.

  6. Effects of Trehalose on Thermodynamic Properties of Alpha-synuclein Revealed through Synchrotron Radiation Circular Dichroism

    Directory of Open Access Journals (Sweden)

    Paolo Ruzza

    2015-05-01

    Full Text Available Many neurodegenerative diseases, including Huntington’s, Alzheimer’s and Parkinson’s diseases, are characterized by protein misfolding and aggregation. The capability of trehalose to interfere with protein misfolding and aggregation has been recently evaluated by several research groups. In the present work, we studied, by means of synchrotron radiation circular dichroism (SRCD spectroscopy, the dose-effect of trehalose on α-synuclein conformation and/or stability to probe the capability of this osmolyte to interfere with α-synuclein’s aggregation. Our study indicated that a low trehalose concentration stabilized α-synuclein folding much better than at high concentration by blocking in vitro α-synuclein’s polymerisation. These results suggested that trehalose could be associated with other drugs leading to a new approach for treating Parkinson’s and other brain-related diseases.

  7. Effects of Vacancy Cluster Defects on Electrical and Thermodynamic Properties of Silicon Crystals

    Directory of Open Access Journals (Sweden)

    Pei-Hsing Huang

    2014-01-01

    Full Text Available A first-principle plane-wave pseudopotential method based on the density function theory (DFT was employed to investigate the effects of vacancy cluster (VC defects on the band structure and thermoelectric properties of silicon (Si crystals. Simulation results showed that various VC defects changed the energy band and localized electron density distribution of Si crystals and caused the band gap to decrease with increasing VC size. The results can be ascribed to the formation of a defect level produced by the dangling bonds, floating bonds, or high-strain atoms surrounding the VC defects. The appearance of imaginary frequencies in the phonon spectrum of defective Si crystals indicates that the defect-region structure is dynamically unstable and demonstrates phase changes. The phonon dispersion relation and phonon density of state were also investigated using density functional perturbation theory. The obtained Debye temperature θD for a perfect Si crystal had a minimum value of 448 K at T = 42 K and a maximum value of 671 K at the high-temperature limit, which is consistent with the experimental results reported by Flubacher. Moreover, the Debye temperature decreased with increases in the VC size. VC defects had minimal effects on the heat capacity (Cv value when temperatures were below 150 K. As the temperature was higher than 150 K, the heat capacity gradually increased with increasing temperature until it achieved a constant value of 11.8 cal/cell·K. The heat capacity significantly decreased as the VC size increased. For a 2 × 2 × 2 superlattice Si crystal containing a hexagonal ring VC (HRVC10, the heat capacity decreased by approximately 17%.

  8. Cold modalities with different thermodynamic properties have similar effects on muscular performance and activation.

    Science.gov (United States)

    Vieira, A; Oliveira, A B; Costa, J R; Herrera, E; Salvini, T F

    2013-10-01

    Although tissue cooling is widely used in the treatment of musculoskeletal injuries there is still controversy about its effects on muscular performance. The combination of cooling and exercise justifies the study of this topic. The aim was to compare the effects of ice pack and cold-water immersion on the muscular performance parameters of plantar flexors and muscular activation of the triceps surae. 41 healthy men (mean age: 22.1 years, SD: 2.9) were randomly assigned to cooling with either ice pack (n=20) or cold-water immersion (n=21). Independent variables were cold modality (ice pack or cold-water immersion) and pre- and post-cooling measurement time. Dependent variables were muscular performance (measured during isometric and concentric contractions of plantar flexors) and electromyography parameters of the triceps surae (median frequency and root mean square amplitude). Dependent-samples t-tests were used to compare pre- and post-cooling data and independent-samples t-tests were used to compare the difference (pre- and post-cooling) between groups. Ice pack increased isometric peak torque (mean: 9.00 Nm, P=0.01) and both cold modalities reduced muscular activation in triceps surae (Pimmersion and ice pack reduced peak torque and total work during dynamic isokinetic contraction at both velocities (mean: -11,00 Nm, Pimmersion decrease concentric muscular performance. These results indicate that these cooling methods should be chosen with caution, considering the type of task required during training or rehabilitation. New studies investigating other muscle groups and joints are necessary. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Rational extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1998-01-01

    Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high­ frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...

  10. Coherence and measurement in quantum thermodynamics.

    Science.gov (United States)

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  11. A thermodynamics based damage mechanics framework for fatigue analysis of microelectronics solder joints with size effects

    Science.gov (United States)

    Gomez, Juan

    a structure whose size is close to a 100mum or larger several and relatively simple to implement constitutive models are now available in the literature, and it can be generally stated that the level of understanding has reached a mature level. However, the same problem when the size of the structure is below this characteristic dimension has not been studied before. In other words, the available constitutive models completely neglect the incidence of size effects when evaluating the true behavior of the material at small scales. (Abstract shortened by UMI.)

  12. Airborne remote sensing of cloud optical thickness, effective radius, thermodynamic phase and cloud droplet number concentration with SMART-HALO.

    Science.gov (United States)

    Wolf, Kevin; Ehrlich, André; Wendisch, Manfred; Crewell, Susanne; Jacob, Marek

    2017-04-01

    Solar spectral measurements of upward and downward irradiance and upward radiance in the wavelength range from 0.3 µm to 2.2 µm by the Spectral Modular Airborne Radiation measurement system (SMART) on board the High Altitude and Long Range Research Aircraft (HALO) were performed during two campaigns dedicated to investigate cloud properties in different cloud regimes. During NARVAL-II shallow convection in the trade-wind region and deep convection along the ITCZ were investigated over the Atlantic Ocean in August 2016. The NAWDEX campaign focused on clouds along warm-conveyor belts in the North Atlantic and the Norwegian Sea in September and October 2016. Applying an iterative retrieval the Liquid Water Path was derived from measurements of the reflected radiation from cloud top at a wavelength of 0.8 µm sensitive to the optical thickness and 1.2 µm, 1.6 µm, and 2.1 µm sensitive to the effective radius with different vertical weighting functions. Using ratios of upward radiance instead of absolute values reduces retrieval uncertainties noticeably. The thermodynamic phase at cloud top was determined by measuring the spectral slopes in the wavelength range between 1.0 µm and 2.2 µm. The statistical cloud situation / frequency of occurrence along the flight track was determined by a cloud discrimination scheme using the different spectral behavior of liquid water clouds and sea surface at wavelengths of 0.8 µm, 1.1 µm and 1.3 µm. All derived cloud properties were used to investigate the spectral cloud top albedo measured simultaneously by SMART-HALO. A statistical analysis of how strong the different cloud properties affect the cloud albedo will be presented. In conjunction with measurements of the Liquid Water Path by the HALO Microwave Package (HAMP) a first estimate of the cloud droplet number concentration for selected flight sections over non-precipitating liquid trade-wind cumulus was achieved.

  13. Anomalous Statistics of Bose-Einstein Condensate in an Interacting Gas: An Effect of the Trap’s Form and Boundary Conditions in the Thermodynamic Limit

    Directory of Open Access Journals (Sweden)

    Sergey Tarasov

    2018-02-01

    Full Text Available We analytically calculate the statistics of Bose-Einstein condensate (BEC fluctuations in an interacting gas trapped in a three-dimensional cubic or rectangular box with the Dirichlet, fused or periodic boundary conditions within the mean-field Bogoliubov and Thomas-Fermi approximations. We study a mesoscopic system of a finite number of trapped particles and its thermodynamic limit. We find that the BEC fluctuations, first, are anomalously large and non-Gaussian and, second, depend on the trap’s form and boundary conditions. Remarkably, these effects persist with increasing interparticle interaction and even in the thermodynamic limit—only the mean BEC occupation, not BEC fluctuations, becomes independent on the trap’s form and boundary conditions.

  14. Applied Thermodynamics: Grain Boundary Segregation

    Directory of Open Access Journals (Sweden)

    Pavel Lejček

    2014-03-01

    Full Text Available Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary segregation, their dependence on volume solid solubility, mutual solute–solute interaction and pressure effect in ferrous alloys is demonstrated.

  15. Thermodynamics of Dipolar Chain Systems

    DEFF Research Database (Denmark)

    R. Armstrong, J.; Zinner, Nikolaj Thomas; V. Fedorov, D.

    2012-01-01

    The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects...... numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments....

  16. A density functional reactivity theory (DFRT) based approach to understand the effect of symmetry of fullerenes on the kinetic, thermodynamic and structural aspects of carbon NanoBuds

    International Nuclear Information System (INIS)

    Sarmah, Amrit; Roy, Ram Kinkar

    2016-01-01

    Highlights: • Kinetic and thermodynamic aspects of the interaction between fullerene (C 32 ) and SWCNT using CDASE scheme. • Role of symmetry of fullerenes as well as the site of covalent attachment to the SWCNT in the structural stability of the NanoBud structure. • Increase in the fullerene symmetry improves the relative stability of hybrid NanoBud structure. - Abstract: In the present study, we have rationalized the effect of variation in the symmetry of relatively smaller fullerene (C 32 ) on the mode of its interaction with semi-conducting Single-Walled Carbon Nanotubes (SWCNTs) in the process of formation of stable hybrid carbon NanoBuds. Thermodynamic and kinetic parameters, along with the charge transfer values associated with the interaction between fullerene and SWCNTs, have been evaluated using an un-conventional and computationally cost–effective method based on density functional reactivity theory (DFRT). In addition to this, conventional DFT based studies are also performed to substantiate the growth of NanoBud structures formed by the interaction between fullerene and SWCNTs. The findings of the present study suggest that the kinetic, thermodynamic and structural aspects of hybrid carbon NanoBuds are significantly influenced by both the symmetry of C 32 fullerene and its site of covalent attachment to the SWCNT.

  17. Real-Gas Effects in ORC Turbine Flow Simulations : Influence of Thermodynamic Models on Flow Fields and Performance Parameters

    NARCIS (Netherlands)

    Colonna, P.; Rebay, S.; Harinck, J.; Guardone, A.

    2006-01-01

    The analysis and design of turbomachinery is usually performed by means of fluid dynamic computations employing ideal gas laws. This can lead to inaccurate redictions for Organic Rankine Cycle (ORC) turbines, which operate partly in the nonideal thermodynamic region. The objective of this work is to

  18. An introduction to equilibrium thermodynamics

    CERN Document Server

    Morrill, Bernard; Hartnett, James P; Hughes, William F

    1973-01-01

    An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a

  19. Thermodynamics for scientists and engineers

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2011-02-01

    This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.

  20. Effect of deviation from local thermodynamic equilibrium on the Goldberg-Unno method. [turbulence effects on optical density in the solar photosphere

    Science.gov (United States)

    Troyan, V. I.

    1974-01-01

    The dependence of turbulent velocity on optical depth was studied by use of the Goldberg-Unno method, with allowance made for the influence of deviation from the local thermodynamic equilibrium. It was found that allowance for deviation from local thermodynamic equilibrium displaces the curve of dependence of turbulent velocity on optical depth along two axes.

  1. Finite temperature Casimir energy in closed rectangular cavities: a rigorous derivation based on a zeta function technique

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2007-01-01

    We derive rigorously explicit formulae of the Casimir free energy at finite temperature for massless scalar field and electromagnetic field confined in a closed rectangular cavity with different boundary conditions by a zeta regularization method. We study both the low and high temperature expansions of the free energy. In each case, we write the free energy as a sum of a polynomial in temperature plus exponentially decay terms. We show that the free energy is always a decreasing function of temperature. In the cases of massless scalar field with the Dirichlet boundary condition and electromagnetic field, the zero temperature Casimir free energy might be positive. In each of these cases, there is a unique transition temperature (as a function of the side lengths of the cavity) where the Casimir energy changes from positive to negative. When the space dimension is equal to two and three, we show graphically the dependence of this transition temperature on the side lengths of the cavity. Finally we also show that we can obtain the results for a non-closed rectangular cavity by letting the size of some directions of a closed cavity go to infinity, and we find that these results agree with the usual integration prescription adopted by other authors

  2. Thermodynamics of Bioreactions.

    Science.gov (United States)

    Held, Christoph; Sadowski, Gabriele

    2016-06-07

    Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.

  3. The effect of thermodynamic properties of solvent mixtures explains the difference between methanol and ethanol in C.antarctica lipase B catalyzed alcoholysis.

    Science.gov (United States)

    Sasso, Francesco; Kulschewski, Tobias; Secundo, Francesco; Lotti, Marina; Pleiss, Jürgen

    2015-11-20

    Kinetic modelling, molecular modelling, and experimental determination of the initial reaction velocity of lipase-catalyzed alcoholysis were combined to study the effect of the alcohol substrate to catalytic activity. The model system consisted of methanol or ethanol at varying concentrations, vinyl acetate as ester substrate 15.2% (v/v), toluene as organic solvent, water at a controlled thermodynamic activity of 0.09, and C. antarctica lipase B as enzyme. For both alcohol substrates, the initial reaction velocity increased sharply at low concentrations and reached a maximum at 0.7% (v/v) for methanol and 2% (v/v) for ethanol. For higher concentrations, the reaction rate decreased to a level of 74% and 60% of the peak value, respectively, due to substrate inhibition. The concentration dependency was described by a kinetic model, including a ping-pong bi-bi mechanism and competitive inhibition by the alcohol, and confirmed previous observations that methanol is more efficiently inhibiting the enzyme than ethanol. However, if the initial reaction velocity was expressed in terms of thermodynamic activity of the two alcohol substrates, the maximum of initial reaction velocity was similar for methanol (a MeOH(max)=0.19) and ethanol (a EtOH(max)=0.21). This was confirmed by molecular modelling which resulted in similar KM (0.22 and 0.19) and Ki values (0.44 and 0.49) for methanol and ethanol, respectively, if expressed in thermodynamic activities. Thus, the experimentally observed difference between methanol and ethanol is not due to differences in interaction with the enzyme but is a consequence of the thermodynamics of the substrate-solvent mixture. For low concentrations in toluene, the activity coefficient of methanol is 40% higher than the activity coefficient of ethanol (γ MeOH=8.5, γ EtOH=6.1). Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Methods of thermodynamics

    CERN Document Server

    Reiss, Howard

    1997-01-01

    Since there is no shortage of excellent general books on elementary thermodynamics, this book takes a different approach, focusing attention on the problem areas of understanding of concept and especially on the overwhelming but usually hidden role of ""constraints"" in thermodynamics, as well as on the lucid exposition of the significance, construction, and use (in the case of arbitrary systems) of the thermodynamic potential. It will be especially useful as an auxiliary text to be used along with any standard treatment.Unlike some texts, Methods of Thermodynamics does not use statistical m

  5. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    Rand, M.H.

