WorldWideScience

Sample records for thermochemical storage systems

  1. Thermochemical Heat Storage: from Reaction Storage Density to System Storage Density

    NARCIS (Netherlands)

    Jong, A.J. de; Vliet, L.D. van; Hoegaerts, C.L.G.; Roelands, C.P.M.; Cuypers, R.

    2016-01-01

    Long-term and compact storage of solar energy is crucial for the eventual transition to a 100% renewable energy economy. For this, thermochemical materials provide a promising solution. The compactness of a long-term storage system is determined by the thermochemical reaction, operating conditions,

  2. Development of a seasonal thermochemical storage system

    NARCIS (Netherlands)

    Cuypers, R.; Maraz, N.; Eversdijk, J.; Finck, C.J.; Henquet, E.M.P.; Oversloot, H.P.; Spijker, J.C. van 't; Geus, A.C. de

    2012-01-01

    In our laboratories, a seasonal thermochemical storage system for dwellings and offices is being designed and developed. Based on a thermochemical sorption reaction, space heating, cooling and generation of domestic hot water will be achieved with up to 100% renewable energy, by using solar energy

  3. Prototype thermochemical heat storage with open reactor system

    NARCIS (Netherlands)

    Zondag, H.A.; Kikkert, B.; Smeding, S.F.; Boer, de R.; Bakker, M.

    2013-01-01

    Thermochemical (TC) heat storage is an interesting technology for future seasonal storage of solar heat in the built environment. This technology enables high thermal energy storage densities and low energy storage losses. A small-scale laboratory prototype TC storage system has been realized at

  4. Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy

    International Nuclear Information System (INIS)

    Li, Tingxian; Wang, Ruzhu; Kiplagat, Jeremiah K.; Kang, YongTae

    2013-01-01

    An innovative dual-mode thermochemical sorption energy storage method is proposed for seasonal storage of solar thermal energy with little heat losses. During the charging phase in summer, solar thermal energy is stored in form of chemical bonds resulting from thermochemical decomposition process, which enables the stored energy to be kept several months at ambient temperature. During the discharging phase in winter, the stored thermal energy is released in the form of chemical reaction heat resulting from thermochemical synthesis process. Thermodynamic analysis showed that the advanced dual-mode thermochemical sorption energy storage is an effective method for the long-term seasonal storage of solar energy. A coefficient of performance (COP h ) of 0.6 and energy density higher than 1000 kJ/kg of salt can be attained from the proposed system. During the discharging phase at low ambient temperatures, the stored thermal energy can be upgraded by use of a solid–gas thermochemical sorption heat transformer cycle. The proposed thermochemical sorption energy storage has distinct advantages over the conventional sensible heat and latent heat storage, such as higher energy storage density, little heat losses, integrated energy storage and energy upgrade, and thus it can contribute to improve the seasonal utilization of solar thermal energy. - Highlights: ► A dual-mode solid thermochemical sorption is proposed for seasonal solar thermal energy storage. ► Energy upgrade techniques into the energy storage system are integrated. ► Performance of the proposed seasonal energy storage system is evaluated. ► Energy density and COP h from the proposed system are as high as 1043 kJ/kg of salt and 0.60, respectively

  5. Thermodynamic limits on the performance of a solar thermochemical energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Lovegrove, K [Australian National Univ., Canberra (Australia). Energy Research Centre

    1993-12-01

    General expressions for the exergetic and work recovery efficiencies of thermochemical storage systems have been developed by assuming that the reaction process is the only source irreversibility within the closed-loop system. These have been used to plot contours of constant efficiency for the ammonia-based thermochemical system. The effect of spontaneous separation of mixtures due to the preferential condensation of ammonia has been examined analytically and graphically. The analysis presented represents a necessary prerequisite for the optimization of system efficiencies by reactor design. (author)

  6. Assessment of a closed thermochemical energy storage using energy and exergy methods

    International Nuclear Information System (INIS)

    Abedin, Ali Haji; Rosen, Marc A.

    2012-01-01

    Highlights: ► Thermodynamics assessments are reported for a general closed thermochemical thermal energy storage system. ► Energy and exergy efficiencies of various processes in a closed thermochemical TES are evaluated and compared. ► Understanding is enhanced of thermochemical TES technologies and their potential implementations. ► Exergy analysis is observed to be useful when applied to thermochemical TES, with or in place of energy analysis. - Abstract: Thermal energy storage (TES) is an important technology for achieving more efficient and environmentally benign energy systems. Thermochemical TES is a type of TES with the potential for high energy density and is only recently being considered intensively. To improve understanding of thermochemical TES systems and their implementation, energy and exergy analyses are beneficial. Here, thermodynamics assessments are presented for a general closed thermochemical TES system, including assessments and comparisons of the efficiencies of the overall thermochemical TES cycle and its charging, storing and discharging processes. Locations and causes of thermodynamic losses in thermochemical TES systems are being specified using exergy analysis. The analytical methodology applied in this study identifies that energy and exergy efficiencies differ for thermochemical TESs, e.g. the energy efficiency for a case study is approximately 50% while the exergy efficiency is about 10%. Although the focus is to evaluate thermodynamic efficiencies, other design parameters such as cost, and environmental impact also need to be examined in assessing thermochemical storage. The efficiencies for thermochemical TES provided here should be helpful for designing these energy systems and enhancing their future prospects.

  7. Microencapsulation of salts for enhanced thermochemical storage materials

    NARCIS (Netherlands)

    Cuypers, R.; Jong, A.J. de; Eversdijk, J.; Spijker, J.C. van 't; Oversloot, H.P.; Ingenhut, B.L.J.; Cremers, R.K.H.; Papen-Botterhuis, N.E.

    2013-01-01

    Thermochemical storage is a new and emerging long-term thermal storage for residential use (cooling, heating & domestic hot water generation), offering high thermal storage density without the need for thermal insulation during storage (Fig. 1). However, existing materials for thermochemical storage

  8. Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger

    International Nuclear Information System (INIS)

    Fopah-Lele, Armand; Rohde, Christian; Neumann, Karsten; Tietjen, Theo; Rönnebeck, Thomas; N'Tsoukpoe, Kokouvi Edem; Osterland, Thomas; Opel, Oliver

    2016-01-01

    A lab-scale thermochemical heat storage reactor was developed in the European project “thermal battery” to obtain information on the characteristics of a closed heat storage system, based on thermochemical reactions. The present type of storage is capable of re-using waste heat from cogeneration system to produce useful heat for space heating. The storage material used was SrBr 2 ·6H 2 O. Due to agglomeration or gel-like problems, a structural element was introduced to enhance vapour and heat transfer. Honeycomb heat exchanger was designed and tested. 13 dehydration-hydration cycles were studied under low-temperature conditions (material temperatures < 100 °C) for storage. Discharging was realized at water vapour pressure of about 42 mbar. Temperature evolution inside the reactor at different times and positions, chemical conversion, thermal power and overall efficiency were analysed for the selected cycles. Experimental system thermal capacity and efficiency of 65 kWh and 0.77 are respectively obtained with about 1 kg of SrBr 2 ·6H 2 O. Heat transfer fluid recovers heat at a short span of about 43 °C with an average of 22 °C during about 4 h, acceptable temperature for the human comfort (20 °C on day and 16 °C at night). System performances were obtained for a salt bed energy density of 213 kWh·m 3 . The overall heat transfer coefficient of the honeycomb heat exchanger has an average value of 147 W m −2  K −1 . Though promising results have been obtained, ameliorations need to be made, in order to make the closed thermochemical heat storage system competitive for space heating. - Highlights: • Lab-scale thermochemical heat storage is designed, constructed and tested. • The use of honeycomb heat exchanger as a heat and vapour process enhancement. • Closed system (1 kg SrBr 2 ·6H 2 O) able to give back 3/4 of initial thermal waste energy. • System storage capacity and thermal efficiency are respectively 65 kWh and 0.77.

  9. Improvement in Performance of a Thermochemical Heat Storage System by Implementing an Internal Heat Recovery System

    NARCIS (Netherlands)

    Gaeini, M.; Saris, L.; Zondag, H.A.; Rindt, C.C.M.

    A lab-scale prototype of a thermochemical heat storage system, employing a water-zeolite 13X as the working pair, is designed and optimized for providing hot tap water. During the hydration process, humid air is introduced to the packed bed reactor filled with dehydrated zeolite 13X, and the

  10. Thermochemical heat storage for high temperature applications. A review

    Energy Technology Data Exchange (ETDEWEB)

    Felderhoff, Michael [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany); Urbanczyk, Robert; Peil, Stefan [Institut fuer Energie- und Umwelttechnik e.V. (IUTA), Duisburg (Germany)

    2013-07-01

    Heat storage for high temperature applications can be performed by several heat storage techniques. Very promising heat storage methods are based on thermochemical gas solid reactions. Most known systems are metal oxide/steam (metal hydroxides), carbon dioxide (metal carbonates), and metal/hydrogen (metal hydrides) systems. These heat storage materials posses high gravimetric and volumetric heat storage densities and because of separation of the reaction products and their storage in different locations heat losses can be avoided. The reported volumetric heat storage densities are 615, 1340 and 1513 [ kWh m{sup -3}] for calcium hydroxide Ca(OH){sub 2}, calcium carbonate CaCO{sub 3} and magnesium iron hydride Mg{sub 2}FeH{sub 6} respectively. Additional demands for gas storage decrease the heat storage density, but metal hydride systems can use available hydrogen storage possibilities for example caverns, pipelines and chemical plants. (orig.)

  11. Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage.

    Science.gov (United States)

    Carrillo, A J; Sastre, D; Serrano, D P; Pizarro, P; Coronado, J M

    2016-03-21

    The barium peroxide-based redox cycle was proposed in the late 1970s as a thermochemical energy storage system. Since then, very little attention has been paid to such redox couples. In this paper, we have revisited the use of reduction-oxidation reactions of the BaO2/BaO system for thermochemical heat storage at high temperatures. Using thermogravimetric analysis, reduction and oxidation reactions were studied in order to find the main limitations associated with each process. Furthermore, the system was evaluated through several charge-discharge stages in order to analyse its possible degradation after repeated cycling. Through differential scanning calorimetry the heat stored and released were also determined. Oxidation reaction, which was found to be slower than reduction, was studied in more detail using isothermal tests. It was observed that the rate-controlling step of BaO oxidation follows zero-order kinetics, although at high temperatures a deviation from Arrhenius behaviour was observed probably due to hindrances to anionic oxygen diffusion caused by the formation of an external layer of BaO2. This redox couple was able to withstand several redox cycles without deactivation, showing reaction conversions close to 100% provided that impurities are previously eliminated through thermal pre-treatment, demonstrating the feasibility of this system for solar thermochemical heat storage.

  12. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage

    International Nuclear Information System (INIS)

    N’Tsoukpoe, Kokouvi Edem; Schmidt, Thomas; Rammelberg, Holger Urs; Watts, Beatriz Amanda; Ruck, Wolfgang K.L.

    2014-01-01

    Highlights: • We report an evaluation of the potential of salt hydrates for thermochemical storage. • Both theoretical calculations and experimental measurements using TGA/DSC are used. • Salt hydrates offer very low potential for thermochemical heat storage. • The efficiency of classical processes using salt hydrates is very low: typically 25%. • New processes are needed for the use of salt hydrates in thermochemical heat storage. - Abstract: In this paper, the potential energy storage density and the storage efficiency of salt hydrates as thermochemical storage materials for the storage of heat generated by a micro-combined heat and power (micro-CHP) have been assessed. Because salt hydrates used in various thermochemical heat storage processes fail to meet the expectations, a systematic evaluation of the suitability of 125 salt hydrates has been performed in a three-step approach. In the first step general issues such as toxicity and risk of explosion have been considered. In the second and third steps, the authors implement a combined approach consisting of theoretical calculations and experimental measurements using Thermogravimetric Analysis (TGA). Thus, application-oriented comparison criteria, among which the net energy storage density of the material and the thermal efficiency, have been used to evaluate the potential of 45 preselected salt hydrates for a low temperature thermochemical heat storage application. For an application that requires a discharging temperature above 60 °C, SrBr 2 ·6H 2 O and LaCl 3 ·7H 2 O appear to be the most promising, only from thermodynamic point of view. However, the maximum net energy storage density including the water in the water storage tank that they offer (respectively 133 kW h m −3 and 89 kW h m −3 ) for a classical thermochemical heat storage process are not attractive for the intended application. Furthermore, the thermal efficiency that would result from the storage process based on salt hydrates

  13. Performance analysis of a photovoltaic-thermochemical hybrid system prototype

    International Nuclear Information System (INIS)

    Li, Wenjia; Ling, Yunyi; Liu, Xiangxin; Hao, Yong

    2017-01-01

    Highlights: •A modular photovoltaic-thermochemical hybrid system prototype is proposed. •Net solar-electric efficiency up to 41% is achievable. •Stable solar power supply is achievable via convenient energy storage. •The modular design facilitates the scalability of the hybrid system. -- Abstract: A solar photovoltaic (PV) thermochemical hybrid system consisting of a point-focus Fresnel concentrator, a PV cell and a methanol thermochemical reactor is proposed. In particular, a reactor capable of operating under high solar concentration is designed, manufactured and tested. Studies on both kinetic and thermodynamic characteristics of the reactor and the system are performed. Analysis of numerical and experimental results shows that with cascaded solar energy utilization and synergy among different forms of energy, the hybrid system has the advantages of high net solar-electric efficiency (up to 41%), stable solar energy power supply, solar energy storage (via syngas) and flexibility in application scale. The hybrid system proposed in this work provides a potential solution to some key challenges of current solar energy utilization technologies.

  14. Thermochemical storage for long‐term low‐temperature applications : a review on current research at material and prototype scales

    NARCIS (Netherlands)

    Scapino, L.; Zondag, H.A.; van Bael, J.; Diriken, J.; Rindt, C.C.M.

    2016-01-01

    Thermochemical heat storage has the potential to store large amount of energy from renewables and other intermittent distributed sources, ideally without losses typical of sensible heat storage. owever, in order to have a commercially attractive system able to compete with conventional storage

  15. Thermochemical conversion of biomass storage covers to reduce ammonia emissions from dairy manure Thermochemical conversion of biomass storage covers to reduce ammonia emissions from dairy manure

    Science.gov (United States)

    Manure storages, and in particular those storing digested manure, are a source of ammonia (NH3) emissions. Permeable manure storage covers can reduce NH3 emissions, however performance can decline as they degrade. Thermochemical conversion of biomass through pyrolysis and steam treatment could incre...

  16. Non-equilibrium thermochemical heat storage in porous media: Part 1 – Conceptual model

    International Nuclear Information System (INIS)

    Nagel, T.; Shao, H.; Singh, A.K.; Watanabe, N.; Roßkopf, C.; Linder, M.; Wörner, A.; Kolditz, O.

    2013-01-01

    Thermochemical energy storage can play an important role in the establishment of a reliable renewable energy supply and can increase the efficiency of industrial processes. The application of directly permeated reactive beds leads to strongly coupled mass and heat transport processes that also determine reaction kinetics. To advance this technology beyond the laboratory stage requires a thorough theoretical understanding of the multiphysics phenomena and their quantification on a scale relevant to engineering analyses. Here, the theoretical derivation of a macroscopic model for multicomponent compressible gas flow through a porous solid is presented along with its finite element implementation where solid–gas reactions occur and both phases have individual temperature fields. The model is embedded in the Theory of Porous Media and the derivation is based on the evaluation of the Clausius–Duhem inequality. Special emphasis is placed on the interphase coupling via mass, momentum and energy interaction terms and their effects are partially illustrated using numerical examples. Novel features of the implementation of the described model are verified via comparisons to analytical solutions. The specification, validation and application of the full model to a calcium hydroxide/calcium oxide based thermochemical storage system are the subject of part 2 of this study. - Highlights: • Rigorous application of the Theory of Porous Media and the 2nd law of thermodynamics. • Thermodynamically consistent model for thermochemical heat storage systems. • Multicomponent gas; modified Fick's and Darcy's law; thermal non-equilibrium; solid–gas reactions. • Clear distinction between source and production terms. • Open source finite element implementation and benchmarks

  17. Investigation of innovative thermochemical energy storage processes and materials for building applications

    OpenAIRE

    Aydin, Devrim

    2016-01-01

    In this study, it is aimed to develop an innovative thermochemical energy storage system through material, reactor and process based investigations for building space heating applications. The developed system could be integrated with solar thermal collectors, photovoltaic panels or heat pumps to store any excess energy in the form of heat for later use. Thereby, it is proposed to address the problem of high operational costs and CO2 emissions released by currently used fossil fuel based heat...

  18. Thermochemical Storage of Middle Temperature Wasted Heat by Functionalized C/Mg(OH2 Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Emanuela Mastronardo

    2017-01-01

    Full Text Available For the thermochemical performance implementation of Mg(OH2 as a heat storage medium, several hybrid materials have been investigated. For this study, high-performance hybrid materials have been developed by exploiting the authors’ previous findings. Expanded graphite (EG/carbon nanotubes (CNTs-Mg(OH2 hybrid materials have been prepared through Mg(OH2 deposition-precipitation over functionalized, i.e., oxidized, or un-functionalized EG or CNTs. The heat storage performances of the carbon-based hybrid materials have been investigated through a laboratory-scale experimental simulation of the heat storage/release cycles, carried out by a thermogravimetric apparatus. This study offers a critical evaluation of the thermochemical performances of developed materials through their comparison in terms of heat storage and output capacities per mass and volume unit. It was demonstrated that both EG and CNTs improves the thermochemical performances of the storage medium in terms of reaction rate and conversion with respect to pure Mg(OH2. With functionalized EG/CNTs-Mg(OH2, (i the potential heat storage and output capacities per mass unit of Mg(OH2 have been completely exploited; and (ii higher heat storage and output capacities per volume unit were obtained. That means, for technological applications, as smaller volume at equal stored/released heat.

  19. Experimental results of a 3 k Wh thermochemical heat storage module for space heating application

    NARCIS (Netherlands)

    Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; Jong, A.J. de; Cuypers, R.; Spijker, J.C. van 't

    2014-01-01

    A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span

  20. Final Report UCLA-Thermochemical Storage with Anhydrous Ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Lavine, Adrienne [Univ. of California, Los Angeles, CA (United States)

    2018-02-05

    In ammonia-based thermochemical energy storage (TCES), ammonia is dissociated endothermically as it absorbs solar energy during the daytime. When energy is required, the reverse reaction releases energy to heat a working fluid such as steam, to produce electricity. Ammonia-based TCES has great advantages of simplicity, low cost reactants, and a strong industrial base in the conventional ammonia industry. The concept has been demonstrated over three decades of research at Australian National University, achieving a 24-hour demonstration of a complete system. At the start of this project, three challenges were identified that would have to be addressed to show that the system is technically and economically viable for incorporation into a CSP plant with an advanced, high temperature power block. All three of these challenges have now been addressed: 1. The ammonia synthesis reaction had not, to our knowledge, been carried out at temperatures consistent with modern power blocks (i.e., ~650°C). The technical feasibility of operating a reactor under high-temperature, near-equilibrium conditions was an unknown, and was therefore a technical risk. The project has successfully demonstrated steam heating to 650°C and energy recovery to steam at the 5 kWt level. 2. The ammonia system has a relatively low enthalpy of reaction combined with gas phase reactants. This is not a direct disadvantage since the reactants themselves are low cost. The challenge lies in storing the required volume of reactants cost effectively. Therefore, a second key goal was to show, through techno-economic analysis, that underground storage technologies can be used to store the energy-rich gas at a cost that is consistent with the SunShot cost goal. We have identified two promising technologies for gas storage: storage in salt caverns has an estimated cost of 1(USD)/kWht and storage in drilled shafts could be on the order of 7(USD)/kWht. Together these two options answer the technical challenge

  1. Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO3/SrO Supported on SrZrO3.

    Science.gov (United States)

    Rhodes, Nathan R; Barde, Amey; Randhir, Kelvin; Li, Like; Hahn, David W; Mei, Renwei; Klausner, James F; AuYeung, Nick

    2015-11-01

    Solar thermochemical energy storage has enormous potential for enabling cost-effective concentrated solar power (CSP). A thermochemical storage system based on a SrO/SrCO3 carbonation cycle offers the ability to store and release high temperature (≈1200 °C) heat. The energy density of SrCO3/SrO systems supported by zirconia-based sintering inhibitors was investigated for 15 cycles of exothermic carbonation at 1150 °C followed by decomposition at 1235 °C. A sample with 40 wt % of SrO supported by yttria-stabilized zirconia (YSZ) shows good energy storage stability at 1450 MJ m(-3) over fifteen cycles at the same cycling temperatures. After further testing over 45 cycles, a decrease in energy storage capacity to 1260 MJ m(-3) is observed during the final cycle. The decrease is due to slowing carbonation kinetics, and the original value of energy density may be obtained by lengthening the carbonation steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A review on the properties of salt hydrates for thermochemical storage

    NARCIS (Netherlands)

    Trausel, F.; Jong, A.J. de; Cuypers, R.

    2014-01-01

    Solar energy is capable of supplying enough energy to answer the total demand of energy in dwellings. However, because of the discrepancy between energy supply and energy demand, an efficient way of storing thermal energy is crucial. Thermochemical storage of heat in salt hydrates provides an

  3. Thermal energy storage using thermo-chemical heat pump

    International Nuclear Information System (INIS)

    Hamdan, M.A.; Rossides, S.D.; Haj Khalil, R.

    2013-01-01

    Highlights: ► Understanding of the performance of thermo chemical heat pump. ► Tool for storing thermal energy. ► Parameters that affect the amount of thermal stored energy. ► Lithium chloride has better effect on storing thermal energy. - Abstract: A theoretical study was performed to investigate the potential of storing thermal energy using a heat pump which is a thermo-chemical storage system consisting of water as sorbet, and sodium chloride as the sorbent. The effect of different parameters namely; the amount of vaporized water from the evaporator, the system initial temperature and the type of salt on the increase in temperature of the salt was investigated and hence on the performance of the thermo chemical heat pump. It was found that the performance of the heat pump improves with the initial system temperature, with the amount of water vaporized and with the water remaining in the system. Finally it was also found that lithium chloride salt has higher effect on the performance of the heat pump that of sodium chloride.

  4. Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, Santosh [Southern Research Inst., Durham, NC (United States); Muto, Andrew [Southern Research Inst., Durham, NC (United States)

    2017-08-30

    Southern Research has developed a thermochemical energy storage (TCES) technology that utilizes the endothermic-exothermic reversible carbonation of calcium oxide (lime) to store thermal energy at high-temperatures, such as those achieved by next generation concentrating solar power (CSP) facilities. The major challenges addressed in the development of this system include refining a high capacity, yet durable sorbent material and designing a low thermal resistance low-cost heat exchanger reactor system to move heat between the sorbent and a heat transfer fluid under conditions relevant for CSP operation (e.g., energy density, reaction kinetics, heat flow). The proprietary stabilized sorbent was developed by Precision Combustion, Inc. (PCI). A factorial matrix of sorbent compositions covering the design space was tested using accelerated high throughput screening in a thermo-gravimetric analyzer. Several promising formulations were selected for more thorough evaluation and one formulation with high capacity (0.38 g CO2/g sorbent) and durability (>99.7% capacity retention over 100 cycles) was chosen as a basis for further development of the energy storage reactor system. In parallel with this effort, a full range of currently available commercial and developmental heat exchange reactor systems and sorbent loading methods were examined through literature research and contacts with commercial vendors. Process models were developed to examine if a heat exchange reactor system and balance of plant can meet required TCES performance and cost targets, optimizing tradeoffs between thermal performance, exergetic efficiency, and cost. Reactor types evaluated included many forms, from microchannel reactor, to diffusion bonded heat exchanger, to shell and tube heat exchangers. The most viable design for application to a supercritical CO2 power cycle operating at 200-300 bar pressure and >700°C was determined to be a combination of a diffusion bonded heat

  5. Thermochemical storage for CSP via redox structured reactors/heat exchangers: The RESTRUCTURE project

    Science.gov (United States)

    Karagiannakis, George; Pagkoura, Chrysoula; Konstandopoulos, Athanasios G.; Tescari, Stefania; Singh, Abhishek; Roeb, Martin; Lange, Matthias; Marcher, Johnny; Jové, Aleix; Prieto, Cristina; Rattenbury, Michael; Chasiotis, Andreas

    2017-06-01

    The present work provides an overview of activities performed in the framework of the EU-funded collaborative project RESTRUCTURE, the main goal of which was to develop and validate a compact structured reactor/heat exchanger for thermochemical storage driven by 2-step high temperature redox metal oxide cycles. The starting point of development path included redox materials qualification via both theoretical and lab-scale experimental studies. Most favorable compositions were cobalt oxide/alumina composites. Preparation of small-scale structured bodies included various approaches, ranging from perforated pellets to more sophisticated honeycomb geometries, fabricated by extrusion and coating. Proof-of-concept of the proposed novel reactor/heat exchanger was successfully validated in small-scale structures and the next step included scaling up of redox honeycombs production. Significant challenges were identified for the case of extruded full-size bodies and the final qualified approach related to preparation of cordierite substrates coated with cobalt oxide. The successful experimental evaluation of the pilot reactor/heat exchanger system constructed motivated the preliminary techno-economic evaluation of the proposed novel thermochemical energy storage concept. Taking into account experimental results, available technologies and standard design aspects a model for a 70.5 MWe CSP plant was defined. Estimated LCOE costs were calculated to be in the range of reference values for Combined Cycle Power Plants operated by natural gas. One of main cost contributors was the storage system itself, partially due to relatively high cost of cobalt oxide. This highlighted the need to identify less costly and equally efficient to cobalt oxide redox materials.

  6. A solar receiver-storage modular cascade based on porous ceramic structures for hybrid sensible/thermochemical solar energy storage

    OpenAIRE

    Agrafiotis, Christos; de Oliveira, Lamark; Roeb, Martin; Sattler, Christian

    2016-01-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. The technology is operationally simple; however its storage capacity is limited to 1.5 hours. An idea for extending this capacity is to render this storage concept from “purely” sensible to “hybrid” sensible/ thermochemical one, via coating...

  7. A solar receiver-storage modular cascade based on porous ceramic structures for hybrid sensible/thermochemical solar energy storage

    Science.gov (United States)

    Agrafiotis, Christos; de Oliveira, Lamark; Roeb, Martin; Sattler, Christian

    2016-05-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. The technology is operationally simple; however its storage capacity is limited to 1.5 hours. An idea for extending this capacity is to render this storage concept from "purely" sensible to "hybrid" sensible/ thermochemical one, via coating the porous heat exchange modules with oxides of multivalent metals for which their reduction/oxidation reactions are accompanied by significant heat effects, or by manufacturing them entirely of such oxides. In this way solar heat produced during on-sun operation can be used (in addition to sensibly heating the porous solid) to power the endothermic reduction of the oxide from its state with the higher metal valence to that of the lower; the thermal energy can be entirely recovered by the reverse exothermic oxidation reaction (in addition to sensible heat) during off-sun operation. Such sensible and thermochemical storage concepts were tested on a solar-irradiated receiver- heat storage module cascade for the first time. Parametric studies performed so far involved the comparison of three different SiC-based receivers with respect to their capability of supplying solar-heated air at temperatures sufficient for the reduction of the oxides, the effect of air flow rate on the temperatures achieved within the storage module, as well as the comparison of different porous storage media made of cordierite with respect to their sensible storage capacity.

  8. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  9. Utilization of salt ammoniacates in fluidized beds in energy conversion thermochemical systems

    International Nuclear Information System (INIS)

    Romero, Jesus

    1984-01-01

    This research thesis notably reports the design and development of a thermochemical storage device involving equilibria of thermal decomposition of ammoniacates of strontium chlorides and calcium chloride in fluidized beds. The experimental study of this device allowed operating conditions and the most important concomitant effects of fluidization to be highlighted. The measured thermal exchange coefficient is about twenty times the measured value in equivalent devices using fixed beds. An irreversibility of the operation has been noticed, and seems to be associated with the irreversible change of grain size of solids. The author also reports a study of the properties of ammoniacates of metallic salts, and of the influence of fluidization on the performance of energy conversion thermochemical systems [fr

  10. Salt impregnated desiccant matrices for ‘open’ thermochemical energy conversion and storage – Improving energy density utilisation through hygrodynamic & thermodynamic reactor design

    International Nuclear Information System (INIS)

    Casey, Sean P.; Aydin, Devrim; Elvins, Jon; Riffat, Saffa

    2017-01-01

    Highlights: • A selection of sorbents were tested for open thermochemical heat storage. • Sorbent performances were experimentally compared in two different reactors. • SIM-3a provided the best cyclic behaviour and thermal performance. • Using meshed tube air diffusers improves sorption heat storage performance. • A linear correlation between heat output and moisture uptake was obtained. - Abstract: In this study, the performance of three nano-composite energy storage absorbents; Vermiculite-CaCl_2 (SIM-3a), Vermiculite-CaCl_2-LiNO_3 (SIM-3f), and the desiccant Zeolite 13X were experimentally investigated for suitability to domestic scale thermal energy storage. A novel 3 kWh open thermochemical reactor consisting of new meshed tube air diffusers was built to experimentally examine performance. The results were compared to those obtained using a previously developed flatbed experimental reactor. SIM-3a has the best cyclic behaviour and thermal performance. It was found that 0.01 m"3 of SIM-3a can provide an average temperature lift of room air, ΔT = 20 °C over 180 min whereas for SIM-3f, ΔT < 15 °C was achieved. Zeolite provided high sorption heat in close approximation with SIM-3a, however, the higher desorption temperature requirements coupled with poor cyclic ability remain as obstacles to the roll out this material commercially. The study results clearly show that the concept of using perforated tubes embedded inside the heat storage material significantly improves performance by enhancing the contact surface area between air → absorbent whilst increasing vapour diffusion. The results suggest a linear correlation between thermal performance and moisture uptake, ΔT–Δw. Determining these operating lines will prove useful for predicting achievable temperature lift and also for effective design and control of thermochemical heat storage systems.

  11. Thermochemical seasonal solar heat storage in salt hydrates for residential applications - Influence of the water vapor pressure on the desorption kinetics of MgSO4.7H2O

    NARCIS (Netherlands)

    Ferchaud, C.; Scherpenborg, R.A.A.; Zondag, H.A.; Boer, de R.

    2013-01-01

    An interesting thermochemical material for compact seasonal heat storage is magnesium sulfate heptahydrate MgSO4.7H2O. Previous studies in the field showed that this material presents a storage energy density of 1 GJ/m3 when the material is built in a TC storage system with a 50% porosity packed bed

  12. Energetic optimization of a solar thermochemical energy storage system subject to real constraints

    Energy Technology Data Exchange (ETDEWEB)

    Lovegrove, K [Australian National Univ., Canberra (Australia). Energy Research Centre

    1993-12-01

    An approach to the optimization of a solar energy conversion system which involves treating the system as a series of subsystems, each having a single cost determining variable, is proposed. The application to an ammonia-based thermochemical system with direct work output is discussed and possible subsystems are identified. The subsystem consisting of the exothermic reactor has been studied in detail. For this subsystem, the ratio of available catalyst volume to thermal power level is held constant whilst the exergetic efficiency is maximized. Results are presented from a determination of optimized reaction paths using dynamic programming techniques. (author)

  13. Thermochemical Characterizations of Novel Vermiculite-LiCl Composite Sorbents for Low-Temperature Heat Storage

    Directory of Open Access Journals (Sweden)

    Yannan Zhang

    2016-10-01

    Full Text Available To store low-temperature heat below 100 °C, novel composite sorbents were developed by impregnating LiCl into expanded vermiculite (EVM in this study. Five kinds of composite sorbents were prepared using different salt concentrations, and the optimal sorbent for application was selected by comparing both the sorption characteristics and energy storage density. Textural properties of composite sorbents were obtained by extreme-resolution field emission scanning electron microscopy (ER-SEM and an automatic mercury porosimeter. After excluding two composite sorbents which would possibly exhibit solution leakage in practical thermal energy storage (TES system, thermochemical characterizations were implemented through simulative sorption experiments at 30 °C and 60% RH. Analyses of thermogravimetric analysis/differential scanning calorimetry (TGA/DSC curves indicate that water uptake of EVM/LiCl composite sorbents is divided into three parts: physical adsorption of EVM, chemical adsorption of LiCl crystal, and liquid–gas absorption of LiCl solution. Energy storage potential was evaluated by theoretical calculation based on TGA/DSC curves. Overall, EVMLiCl20 was selected as the optimal composite sorbent with water uptake of 1.41 g/g, mass energy storage density of 1.21 kWh/kg, and volume energy storage density of 171.61 kWh/m3.

  14. The SERI solar energy storage program

    Science.gov (United States)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-01-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  15. Thermodynamic analysis of a combined-cycle solar thermal power plant with manganese oxide-based thermochemical energy storage

    Science.gov (United States)

    Lei, Qi; Bader, Roman; Kreider, Peter; Lovegrove, Keith; Lipiński, Wojciech

    2017-11-01

    We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750-1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5-6 times smaller than those of state-of-the-art molten salt systems.

  16. Sustainable energy with thermochemical storage; Duurzame energie met thermochemische opslag

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, M. [ECN Efficiency and Infrastructure, Petten (Netherlands)

    2010-03-15

    The Energy research Centre of the Netherlands ECN) foresees an important role for heat in sustainable construction of buildings. Using salt hydrates the surplus of heat can be stored in the summer which then can be used in the winter. By means of thermochemical storage natural gas for heating tap water or houses is no longer necessary. [Dutch] Energieonderzoek Centrum Nederland (ECN) ziet voor warmteopslag een belangrijke rol weggelegd in het duurzaam bouwen. Met behulp van zouthydraten kan de overtollige warmte in de zomer opgeslagen worden om deze in de winter weer vrij te maken. Met deze thermochemische opslag is in de nabije toekomst aardgas overbodig voor de verwarming van kraanwater of woonhuis.

  17. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bunsen [General Atomics, San Diego, CA (United States)

    2014-11-01

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  18. Thermodynamic analysis of a combined-cycle solar thermal power plant with manganese oxide-based thermochemical energy storage

    Directory of Open Access Journals (Sweden)

    Lei Qi

    2017-01-01

    Full Text Available We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750–1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5–6 times smaller than those of state-of-the-art molten salt systems.

  19. System and process for producing fuel with a methane thermochemical cycle

    Science.gov (United States)

    Diver, Richard B.

    2015-12-15

    A thermochemical process and system for producing fuel are provided. The thermochemical process includes reducing an oxygenated-hydrocarbon to form an alkane and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. Another thermochemical process includes reducing a metal oxide to form a reduced metal oxide, reducing an oxygenated-hydrocarbon with the reduced metal oxide to form an alkane, and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. The system includes a reformer configured to perform a thermochemical process.

  20. Application of lithium orthosilicate for high-temperature thermochemical energy storage

    International Nuclear Information System (INIS)

    Takasu, Hiroki; Ryu, Junichi; Kato, Yukitaka

    2017-01-01

    Highlights: • Li_4SiO_4/CO_2 system is proposed for use in chemical heat pump systems at 650 and 700 °C. • Li_4SiO_4/CO_2 system showed an enough cyclic reaction durability for 5 cycles. • The energy storage density of Li_4SiO_4 was estimated to be 750 kJ L"−"1 and 780 kJ kg"−"1. • It was demonstrated that Li_4SiO_4 could be used as a thermal heat storage material. - Abstract: A lithium orthosilicate/carbon dioxide (Li_4SiO_4/CO_2) reaction system is proposed for use in thermochemical energy storage (TcES) and chemical heat pump (CHP) systems at around 700 °C. Carbonation of Li_4SiO_4 exothermically produces lithium carbonate (Li_2CO_3) and lithium metasilicate (Li_2SiO_3). Decarbonation of these products is used for heat storage, and carbonation is used for heat output in a TcES system. A Li_4SiO_4 sample around 20 μm in diameter was prepared from Li_2CO_3 and SiO_2 using a solid-state reaction method. To determine the reactivity of the sample, Li_4SiO_4 carbonation and decarbonation experiments were conducted under CO_2 at several pressures in a closed reactor using thermogravimetric analysis. The Li_4SiO_4 sample’s carbonation and decarbonation performance was sufficient for use as a TcES material at around 700 °C. In addition, both reaction temperatures of Li_4SiO_4 varied with the CO_2 pressure. The durability under repeated Li_4SiO_4 carbonation and decarbonation was tested using temperature swing and pressure swing methods. Both methods showed that the Li_4SiO_4 sample has sufficient durability. These results indicate that the temperature for heat storage and heat output by carbonation and decarbonation, respectively, could be controlled by controlling the CO_2 pressure. Li_4SiO_4/CO_2 can be used not only for TcES but also in CHPs. The volumetric and gravimetric thermal energy densities of Li_4SiO_4 for TcES were found to be 750 kJ L"−"1 and 780 kJ kg"−"1, where the porosity of Li_4SiO_4 was assumed to be 59%. When the reaction system

  1. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  2. The influence of gas–solid reaction kinetics in models of thermochemical heat storage under monotonic and cyclic loading

    International Nuclear Information System (INIS)

    Nagel, T.; Shao, H.; Roßkopf, C.; Linder, M.; Wörner, A.; Kolditz, O.

    2014-01-01

    Highlights: • Detailed analysis of cyclic and monotonic loading of thermochemical heat stores. • Fully coupled reactive heat and mass transport. • Reaction kinetics can be simplified in systems limited by heat transport. • Operating lines valid during monotonic and cyclic loading. • Local integral degree of conversion to capture heterogeneous material usage. - Abstract: Thermochemical reactions can be employed in heat storage devices. The choice of suitable reactive material pairs involves a thorough kinetic characterisation by, e.g., extensive thermogravimetric measurements. Before testing a material on a reactor level, simulations with models based on the Theory of Porous Media can be used to establish its suitability. The extent to which the accuracy of the kinetic model influences the results of such simulations is unknown yet fundamental to the validity of simulations based on chemical models of differing complexity. In this article we therefore compared simulation results on the reactor level based on an advanced kinetic characterisation of a calcium oxide/hydroxide system to those obtained by a simplified kinetic model. Since energy storage is often used for short term load buffering, the internal reactor behaviour is analysed under cyclic partial loading and unloading in addition to full monotonic charge/discharge operation. It was found that the predictions by both models were very similar qualitatively and quantitatively in terms of thermal power characteristics, conversion profiles, temperature output, reaction duration and pumping powers. Major differences were, however, observed for the reaction rate profiles themselves. We conclude that for systems not limited by kinetics the simplified model seems sufficient to estimate the reactor behaviour. The degree of material usage within the reactor was further shown to strongly vary under cyclic loading conditions and should be considered when designing systems for certain operating regimes

  3. Thermal energy storage technologies for sustainability systems design, assessment and applications

    CERN Document Server

    Kalaiselvam, S

    2014-01-01

    Thermal Energy Storage Technologies for Sustainability is a broad-based overview describing the state-of-the-art in latent, sensible, and thermo-chemical energy storage systems and their applications across industries. Beginning with a discussion of the efficiency and conservation advantages of balancing energy demand with production, the book goes on to describe current state-of-the art technologies. Not stopping with description, the authors also discuss design, modeling, and simulation of representative systems, and end with several case studies of systems in use.Describes how thermal energ

  4. Thermodynamics and performance of the Mg-H-F system for thermochemical energy storage applications.

    Science.gov (United States)

    Tortoza, Mariana S; Humphries, Terry D; Sheppard, Drew A; Paskevicius, Mark; Rowles, Matthew R; Sofianos, M Veronica; Aguey-Zinsou, Kondo-Francois; Buckley, Craig E

    2018-01-24

    Magnesium hydride (MgH 2 ) is a hydrogen storage material that operates at temperatures above 300 °C. Unfortunately, magnesium sintering occurs above 420 °C, inhibiting its application as a thermal energy storage material. In this study, the substitution of fluorine for hydrogen in MgH 2 to form a range of Mg(H x F 1-x ) 2 (x = 1, 0.95, 0.85, 0.70, 0.50, 0) composites has been utilised to thermodynamically stabilise the material, so it can be used as a thermochemical energy storage material that can replace molten salts in concentrating solar thermal plants. These materials have been studied by in situ synchrotron X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, temperature-programmed-desorption mass spectrometry and Pressure-Composition-Isothermal (PCI) analysis. Thermal analysis has determined that the thermal stability of Mg-H-F solid solutions increases proportionally with fluorine content, with Mg(H 0.85 F 0.15 ) 2 having a maximum rate of H 2 desorption at 434 °C, with a practical hydrogen capacity of 4.6 ± 0.2 wt% H 2 (theoretical 5.4 wt% H 2 ). An extremely stable Mg(H 0.43 F 0.57 ) 2 phase is formed upon the decomposition of each Mg-H-F composition of which the remaining H 2 is not released until above 505 °C. PCI measurements of Mg(H 0.85 F 0.15 ) 2 have determined the enthalpy (ΔH des ) to be 73.6 ± 0.2 kJ mol -1 H 2 and entropy (ΔS des ) to be 131.2 ± 0.2 J K -1 mol -1 H 2 , which is slightly lower than MgH 2 with ΔH des of 74.06 kJ mol -1 H 2 and ΔS des = 133.4 J K -1 mol -1 H 2 . Cycling studies of Mg(H 0.85 F 0.15 ) 2 over six absorption/desorption cycles between 425 and 480 °C show an increased usable cycling temperature of ∼80 °C compared to bulk MgH 2 , increasing the thermal operating temperatures for technological applications.

  5. Probing cycle stability and reversibility in thermochemical energy storage – CaC_2O_4·H_2O as perfect match?

    International Nuclear Information System (INIS)

    Knoll, Christian; Müller, Danny; Artner, Werner; Welch, Jan M.; Werner, Andreas; Harasek, Michael; Weinberger, Peter

    2017-01-01

    Highlights: • CaC_2O_4·H_2O dehydration is fully reversible between 25 °C and 200 °C. • Isothermal cycling between hydrate and anhydrate phase can be triggered by the water vapour concentration. • High reaction rates and full reversibility demonstrated over 100 cycles. • Material shows no ageing effects or reactivity decrease. - Abstract: The dehydration and subsequent rehydration of calcium oxalate monohydrate has yet to find application in thermochemical energy storage. Unlike for many other salt hydrates, complete reversibility of the dehydration-rehydration reaction was observed. Additionally, it was found that the rehydration temperature is strongly affected by the water vapour concentration: Full reversibility is not only achieved at room-temperature, but, depending on the water vapour concentration, at up to 200 °C. This allows isothermal switching of the material between charging and discharging by a change of the H_2O-partial pressure. Cycle stability of the material was tested by a long-term stress experiment involving 100 charging and discharging cycles. No signs of material fatigue or reactivity loss were found. In-situ powder X-ray diffraction showed complete rehydration of the material within 300 s. The experimental findings indicate that the CaC_2O_4·H_2O/CaC_2O_4 system is perfectly suited for technical application as a thermochemical energy storage medium.

  6. Efficient energy storage in liquid desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Hublitz, Astrid

    2008-07-18

    Liquid Desiccant Cooling Systems (LDCS) are open loop sorption systems for air conditioning that use a liquid desiccant such as a concentrated salt solution to dehumidify the outside air and cool it by evaporative cooling. Thermochemical energy storage in the concentrated liquid desiccant can bridge power mismatches between demand and supply. Low-flow LDCS provide high energy storage capacities but are not a state-of-the-art technology yet. The key challenge remains the uniform distribution of the liquid desiccant on the heat and mass transfer surfaces. The present research analyzes the factors of influence on the energy storage capacity by simulation of the heat and mass transfer processes and specifies performance goals for the distribution of the process media. Consequently, a distribution device for the liquid desiccant is developed that reliably meets the performance goals. (orig.)

  7. High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power, CRADA Number: CRD-14-554

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-05

    As part of a Federal Opportunity Announcement (FOA) Award, the project will be led by Colorado School of Mines (CSM) to explore and demonstrate the efficacy of highly reducible, redox-stable oxides to provide efficient thermochemical energy storage for heat release at temperatures of 900 degrees Celcius or more. NREL will support the material development for its application in a concentrating solar power (CSP) plant. In the project, NREL will provide its inventive system design, chemical looping for CSP, and use it as a platform to accommodate the chemical processes using a cost effective perovskite materials identified by CSM. NREL will design a 5-10kW particle receiver for perovskite reduction to store solar energy and help the development of a fluidized-bed reoxidation reactor and system integration. NREL will develop the demonstration receiver for on-sun test in the 5-10 kWt range in NREL's high flux solar furnace. NREL will assist in system analysis and provide techno-economic inputs for the overall system configuration.

  8. Solar thermochemical processing system and method

    Science.gov (United States)

    Wegeng, Robert S.; Humble, Paul H.; Krishnan, Shankar; Leith, Steven D.; Palo, Daniel R.; Dagle, Robert A.

    2018-04-24

    A solar thermochemical processing system is disclosed. The system includes a first unit operation for receiving concentrated solar energy. Heat from the solar energy is used to drive the first unit operation. The first unit operation also receives a first set of reactants and produces a first set of products. A second unit operation receives the first set of products from the first unit operation and produces a second set of products. A third unit operation receives heat from the second unit operation to produce a portion of the first set of reactants.

  9. Development and thermochemical characterizations of vermiculite/SrBr_2 composite sorbents for low-temperature heat storage

    International Nuclear Information System (INIS)

    Zhang, Y.N.; Wang, R.Z.; Zhao, Y.J.; Li, T.X.; Riffat, S.B.; Wajid, N.M.

    2016-01-01

    Novel EVM/SrBr_2 composite sorbents with different salt contents were developed for low-temperature thermal energy storage (TES). Simulative sorption experiment was conducted to obtain the sorption kinetics diagram and identify threshold salt content that composite sorbents can hold without solution leakage. Distribution of salt embedded in EVM was observed by extreme-resolution scanning electron microscopy (ER-SEM). Thermochemical characterizations including desorption performance and desorption heat were fully investigated by analyzing simultaneous thermal analyzer (STA) results. Results reveal that sorption process of composite sorbents is divided into three parts: water adsorption of EVM, water adsorption of SrBr_2 crystal and liquid-gas absorption of SrBr_2 solution. Since SrBr_2 solution can be hold in macrospores of EVM, water uptake and energy storage density are greatly increased. It appears that the composite sorbent of EVMSrBr_240 is a promising material for thermal energy storage, with water uptake of 0.53 g/g, mass energy storage density of 0.46 kWh/kg and volume energy storage density of 105.36 kWh/m"3. - Highlights: • Vermiculite/SrBr_2 composite sorbents were developed for thermal energy storage. • Water uptake of composite sorbents is divided into three phases. • Energy storage density of each sorption phase is evaluated via calculations. • EVMSrBr_240 is chosen as optimal sorbent without solution leakage.

  10. CFD Studies on Biomass Thermochemical Conversion

    Directory of Open Access Journals (Sweden)

    Lifeng Yan

    2008-06-01

    Full Text Available Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.

  11. High temperature energy storage performances of methane reforming with carbon dioxide in a tubular packed reactor

    International Nuclear Information System (INIS)

    Lu, Jianfeng; Chen, Yuan; Ding, Jing; Wang, Weilong

    2016-01-01

    Highlights: • Energy storage of methane reforming in a tubular packed reactor is investigated. • Thermochemical storage efficiency approaches maximum at optimal temperature. • Sensible heat and heat loss play important roles in the energy storage system. • The reaction and energy storage models of methane reforming reactor are established. • The simulated methane conversion and energy storage efficiency fit with experiments. - Abstract: High temperature heat transfer and energy storage performances of methane reforming with carbon dioxide in tubular packed reactor are investigated under different operating conditions. Experimental results show that the methane reforming in tubular packed reactor can efficiently store high temperature thermal energy, and the sensible heat and heat loss besides thermochemical energy storage play important role in the total energy storage process. When the operating temperature is increased, the thermochemical storage efficiency first increases for methane conversion rising and then decreases for heat loss rising. As the operating temperate is 800 °C, the methane conversion is 79.6%, and the thermochemical storage efficiency and total energy efficiency can be higher than 47% and 70%. According to the experimental system, the flow and reaction model of methane reforming is established using the laminar finite-rate model and Arrhenius expression, and the simulated methane conversion and energy storage efficiency fit with experimental data. Along the flow direction, the fluid temperature in the catalyst bed first decreases because of the endothermic reaction and then increases for the heat transfer from reactor wall. As a conclusion, the maximum thermochemical storage efficiency will be obtained under optimal operating temperature and optimal flow rate, and the total energy efficiency can be increased by the increase of bed conductivity and decrease of heat loss coefficient.

  12. An experimental investigation to assess the potential of using MgSO4 impregnation and Mg2+ ion exchange to enhance the performance of 13X molecular sieves for interseasonal domestic thermochemical energy storage

    International Nuclear Information System (INIS)

    Mahon, Daniel; Claudio, Gianfranco; Eames, Philip C.

    2017-01-01

    Highlights: • Mg 2+ ion exchange used to enhance the energy storage potential of 13× pellets. • 13× molecular sieves do not allow the hydration of impregnated MgSO 4 . • Zeolite-Y allows for the hydration of impregnated MgSO 4 . • Ion exchange time period impacts the percentage of ion exchange completion. - Abstract: The need to develop renewable heat sources for domestic space heating is a well known problem, for solar thermal systems mismatch between generation and load is a major issue, and thermochemical interseasonal heat storage offers a solution to this problem. Recent research has shown that using an absorbent material as a host for salt hydrates can be advantageous in achieving a high energy density material while alleviating the problematic practical characteristics, such as agglomeration, which salt hydrates typically possess. In this paper results are presented for a 13X molecular sieve which was tested to determine its potential for interseasonal domestic thermochemical energy storage alone and as a host material for Magnesium Sulfate (MgSO 4 ). Two different impregnation preparation methods have been utilised in our experiments, (i) a wetness impregnation method and (ii) a new method in which 13X molecular sieve powders and MgSO 4 are formed into pellets with use of a binder. The materials produced by each method were tested against each other and compared to a zeolite-Y material to assess which is the best candidate material for thermal energy storage. The impact of ion exchange on the energy storage potential of the 13X materials was also investigated. Analysis of the materials characteristics and thermal performance was conducted using a Differential Scanning Calorimeter (DSC), Thermogravimetric Analyser (TGA) coupled with a Residual Gas Analyser (RGA), Scanning Electron Microscope (SEM) with Energy Dispersive X-ray (EDX) spectroscopy and a custom built fixed bed 200 g in-situ hydration and dehydration chamber to assess the materials

  13. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  14. Economic evaluations of fusion-based energy storage systems in an electric utility

    International Nuclear Information System (INIS)

    Hwang, W.G.

    1977-01-01

    The feasibility of introducing a fusion energy storage system, which consists of a fusion-fission reactor and a water-splitting process, in an electric utility was investigated. The fusion energy storage system was assumed to be run during off-peak periods in order to make use of unused, low fuel cost capacity of an electric utility. The fusion energy storage system produces both fissile fuel and hydrogen. The produced hydrogen was assumed to be transmitted through and stored in existing natural gas trunklines for later use during peak-load hours. The peaking units in the utility were assumed to burn the hydrogen. Reserve power is usually cheap on systems with heavy nuclear fission reactor installation. The system studied utilizes this cheap energy for producing expensive fuel. The thermochemical water-splitting process was employed to recover thermal energy from the fusion-fission reactor system. The cost of fusion energy storage systems as well as the value of produced fuel were calculated. In order to simulate the operations of the fusion energy storage system for a multi-year planning period, a computer program, FESUT (Fusion Energy Simulation at the University of Texas), was developed for the present study. Two year utility simulations with the fusion energy storage system were performed

  15. Energy storage

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role that energy storage may have on the energy future of the US. The topics discussed in the chapter include historical aspects of energy storage, thermal energy storage including sensible heat storage, latent heat storage, thermochemical heat storage, and seasonal heat storage, electricity storage including batteries, pumped hydroelectric storage, compressed air energy storage, and superconducting magnetic energy storage, and production and combustion of hydrogen as an energy storage option

  16. Thermodynamic analyses and assessments of various thermal energy storage systems for buildings

    International Nuclear Information System (INIS)

    Caliskan, Hakan; Dincer, Ibrahim; Hepbasli, Arif

    2012-01-01

    Highlights: ► Proposing a novel latent (PCM), thermochemical and sensible (aquifer) TES combination for building heating. ► Performing comprehensive environmental, energy, exergy and sustainability analyses. ► Investigating the effect of varying dead state temperatures on the TESs. - Abstract: In this study, energetic, exergetic, environmental and sustainability analyses and their assessments are carried out for latent, thermochemical and sensible thermal energy storage (TES) systems for phase change material (PCM) supported building applications under varying environment (surrounding) temperatures. The present system consists of a floor heating system, System-I, System-II and System-III. The floor heating system stays at the building floor supported with a floor heating unit and pump. The System-I includes a latent TES system and a fan. The latent TES system is comprised of a PCM supported building envelope, in which from outside to inside; glass, transparent insulation material, PCM, air channel and insulation material are placed, respectively. Furthermore, System-II mainly has a solar-thermochemical TES while there are an aquifer TES and a heat pump in System-III. Among the TESs, the hot and cold wells of the aquifer TES have maximum exergetic efficiency values of 88.782% and 69.607% at 8 °C dead state temperature, respectively. According to the energy efficiency aspects of TESs, the discharging processes of the latent TES and the hot well of the aquifer TES possess the minimum and maximum values of 5.782% and 94.118% at 8 °C dead state temperature, respectively. Also, the fan used with the latent TES is the most environmentally-benign system component among the devices. Furthermore, the most sustainable TES is found for the aquifer TES while the worst sustainable system is the latent TES.

  17. Modelling and experimental study of low temperature energy storage reactor using cementitious material

    International Nuclear Information System (INIS)

    Ndiaye, Khadim; Ginestet, Stéphane; Cyr, Martin

    2017-01-01

    Highlights: • Numerical study of a thermochemical reactor using a cementitious material for TES. • Development and test of an original prototype based on this original material. • Comparison of the experimental and numerical results. • Energy balance of the experimental setup (charging and discharging phases). - Abstract: Renewable energy storage is now essential to enhance the energy performance of buildings and to reduce their environmental impact. Most adsorbent materials are capable of storing heat, in a large range of temperature. Ettringite, the main product of the hydration of sulfoaluminate binders, has the advantage of high energy storage density at low temperature, around 60 °C. The objective of this study is, first, to predict the behaviour of the ettringite based material in a thermochemical reactor during the heat storage process, by heat storage modelling, and then to perform experimental validation by tests on a prototype. A model based on the energy and mass balance in the cementitious material was developed and simulated in MatLab software, and was able to predict the spatiotemporal behaviour of the storage system. This helped to build a thermochemical reactor prototype for heat storage tests in both the charging and discharging phases. Thus experimental tests validated the numerical model and served as proof of concept.

  18. Thermochemical Erosion Modeling of the 25-MM M242/M791 Gun System

    National Research Council Canada - National Science Library

    Sopok, Samuel

    1997-01-01

    The MACE gun barrel thermochemical erosion modeling code addresses wall degradations due to transformations, chemical reactions, and cracking coupled with pure mechanical erosion for the 25-mm M242/M791 gun system...

  19. A Comprehensive Review of Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Ioan Sarbu

    2018-01-01

    Full Text Available Thermal energy storage (TES is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included.

  20. Effect of kinetics on the thermal performance of a sorption heat storage reactor

    NARCIS (Netherlands)

    Gaeini, M.; Zondag, H.A.; Rindt, C.C.M.

    2016-01-01

    To reach high solar fractions for solar thermal energy in the built environment, long-term heat storage is required to overcome the seasonal mismatch. A promising method for long term heat storage is to use thermochemical materials, TCMs. In this research, a lab-scale test thermochemical heat

  1. Design and reliability assessment of control systems for a nuclear-based hydrogen production plant with copper-chlorine thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dabbagh, Ahmad W. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4 (Canada); Lu, Lixuan [Faculty of Energy Systems and Nuclear Science, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4 (Canada)

    2010-02-15

    The thermochemical Copper-Chlorine (Cu-Cl) cycle is an emerging new method of nuclear-based hydrogen production. In the process, water is decomposed into hydrogen and oxygen through several physical and chemical processes. In this paper, a Distributed Control System (DCS) is designed for the thermochemical Cu-Cl cycle. The architecture and the communication networks of the DCS are discussed. Reliability of the DCS is assessed using fault trees. In the assessment, the impact of the malfunction of the actuators, sensors, controllers and communication networks on the overall system reliability is investigated. This provides key information for the selection of control system components, and determination of their inspection frequency and maintenance strategy. The hydrogen reactor unit, which is one of the major components in the thermochemical Cu-Cl cycle, is used to demonstrate the detailed design and analysis. (author)

  2. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems

    DEFF Research Database (Denmark)

    Finck, Christian; Li, Rongling; Kramer, Rick

    2018-01-01

    restricted by power-to-heat conversion such as heat pumps and thermal energy storage possibilities of a building. To quantify building demand flexibility, it is essential to capture the dynamic response of the building energy system with thermal energy storage. To identify the maximum flexibility a building......’s energy system can provide, optimal control is required. In this paper, optimal control serves to determine in detail demand flexibility of an office building equipped with heat pump, electric heater, and thermal energy storage tanks. The demand flexibility is quantified using different performance...... of TES and power-to-heat in any case of charging, discharging or idle mode. A simulation case study is performed showing that a water tank, a phase change material tank, and a thermochemical material tank integrated with building heating system can be designed to provide flexibility with optimal control....

  3. Experimental investigation and thermochemical assessment of the system Cu-Y-O

    International Nuclear Information System (INIS)

    Zimmermann, E.; Mohammad, A.; Boudene, A.; Neuschuetz, D.

    1995-01-01

    Experimental investigations of the thermochemical properties of the phases in the system Cu-Y-O by means of DTA, EMF, TG and calorimetric measurements are reported. The results together with critically selected data from the literature are used for a complete assessment of the Gibbs energies of the ternary phases (based on the Standard Element Reference State, SER). For the binary subsystems critically assessed data from the literature are used. (orig.)

  4. Thermochemical surface engineering of steels

    DEFF Research Database (Denmark)

    Thermochemical Surface Engineering of Steels provides a comprehensive scientific overview of the principles and different techniques involved in thermochemical surface engineering, including thermodynamics, kinetics principles, process technologies and techniques for enhanced performance of steels...

  5. Thermo-electro-chemical storage (TECS) of solar energy

    International Nuclear Information System (INIS)

    Wenger, Erez; Epstein, Michael; Kribus, Abraham

    2017-01-01

    Highlights: • A solar plant with thermally regenerative battery unifies energy conversion and storage. • Storage is a flow battery with thermo-chemical charging and electro-chemical discharging. • Sodium-sulfur and zinc-air systems are investigated as candidate storage materials. • Theoretical solar to electricity efficiencies of over 60% are predicted. • Charging temperature can be lowered with hybrid carbothermic reduction. - Abstract: A new approach for solar electricity generation and storage is proposed, based on the concept of thermally regenerative batteries. Concentrated sunlight is used for external thermo-chemical charging of a flow battery, and electricity is produced by conventional electro-chemical discharge of the battery. The battery replaces the steam turbine, currently used in commercial concentrated solar power (CSP) plants, potentially leading to much higher conversion efficiency. This approach offers potential performance, cost and operational advantages compared to existing solar technologies, and to existing storage solutions for management of an electrical grid with a significant contribution of intermittent solar electricity generation. Here we analyze the theoretical conversion efficiency for new thermo-electro-chemical storage (TECS) plant schemes based on the electro-chemical systems of sodium-sulfur (Na-S) and zinc-air. The thermodynamic upper limit of solar to electricity conversion efficiency for an ideal TECS cycle is about 60% for Na-S at reactor temperature of 1550 K, and 65% for the zinc-air system at 1750 K, both under sunlight concentration of 3000. A hybrid process with carbothermic reduction in the zinc-air system reaches 60% theoretical efficiency at the more practical conditions of reaction temperature <1200 K and concentration <1000. Practical TECS plant efficiency, estimated from these upper limits, may then be much higher compared to existing solar electricity technologies. The technical and economical

  6. Benchmark Study of the Structural and Thermochemical Properties of a Dihydroazulene/Vinylheptafulvene Photoswitch

    DEFF Research Database (Denmark)

    Koerstz, Mads; Elm, Jonas; Mikkelsen, Kurt Valentin

    2017-01-01

    We investigate the performance of four different density functional theory (DFT) functionals (M06-2X, ωB97X-D, PBE0, and B3LYP-D3BJ) for calculating the structural and thermochemical properties of the dihydroazulene/vinylheptafulvene photoswitch (DHA/VHF). We find that all the tested DFT......, indicating that the largest source of error when calculating storage free energies originates from errors in the calculated single point energies. It was found that ωB97X-D and M06-2X performed decently for predicting storage energies. While B3LYP-D3BJ and PBE0 generally underestimated the storage energy...