    1975-01-01

    A report is presented of the Fourth International Symposium on Thermodynamics of Nuclear Materials held in Vienna, 21-25 October 1974. The technological theme of the Symposium was the application of thermodynamics to the understanding of the chemistry of irradiated nuclear fuels and to safety assessments for hypothetical accident conditions in reactors. The first four sessions were devoted to these topics and they were followed by four more sessions on the more basic thermodynamics, phase diagrams and the thermodynamic properties of a wide range of nuclear materials. Sixty-seven papers were presented

  6. Effects of dynamic heterogeneity and density scaling of molecular dynamics on the relationship among thermodynamic coefficients at the glass transition

    International Nuclear Information System (INIS)

    Koperwas, K.; Grzybowski, A.; Grzybowska, K.; Wojnarowska, Z.; Paluch, M.

    2015-01-01

    In this paper, we define and experimentally verify thermodynamic characteristics of the liquid-glass transition, taking into account a kinetic origin of the process. Using the density scaling law and the four-point measure of the dynamic heterogeneity of molecular dynamics of glass forming liquids, we investigate contributions of enthalpy, temperature, and density fluctuations to spatially heterogeneous molecular dynamics at the liquid-glass transition, finding an equation for the pressure coefficient of the glass transition temperature, dTg/dp. This equation combined with our previous formula for dTg/dp, derived solely from the density scaling criterion, implies a relationship among thermodynamic coefficients at Tg. Since this relationship and both the equations for dTg/dp are very well validated using experimental data at Tg, they are promising alternatives to the classical Prigogine-Defay ratio and both the Ehrenfest equations in case of the liquid-glass transition

  7. The effects of isomerism on the vibrational spectra and thermodynamic characteristics of biuret in the gas phase

    Science.gov (United States)

    Korolevich, M. V.; Lastochkina, V. A.; Frenkel, M. L.; Kabo, G. Ya.; Zhbankov, R. G.

    1991-03-01

    A theoretical study of the IR spectra of cis- and trans-isomers of biuret, based on coupled calculations of vibrational frequencies as a valence force field approximation and of absorption band intensities by the CNDO/2 method, is reported. Calculated thermodynamic functions for biuret agreed with experimental thermochemical data. For calculating the vibrations of an isolated biuret molecule, the experimental vapour-phase IR absorption spectra were used.

  8. Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement

    OpenAIRE

    Gyftopoulos, Elias P.

    2006-01-01

    Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.

  9. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: The science of chemical thermodynamics has substantially contributed to the understanding of the many problems encountered in nuclear and reactor technology. These problems include reaction of materials with their surroundings and chemical and physical changes of fuels. Modern reactor technology, by its very nature, has offered new fields of investigations for the scientists and engineers concerned with the design of nuclear fuel elements. Moreover, thermodynamics has been vital in predicting the behaviour of new materials for fission as well as fusion reactors. In this regard, the Symposium was organized to provide a mechanism for review and discussion of recent thermodynamic investigations of nuclear materials. The Symposium was held in the Juelich Nuclear Research Centre, at the invitation of the Government of the Federal Republic of Germany. The International Atomic Energy Agency has given much attention to the thermodynamics of nuclear materials, as is evidenced by its sponsorship of four international symposia in 1962, 1965, 1967, and 1974. The first three meetings were primarily concerned with the fundamental thermodynamics of nuclear materials; as with the 1974 meeting, this last Symposium was primarily aimed at the thermodynamic behaviour of nuclear materials in actual practice, i.e., applied thermodynamics. Many advances have been made since the 1974 meeting, both in fundamental and applied thermodynamics of nuclear materials, and this meeting provided opportunities for an exchange of new information on this topic. The Symposium dealt in part with the thermodynamic analysis of nuclear materials under conditions of high temperatures and a severe radiation environment. Several sessions were devoted to the thermodynamic studies of nuclear fuels and fission and fusion reactor materials under adverse conditions. These papers and ensuing discussions provided a better understanding of the chemical behaviour of fuels and materials under these

  10. Thermodynamics of anisotropic branes

    Energy Technology Data Exchange (ETDEWEB)

    Ávila, Daniel [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Fernández, Daniel [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Patiño, Leonardo [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Trancanelli, Diego [Institute of Physics, University of São Paulo,05314-970 São Paulo (Brazil)

    2016-11-22

    We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a ‘Minkowski embedding’, in which they lie outside of the horizon, and a ‘black hole embedding’, in which they fall into the horizon. This transition depends on the black hole temperature, its degree of anisotropy, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.

  11. Thermodynamics of micellization of cationic surfactants based on O-alkyl and O-perfluoro-N,N'-diisopropylisourea: Effect of the counter ion nature

    International Nuclear Information System (INIS)

    Lehanine, Zineb; Badache, Leila

    2011-01-01

    Graphical abstract: The pseudo phase thermodynamic model was applied to study the process of micellization of O-dodecyl- and O-tridecafluorooctyl-N,N'-diisopropylisourea hydrohalogenides. Free energy of micellization is weakly temperature dependent and decreased slightly with the size of the counterion, indicating a more favored micellization. Enthalpies and entropies of micellization decrease strongly with increasing temperature. The enthalpy-entropy compensation phenomenon was observed for all the surfactants studied. Highlights: → The pseudo phase thermodynamic model was applied to study the process of micellization of O-dodecyl- and O-tridecafluorooctyl-N,N'-diisopropylisourea hydrohalogenides. → Free energy of micellization is weakly temperature dependent and decreased slightly with the size of the counterion, indicating a more favored micellization. → Enthalpies and entropies of micellization decrease strongly with increasing temperature. → The enthalpy-entropy compensation phenomenon was observed for all the surfactants studied. - Abstract: A thermodynamic study on the micellization process of two series of cationic surfactants, viz. the O-dodecyl-N,N'-diisopropylisourea hydrochloride, hydrobromide, and hydroiodide and the O-tridecafluorooctyl-N,N'-diisopropylisourea hydrochloride, and hydrobromide, is reported. In order to explain the effect of the counter ion nature in the micellization process, thermodynamic parameters to include the standard free energy (ΔG mic 0 ), enthalpy (ΔH mic 0 ), entropy (ΔS mic 0 ), and heat capacity (ΔC p,mic 0 ) of micellization have been discussed. These parameters are evaluated from the variation of the critical micelle concentration (CMC) with temperature by fitting these values to expressions derived on the basis of a micellization thermodynamic model. The heat capacities of micellization (ΔC p,mic 0 ) were determined from the temperature dependence of ΔH mic 0 . For both surfactant series, the free energy of

  12. Thermodynamics and heat power

    CERN Document Server

    Granet, Irving

    2014-01-01

    Fundamental ConceptsIntroductionThermodynamic SystemsTemperatureForce and MassElementary Kinetic Theory of GasesPressureReviewKey TermsEquations Developed in This ChapterQuestionsProblemsWork, Energy, and HeatIntroductionWorkEnergyInternal EnergyPotential EnergyKinetic EnergyHeatFlow WorkNonflow WorkReviewKey TermsEquations Developed in This ChapterQuestionsProblemsFirst Law of ThermodynamicsIntroductionFirst Law of ThermodynamicsNonflow SystemSteady-Flow SystemApplications of First Law of ThermodynamicsReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Second Law of ThermodynamicsIntroductionReversibility-Second Law of ThermodynamicsThe Carnot CycleEntropyReviewKey TermsEquations Developed in This ChapterQuestionsProblemsProperties of Liquids and GasesIntroductionLiquids and VaporsThermodynamic Properties of SteamComputerized PropertiesThermodynamic DiagramsProcessesReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Ideal GasIntroductionBasic ConsiderationsSpecific Hea...

  13. The thermodynamic solar energy

    International Nuclear Information System (INIS)

    Rivoire, B.

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  14. Improved thermodynamics of SU(2) gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Giudice, Pietro [University of Muenster, Institute for Theoretical Physics, Muenster (Germany); Piemonte, Stefano [University of Regensburg, Institute for Theoretical Physics, Regensburg (Germany)

    2017-12-15

    In this work we present the results of our investigation of the thermodynamics of SU(2) gauge theory. We employ a Symanzik improved action to reduce strongly the discretisations effects, and we use the scaling relations to take into account the finite volume effects close to the critical temperature. We determine the β-function for this particular theory and we use it in the determination of different thermodynamic observables. Finally we compare our results with previous work where only the standard Wilson action was considered. We confirm the relevance of using the improved action to access easily the correct continuum thermodynamics of the theory. (orig.)

  15. Equilibrium thermodynamics - Callen's postulational approach

    NARCIS (Netherlands)

    Jongschaap, R.J.J.; Öttinger, Hans Christian

    2001-01-01

    In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates

  16. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  17. Thermodynamics an engineering approach

    CERN Document Server

    Cengel, Yunus A

    2014-01-01

    Thermodynamics, An Engineering Approach, eighth edition, covers the basic principles of thermodynamics while presenting a wealth of real-world engineering examples so students get a feel for how thermodynamics is applied in engineering practice. This text helps students develop an intuitive understanding by emphasizing the physics and physical arguments. Cengel and Boles explore the various facets of thermodynamics through careful explanations of concepts and use of numerous practical examples and figures, having students develop necessary skills to bridge the gap between knowledge and the confidence to properly apply their knowledge. McGraw-Hill is proud to offer Connect with the eighth edition of Cengel/Boles, Thermodynamics, An Engineering Approach. This innovative and powerful new system helps your students learn more efficiently and gives you the ability to assign homework problems simply and easily. Problems are graded automatically, and the results are recorded immediately. Track individual stude...

  18. Thermodynamics of complexity

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Snoep, Jacky L.

    1998-01-01

    Thermodynamics has always been a remarkable science in that it studies macroscopic properties that are only partially determined by the properties of individual molecules. Entropy and free energy only exist in constellations of more than a single molecule (degree of freedom). They are the so...... understanding of this BioComplexity, modem thermodynamic concepts and methods (nonequilibrium thermodynamics, metabolic and hierarchical control analysis) will be needed. We shall propose to redefine nonequilibrium thermodynamics as: The science that aims at understanding the behaviour of nonequilibrium systems...... by taking into account both the molecular properties and the emergent properties that are due to (dys)organisation. This redefinition will free nonequilibrium thermodynamics from the limitations imposed by earlier near-equilibrium assumptions, resolve the duality with kinetics, and bridge the apparent gap...

  19. Dust radiative effects on atmospheric thermodynamics and tropical cyclogenesis over the Atlantic Ocean using WRF-Chem coupled with an AOD data assimilation system

    Science.gov (United States)

    Chen, Dan; Liu, Zhiquan; Davis, Chris; Gu, Yu

    2017-06-01

    This study investigated the dust radiative effects on atmospheric thermodynamics and tropical cyclogenesis over the Atlantic Ocean using the Weather Research and Forecasting Model with Chemistry (WRF-Chem) coupled with an aerosol data assimilation (DA) system. MODIS AOD (aerosol optical depth) data were assimilated with the Gridpoint Statistical Interpolation (GSI) three-dimensional variational (3DVAR) DA scheme to depict the Saharan dust outbreak events in the 2006 summer. Comparisons with Ozone Monitoring Instrument (OMI), AErosol RObotic NETwork (AERONET), and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations showed that the system was capable of reproducing the dust distribution. Two sets of 180 h forecasts were conducted with the dust radiative effects activated (RE_ON) and inactivated (RE_OFF) respectively. Differences between the RE_ON and RE_OFF forecasts showed that low-altitude (high-altitude) dust inhibits (favors) convection owing to changes in convective inhibition (CIN). Heating in dust layers immediately above the boundary layer increases inhibition, whereas sufficiently elevated heating allows cooling above the boundary layer that reduces convective inhibition. Semi-direct effects in which clouds are altered by thermodynamic changes are also noted, which then alter cloud-radiative temperature (T) changes. The analysis of a tropical cyclone (TC) suppression case on 5 September shows evidence of enhanced convective inhibition by direct heating in dust, but it also suggests that the low-predictability dynamics of moist convection reduces the determinism of the effects of dust on timescales of TC development (days).

  20. Thermodynamic properties of paramagnetic α - and β -Mn from first principles: The effect of transverse spin fluctuations

    Science.gov (United States)

    Ehteshami, Hossein; Korzhavyi, Pavel A.

    2017-12-01

    First-principles-based thermodynamic modeling of cubic α and β phases of Mn represent a challenge due to their structural complexity and the necessity of simultaneous treatment of several types of disorder (electronic, magnetic, and vibrational) that have very different characteristic time scales. Here we employ mean-field theoretical models to describe the different types of disorder and then we connect each layer of theory to the others using the adiabatic principle of separating faster and slower degrees of freedom. The slowest (vibrational) degrees of freedom are treated using the Moruzzi, Janak, and Schwarz formalism [Phys. Rev. B 37, 790 (1988), 10.1103/PhysRevB.37.790] of the Debye-Grüneisen model parametrized based on the first-principles calculated equation of state which includes the free-energy contributions due to the fast (electronic and magnetic) degrees of freedom via the Fermi-Dirac distribution function and a mean-field theory of transverse spin fluctuations. The magnetic contribution due to transverse spin fluctuations has been computed self-consistently within the disordered local moment picture of the paramagnetic state. The obtained results for thermodynamic properties such as lattice parameter, linear thermal expansion coefficient, and heat capacity of both phases show a good agreement with available experimental data. We also tested the assumption about the nature (localized versus delocalized) of magnetic moment on site IV in α -Mn and site I in β -Mn on the thermodynamic properties of these two phases. Similar to the findings of experimental studies, we conclude that magnetic moment on site IV in α -Mn is not of a localized character. However, a similar analysis suggests that the magnetic moment of site I in β -Mn should be treated as localized.