  7. Biomass Thermochemical Conversion Program: 1986 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  8. Balance and saving of GHG emissions in thermochemical biorefineries

    International Nuclear Information System (INIS)

    Haro, Pedro; Aracil, Cristina; Vidal-Barrero, Fernando; Ollero, Pedro

    2015-01-01

    Highlights: • A simplified methodology for the balance and saving of GHG emissions is provided. • The GHG balance has a physical meaning and does not depend on the fossil reference. • The GHG saving depends on regulation of energy carriers. • The impact of Bio-CCS incorporation and multiproduction is analyzed. • The co-production of chemicals needs to be included in future regulation. - Abstract: In this study, a simplified methodology for the calculation of the balance of greenhouse gas (GHG) emissions and corresponding saving compared with the fossil reference is presented. The proposed methodology allows the estimation of the anthropogenic GHG emissions of thermochemical biorefineries (net emitted to the atmosphere). In the calculation of the GHG balance, all relevant factors have been identified and analyzed including multiproduction, emissions from biogenic carbon capture and storage (Bio-CCS), co-feeding of fossil fuels (secondary feedstock) and possible carbon storage in biomass-derived products (chemicals). Therefore, it is possible to calculate the balance of GHG emissions of a hypothetical thermochemical biorefinery considering different alternatives of land-use, biomass feedstock, co-feeding of fossil fuels, Bio-CCS incorporation and final use of the products. The comparison of the estimated GHG balance with the corresponding fossil reference for each product is of special relevance in the methodology since it is the parameter used in European regulation for the fulfillment of sustainability criteria in biomass-derived fuels and liquids. The proposed methodology is tested using a previously assessed set of different process concepts of thermochemical biorefineries (techno-economic analysis). The resulting GHG balance and saving are analyzed to identify uncertainties and provide recommendations for future regulation. In all process concepts, the GHG savings are above the minimum requirement of GHG emissions for 2018. In the case of incorporating

  9. Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System

    International Nuclear Information System (INIS)

    Brown, L.C.

    1983-04-01

    GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described

  10. Conception of a heat storage system for household applications. Category: New product innovations

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Thomas [Leuphana Univ. Lueneburg (Germany); Rammelberg, Holger U.; Roennebeck, Thomas [and others

    2012-07-01

    Almost 90% of the energy consumption of private households in Germany is used for heating. Thus, an efficient, sustainable and reliable heat management is one of the main challenges in the future. Heat storage will become a key technology when considering the daily, weekly, seasonal and unpredictable fluctuations of energy production with renewables. The storage of heat is much more volume- and energy-efficient as well as more economical than electricity storage. However, transport of heat over long distances is coupled with high losses, compared with electricity transport. Therefore, we propose the use of micro CHP in combination with volume-efficient and nearly loss-free heat storage to counteract electricity fluctuations. Focus of this contribution the conception of the large-scale project ''Thermal Battery'', funded by the European Union and the Federal State of Lower Saxony. The underlying principle is the utilization of reversible thermochemical reactions, such as dehydration and rehydration of salt hydrates for heat storage. The main goal is the development of a prototypical storage tank, which is capable of storing 80 kWh of heat with a system volume of less than 1 m{sup 3}. Importantly, the Vattenfall New Energy Services as a collaboration partner will support the development of an application-oriented heat storage device. This project is being carried out by an interdisciplinary team of engineers, chemists, physicists and environmental scientists.

  11. Design of an ammonia closed-loop storage system in a CSP power plant with a power tower cavity receiver

    Science.gov (United States)

    Abdiwe, Ramadan; Haider, Markus

    2017-06-01

    In this study the thermochemical system using ammonia as energy storage carrier is investigated and a transient mathematical model using MATLAB software was developed to predict the behavior of the ammonia closed-loop storage system including but not limited to the ammonia solar reactor and the ammonia synthesis reactor. The MATLAB model contains transient mass and energy balances as well as chemical equilibrium model for each relevant system component. For the importance of the dissociation and formation processes in the system, a Computational Fluid Dynamics (CFD) simulation on the ammonia solar and synthesis reactors has been performed. The CFD commercial package FLUENT is used for the simulation study and all the important mechanisms for packed bed reactors are taken into account, such as momentum, heat and mass transfer, and chemical reactions. The FLUENT simulation reveals the profiles inside both reactors and compared them with the profiles from the MATLAB code.

  12. Performance and cost of energy transport and storage systems for dish applications using reversible chemical reactions

    Science.gov (United States)

    Schredder, J. M.; Fujita, T.

    1984-01-01

    The use of reversible chemical reactions for energy transport and storage for parabolic dish networks is considered. Performance and cost characteristics are estimated for systems using three reactions (sulfur-trioxide decomposition, steam reforming of methane, and carbon-dioxide reforming of methane). Systems are considered with and without storage, and in several energy-delivery configurations that give different profiles of energy delivered versus temperature. Cost estimates are derived assuming the use of metal components and of advanced ceramics. (The latter reduces the costs by three- to five-fold). The process that led to the selection of the three reactions is described, and the effects of varying temperatures, pressures, and heat exchanger sizes are addressed. A state-of-the-art survey was performed as part of this study. As a result of this survey, it appears that formidable technical risks exist for any attempt to implement the systems analyzed in this study, especially in the area of reactor design and performance. The behavior of all components and complete systems under thermal energy transients is very poorly understood. This study indicates that thermochemical storage systems that store reactants as liquids have efficiencies below 60%, which is in agreement with the findings of earlier investigators.

  13. Hybrid Thermochemical/Biological Processing

    Science.gov (United States)

    Brown, Robert C.

    The conventional view of biorefineries is that lignocellulosic plant material will be fractionated into cellulose, hemicellulose, lignin, and terpenes before these components are biochemically converted into market products. Occasionally, these plants include a thermochemical step at the end of the process to convert recalcitrant plant components or mixed waste streams into heat to meet thermal energy demands elsewhere in the facility. However, another possibility for converting high-fiber plant materials is to start by thermochemically processing it into a uniform intermediate product that can be biologically converted into a bio-based product. This alternative route to bio-based products is known as hybrid thermochemical/biological processing. There are two distinct approaches to hybrid processing: (a) gasification followed by fermentation of the resulting gaseous mixture of carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2) and (b) fast pyrolysis followed by hydrolysis and/or fermentation of the anhydrosugars found in the resulting bio-oil. This article explores this "cart before the horse" approach to biorefineries.

  14. New applications with time-dependent thermochemical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Koukkari, P. [VTT Chemical Technology, Espoo (Finland); Laukkanen, L. [VTT Automation, Espoo (Finland); Penttilae, K. [Kemira Engineering Oy, Helsinki (Finland)

    1996-12-31

    A new method (RATEMIX) to calculate multicomponent chemical reaction mixtures as a series of sequential thermochemical states was recently introduced. The procedure combines multicomponent thermodynamics with chemical kinetics and may be used to simulate the multicomponent reactors as a thermochemical natural process. The method combines the desired reaction rates sequentially with constrained Gibbs energy minimization. The reactant concentrations are determined by the experimental (Arrhenius) rate laws. During the course of the given reaction the subsequent side reactions are supposed to occur reversibly. At every sequential stage of the given reaction the temperature and composition of the reaction mixture are calculated by a thermodynamic subroutine, which minimizes the Gibbs energy of the system and takes into account the heat transfer between the system and its surroundings. The extents of reaction are included as algorithmic constraints in the Gibbs energy minimization procedure. Initially, the reactants are introduced to the system as inert copies to match both the mass and energy balance of the reactive system. During the calculation the copies are sequentially interchanged to the actual reactants which allows one to simulate the time-dependent reaction route by using the thermochemical procedure. For each intermediate stage, the temperature and composition are calculated and as well numerical estimates of the thermodynamic functions are obtained. The method is applicable in processes where the core thermodynamic and kinetic data of the system are known and the time-dependent heat transfer data can either be measured or estimated by calculation. The method has been used to simulate e.g. high temperature flame reactions, zinc vapour oxidation and a counter-current rotary drum with chemical reactions. The procedure has today been tested with SOLGASMIX, CHEMSAGE and HSC programs. (author)

  15. New applications with time-dependent thermochemical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Koukkari, P [VTT Chemical Technology, Espoo (Finland); Laukkanen, L [VTT Automation, Espoo (Finland); Penttilae, K [Kemira Engineering Oy, Helsinki (Finland)

    1997-12-31

    A new method (RATEMIX) to calculate multicomponent chemical reaction mixtures as a series of sequential thermochemical states was recently introduced. The procedure combines multicomponent thermodynamics with chemical kinetics and may be used to simulate the multicomponent reactors as a thermochemical natural process. The method combines the desired reaction rates sequentially with constrained Gibbs energy minimization. The reactant concentrations are determined by the experimental (Arrhenius) rate laws. During the course of the given reaction the subsequent side reactions are supposed to occur reversibly. At every sequential stage of the given reaction the temperature and composition of the reaction mixture are calculated by a thermodynamic subroutine, which minimizes the Gibbs energy of the system and takes into account the heat transfer between the system and its surroundings. The extents of reaction are included as algorithmic constraints in the Gibbs energy minimization procedure. Initially, the reactants are introduced to the system as inert copies to match both the mass and energy balance of the reactive system. During the calculation the copies are sequentially interchanged to the actual reactants which allows one to simulate the time-dependent reaction route by using the thermochemical procedure. For each intermediate stage, the temperature and composition are calculated and as well numerical estimates of the thermodynamic functions are obtained. The method is applicable in processes where the core thermodynamic and kinetic data of the system are known and the time-dependent heat transfer data can either be measured or estimated by calculation. The method has been used to simulate e.g. high temperature flame reactions, zinc vapour oxidation and a counter-current rotary drum with chemical reactions. The procedure has today been tested with SOLGASMIX, CHEMSAGE and HSC programs. (author)

  16. Latent heat coldness storage; Stockage du froid par chaleur latente

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, J.P. [Pau Univ., Lab. de Thermodynamique et Energetique, LTE, 64 (France)

    2002-07-01

    This article presents the advantages of latent heat storage systems which use the solid-liquid phase transformation of a pure substance or of a solution. The three main methods of latent heat storage of coldness are presented: ice boxes, encapsulated nodules, and ice flows: 1 - definition of the thermal energy storage (sensible heat, latent heat, thermochemical storage); 2 - advantages and drawbacks of latent heat storage; 3 - choice criteria for a phase-change material; 4 - phenomenological aspect of liquid-solid transformations (phase equilibrium, crystallisation and surfusion); 5 - different latent heat storage processes (ice boxes, encapsulated nodules, two-phase refrigerating fluids); 6 - ice boxes (internal and external melting, loop, air injection, measurement of ice thickness); 7 - encapsulated nodules (nodules, tank, drainage, advantage and drawbacks, charge and discharge); 8 - two-phase refrigerating fluids (composition, ice fabrication, flow circulation, flow storage, exchangers). (J.S.)

  17. Thermal storage/discharge performances of Cu-Si alloy for solar thermochemical process

    Science.gov (United States)

    Gokon, Nobuyuki; Yamaguchi, Tomoya; Cho, Hyun-seok; Bellan, Selvan; Hatamachi, Tsuyoshi; Kodama, Tatsuya

    2017-06-01

    The present authors (Niigata University, Japan) have developed a tubular reactor system using novel "double-walled" reactor/receiver tubes with carbonate molten-salt thermal storage as a phase change material (PCM) for solar reforming of natural gas and with Al-Si alloy thermal storage as a PCM for solar air receiver to produce high-temperature air. For both of the cases, the high heat capacity and large latent heat (heat of solidification) of the PCM phase circumvents the rapid temperature change of the reactor/receiver tubes at high temperatures under variable and uncontinuous characteristics of solar radiation. In this study, we examined cyclic properties of thermal storage/discharge for Cu-Si alloy in air stream in order to evaluate a potentiality of Cu-Si alloy as a PCM thermal storage material. Temperature-increasing performances of Cu-Si alloy are measured during thermal storage (or heat-charge) mode and during cooling (or heat-discharge) mode. A oxidation state of the Cu-Si alloy after the cyclic reaction was evaluated by using electron probe micro analyzer (EPMA).

  18. Biomass thermochemical conversion program: 1987 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1988-01-01

    The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

  19. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  20. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles

    International Nuclear Information System (INIS)

    Fernandez Saavedra, R.

    2007-01-01

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs

  1. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed preprocessing supply system designs

    Energy Technology Data Exchange (ETDEWEB)

    Muth, jr., David J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Langholtz, Matthew H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jacobson, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwab, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wu, May [Argonne National Lab. (ANL), Argonne, IL (United States); Argo, Andrew [Sundrop Fuels, Golden, CO (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cafferty, Kara [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chiu, Yi-Wen [Argonne National Lab. (ANL), Argonne, IL (United States); Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eaton, Laurence M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-31

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to

  2. Thermochemical evaluation and preparation of cesium uranates

    International Nuclear Information System (INIS)

    Takano, Masahide; Minato, Kazuo; Fukuda, Kousaku; Sato, Seichi; Ohashi, Hiroshi.

    1997-03-01

    Two kinds of cesium uranates, Cs 2 UO 4 and Cs 2 U 2 O 7 , which are predicted by thermochemical estimation to be formed in irradiated oxide fuels, were prepared from U 3 O 8 and Cs 2 CO 3 for measurements of the thermal expansions and thermal conductivities. In advance of the preparation, thermochemical calculations for the formation and decomposition of these cesium uranates were performed by Gibbs free energy minimizer. The preparation temperatures for Cs 2 UO 4 and Cs 2 U 2 O 7 were determined from the results of the thermochemical calculations. The prepared samples were analyzed by X-ray diffraction, which showed that the single phases of Cs 2 UO 4 and Cs 2 U 2 O 7 were formed. Thermogravimetry and differential thermal analysis were also performed on these samples, and the decomposition temperatures were evaluated. The experimental results were in good agreement with those of the thermochemical calculations. (author)

  3. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Matthew H. Langholtz; Eric C. D. Tan; Jacob J. Jacobson; Amy Schwab; May M. Wu; Andrew Argo; Craig C. Brandt; Kara G. Cafferty; Yi-Wen Chiu; Abhijit Dutta; Laurence M. Eaton; Erin M. Searcy

    2014-08-01

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to

  4. Development of a practical photochemical energy storage system. Quarterly report. [Interconversion between norbornadiene and quadricyclene for thermochemical heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Hautala, R.R.; Kutal, C.R.

    1977-09-15

    It was previously found that the triphenylcyclopropenyl-nickel compound ((C/sub 6/H/sub 5/)/sub 3/C/sub 3/Ni(CO)Br)/sub 2/ (I, X = Br) was an active catalyst for the conversion of quadricyclene to norbornadiene. This result was of considerable interest in connection with the development of the solar energy storage system since it indicated a new type of complex of a relatively abundant metal with potentially useful catalytic properties. For this reason, during this quarter a variety of triphenylcyclopropenyl-nickel derivatives were synthesized in order to determine their structure-activity relationships with respect to catalysis of the conversion of quadricyclene to norbornadiene. Also, a new approach to the development of a polymer-bound catalyst for the conversion of quadricyclene to norbornadiene based on an ion-exchange resin was also explored. Procedures and results are reported. (WHK)

  5. Thermochemical evaluation and preparation of cesium uranates

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Masahide; Minato, Kazuo; Fukuda, Kousaku [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sato, Seichi; Ohashi, Hiroshi

    1997-03-01

    Two kinds of cesium uranates, Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7}, which are predicted by thermochemical estimation to be formed in irradiated oxide fuels, were prepared from U{sub 3}O{sub 8} and Cs{sub 2}CO{sub 3} for measurements of the thermal expansions and thermal conductivities. In advance of the preparation, thermochemical calculations for the formation and decomposition of these cesium uranates were performed by Gibbs free energy minimizer. The preparation temperatures for Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7} were determined from the results of the thermochemical calculations. The prepared samples were analyzed by X-ray diffraction, which showed that the single phases of Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7} were formed. Thermogravimetry and differential thermal analysis were also performed on these samples, and the decomposition temperatures were evaluated. The experimental results were in good agreement with those of the thermochemical calculations. (author)

  6. Advances in hydrogen production by thermochemical water decomposition: A review

    International Nuclear Information System (INIS)

    Rosen, Marc A.

    2010-01-01

    Hydrogen demand as an energy currency is anticipated to rise significantly in the future, with the emergence of a hydrogen economy. Hydrogen production is a key component of a hydrogen economy. Several production processes are commercially available, while others are under development including thermochemical water decomposition, which has numerous advantages over other hydrogen production processes. Recent advances in hydrogen production by thermochemical water decomposition are reviewed here. Hydrogen production from non-fossil energy sources such as nuclear and solar is emphasized, as are efforts to lower the temperatures required in thermochemical cycles so as to expand the range of potential heat supplies. Limiting efficiencies are explained and the need to apply exergy analysis is illustrated. The copper-chlorine thermochemical cycle is considered as a case study. It is concluded that developments of improved processes for hydrogen production via thermochemical water decomposition are likely to continue, thermochemical hydrogen production using such non-fossil energy will likely become commercial, and improved efficiencies are expected to be obtained with advanced methodologies like exergy analysis. Although numerous advances have been made on sulphur-iodine cycles, the copper-chlorine cycle has significant potential due to its requirement for process heat at lower temperatures than most other thermochemical processes.

  7. Survey and Down-Selection of Acid Gas Removal Systems for the Thermochemical Conversion of Biomass to Ethanol with a Detailed Analysis of an MDEA System

    Energy Technology Data Exchange (ETDEWEB)

    Nexant, Inc., San Francisco, California

    2011-05-01

    The first section (Task 1) of this report by Nexant includes a survey and screening of various acid gas removal processes in order to evaluate their capability to meet the specific design requirements for thermochemical ethanol synthesis in NREL's thermochemical ethanol design report (Phillips et al. 2007, NREL/TP-510-41168). MDEA and selexol were short-listed as the most promising acid-gas removal agents based on work described in Task 1. The second report section (Task 2) describes a detailed design of an MDEA (methyl diethanol amine) based acid gas removal system for removing CO2 and H2S from biomass-derived syngas. Only MDEA was chosen for detailed study because of the available resources.

  8. The uranium-carbon and plutonium-carbon systems. A thermochemical assessment

    International Nuclear Information System (INIS)

    1963-01-01

    A fair amount of thermochemical data has been accumulated on the compounds in the uranium-carbon system. The main difficulties involved appear to be the sluggishness of the reaction of these carbides and the lack of information on the true equilibrium diagram. The information assessed in this report is accurate to, say ± 5 kcal on the average. This is in fact satisfactory for quite a number of calculations of equilibria involving uranium and carbon. It is not accurate enough for more ambitious calculations such as that of the equilibrium diagram. Present assessment has also made clear the gaps that still exist. It appears that it is mainly the non-stoichiometric parts of the diagram that need extensive further studies; this would also assist in increasing the accuracy of the known data. 66 refs, 6 figs, 15 tabs

  9. Efficiency of the sulfur–iodine thermochemical water splitting process for hydrogen production based on ADS (accelerator driven system)

    International Nuclear Information System (INIS)

    García, Lázaro; González, Daniel; García, Carlos; García, Laura; Brayner, Carlos

    2013-01-01

    The current hydrogen production is based on fossil fuels; they have a huge contribution to the atmosphere's pollution. Thermochemical water splitting cycles don't present this issue because the required process heat is obtained from nuclear energy and therefore, the environmental impact is smaller than using conventional fuels. Although, solar hydrogen production could be also used for practical applications because it's lower environmental impact. One of the promising approaches to produce large quantities of hydrogen in an efficient way using nuclear energy is the sulfur–iodine (S–I) thermochemical water splitting cycle. The nuclear source proposed in this paper is a pebble bed gas cooled transmutation facility. Pebble bed very high temperature advanced systems have great perspectives to assume the future nuclear energy. Softwares based on CPS (chemical process simulation) can be used to simulate the thermochemical water splitting sulfur-iodine cycle for hydrogen production. In this paper, a model for analyzing the sulfur-iodine process sensibility respect to the thermodynamics parameters: temperature, pressure and mass flow is developed. Efficiency is also calculated and the influence of different parameters on this value. The behavior of the proposed model for different values of initial reactant's flow, is analyzed. - Highlights: • Chemical Process Simulation (CPS) of the complete sulfur iodine cycle. • Conceptual design of an accelerator driven system for hydrogen production. • Radial and axial temperature profile for the end of stationary cycle (EOC). • Thermal stability of the sulfuric and hydriodic acid sections determination. • Sulfur iodine cycle efficiency analyses for different heat flow from the ADS

  10. Thermal integration of SCWR nuclear and thermochemical hydrogen plants

    International Nuclear Information System (INIS)

    Wang, Z.; Naterer, G.F.; Gabriel, K.S.

    2010-01-01

    In this paper, the intermediate heat exchange between a Generation IV supercritical water-cooled nuclear reactor (SCWR) and a thermochemical hydrogen production cycle is discussed. It is found that the maximum and range of temperatures of a thermochemical cycle are the dominant parameters that affect the design of its coupling with SCWR. The copper-chlorine (Cu-Cl) thermochemical cycle is a promising cycle that can link with SCWRs. The location of extracting heat from a SCWR to a thermochemical cycle is investigated in this paper. Steam bypass lines downstream of the SCWR core are suggested for supplying heat to the Cu-Cl hydrogen production cycle. The stream extraction location is strongly dependent on the temperature requirements of the chemical steps of the thermochemical cycle. The available quantity of heat exchange at different hours of a day is also studied. It is found that the available heat at most hours of power demand in a day can support an industrial scale steam methane reforming plant if the SCWR power station is operating at full design capacity. (author)

  11. Thermochemical Surface Engineering: A Playground for Science and Innovation

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Jellesen, Morten Stendahl

    2017-01-01

    Surface engineering by thermochemical processing is the intentional change of the composition of a material at elevated temperature with the purpose to improve materials performance. In thermochemical processing components from the starting material are essential in the development of the phases...... at the surface. Current research and innovation activities are used to exemplify thermochemical surface engineering and the interplay of science and innovation. The examples given encompass aspects of the synthesis of extremely porous materials, low temperature surface hardening of stainless steel, surface...

  12. Performance maps for the control of thermal energy storage

    DEFF Research Database (Denmark)

    Finck, Christian; Li, Rongling; Zeiler, Wim

    2017-01-01

    Predictive control in building energy systems requires the integration of the building, building system, and component dynamics. The prediction accuracy of these dynamics is crucial for practical applications. This paper introduces performance maps for the control of water tanks, phase change mat...... material tanks, and thermochemical material tanks. The results show that these performance maps can fully account for the dynamics of thermal energy storage tanks.......Predictive control in building energy systems requires the integration of the building, building system, and component dynamics. The prediction accuracy of these dynamics is crucial for practical applications. This paper introduces performance maps for the control of water tanks, phase change...

  13. Thermochemical transformations of anthracite fractions

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Privalov, V.E.; Stepanenko, atM.A.

    1979-08-01

    Research on the nature of thermochemical transformations of anthracite fractions and the possibility of increasing their activity and identifying conditions for their use in the electrode pitch process is described. From research done on different anthracite fractions processed at varying temperatures it was concluded that accumulations of condensates from heating anthracite fractions occur significantly slower in comparison with pitch. As a result the electrode pitch process is prolonged. Thermal treatment of an anthracite fraction causes the formation and accumulation of condensates and promotes thermochemical transformations. Lastly, the use of thermally treated anthracite fractions apparently intensifies the electrode pitch process and improves its quality. (16 refs.) (In Russian)

  14. PC-Cluster based Storage System Architecture for Cloud Storage

    OpenAIRE

    Yee, Tin Tin; Naing, Thinn Thu

    2011-01-01

    Design and architecture of cloud storage system plays a vital role in cloud computing infrastructure in order to improve the storage capacity as well as cost effectiveness. Usually cloud storage system provides users to efficient storage space with elasticity feature. One of the challenges of cloud storage system is difficult to balance the providing huge elastic capacity of storage and investment of expensive cost for it. In order to solve this issue in the cloud storage infrastructure, low ...

  15. Renewable hydrogen production via thermochemical/electrochemical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, Andrea [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Babiniec, Sean Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    A coupled electrochemical/thermochemical cycle was investigated to produce hydrogen from renewable resources. Like a conventional thermochemical cycle, this cycle leverages chemical energy stored in a thermochemical working material that is reduced thermally by solar energy. However, in this concept, the stored chemical energy only needs to be partially, but not fully, capable of splitting steam to produce hydrogen. To complete the process, a proton-conducting membrane is driven to separate hydrogen as it is produced, thus shifting the thermodynamics toward further hydrogen production. This novel coupled-cycle concept provides several benefits. First, the required oxidation enthalpy of the reversible thermochemical material is reduced, enabling the process to occur at lower temperatures. Second, removing the requirement for spontaneous steam-splitting widens the scope of materials compositions, allowing for less expensive/more abundant elements to be used. Lastly, thermodynamics calculations suggest that this concept can potentially reach higher efficiencies than photovoltaic-to-electrolysis hydrogen production methods. This Exploratory Express LDRD involved assessing the practical feasibility of the proposed coupled cycle. A test stand was designed and constructed and proton-conducting membranes were synthesized. While the full proof of concept was not achieved, the individual components of the experiment were validated and new capabilities that can be leveraged by a variety of programs were developed.

  16. Capabilities to Support Thermochemical Hydrogen Production Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar

    2009-05-01

    This report presents the results of a study to determine if Idaho National Laboratory (INL) has the skilled staff, instrumentation, specialized equipment, and facilities required to take on work in thermochemical research, development, and demonstration currently being performed by the Nuclear Hydrogen Initiative (NHI). This study outlines the beneficial collaborations between INL and other national laboratories, universities, and industries to strengthen INL's thermochemical efforts, which should be developed to achieve the goals of the NHI in the most expeditious, cost effective manner. Taking on this work supports INL's long-term strategy to maintain leadership in thermochemical cycle development. This report suggests a logical path forward to accomplish this transition.

  17. A comparison of producer gas, biochar, and activated carbon from two distributed scale thermochemical conversion systems used to process forest biomass

    Science.gov (United States)

    Nathaniel Anderson; J. Greg Jones; Deborah Page-Dumroese; Daniel McCollum; Stephen Baker; Daniel Loeffler; Woodam Chung

    2013-01-01

    Thermochemical biomass conversion systems have the potential to produce heat, power, fuels and other products from forest biomass at distributed scales that meet the needs of some forest industry facilities. However, many of these systems have not been deployed in this sector and the products they produce from forest biomass have not been adequately described or...

  18. Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways

    International Nuclear Information System (INIS)

    Bennion, Edward P.; Ginosar, Daniel M.; Moses, John; Agblevor, Foster; Quinn, Jason C.

    2015-01-01

    Highlights: • Well to pump environmental assessment of two thermochemical processing pathways. • NER of 1.23 and GHG emissions of −11.4 g CO 2-eq (MJ) −1 for HTL pathway. • HTL represents promising conversion pathway based on use of wet biomass. • NER of 2.27 and GHG emissions of 210 g CO 2-eq (MJ) −1 for pyrolysis pathway. • Pyrolysis pathway: drying microalgae feedstock dominates environmental impact. - Abstract: Microalgae is being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the environmental impact of two different thermochemical conversion technologies for the microalgae-to-biofuel process through life cycle assessment. A system boundary of “well to pump” (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae-to-biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of −11.4 g CO 2-eq (MJ renewable diesel) −1 . Biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO 2-eq (MJ renewable diesel) −1 . The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying

  19. Energy Storage Systems

    Science.gov (United States)

    Elliott, David

    2017-07-01

    As renewable energy use expands there will be a need to develop ways to balance its variability. Storage is one of the options. Presently the main emphasis is for systems storing electrical power in advanced batteries (many of them derivatives of parallel developments in the electric vehicle field), as well as via liquid air storage, compressed air storage, super-capacitors and flywheels, and, the leader so far, pumped hydro reservoirs. In addition, new systems are emerging for hydrogen generation and storage, feeding fuel cell power production. Heat (and cold) is also a storage medium and some systems exploit thermal effects as part of wider energy management activity. Some of the more exotic ones even try to use gravity on a large scale. This short book looks at all the options, their potentials and their limits. There are no clear winners, with some being suited to short-term balancing and others to longer-term storage. The eventual mix adopted will be shaped by the pattern of development of other balancing measures, including smart-grid demand management and super-grid imports and exports.

  20. Hydrogen production system based on high temperature gas cooled reactor energy using the sulfur-iodine (SI) thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Garcia, L.; Gonzalez, D.

    2011-01-01

    Hydrogen production from water using nuclear energy offers one of the most attractive zero-emission energy strategies and the only one that is practical on a substantial scale. Recently, strong interest is seen in hydrogen production using heat of a high-temperature gas-cooled reactor. The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using thermochemical or high-temperature electrolysis (HTE) processes. Eventually it could be also employ a high-temperature gas-cooled reactor (HTGR), which is particularly attractive because it has unique capability, among potential future generation nuclear power options, to produce high-temperature heat ideally suited for nuclear-heated hydrogen production. Using heat from nuclear reactors to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been interest of many laboratories in the world. One of the promising approaches to produce large quantity of hydrogen in an efficient way using the nuclear energy is the sulfur-iodine (SI) thermochemical water splitting cycle. Among the thermochemical cycles, the sulfur iodine process remains a very promising solution in matter of efficiency and cost. This work provides a pre-conceptual design description of a SI-Based H2-Nuclear Reactor plant. Software based on chemical process simulation (CPS) was used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. (Author)

  1. Thermochemical data for reactor materials

    International Nuclear Information System (INIS)

    Ronchi, C.; Turrini, F.

    1990-01-01

    This report describes a computer database of thermochemical properties of nuclear reactor materials to be used for source term calculations in reactor accident codes. In the first part, the structure and the content of the computer file is described. In the second part a set of thermochemical data is presented pertaining to chemical reactions occurring during severe nuclear reactor accidents and involving fuel (uranium dioxide), fission products and structural materials. These data are complementary to those collected in the databook recently published by Cordfunke and Potter after a study supported by the Commission of the European Communities. The present data were collected from review articles and databanks and follow a discussion on the uncertainties and errors involved in the calculation of complex chemical equilibria in the extrapolated temperature range

  2. Economics of dry storage systems

    International Nuclear Information System (INIS)

    Moore, G.R.; Winders, R.C.

    1980-01-01

    This paper postulates a dry storage application suitable as a regional away-from-reactor storage (AFR), develops an economical system design concept and estimates system costs. The system discussed uses the experience gained in the dry storage research activities and attempts to present a best foot forward system concept. The major element of the system is the Receiving and Packaging Building. In this building fuel assemblies are removed from transportation casks and encapsulated for storage. This facility could be equally applicable to silo, vault, or caisson storage. However the caisson storage concept has been chosen for discussion purposes

  3. Contribution to the study of new hydrogen production, purification and storage processes

    International Nuclear Information System (INIS)

    Manaud, Jean-Pierre

    1984-01-01

    This research thesis addresses the various aspects of hydrogen production, purification and process within the scope of hydrogen-based energy production. Hydrogen production is achieved by water decomposition through a thermo-chemical process. The author reports the thermodynamic assessment of a water decomposition thermo-chemical cycle for chlorine and sulphur-related cycles. He reports the experimental investigation of hydrogen purification by selective diffusion, the study of contamination of a CeMg12 alloy by nitrogen, oxygen and water vapour with application to hydrogen storage under the form of hydrides [fr

  4. Thermochemical performance analysis of solar driven CO_2 methane reforming

    International Nuclear Information System (INIS)

    Fuqiang, Wang; Jianyu, Tan; Huijian, Jin; Yu, Leng

    2015-01-01

    Increasing CO_2 emission problems create urgent challenges for alleviating global warming, and the capture of CO_2 has become an essential field of scientific research. In this study, a finite volume method (FVM) coupled with thermochemical kinetics was developed to analyze the solar driven CO_2 methane reforming process in a metallic foam reactor. The local thermal non-equilibrium (LTNE) model coupled with radiative heat transfer was developed to provide more temperature information. A joint inversion method based on chemical process software and the FVM coupled with thermochemical kinetics was developed to obtain the thermochemical reaction parameters and guarantee the calculation accuracy. The detailed thermal and thermochemical performance in the metal foam reactor was analyzed. In addition, the effects of heat flux distribution and porosity on the solar driven CO_2 methane reforming process were analyzed. The numerical results can serve as theoretical guidance for the solar driven CO_2 methane reforming application. - Highlights: • Solar driven CO_2 methane reforming process in metal foam reactor is analyzed. • FVM with chemical reactions was developed to analyze solar CO_2 methane reforming. • A joint inversion method was developed to obtain thermochemical reaction parameters. • Results can be a guidance for the solar driven CO_2 methane reforming application.

  5. Benchmarking Cloud Storage Systems

    OpenAIRE

    Wang, Xing

    2014-01-01

    With the rise of cloud computing, many cloud storage systems like Dropbox, Google Drive and Mega have been built to provide decentralized and reliable file storage. It is thus of prime importance to know their features, performance, and the best way to make use of them. In this context, we introduce BenchCloud, a tool designed as part of this thesis to conveniently and efficiently benchmark any cloud storage system. First, we provide a study of six commonly-used cloud storage systems to ident...

  6. Application of Thermochemical Modeling to Assessment/Evaluation of Nuclear Fuel Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, Theodore M [University of South Carolina, Columbia; McMurray, Jake W [ORNL; Simunovic, Srdjan [ORNL

    2016-01-01

    The combination of new fuel compositions and higher burn-ups envisioned for the future means that representing fuel properties will be much more important, and yet more complex. Behavior within the oxide fuel rods will be difficult to model owing to the high temperatures, and the large number of elements generated and their significant concentrations that are a result of fuels taken to high burn-up. This unprecedented complexity offers an enormous challenge to the thermochemical understanding of these systems and opportunities to advance solid solution models to describe these materials. This paper attempts to model and simulate that behavior using an oxide fuels thermochemical description to compute the equilibrium phase state and oxygen potential of LWR fuel under irradiation.

  7. A review on technology maturity of small scale energy storage technologies★

    Directory of Open Access Journals (Sweden)

    Nguyen Thu-Trang

    2017-01-01

    Full Text Available This paper reviews the current status of energy storage technologies which have the higher potential to be applied in small scale energy systems. Small scale energy systems can be categorized as ones that are able to supply energy in various forms for a building, or a small area, or a limited community, or an enterprise; typically, they are end-user systems. Energy storage technologies are classified based on their form of energy stored. A two-step evaluation is proposed for selecting suitable storage technologies for small scale energy systems, including identifying possible technical options, and addressing techno-economic aspects. Firstly, a review on energy storage technologies at small scale level is carried out. Secondly, an assessment of technology readiness level (TRL is conducted. The TRLs are ranked according to information gathered from literature review. Levels of market maturity of the technologies are addressed by taking into account their market development stages through reviewing published materials. The TRLs and the levels of market maturity are then combined into a technology maturity curve. Additionally, market driving factors are identified by using different stages in product life cycle. The results indicate that lead-acid, micro pumped hydro storage, NaS battery, NiCd battery, flywheel, NaNiCl battery, Li-ion battery, and sensible thermal storage are the most mature technologies for small scale energy systems. In the near future, hydrogen fuel cells, thermal storages using phase change materials and thermochemical materials are expected to become more popular in the energy storage market.

  8. Low temperature thermal energy storage: a state-of-the-art survey

    Energy Technology Data Exchange (ETDEWEB)

    Baylin, F.

    1979-07-01

    The preliminary version of an analysis of activities in research, development, and demonstration of low temperature thermal energy storage (TES) technologies having applications in renewable energy systems is presented. Three major categories of thermal storage devices are considered: sensible heat; phase change materials (PCM); and reversible thermochemical reactions. Both short-term and annual thermal energy storage technologies based on prinicples of sensible heat are discussed. Storage media considered are water, earth, and rocks. Annual storage technologies include solar ponds, aquifers, and large tanks or beds of water, earth, or rocks. PCM storage devices considered employ salt hydrates and organic compounds. The sole application of reversible chemical reactions outlined is for the chemical heat pump. All program processes from basic research through commercialization efforts are investigated. Nongovernment-funded industrial programs and foreign efforts are outlined as well. Data describing low temperature TES activities are presented also as project descriptions. Projects for all these programs are grouped into seven categories: short-term sensible heat storage; annual sensible heat storage; PCM storage; heat transfer and exchange; industrial waste heat recovery and storage; reversible chemical reaction storage; and models, economic analyses, and support studies. Summary information about yearly funding and brief descriptions of project goals and accomplishments are included.

  9. Exergy analysis of a system using a chemical heat pump to link a supercritical water-cooled nuclear reactor and a thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Granovskii, M.; Dincer, I.; Rosen, M. A.; Pioro, I

    2007-01-01

    the heat transfer to the water splitting cycle. A preliminary exergy analysis of the proposed heat pump is conducted and a coefficient of performance (COP), taking into account a decrease in electricity generation in the nuclear power generation cycle, is evaluated. The calculated per unit mass flow heat supply rate to the thermochemical cycle increases by a factor of 3 to 5 depending on the steam temperature. A combined system comprising a SCW nuclear plant, a chemical heat pump and a lower temperature UT-3 thermochemical water splitting cycle is presented. Despite a decrease in electricity generation, the calculated exergy efficiency of hydrogen production in the considered system appears to be competitive with that for low temperature water electrolysis

  10. Multi-state system in a fault tree analysis of a nuclear based thermochemical hydrogen plant

    International Nuclear Information System (INIS)

    Zhang, Y.

    2008-01-01

    Nuclear-based hydrogen generation is a promising way to supply hydrogen for this large market in the future. This thesis focuses on one of the most promising methods, a thermochemical Cu-Cl cycle, which is currently under development by UOIT, Atomic Energy of Canada Limited (AECL) and the Argonne National Laboratory (ANL). The safety issues of the Cu-Cl cycle are addressed in this thesis. An investigation of major accident scenarios shows that potential tragedies can be avoided with effective risk analysis and safety management programs. As a powerful and systematic tool, fault tree analysis (FTA) is adapted to the particular needs of the Cu-Cl system. This thesis develops a new method that combines FTA with a reliability analysis tool, multi-state system (MSS), to improve the accuracy of FTA and also improve system reliability. (author)

  11. Energy Conversion and Storage Program

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  12. Storage Policies and Optimal Shape of a Storage System

    NARCIS (Netherlands)

    Zaerpour, N.; De Koster, René; Yu, Yugang

    2013-01-01

    The response time of a storage system is mainly influenced by its shape (configuration), the storage assignment and retrieval policies, and the location of the input/output (I/O) points. In this paper, we show that the optimal shape of a storage system, which minimises the response time for single

  13. OPTIMIZED WTE CONVERSION OF MUNICIPAL SOLID WASTE IN SHANGHAI APPLYING THERMOCHEMICAL TECHNOLOGIES

    OpenAIRE

    Dai, Siyang

    2016-01-01

    Thermochemical technologies have been proven effective in treating municipal solid waste (MSW) for many years. China, with a rapid increase of MSW, plans to implement more environmental friendly ways to treat MSW than landfill, which treats about 79 % of total MSW currently. The aim of this master thesis was to find out a suitable thermochemical technology to treat MSW in Shanghai, China. Several different thermochemical technologies are compared in this thesis and plasma gasification was sel...

  14. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  15. Explore the performance limit of a solar PV – thermochemical power generation system

    International Nuclear Information System (INIS)

    Li, Wenjia; Hao, Yong

    2017-01-01

    Highlights: •Theoretical net solar-to-electric efficiency of 51.5% is attainable. •Design of efficient PVT systems is governed by at least 5 key considerations. •Concentration ratio has the most pronounced influence on PVT system efficiency. •Efficient PV, low emissivity and high concentration deliver the best performance. -- Abstract: Performance limit of a solar hybrid power generation system integrating efficient photovoltaic (PV) cells and methanol thermal (T) decomposition is explored from a thermodynamic perspective within the capability of state-of-the-art technologies. This type of PVT system features potentially high “net solar-to-electric efficiency” in general, primarily resulting from a key difference in the design of the thermal part compared with conventional PVT systems, i.e. replacing heat engines by a thermochemical power generation module for thermal energy utilization. Key design parameters of the system, including PV cell type, emissivity, solar concentration ratio and solar concentrator type, are individually studied. A system combining all such optimized aspects is projected to achieve net solar-to-electric efficiencies up to 51.5%, after taking all major (e.g. optical, radiative) losses into consideration. This study reveals important insights and enriches understanding on design principles of efficient PVT systems aimed at comprehensive and effective utilization of solar energy.

  16. Research on high-performance mass storage system

    International Nuclear Information System (INIS)

    Cheng Yaodong; Wang Lu; Huang Qiulan; Zheng Wei

    2010-01-01

    With the enlargement of scientific experiments, more and more data will be produced, which brings great challenge to storage system. Large storage capacity and high data access performance are both important to Mass storage system. This paper firstly reviews some kinds of popular storage systems including network storage system, SAN-based sharing system, WAN File system, object-based parallel file system, hierarchical storage system and cloud storage systems. Then some key technologies are presented. Finally, this paper takes BES storage system as an example and introduces its requirements, architecture and operation results. (authors)

  17. Considerations for Disposition of Dry Cask Storage System Materials at End of Storage System Life

    International Nuclear Information System (INIS)

    Howard, Rob; Van den Akker, Bret

    2014-01-01

    Dry cask storage systems are deployed at nuclear power plants for used nuclear fuel (UNF) storage when spent fuel pools reach their storage capacity and/or the plants are decommissioned. An important waste and materials disposition consideration arising from the increasing use of these systems is the management of the dry cask storage systems' materials after the UNF proceeds to disposition. Thermal analyses of repository design concepts currently under consideration internationally indicate that waste package sizes for the geologic media under consideration may be significantly smaller than the canisters being used for on-site dry storage by the nuclear utilities. Therefore, at some point along the UNF disposition pathway, there could be a need to repackage fuel assemblies already loaded into the dry storage canisters currently in use. In the United States, there are already over 1650 of these dry storage canisters deployed and approximately 200 canisters per year are being loaded at the current fleet of commercial nuclear power plants. There is about 10 cubic meters of material from each dry storage canister system that will need to be dispositioned. The concrete horizontal storage modules or vertical storage overpacks will need to be reused, re-purposed, recycled, or disposed of in some manner. The empty metal storage canister/cask would also have to be cleaned, and decontaminated for possible reuse or recycling or disposed of, likely as low-level radioactive waste. These material disposition options can have impacts of the overall used fuel management system costs. This paper will identify and explore some of the technical and interface considerations associated with managing the dry cask storage system materials. (authors)

  18. High Density Digital Data Storage System

    Science.gov (United States)

    Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.

    1991-01-01

    The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.

  19. Locally Minimum Storage Regenerating Codes in Distributed Cloud Storage Systems

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Wei Luo; Wei Liang; Xiangyang Liu; Xiaodai Dong

    2017-01-01

    In distributed cloud storage sys-tems, inevitably there exist multiple node fail-ures at the same time. The existing methods of regenerating codes, including minimum storage regenerating (MSR) codes and mini-mum bandwidth regenerating (MBR) codes, are mainly to repair one single or several failed nodes, unable to meet the repair need of distributed cloud storage systems. In this paper, we present locally minimum storage re-generating (LMSR) codes to recover multiple failed nodes at the same time. Specifically, the nodes in distributed cloud storage systems are divided into multiple local groups, and in each local group (4, 2) or (5, 3) MSR codes are constructed. Moreover, the grouping method of storage nodes and the repairing process of failed nodes in local groups are studied. The-oretical analysis shows that LMSR codes can achieve the same storage overhead as MSR codes. Furthermore, we verify by means of simulation that, compared with MSR codes, LMSR codes can reduce the repair bandwidth and disk I/O overhead effectively.

  20. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  1. Thermochemical data for reactor materials and fission products: The ECN database

    International Nuclear Information System (INIS)

    Cordfunke, E.H.P.; Konings, R.J.M.

    1993-02-01

    The activities of the authors regarding the compilation of a database of thermochemical properties for reactor materials and fission products is reviewed. The evaluation procedures and techniques are outlined and examples are given. In addition, examples of the use of thermochemical data for the application in the field of Nuclear Technology are given. (orig.)

  2. Thermochemical nitrate reduction

    International Nuclear Information System (INIS)

    Cox, J.L.; Lilga, M.A.; Hallen, R.T.

    1992-09-01

    A series of preliminary experiments was conducted directed at thermochemically converting nitrate to nitrogen and water. Nitrates are a major constituent of the waste stored in the underground tanks on the Hanford Site, and the characteristics and effects of nitrate compounds on stabilization techniques must be considered before permanent disposal operations begin. For the thermochemical reduction experiments, six reducing agents (ammonia, formate, urea, glucose, methane, and hydrogen) were mixed separately with ∼3 wt% NO 3 - solutions in a buffered aqueous solution at high pH (13); ammonia and formate were also mixed at low pH (4). Reactions were conducted in an aqueous solution in a batch reactor at temperatures of 200 degrees C to 350 degrees C and pressures of 600 to 2800 psig. Both gas and liquid samples were analyzed. The specific components analyzed were nitrate, nitrite, nitrous oxide, nitrogen, and ammonia. Results of experimental runs showed the following order of nitrate reduction of the six reducing agents in basic solution: formate > glucose > urea > hydrogen > ammonia ∼ methane. Airnmonia was more effective under acidic conditions than basic conditions. Formate was also effective under acidic conditions. A more thorough, fundamental study appears warranted to provide additional data on the mechanism of nitrate reduction. Furthermore, an expanded data base and engineering feasibility study could be used to evaluate conversion conditions for promising reducing agents in more detail and identify new reducing agents with improved performance characteristics

  3. Robust holographic storage system design.

    Science.gov (United States)

    Watanabe, Takahiro; Watanabe, Minoru

    2011-11-21

    Demand is increasing daily for large data storage systems that are useful for applications in spacecraft, space satellites, and space robots, which are all exposed to radiation-rich space environment. As candidates for use in space embedded systems, holographic storage systems are promising because they can easily provided the demanded large-storage capability. Particularly, holographic storage systems, which have no rotation mechanism, are demanded because they are virtually maintenance-free. Although a holographic memory itself is an extremely robust device even in a space radiation environment, its associated lasers and drive circuit devices are vulnerable. Such vulnerabilities sometimes engendered severe problems that prevent reading of all contents of the holographic memory, which is a turn-off failure mode of a laser array. This paper therefore presents a proposal for a recovery method for the turn-off failure mode of a laser array on a holographic storage system, and describes results of an experimental demonstration. © 2011 Optical Society of America

  4. 2009 Thermochemical Conversion Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Thermochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  5. Review of the direct thermochemical conversion of lignocellulosic biomass for liquid fuels

    Directory of Open Access Journals (Sweden)

    Jianchun JIANG,Junming XU,Zhanqian SONG

    2015-03-01

    Full Text Available Increased demand for liquid transportation fuels, environmental concerns and depletion of petroleum resources requires the development of efficient conversion technologies for production of second-generation biofuels from non-food resources. Thermochemical approaches hold great potential for conversion of lignocellulosic biomass into liquid fuels. Direct thermochemical processes convert biomass into liquid fuels in one step using heat and catalysts and have many advantages over indirect and biological processes, such as greater feedstock flexibility, integrated conversion of whole biomass, and lower operation costs. Several direct thermochemical processes are employed in the production of liquid biofuels depending on the nature of the feedstock properties: such as fast pyrolysis/liquefaction of lignocellulosic biomass for bio-oil, including upgrading methods, such as catalytic cracking and hydrogenation. Owing to the substantial amount of liquid fuels consumed by vehicular transport, converting biomass into drop-in liquid fuels may reduce the dependence of the fuel market on petroleum-based fuel products. In this review, we also summarize recent progress in technologies for large-scale equipment for direct thermochemical conversion. We focus on the technical aspects critical to commercialization of the technologies for production of liquid fuels from biomass, including feedstock type, cracking catalysts, catalytic cracking mechanisms, catalytic reactors, and biofuel properties. We also discuss future prospects for direct thermochemical conversion in biorefineries for the production of high grade biofuels.

  6. Efficiency of the sulfur-iodine thermochemical water splitting process for hydrogen production based on ADS

    International Nuclear Information System (INIS)

    Gonzalez, D.; Garcia, L.; Garcia, C.; Garcia, L.; Brayner, C.

    2013-01-01

    The current hydrogel production is based on fossil fuels; they have a huge contribution to the atmosphere's pollution. thermochemical water splitting cycles don't present this issue because the required process heat is obtained from nuclear energy and therefore, the environmental impact is smaller than using conventional fuels. One of the promising approaches to produce large quantities of hydrogen in an efficient way using nuclear energy is the sulfur-iodine (S-I) thermochemical water splitting cycle. The nuclear source proposed in this paper is a pebble bed gas cooled transmutation facility. Pebble bed very high temperature advanced systems have great perspectives to assume the future nuclear energy. Software based on Chemical Process Simulation (CPS) can be used to simulate the thermochemical water splitting sulfur-iodine cycle for hydrogen production. In this paper, a model for analyzing the sulfur-iodine process sensibility is developed. Efficiency is also calculated and the influence of different parameters on this value. The behavior of the proposed model before different values of initial reactant's flow is analyzed. (Author)

  7. Application of a reversible chemical reaction system to solar thermal power plants

    Science.gov (United States)

    Hanseth, E. J.; Won, Y. S.; Seibowitz, L. P.

    1980-01-01

    Three distributed dish solar thermal power systems using various applications of SO2/SO3 chemical energy storage and transport technology were comparatively assessed. Each system features various roles for the chemical system: (1) energy storage only, (2) energy transport, or (3) energy transport and storage. These three systems were also compared with the dish-Stirling, using electrical transport and battery storage, and the central receiver Rankine system, with thermal storage, to determine the relative merit of plants employing a thermochemical system. As an assessment criterion, the busbar energy costs were compared. Separate but comparable solar energy cost computer codes were used for distributed receiver and central receiver systems. Calculations were performed for capacity factors ranging from 0.4 to 0.8. The results indicate that SO2/SO3 technology has the potential to be more cost effective in transporting the collected energy than in storing the energy for the storage capacity range studied (2-15 hours)

  8. Analysis of Efficiency of the Ship Propulsion System with Thermochemical Recuperation of Waste Heat

    Science.gov (United States)

    Cherednichenko, Oleksandr; Serbin, Serhiy

    2018-03-01

    One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources. The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered. It is suggested to conduct the study with the help of mathematical modeling methods. The model takes into account basic physical correlations, material and thermal balances, phase equilibrium, and heat and mass transfer processes. The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel. In such a plant, it is possible to reduce the specific fuel consumption of the diesel engine by 20%. The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6. When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products, the efficiency coefficient of the plant increases by 4-5%.

  9. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  10. Experimental study of a thermochemical compressor for an absorption/compression hybrid cycle

    International Nuclear Information System (INIS)

    Ventas, R.; Vereda, C.; Lecuona, A.; Venegas, M.

    2012-01-01

    Highlights: ► Experimental study of a thermochemical compressor for absorption/compression cycle. ► Spray adiabatic absorber using NH 3 –LiNO 3 solution working fluid. ► It is able to operate between 57 and 110 °C varying concentration between 0.46 and 0.59. ► The increase of absorber pressure decreases the circulation ratio. ► The numerical model performed agrees with the experimental results. -- Abstract: An experimental study of a thermochemical compressor with ammonia–lithium nitrate solution as working fluid has been carried out. This compressor incorporates a single-pass adiabatic absorber and all the heat exchangers are of the plate type: absorber subcooler, generator and solution heat exchanger. The thermochemical compressor has been studied as part of a single-effect absorption chiller hybridized with an in-series low-pressure compression booster. The adiabatic absorber uses fog jet injectors. The generator hot water temperatures for the external driving flow are in the range of 57–110 °C and the absorber pressures range between 429 and 945 kPa. Experimental results are compared with a numerical model showing a high agreement. The performance of the thermochemical compressor, evaluated through the circulation ratio, improves for higher absorber pressures, indicating the potential of pressure boosting. For the same circulation ratio, the driving hot water inlet temperature decreases with the rise of the absorber pressure. The thermochemical compressor, based on an adiabatic absorber, can produce refrigerant with very low driving temperatures, between 57 and 70 °C, what is interesting for solar cooling applications and very low temperature residual heat recovery. Efficiencies and cooling power are offered when this hybrid thermochemical compressor is implemented in a chiller, showing the effect of different operating parameters.

  11. Management issues for high performance storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Louis, S. [Lawrence Livermore National Lab., CA (United States); Burris, R. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Managing distributed high-performance storage systems is complex and, although sharing common ground with traditional network and systems management, presents unique storage-related issues. Integration technologies and frameworks exist to help manage distributed network and system environments. Industry-driven consortia provide open forums where vendors and users cooperate to leverage solutions. But these new approaches to open management fall short addressing the needs of scalable, distributed storage. We discuss the motivation and requirements for storage system management (SSM) capabilities and describe how SSM manages distributed servers and storage resource objects in the High Performance Storage System (HPSS), a new storage facility for data-intensive applications and large-scale computing. Modem storage systems, such as HPSS, require many SSM capabilities, including server and resource configuration control, performance monitoring, quality of service, flexible policies, file migration, file repacking, accounting, and quotas. We present results of initial HPSS SSM development including design decisions and implementation trade-offs. We conclude with plans for follow-on work and provide storage-related recommendations for vendors and standards groups seeking enterprise-wide management solutions.

  12. OECD/NEA thermochemical database

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Kee Hoh; Song, Dae Yong; Shin, Hyun Kyoo; Park, Seong Won; Ro, Seung Gy

    1998-03-01

    This state of the art report is to introduce the contents of the Chemical Data-Service, OECD/NEA, and the results of survey by OECD/NEA for the thermodynamic and kinetic database currently in use. It is also to summarize the results of Thermochemical Database Projects of OECD/NEA. This report will be a guide book for the researchers easily to get the validate thermodynamic and kinetic data of all substances from the available OECD/NEA database. (author). 75 refs.

  13. Storage system architectures and their characteristics

    Science.gov (United States)

    Sarandrea, Bryan M.

    1993-01-01

    Not all users storage requirements call for 20 MBS data transfer rates, multi-tier file or data migration schemes, or even automated retrieval of data. The number of available storage solutions reflects the broad range of user requirements. It is foolish to think that any one solution can address the complete range of requirements. For users with simple off-line storage requirements, the cost and complexity of high end solutions would provide no advantage over a more simple solution. The correct answer is to match the requirements of a particular storage need to the various attributes of the available solutions. The goal of this paper is to introduce basic concepts of archiving and storage management in combination with the most common architectures and to provide some insight into how these concepts and architectures address various storage problems. The intent is to provide potential consumers of storage technology with a framework within which to begin the hunt for a solution which meets their particular needs. This paper is not intended to be an exhaustive study or to address all possible solutions or new technologies, but is intended to be a more practical treatment of todays storage system alternatives. Since most commercial storage systems today are built on Open Systems concepts, the majority of these solutions are hosted on the UNIX operating system. For this reason, some of the architectural issues discussed focus around specific UNIX architectural concepts. However, most of the architectures are operating system independent and the conclusions are applicable to such architectures on any operating system.

  14. A thermodynamic and kinetic study of the de- and rehydration of Ca(OH){sub 2} at high H{sub 2}O partial pressures for thermo-chemical heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Schaube, F.; Koch, L. [German Aerospace Center, Institute of Technical Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart (Germany); Woerner, A., E-mail: antje.woerner@dlr.de [German Aerospace Center, Institute of Technical Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart (Germany); Mueller-Steinhagen, H. [German Aerospace Center, Institute of Technical Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart (Germany)

    2012-06-20

    Highlights: Black-Right-Pointing-Pointer Investigation of the thermodynamic equilibrium and reaction enthalpy of 'Ca(OH){sub 2} {r_reversible} CaO + H{sub 2}O'. Black-Right-Pointing-Pointer Investigation of the reaction kinetics of the dehydration of Ca(OH){sub 2} at partial pressures up to 956 mbar. Black-Right-Pointing-Pointer Investigation of the reaction kinetics of the rehydration of Ca(OH){sub 2} at partial pressures up to 956 mbar. - Abstract: Heat storage technologies are used to improve energy efficiency of power plants and recovery of process heat. Storing thermal energy by reversible thermo-chemical reactions offers a promising option for high storage capacities especially at high temperatures. Due to its low material cost, the use of the reversible reaction Ca(OH){sub 2} Rightwards-Harpoon-Over-Leftwards-Harpoon CaO + H{sub 2}O has been proposed. This paper reports on the physical properties such as heat capacity, thermodynamic equilibrium, reaction enthalpy and kinetics. To achieve high reaction temperatures, high H{sub 2}O partial pressures are required. Therefore the cycling stability is confirmed for H{sub 2}O partial pressures up to 95.6 kPa and the dehydration and hydration kinetics are studied. Quantitative data are collected and expressions are derived which are in good agreement with the presented measurements. At 1 bar H{sub 2}O partial pressure the expected equilibrium temperature is 505 Degree-Sign C and the reaction enthalpy is 104.4 kJ/mol.

  15. Technology for national asset storage systems

    Science.gov (United States)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard

    1993-01-01

    An industry-led collaborative project, called the National Storage Laboratory, was organized to investigate technology for storage systems that will be the future repositories for our national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and the provider of applications. The expected result is an evaluation of a high performance storage architecture assembled from commercially available hardware and software, with some software enhancements to meet the project's goals. It is anticipated that the integrated testbed system will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte class files at gigabit-per-second data rates. The National Storage Laboratory was officially launched on 27 May 1992.

  16. High-performance mass storage system for workstations

    Science.gov (United States)

    Chiang, T.; Tang, Y.; Gupta, L.; Cooperman, S.

    1993-01-01

    Reduced Instruction Set Computer (RISC) workstations and Personnel Computers (PC) are very popular tools for office automation, command and control, scientific analysis, database management, and many other applications. However, when using Input/Output (I/O) intensive applications, the RISC workstations and PC's are often overburdened with the tasks of collecting, staging, storing, and distributing data. Also, by using standard high-performance peripherals and storage devices, the I/O function can still be a common bottleneck process. Therefore, the high-performance mass storage system, developed by Loral AeroSys' Independent Research and Development (IR&D) engineers, can offload a RISC workstation of I/O related functions and provide high-performance I/O functions and external interfaces. The high-performance mass storage system has the capabilities to ingest high-speed real-time data, perform signal or image processing, and stage, archive, and distribute the data. This mass storage system uses a hierarchical storage structure, thus reducing the total data storage cost, while maintaining high-I/O performance. The high-performance mass storage system is a network of low-cost parallel processors and storage devices. The nodes in the network have special I/O functions such as: SCSI controller, Ethernet controller, gateway controller, RS232 controller, IEEE488 controller, and digital/analog converter. The nodes are interconnected through high-speed direct memory access links to form a network. The topology of the network is easily reconfigurable to maximize system throughput for various applications. This high-performance mass storage system takes advantage of a 'busless' architecture for maximum expandability. The mass storage system consists of magnetic disks, a WORM optical disk jukebox, and an 8mm helical scan tape to form a hierarchical storage structure. Commonly used files are kept in the magnetic disk for fast retrieval. The optical disks are used as archive

  17. Thermochemical biorefinery based on dimethyl ether as intermediate: Technoeconomic assessment

    International Nuclear Information System (INIS)

    Haro, P.; Ollero, P.; Villanueva Perales, A.L.; Gómez-Barea, A.

    2013-01-01

    Highlights: ► A thermochemical biorefinery based on bio-DME as intermediate is studied. ► The assessed concepts (12) lead to multi-product generation (polygeneration). ► In all concepts DME is converted by carbonylation or hydrocarbonylation. ► Rates of return are similar to or higher than plants producing a single product. -- Abstract: Thermochemical biorefinery based on dimethyl ether (DME) as an intermediate is studied. DME is converted into methyl acetate, which can either be hydrogenated to ethanol or sold as a co-product. Considering this option together with a variety of technologies for syngas upgrading, 12 different process concepts are analyzed. The considered products are ethanol, methyl acetate, H 2 , DME and electricity. The assessment of each alternative includes biomass pretreatment, gasification, syngas clean-up and conditioning, DME synthesis and conversion, product separation, and heat and power integration. A plant size of 500 MW th processing poplar chips is taken as a basis. The resulting energy efficiency to products ranges from 34.9% to 50.2%. The largest internal rate of return (28.74%) corresponds to a concept which produces methyl acetate, DME and electricity (exported to grid). A sensitivity analysis with respect to total plant investment (TPI), total operation costs (TOC) and market price of products was carried out. The overall conclusion is that, despite its greater complexity, this kind of thermochemical biorefinery is more profitable than thermochemical bioprocesses oriented to a single product.

  18. Thermochemical stability of Soviet macroporous sulfonated cation-exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rukhlyada, N.N.; Plotnikova, V.P.; Roginskaya, B.S.; Znamenskii, Yu.P.; Zavodovskaya, A.S.; Dobrova, E.I.

    1988-10-20

    The purpose of this work was to study the influence of macroporosity on the thermochemical stability of sulfonated cation-exchangers. The investigations were carried out on commercial macroporous sulfonated cation-exchangers based on styrene-divinylbenzene copolymers. Study of the thermochemical stability of macroporous sulfonated cation-exchangers in dilute hydrogen peroxide solutions showed that the type of macroporosity has virtually no influence on their stability. The determining factor in thermal stability of macroporous cation-exchangers, as of the gel type, is the degree of cross-linking of the polymer matrix. The capacity loss of macroporous cation-exchangers during oxidative thermolysis is caused by destruction of the macromolecular skeleton and elution of fragments of polar chains containing sulfo groups into the solution.