  1. Chlorination pattern effect on thermodynamic parameters and environmental degradability for C₁₀-SCCPs: Quantum chemical calculation based on virtual combinational library.

    Science.gov (United States)

    Sun, Yuzhen; Pan, Wenxiao; Lin, Yuan; Fu, Jianjie; Zhang, Aiqian

    2016-01-01

    Short-chain chlorinated paraffins (SCCPs) are still controversial candidates for inclusion in the Stockholm Convention. The inherent mixture nature of SCCPs makes it rather difficult to explore their environmental behaviors. A virtual molecule library of 42,720 C10-SCCP congeners covering the full structure spectrum was constructed. We explored the structural effects on the thermodynamic parameters and environmental degradability of C10-SCCPs through semi-empirical quantum chemical calculations. The thermodynamic properties were acquired using the AM1 method, and frontier molecular orbital analysis was carried out to obtain the E(HOMO), E(LUMO) and E(LUMO)-E(HOMO) for degradability exploration at the same level. The influence of the chlorination degree (N(Cl)) on the relative stability and environmental degradation was elucidated. A novel structural descriptor, μ, was proposed to measure the dispersion of the chlorine atoms within a molecule. There were significant correlations between thermodynamic values and N(Cl), while the reported N(Cl)-dependent pollution profile of C10-SCCPs in environmental samples was basically consistent with the predicted order of formation stability of C10-SCCP congeners. In addition, isomers with large μ showed higher relative stability than those with small μ. This could be further verified by the relationship between μ and the reactivity of nucleophilic substitution and OH attack respectively. The C10-SCCP congeners with less Cl substitution and lower dispersion degree are susceptible to environmental degradation via nucleophilic substitution and hydroxyl radical attack, while direct photolysis of C10-SCCP congeners cannot readily occur due to the large E(LUMO)-E(HOMO) values. The chlorination effect and the conclusions were further checked with appropriate density functional theory (DFT) calculations. Copyright © 2015. Published by Elsevier B.V.

  2. Atomistic Calculations of the Effect of Minor Actinides on Thermodynamic and Kinetic Properties of UO{sub 2{+-}x}

    Energy Technology Data Exchange (ETDEWEB)

    Deo, Chaitanya; Adnersson, Davis; Battaile, Corbett; uberuaga, Blas

    2012-10-30

    The team will examine how the incorporation of actinide species important for mixed oxide (MOX) and other advanced fuel designs impacts thermodynamic quantities of the host UO{sub 2} nuclear fuel and how Pu, Np, Cm and Am influence oxygen mobility. In many cases, the experimental data is either insufficient or missing. For example, in the case of pure NpO2, there is essentially no experimental data on the hyperstoichiometric form it is not even known if hyperstoichiometry NpO{sub 2{+-}x} is stable. The team will employ atomistic modeling tools to calculate these quantities

  3. De vette jaren: de Commissie-Casimir en het Nederlandse wetenschapsbeleid 1957-1970

    Directory of Open Access Journals (Sweden)

    David Baneke

    2012-11-01

    Full Text Available The Years of Abundance: the Casimir Committee and Dutch Science Policy 1957–1970 In October 1958, a committee of six prominent Dutch scientists and industrial managers presented a brief report in which they requested a major increase of the science budget. This report has been described as a turning point in the history of science in the Netherlands, signaling the beginning of a decade of rapid growth of funding for ‘pure’ research. Surprisingly little is known about the backgrounds of this report, however. In this paper, I analyze its origin, its relation to contemporary higher education policy, and its consequences. As it turns out, the report was less revolutionary than is usually assumed: it mostly reinforced developments that had already begun earlier. Furthermore, Sputnik and the Cold War were not as important as is often claimed. This paper also suggests a reinterpretation of the justification of the government spending on academic research after the Second World War. Producing skilled researchers for industry was at least as important as produc- ing new knowledge.

  4. Casimir meets Poisson: improved quark/gluon discrimination with counting observables

    Science.gov (United States)

    Frye, Christopher; Larkoski, Andrew J.; Thaler, Jesse; Zhou, Kevin

    2017-09-01

    Charged track multiplicity is among the most powerful observables for discriminating quark- from gluon-initiated jets. Despite its utility, it is not infrared and collinear (IRC) safe, so perturbative calculations are limited to studying the energy evolution of multiplicity moments. While IRC-safe observables, like jet mass, are perturbatively calculable, their distributions often exhibit Casimir scaling, such that their quark/gluon discrimination power is limited by the ratio of quark to gluon color factors. In this paper, we introduce new IRC-safe counting observables whose discrimination performance exceeds that of jet mass and approaches that of track multiplicity. The key observation is that track multiplicity is approximately Poisson distributed, with more suppressed tails than the Sudakov peak structure from jet mass. By using an iterated version of the soft drop jet grooming algorithm, we can define a "soft drop multiplicity" which is Poisson distributed at leading-logarithmic accuracy. In addition, we calculate the next-to-leading-logarithmic corrections to this Poisson structure. If we allow the soft drop groomer to proceed to the end of the jet branching history, we can define a collinear-unsafe (but still infrared-safe) counting observable. Exploiting the universality of the collinear limit, we define generalized fragmentation functions to study the perturbative energy evolution of collinear-unsafe multiplicity.

  5. Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2010-01-01

    Designed for use in a standard two-semester engineering thermodynamics course sequence. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanical engineering programs. The text has numerous features that are unique among engineering textbooks, including historical vignettes, critical thinking boxes, and case studies. All are designed to bring real engineering applications into a subject that can be somewhat abstract and mathematica

  6. Advanced thermodynamics engineering

    CERN Document Server

    Annamalai, Kalyan; Jog, Milind A

    2011-01-01

    Thermolab Excel-Based Software for Thermodynamic Properties and Flame Temperatures of Fuels IntroductionImportance, Significance and LimitationsReview of ThermodynamicsMathematical BackgroundOverview of Microscopic/NanothermodynamicsSummaryAppendix: Stokes and Gauss Theorems First Law of ThermodynamicsZeroth LawFirst Law for a Closed SystemQuasi Equilibrium (QE) and Nonquasi-equilibrium (NQE) ProcessesEnthalpy and First LawAdiabatic Reversible Process for Ideal Gas with Constant Specific HeatsFirst Law for an Open SystemApplications of First Law for an Open SystemIntegral and Differential Form

  7. Non-equilibrium thermodynamics

    CERN Document Server

    De Groot, Sybren Ruurds

    1984-01-01

    The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn

  8. Thermodynamics I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics I includes review of properties and states of a pure substance, work and heat, energy and the first law of thermodynamics, entropy and the second law of thermodynamics

  9. The prince as a Jesuit, the king as an abbot. The “monastic” theme in the iconography of John II Casimir

    Directory of Open Access Journals (Sweden)

    Agnieszka Skrodzka

    2016-12-01

    Full Text Available The young Casimir Vasa was brought up at the court of his father, Sigismund III Vasa, in the atmosphere of great devotion, which made him enter the order of Jesuits. Even though he decided to leave the monastery and to take the Polish crown, he came back to the life of a monk after his abdication. The present paper presents the very few pieces of art commemorating the monastic life of John Casimir: an emblem, a medal, some prints and his tomb in Paris. All those objects demonstrate the deep piety of the king.

  10. Theoretical physics 5 thermodynamics

    CERN Document Server

    Nolting, Wolfgang

    2017-01-01

    This concise textbook offers a clear and comprehensive introduction to thermodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, defining macroscopic variables, such as internal energy, entropy and pressure,together with thermodynamic principles. The first part of the book introduces the laws of thermodynamics and thermodynamic potentials. More complex themes are covered in the second part of the book, which describes phases and phase transitions in depth. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cove...

  11. Polyelectrolytes thermodynamics and rheology

    CERN Document Server

    P M, Visakh; Picó, Guillermo Alfredo

    2014-01-01

    This book discusses current development of theoretical models and experimental findings on the thermodynamics of polyelectrolytes. Particular emphasis is placed on the rheological description of polyelectrolyte solutions and hydrogels.

  12. Workshop on Teaching Thermodynamics

    CERN Document Server

    1985-01-01

    It seemed appropriate to arrange a meeting of teachers of thermodynamics in the United Kingdom, a meeting held in the pleasant surroundings of Emmanuel College, Cambridge, in Sept~mber, 1984. This volume records the ideas put forward by authors, the discussion generated and an account of the action that discussion has initiated. Emphasis was placed on the Teaching of Thermodynamics to degree-level students in their first and second years. The meeting, a workshop for practitioners in which all were expected to take part, was remarkably well supported. This was notable in the representation of essentially every UK university and polytechnic engaged in teaching engineering thermodynamics and has led to a stimulating spread of ideas. By intention, the emphasis for attendance was put on teachers of engineering concerned with thermodynamics, both mechanical and chemical engineering disciplines. Attendance from others was encouraged but limited as follows: non-engineering acad­ emics, 10%, industrialists, 10%. The ...

  13. General and Statistical Thermodynamics

    CERN Document Server

    Tahir-Kheli, Raza

    2012-01-01

    This textbook explains completely the general and statistical thermodynamics. It begins with an introductory statistical mechanics course, deriving all the important formulae meticulously and explicitly, without mathematical short cuts. The main part of the book deals with the careful discussion of the concepts and laws of thermodynamics, van der Waals, Kelvin and Claudius theories, ideal and real gases, thermodynamic potentials, phonons and all the related aspects. To elucidate the concepts introduced and to provide practical problem solving support, numerous carefully worked examples are of great value for students. The text is clearly written and punctuated with many interesting anecdotes. This book is written as main textbook for upper undergraduate students attending a course on thermodynamics.

  14. Elements of statistical thermodynamics

    CERN Document Server

    Nash, Leonard K

    2006-01-01

    Encompassing essentially all aspects of statistical mechanics that appear in undergraduate texts, this concise, elementary treatment shows how an atomic-molecular perspective yields new insights into macroscopic thermodynamics. 1974 edition.

  15. Elements of chemical thermodynamics

    CERN Document Server

    Nash, Leonard K

    2005-01-01

    This survey of purely thermal data in calculating the position of equilibrium in a chemical reaction highlights the physical content of thermodynamics, as distinct from purely mathematical aspects. 1970 edition.

  16. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  17. Thermodynamics and quantum correlations

    OpenAIRE

    Perarnau Llobet, Martí

    2016-01-01

    Thermodynamics traditionally deals with macroscopic systems at thermal equilibrium. However, since the very beginning of the theory, its range of applicability has only increased, nowadays being applied to virtually every field of science, and to systems of extremely different size. This thesis is devoted to the study of thermodynamics in the quantum regime. It contains original results on topics that include: Work extraction from quantum systems, fluctuations of work, the energetic valu...

  18. Simulated annealing with constant thermodynamic speed

    International Nuclear Information System (INIS)

    Salamon, P.; Ruppeiner, G.; Liao, L.; Pedersen, J.

    1987-01-01

    Arguments are presented to the effect that the optimal annealing schedule for simulated annealing proceeds with constant thermodynamic speed, i.e., with dT/dt = -(v T)/(ε-√C), where T is the temperature, ε- is the relaxation time, C ist the heat capacity, t is the time, and v is the thermodynamic speed. Experimental results consistent with this conjecture are presented from simulated annealing on graph partitioning problems. (orig.)

  19. Thermodynamic and kinetic studies of As2O3 toxicological effects on human insulin in generation diabetes mellitus

    Science.gov (United States)

    Mohsennia, Mohsen; Motaharinejad, Atieh; Rafiee-Pour, Hossain-Ali; Torabbeigi, Marzieh

    2017-12-01

    The interaction of arsenic trioxide with human insulin was investigated by circular dichroism (CD), cyclic voltammetry and electrophoresis techniques. The interfacial behavior of insulin in presence of As2O3 onto the Ag electrode surface was studied at 310 K in phosphate buffer solution (PBS). According to Far-UV CD spectroscopy results, As2O3 caused to decrease in structural compactness and variety of alpha helix into beta structures. Near-UV CD indicated that As2O3 dissociates disulfide linkage in insulin structure. The kinetic parameters, including charge-transfer coefficient and apparent heterogeneous electron transfer rate constant were also determined. The thermodynamic parameters of insulin denaturation in presence of arsenic trioxide were calculated and reported. The obtained results indicated strong adsorption of insulin in presence of arsenic trioxide onto the Ag surface via chemisorptions.

  20. Effects of deviations from local thermodynamic equilibrium in the atmospheres of F supergiants. I. Overionization of Fe I atoms

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.; Lyubimkov, L.S.; Sakhibullin, N.A.

    1985-01-01

    For a number of class F supergiants and dwarfs, non-LTE calculations have been made of the Fe I-Fe II ionization balance. It is shown that deviations from local thermodynamic equilibrium lead to a strong overionization of the Fe I atoms in the upper layers of the atmosphere. This confirms the conclusion obtained by Lyubimkov and Boyarchuk on the basis of an investigation of microturbulence in F supergiants. The reason for the overionization (compared with LTE) is the nonequality of the recombination and photoionization temperatures: To recombination processes there corresponds a local temperature T(/tau/), whereas the photoionization takes place under the influence of ultraviolet radiation from deeper and hotter layers of the atmosphere. The equivalent widths of some Fe I lines have been calculated. It is shown that neglect of the overionization in the analysis of sufficiently strong lines may lead to an underestimation of the iron abundance by an order of magnitude

  1. Effects of a delta-attractive impurity in the thermodynamics properties of an one-dimensional ideal Bose gas

    International Nuclear Information System (INIS)

    Ioriatti Junior, L.C.