  19. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    Science.gov (United States)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  20. Energy Conversion and Storage Program. 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  1. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  2. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.

    2009-01-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After

  3. 2011 Biomass Program Platform Peer Review. Thermochemical Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, Paul E. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Thermochemical Conversion Platform Review meeting.

  4. Energy Storage and Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2016-01-01

    It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper......, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution...... to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should...

  5. Thermochemical nonequilibrium analysis of O2+Ar based on state-resolved kinetics

    International Nuclear Information System (INIS)

    Kim, Jae Gang; Boyd, Iain D.

    2015-01-01

    Highlights: • Thermochemical nonequilibrium studies for three lowest lying electronic states of O 2 . • The complete sets of the rovibrational state-to-state transition rates of O 2 +Ar. • Rovibrational relaxations and coupled chemical reactions of O 2 . • Nonequilibrium reaction rates of O 2 derived from the quasi-steady state assumption. - Abstract: The thermochemical nonequilibrium of the three lowest lying electronic states of molecular oxygen, O 2 (X 3 Σ g - ,a 1 Δ g ,b 1 Σ g + ), through interactions with argon is studied in the present work. The multi-body potential energy surfaces of O 2 +Ar are evaluated from the semi-classical RKR potential of O 2 in each electronic state. The rovibrational states and energies of each electronic state are calculated by the quantum mechanical method based on the present inter-nuclear potential of O 2 . Then, the complete sets of the rovibrational state-to-state transition rate coefficients of O 2 +Ar are calculated by the quasi-classical trajectory method including the quasi-bound states. The system of master equations constructed by the present state-to-state transition rate coefficients are solved to analyze the thermochemical nonequilibrium of O 2 +Ar in various heat bath conditions. From these studies, it is concluded that the vibrational relaxation and coupled chemical reactions of each electronic state needs to be treated as a separate nonequilibrium process, and rotational nonequilibrium needs to be considered at translational temperatures above 10,000 K

  6. Hydrogen production at <550 C using a low temperature thermochemical cycle

    International Nuclear Information System (INIS)

    Lewis, M.A.; Serban, M.; Basco, J.K.

    2004-01-01

    A Department of Energy goal is to identify new technologies for producing hydrogen cost effectively without greenhouse gas emissions. Thermochemical cycles are one of the potential options under investigation. Thermochemical cycles consist of a series of reactions in which water is thermally decomposed and all other chemicals are recycled. Only heat and water are consumed. However, most thermochemical cycles require process heat at temperatures of 850-900 deg C. Argonne National Laboratory is developing low temperature cycles designed for lower temperature heat, 500-550 deg C, which is more readily available. For this temperature region, copper-chlorine (Cu-Cl) cycles are the most promising cycle. Several Cu-Cl cycles have been examined in the laboratory and the most promising cycle has been identified. Proof-of-principle experiments are nearly complete. A preliminary assessment of cycle efficiency is promising. Details of the experiments and efficiency calculations are discussed. (author)

  7. Seasonal Solar Thermal Absorption Energy Storage Development.

    Science.gov (United States)

    Daguenet-Frick, Xavier; Gantenbein, Paul; Rommel, Mathias; Fumey, Benjamin; Weber, Robert; Gooneseker, Kanishka; Williamson, Tommy

    2015-01-01

    This article describes a thermochemical seasonal storage with emphasis on the development of a reaction zone for an absorption/desorption unit. The heat and mass exchanges are modelled and the design of a suitable reaction zone is explained. A tube bundle concept is retained for the heat and mass exchangers and the units are manufactured and commissioned. Furthermore, experimental results of both absorption and desorption processes are presented and the exchanged power is compared to the results of the simulations.

  8. Photovoltaic power systems energy storage

    International Nuclear Information System (INIS)

    Buldini, P.L.

    1991-01-01

    Basically, the solar photovoltaic power system consists of: Array of solar panels; Charge/voltage stabilizer; Blocking diode and Storage device. The storage device is a very important part of the system due to the necessity to harmonize the inevitable time shift between energy supply and demand. As energy storage, different devices can be utilized, such as hydropumping, air or other gas compression, flywheel, superconducting magnet, hydrogen generation and so on, but actually secondary (rechargeable) electrochemical cells appear to be the best storage device, due to the direct use for recharge of the d.c. current provided by the solar panels, without any intermediate step of energy transformation and its consequent loss of efficiency

  9. Grand Challenges facing Storage Systems

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    In this talk, we will discuss the future of storage systems. In particular, we will focus on several big challenges which we are facing in storage, such as being able to build, manage and backup really massive storage systems, being able to find information of interest, being able to do long-term archival of data, and so on. We also present ideas and research being done to address these challenges, and provide a perspective on how we expect these challenges to be resolved as we go forward.

  10. System for secure storage

    NARCIS (Netherlands)

    2005-01-01

    A system (100) comprising read means (112) for reading content data and control logic data from a storage medium (101), the control logic data being uniquely linked to the storage medium (101), processing means (113-117), for processing the content data and feeding the processed content data to an

  11. Online mass storage system detailed requirements document

    Science.gov (United States)

    1976-01-01

    The requirements for an online high density magnetic tape data storage system that can be implemented in a multipurpose, multihost environment is set forth. The objective of the mass storage system is to provide a facility for the compact storage of large quantities of data and to make this data accessible to computer systems with minimum operator handling. The results of a market survey and analysis of candidate vendor who presently market high density tape data storage systems are included.

  12. A concept of an electricity storage system with 50 MWh storage capacity

    Directory of Open Access Journals (Sweden)

    Józef Paska

    2012-06-01

    Full Text Available Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy, and direct storage (in an electric or magnetic fi eld. Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers and hydrogen storage. These technologies have diff erent technical characteristics and economic parameters that determine their usability. This paper presents two concepts of an electricity storage tank with a storage capacity of at least 50 MWh, using the BES battery energy storage and CAES compressed air energy storage technologies.

  13. Study of the potential of energy storage - Investigation report - Synthesis

    International Nuclear Information System (INIS)

    Renaud, Arnaud; Fournie, Laurent; Girardeau, Pierre; Chammas, Maxime; Tarel, Guillaume; Chiche, Alice; De Freminville; Pierre; Lacroix, Olivier; Rakotojaona, Loic; Payen, Luc; Riu, Delphine; Kerouedan, Anne-Fleur

    2013-01-01

    The objective of this study is to assess, for France and its overseas territories, the potential of energy storage by 2030, and to identify the technological sectors which are the most economically relevant. A global surplus has been calculated, as well as the benefit from additional storage capacities. This benefit has been compared with cost predictions by 2030 for different storage technologies. Economically viable powers and types of energy storages are assessed with respect to different scenarios, and impacts in terms of associated jobs are assessed. The document reports and discusses the surplus assessment for the community, describes the various services provided by energy storage, presents the modelling scenarios and hypotheses, discusses the main results of valorisation for the community, presents the various energy storage technologies (gravity, thermodynamic, electrochemical, electrostatic, inertial, latent thermal, thermo-chemical, and power to gas), presents business models and deployment potential for different applications (mass storage of electricity in France, electricity storage in a non-connected area, decentralised electricity storage as a response to grid congestion, valorisation of an electricity storage, thermal storage on a heat network, cold storage, management of diffuse demand of hot water), and discusses implications regarding employment

  14. Seasonal energy storage - PV-hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Leppaenen, J. [Neste Oy/NAPS (Finland)

    1998-10-01

    PV systems are widely used in remote areas e.g. in telecommunication systems. Typically lead acid batteries are used as energy storage. In northern locations seasonal storage is needed, which however is too expensive and difficult to realise with batteries. Therefore, a PV- battery system with a diesel backup is sometimes used. The disadvantages of this kind of system for very remote applications are the need of maintenance and the need to supply the fuel. To overcome these problems, it has been suggested to use hydrogen technologies to make a closed loop autonomous energy storage system

  15. TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver, E-mail: jasmina@physics.ucf.edu [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States)

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  16. TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

    International Nuclear Information System (INIS)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  17. Energy Storage and Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2016-12-01

    Full Text Available It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should be disregarded but that it will be needed for other purposes in the future.

  18. An approach to thermochemical modeling of nuclear waste glass

    International Nuclear Information System (INIS)

    Besmann, T.M.; Beahm, E.C.; Spear, K.E.

    1998-01-01

    This initial work is aimed at developing a basic understanding of the phase equilibria and solid solution behavior of the constituents of waste glass. Current, experimentally determined values are less than desirable since they depend on measurement of the leach rate under non-realistic conditions designed to accelerate processes that occur on a geologic time scale. The often-used assumption that the activity of a species is either unity or equal to the overall concentration of the metal can also yield misleading results. The associate species model, a recent development in thermochemical modeling, will be applied to these systems to more accurately predict chemical activities in such complex systems as waste glasses

  19. Energy storage systems: a strategic road-book

    International Nuclear Information System (INIS)

    2011-01-01

    Dealing with the development and deployment of thermal and electric energy storage systems, this report first identifies four main challenges: to take environmental challenges into account during all the storage system life (design, production, use, end of life), to integrate the issue of economic valorization of the device into its design phase, to promote the development of standards, to make an institutional and legal framework emerge. It defines the geographical scope and the time horizon for the development of these systems. It evokes research and development programs in the United States, Japan, China, Germany and the European Union. These programs concern: mobile electric storage systems, electric storage systems in support of energy networks and renewable energies, heat storage systems. The authors outline that business models are now favourable to the deployment of storage systems. They discuss some key technological and economical parameters. They propose some prospective visions by 2050 with different possible orientations for this sector. They also identify and discuss the possible technological and socio-economical obstacles, research priorities, and stress the importance of implementing experimental platforms and research demonstrators

  20. Maximizing the energy storage performance of phase change thermal storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Amin, N.A.M.; Bruno, F.; Belusko, M. [South Australia Univ., Mawson Lakes, South Australia (Australia). Inst. for Sustainable Systems and Technologies

    2009-07-01

    The demand for electricity in South Australia is highly influenced by the need for refrigeration and air-conditioning. An extensive literature review has been conducted on the use of phase change materials (PCMs) in thermal storage systems. PCMs use latent heat at the solid-liquid phase transition point to store thermal energy. They are considered to be useful as a thermal energy storage (TES) material because they can provide much higher energy storage densities compared to conventional sensible thermal storage materials. This paper reviewed the main disadvantages of using PCMs for energy storage, such as low heat transfer, super cooling and system design issues. Other issues with PCMs include incongruence and corrosion of heat exchanger surfaces. The authors suggested that in order to address these problems, future research should focus on maximizing heat transfer by optimizing the configuration of the encapsulation through a parametric analysis using a PCM numerical model. The effective conductivity in encapsulated PCMs in a latent heat thermal energy storage (LHTES) system can also be increased by using conductors in the encapsulation that have high thermal conductivity. 47 refs., 1 tab., 1 fig.

  1. Energy efficient thermochemical conversion of very wet biomass to biofuels by integration of steam drying, steam electrolysis and gasification

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    2017-01-01

    A novel system concept is presented for the thermochemical conversion of very wet biomasses such as sewage sludge and manure. The system integrates steam drying, solid oxide electrolysis cells (SOEC) and gasification for the production of synthetic natural gas (SNG). The system is analyzed...

  2. Energy Conversion & Storage Program, 1993 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  3. Thermochemical measurements and assessment of the phase diagrams in the system Y-Ba-Cu-O

    International Nuclear Information System (INIS)

    Boudene, A.; Mohammad, A.

    1996-01-01

    The aim of this project was to provide a self-consistent set of Gibbs energy data for all phases in the system Y-Ba-Cu-O. Experimental thermochemical investigations by differential thermal analysis (DTA), thermogravimetry (TG), electromotive force measurements (EMF), oxygen coulometric titration (OCT), drop and solution calorimetry, and conventional phase analysis (annealing, quenching, and X-ray diffraction [XRD]) as well as ab initio calculations of interaction energies for the 123 phase have been carried out. The experimental information (phase equilibria, heat capacity, enthalpies of formation, oxygen partial pressures, and so forth) has been used in computer-based assessments of the Gibbs energies. These data have been employed to generate phase diagrams by way of equilibrium computations. All binary and ternary subsystems have been fully assessed. For the quaternary system a dataset covering the subsolidus range has been derived. Applications of the data to practical questions, such as the production of 123 superconductors by an MOCVD process, the producibility of metallic precursors, and the oxidation of a copper-enriched stoichiometric oxide precursor, are demonstrated

  4. Optimal routing in an automated storage/retrieval system with dedicated storage

    NARCIS (Netherlands)

    Berg, van den J.P.; Gademann, A.J.R.M.

    1999-01-01

    We address the sequencing of requests in an automated storage/retrieval system with dedicated storage. We consider the block sequencing approach, where a set of storage and retrieval requests is given beforehand and no new requests come in during operation. The objective for this static problem is

  5. Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application

    International Nuclear Information System (INIS)

    Zhao, Pan; Dai, Yiping; Wang, Jiangfeng

    2014-01-01

    Electricity generated from renewable wind sources is highly erratic due to the intermittent nature of wind. This uncertainty of wind power can lead to challenges regarding power system operation and dispatch. Energy storage system in conjunction with wind energy system can offset these effects, making the wind power controllable. Moreover, the power spectrum of wind power exhibits that the fluctuations of wind power include various components with different frequencies and amplitudes. Thus, the hybrid energy storage system is more suitable for smoothing out the wind power fluctuations effectively rather than the independent energy storage system. A hybrid energy storage system consisting of adiabatic compressed air energy storage (A-CAES) system and flywheel energy storage system (FESS) is proposed for wind energy application. The design of the proposed system is laid out firstly. The A-CAES system operates in variable cavern pressure, constant turbine inlet pressure mode, whereas the FESS is controlled by constant power strategy. Then, the off-design analysis of the proposed system is carried out. Meanwhile, a parametric analysis is also performed to investigate the effects of several parameters on the system performance, including the ambient conditions, inlet temperature of compressor, storage cavern temperature, maximum and minimum pressures of storage cavern. - Highlights: • A wind-hybrid energy storage system composed of A-CAES and FESS is proposed. • The design of the proposed hybrid energy storage system is laid out. • The off-design analysis of the proposed system is carried out. • A parametric analysis is conducted to examine the system performance

  6. Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Renwei [Univ. of Florida, Gainesville, FL (United States). Dept. of Mechanical and Aerospace Engineering

    2015-06-15

    been obtained from the raw data. Porosity and surface area have been computed based on tomography. The two parameters, permeability and Forchheimer constants, in the Darcy’s law for linear and non-linear range have been obtained from the fluid dynamics simulation. The structure is nearly isotropic from the hydrodynamics point of view. Thermal conductivity at elevated temperature has been obtained from the 3-D pore-scale simulations. The computed thermal conductivities of the structure compare well with an existing correlation. Computational models have been developed for solving the energy and mass transport equations with chemical reaction on the surface and inside the particles. The chemical kinetics or rate law is needed on the particle scale; however it is generally measured using a lumped model based on the average of reacted as well as unreacted mass. Many simulations have been conducted on a 2-D model to determine the effects of those pore scale parameters on the heat release based on the measured data. The simulation results using 2-D model show that average volumetric heat flow rate of 4 MW/m3 in the first 5 minutes can be obtained. The insight gained from the 2-D simulation will be useful for the next stage simulation based on realistic 3-D structures. A probabilistic analysis has been conducted on the baseline system of recovering heat from the hot CO2 evolved from the endothermic reaction and compressing the cooled CO2 into a storage tank at 20-21 bar. Using a Monte Carlo simulation using 2,000,000 samples and both uniform and triangular probability distributions of four variables (heat exchanger pinch points, compressor efficiency, and power block efficiency), exergetic efficiency of 90% appears to be very likely.

  7. Thermochemical treatment of the pay zone in the well RK-3

    Energy Technology Data Exchange (ETDEWEB)

    Labudovic, V

    1970-02-01

    The elements are given for the calculation of the thermochemical treatment of the Well RK-3. From the diagram, the Mg and HCl reaction velocity vs. pressure and the temperature vs. the quantity of the reacted CaCO/sub 3/ can be read out. These are important elements for the calculation of a thermochemical treatment. A comparison of calculated and measured temperatures and the factors influencing the heat conductivity of the formation rock is given. The heating range at formation depths is calculated. The relation quantity of warm acid vs. injection pressure also is given.

  8. Building a mass storage system for physics applications

    International Nuclear Information System (INIS)

    Holmes, H.; Loken, S.

    1991-03-01

    The IEEE Mass Storage Reference Model and forthcoming standards based on it provide a standardized architecture to facilitate designing and building mass storage systems, and standard interfaces so that hardware and software from different vendors can interoperate in providing mass storage capabilities. A key concept of this architecture is the separation of control and data flows. This separation allows a smaller machine to provide control functions, while the data can flow directly between high-performance channels. Another key concept is the layering of the file system and the storage functions. This layering allows the designers of the mass storage system to focus on storage functions, which can support a variety of file systems, such as the Network File System, the Andrew File System, and others. The mass storage system provides location-independent file naming, essential if files are to be migrated to different storage devices without requiring changes in application programs. Physics data analysis applications are particularly challenging for mass storage systems because they stream vast amounts of data through analysis applications. Special mechanisms are required, to handle the high data rates and to avoid upsetting the caching mechanisms commonly used for smaller, repetitive-use files. High data rates are facilitated by direct channel connections, where, for example, a dual-ported drive will be positioned by the mass storage controller on one channel, then the data will flow on a second channel directly into the user machine, or directly to a high capacity network, greatly reducing the I/O capacity required in the mass storage control computer. Intelligent storage allocation can be used to bypass the cache devices entirely when large files are being moved

  9. Status of electrical energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents an overview of the status of electrical storage systems in the light of the growing use of renewable energy sources and distributed generation (DG) in meeting emission targets and in the interest of the UK electricity supply industry. Examples of storage technologies, their applications and current status are examined along with technical issues and possible activities by UK industries. Details are given of development opportunities in the fields of flow cells, advanced batteries - lithium batteries, high temperature batteries, flywheels, and capacitors. Power conversion systems and system integration, the all-electric ship project, and compressed air energy storage are discussed. Opportunities for development and deployment, small scale systems, demonstration programmes, and research and development issues are considered. An outline of the US Department of Energy Storage programme is given in the Annex to the report.

  10. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    International Nuclear Information System (INIS)

    Calderoni, Pattrick

    2010-01-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogeneous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R and D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part

  11. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  12. Effects of key factors on solar aided methane steam reforming in porous medium thermochemical reactor

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Ma, Lanxin; Leng, Yu

    2015-01-01

    Highlights: • Effects of key factors on chemical reaction for solar methane reforming are studied. • MCRT and FVM method coupled with UDFs is used to establish numerical model. • Heat and mass transfer model coupled with thermochemical reaction is established. • LTNE model coupled with P1 approximation is used for porous matrix solar reactor. • A formula between H 2 production and conductivity of porous matrix is put forward. - Abstract: With the aid of solar energy, methane reforming process can save up to 20% of the total methane consumption. Monte Carlo Ray Tracing (MCRT) method and Finite Volume Method (FVM) combined method are developed to establish the heat and mass transfer model coupled with thermochemical reaction kinetics for porous medium solar thermochemical reactor. In order to provide more temperature information, local thermal non-equilibrium (LTNE) model coupled with P1 approximation is established to investigate the thermal performance of porous medium solar thermochemical reaction. Effects of radiative heat loss and thermal conductivity of porous matrix on temperature distribution and thermochemical reaction for solar driven steam methane reforming process are numerically studied. Besides, the relationship between hydrogen production and thermal conductivity of porous matrix are analyzed. The results illustrate that hydrogen production shows a 3 order polynomial relation with thermal conductivity of porous matrix

  13. Development of vitrified waste storage system

    International Nuclear Information System (INIS)

    Namiki, S.; Tani, Y.

    1993-01-01

    The authors have developed the radioactive waste vitrification technology and the vitrified waste storage technology. Regarding the vitrified waste storage system development, the authors have completed the design of two types of storage systems. One is a forced convection air cooling system, and the other is a natural convection air cooling system. They have carried out experiments and heat transfer analysis, seismic analysis, vitrified waste dropping and radiation shielding, etc. In this paper, the following three subjects, are discussed: the cooling air flow experiment, the wind effect experiment on the cooling air flow pattern, using a wind tunnel apparatus and the structural integrity evaluation on the dropping vitrified waste

  14. Solar thermal energy storage via exploitation and rational combination of porous ceramic structures and redox oxides chemistry

    OpenAIRE

    Agrafiotis, Christos; Becker, Andreas; Roeb, Martin; Sattler, Christian

    2015-01-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. This storage concept can be rendered from “purely” sensible to “hybrid” sensible/thermochemical one, via coating the chemically inert porous heat exchange modules with oxides of multivalent metals for which their reduction/oxidation reactio...

  15. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    International Nuclear Information System (INIS)

    Werner, R.W.

    1982-01-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H 2 SO 4 -H 2 O system

  16. Study of the hydrolysis reaction of the copper-chloride hybrid thermochemical cycle using optical spectrometries

    International Nuclear Information System (INIS)

    Doizi, D.; Borgard, J.M.; Dauvois, V.; Roujou, J.L.; Zanella, Y.; Croize, L.; Cartes, Ph.; Hartmann, J.M.

    2010-01-01

    The copper-chloride hybrid thermochemical cycle is one of the best potential low temperature thermochemical cycles for the massive production of hydrogen. It could be used with nuclear reactors such as the sodium fast reactor or the supercritical water reactor. Nevertheless, this thermochemical cycle is composed of an electrochemical reaction and two thermal reactions. Its efficiency has to be compared with other hydrogen production processes like alkaline electrolysis for example. The purpose of this article is to study the viability of the copper chloride thermochemical cycle by studying the hydrolysis reaction of CuCl 2 which is not favoured thermodynamically. To better understand the occurrence of possible side reactions, together with a good control of the kinetics of the hydrolysis reaction, the use of optical absorption spectrometries, UV visible spectrometry to detect molecular chlorine which may be formed in side reactions, FTIR spectrometry to follow the concentrations of H 2 O and HCl is proposed. (authors)

  17. First-principles study of chemical mixtures of CaCl2 and MgCl2 hydrates for optimized seasonal heat storage

    NARCIS (Netherlands)

    Pathak, A. D.; Tranca, I.; Nedea, S. V.; Zondag, H. A.; Rindt, C. C.M.; Smeulders, D. M.J.

    2017-01-01

    Chloride-based salt hydrates form a promising class of thermochemical materials (TCMs), having high storage capacity and fast kinetics. In the charging cycles of these hydrates however hydrolysis might appear along with dehydration. The HCl produced during the hydrolysis degrades and corrodes the

  18. High Tc superconducting energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  19. An Empirical Model for Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosewater, David Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scott, Paul [TransPower, Poway, CA (United States)

    2016-03-17

    Improved models of energy storage systems are needed to enable the electric grid’s adaptation to increasing penetration of renewables. This paper develops a generic empirical model of energy storage system performance agnostic of type, chemistry, design or scale. Parameters for this model are calculated using test procedures adapted from the US DOE Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage. We then assess the accuracy of this model for predicting the performance of the TransPower GridSaver – a 1 MW rated lithium-ion battery system that underwent laboratory experimentation and analysis. The developed model predicts a range of energy storage system performance based on the uncertainty of estimated model parameters. Finally, this model can be used to better understand the integration and coordination of energy storage on the electric grid.

  20. Evaluation of chemical, thermobaric and thermochemical pre-treatment on anaerobic digestion of high-fat cattle slaughterhouse waste.

    Science.gov (United States)

    Harris, Peter W; Schmidt, Thomas; McCabe, Bernadette K

    2017-11-01

    This work aimed to enhance the anaerobic digestion of fat-rich dissolved air flotation (DAF) sludge through chemical, thermobaric, and thermochemical pre-treatment methods. Soluble chemical oxygen demand was enhanced from 16.3% in the control to 20.84% (thermobaric), 40.82% (chemical), and 50.7% (thermochemical). Pre-treatment altered volatile fatty acid concentration by -64% (thermobaric), 127% (chemical) and 228% (thermochemical). Early inhibition was reduced by 20% in the thermochemical group, and 100% in the thermobaric group. Specific methane production was enhanced by 3.28% (chemical), 8.32% (thermobaric), and 8.49% (thermochemical) as a result of pre-treatment. Under batch digestion, thermobaric pre-treatment demonstrated the greatest improvement in methane yield with respect to degree of pre-treatment applied. Thermobaric pre-treatment was also the most viable for implementation at slaughterhouses, with potential for heat-exchange to reduce pre-treatment cost. Further investigation into long-term impact of pre-treatments in semi-continuous digestion experiments will provide additional evaluation of appropriate pre-treatment options for high-fat slaughterhouse wastewater. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  2. The NREL Biochemical and Thermochemical Ethanol Conversion Processes: Financial and Environmental Analysis Comparison

    Directory of Open Access Journals (Sweden)

    Jesse Sky Daystar

    2015-07-01

    Full Text Available The financial and environmental performance of the National Renewable Energy Lab’s (NREL thermochemical and biochemical biofuel conversion processes are examined herein with pine, eucalyptus, unmanaged hardwood, switchgrass, and sweet sorghum. The environmental impacts of the process scenarios were determined by quantifying greenhouse gas (GHG emissions and TRACI impacts. Integrated financial and environmental performance metrics were introduced and used to examine the biofuel production scenarios. The thermochemical and biochemical conversion processes produced the highest financial performance and lowest environmental impacts when paired with pine and sweet sorghum, respectively. The high ash content of switchgrass and high lignin content of loblolly pine lowered conversion yields, resulting in the highest environmental impacts and lowest financial performance for the thermochemical and biochemical conversion processes, respectively. Biofuel produced using the thermochemical conversion process resulted in lower TRACI single score impacts and somewhat lower GHG emissions per megajoule (MJ of fuel than using the biochemical conversion pathway. The cost of carbon mitigation resulting from biofuel production and corresponding government subsidies was determined to be higher than the expected market carbon price. In some scenarios, the cost of carbon mitigation was several times higher than the market carbon price, indicating that there may be other more cost-effective methods of reducing carbon emissions.

  3. Biodigester as an energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Borges Neto, M.R.; Lopes, L.C.N. [Federal Institute of Education, Science and Technology of Sertao Pernambucano (IFSertao-PE), Petrolina, PE (Brazil)], Emails: rangel@cefetpet.br; Pinheiro Neto, J.S.; Carvalho, P.C.M. [Federal University of Ceara (UFC), Fortaleza, CE (Brazil). Dept. of Electrical Engineering], Emails: neto@tbmtextil.com.br, carvalho@dee.ufc.br; Silveira, G.C.; Moreira, A.P.; Borges, T.S.H. [Federal Institute of Education, Science and Technology of Ceara (IFCE), Fortaleza, CE (Brazil)], Emails: gcsilveira@cefet-ce.br, apmoreira@ifce.edu.br, thatyanys@yahoo.com.br

    2009-07-01

    Electricity supply for rural and remote areas is becoming an increasing priority to developing countries. The high initial cost of renewable energy based unities usually needs an energy storage system; due its operational and even replacement cost contributes to a higher final cost. The choice of energy storage systems depends on the sort and size of adopted power supply. This paper has a main goal to introduce a renewable energy based storage system weakly explored in Brazil: biogas from anaerobic digestion. It also brings a review of the main energy storage systems applied to electrical energy generation. As reference an experiment with an adapted Indian digester of 5 m{sup 3} that produced nearly 2m{sup 3} of biogas daily. The obtained biogas met the consumption of at least 4 typical Brazilian low income households with installed load of 500 W each and was enough to replace the use of 420 Ah lead-acid batteries. (author)

  4. Electrochemical energy storage systems for solar thermal applications

    Science.gov (United States)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  5. Tribology of magnetic storage systems

    Science.gov (United States)

    Bhushan, Bharat

    1992-01-01

    The construction and the materials used in different magnetic storage devices are defined. The theories of friction and adhesion, interface temperatures, wear, and solid-liquid lubrication relevant to magnetic storage systems are presented. Experimental data are presented wherever possible to support the relevant theories advanced.

  6. Materials considerations for the coupling of thermochemical hydrogen cycles to tandem mirror reactors

    International Nuclear Information System (INIS)

    Krikorian, O.H.

    1980-01-01

    Candidate materials are discussed and initial choices made for the critical elements in a liquid Li-Na Cauldron Tandem Mirror blanket and the General Atomic Sulfur-Iodine Cycle for thermochemical hydrogen production. V and Ti alloys provide low neutron activation, good radiation damage resistance, and good chemical compatibility for the Cauldron design. Aluminide coated In-800H and siliconized SiC are materials choices for heat exchanger components in the thermochemical cycle interface

  7. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W. (ed.)

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  8. Research and evaluation of biomass resources/conversion/utilization systems. Biomass allocation model. Volume 1: Test and appendices A & B

    Science.gov (United States)

    Stringer, R. P.; Ahn, Y. K.; Chen, H. T.; Helm, R. W.; Nelson, E. T.; Shields, K. J.

    1981-08-01

    A biomass allocation model was developed to show the most profitable combination of biomass feedstocks, thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating which of a large number of potential biomass missions is the most profitable mission. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a microprocessor. A User's Manual for the system is included. Biomass derived fuels included in the data base are the following: medium Btu gas, low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil.

  9. Experimental study of phase change materials for thermal storage in the temperature range of 300–400°C

    Directory of Open Access Journals (Sweden)

    Adinberg R.

    2014-01-01

    Full Text Available Phase change materials (PCM based on inorganic salts having a temperature of fusion between 300 and 400°C, were investigated using a lab scale set-up dedicated for studying latent heat storage for concentrating solar thermal power (CSP technology. This experimental system provides thermal measurements of PCM specimens of about 1000 g under the heating temperature up to 450°C and enables simultaneous investigation of calorimetric properties of the loaded materials and heat transfer effects developed in the thermal storage during the charge and discharge phases. The measurement technique comprised temperature and pressure sensors, a control and data acquisition system and a thermal analysis model used to evaluate the experimental data. Results of the thermochemical tests conducted with a thermal storage medium composed of the ternary eutectic mixture of carbonate salts (34.5% K2CO3–33.4% Na2CO3–32.1% Li2CO3 and Diphyl (synthetic thermal oil, max working temperature 400°C used as the heat transfer fluid are presented and discussed in this paper.