    1976-01-01

    The thermodynamic behavior of the one-dimensional bose gas-attractive delta impurity system is studied. The system is shown to undergo the Bose-Einstein condensation and the cause of the phase transition is attributed to the bound state introduced by the impurity in the free particle energy spectrum. The condensed phase is composed by particles captured by the impurity, forming a drop of particles well localized in space. This gives to the Bose-Einstein condensation in this system the appearance of the ordinary vapor-liquid phase transition. The order of the phase transition is analized with the aid of the Clausius-Clayperon equation, leading to the conclusion that the transition is a first order one. This reinforces the interpretation of a vapor-liquid transition. The evaluation of the heat capacity at constant length shows the existence of a finite discontinuity at the transition temperature [pt

  2. The thermodynamic-buffer enzymes.

    Science.gov (United States)

    Stucki, J W

    1980-08-01

    Oxidative phosphorylation operates at optimal efficiency if and only if the condition of conductance matching L33/L11 = square root 1-q2 is fulfilled. In this relation L11 is the phenomenological conductance of phosphorylation, L33 the phenomenological conductance of the load, i.e. the irreversible ATP-utilizing processes in the cell, and q the degree of coupling of oxidative phosphorylation driven by respiration. Since during short time intervals L11 and q are constant whereas L33 fluctuates in the cell, oxidative phosphorylation would only rarely operate at optimal efficiency due to violation of conductance matching. This paper demonstrates that the reversible ATP-utilizing reaction catalyzed by adenylate kinase can effectively compensate deviations from conductance matching in the presence of a fluctuating L33 and hence allows oxidative phosphorylation to operate at optimal efficiency in the cell. Since the adenylate kinase reaction was found to buffer a thermodynamic potential, i.e. the phosphate potential, this finding was generalized to the concept of thermodynamic buffering. The thermodynamic buffering ability of the adenylate kinase reaction was demonstrated by experiments with incubated rat-liver mitochondria. Considerations of changes introduced in the entropy production by the adenylate kinase reaction allowed to establish the theoretical framework for thermodynamic buffering. The ability of thermodynamic buffering to compensate deviations from conductance matching in the presence of fluctuating loads was demonstrated by computer simulations. The possibility of other reversible ATP-utilizing reactions, like the ones catalyzed by creatine kinase and arginine kinase, to contribute to thermodynamic buffering is discussed. Finally, the comparison of the theoretically calculated steady-stae cytosolic adenine nucleotide concentrations with experimental data from perfused livers demonstrated that in livers from fed rats conductance matching is fulfilled on a

  3. A thermodynamic study of 1-propanol-glycerol-H2O at 25 degrees C: Effect of glycerol on molecular organization of H2O

    DEFF Research Database (Denmark)

    Parsons, M.T.; Westh, Peter; Davies, J.V.

    2001-01-01

    The excess chemical potential, partial molar enthalpy, and volume of 1-propanol were determined in ternary mixtures of 1-propanol-glycerol-H2O at 25degreesC. The mole fraction dependence of all these thermodynamic functions was used to elucidate the effect of glycerol on the molecular organization...... of H2O. The glycerol molecules do not exert a hydrophobic effect on H2O. Rather, the hydroxyl groups of glycerol, perhaps by forming clusters via its alkyl backbone with hydroxyl groups pointing outward, interact with H2O so as to reduce the characteristics of liquid H2O. The global hydrogen bond...... probability and, hence, the percolation nature of the hydrogen bond network is reduced. In addition, the degree of fluctuation inherent in liquid H2O is reduced by glycerol perhaps by participating in the hydrogen bond network via OH groups. At infinite dilution, the pair interaction coefficients in enthalpy...

  4. Isotope effects in aqueous systems. Excess thermodynamic properties of 1,3-dimethylurea solutions in H2O and D2O

    International Nuclear Information System (INIS)

    Jakli, G.; Hook, W.A. Van

    1997-01-01

    The osmotic coefficients of 1,3-dimethylurea-h 2 (DMUh 2 )/H 2 O and 1,3-dimethylurea-d 2 (DMUd 2 )/D 2 O solutions (1, 2, 4, 12, and 20 m aq , 15 < t/degree C < 80) were obtained from differential vapor pressure measurements. Excess partial molar free energies, enthalpies, and entropies for the solvent and their isotope effects were calculated from the temperature derivatives of the osmotic coefficients. New partial molar volume data are reported at 25 C at low and intermediate concentrations. The thermodynamic properties of solution are compared with those of urea and discussed using the cage model of hydrophobic hydration. The results support the mixed (polar-apolar) character of this compound and show that its structural effect on water changes with temperature and concentration

  5. Thixotropic Phenomena in Water: Quantitative Indicators of Casimir-Magnetic Transformations from Vacuum Oscillations (Virtual Particles

    Directory of Open Access Journals (Sweden)

    Michael A. Persinger

    2015-09-01

    Full Text Available The ~1.5 × 10−20 J which is considered a universal quantity and is associated with the movement of protons in water also relates to the ratio of the magnetic moment of a proton divided by its unit charge, multiplied by viscosity and applied over the O-H distance. There is quantitative evidence that thixotropy, the “spontaneous” increased viscosity in water when undisturbed, originates from the transformation of virtual particles or vacuum oscillations to real states through conversion of Casimir-magnetic energies that involve the frequency of the neutral hydrogen line and the upper bound threshold value for intergalactic magnetic fields. The results indicate that ½ of a single electron orbit is real (particle and the other ½ is virtual (wave. The matter equivalent per s for virtual-to-real states for electrons in 1 mL of water with a neutral pH is consistent with the numbers of protons (H+ and the measured range of molecules in the coherent domains for both width and duration of growth and is similar to widths of intergalactic dust grains from which planets and stars may condense. The de Broglie momentum for the lower boundary of the width of coherent domains multiplied by the fine structure velocity of an electron is concurrent with the quantum when one proton is being removed from another and when the upper boundary of the rest mass of a photon is transformed by the product of velocities for putative “entanglement” and light. Theoretical and experimental results indicate that components of thixotropy, such as specific domains of intercalated water molecules, could display excess correlations over very large distances. Because the energies of the universal quantity and water converge it may be a special conduit for discrete transformations from virtual to real states.

  6. Dust radiative effects on atmospheric thermodynamics and tropical cyclogenesis over the Atlantic Ocean using WRF-Chem coupled with an AOD data assimilation system

    Directory of Open Access Journals (Sweden)

    D. Chen

    2017-06-01

    Full Text Available This study investigated the dust radiative effects on atmospheric thermodynamics and tropical cyclogenesis over the Atlantic Ocean using the Weather Research and Forecasting Model with Chemistry (WRF-Chem coupled with an aerosol data assimilation (DA system. MODIS AOD (aerosol optical depth data were assimilated with the Gridpoint Statistical Interpolation (GSI three-dimensional variational (3DVAR DA scheme to depict the Saharan dust outbreak events in the 2006 summer. Comparisons with Ozone Monitoring Instrument (OMI, AErosol RObotic NETwork (AERONET, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO observations showed that the system was capable of reproducing the dust distribution. Two sets of 180 h forecasts were conducted with the dust radiative effects activated (RE_ON and inactivated (RE_OFF respectively. Differences between the RE_ON and RE_OFF forecasts showed that low-altitude (high-altitude dust inhibits (favors convection owing to changes in convective inhibition (CIN. Heating in dust layers immediately above the boundary layer increases inhibition, whereas sufficiently elevated heating allows cooling above the boundary layer that reduces convective inhibition. Semi-direct effects in which clouds are altered by thermodynamic changes are also noted, which then alter cloud-radiative temperature (T changes. The analysis of a tropical cyclone (TC suppression case on 5 September shows evidence of enhanced convective inhibition by direct heating in dust, but it also suggests that the low-predictability dynamics of moist convection reduces the determinism of the effects of dust on timescales of TC development (days.

  7. Effect of intermolecular force on the static/dynamic behaviour of M/NEM devices.

    Science.gov (United States)

    Kim, Namjung; Aluru, N R

    2014-12-05

    Advances made in the fabrication of micro/nano-electromechanical (M/NEM) devices over the last ten years necessitate the understanding of the attractive force that arises from quantum fluctuations (generally referred to as Casimir effects) [Casimir H B G 1948 Proc. K. Ned. Akad. Wet. 51 793]. The fundamental mechanisms underlying quantum fluctuations have been actively investigated through various theoretical and experimental approaches. However, the effect of the force on M/NEM devices has not been fully understood yet, especially in the transition region involving gaps ranging from 10 nm to 1 μm, due to the complexity of the force. Here, we numerically calculate the Casimir effects in M/NEM devices by using the Lifshitz formula, the general expression for the Casimir effects [Lifshitz E 1956 Sov. Phys. JETP 2 73]. Since the Casimir effects are highly dependent on the permittivity of the materials, the Kramer-Kronig relation [Landau L D, Lifshitz E M and Pitaevskii L P 1984 Electrodynamics of Continuous Media (New York: Pergamon Press)] and the optical data for metals and dielectrics are used in order to obtain the permittivity. Several simplified models for the permittivity of the materials, such as the Drude and Lorentz models [Jackson J D 1975 Classical Electrodynamics (New York: Wiley)], are also used to extrapolate the optical data. Important characteristic values of M/NEM devices, such as the pull-in voltage, pull-in gap, detachment length, etc, are calculated for devices operating in the transition region. Our results show that accurate predictions for the pull-in behaviour are possible when the Lifshitz formula is used instead of the idealized expressions for Casimir effects. We expand this study into the dynamics of M/NEM devices, so that the time and frequency response of M/NEM devices with Casimir effects can be explored.

  8. Effect of intermolecular force on the static/dynamic behaviour of M/NEM devices

    Science.gov (United States)

    Kim, Namjung; Aluru, N. R.

    2014-12-01

    Advances made in the fabrication of micro/nano-electromechanical (M/NEM) devices over the last ten years necessitate the understanding of the attractive force that arises from quantum fluctuations (generally referred to as Casimir effects) [Casimir H B G 1948 Proc. K. Ned. Akad. Wet. 51 793]. The fundamental mechanisms underlying quantum fluctuations have been actively investigated through various theoretical and experimental approaches. However, the effect of the force on M/NEM devices has not been fully understood yet, especially in the transition region involving gaps ranging from 10 nm to 1 μm, due to the complexity of the force. Here, we numerically calculate the Casimir effects in M/NEM devices by using the Lifshitz formula, the general expression for the Casimir effects [Lifshitz E 1956 Sov. Phys. JETP 2 73]. Since the Casimir effects are highly dependent on the permittivity of the materials, the Kramer-Kronig relation [Landau L D, Lifshitz E M and Pitaevskii L P 1984 Electrodynamics of Continuous Media (New York: Pergamon Press)] and the optical data for metals and dielectrics are used in order to obtain the permittivity. Several simplified models for the permittivity of the materials, such as the Drude and Lorentz models [Jackson J D 1975 Classical Electrodynamics (New York: Wiley)], are also used to extrapolate the optical data. Important characteristic values of M/NEM devices, such as the pull-in voltage, pull-in gap, detachment length, etc, are calculated for devices operating in the transition region. Our results show that accurate predictions for the pull-in behaviour are possible when the Lifshitz formula is used instead of the idealized expressions for Casimir effects. We expand this study into the dynamics of M/NEM devices, so that the time and frequency response of M/NEM devices with Casimir effects can be explored.

  9. Effect of intermolecular force on the static/dynamic behaviour of M/NEM devices

    International Nuclear Information System (INIS)

    Kim, Namjung; Aluru, N R

    2014-01-01

    Advances made in the fabrication of micro/nano-electromechanical (M/NEM) devices over the last ten years necessitate the understanding of the attractive force that arises from quantum fluctuations (generally referred to as Casimir effects) [Casimir H B G 1948 Proc. K. Ned. Akad. Wet. 51 793]. The fundamental mechanisms underlying quantum fluctuations have been actively investigated through various theoretical and experimental approaches. However, the effect of the force on M/NEM devices has not been fully understood yet, especially in the transition region involving gaps ranging from 10 nm to 1 μm, due to the complexity of the force. Here, we numerically calculate the Casimir effects in M/NEM devices by using the Lifshitz formula, the general expression for the Casimir effects [Lifshitz E 1956 Sov. Phys. JETP 2 73]. Since the Casimir effects are highly dependent on the permittivity of the materials, the Kramer–Kronig relation [Landau L D, Lifshitz E M and Pitaevskii L P 1984 Electrodynamics of Continuous Media (New York: Pergamon Press)] and the optical data for metals and dielectrics are used in order to obtain the permittivity. Several simplified models for the permittivity of the materials, such as the Drude and Lorentz models [Jackson J D 1975 Classical Electrodynamics (New York: Wiley)], are also used to extrapolate the optical data. Important characteristic values of M/NEM devices, such as the pull-in voltage, pull-in gap, detachment length, etc, are calculated for devices operating in the transition region. Our results show that accurate predictions for the pull-in behaviour are possible when the Lifshitz formula is used instead of the idealized expressions for Casimir effects. We expand this study into the dynamics of M/NEM devices, so that the time and frequency response of M/NEM devices with Casimir effects can be explored. (paper)

  10. The combinatorics computation for Casimir operators of the symplectic Lie algebra and the application for determining the center of the enveloping algebra of a semidirect product

    International Nuclear Information System (INIS)

    Le Van Hop.

    1989-12-01

    The combinatorics computation is used to describe the Casimir operators of the symplectic Lie Algebra. This result is applied for determining the Center of the enveloping Algebra of the semidirect Product of the Heisenberg Lie Algebra and the symplectic Lie Algebra. (author). 10 refs

  11. Comparative Effect of an Addition of a Surface Term to Woods-Saxon Potential on Thermodynamics of a Nucleon

    Science.gov (United States)

    Lütfüoğlu, B. C.

    2018-01-01

    In this study, we reveal the difference between Woods-Saxon (WS) and Generalized Symmetric Woods-Saxon (GSWS) potentials in order to describe the physical properties of a nucleon, by means of solving Schrödinger equation for the two potentials. The additional term squeezes the WS potential well, which leads an upward shift in the spectrum, resulting in a more realistic picture. The resulting GSWS potential does not merely accommodate extra quasi bound states, but also has modified bound state spectrum. As an application, we apply the formalism to a real problem, an α particle confined in Bohrium-270 nucleus. The thermodynamic functions Helmholtz energy, entropy, internal energy, specific heat of the system are calculated and compared for both wells. The internal energy and the specific heat capacity increase as a result of upward shift in the spectrum. The shift of the Helmholtz free energy is a direct consequence of the shift of the spectrum. The entropy decreases because of a decrement in the number of available states. Supported by the Turkish Science and Research Council (TÜBİTAK) and Akdeniz University

  12. Effect of conditioners upon the thermodynamics and kinetics of methane hydrate formation. A preliminary structure-properties relationship study

    Energy Technology Data Exchange (ETDEWEB)

    Di Profio, Pietro; Arca, Simone; Germani, Raimondo; Savelli, Gianfranco

    2005-07-01

    The synthesis and stability of gas hydrates was found to be heavily affected by the presence of small quantities of additives, or conditioners, particularly surfactants. In a recent work, we showed that the enhancement of hydrate formation, both from previously described and newly synthesized surfactants, is probably due to surfactant monomers, rather than micelles, and that the features of hydrate induction time should not be used as a measure of critical micelle concentration. In the present paper, we discuss the results of a structure-properties relationship study in which a preliminary attempt to relate the structural features of several amphiphilic additives to some kinetic and thermodynamic parameters of methane hydrate formation - e.g., induction times, rate of formation, occupancy, etc. - is conducted. According to the present study, it is found that, for a particular conditioner, a reduction of induction time does not correlate to an increase of the formation rate and occupancy, and vice versa. This may be related to the nature of chemical moieties forming a particular amphiphile (e.g., the hydrophobic tail, head group, counterion, etc.). The understanding of the mechanisms by which those moieties play their differential role may be the key tool to the design and synthesis of tailored conditioners. (Author)

  13. Size effect on the dielectric properties of BaTiO3 nanoceramics in a modified Ginsburg-Landau-Devonshire thermodynamic theory

    Science.gov (United States)

    Lin, Shan; Lü, Tianquan; Jin, Changqing; Wang, Xiaohui

    2006-10-01

    Grain size effects on the dielectric properties of BaTiO3 nanoceramics have been studied by using the modified Ginsburg-Landau-Devonshire (GLD) thermodynamic theory. Considering the existence of internal stresses, it is found that with decreasing grain size the transition temperature of cubic-tetragonal phase decreases, while those of tetragonal-orthorhombic and orthorhombic-rhombohedral phases increase. With further reducing grain size, our model predicts that the two ferroelectric structures of orthorhombic and tetragonal phases will become unstable and disappear at a critical size, leaving only one stable ferroelectric phase of rhombohedral structure. Consequently, a theoretical phase diagram of the transition temperature versus grain size is established wherein two triple points and a reentrance behavior are indicated. The results are compared with experimental data.

  14. The maximum temperature of a thermodynamic cycle effect on weight-dimensional characteristics of the NPP energy blocks with air cooling

    International Nuclear Information System (INIS)

    Bezborodov, Yu.A.; Bubnov, V.P.; Nesterenko, V.B.

    1982-01-01

    The cycle maximum temperature effect on the properties of individual apparatuses and total NPP energy blocks characteristics has been investigated. Air, nitrogen, helium and chemically reacting system N 2 O 4 +2NO+O 2 have been considered as coolants. The conducted investigations have shown that maximum temperature of thermodynamical cycle affects considerably both the weight-dimensional characteristics of individual elements of NPP and total characteristics of NPP energy block. Energy blocks of NPP with air cooling wherein dissociating nitrogen tetroxide is used as working body, have better indexes on the majority of characteristics in comparison with blocks with air, nitrogen and helium cooling. If technical restrictions are to be taken into account (thermal resistance of metals, coolant decomposition under high temperatures, etc.) then dissociating nitrogen tetroxide should be recommended as working body and maximum cycle temperature in the range from 500 up to 600 deg C

  15. Calculation of the effect of macromolecular architecture on structure and thermodynamic properties of linear-tri-arm polyethylene blends from Monte Carlo simulation

    DEFF Research Database (Denmark)

    Rissanou, Anastassia N.; Peristeras, Loukas D.; Economou, Ioannis

    2007-01-01

    A Monte Carlo simulation formalism proposed recently [Peristeras et al. Macromolecules 2007;40:2904-14] is applied here to linear-tri-arm polyethylene blends using atomistic models. Elementary Monte Carlo moves for long chain and branched molecules are used and shown to result in efficient...... relaxation of long chains. The effect of chain and arm molecular weight and of temperature on the structure and thermodynamic properties of blends is examined. Chemical potential versus composition diagrams are drawn in order to assess the non-ideality of mixing that may lead to phase separation. All...... of the blends examined are shown to be fully miscible. The microscopic blend structure is examined by calculating the radial distribution function. Finally, the radii of gyration of linear and branched chains are calculated and scaling exponents are evaluated....

  16. Ab initio calculations of structural, elastic, electronic and thermodynamic properties of the cerium filled skutterudite CeRu4P12 under the effect of pressure

    Directory of Open Access Journals (Sweden)

    Berrahal Mokhtar

    2015-12-01

    Full Text Available The paper presents an investigation on crystalline, elastic and electronic structure in addition to the thermodynamic properties for a CeRu4P12 filled skutterudite device by using the full-potential linear muffin-tin orbital (FP-LMTO method within the generalized gradient approximations (GGA in the frame of density functional theory (DFT. For this purpose, the structural properties, such as the equilibrium lattice parameter, bulk modulus and pressure derivatives of the bulk modulus, were computed. By using the total energy variation as a function of strain we have determined the independent elastic constants and their pressure dependence. Additionally, the effect of pressure P and temperature T on the lattice parameters, bulk modulus, thermal expansion coefficient, Debye temperature and the heat capacity for CeRu4P12 compound were investigated taking into consideration the quasi-harmonic Debye model.

  17. Statistical thermodynamics of alloys

    CERN Document Server

    Gokcen, N A

    1986-01-01

    This book is intended for scientists, researchers, and graduate students interested in solutions in general, and solutions of metals in particular. Readers are assumed to have a good background in thermodynamics, presented in such books as those cited at the end of Chapter 1, "Thermo­ dynamic Background." The contents of the book are limited to the solutions of metals + metals, and metals + metalloids, but the results are also appli­ cable to numerous other types of solutions encountered by metallurgists, materials scientists, geologists, ceramists, and chemists. Attempts have been made to cover each topic in depth with numerical examples whenever necessary. Chapter 2 presents phase equilibria and phase diagrams as related to the thermodynamics of solutions. The emphasis is on the binary diagrams since the ternary diagrams can be understood in terms of the binary diagrams coupled with the phase rule, and the Gibbs energies of mixing. The cal­ culation of thermodynamic properties from the phase diagrams is ...

  18. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2010-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...

  19. Extended Irreversible Thermodynamics

    CERN Document Server

    Jou, David

    2010-01-01

    This is the 4th edition of the highly acclaimed monograph on Extended Irreversible Thermodynamics, a theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the basic variables describing the system are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a thorough discussion of the foundations and the scope of the current theories on non-equilibrium thermodynamics. For this new edition, the authors critically revised existing material while taking into account the most recent developments in fast moving fields such as heat transport in micro- and nanosystems or fast solidification fronts in materials sciences. Several fundamental chapters have been revisited emphasizing physics and applications over mathematical derivations. Also, fundamental questions on the definition of non-equil...

  20. Thermodynamics of complexity

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Snoep, Jacky L.

    1998-01-01

    the thesis that the aforesaid holds a fortiori for the living cell: Much of the essence of the live state depends more on the manner in which the molecules are organised than on the properties of single molecules. This is due to the phenomenon of 'Complexity'. BioComplexity is defined here as the phenomenon...... understanding of this BioComplexity, modem thermodynamic concepts and methods (nonequilibrium thermodynamics, metabolic and hierarchical control analysis) will be needed. We shall propose to redefine nonequilibrium thermodynamics as: The science that aims at understanding the behaviour of nonequilibrium systems...... with metabolic control analysis. Subsequently, the complexity of the control of the energy metabolism of E. coli will be analysed in detail. New control theorems will be derived for newly defined control coefficients. It will become transparent that molecular genetic experimentation will allow one to penetrate...

  1. Thermodynamics study of hydrogen storage materials

    International Nuclear Information System (INIS)

    Song Lifang; Wang Shuang; Jiao Chengli; Si Xiaoliang; Li Zhibao; Liu Shuang; Liu Shusheng; Jiang Chunhong; Li Fen; Zhang Jian; Sun Lixian; Xu Fen; Huang Fenglei

    2012-01-01

    Highlights: ► Chemical modification is an effective way to improve the thermodynamics. ► Nanodispersion can improve the thermodynamics of chemical storage system. ► Hybridization is an practicable strategy to improve the thermodynamics. ► Nanoconfinement is feasible to improve thermodynamics of chemical storage system. ► MOFs materials possess suitable interaction with H 2 molecule should be investigated. - Abstract: The growing use of conventional energy such as fossil fuels results in problems degrading our environment. Hydrogen is frequently discussed as a clean energy in the future without pollution. However, efficient and safe storage of hydrogen constitute a key challenge and unresolved problem. One of the main options is solid-state storage technology. A successful solid-state reversible storage material should meet the requirements of high storage capacity, suitable thermodynamic properties, reversibility and fast adsorption and desorption kinetics. This feature article focuses mainly on the development of thermodynamic improvement of hydrogen storage materials in the past few years including the complex hydride, ammonia borane, and metal-organic frameworks.

  2. Mechanics, Waves and Thermodynamics

    Science.gov (United States)

    Ranjan Jain, Sudhir

    2016-05-01

    Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.

  3. Concise chemical thermodynamics

    CERN Document Server

    Peters, APH

    2010-01-01

    EnergyThe Realm of ThermodynamicsEnergy BookkeepingNature's Driving ForcesSetting the Scene: Basic IdeasSystem and SurroundingsFunctions of StateMechanical Work and Expanding GasesThe Absolute Temperature Scale Forms of Energy and Their Interconversion Forms of Renewable Energy Solar Energy Wind Energy Hydroelectric Power Geothermal Energy Biomass Energy References ProblemsThe First Law of Thermodynamics Statement of the First Law Reversible Expansion of an Ideal GasConstant-Volume ProcessesConstant-Pressure ProcessesA New Function: EnthalpyRelationship between ?H and ?UUses and Conventions of

  4. Thermodynamics of ABC transporters

    Directory of Open Access Journals (Sweden)

    Xuejun C. Zhang

    2015-09-01

    Full Text Available ABSTRACT ABC transporters form the largest of all transporter families, and their structural study has made tremendous progress over recent years. However, despite such advances, the precise mechanisms that determine the energy-coupling between ATP hydrolysis and the conformational changes following substrate binding remain to be elucidated. Here, we present our thermodynamic analysis for both ABC importers and exporters, and introduce the two new concepts of differential-binding energy and elastic conformational energy into the discussion. We hope that the structural analysis of ABC transporters will henceforth take thermodynamic aspects of transport mechanisms into account as well.

  5. Thermodynamics II essentials

    CERN Document Server

    REA, The Editors of

    2013-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics II includes review of thermodynamic relations, power and refrigeration cycles, mixtures and solutions, chemical reactions, chemical equilibrium, and flow through nozzl

  6. A constitutive model for magnetostriction based on thermodynamic framework

    International Nuclear Information System (INIS)

    Ho, Kwangsoo

    2016-01-01

    This work presents a general framework for the continuum-based formulation of dissipative materials with magneto–mechanical coupling in the viewpoint of irreversible thermodynamics. The thermodynamically consistent model developed for the magnetic hysteresis is extended to include the magnetostrictive effect. The dissipative and hysteretic response of magnetostrictive materials is captured through the introduction of internal state variables. The evolution rate of magnetostrictive strain as well as magnetization is derived from thermodynamic and dissipative potentials in accordance with the general principles of thermodynamics. It is then demonstrated that the constitutive model is competent to describe the magneto-mechanical behavior by comparing simulation results with the experimental data reported in the literature. - Highlights: • A thermodynamically consistent model is proposed to describe the magneto-mechanical coupling effect. • Internal state variables are introduced to capture the dissipative material response. • The evolution rate of the magnetostrictive strain is derived through thermodynamic and dissipation potentials.

  7. A computationally effective formulation of the thermodynamic properties of LiBr-H2O solutions from 273 to 500 K over full composition range

    Czech Academy of Sciences Publication Activity Database

    Pátek, Jaroslav; Klomfar, Jaroslav

    2006-01-01

    Roč. 29, č. 4 (2006), s. 566-578 ISSN 0140-7007 Institutional research plan: CEZ:AV0Z20760514 Keywords : water-lithium bromide * aqueous solution * thermodynamic properties Subject RIV: BJ - Thermodynamics Impact factor: 0.936, year: 2006

  8. The Thermodynamics of General and Local Anesthesia

    Science.gov (United States)

    Græsbøll, Kaare; Sasse-Middelhoff, Henrike; Heimburg, Thomas

    2014-05-01

    General anesthetics are known to cause depression of the freezing point of transitions in biomembranes. This is a consequence of ideal mixing of the anesthetic drugs in the membrane fluid phase and exclusion from the solid phase. Such a generic law provides physical justification of the famous Meyer-Overton rule. We show here that general anesthetics, barbiturates and local anesthetics all display the same effect on melting transitions. Their effect is reversed by hydrostatic pressure. Thus, the thermodynamic behavior of local anesthetics is very similar to that of general anesthetics. We present a detailed thermodynamic analysis of heat capacity profiles of membranes in the presence of anesthetics. This analysis is able to describe experimentally observed calorimetric profiles and permits prediction of the anesthetic features of arbitrary molecules. In addition, we discuss the thermodynamic origin of the cutoff-effect of long-chain alcohols and the additivity of the effect of general and local anesthetics.