  10. Optimal Investment Planning of Bulk Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Dina Khastieva

    2018-02-01

    Full Text Available Many countries have the ambition to increase the share of renewable sources in electricity generation. However, continuously varying renewable sources, such as wind power or solar energy, require that the power system can manage the variability and uncertainty of the power generation. One solution to increase flexibility of the system is to use various forms of energy storage, which can provide flexibility to the system at different time ranges and smooth the effect of variability of the renewable generation. In this paper, we investigate three questions connected to investment planning of energy storage systems. First, how the existing flexibility in the system will affect the need for energy storage investments. Second, how presence of energy storage will affect renewable generation expansion and affect electricity prices. Third, who should be responsible for energy storage investments planning. This paper proposes to assess these questions through two different mathematical models. The first model is designed for centralized investment planning and the second model deals with a decentralized investment approach where a single independent profit maximizing utility is responsible for energy storage investments. The models have been applied in various case studies with different generation mixes and flexibility levels. The results show that energy storage system is beneficial for power system operation. However, additional regulation should be considered to achieve optimal investment and allocation of energy storage.

  11. Present states and views on vault storage systems

    International Nuclear Information System (INIS)

    Yoshimura, Eiji

    2003-01-01

    Storage capacity of spent nuclear fuel storage pools in nuclear power station is reaching to a condition near its limit, and under a condition inevitable on delay of the Pu-thermal utilization plan importance on interim storage of the spent nuclear fuels is further rising. In U.S.A., Germany, and so on, a condition incapable of presenting nuclear energy business itself without its intermediate storage is approaching, so in Japan it will also be a key to smoothly promote the nuclear energy business how the interim storage is used and operated. Under such condition, in Japan storage facilities using a system called by 'metal cask' are established at areas of nuclear power stations to begin their operations. As on the system expensive metal containers are used for storage in themselves, it has a demerit of its high cost. On the other hand, on foreign countries, a storing system called by concrete cask, horizontal silo, or vault is occupying its main stream. Here was introduced present states and future views on vault storage system. (G. K)

  12. Towards the renewal of the NEA Thermochemical Database

    International Nuclear Information System (INIS)

    Ragoussi, Maria-Eleni; Costa, Davide; Bossant, Manuel

    2015-01-01

    The Thermochemical Database (TDB) Project was created three decades ago as a joint undertaking of the NEA Radioactive Waste Management Committee and the NEA Data Bank. The project involves the collection of high-quality and traceable thermochemical data for a set of elements (mainly minor actinides and fission products) relevant to geophysical modelling of deep geological repositories. Funding comes from 15 participating organisations, primarily national nuclear waste authorities and research institutions. The quantities that are stored in the TDB database are: the standard molar Gibbs energy and enthalpy of formation, the standard molar entropy and, when available, the heat capacity at constant pressure, together with their uncertainty intervals. Reaction data are also provided: equilibrium constant of reaction, molar Gibbs energy of reaction, molar enthalpy of reaction and molar entropy of reaction. Data assessment is carried out by teams of expert reviewers through an in-depth analysis of the available scientific literature, following strict guidelines defined by the NEA to ensure the accuracy and self-consistency of the adopted datasets. Thermochemical data that has been evaluated and selected over the years have been published in the 13 volumes of the Chemical Thermodynamics series. They are also stored in a database that is updated each time the study of a new element is completed. The TDB selected data are made available to external third parties through the NEA web site where data extracted from the database can be displayed and downloaded as plain text files. Following recent recommendations of the Task Force on the Future Programme of the NEA Data Bank to enhance scientific expertise and user services, a renewal of the software managing the TDB database is being undertaken. The software currently used was designed 20 years ago and is becoming obsolete. Redesigning the application will provide an opportunity to correct current shortcomings and to develop

  13. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles; Revision Bibliografica sobre la Produccion de Hidrogeno Solar Mediante Ciclos Termoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.

    2007-12-28

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs.

  14. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles; Revision Bibliografica sobre la Produccion de Hidrogeno Solar Mediante Ciclos Termoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.

    2008-08-06

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly y described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs.

  15. Energy storage for electrical systems in the USA

    Directory of Open Access Journals (Sweden)

    Eugene Freeman

    2016-10-01

    Full Text Available Energy storage is becoming increasingly important as renewable generation sources such as Wind Turbine and Photo Voltaic Solar are added to the mix in electrical power generation and distribution systems. The paper discusses the basic drivers for energy storage and provides brief descriptions of the various energy storage technologies available. The information summarizes current technical tradeoffs with different storage approaches and identifies issues surrounding deployment of large scale energy storage systems.

  16. Storage Integration in Energy Systems: A New Perspective

    International Nuclear Information System (INIS)

    Faure-Schuyer, Aurelie

    2016-06-01

    Energy storage is partly an 'old story' and a new one. Energy storage is an essential stabilizing factor in existing electrical systems. Looking forward, energy storage is being considered as a key element of the transformation of energy systems, given the higher shares of renewable generation integrating the systems and demand-side management offered to end-customers. Today, the cost of electricity produced from battery storage is approaching parity with electricity bought from the grid. For this trend to gain strength and energy storage to be part of new business models, energy policies and regulatory frameworks need to be adapted. (author)

  17. Monitored Retrievable Storage System Requirements Document

    International Nuclear Information System (INIS)

    1994-03-01

    This Monitored Retrievable Storage System Requirements Document (MRS-SRD) describes the functions to be performed and technical requirements for a Monitored Retrievable Storage (MRS) facility subelement and the On-Site Transfer and Storage (OSTS) subelement. The MRS facility subelement provides for temporary storage, at a Civilian Radioactive Waste Management System (CRWMS) operated site, of spent nuclear fuel (SNF) contained in an NRC-approved Multi-Purpose Canister (MPC) storage mode, or other NRC-approved storage modes. The OSTS subelement provides for transfer and storage, at Purchaser sites, of spent nuclear fuel (SNF) contained in MPCs. Both the MRS facility subelement and the OSTS subelement are in support of the CRWMS. The purpose of the MRS-SRD is to define the top-level requirements for the development of the MRS facility and the OSTS. These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MRS facility and the OSTS. The document also presents an overall description of the MRS facility and the OSTS, their functions (derived by extending the functional analysis documented by the Physical System Requirements (PSR) Store Waste Document), their segments, and the requirements allocated to the segments. In addition, the top-level interface requirements of the MRS facility and the OSTS are included. As such, the MRS-SRD provides the technical baseline for the MRS Safety Analysis Report (SAR) design and the OSTS Safety Analysis Report design

  18. Thermochemical study of MoS2 oxidation

    International Nuclear Information System (INIS)

    Filimonov, D.S.; Topor, N.D.; Kesler, Ya.A.

    1990-01-01

    Thermochemical studies of oxidation processes of metallic molybdenum, sulfur, molybdenum disulfide under different conditions in microcalorimeter are conducted. Values of thermal effects which are used to calculate standard formation enthalpy of MoS 2 and which correlate well are obtained. Δ f H 0 (MoS 2 ,298.15 K) recommended value constitutes (-223.0±16.7) kJ/mol

  19. Limestone calcination under calcium-looping conditions for CO2 capture and thermochemical energy storage in the presence of H2O: an in situ XRD analysis.

    Science.gov (United States)

    Valverde, Jose Manuel; Medina, Santiago

    2017-03-15

    This work reports an in situ XRD analysis of whether the calcination/carbonation behavior of natural limestone (CaCO 3 ) is affected by the addition of H 2 O to the calciner at a very low concentration under relevant Calcium-Looping (CaL) conditions for CO 2 capture in coal fired power plants (CFPP) and Thermochemical Energy Storage (TCES) in Concentrated Solar Power plants (CSP). Previous studies have demonstrated that the presence of steam in the calciner at a high concentration yields a significant increase in the reaction rate. However, a further undesired consequence is the serious deterioration of the CaO mechanical strength, which would lead to particle attrition and mass loss in any CaL process based on the use of circulating fluidized beds. The results presented in this manuscript on the time evolution of the wt% and crystallite size of the phases involved in the calcination/carbonation reactions indicate that the calcination rate is still notably increased by the presence of H 2 O at very low concentrations whereas the reactivity toward carbonation and crystal structure of the formed CaO are not essentially affected, which suggests that the CaO mechanical strength is not impaired. Thus, the benefit of using steam for calcination in the CaL process could be still retained while at the same time particle attrition would not be promoted.

  20. Advanced compressed hydrogen fuel storage systems

    International Nuclear Information System (INIS)

    Jeary, B.

    2000-01-01

    Dynetek was established in 1991 by a group of private investors, and since that time efforts have been focused on designing, improving, manufacturing and marketing advanced compressed fuel storage systems. The primary market for Dynetek fuel systems has been Natural Gas, however as the automotive industry investigates the possibility of using hydrogen as the fuel source solution in Alternative Energy Vehicles, there is a growing demand for hydrogen storage on -board. Dynetek is striving to meet the needs of the industry, by working towards developing a fuel storage system that will be efficient, economical, lightweight and eventually capable of storing enough hydrogen to match the driving range of the current gasoline fueled vehicles

  1. Key-value Storage Systems (and Beyond with Python

    Directory of Open Access Journals (Sweden)

    2010-09-01

    Full Text Available Web application developers often use RDBMS systems such as MySql or PostgreSql but there are many other types of databases out there. Key-value storage, schema and schema-less document storage, and column-oriented DBMS systems abound. These kind of database systems are becoming more popular when developing scalable web applications but many developers are unsure how to integrate them into their projects. This talk will focus on the key-value class of data storage systems, weigh the strengths and drawbacks of each and discuss typical use cases for key value storage.

  2. Design of double containment canister cask storage system

    International Nuclear Information System (INIS)

    Asami, M.; Matsumoto, T.; Oohama, T.; Kuriyama, K.; Kawakami, K.

    2004-01-01

    Spent fuels discharged from Japanese LWR will be stored as recycled-fuel-resources in interim storage facilities. The concrete cask storage system is one of important forms for the spent fuel interim storage. In Japan, the interim storage facility will be located near the coast, therefore it is important to prevent SCC (Stress Corrosion Cracking) caused by sea salt particles and to assure the containment integrity of the canister which contains spent fuels. KEPCO, NFT and OCL have designed the double containment canister cask storage system that can assure the long-term containment integrity and monitor the containment performance without storage capacity decrease. Major features of the combined canister cask system are shown as follows: This system can survey containment integrity of dual canisters by monitoring the pressure of the gap between canisters. The primary canister has dual lids sealed by welding. The secondary canister has single lid tightened by bolts and sealed by metallic gaskets. The primary canister is contained in the transport cask during transportation, and the gap between the primary canister and the transport cask is filled with He gas. Under storage condition in the concrete cask, the primary canister is contained in the secondary canister, and the gap between these canisters is filled with helium gas. Hence this system can prevent the primary canister to contact sea salt particle in the air and from SCC. Decrease of cooling performance because of the double canister is compensated by fins fitted on the secondary canister surface. Then, this system can prevent the decrease of storage capacity determined by the fuel temperature limit. This system can assure that the primary canister will keep intact for long term storage. Therefore, in the case of pressure down of the gap between canisters, it can be considered that the secondary canister containment is damaged, and the primary canister will be transferred to another secondary canister at the

  3. Storage system software solutions for high-end user needs

    Science.gov (United States)

    Hogan, Carole B.

    1992-01-01

    Today's high-end storage user is one that requires rapid access to a reliable terabyte-capacity storage system running in a distributed environment. This paper discusses conventional storage system software and concludes that this software, designed for other purposes, cannot meet high-end storage requirements. The paper also reviews the philosophy and design of evolving storage system software. It concludes that this new software, designed with high-end requirements in mind, provides the potential for solving not only the storage needs of today but those of the foreseeable future as well.

  4. Impact of Storage Technologies upon Power System Losses

    Directory of Open Access Journals (Sweden)

    DULAU Lucian Ioan

    2015-05-01

    Full Text Available The paper describes the main characteristics of storage technologies. The most important storage technologies are the batteries, hydrogen, pumped hydro, flywheels, compressed air, super-capacitors and superconducting magnetic devices. The storage technologies can be classified based on the function principle into electrochemical, mechanical and electromagnetic devices. The storage systems can also be classified based on their capacity to store power into short and long term devices. A power flow analysis is performed for the situation with and without a storage unit. The storage unit is inserted into the IEEE 14 bus test system.

  5. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an underground...

  6. Estimation of thermochemical behavior of spallation products in mercury target

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Aso, Tomokazu; Teshigawara, Makoto; Hino, Ryutaro

    2002-02-01

    In order to examine the radiation safety of a spallation mercury target system, especially source term evaluation, it is necessary to clarify the chemical forms of spallation products generated by spallation reaction with proton beam. As for the chemical forms of spallation products in mercury that involves large amounts of spallation products, these forms were estimated by using the binary phase diagrams and the thermochemical equilibrium calculation based on the amounts of spallation product. Calculation results showed that the mercury would dissolve Al, As, B, Be, Bi, C, Co, Cr, Fe, Ga, Ge, Ir, Mo, Nb, Os, Re, Ru, Sb, Si, Ta, Tc, V and W in the element state, and Ag, Au, Ba, Br, Ca, Cd, Ce, Cl, Cs, Cu, Dy, Er, Eu, F, Gd, Hf, Ho, I, In, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, O, Pb, Pd, Pr, Pt, Rb, Rh, S, Sc, Se, Sm, Sn, Sr, Tb, Te, Ti, Tl, Tm, Y, Yb, Zn and Zr in the form of inorganic mercury compounds. As for As, Be, Co, Cr, Fe, Ge, Ir, Mo, Nb, Os, Pt, Re, Ru, Se, Ta, V, W and Zr, precipitation could be occurred when increasing the amounts of spallation products with operation time of the spallation target system. On the other hand, beryllium-7 (Be-7), which is produced by spallation reaction of oxygen in the cooling water of a safety hull, becomes the main factor of the external exposure to maintain the cooling loop. Based on the thermochemical equilibrium calculation to Be-H 2 O binary system, the chemical forms of Be in the cooling water were estimated. Then the Be could exist in the form of cations such as BeOH + , BeO + and Be 2+ under the condition of less than 10 -8 of the Be mole fraction in the cooling water. (author)

  7. Energy storage system for a pulsed DEMO

    International Nuclear Information System (INIS)

    Lucas, J.; Cortes, M.; Mendez, P.; Hayward, J.; Maisonnier, D.

    2007-01-01

    Several designs have been proposed for the DEMO fusion reactor. Some of them are working in a non-steady state mode. Since a power plant should be able to deliver to the grid a constant power, this challenge must be solved. Energy storage is required at a level of 250 MWh e with the capability of delivering a power of 1 GWe. A review of different technologies for energy storage is made. Thermal energy storage (TES), fuel cells and other hydrogen storage, compressed air storage, water pumping, batteries, flywheels and supercapacitors are the most promising solutions to energy storage. Each one is briefly described in the paper, showing its basis, features, advantages and disadvantages for this application. The conclusion of the review is that, based on existing technology, thermal energy storage using molten salts and a system based on hydrogen storage are the most promising candidates to meet the requirements of a pulsed DEMO. These systems are investigated in more detail together with an economic assessment of each

  8. Safety considerations for compressed hydrogen storage systems

    International Nuclear Information System (INIS)

    Gleason, D.

    2006-01-01

    An overview of the safety considerations for various hydrogen storage options, including stationary, vehicle storage, and mobile refueling technologies. Indications of some of the challenges facing the industry as the demand for hydrogen fuel storage systems increases. (author)

  9. Thermochemical treatment of radioactive waste by using powder metal fuels

    International Nuclear Information System (INIS)

    Dmitriev, S.A.; Ojovan, M.I.; Karlina, O.K.

    2001-01-01

    Full text: A thermochemical approach was suggested for treating and conditioning specific streams of radioactive wastes for example spent ion exchange resins, mixed, organic or chlorine-containing radioactive waste as well as in order to decontaminate heavily contaminated surfaces. Conventional treatment methods of such waste encounters serious problems concerning complete destruction of organic molecules and possible emissions of radionuclides, heavy metals and chemically hazardous species or in case of contaminated materials - complete removal of contamination from surface. The thermochemical treatment of radioactive waste uses powdered metal fuels (PMF) that are specifically formulated for the waste composition and react chemically with the waste components. Thermochemical treatment technologies use the energy of chemical reactions in the mixture of waste with PMF to sustain both decomposition and synthesis processes as well as processes of isomorphic substitutions of hazardous elements into stable mineral forms. The composition of the PMF is designed in such a way as to minimise the release of hazardous components and radionuclides in the off gas and to confine the contaminants in the mineral or glass like final products. The thermochemical procedures allow decomposition of organic matter and capturing hazardous radionuclides and chemical species simultaneously. Thermochemical treatment technologies are very efficient, easy to apply, they have low capital investment and can be used both at large and small facilities. An advantage of thermochemical technologies is their autonomy. Thus these technologies can be successfully applied in order to treat small amount of waste without usage of complex and expensive equipment. They can be used also in emergency situations. Currently the thermochemical treatment technologies were developed and demonstrated to be feasible as follows: 1. Decontamination of surfaces; 2. Processing of organic waste; 3. Vitrification of dusty

  10. Comprehensive characterisation of sewage sludge for thermochemical conversion processes - Based on Singapore survey.

    Science.gov (United States)

    Chan, Wei Ping; Wang, Jing-Yuan

    2016-08-01

    Recently, sludge attracted great interest as a potential feedstock in thermochemical conversion processes. However, compositions and thermal degradation behaviours of sludge were highly complex and distinctive compared to other traditional feedstock led to a need of fundamental research on sludge. Comprehensive characterisation of sludge specifically for thermochemical conversion was carried out for all existing Water Reclamation Plants in Singapore. In total, 14 sludge samples collected based on the type, plant, and batch categorisation. Existing characterisation methods for physical and chemical properties were analysed and reviewed using the collected samples. Qualitative similarities and quantitative variations of different sludge samples were identified and discussed. Oxidation of inorganic in sludge during ash forming analysis found to be causing significant deviations on proximate and ultimate analysis. Therefore, alternative parameters and comparison basis including Fixed Residues (FR), Inorganic Matters (IM) and Total Inorganics (TI) were proposed for better understanding on the thermochemical characteristics of sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. AnalyzeThis: An Analysis Workflow-Aware Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Hyogi [ORNL; Kim, Youngjae [ORNL; Vazhkudai, Sudharshan S [ORNL; Tiwari, Devesh [ORNL; Anwar, Ali [Virginia Tech, Blacksburg, VA; Butt, Ali R [Virginia Tech, Blacksburg, VA; Ramakrishnan, Lavanya [Lawrence Berkeley National Laboratory (LBNL)

    2015-01-01

    The need for novel data analysis is urgent in the face of a data deluge from modern applications. Traditional approaches to data analysis incur significant data movement costs, moving data back and forth between the storage system and the processor. Emerging Active Flash devices enable processing on the flash, where the data already resides. An array of such Active Flash devices allows us to revisit how analysis workflows interact with storage systems. By seamlessly blending together the flash storage and data analysis, we create an analysis workflow-aware storage system, AnalyzeThis. Our guiding principle is that analysis-awareness be deeply ingrained in each and every layer of the storage, elevating data analyses as first-class citizens, and transforming AnalyzeThis into a potent analytics-aware appliance. We implement the AnalyzeThis storage system atop an emulation platform of the Active Flash array. Our results indicate that AnalyzeThis is viable, expediting workflow execution and minimizing data movement.

  12. Ceph, a distributed storage system for scientific computing

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Ceph is a distributed storage system designed to providing high performance and reliability at scales of up to thousands of storage nodes. The system is based on a distributed object storage layer call RADOS that provides durability, availability, efficient data distribution, and rich object semantics. This storage can be consumed directly via an object-based interface, or via file, block, or REST-based object services that are built on top of it. Clusters are composed of commodity components to provide a reliable storage service serving multiple use-cases. This seminar will cover the basic architecture of Ceph, with a focus on how each service can be consumed in a research and infrastructure environment. About the speaker Sage Weil, Founder and current CTO of Inktank Inc, is the creator of the Ceph project. He originally designed it as part of his PhD research in Storage Systems at the University of California, Santa Cruz. Since graduating, he has continued to refine the system with the goal of providi...

  13. The Design of Distributed Micro Grid Energy Storage System

    Science.gov (United States)

    Liang, Ya-feng; Wang, Yan-ping

    2018-03-01

    Distributed micro-grid runs in island mode, the energy storage system is the core to maintain the micro-grid stable operation. For the problems that it is poor to adjust at work and easy to cause the volatility of micro-grid caused by the existing energy storage structure of fixed connection. In this paper, an array type energy storage structure is proposed, and the array type energy storage system structure and working principle are analyzed. Finally, the array type energy storage structure model is established based on MATLAB, the simulation results show that the array type energy storage system has great flexibility, which can maximize the utilization of energy storage system, guarantee the reliable operation of distributed micro-grid and achieve the function of peak clipping and valley filling.

  14. 36 CFR 910.18 - Vehicular circulation and storage systems.

    Science.gov (United States)

    2010-07-01

    ... storage systems. 910.18 Section 910.18 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT... storage systems. (a) Improvement of the existing vehicular storage and circulation system is necessary in order to create the balanced transportation system called for in the Plan, which recognizes the need to...

  15. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Science.gov (United States)

    2010-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  16. The NAGRA/PSI thermochemical database: new developments

    International Nuclear Information System (INIS)

    Hummel, W.; Berner, U.; Thoenen, T.; Pearson, F.J.Jr.

    2000-01-01

    The development of a high quality thermochemical database for performance assessment is a scientifically fascinating and demanding task, and is not simply collecting and recording numbers. The final product can by visualised as a complex building with different storeys representing different levels of complexity. The present status report illustrates the various building blocks which we believe are integral to such a database structure. (authors)

  17. The NAGRA/PSI thermochemical database: new developments

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, W.; Berner, U.; Thoenen, T. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Pearson, F.J.Jr. [Ground-Water Geochemistry, New Bern, NC (United States)

    2000-07-01

    The development of a high quality thermochemical database for performance assessment is a scientifically fascinating and demanding task, and is not simply collecting and recording numbers. The final product can by visualised as a complex building with different storeys representing different levels of complexity. The present status report illustrates the various building blocks which we believe are integral to such a database structure. (authors)

  18. Thermochemical structure of the Earth's mantle and continental crust

    DEFF Research Database (Denmark)

    Guerri, Mattia

    A detailed knowledge of the Earth's thermal structure and chemical composition is fundamental in order to understand the processes driving the planet ormation and evolution. The inaccessibility of most of the Earth's interior makes the determination of its thermo-chemical conditions a challenging...

  19. DICOM implementation on online tape library storage system

    Science.gov (United States)

    Komo, Darmadi; Dai, Hailei L.; Elghammer, David; Levine, Betty A.; Mun, Seong K.

    1998-07-01

    The main purpose of this project is to implement a Digital Image and Communications (DICOM) compliant online tape library system over the Internet. Once finished, the system will be used to store medical exams generated from U.S. ARMY Mobile ARMY Surgical Hospital (MASH) in Tuzla, Bosnia. A modified UC Davis implementation of DICOM storage class is used for this project. DICOM storage class user and provider are implemented as the system's interface to the Internet. The DICOM software provides flexible configuration options such as types of modalities and trusted remote DICOM hosts. Metadata is extracted from each exam and indexed in a relational database for query and retrieve purposes. The medical images are stored inside the Wolfcreek-9360 tape library system from StorageTek Corporation. The tape library system has nearline access to more than 1000 tapes. Each tape has a capacity of 800 megabytes making the total nearline tape access of around 1 terabyte. The tape library uses the Application Storage Manager (ASM) which provides cost-effective file management, storage, archival, and retrieval services. ASM automatically and transparently copies files from expensive magnetic disk to less expensive nearline tape library, and restores the files back when they are needed. The ASM also provides a crash recovery tool, which enable an entire file system restore in a short time. A graphical user interface (GUI) function is used to view the contents of the storage systems. This GUI also allows user to retrieve the stored exams and send the exams to anywhere on the Internet using DICOM protocols. With the integration of different components of the system, we have implemented a high capacity online tape library storage system that is flexible and easy to use. Using tape as an alternative storage media as opposed to the magnetic disk has the great potential of cost savings in terms of dollars per megabyte of storage. As this system matures, the Hospital Information Systems

  20. Biomass thermochemical gasification: Experimental studies and modeling

    Science.gov (United States)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  1. REITP3-Hazard evaluation program for heat release based on thermochemical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Akutsu, Yoshiaki.; Tamura, Masamitsu. [The University of Tokyo, Tokyo (Japan). School of Engineering; Kawakatsu, Yuichi. [Oji Paper Corp., Tokyo (Japan); Wada, Yuji. [National Institute for Resources and Environment, Tsukuba (Japan); Yoshida, Tadao. [Hosei University, Tokyo (Japan). College of Engineering

    1999-06-30

    REITP3-A hazard evaluation program for heat release besed on thermochemical calculation has been developed by modifying REITP2 (Revised Estimation of Incompatibility from Thermochemical Properties{sup 2)}. The main modifications are as follows. (1) Reactants are retrieved from the database by chemical formula. (2) As products are listed in an external file, the addition of products and change in order of production can be easily conducted. (3) Part of the program has been changed by considering its use on a personal computer or workstation. These modifications will promote the usefulness of the program for energy hazard evaluation. (author)

  2. Performance of a combined cooling heating and power system with mid-and-low temperature solar thermal energy and methanol decomposition integration

    International Nuclear Information System (INIS)

    Xu, Da; Liu, Qibin; Lei, Jing; Jin, Hongguang

    2015-01-01

    Highlights: • A new middle-and-low temperature solar thermochemical CCHP system is proposed. • The thermodynamic performances of the new system are numerically evaluated. • The superiorities of the new system are demonstrated. - Abstract: In this paper, a new distributed energy system that integrates the mid-and-low temperature solar energy thermochemical process and the methanol decomposition is proposed. Through the solar energy receiver/reactor, the energy collected by a parabolic trough concentrator, at 200–300 °C, is used to drive the decomposition reaction of the methanol into the synthesis gas, and thus the solar thermal energy is converted to the chemical energy. The chemical energy of the synthesis gas released in the combustion chamber of a micro gas turbine is used to drive the combined cooling heating and power systems. Energy analysis and exergy analysis of the system are implemented to evaluate the feasibility of the proposed system. Under the considerations of the changes of the solar irradiation intensity, the off-design performances of the micro turbine and the variations of the load, the design and off-design thermodynamic performances of the system and the characteristics of the chemical energy storage are numerically studied. Numerical results indicate that the primary energy ratio of the system is 76.40%, and the net solar-electricity conversion rate reaches 22.56%, which is higher than exiting large-scale solar thermal power plants. Owing to the introduction of a the solar thermochemical energy storage in the proposed system, the power generation efficiency is insensitive to the variations of the solar radiation, and thus an efficient and stable utilization approach of the solar thermal energy is achieved at all work condition

  3. Combined solar collector and energy storage system

    Science.gov (United States)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  4. Design of annual storage solar space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, F C; Cook, J D

    1979-11-01

    Design considerations for annual storage solar space heating systems are discussed. A simulation model for the performance of suh systems is described, and a method of classifying system configurations is proposed. It is shown that annual systems sized for unconstrained performance, with no unused collector or storage capacity, and no rejected heat, minimize solar acquisition costs. The optimal performance corresponds to the condition where the marginal storage-to-collector sizing ratio is equal to the corresponding marginal cost ratio.

  5. Value and cost analyses for solar thermal-storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Luft, W.; Copeland, R.J.

    1983-04-01

    Value and cost data for thermal energy storage are presented for solar thermal central receiver systems for which thermal energy storage appears to be attractive. Both solar thermal electric power and industrial process heat applications are evaluated. The value of storage is based on the cost for fossil fuel and solar thermal collector systems in 1990. The costing uses a standard lifetime methodology with the storage capacity as a parameter. Both value and costs are functions of storage capacity. However, the value function depends on the application. Value/cost analyses for first-generation storage concepts for five central receiver systems (molten salt, water/steam, organic fluid, air, and liquid metal) established the reference against which new systems were compared. Some promising second-generation energy storage concepts have been identified, and some more advanced concepts have also been evaluated.

  6. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and

  7. Compatibility tests between Solar Salt and thermal storage ceramics from inorganic industrial wastes

    International Nuclear Information System (INIS)

    Motte, Fabrice; Falcoz, Quentin; Veron, Emmanuel; Py, Xavier

    2015-01-01

    Highlights: • ESEM and XRD characterizations have been performed. • Compatibility of these ceramics with the conventional binary Solar Salt is tested at 500 °C. • Tested ceramics have relevant properties to store thermal energy up to 1000 °C. • Feasibility of using ceramics as filler materials in thermocline is demonstrated. - Abstract: This paper demonstrates the feasibility of using several post-industrial ceramics as filler materials in a direct thermocline storage configuration. The tested ceramics, coming from several industrial processes (asbestos containing waste treatment, coal fired power plants or metallurgic furnaces) demonstrate relevant properties to store thermal energy by sensible heat up to 1000 °C. Thus, they represent at low-cost a promising, efficient and sustainable approach for thermal energy storage. In the present study, the thermo-chemical compatibility of these ceramics with the conventional binary Solar Salt is tested at medium temperature (500 °C) under steady state. In order to determine the feasibility of using such ceramics as filler material, Environmental Scanning Electron Microscopy (ESEM) and X-Ray Diffraction (XRD) characterizations have been performed to check for their chemical and structural evolution during corrosion tests. The final objective is to develop a molten salt thermocline direct storage system using low-cost shaped ceramic as structured filler material. Most of the tested ceramics present an excellent corrosion resistance in molten Solar Salt and should significantly decrease the current cost of concentrated solar thermal energy storage system

  8. Combined solar collector and storage systems

    International Nuclear Information System (INIS)

    Norton, B.; Smyth, M.; Eames, P.; Lo, S.N.G.

    2000-01-01

    The article discusses reasons why fossil-fuelled water heating systems are included in new houses but solar systems are not. The technology and market potential for evacuated tube systems and integral collector storage systems (ICSS) are explained. The challenge for the designers of ICSSWH has been how to reduce heat loss without compromising solar energy collection. A new concept for enhanced energy storage is described in detail and input/output data are given for two versions of ICSSWH units. A table compares the costs of ICSSWH in houses compared with other (i.e. fossil fuel) water heating systems

  9. Confidence building in safety assessment

    International Nuclear Information System (INIS)

    Osthols, E.

    1999-01-01

    Engineered disposal systems are necessary to isolate radioactive waste from humans and the environment. It is essential to have access to basic thermochemical data relevant to varying geological environments for the radioactive elements involved. The OECD/NEA Thermochemical Data Base project (TDB) aims to make widely available basic thermochemical data of the type needed for safety assessment of nuclear storage facilities. The history and the present status of the project are presented. (K.A.)