  9. Experimental thermodynamics experimental thermodynamics of non-reacting fluids

    CERN Document Server

    Neindre, B Le

    2013-01-01

    Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio

  10. The effect of hydroxyl groups on the stability and thermodynamic properties of polyhydroxylated xanthones as calculated by density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ruijuan [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046 (China); Liu, Hongxia [School of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001 (China); Zhang, Qi [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046 (China); Flamm, Alison [U.S. Fulbright Student Grantee, School of Social and Behavioral Sciences, Nanjing University, Nanjing 210093 (China); Yang, Xi, E-mail: yangxi@nju.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046 (China); Wang, Zunyao, E-mail: wangzun315cn@163.com [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046 (China)

    2012-01-10

    Highlights: Black-Right-Pointing-Pointer The strength of the hydrogen bonds existed in PHOXTHs is ascertained. Black-Right-Pointing-Pointer Good linear relations exist between the thermodynamic properties and N{sub PHOS}. Black-Right-Pointing-Pointer The relative stability order of PHOXTH congeners is theoretically proposed. Black-Right-Pointing-Pointer There is a good relation between C{sub p,m} and the temperature. - Abstract: There are three types of intramolecular hydrogen bonds with bond energy about 52 kJ mol{sup -1}, 12 kJ mol{sup -1}, 20 kJ mol{sup -1}, respectively in PHOXTHs which were determined by computation on B3LYP/6-311G** level. The internal rotational potentials of the hydroxy group of 1-MHOXTH and 4 Prime -MHOXTH are evaluated, and the influences of the spatial orientation of the hydroxy groups on the intramolecular hydrogen bonds and molecular stability are illustrated. The standard enthalpy of formation ({Delta}{sub f}H{sup {theta}}) and standard Gibbs energy of formation ({Delta}{sub f}G{sup {theta}}) for the most stable conformation of 135 PHOXTHs are calculated by the combination of Gaussian 03 and isodesmic reactions and the theoretical order of relative stability is proposed according to the relative magnitude of calculated {Delta}{sub f}G{sup {theta}} values. In addition, the values of molar heat capacities at constant pressure (C{sub p,m}) from 200 to 1000 K for PHOXTH congeners are calculated.

  11. Effect of H{sub 2}S on the thermodynamic stability and electrochemical performance of Ni cermet-type of anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, M.

    2006-11-15

    For SOFCs to be main means of power generation, they should be able to exploit wide variety of fuels. Among Ni-cermets, Ni-YSZ is the state-of-the-art materials for SOFC-anode which is the fuel electrode. But sulphur impurity present in different gaseous fuels (e.g Biogas), depending on its concentration, is highly poisonous to the stability and electrochemical performance of the Ni catalyst in the cermet anodes. Thus in this study the microstructural stability of Ni-YSZ, Ni-CGO and Ni-LSGM cermets in H{sub 2}S-containing hydrogen gas is studied in the intermediate temperature range of SOFC operation. Thermodynamic modelling of Ni-S-O-H quaternary system was performed for the calculation of thermodynamic stability and sulphur-tolerance limit of Ni in the gaseous atmosphere made up of H, O and S. The effect of presence H{sub 2}S in fuel gas, in the concentrations well below the thermodynamic tolerance limit, on the electrochemical performance of the anodes is studied by using model Ni-patterned electrodes on YSZ and LSGM. Thermodynamic modelling of the Ni-S-O-H quaternary was performed by employing CALPHAD methodology. The modelling of Ni-S binary phase diagram was performed by using sublattice models for the non-stoichiometric phases. The optimised binaries of Ni-O, and Ni-H were taken from the literature. The Ni-O-S and Ni-O-H ternaries were extrapolated from the lower order binaries. In Ni-O-S ternary, NiSO{sub 4} is the only ternary compound present. The ternary compounds, Ni(OH){sub 2} and NiOOH in the Ni-O-H ternary were considered as stoichiometric line compounds. The model parameters of the ternary compounds were optimised using the experimental data. The Ni-S-O-H quaternary was calculated by extrapolation method as employed in the CALPHAD methodology. Inorder to understand the H{sub 2}-oxidation mechanism and the role played by the electrolyte in the reaction mechanism, symmetrical cells of Ni-patterned YSZ single crystals with different crystallographic

  12. Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.

    Science.gov (United States)

    Parker, Barry R.; McLeod, Robert J.

    1980-01-01

    An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)

  13. Correct thermodynamic forces in Tsallis thermodynamics: connection with Hill nanothermodynamics

    International Nuclear Information System (INIS)

    Garcia-Morales, Vladimir; Cervera, Javier; Pellicer, Julio

    2005-01-01

    The equivalence between Tsallis thermodynamics and Hill's nanothermodynamics is established. The correct thermodynamic forces in Tsallis thermodynamics are pointed out. Through this connection we also find a general expression for the entropic index q which we illustrate with two physical examples, allowing in both cases to relate q to the underlying dynamics of the Hamiltonian systems

  14. Systemic analysis of thermodynamic properties of lanthanide halides

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Badalov, A.; Marufi, V.K.

    1992-01-01

    System analysis of thermodynamic characteristics of lanthanide halides was carried out. A method making allowances for the influence of spin and orbital moments of momentum of the main states of lanthanide trivalent ions in their natural series was employed. Unknown in literature thermodynamic values were calculated and corrected for certain compounds. The character of lanthanide halide thermodynamic parameter change depending on ordinal number of the metals was ascertained. Pronouncement of tetrad-effect in series of compounds considered was pointed out

  15. The effect of pressure on the structural, electronic, magnetic, and thermodynamic properties of the Mn{sub 2}RuGe inverse Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ting, E-mail: songting_lzjtu@163.com [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); College of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Sun, Xiao-Wei [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Tian, Jun-Hong [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Wei, Xiao-Ping; Wan, Gui-Xin [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Ma, Qin, E-mail: maqin_lut@yeah.net [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); College of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China)

    2017-04-15

    In the frame of density functional theory, first-principles calculations based on generalized gradient approximation and quasi-harmonic Debye approximation model in which the phononic effects are taken into account have been carried out to investigate the structural, electronic, magnetic, and thermodynamic properties of full-Heusler alloy Mn{sub 2}RuGe in CuHg{sub 2}Ti-type structure in the pressure range of 0–50 GPa. Present calculations predict that Mn{sub 2}RuGe is a ferrimagnet with an optimized lattice parameter of 5.854 Å. The calculated total magnetic moment of 2.01 μ{sub B} per formula unit is very close to integer value and agree well with the Slater-Pauling rule, where the partial spin moments of Mn (A) and Mn (B) which mainly contribute to the total magnetic moment are 2.66 μ{sub B} and −0.90 μ{sub B}, respectively. In the study of the energy band structures and density of states, Mn{sub 2}RuGe exhibits half-metallicity with an indirect gap of 0.235 eV in the spin-down channels, and the shifting of bands towards higher energies in spin-down channel under high pressure. Meanwhile, the high-pressure thermodynamic properties of Mn{sub 2}RuGe, such as the pressure-volume-temperature relationship, bulk modulus, thermal expansivity, heat capacity, Debye temperature, and Grüneisen parameter are evaluated systematically in the temperature range of 0–900 K. This set of data is considered as the useful information to understand the high-pressure and high-temperature properties for the Mn{sub 2}RuZ-type Heusler alloy family.

  16. Methanol conversion to light olefins over nanostructured CeAPSO-34 catalyst: Thermodynamic analysis of overall reactions and effect of template type on catalytic properties and performance

    International Nuclear Information System (INIS)

    Aghamohammadi, Sogand; Haghighi, Mohammad; Charghand, Mojtaba

    2014-01-01

    Graphical abstract: In this research nanostructured CeAPSO-34 was synthesized to explore the effect of TEAOH and morpholine on its physiochemical properties and MTO performance. Prepared catalysts were characterized with XRD, FESEM, BET, FTIR and NH3-TPD techniques. The results indicated that the nature of the template determines the physiochemical properties of CeAPSO-34 due to different rate of crystal growth. The catalyst obtained by using morpholine showed longer life time as well as sustaining light olefins selectivity at higher values. Furthermore, a comprehensive thermodynamic analysis of overall reactions network was carried out to address the major channels of methanol to olefins conversion. - Highlights: • Introduction of Ce into SAPO-34 framework. • Comparison of CeAPSO-34 synthesized using morpholine and TEAOH. • The nature of the template determines the physiochemical properties of CeAPSO-34. • Morpholine enhances catalyst lifetime in MTO process. • Presenting a complete reaction network for MTO process. - Abstract: TEAOH and morpholine were employed in synthesis of nanostructured CeAPSO-34 molecular sieve and used in methanol to olefins conversion. Prepared samples were characterized by XRD, FESEM, EDX, BET, FTIR and NH 3 -TPD techniques. XRD patterns reflected the higher crystallinity of the catalyst synthesized with morpholine. The FESEM results indicated that the nature of the template determines the morphology of nanostructured CeAPSO-34 due to different rate of crystal growth. There was a meaningful difference in the strength of both strong and weak acid sites for CeAPSO-34 catalysts synthesized with TEAOH and morpholine templates. The catalyst synthesized with morpholine showed higher desorption temperature of both weak and strong acid sites evidenced by NH 3 -TPD characterization. The catalyst obtained using morpholine template had the longer lifetime and sustained desired light olefins at higher values. A comprehensive thermodynamic

  17. The effect of pressure on the structural, electronic, magnetic, and thermodynamic properties of the Mn2RuGe inverse Heusler alloy

    Science.gov (United States)

    Song, Ting; Sun, Xiao-Wei; Tian, Jun-Hong; Wei, Xiao-Ping; Wan, Gui-Xin; Ma, Qin

    2017-04-01

    In the frame of density functional theory, first-principles calculations based on generalized gradient approximation and quasi-harmonic Debye approximation model in which the phononic effects are taken into account have been carried out to investigate the structural, electronic, magnetic, and thermodynamic properties of full-Heusler alloy Mn2RuGe in CuHg2Ti-type structure in the pressure range of 0-50 GPa. Present calculations predict that Mn2RuGe is a ferrimagnet with an optimized lattice parameter of 5.854 Å. The calculated total magnetic moment of 2.01 μB per formula unit is very close to integer value and agree well with the Slater-Pauling rule, where the partial spin moments of Mn (A) and Mn (B) which mainly contribute to the total magnetic moment are 2.66 μB and -0.90 μB, respectively. In the study of the energy band structures and density of states, Mn2RuGe exhibits half-metallicity with an indirect gap of 0.235 eV in the spin-down channels, and the shifting of bands towards higher energies in spin-down channel under high pressure. Meanwhile, the high-pressure thermodynamic properties of Mn2RuGe, such as the pressure-volume-temperature relationship, bulk modulus, thermal expansivity, heat capacity, Debye temperature, and Grüneisen parameter are evaluated systematically in the temperature range of 0-900 K. This set of data is considered as the useful information to understand the high-pressure and high-temperature properties for the Mn2RuZ-type Heusler alloy family.

  18. Thermodynamic analysis of the effect of annealing on the thermal stability of a Cu–Al–Ni–Mn shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mazzer, E.M., E-mail: ericmazzer@gmail.com [Postgraduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, SP (Brazil); Kiminami, C.S.; Bolfarini, C.; Cava, R.D.; Botta, W.J.; Gargarella, P. [Department of Materials Engineering, Federal University of São Carlos, São Carlos, SP (Brazil)

    2015-05-20

    Highlights: • We evaluated the effect of annealing on a Cu-based shape memory alloy. • Stabilization was clarified in terms of the chemical and non-chemical energies. • Stabilization was related to the shift of transformations temperatures. • Insights into the role of stabilization of phases by thermodynamics approach. - Abstract: Shape memory alloys (SMA) usually exhibit shifts in the transformation temperatures with increasing the number of thermal cycles. These shifts result from an increased stability of the martensite during cycling and have an important role in the functionality of the material. The structural reasons for these changes are not fully understood and are investigated here by a thermodynamic approach. The variation in the transformation temperatures and in the chemical and non-chemical energy terms of the total energy involved in the transformation of a Cu–Al–Ni–Mn SMA was studied. Powder of this alloy was produced by gas atomization with size in the range of 32–45 μm and subsequently heat-treated at 180 °C, 250 °C and 300 °C during different times. The as-cast and heat-treated samples were investigated by differential scanning calorimetry, X-ray diffraction and scanning and transmission electron microscopy. Only a single martensitic β′ phase was formed at room temperature. It was observed an increase in the austenitic start transformation temperature (A{sub s}) as well as in the austenitic finish transformation temperature (A{sub f}) with increasing the annealing time and temperature. The shift in the transformation temperatures to higher values is attributed to a decrease of the latent heat of transformation and non-chemical energy term, caused by changes in the structural order of the martensite. This study shows that the variation of the transformation temperatures is strongly linked to the total energy components, which can give important information about the stability of the alloy.

  19. A Hamiltonian approach to Thermodynamics

    International Nuclear Information System (INIS)

    Baldiotti, M.C.; Fresneda, R.; Molina, C.

    2016-01-01

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  20. A Hamiltonian approach to Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)

    2016-10-15

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  1. Thermodynamics applied. Where? Why?

    NARCIS (Netherlands)

    Hirs, Gerard

    2003-01-01

    In recent years, thermodynamics has been applied in a number of new fields leading to a greater societal impact. This paper gives a survey of these new fields and the reasons why these applications are important. In addition, it is shown that the number of fields could be even greater in the future

  2. On Teaching Thermodynamics

    Science.gov (United States)

    Debbasch, F.