  10. Research on an IP disaster recovery storage system

    Science.gov (United States)

    Zeng, Dong; Wang, Yusheng; Zhu, Jianfeng

    2008-12-01

    According to both the Fibre Channel (FC) Storage Area Network (SAN) switch and Fabric Application Interface Standard (FAIS) mechanism, an iSCSI storage controller is put forward and based upon it, an internet Small Computer System Interface (iSCSI) SAN construction strategy for disaster recovery (DR) is proposed and some multiple sites replication models and a closed queue performance analysis method are also discussed in this paper. The iSCSI storage controller lies in the fabric level of the networked storage infrastructure, and it can be used to connect to both the hybrid storage applications and storage subsystems, besides, it can provide virtualized storage environment and support logical volume access control, and by cooperating with the remote peerparts, a disaster recovery storage system can be built on the basis of the data replication, block-level snapshot and Internet Protocol (IP) take-over functions.

  11. Exascale Storage Systems the SIRIUS Way

    Science.gov (United States)

    Klasky, S. A.; Abbasi, H.; Ainsworth, M.; Choi, J.; Curry, M.; Kurc, T.; Liu, Q.; Lofstead, J.; Maltzahn, C.; Parashar, M.; Podhorszki, N.; Suchyta, E.; Wang, F.; Wolf, M.; Chang, C. S.; Churchill, M.; Ethier, S.

    2016-10-01

    As the exascale computing age emerges, data related issues are becoming critical factors that determine how and where we do computing. Popular approaches used by traditional I/O solution and storage libraries become increasingly bottlenecked due to their assumptions about data movement, re-organization, and storage. While, new technologies, such as “burst buffers”, can help address some of the short-term performance issues, it is essential that we reexamine the underlying storage and I/O infrastructure to effectively support requirements and challenges at exascale and beyond. In this paper we present a new approach to the exascale Storage System and I/O (SSIO), which is based on allowing users to inject application knowledge into the system and leverage this knowledge to better manage, store, and access large data volumes so as to minimize the time to scientific insights. Central to our approach is the distinction between the data, metadata, and the knowledge contained therein, transferred from the user to the system by describing “utility” of data as it ages.

  12. Thermal analysis of near-isothermal compressed gas energy storage system

    International Nuclear Information System (INIS)

    Odukomaiya, Adewale; Abu-Heiba, Ahmad; Gluesenkamp, Kyle R.; Abdelaziz, Omar; Jackson, Roderick K.; Daniel, Claus; Graham, Samuel; Momen, Ayyoub M.

    2016-01-01

    Highlights: • A novel, high-efficiency, scalable, near-isothermal, energy storage system is introduced. • A comprehensive analytical physics-based model for the system is presented. • Efficiency improvement is achieved via heat transfer enhancement and use of waste heat. • Energy storage roundtrip efficiency (RTE) of 82% and energy density of 3.59 MJ/m"3 is shown. - Abstract: Due to the increasing generation capacity of intermittent renewable electricity sources and an electrical grid ill-equipped to handle the mismatch between electricity generation and use, the need for advanced energy storage technologies will continue to grow. Currently, pumped-storage hydroelectricity and compressed air energy storage are used for grid-scale energy storage, and batteries are used at smaller scales. However, prospects for expansion of these technologies suffer from geographic limitations (pumped-storage hydroelectricity and compressed air energy storage), low roundtrip efficiency (compressed air energy storage), and high cost (batteries). Furthermore, pumped-storage hydroelectricity and compressed air energy storage are challenging to scale-down, while batteries are challenging to scale-up. In 2015, a novel compressed gas energy storage prototype system was developed at Oak Ridge National Laboratory. In this paper, a near-isothermal modification to the system is proposed. In common with compressed air energy storage, the novel storage technology described in this paper is based on air compression/expansion. However, several novel features lead to near-isothermal processes, higher efficiency, greater system scalability, and the ability to site a system anywhere. The enabling features are utilization of hydraulic machines for expansion/compression, above-ground pressure vessels as the storage medium, spray cooling/heating, and waste-heat utilization. The base configuration of the novel storage system was introduced in a previous paper. This paper describes the results

  13. Dry storage systems using casks for long term storage in an AFR and repository

    International Nuclear Information System (INIS)

    Einfeld, K.; Popp, F.W.

    1986-01-01

    In conclusion it can be stated that two basic routes with respect to spent fuel storage casks are feasible. One is the Multiple Transport Cask, which with certain modifications can be upgraded to meet the criteria for intermediate storage. Its status is characterized by the licensing of several types of Castor Casks for an intermediate storage period of 30 years in the AFR Storage Facility of DWK at Gorleben in the FRG. The other one is the Final Disposal (Repository) Cask, which can be made suitable for long term storage before a final decision with respect to a repository application is taken. The licensing procedure for a Pilot Conditioning Facility with the Pollux Cask System as reference case will be initiated by DWK in the near future. Under the assumption that in addition to the present Multiple Transport/Storage Casks a license for a Final disposal Cask with respect to long term storage is available, the relative merits of different cask storage systems would have to be evaluated

  14. Integrated Building Energy Systems Design Considering Storage Technologies

    OpenAIRE

    Stadler, Michael

    2009-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 em...

  15. Probabilistic thermo-chemical analysis of a pultruded composite rod

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation...

  16. A PVTC system integrating photon-enhanced thermionic emission and methane reforming for efficient solar power generation

    Institute of Scientific and Technical Information of China (English)

    Wenjia Li; Hongsheng Wang; Yong Hao

    2017-01-01

    A new photovoltaic-thermochemical (PVTC) conceptual system integrating photon-enhanced thermionic emission (PETE) and methane steam reforming is proposed.Major novelty of the system lies in its potential adaptivity to primary fuels (e.g.methane) and high efficiencies of photovoltaic and thermochemical power generation,both of which result from its operation at much elevated temperatures (700-1000 ℃)compared with conventional photovoltaic-thermal (PVT) systems.Analysis shows that an overall power generation efficiency of 45.3% and a net solar-to-electric efficiency of 39.1% could be reached at an operating temperature of 750 ℃,after considering major losses during solar energy capture and conversion processes.The system is also featured by high solar share (37%) in the total power output,as well as high energy storage capability and very low CO2 emissions,both enabled by the integration of methane reforming with photovoltaic generation at high temperatures.

  17. Thermochemical conversion of microalgal biomass into biofuels: a review.

    Science.gov (United States)

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Heat pipe based cold energy storage systems for datacenter energy conservation

    International Nuclear Information System (INIS)

    Singh, Randeep; Mochizuki, Masataka; Mashiko, Koichi; Nguyen, Thang

    2011-01-01

    In the present paper, design and economics of the novel type of thermal control system for datacenter using heat pipe based cold energy storage has been proposed and discussed. Two types of cold energy storage system namely: ice storage system and cold water storage system are explained and sized for datacenter with heat output capacity of 8800 kW. Basically, the cold energy storage will help to reduce the chiller running time that will save electricity related cost and decrease greenhouse gas emissions resulting from the electricity generation from non-renewable sources. The proposed cold energy storage system can be retrofit or connected in the existing datacenter facilities without major design changes. Out of the two proposed systems, ice based cold energy storage system is mainly recommended for datacenters which are located in very cold locations and therefore can offer long term seasonal storage of cold energy within reasonable cost. One of the potential application domains for ice based cold energy storage system using heat pipes is the emergency backup system for datacenter. Water based cold energy storage system provides more compact size with short term storage (hours to days) and is potential for datacenters located in areas with yearly average temperature below the permissible cooling water temperature (∼25 o C). The aforesaid cold energy storage systems were sized on the basis of metrological conditions in Poughkeepsie, New York. As an outcome of the thermal and cost analysis, water based cold energy storage system with cooling capability to handle 60% of datacenter yearly heat load will provide an optimum system size with minimum payback period of 3.5 years. Water based cold energy storage system using heat pipes can be essentially used as precooler for chiller. Preliminary results obtained from the experimental system to test the capability of heat pipe based cold energy storage system have provided satisfactory outcomes and validated the proposed

  19. Choosing a spent fuel interim storage system

    International Nuclear Information System (INIS)

    Roland, V.; Hunter, I.

    2001-01-01

    The Transnucleaire Group has developed different modular solutions to address spent fuel interim storage needs of NPP. These solutions, that are present in Europe, USA and Asia are metal casks (dual purpose or storage only) of the TN 24 family and the NUHOMS canister based system. It is not always simple for an operator to sort out relevant choice criteria. After explaining the basic designs involved on the examples of the TN 120 WWER dual purpose cask and the NUHOMS 56 WWER for WWER 440 spent fuel, we shall discuss the criteria that govern the choice of a given spent fuel interim storage system from the stand point of the operator. In conclusion, choosing and implementing an interim storage system is a complex process, whose implications can be far reaching for the long-term success of a spent fuel management policy. (author)

  20. Global distribution of grid connected electrical energy storage systems

    Directory of Open Access Journals (Sweden)

    Katja Buss

    2016-06-01

    Full Text Available This article gives an overview of grid connected electrical energy storage systems worldwide, based on public available data. Technologies considered in this study are pumped hydroelectric energy storage (PHES, compressed air energy storage (CAES, sodium-sulfur batteries (NaS, lead-acid batteries, redox-flow batteries, nickel-cadmium batteries (NiCd and lithium-ion batteries. As the research indicates, the worldwide installed capacity of grid connected electrical energy storage systems is approximately 154 GW. This corresponds to a share of 5.5 % of the worldwide installed generation capacity. Furthermore, the article gives an overview of the historical development of installed and used storage systems worldwide. Subsequently, the focus is on each considered technology concerning the current storage size, number of plants and location. In summary it can be stated, PHES is the most commonly used technology worldwide, whereas electrochemical technologies are increasingly gaining in importance. Regarding the distribution of grid connected storage systems reveals the share of installed storage capacity is in Europe and Eastern Asia twice as high as in North America.

  1. Embedded system of image storage based on fiber channel

    Science.gov (United States)

    Chen, Xiaodong; Su, Wanxin; Xing, Zhongbao; Wang, Hualong

    2008-03-01

    In domains of aerospace, aviation, aiming, and optic measure etc., the embedded system of imaging, processing and recording is absolutely necessary, which has small volume, high processing speed and high resolution. But the embedded storage technology becomes system bottleneck because of developing slowly. It is used to use RAID to promote storage speed, but it is unsuitable for the embedded system because of its big volume. Fiber channel (FC) technology offers a new method to develop the high-speed, portable storage system. In order to make storage subsystem meet the needs of high storage rate, make use of powerful Virtex-4 FPGA and high speed fiber channel, advance a project of embedded system of digital image storage based on Xilinx Fiber Channel Arbitrated Loop LogiCORE. This project utilizes Virtex- 4 RocketIO MGT transceivers to transmit the data serially, and connects many Fiber Channel hard drivers by using of Arbitrated Loop optionally. It can achieve 400MBps storage rate, breaks through the bottleneck of PCI interface, and has excellences of high-speed, real-time, portable and massive capacity.

  2. Evaporative cooling enhanced cold storage system

    Science.gov (United States)

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  3. Thermodynamic analysis of a compressed carbon dioxide energy storage system using two saline aquifers at different depths as storage reservoirs

    International Nuclear Information System (INIS)

    Liu, Hui; He, Qing; Borgia, Andrea; Pan, Lehua; Oldenburg, Curtis M.

    2016-01-01

    Highlights: • A compressed CO_2 energy storage system using two storage reservoirs is presented. • Compressed CO_2 energy storage density is higher than that of CAES. • The effects of storage reservoir pressure on the system performance are studied. - Abstract: Compressed air energy storage (CAES) is one of the leading large-scale energy storage technologies. However, low thermal efficiency and low energy storage density restrict its application. To improve the energy storage density, we propose a two-reservoir compressed CO_2 energy storage system. We present here thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO_2 energy storage system under supercritical and transcritical conditions using a steady-state mathematical model. Results show that the transcritical compressed CO_2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO_2 energy storage. However, the configuration of supercritical compressed CO_2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of CAES, which is advantageous in terms of storage volume for a given power rating.

  4. Horizontal modular dry irradiated fuel storage system

    Science.gov (United States)

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  5. Hydrogen storage and delivery system development: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  6. Interest of thermochemical data bases linked to complex equilibria calculation codes for practical applications

    International Nuclear Information System (INIS)

    Cenerino, G.; Marbeuf, A.; Vahlas, C.

    1992-01-01

    Since 1974, Thermodata has been working on developing an Integrated Information System in Inorganic Chemistry. A major effort was carried on the thermochemical data assessment of both pure substances and multicomponent solution phases. The available data bases are connected to powerful calculation codes (GEMINI = Gibbs Energy Minimizer), which allow to determine the thermodynamical equilibrium state in multicomponent systems. The high interest of such an approach is illustrated by recent applications in as various fields as semi-conductors, chemical vapor deposition, hard alloys and nuclear safety. (author). 26 refs., 6 figs

  7. Overview of recent advances in thermo-chemical conversion of biomass

    International Nuclear Information System (INIS)

    Zhang Linghong; Xu Chunbao; Champagne, Pascale

    2010-01-01

    Energy from biomass, bioenergy, is a perspective source to replace fossil fuels in the future, as it is abundant, clean, and carbon dioxide neutral. Biomass can be combusted directly to generate heat and electricity, and by means of thermo-chemical and bio-chemical processes it can be converted into bio-fuels in the forms of solid (e.g., charcoal), liquid (e.g., bio-oils, methanol and ethanol), and gas (e.g., methane and hydrogen), which can be used further for heat and power generation. This paper provides an overview of the principles, reactions, and applications of four fundamental thermo-chemical processes (combustion, pyrolysis, gasification, and liquefaction) for bioenergy production, as well as recent developments in these technologies. Some advanced thermo-chemical processes, including co-firing/co-combustion of biomass with coal or natural gas, fast pyrolysis, plasma gasification and supercritical water gasification, are introduced. The advantages and disadvantages, potential for future applications and challenges of these processes are discussed. The co-firing of biomass and coal is the easiest and most economical approach for the generation of bioenergy on a large-sale. Fast pyrolysis has attracted attention as it is to date the only industrially available technology for the production of bio-oils. Plasma techniques, due to their high destruction and reduction efficiencies for any form of waste, have great application potential for hazardous waste treatment. Supercritical water gasification is a promising approach for hydrogen generation from biomass feedstocks, especially those with high moisture contents.

  8. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  9. Energy storage systems program report for FY1996

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1997-05-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective energy storage systems as a resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of energy storage systems for stationary applications. This report details the technical achievements realized during fiscal year 1996.

  10. Pumped storage in systems with very high wind penetration

    International Nuclear Information System (INIS)

    Tuohy, A.; O'Malley, M.

    2011-01-01

    This paper examines the operation of the Irish power system with very high levels of wind energy, with and without pumped storage. A unit commitment model which accounts for the uncertainty in wind power is used. It is shown that as wind penetration increases, the optimal operation of storage depends on wind output as well as load. The main benefit from storage is shown to be a decrease in wind curtailment. The economics of the system are examined to find the level at which storage justifies its capital costs and inefficiencies. It is shown that the uncertainty of wind makes the option of storage more attractive. The size of the energy store has an impact on results. At lower levels of installed wind (up to approximately 50% of energy from wind in Ireland), the reduction in curtailment is insufficient to justify building storage. At greater levels of wind, storage reduces curtailment sufficiently to justify the additional capital costs. It can be seen that if storage replaces OCGTs in the plant mix instead of CCGTs, then the level at which it justifies itself is lower. Storage increases the level of carbon emissions at wind penetration below 60%. - Research highlights: → Examines operation of pumped storage unit in a system with levels of wind from 34%-68% of energy. → High capital cost of storage is not justified until system has high (approx. 45%) wind penetration. → Results are driven by the amount of wind curtailment avoided and plant mix of system. → Other flexible options (e.g. interconnection) offer many of the same benefits as storage.

  11. Kinetic energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Folini, P.

    1983-09-03

    A flywheel system for the purpose of energy storage in decentral solar- or wind energy plants is introduced. The system comprises a rotor made out of plastic fibre, a motor/generator serving as electro-mechanical energy converter and a frequency-voltage transformer serving as electric adapter. The storable energy quantity amounts to several kWh.

  12. A strategy for load balancing in distributed storage systems

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Distributed storage systems are critical to the operation of the WLCG. These systems are not limited to fulfilling the long term storage requirements. They also serve data for computational analysis and other computational jobs. Distributed storage systems provide the ability to aggregate the storage and IO capacity of disks and tapes, but at the end of the day IO rate is still bound by the capabilities of the hardware, in particular the hard drives. Throughput of hard drives has increased dramatically over the decades, however for computational analysis IOPS is typically the limiting factor. To maximize return of investment, balancing IO load over available hardware is crucial. The task is made complicated by the common use of heterogeneous hardware and software environments that results from combining new and old hardware into a single storage system. This paper describes recent advances made in load balancing in the dCache distributed storage system. We describe a set of common requirements for load balan...

  13. Federal Tax Incentives for Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Katherine H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Settle, Donald E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-16

    Investments in renewable energy are more attractive due to the contribution of two key federal tax incentives. The investment tax credit (ITC) and the Modified Accelerated Cost Recovery System (MACRS) depreciation deduction may apply to energy storage systems such as batteries depending on who owns the battery and how the battery is used. The guidelines in this fact sheet apply to energy storage systems installed at the same time as the renewable energy system.

  14. Characterisation of agroindustrial solid residues as biofuels and potential application in thermochemical processes.

    Science.gov (United States)

    Virmond, Elaine; De Sena, Rennio F; Albrecht, Waldir; Althoff, Christine A; Moreira, Regina F P M; José, Humberto J

    2012-10-01

    In the present work, selected agroindustrial solid residues from Brazil - biosolids from meat processing wastewater treatment and mixture of sawdust with these biosolids; residues from apple and orange juice industries; sugarcane bagasse; açaí kernels (Euterpe oleracea) and rice husk - were characterised as solid fuels and an evaluation of their properties, including proximate and ultimate composition, energy content, thermal behaviour, composition and fusibility of the ashes was performed. The lower heating value of the biomasses ranged from 14.31 MJkg(-1) to 29.14 MJkg(-1), on a dry and ash free basis (daf), all presenting high volatile matter content, varying between 70.57 wt.% and 85.36 wt.% (daf) what improves the thermochemical conversion of the solids. The fouling and slagging tendency of the ashes was predicted based on the fuel ash composition and on the ash fusibility correlations proposed in the literature, which is important to the project and operation of biomass conversion systems. The potential for application of the Brazilian agroindustrial solid residues studied as alternative energy sources in thermochemical processes has been identified, especially concerning direct combustion for steam generation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Distributed energy systems with wind power and energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Korpaas, Magnus

    2004-07-01

    The topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy storage systems should be designed and operated in order to increase the penetration and value of wind power in the power system. Optimization models and sequential and probabilistic simulation models have been developed for this purpose. Chapter 3 presents a sequential simulation model of a general wind hydrogen energy system. Electrolytic hydrogen is used either as a fuel for transportation or for power generation in a stationary fuel cell. The model is useful for evaluating how hydrogen storage can increase the penetration of wind power in areas with limited or no transmission capacity to the main grid. The simulation model is combined with a cost model in order to study how component sizing and choice of operation strategy influence the performance and economics of the wind-hydrogen system. If the stored hydrogen is not used as a separate product, but merely as electrical energy storage, it should be evaluated against other and more energy efficient storage options such as pumped hydro and redox flow cells. A probabilistic model of a grid-connected wind power plant with a general energy storage unit is presented in chapter 4. The energy storage unit is applied for smoothing wind power fluctuations by providing a firm power output to the grid over a specific period. The method described in the chapter is based on the statistical properties of the wind speed and a general representation of the wind energy conversion system and the energy storage unit. This method allows us to

  16. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...... suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications....

  17. Reliability-oriented energy storage sizing in wind power systems

    DEFF Research Database (Denmark)

    Qin, Zian; Liserre, Marco; Blaabjerg, Frede

    2014-01-01

    Energy storage can be used to suppress the power fluctuations in wind power systems, and thereby reduce the thermal excursion and improve the reliability. Since the cost of the energy storage in large power application is high, it is crucial to have a better understanding of the relationship...... between the size of the energy storage and the reliability benefit it can generate. Therefore, a reliability-oriented energy storage sizing approach is proposed for the wind power systems, where the power, energy, cost and the control strategy of the energy storage are all taken into account....... With the proposed approach, the computational effort is reduced and the impact of the energy storage system on the reliability of the wind power converter can be quantified....

  18. Thermochemical properties of the alkali hydroxides: A review

    International Nuclear Information System (INIS)

    Konings, R.J.M.; Cordfunke, E.H.P.

    1989-01-01

    The formation of volatile alkali hydroxides as a result of high-temperature steam corrosion plays an important role in nuclear technology. For the modeling of the volatilization processes, reliable thermodynamic data are required. In the present paper recent physico-chemical experiments by the authors will be discussed and the thermochemical properties of the alkali hydroxide series will be evaluated. (orig.)

  19. Energy Storage Systems Program Report for FY98

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1999-04-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the U.S. Department of Energy's Office of Power Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1998.

  20. Energy storage systems program report for FY97

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1998-08-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1997. 46 figs., 20 tabs.

  1. Energy Storage Systems Program Report for FY99

    Energy Technology Data Exchange (ETDEWEB)

    BOYES,JOHN D.

    2000-06-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

  2. Modular vault dry storage system for interim storage of irradiated fuel

    International Nuclear Information System (INIS)

    Cundill, B.R.; Ealing, C.J.; Agarwal, B.K.

    1988-01-01

    The Foster Wheeler Energy Application (FWEA) Modular Vault Dry Store (MVDS) is a dry storage concept for the storage of all types of irradiated reactor fuel. For applications in the US, FWEA submitted an MVDS Topical Report to the US NRC during 1986. Following NRC approval of the MVDS Topical Report concept for unconsolidated LWR fuel, US utilities have available a new, compact, economic and flexible system for the storage of irradiated fuel at the reactor site for time periods of at least 20 years (the period of the first license). The MVDS concept jointly developed by FWEA and GEC in the U.K., has other applications for large central away from reactor storage facilities such as a Monitorable Retrievable Storage (MRS) installation. This paper describes the licensed MVDS design, aspects of performance are discussed and capital costs compared with alternative concepts. Alternative configurations of MVDS are outlined

  3. Performance enhancement of a subcooled cold storage air conditioning system

    International Nuclear Information System (INIS)

    Hsiao, M.-J.; Cheng, C.-H.; Huang, M.-C.; Chen, S.-L.

    2009-01-01

    This article experimentally investigates the enhancement of thermal performance for an air conditioning system utilizing a cold storage unit as a subcooler. The cold storage unit is composed of an energy storage tank, liquid-side heat exchanger, suction-side heat exchanger and energy storage material (ESM), water. When the cooling load is lower than the nominal cooling capacity of the system, the cold storage unit can store extra cold energy of the system to subcool the condenser outlet refrigerant. Hence, both the cooling capacity and coefficient of performance (COP) of the system will be increased. This experiment tests the two operation modes: subcooled mode with energy storage and non-subcooled mode without energy storage. The results show that for fixed cooling loads at 3.05 kW, 3.5 kW and 3.95 kW, the COP of the subcooled mode are 16.0%, 15.6% and 14.1% higher than those of the non-subcooled mode, respectively. In the varied cooling load experiments, the COP of the subcooled cold storage air conditioning system is 15.3% higher than the conventional system.

  4. Energy storage management system with distributed wireless sensors

    Science.gov (United States)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  5. Calorimetric investigation on mechanically activated storage energy mechanism of sphalerite and pyrite

    International Nuclear Information System (INIS)

    Xiao Zhongliang; Chen Qiyuan; Yin Zhoulan; Hu Huiping; Wu Daoxin

    2005-01-01

    The structural changes of mechanically activated sphalerite and pyrite under different grinding conditions were determined by X-ray powder diffraction (XRD), laser particle size analyzer and elemental analysis. The storage energy of mechanically activated sphalerite and pyrite was measured by a calorimetric method. A thermochemical cycle was designed so that mechanically activated and non-activated minerals reached the same final state when dissolved in the same oxidizing solvent. The results show that the storage energy of mechanically activated sphalerite and pyrite rises with increased in grinding time, and reaches a maximum after a certain grinding period. The storage energy of mechanically activated pyrite decreases when heated under inert atmosphere. The storage energy of mechanically activated sphalerite and pyrite remains constant when treated below 573 K under inert atmosphere. The percentage of the storage energy caused by surface area increase during mechanical activation decreases with increasing grinding time. These results support our opinion that the mechanically activated storage energy of sphalerite is closely related to lattice distortions, and the mechanically activated storage energy of pyrite is mainly caused by the formation of reactive sites on the surface

  6. APS storage ring vacuum system performance

    International Nuclear Information System (INIS)

    Noonan, J.R.; Gagliano, J.; Goeppner, G.A.

    1997-01-01

    The Advanced Photon Source (APS) storage ring was designed to operated with 7-GeV, 100-mA positron beam with lifetimes > 20 hours. The lifetime is limited by residual gas scattering and Touschek scattering at this time. Photon-stimulated desorption and microwave power in the rf cavities are the main gas loads. Comparison of actual system gas loads and design calculations will be given. In addition, several special features of the storage ring vacuum system will be presented

  7. Thermochemical micro imprinting of single-crystal diamond surface using a nickel mold under high-pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Imoto, Yuji; Yan, Jiwang, E-mail: yan@mech.keio.ac.jp

    2017-05-15

    Graphical abstract: A Ni mold and thermochemically imprinted microstructures on diamond. - Highlights: • A thermochemical method for micro machining/patterning of diamond is proposed. • Various kinds of microstructures were imprinted on diamond using a Ni mold. • A graphite layer is formed during imprinting which can be removed by acid. • The processing depth depends strongly on pressure and temperature. - Abstract: Single-crystal diamond is an important material for cutting tools, micro electro mechanical systems, optical devices, and semiconductor substrates. However, the techniques for producing microstructures on diamond surface with high efficiency and accuracy have not been established. This paper proposes a thermochemical imprinting method for transferring microstructures from a nickel (Ni) mold onto single-crystal diamond surface. The Ni mold was micro-structured by a nanoindenter and then pressed against the diamond surface under high temperature and pressure in argon atmosphere. Results show that microstructures on the Ni mold were successfully transferred onto the diamond surface, and their depth increased with both pressure and temperature. Laser micro-Raman spectroscopy, transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) analyses indicate that a graphite layer was formed over the contact area between diamond and Ni during pressing, and after washing by a mixed acid, the graphite layer could be completely removed. This study demonstrated the feasibility of a cost-efficient fabrication method for large-area microstructures on single-crystal diamond.

  8. Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production.

    Science.gov (United States)

    Falter, Christoph; Pitz-Paal, Robert

    2017-11-07

    The production of alternative fuels via the solar thermochemical pathway has the potential to provide supply security and to significantly reduce greenhouse gas emissions. H 2 O and CO 2 are converted to liquid hydrocarbon fuels using concentrated solar energy mediated by redox reactions of a metal oxide. Because attractive production locations are in arid regions, the water footprint and the land requirement of this fuel production pathway are analyzed. The water footprint consists of 7.4 liters per liter of jet fuel of direct demand on-site and 42.4 liters per liter of jet fuel of indirect demand, where the dominant contributions are the mining of the rare earth oxide ceria, the manufacturing of the solar concentration infrastructure, and the cleaning of the mirrors. The area-specific productivity is found to be 33 362 liters per hectare per year of jet fuel equivalents, where the land coverage is mainly due to the concentration of solar energy for heat and electricity. The water footprint and the land requirement of the solar thermochemical fuel pathway are larger than the best power-to-liquid pathways but an order of magnitude lower than the best biomass-to-liquid pathways. For the production of solar thermochemical fuels arid regions are best-suited, and for biofuels regions of a moderate and humid climate.

  9. Enabling data-intensive science with Tactical Storage Systems

    CERN Multimedia

    CERN. Geneva; Marquina, Miguel Angel

    2006-01-01

    Large scale scientific computing requires the ability to share and consume data and storage in complex ways across multiple systems. However, conventional systems constrain users to the fixed abstractions selected by the local system administrator. The result is that users must either move data manually over the wide area or simply be satisfied with the resources of a single cluster. To remedy this situation, we introduce the concept of a tactical storage system (TSS) that allows users to create, reconfigure, and destroy distributed storage systems without special privileges or complex configuration. We have deployed a prototype TSS of 200 disks and 8 TB of storage at the University of Notre Dame and applied it to several problems in astrophysics, high energy physics, and bioinformatics. This talk will focus on novel system structures that support data-intensive science. About the speaker: Douglas Thain is an Assistant Professor of Computer Science and Engineering at the University of Notre Dame. He received ...

  10. Energy Storage System

    Science.gov (United States)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  11. Carbon footprint reductions via grid energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Trevor S. [Naval Facilities Engineering Service Center, 1100 23rd Avenue, Port Huenem, CA 93043 (United States); Department of Management, Marketing, and Business Administration, University of Houston - Downtown, Houston, Texas (United States); Weeks, Kelly [Department of Maritime Administration, Texas A and M University at Galveston, Galveston, TX 77553 (United States); Tucker, Coleman [Department of Management, Marketing, and Business Administration, University of Houston - Downtown, Houston, Texas 77002 (United States)

    2011-07-01

    This effort presents a framework for reducing carbon emissions through the use of large-scale grid-energy-storage (GES) systems. The specific questions under investigation herein are as follows: Is it economically sound to invest in a GES system and is the system at least carbon footprint neutral? This research will show the answer to both questions is in the affirmative. Scilicet, when utilized judiciously, grid energy storage systems can be both net present value positive as well as be total carbon footprint negative. The significant contribution herein is a necessary and sufficient condition for achieving carbon footprint reductions via grid energy storage systems.