    2011-01-01

    The logical structure of classical thermodynamics is presented in a modern, geometrical manner. The first and second law receive clear, operatively oriented statements and the Gibbs free energy extremum principle is fully discussed. Applications relevant to chemistry, such as phase transitions, dilute solutions theory and, in particular, the law…

  3. Thermodynamics, applied. : Where? why?

    NARCIS (Netherlands)

    Hirs, Gerard

    1999-01-01

    In recent years thermodynamics has been applied in a number of new fields leading to a greater societal impact. The paper gives a survey of these new fields and the reasons why these applications are important. In addition it is shown that the number of fields could be even greater in the future and

  4. Thermodynamical Arguments against Evolution

    Science.gov (United States)

    Rosenhouse, Jason

    2017-01-01

    The argument that the second law of thermodynamics contradicts the theory of evolution has recently been revived by anti-evolutionists. In its basic form, the argument asserts that whereas evolution implies that there has been an increase in biological complexity over time, the second law, a fundamental principle of physics, shows this to be…

  5. Thermodynamics of meat proteins

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2012-01-01

    We describe the water activity of meat, being a mixture of proteins, salts and water, by the Free-Volume-Flory–Huggins (FVFH) theory augmented with the equation. Earlier, the FVFH theory is successfully applied to describe the thermodynamics to glucose homopolymers like starch, dextrans and

  6. Nonequilibrium thermodynamics of nucleation

    NARCIS (Netherlands)

    Schweizer, M.; Sagis, L.M.C.

    2014-01-01

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a

  7. FORMATION CONSTANTS AND THERMODYNAMIC ...

    African Journals Online (AJOL)

    , Ni(II), Cu(II) and Zn(II) ions has been ... A good deal of work has been reported on the preparation and structural investigation of. Schiff base ... Formation constants and thermodynamic parameters of Co, Ni, Cu and Zn complexes. Bull. Chem.

  8. New perspectives in thermodynamics

    International Nuclear Information System (INIS)

    Serrin, J.

    1986-01-01

    The last decade has seen a unity of method and approach in the foundations of thermodynamics and continuum mechanics, in which rigorous laws of thermodynamics have been combined with invariance notions of mechanics to produce new and deep understanding. Real progress has been made in finding a set of appropriate concepts for classical thermodynamics, by which energy conservation and the Clausius inequality can be given well-defined meanings for arbitrary processes and which allow an approach to the entropy concept which is free of traditional ambiguities. There has been, moreover, a careful scrutiny of long established but nevertheless not sharply defined concepts such as the Maxwell equal-area rule, the famous Gibbs phase rule, and the equivalence of work and heat. The thirteen papers in this volume accordingly gather together for the first time the many ideas and concepts which have raised classical thermodynamics from a heuristic and intuitive science to the level of precision presently demanded of other branches of mathematical physics

  9. Thermodynamics Far from the Thermodynamic Limit.

    Science.gov (United States)

    de Miguel, Rodrigo; Rubí, J Miguel

    2017-11-16

    Understanding how small systems exchange energy with a heat bath is important to describe how their unique properties can be affected by the environment. In this contribution, we apply Landsberg's theory of temperature-dependent energy levels to describe the progressive thermalization of small systems as their spectrum is perturbed by a heat bath. We propose a mechanism whereby the small system undergoes a discrete series of excitations and isentropic spectrum adjustments leading to a final state of thermal equilibrium. This produces standard thermodynamic results without invoking system size. The thermal relaxation of a single harmonic oscillator is analyzed as a model example of a system with a quantized spectrum than can be embedded in a thermal environment. A description of how the thermal environment affects the spectrum of a small system can be the first step in using environmental factors, such as temperature, as parameters in the design and operation of nanosystem properties.

  10. The physical basis of thermodynamics with applications to chemistry

    CERN Document Server

    Richet, Pascal

    2001-01-01

    Given that thermodynamics books are not a rarity on the market, why would an additional one be useful? The answer is simple: at any level, thermodynamics is usually taught as a somewhat abstruse discipline where many students get lost in a maze of difficult concepts. However, thermodynamics is not as intricate a subject as most people feel. This book fills a niche between elementary textbooks and mathematically oriented treatises, and provides readers with a distinct approach to the subject. As indicated by the title, this book explains thermodynamic phenomena and concepts in physical terms before proceeding to focus on the requisite mathematical aspects. It focuses on the effects of pressure, temperature and chemical composition on thermodynamic properties and places emphasis on rapidly evolving fields such as amorphous materials, metastable phases, numerical simulations of microsystems and high-pressure thermodynamics. Topics like redox reactions are dealt with in less depth, due to the fact that there is a...

  11. Accurate calculation of mutational effects on the thermodynamics of inhibitor binding to p38α MAP kinase: a combined computational and experimental study.

    Science.gov (United States)

    Zhu, Shun; Travis, Sue M; Elcock, Adrian H

    2013-07-09

    A major current challenge for drug design efforts focused on protein kinases is the development of drug resistance caused by spontaneous mutations in the kinase catalytic domain. The ubiquity of this problem means that it would be advantageous to develop fast, effective computational methods that could be used to determine the effects of potential resistance-causing mutations before they arise in a clinical setting. With this long-term goal in mind, we have conducted a combined experimental and computational study of the thermodynamic effects of active-site mutations on a well-characterized and high-affinity interaction between a protein kinase and a small-molecule inhibitor. Specifically, we developed a fluorescence-based assay to measure the binding free energy of the small-molecule inhibitor, SB203580, to the p38α MAP kinase and used it measure the inhibitor's affinity for five different kinase mutants involving two residues (Val38 and Ala51) that contact the inhibitor in the crystal structure of the inhibitor-kinase complex. We then conducted long, explicit-solvent thermodynamic integration (TI) simulations in an attempt to reproduce the experimental relative binding affinities of the inhibitor for the five mutants; in total, a combined simulation time of 18.5 μs was obtained. Two widely used force fields - OPLS-AA/L and Amber ff99SB-ILDN - were tested in the TI simulations. Both force fields produced excellent agreement with experiment for three of the five mutants; simulations performed with the OPLS-AA/L force field, however, produced qualitatively incorrect results for the constructs that contained an A51V mutation. Interestingly, the discrepancies with the OPLS-AA/L force field could be rectified by the imposition of position restraints on the atoms of the protein backbone and the inhibitor without destroying the agreement for other mutations; the ability to reproduce experiment depended, however, upon the strength of the restraints' force constant

  12. Choice of the thermodynamic variables

    International Nuclear Information System (INIS)

    Balian, R.

    1985-09-01

    Some basic ideas of thermodynamics and statistical mechanics, both at equilibrium and off equilibrium, are recalled. In particular, the selection of relevant variables which underlies any macroscopic description is discussed, together with the meaning of the various thermodynamic quantities, in order to set the thermodynamic approaches used in nuclear physics in a general prospect [fr

  13. Thermodynamic theory of dislocation-enabled plasticity

    Science.gov (United States)

    Langer, J. S.

    2017-11-01

    The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this theory followed by examples of its use in analyses of experimentally observed phenomena including strain hardening, grain-size (Hall-Petch) effects, yielding transitions, and adiabatic shear banding.

  14. Dependence of the Casimir-Polder interaction between an atom and a cavity wall on atomic and material properties

    International Nuclear Information System (INIS)

    Mostepanenko, V M; Babb, J F; Caride, A O; Klimchitskaya, G L; Zanette, S I

    2006-01-01

    The Casimir-Polder and van der Waals interactions between an atom and a flat cavity wall are investigated under the influence of real conditions including the dynamic polarizability of the atom, actual conductivity of the wall material and nonzero temperature of the wall. The cases of different atoms near metal and dielectric walls are considered. It is shown that to obtain accurate results for the atom-wall interaction at short separations, one should use the complete tabulated optical data for the complex refractive index of the wall material and the accurate dynamic polarizability of an atom. At relatively large separations in the case of a metal wall, one may use the plasma model dielectric function to describe the dielectric properties of the wall material. The obtained results are important for the theoretical interpretation of experiments on quantum reflection and Bose-Einstein condensation

  15. Contact symmetries and Hamiltonian thermodynamics

    International Nuclear Information System (INIS)

    Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.

    2015-01-01

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production

  16. Relativistic thermodynamics of Fluids. l

    International Nuclear Information System (INIS)

    Havas, P.; Swenson, R.J.

    1979-01-01

    In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail

  17. Thermodynamics and life span estimation

    International Nuclear Information System (INIS)

    Kuddusi, Lütfullah

    2015-01-01

    In this study, the life span of people living in seven regions of Turkey is estimated by applying the first and second laws of thermodynamics to the human body. The people living in different regions of Turkey have different food habits. The first and second laws of thermodynamics are used to calculate the entropy generation rate per unit mass of a human due to the food habits. The lifetime entropy generation per unit mass of a human was previously found statistically. The two entropy generations, lifetime entropy generation and entropy generation rate, enable one to determine the life span of people living in seven regions of Turkey with different food habits. In order to estimate the life span, some statistics of Turkish Statistical Institute regarding the food habits of the people living in seven regions of Turkey are used. The life spans of people that live in Central Anatolia and Eastern Anatolia regions are the longest and shortest, respectively. Generally, the following inequality regarding the life span of people living in seven regions of Turkey is found: Eastern Anatolia < Southeast Anatolia < Black Sea < Mediterranean < Marmara < Aegean < Central Anatolia. - Highlights: • The first and second laws of thermodynamics are applied to the human body. • The entropy generation of a human due to his food habits is determined. • The life span of Turks is estimated by using the entropy generation method. • Food habits of a human have effect on his life span

  18. Thermodynamic problems on HCPWR

    International Nuclear Information System (INIS)

    Akiyama, Mie

    1986-01-01

    A HCPWR design uses the high compact lattice core of 1 to 2 mm fuel rod pitch in order to decrease the water volume fraction to fuel. But such high compactness is considered to cause the decrease of coolant flow rate due to the increase of core pressure loss. And the high compactness also affects the DNB phenomena itself which is directly related to the output performance. Moreover, the coolability of the reactor core is considered to be affected at an accident. It is one of the most important problems for realizing a HCPWR plant whether or not we can design a reactor that preserves the output performance under the consideration of such thermodynamic affections. The thermodynamic affections caused by high compactness are arranged in this report, and the further research problems on HCPWR are also considered on presently available knowledge. (author)

  19. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2013-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium with the surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattice, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. New to this edition is the examination of magnetic crystals, where magnetic symmetry is essential for magnetic phase transitions. The multi-electron system is also discussed  theoretically, as a quantum-mechanical example, for superconductivity in metallic crystals. Throughout the book, the role played by the lattice is emphasized and studied in-depth. Thermod...

  20. Mechanics and thermodynamics

    CERN Document Server

    Demtröder, Wolfgang

    2017-01-01

    This introduction to classical mechanics and thermodynamics provides an accessible and clear treatment of the fundamentals. Starting with particle mechanics and an early introduction to special relativity this textbooks enables the reader to understand the basics in mechanics. The text is written from the experimental physics point of view, giving numerous real life examples and applications of classical mechanics in technology. This highly motivating presentation deepens the knowledge in a very accessible way. The second part of the text gives a concise introduction to rotational motion, an expansion to rigid bodies, fluids and gases. Finally, an extensive chapter on thermodynamics and a short introduction to nonlinear dynamics with some instructive examples intensify the knowledge of more advanced topics. Numerous problems with detailed solutions are perfect for self study.

  1. Thermodynamical quantum information sharing

    International Nuclear Information System (INIS)

    Wiesniak, M.; Vedral, V.; Brukner, C.

    2005-01-01

    Full text: Thermodynamical properties fully originate from classical physics and can be easily measured for macroscopic systems. On the other hand, entanglement is a widely spoken feature of quantum physics, which allows to perform certain task with efficiency unavailable with any classical resource. Therefore an interesting question is whether we can witness entanglement in a state of a macroscopic sample. We show, that some macroscopic properties, in particular magnetic susceptibility, can serve as an entanglement witnesses. We also study a mutual relation between magnetic susceptibility and magnetisation. Such a complementarity exhibits quantum information sharing between these two thermodynamical quantities. Magnetization expresses properties of individual spins, while susceptibility might reveal non-classical correlations as a witness. Therefore, a rapid change of one of these two quantities may mean a phase transition also in terms of entanglement. The complementarity relation is demonstrated by an analytical solution of an exemplary model. (author)

  2. Aspects of thermodynamics and confinement in the lattice formulation of QCD

    International Nuclear Information System (INIS)

    Liptak, L.

    2009-01-01

    the eigenvalues of the quadratic Casimir operator in color-charge representations. As the last topic of the thesis, we undertook an attempt to verify the prediction in numerical simulations of G2 lattice gauge theory. We showed that (approximate) Casimir scaling for static potentials between color charges from the six lowest representations of G 2 is indeed present. The difference between measured and predicted values of intermediate string tensions is very small. For smaller coupling constants it is at most about 10%, and for larger couplings the predicted values are reproduced within error bars. This result - combined with the solid evidence for Casimir scaling in SU(2) and SU(3) gauge theories - provides support for the model of the vacuum with a domain structure. It represents a challenge for all models of the confinement mechanism to find a natural explanation of the observed Casimir scaling. It does not seem apt to draw any far-reaching conclusions from results of this thesis. Both problems studied, QCD thermodynamics and color confinement, are vast fields where a huge amount of intellectual power is being invested, but the final solutions are out of sight. However, we believe that the thesis brings modest, but relevant contributions related to both of them. (Author)

  3. Departures from Local Thermodynamic Equilibrium

    International Nuclear Information System (INIS)

    McWhirter, R.W.P.

    1968-01-01

    This paper starts with a definition of local thermodynamic equilibrium and points out the relationship between local and complete thermodynamic equilibrium. It is shown that electron collisions are essential for the establishment of LTE and a relationship is derived for the minimum electron density at which collision processes are just sufficiently frequent to cause the plasma to be in LTE in face of the competing radiative processes. This relationship is derived for an optically thin plasma. The effect of radiation trapping is considered and some figures given by which the effect of this can be taken into account in assessing the validity of LTE in such cases. Account is now taken of the finite time required for the atomic collision processes to establish the plasma in LTE. A numerical example is worked out which shows that these considerations can be very important for plasmas of rapidly varying temperature. Mention is also made of departures from LTE caused by inhomogeneities in the plasma and by the positive ions having a different kinetic temperature from the electrons. Finally, it is remarked that even if the criteria for LTE to be valid are not met then the Saha and Boltzmann equations may still be applied to describe the population densities of the upper levels of individual species of atoms or ions. (author)

  4. Work reservoirs in thermodynamics

    Science.gov (United States)

    Anacleto, Joaquim

    2010-05-01

    We stress the usefulness of the work reservoir in the formalism of thermodynamics, in particular in the context of the first law. To elucidate its usefulness, the formalism is then applied to the Joule expansion and other peculiar and instructive experimental situations, clarifying the concepts of configuration and dissipative work. The ideas and discussions presented in this study are primarily intended for undergraduate students, but they might also be useful to graduate students, researchers and teachers.

  5. Thermodynamics of explosions

    OpenAIRE

    Neergaard, Gregers; Bondorf, Jakob P.; Mishustin, Igor N.

    2000-01-01

    We present our first attempts to formulate a thermodynamics-like description of explosions. The motivation is partly a fundamental interest in non-equilibrium statistical physics, partly the resemblance of an explosion to the late stages of a heavy-ion collision. We perform numerical simulations on a microscopic model of interacting billiard-ball like particles, and we analyse the results of such simulations trying to identify collective variables describing the degree of equilibrium during t...

  6. Thermodynamics Optimizes the Physiology of Life

    Directory of Open Access Journals (Sweden)

    Gladyshev Georgi

    2014-04-01

    Full Text Available Thermodynamics serves as a basis for optimal solutions of the tasks of physiology, which are solved by organisms in the characteristic process of life: evolution, development, homeostasis, and adaptation. It is stated that the quasiequilibrium thermodynamics of quasiclosed complex systems serves as an impetus of evolution, functions, and activities of all levels of biological systems’ organization.This fact predetermines the use of Gibbs’ methods and leads to a hierarchical thermodynamics in all spheres of physiology. The interaction of structurally related levels and sub-levels of biological systems is determined by the thermodynamic principle of substance stability. Thus, life is accompanied by a thermodynamic optimization of physiological functions of biological systems. Living matter, while functioning and evolving, seeks the minimum of specific Gibbs free energy of structure formation at all levels. The spontaneous search of this minimum takes place with participation of not only spontaneous, but also non-spontaneous processes, initiated by the surrounding environment. The hormone optimization of the treatment of various pathologies, presented by Dr. Sergey A. Dzugan et al. demonstrates the effectiveness of their innovative medical approach.

  7. Thermodynamics of Fluids Under Flow Second Edition

    CERN Document Server

    Jou, David; Criado-Sancho, Manuel

    2011-01-01

    This is the second edition of the book “Thermodynamics of Fluids under Flow,” which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vázquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vázquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer ble...

  8. Thermodynamic data-base for metal fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho and others

    2001-05-01

    This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project.

  9. Thermodynamic data-base for metal fluorides

    International Nuclear Information System (INIS)

    Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho and others

    2001-05-01

    This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project

  10. Effects of pulling forces, osmotic pressure, condensing agents and viscosity on the thermodynamics and kinetics of DNA ejection from bacteriophages to bacterial cells: a computational study.

    Science.gov (United States)

    Petrov, Anton S; Douglas, Scott S; Harvey, Stephen C

    2013-03-20

    In this work, we report on simulations of double-stranded DNA (dsDNA) ejection from bacteriophage φ29 into a bacterial cell. The ejection was studied with a coarse-grained model, in which viral dsDNA was represented by beads on a torsion-less string. The bacteriophage's capsid and the bacterial cell were defined by sets of spherical constraints. To account for the effects of the viscous medium inside the bacterial cell, the simulations were carried out using a Langevin dynamics protocol. Our simplest simulations (involving constant viscosity and no external biasing forces) produced results compatible with the push-pull model of DNA ejection, with an ejection rate significantly higher in the first part of ejection than in the latter parts. Additionally, we performed more complicated simulations, in which we included additional factors such as external forces, osmotic pressure, condensing agents and ejection-dependent viscosity. The effects of these factors (independently and in combination) on the thermodynamics and kinetics of DNA ejection were studied. We found that, in general, the dependence of ejection forces and ejection rates on the amount of DNA ejected becomes more complex if the ejection is modeled with a broader, more realistic set of parameters and influences (such as variation in the solvent's viscosity and the application of an external force). However, certain combinations of factors and numerical parameters led to the opposition of some ejection-driving and ejection-inhibiting influences, ultimately causing an apparent simplification of the ejection profiles.

  11. Effect of combined external uniaxial stress and dc bias on the dielectric property of BaTiO3-based dielectrics in multilayer ceramic capacitor: thermodynamics and experiments

    International Nuclear Information System (INIS)

    Yang Gang; Yue Zhenxing; Sun Tieyu; Gou Huanlin; Li Longtu

    2008-01-01

    The dielectric properties of (Nb, Y)-doped BaTiO 3 in a multilayer ceramic capacitor (MLCC) under combined external uniaxial compressive stress and dc bias field were investigated at room temperature by using a modified Ginsburg-Landau-Devonshire thermodynamic theory and the dielectric measurement. It is found that although dc bias decreases the dielectric properties dominantly, the influence of the external uniaixial compressive stress should not be neglected. When applied along a direction perpendicular to the internal electrode layer in the MLCC, the external uniaixal compressive stress will strengthen the negative effect of dc bias. In contrast, the external uniaxial compressive stress along a direction parallel to the internal electrode layer in the MLCC will increase the dielectric permittivity under dc bias field, i.e. improve the ε-V response of the MLCC. Furthermore, although there is a difference between the calculated permittivity and the measured permittivity, the effects of the combined external uniaxial compressive stress and dc bias field on the dielectric permittivity described through two approaches are in good agreement

  12. Highly efficient micellar extraction of toxic picric acid into novel ionic liquid: Effect of parameters, solubilization isotherm, evaluation of thermodynamics and design parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Darshak R.; Maheria, Kalpana C. [Applied Chemistry Department, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat (India); Parikh, Jigisha K., E-mail: jk_parikh@yahoo.co.in [Chemical Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat (India)

    2015-12-30

    Highlights: • Picric acid is a toxic compound. • DIL significantly improves CPE efficiency of PA. • Higher extraction efficiency obtained in both nearly neutral and acidic condition. • The extraction process – spontaneous and endothermic in nature. - Abstract: A simple and new approach in cloud point extraction (CPE) method was developed for removal of picric acid (PA) by the addition of N,N,N,N’,N’,N’-hexaethyl-ethane-1,2-diammonium dibromide ionic liquid (IL) in non-ionic surfactant Triton X-114 (TX-114). A significant increase in extraction efficiency was found upon the addition of dicationic ionic liquid (DIL) at both nearly neutral and high acidic pH. The effects of different operating parameters such as pH, temperature, time, concentration of surfactant, PA and DIL on extraction of PA were investigated and optimum conditions were established. The extraction mechanism was also proposed. A developed Langmuir isotherm was used to compute the feed surfactant concentration required for the removal of PA up to an extraction efficiency of 90%. The effects of temperature and concentration of surfactant on various thermodynamic parameters were examined. It was found that the values of ΔG° increased with temperature and decreased with surfactant concentration. The values of ΔH° and ΔS° increased with surfactant concentration. The developed approach for DIL mediated CPE has proved to be an efficient and green route for extraction of PA from water sample.

  13. Cooling curve analysis in binary Al-Cu alloys: Part II- Effect of Cooling Rate and Grain Refinement on The Thermal and Thermodynamic Characteristics

    Directory of Open Access Journals (Sweden)

    Mehdi Dehnavi

    2015-09-01

    Full Text Available The Al-Cu alloys have been widely used in aerospace, automobile, and airplane applications. Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys for grain refinement. The cooling curve analysis (CCA has been used extensively in metal casting industry to predict microstructure constituents, grain refinement and to calculate the latent heat of solidification. The aim of this study is to investigate the effect of cooling rate and grain refinement on the thermal and thermodynamic characteristics of Al-Cu alloys by cooling curve analysis. To do this, Al-Cu alloys containing 3.7, and 4.8 wt.% Cu were melted and solidified with 0.04, 0.19, 0.42, and 1.08 K/s cooling rates. The temperature of the samples was recorded using a K thermocouple and a data acquisition system connected to a PC. Some samples were Grain refined by Al-5Ti-1B to see the effect of grain refinement on the aforementioned properties. The results show that, in a well refined alloy, nucleation will occur in a shorter time, and a undercooling approximately decreases to zero. The other results show that, with considering the cooling rate being around 0.1 °C/s, the Newtonian method is efficient in calculating the latent heat of solidification.

  14. Effect of inter-species selective interactions on the thermodynamics and nucleation free-energy barriers of a tessellating polyhedral compound

    International Nuclear Information System (INIS)

    Escobedo, Fernando A.

    2016-01-01

    The phase behavior and the homogeneous nucleation of an equimolar mixture of octahedra and cuboctahedra are studied using thermodynamic integration, Gibbs-Duhem integration, and umbrella sampling simulations. The components of this mixture are modeled as polybead objects of equal edge lengths so that they can assemble into a space-filling compound with the CsCl crystal structure. Taking as reference the hard-core system where the compound crystal does not spontaneously nucleate, we quantified the effect of inter-species selective interactions on facilitating the disorder-to-order transition. Facet selective and facet non-selective inter-species attractions were considered, and while the former was expectedly more favorable toward the target tessellating structure, the latter was found to be similarly effective in nucleating the crystal compound. Ranges for the strength of attractions and degree of supersaturation were identified where the nucleation free-energy barrier was small enough to foretell a fast process but large enough to prevent spinodal fluctuations that can trap the system in dense metastable states lacking long-range order. At those favorable conditions, the tendency toward the local orientational order favored by packing entropy is amplified and found to play a key role seeding nuclei with the CsCl structure.

  15. The discovery of thermodynamics

    Science.gov (United States)

    Weinberger, Peter

    2013-07-01

    Based on the idea that a scientific journal is also an "agora" (Greek: market place) for the exchange of ideas and scientific concepts, the history of thermodynamics between 1800 and 1910 as documented in the Philosophical Magazine Archives is uncovered. Famous scientists such as Joule, Thomson (Lord Kelvin), Clausius, Maxwell or Boltzmann shared this forum. Not always in the most friendly manner. It is interesting to find out, how difficult it was to describe in a scientific (mathematical) language a phenomenon like "heat", to see, how long it took to arrive at one of the fundamental principles in physics: entropy. Scientific progress started from the simple rule of Boyle and Mariotte dating from the late eighteenth century and arrived in the twentieth century with the concept of probabilities. Thermodynamics was the driving intellectual force behind the industrial revolution, behind the enormous social changes caused by this revolution. The history of thermodynamics is a fascinating story, which also gives insights into the mechanism that seem to govern science.

  16. Systematic vibration thermodynamic properties of bromine

    Science.gov (United States)

    Liu, G. Y.; Sun, W. G.; Liao, B. T.

    2015-11-01

    Based on the analysis of the maturity and finiteness of vibrational levels of bromine molecule in ground state and evaluating the effect on statistical computation, according to the elementary principles of quantum statistical theorem, using the full set of bromine molecular vibrational levels determined with algebra method, the statistical contribution for bromine systematical macroscopic thermodynamic properties is discussed. Thermodynamic state functions Helmholtz free energy, entropy and observable vibration heat capacity are calculated. The results show that the determination of full set of vibrational levels and maximum vibrational quantum number is the key in the correct statistical analysis of bromine systematical thermodynamic property. Algebra method results are clearly different from data of simple harmonic oscillator and the related algebra method results are no longer analytical but numerical and are superior to simple harmonic oscillator results. Compared with simple harmonic oscillator's heat capacities, the algebra method's heat capacities are more consistent with the experimental data in the given temperature range of 600-2100 K.

  17. Understanding first law of thermodynamics through activities

    Science.gov (United States)

    Pathare, Shirish; Huli, Saurabhee; Ladage, Savita; Pradhan, H. C.

    2018-03-01

    The first law of thermodynamics involves several types of energies and many studies have shown that students lack awareness of them. They have difficulties in applying the law to different thermodynamic processes. These observations were confirmed in our pilot studies, carried out with students from undergraduate colleges across the whole of India. We, then, decided to develop an activity-based module to address students’ conceptual difficulties in this area. In particular, we took up the cases of both adiabatic and isothermal compression of an ideal gas. We tested, through a two-group pre and post test design, the effectiveness of the module.

  18. Dynamic Pull-In Investigation of a Clamped-Clamped Nanoelectromechanical Beam under Ramp-Input Voltage and the Casimir Force

    Directory of Open Access Journals (Sweden)

    Amir R. Askari

    2014-01-01

    Full Text Available The influence of the Casimir excitation on dynamic pull-in instability of a nanoelectromechanical beam under ramp-input voltage is studied. The ramp-input actuation has applications in frequency sweeping of RF-N/MEMS. The presented model is nonlinear due to the inherent nonlinearity of electrostatics and the Casimir excitations as well as the geometric nonlinearity of midplane stretching. A Galerkin based reduced order modeling is utilized. It is found that the calculated dynamic pull-in ramp input voltage leads to dynamic pull-in step input voltage by increasing the slope of voltage-time diagram. This fact is utilized to verify the results of present study.

  19. Slicing the vacuum: New accelerating mirror solutions of the dynamical Casimir effect

    Science.gov (United States)

    Good, Michael R. R.; Linder, Eric V.

    2017-12-01

    Radiation from accelerating mirrors in a Minkowski spacetime provides insights into the nature of horizons, black holes, and entanglement entropy. We introduce new, simple, symmetric and analytic moving mirror solutions and study their particle, energy, and entropy production. This includes an asymptotically static case with finite emission that is the black hole analog of complete evaporation. The total energy, total entropy, total particles, and spectrum are the same on both sides of the mirror. We also study its asymptotically inertial, drifting analog (which gives a black hole remnant) to explore differences in finite and infinite production.

  20. The energy-momentum tensor, the trace identity and the Casimir effect

    Indian Academy of Sciences (India)

    The trace identity associated with the scale transformation → ′ = -ρ on the Lagrangian density for the noninteracting electromagnetic field in the covariant gauge is shown to be violated on a single plate on which the Dirichlet boundary condition (; 1, 2, 3 = -) = 0 is imposed. It is however respected in ...