  12. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    Science.gov (United States)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle

  13. SUNgas: Thermochemical Approaches to Solar Fuels

    Science.gov (United States)

    Davidson, Jane

    2013-04-01

    Solar energy offers an intelligent solution to reduce anthropogenic emissions of greenhouse gases and to meet an expanding global demand for energy. A transformative change from fossil to solar energy requires collection, storage, and transport of the earth's most abundant but diffuse and intermittent source of energy. One intriguing approach for harvest and storage of solar energy is production of clean fuels via high temperature thermochemical processes. Concentrated solar energy is the heat source and biomass or water and carbon dioxide are the feedstocks. Two routes to produce fuels using concentrated solar energy and a renewable feed stock will be discussed: gasification of biomass or other carbonaceous materials and metal oxide cycles to produce synthesis gas. The first and most near term route to solar fuels is to gasify biomass. With conventional gasification, air or oxygen is supplied at fuel-rich levels to combust some of the feedstock and in this manner generate the energy required for conversion to H2 and CO. The partial-combustion consumes up to 40% of the energetic value of the feedstock. With air combustion, the product gas is diluted by high levels of CO2 and N2. Using oxygen reduces the product dilution, but at the expense of adding an oxygen plant. Supplying the required heat with concentrated solar radiation eliminates the need for partial combustion of the biomass feedstock. As a result, the product gas has an energetic value greater than that of the feedstock and it is not contaminated by the byproducts of combustion. The second promising route to solar fuels splits water and carbon dioxide. Two-step metal-oxide redox cycles hold out great potential because they the temperature required to achieve a reasonable degree of dissociation is lower than direct thermal dissociation and O2 and the fuel are produced in separate steps. The 1^st step is the endothermic thermal dissociation of the metal oxide to the metal or lower-valence metal oxide. The 2

  14. Holistic analysis of thermochemical processes by using solid biomass for fuel production in Germany

    International Nuclear Information System (INIS)

    Henssler, Martin

    2015-01-01

    According to the German act ''Biokraftstoff-Nachhaltigkeitsverordnung'', biofuels must show a CO 2eq -reduction compared to the fossil reference fuel (83.8 g CO 2eq /MJ fuel /Richtlinie 98/70/EG/) of 35 % beginning with 2011. In new plants, which go into operation after the 31.12.2016 the CO 2eq -savings must be higher than 50 % in 2017 and higher than 60 % in 2018 /Biokraft-NachV/. The biofuels (methyl ester of rapeseed, bioethanol and biomethane) considered in this study do not meet these requirements for new plants. To comply with these rules new processes must be deployed. Alternative thermochemical generated fuels could be an option. The aim of this work is to evaluate through a technical, ecological and economic analysis (Well-to-Wheel) whether and under what conditions the thermochemical production of Fischer-Tropsch-diesel or -gasoline, hydrogen (H 2 ) and Substitute Natural Gas (SNG) complies with the targets. Four different processes are considered (fast pyrolysis and torrefaction with entrained flow gasifier, CHOREN Carbo-V registered -gasifier, Absorption Enhanced Reforming (AER-) gasifier). Beside residues such as winter wheat straw and residual forest wood, wood from short-rotation plantations is taken into account. The technical analysis showed that at present status (2010) two and in 2050 six plants can be operated energy-self-sufficient. The overall efficiency of the processes is in the range of 41.5 (Fischer-Tropsch-diesel or -gasoline) and 59.4 % (H 2 ). Furthermore, it was found that for 2010, all thermochemical produced fuels except the H 2 -production from wood from short-rotation plantations in decentralised or central fast pyrolysis and in decentralised torrefactions with entrained flow gasifier keep the required CO 2eq -saving of 60 %. In 2050, all thermochemical produced fuels will reach these limits. The CO 2eq -saving is between 72 (H 2 ) and 95 % (Fischer-Tropsch-diesel or -gasoline). When the production costs of the

  15. Hydrogen production by thermochemical cycles of water splitting coupled to a solar energy source

    International Nuclear Information System (INIS)

    Charvin, P.

    2007-11-01

    The aim of this work is to identify, to test and to estimate new thermochemical cycles able to efficiently produce hydrogen from concentrated solar energy. In fact, the aim is to propose a hydrogen production way presenting a global energetic yield similar to electrolysis, that is to say 20-25%, electrolysis being at the present time the most advanced current process for a clean hydrogen production from water. After a first chapter dealing with the past and present researches on thermochemical cycles, the first step of this study has consisted on a selection of a limited number of thermochemical cycles able to produce great quantities of hydrogen from concentrated solar energy. It has consisted in particular on a review of the thermochemical cycles present in literature, on a first selection from argued criteria, and on an exergetic and thermodynamic analysis of the retained cycles for a first estimation of their potential. The second step of this study deals with the experimental study of all the chemical reactions occurring in the retained cycles. Two different oxides cycles have been particularly chosen and the aims are to demonstrate the feasibility of the reactions, to identify the optimal experimental conditions, to estimate and optimize the kinetics and the chemical yields. The following part of this work deals with the design, the modeling and the test of a solar reactor. A CFD modeling of a high temperature reactor of cavity type allows to identify the main heat losses of the reactor and to optimize the geometry of the cavity. A dynamic modeling of the reactor gives data on its behaviour in transient regime and under a real solar flux. The results of the preliminary experimental results are presented. The last part of this study deals with a process analysis of the thermochemical cycles from the results of the experimental study (experimental conditions, yields...). The matter and energy balances are established in order to estimate the global energetic

  16. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

  17. Entropy, pumped-storage and energy system finance

    Science.gov (United States)

    Karakatsanis, Georgios

    2015-04-01

    Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  18. Integrated spent fuel storage and transportation system using NUHOMS

    International Nuclear Information System (INIS)

    Lehnert, R.; McConaghy, W.; Rosa, J.

    1990-01-01

    As utilities with nuclear power plants face increasing near term spent fuel store needs, various systems for dry storage such as the NUTECH Horizontal Modular Storage (NUHOMS) system are being implemented to augment existing spent fuel pool storage capacities. These decisions are based on a number of generic and utility specific considerations including both short term and long term economics. Since the US Department of Energy (DOE) is tasked by the Nuclear Waste Policy Act with the future responsibility of transporting spent fuel from commercial nuclear power plants to a Monitored Retrievable Storage (MRS) facility anchor a permanent geologic repository, the interfaces between the utilities at-reactor dry storage system and the DOE's away-from-reactor transportation system become important. This paper presents a study of the interfaces between the current at-reactor NUHOMS system and the future away-from-reactor DOE transportation system being developed under the Office of Civilian Radioactive Waste Management (OCRWM) program. 7 refs., 9 figs., 1 tab

  19. Metal hydride-based thermal energy storage systems

    Science.gov (United States)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  20. Thermochemical equilibrium in a kernel of a UN TRISO coated fuel particle

    International Nuclear Information System (INIS)

    Kim, Young Min; Jo, C. K.; Lim, H. S.; Cho, M. S.; Lee, W. J.

    2012-01-01

    A coated fuel particle (CFP) with a uranium mononitride (UN) kernel has been recently considered as an advanced fuel option, such as in fully ceramic micro encapsulated (FCM) replacement fuel for light water reactors (LWRs). In FCM fuel, a large number of tri isotropic coated fuel particles (TRISOs) are embedded in a silicon carbide (SiC) matrix. Thermochemical equilibrium calculations can predict the chemical behaviors of a kernel in a TRISO of FCM fuel during irradiation. They give information on the kind and quantity of gases generated in a kernel during irradiation. This study treats the quantitative analysis of thermochemical equilibrium in a UN TRISO of FCM LWR fuel using HSC software

  1. Joint Planning Of Energy Storage and Transmission Considering Wind-Storage Combined System and Demand Side Response

    Science.gov (United States)

    Huang, Y.; Liu, B. Z.; Wang, K. Y.; Ai, X.

    2017-12-01

    In response to the new requirements of the operation mode of wind-storage combined system and demand side response for transmission network planning, this paper presents a joint planning of energy storage and transmission considering wind-storage combined system and demand side response. Firstly, the charge-discharge strategy of energy storage system equipped at the outlet of wind farm and demand side response strategy are analysed to achieve the best comprehensive benefits through the coordination of the two. Secondly, in the general transmission network planning model with wind power, both energy storage cost and demand side response cost are added to the objective function. Not only energy storage operation constraints and but also demand side response constraints are introduced into the constraint condition. Based on the classical formulation of TEP, a new formulation is developed considering the simultaneous addition of the charge-discharge strategy of energy storage system equipped at the outlet of the wind farm and demand side response strategy, which belongs to a typical mixed integer linear programming model that can be solved by mature optimization software. The case study based on the Garver-6 bus system shows that the validity of the proposed model is verified by comparison with general transmission network planning model. Furthermore, the results demonstrate that the joint planning model can gain more economic benefits through setting up different cases.

  2. Power Management of MEMS-Based Storage Devices for Mobile Systems

    NARCIS (Netherlands)

    Khatib, M.G.; Hartel, Pieter H.

    2008-01-01

    Because of its small form factor, high capacity, and expected low cost, MEMS-based storage is a suitable storage technology for mobile systems. MEMS-based storage devices should also be energy efficient for deployment in mobile systems. The problem is that MEMS-based storage devices are mechanical,

  3. Pulsed power generators using an inductive energy storage system

    International Nuclear Information System (INIS)

    Akiyama, H.; Sueda, T.; Katschinski, U.; Katsuki, S.; Maeda, S.

    1996-01-01

    The pulsed power generators using an inductive energy storage system are extremely compact and lightweight in comparison with those using a capacitive energy storage system. The reliable and repetitively operated opening switch is necessary to realize the inductive pulsed power generator. Here, the pulsed power generators using the inductive energy storage system, which have been developed in Kumamoto University, are summarized. copyright 1996 American Institute of Physics

  4. Combined storage system for LWR spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Baxter, B.J.; Ganley, J.T.; Washington, J.A.

    1983-01-01

    The MODREX storage system consists of four basic elements: (1) the storage canister, (2) the storage module, (3) the storage cask, and (4) the transport cask. The storage canister is the heart of the system and, when used in combination with the module or either of the casks, allows the MODREX system to respond quickly to varied storage system requirements. The MODREX system can be used to hold either spent fuel assemblies or canistered solidified HLW. The ability to combine a basic storage canister with either a concrete module or a metal cask provides flexibility to meet a wide range of storage requirements. The spent fuel is stored in a dry, inert atmosphere, which essentially eliminates corrosion or deterioration of the cladding during extended storage periods. The storage canister and concrete storage module provide additional barriers against radioactivity release, enhancing long-term safety. Heat dissipation is passive, eliminating the need for additional emergency cooling systems or special redundancy. Modular, expandable construction permits minimum initial investment and capital carrying charges; additional capacity is built and paid for only as it is needed, retaining flexibility. 6 references, 2 figures, 1 table

  5. Estimation of thermochemical behavior of spallation products in mercury target

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kaoru; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Aso, Tomokazu; Teshigawara, Makoto; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    In order to examine the radiation safety of a spallation mercury target system, especially source term evaluation, it is necessary to clarify the chemical forms of spallation products generated by spallation reaction with proton beam. As for the chemical forms of spallation products in mercury that involves large amounts of spallation products, these forms were estimated by using the binary phase diagrams and the thermochemical equilibrium calculation based on the amounts of spallation product. Calculation results showed that the mercury would dissolve Al, As, B, Be, Bi, C, Co, Cr, Fe, Ga, Ge, Ir, Mo, Nb, Os, Re, Ru, Sb, Si, Ta, Tc, V and W in the element state, and Ag, Au, Ba, Br, Ca, Cd, Ce, Cl, Cs, Cu, Dy, Er, Eu, F, Gd, Hf, Ho, I, In, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, O, Pb, Pd, Pr, Pt, Rb, Rh, S, Sc, Se, Sm, Sn, Sr, Tb, Te, Ti, Tl, Tm, Y, Yb, Zn and Zr in the form of inorganic mercury compounds. As for As, Be, Co, Cr, Fe, Ge, Ir, Mo, Nb, Os, Pt, Re, Ru, Se, Ta, V, W and Zr, precipitation could be occurred when increasing the amounts of spallation products with operation time of the spallation target system. On the other hand, beryllium-7 (Be-7), which is produced by spallation reaction of oxygen in the cooling water of a safety hull, becomes the main factor of the external exposure to maintain the cooling loop. Based on the thermochemical equilibrium calculation to Be-H{sub 2}O binary system, the chemical forms of Be in the cooling water were estimated. Then the Be could exist in the form of cations such as BeOH{sup +}, BeO{sup +} and Be{sup 2+} under the condition of less than 10{sup -8} of the Be mole fraction in the cooling water. (author)

  6. Design consideration on hydrogen production demonstration plant of thermochemical IS process

    International Nuclear Information System (INIS)

    Iwatsuki, Jin; Noguchi, Hiroki; Terada, Atsuhiko; Kubo, Shinji; Sakaba, Nariaki; Onuki, Kaoru; Hino, Ryutaro

    2009-03-01

    Preliminary design study was carried out on the hydrogen production demonstration plant of thermochemical IS process. In the pilot test, hydrogen production will be examined under prototypical condition using an apparatus made of industrial materials, which is driven by the sensible heat of helium gas heated by an electric heater that simulates the High Temperature Engineering Test Reactor (HTTR). Tentative system condition was defined considering the HTTR specification and the experience on the construction and the operation of the mock-up test facility using methane reforming for hydrogen production. The process condition and the system flow diagram were discussed to meet the system condition. Based on the defined process condition, types of the main components were discussed taking the corrosion resistance of the structural materials into consideration. Applicable rules and regulations were also surveyed regarding the plant construction and operation. (author)

  7. Fuels production by the thermochemical transformation of the biomass

    International Nuclear Information System (INIS)

    Claudet, G.

    2005-01-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  8. Thermochemical investigations on uranyl phosphates and arsenates

    International Nuclear Information System (INIS)

    Barten, H.

    1986-11-01

    The results are described of a study of the thermochemical stability of anhydrous uranyl phosphates and arsenates. A number of aspects of chemical technological importance are indicated in detail. The synthesized anhydrous uranyl phosphates and arsenates were very hygroscopic, so that experiments on these compounds had to be carried out under moisture-free conditions. Further characterisation of these compounds are given, including a study of their thermal stabilities and phase relations. The uranyl phosphates reduced reversibly at temperatures of the order of 1100 to 1600 0 C. This makes it possible to express their relative stabilities quantitatively, in terms of the oxygen pressures of the reduction reactions. The thermal decomposition of uranyl arsenates did not occur by reduction, as for the phosphates, but by giving off arsenic oxide vapour. The results of measurements of enthalpies of solution led to the determination of the enthalpies of formation, heat capacity and the standard entropies of the uranyl arsenates. The thermochemical functions at high-temperatures could consequently be calculated. Attention is paid to the possible formation of uranium arsenates, whose uranium has a valency lower than six, hitherto not reported in literature. It was not possible to prepare arsenates of tetravalent uranium. However, three new compounds were observed, one of these, UAsO 5 , was studied in some detail. (Auth.)

  9. Uncoupling File System Components for Bridging Legacy and Modern Storage Architectures

    Science.gov (United States)

    Golpayegani, N.; Halem, M.; Tilmes, C.; Prathapan, S.; Earp, D. N.; Ashkar, J. S.

    2016-12-01

    Long running Earth Science projects can span decades of architectural changes in both processing and storage environments. As storage architecture designs change over decades such projects need to adjust their tools, systems, and expertise to properly integrate such new technologies with their legacy systems. Traditional file systems lack the necessary support to accommodate such hybrid storage infrastructure resulting in more complex tool development to encompass all possible storage architectures used for the project. The MODIS Adaptive Processing System (MODAPS) and the Level 1 and Atmospheres Archive and Distribution System (LAADS) is an example of a project spanning several decades which has evolved into a hybrid storage architecture. MODAPS/LAADS has developed the Lightweight Virtual File System (LVFS) which ensures a seamless integration of all the different storage architectures, including standard block based POSIX compliant storage disks, to object based architectures such as the S3 compliant HGST Active Archive System, and the Seagate Kinetic disks utilizing the Kinetic Protocol. With LVFS, all analysis and processing tools used for the project continue to function unmodified regardless of the underlying storage architecture enabling MODAPS/LAADS to easily integrate any new storage architecture without the costly need to modify existing tools to utilize such new systems. Most file systems are designed as a single application responsible for using metadata to organizing the data into a tree, determine the location for data storage, and a method of data retrieval. We will show how LVFS' unique approach of treating these components in a loosely coupled fashion enables it to merge different storage architectures into a single uniform storage system which bridges the underlying hybrid architecture.

  10. Blanket materials for fusion reactors: comparisons of thermochemical performance

    International Nuclear Information System (INIS)

    Johnson, C.E.; Fischer, A.K.; Tetenbaum, M.

    1984-01-01

    Thermodynamic calculations have been made to predict the thermochemical performance of the fusion reactor breeder materials, Li 2 O, LiAlO 2 , and Li 4 SiO 4 in the temperature range 900 to 1300 0 K and in the oxygen activity range 10 -25 to 10 -5 . Except for a portion of these ranges, the performance of LiAlO 2 is predicted to be better than that of Li 2 O and Li 4 SiO 4 . The protium purge technique for enhancing tritium release is explored for the Li 2 O system; it appears advantageous at higher temperatures but should be used cautiously at lower temperatures. Oxygen activity is an important variable in these systems and must be considered in executing and interpreting measurements on rates of tritium release, the form of released tritium, diffusion of tritiated species and their identities, retention of tritium in the condensed phase, and solubility of hydrogen isotope gases

  11. Thermochemical properties of media for pyrometallurgical nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Hosoya, Yuji; Terai, Takayuki

    1998-01-01

    Molten chloride/cadmium system is considered to be applied to a solvent in pyrochemical reprocessing of spent nuclear fuel. In this work, phase diagrams for molten chloride systems were constructed, using NdCl 3 as an imitative substance in place of UCl 3 or PuCl 3 . Hastelloy-X (Ni/Cr21/Fe18/Mo9/W) was examined as a structural material for the corrosion-resistance against molten chloride baths containing NdCl 3 . The process of corrosion was thermochemically discussed and the form of the corrosion was illustrated. Rutherford backscattering spectroscopy was successfully applied to determine the elemental distribution profile of specimens tested on the compatibility with molten chloride mixture at elevated temperature. Ferritic steel was also examined as another candidate material for the compatibility with molten cadmium covered with LiCl-KCl eutectic salt. Variation of near-surface composition was observed by comparing the results of Rutherford backscattering spectroscopy obtained before and after the dipping. (author)

  12. Remarks on the thermochemical production of hydrogen from water using heat from the high temperature reactor

    International Nuclear Information System (INIS)

    Barnert, H.

    1980-06-01

    In this report, some aspects of the production of hydrogen from water using heat from the High Temperature Reactor has been studied. These aspects are: the theoretical potential for economic competitivness, the application of hydrogen in the Heat Market, the size of the market potential in the Federal Republic of Germany and the extent of research and development work. In addition another novel proposal for a thermochemical cycle has been studied. For the description of the theoretical potential for economic competitivness, a definition of the 'coupling', has been introduced, which is thermodynamicaly developed; the thermochemical cycle is compared with the thermochemical cycle. Using the coupling, it becomes possible to describe a relation between thermodynamical parameters and the ecomomical basic data of capital costs. Reasons are given from the theoretical point of view for the application of hydrogen as an energy carrier of high exergetic value in the heat market. The discussion of energy problems as 'questions of global survival' leads here to a proposal for the introduction of the term 'extropy'. The market potential in the Federal Republic of Germany is estimated. A further novel proposal for a thermochemical cycle is the 'hydrocarbon-hybrid-process'. The extent of research and development work is explained. (orig.) [de

  13. Process simulation of nuclear-based thermochemical hydrogen production with a copper-chlorine cycle

    International Nuclear Information System (INIS)

    Chukwu, C.C.; Naterer, G.F.; Rosen, M.A.

    2008-01-01

    Thermochemical processes for hydrogen production driven by nuclear energy are promising alternatives to existing technologies for large-scale commercial production of hydrogen without fossil fuels. The copper-chlorine (Cu-Cl) cycle, in which water is decomposed into hydrogen and oxygen, is promising for thermochemical hydrogen production in conjunction with a Supercritical Water Cooled Reactor. Here, the cycle efficiency is examined using the Aspen Plus process simulation code. Possible efficiency improvements are discussed. The results are expected to assist the development of a lab-scale cycle demonstration, which is currently being undertaken at University of Ontario Institute of Technology in collaboration with numerous partners. (author)

  14. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  15. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  16. A Novel Pumped Hydro Combined with Compressed Air Energy Storage System

    Directory of Open Access Journals (Sweden)

    Erren Yao

    2013-03-01

    Full Text Available A novel pumped hydro combined with compressed air energy storage (PHCA system is proposed in this paper to resolve the problems of bulk energy storage in the wind power generation industry over an area in China, which is characterised by drought and water shortages. Thermodynamic analysis of the energy storage system, which focuses on the pre-set pressure, storage volume capacity, water air volume ratio, pump performance, and water turbine performance of the storage system, is also presented. This paper discovers how such parameters affect the performance of the whole system. The ideal performance of this novel system has the following advantages: a simple, highly effective and low cost structure, which is comparable to the efficiency of a traditional pumped hydro storage system. Research results show a great solution to the current storage constraints encountered in the development of the wind power industry in China, which have been widely recognised as a bottleneck in the wind energy storage industry.

  17. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Charles J.; Ton, Dan T. (U.S. Department of Energy, Washington, D.C.); Boyes, John D.; Peek, Georgianne Huff

    2008-07-01

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  18. A process for the thermochemical poduction of H2

    International Nuclear Information System (INIS)

    Norman, J.H.; Russell, J.L. Jr.; Porter, J.T. II; McCorkl, K.H.; Roemer, T.S.; Sharp, Robert.

    1976-01-01

    A process is described for the thermochemical production of H 2 from water. HI 3 and H 2 SO 4 are prepared by chemical reaction between I 2 , SO 2 and H 2 O. Then HI 3 is heated and decomposed into H 2 and I 2 . The heat is produced by a nuclear reactor [fr

  19. Natural gas usage as a heat source for integrated SMR and thermochemical hydrogen production technologies

    International Nuclear Information System (INIS)

    Jaber, O.; Naterer, G.F.; Dincer, I.

    2010-01-01

    This paper investigates various usages of natural gas (NG) as an energy source for different hydrogen production technologies. A comparison is made between the different methods of hydrogen production, based on the total amount of natural gas needed to produce a specific quantity of hydrogen, carbon dioxide emissions per mole of hydrogen produced, water requirements per mole of hydrogen produced, and a cost sensitivity analysis that takes into account the fuel cost, carbon dioxide capture cost and a carbon tax. The methods examined are the copper-chlorine (Cu-Cl) thermochemical cycle, steam methane reforming (SMR) and a modified sulfur-iodine (S-I) thermochemical cycle. Also, an integrated Cu-Cl/SMR plant is examined to show the unique advantages of modifying existing SMR plants with new hydrogen production technology. The analysis shows that the thermochemical Cu-Cl cycle out-performs the other conventional methods with respect to fuel requirements, carbon dioxide emissions and total cost of production. (author)

  20. Investigation on Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can...... solar collector area of the system, was achieved. Active heating from the sand storage was not observed. The pay-back time for the system can be estimated to be similar to solar heated domestic hot water systems in general. A number of minor improvements on the system could be pointed out....

  1. Thermochemical investigation of lithium-vanadium bronzes

    International Nuclear Information System (INIS)

    Filippova, S.E.; Kesler, Ya.A.; Tret'yakov, Yu.D.; Gordeev, I.V.

    1979-01-01

    A thermochemical investigation was carried out of lithium-vanadium bronzes. The enthalpies of solution and the standard enthalpies of formation of the bronzes β-Lisub(x)Vsub(2)Osub(5) were determined. Investigated was the dependence of the enthalpy of mixing bronzes on the composition; a linear character of the dependence evidences of negligibly small, as compared to the experimental error, energy variations of the matrix V 2 O 5 on introduction of lithium. The variation was calculated of the partial molar enthalpy of lithium in the formation of β-Lisub(x)Vsub(2)Osub(5)

  2. Designing Microporus Carbons for Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  3. FPGA-based prototype storage system with phase change memory

    Science.gov (United States)

    Li, Gezi; Chen, Xiaogang; Chen, Bomy; Li, Shunfen; Zhou, Mi; Han, Wenbing; Song, Zhitang

    2016-10-01

    With the ever-increasing amount of data being stored via social media, mobile telephony base stations, and network devices etc. the database systems face severe bandwidth bottlenecks when moving vast amounts of data from storage to the processing nodes. At the same time, Storage Class Memory (SCM) technologies such as Phase Change Memory (PCM) with unique features like fast read access, high density, non-volatility, byte-addressability, positive response to increasing temperature, superior scalability, and zero standby leakage have changed the landscape of modern computing and storage systems. In such a scenario, we present a storage system called FLEET which can off-load partial or whole SQL queries to the storage engine from CPU. FLEET uses an FPGA rather than conventional CPUs to implement the off-load engine due to its highly parallel nature. We have implemented an initial prototype of FLEET with PCM-based storage. The results demonstrate that significant performance and CPU utilization gains can be achieved by pushing selected query processing components inside in PCM-based storage.

  4. Automated Storage Retrieval System (ASRS) Role Towards Achievement of Safety Objective and Safety Culture in Radioactive Storage Facilities

    International Nuclear Information System (INIS)

    Mohamad Hakiman Mohd Yusoff; Nurul Wahida Ahmad Khairuddin; Nik Marzukee Nik Ibrahim; Mat Bakar Mahusin; Muhammad, Z.A.; Nur Azna Mahmud; Norfazlina Zainal Abidin

    2012-01-01

    Waste Technology Development Centre (WasTeC) has been awarded with quality management system ISO 9001:2000 in June 2004 or now known as ISO 9001:2008. The scope of the unit's ISO certification is radioactive waste management and storage of radioactive material. To meet the objectives and requirements ISO 9001:2008, WasTeC has started a project known as Automated Storage and Retrieval System (ASRS). ASRS is a computing controlled method for automatically depositing and retrieving waste from defined locations. The system is used to replace the existing process of storage and retrieval of radioactive waste at storage facility at block 33.The main objective of this project is to reduced the radiation exposure to the worker and potential forklift accident occur during storage and retrieval of the radioactive waste. By using the ASRS system, WasTeC/ Nuclear Malaysia can provide a safe storage of radioactive waste and the use of this system can eliminate the repeat handling and can improve productivity. (author)

  5. Entropy, pricing and macroeconomics of pumped-storage systems

    Science.gov (United States)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2014-05-01

    We propose a pricing scheme for the enhancement of macroeconomic performance of pumped-storage systems, based on the statistical properties of both geophysical and economic variables. The main argument consists in the need of a context of economic values concerning the hub energy resource; defined as the resource that comprises the reference energy currency for all involved renewable energy sources (RES) and discounts all related uncertainty. In the case of pumped-storage systems the hub resource is the reservoir's water, as a benchmark for all connected intermittent RES. The uncertainty of all involved natural and economic processes is statistically quantifiable by entropy. It is the relation between the entropies of all involved RES that shapes the macroeconomic state of the integrated pumped-storage system. Consequently, there must be consideration on the entropy of wind, solar and precipitation patterns, as well as on the entropy of economic processes -such as demand preferences on either current energy use or storage for future availability. For pumped-storage macroeconomics, a price on the reservoir's capacity scarcity should also be imposed in order to shape a pricing field with upper and lower limits for the long-term stability of the pricing range and positive net energy benefits, which is the primary issue of the generalized deployment of pumped-storage technology. Keywords: Entropy, uncertainty, pricing, hub energy resource, RES, energy storage, capacity scarcity, macroeconomics

  6. Toxicity of systems for energy generation and storage

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.

    1979-01-01

    This section contains summaries of research on assessment of health and environmental effects of electric storage systems, and the metabolism and toxicity of metal compounds associated with energy production and storage. The first project relates to the production and use of electric storage battery systems. The second project deals with the effects of pregnancy and lactation on the gastrointestinal absorption, tissue distribution, and toxic effects of metals (Cd). Also included in this study is work on the absorption of actinides ( 239 Pu)

  7. Long-term cryogenic space storage system

    Science.gov (United States)

    Hopkins, R. A.; Chronic, W. L.

    1973-01-01

    Discussion of the design, fabrication and testing of a 225-cu ft spherical cryogenic storage system for long-term subcritical applications under zero-g conditions in storing subcritical cryogens for space vehicle propulsion systems. The insulation system design, the analytical methods used, and the correlation between the performance test results and analytical predictions are described. The best available multilayer insulation materials and state-of-the-art thermal protection concepts were applied in the design, providing a boiloff rate of 0.152 lb/hr, or 0.032% per day, and an overall heat flux of 0.066 Btu/sq ft hr based on a 200 sq ft surface area. A six to eighteen month cryogenic storage is provided by this system for space applications.

  8. Simulation study of an automated storage/retrieval system

    NARCIS (Netherlands)

    Berg, van den J.P.; Gademann, A.J.R.M.

    2000-01-01

    In this paper we present a simulation study of an automated storage/retrieval system and examine a wide variety of control policies. We compare several storage location assignment policies. For the class-based storage policy, we apply a recent algorithm that enables us to evaluate the trade-off

  9. Heat of fusion storage systems for combined solar systems in low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2004-01-01

    Solar heating systems for combined domestic hot water and space heating has a large potential especially in low energy houses where it is possible to take full advantage of low temperature heating systems. If a building integrated heating system is used – e.g. floor heating - the supply temperature...... from solid to liquid form (Fig. 1). Keeping the temperature as low as possible is an efficient way to reduce the heat loss from the storage. Furthermore, the PCM storage might be smaller than the equivalent water storage as more energy can be stored per volume. If the PCM further has the possibility...... systems through further improvement of water based storages and in parallel to investigate the potential of using storage designs with phase change materials, PCM. The advantage of phase change materials is that large amounts of energy can be stored without temperature increase when the material is going...

  10. Research on Battery Energy Storage System Based on User Side

    Science.gov (United States)

    Wang, Qian; Zhang, Yichi; Yun, Zejian; Wang, Xuguang; Zhang, Dong; Bian, Di

    2018-01-01

    This paper introduces the effect of user side energy storage on the user side and the network side, a battery energy storage system for the user side is designed. The main circuit topology of the battery energy storage system based on the user side is given, the structure is mainly composed of two parts: DC-DC two-way half bridge converter and DC-AC two-way converter, a control strategy combining battery charging and discharging characteristics is proposed to decouple the grid side and the energy storage side, and the block diagram of the charging and discharging control of the energy storage system is given. The simulation results show that the battery energy storage system of the user side can not only realize reactive power compensation of low-voltage distribution network, but also improve the power quality of the users.

  11. Energy storage systems: power grid and energy market use cases

    Directory of Open Access Journals (Sweden)

    Komarnicki Przemysław

    2016-09-01

    Full Text Available Current power grid and market development, characterized by large growth of distributed energy sources in recent years, especially in Europa, are according energy storage systems an increasingly larger field of implementation. Existing storage technologies, e.g. pumped-storage power plants, have to be upgraded and extended by new but not yet commercially viable technologies (e.g. batteries or adiabatic compressed air energy storage that meet expected demands. Optimal sizing of storage systems and technically and economically optimal operating strategies are the major challenges to the integration of such systems in the future smart grid. This paper surveys firstly the literature on the latest niche applications. Then, potential new use case and operating scenarios for energy storage systems in smart grids, which have been field tested, are presented and discussed and subsequently assessed technically and economically.

  12. Chemical heat pump and chemical energy storage system

    Science.gov (United States)

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  13. New data storage and retrieval systems for JET data

    Energy Technology Data Exchange (ETDEWEB)

    Layne, Richard E-mail: richard.layne@ukaea.org.uk; Wheatley, Martin E-mail: martin.wheatley@ukaea.org.uk

    2002-06-01

    Since the start of the Joint European Torus (JET), an IBM mainframe has been the main platform for data analysis and storage (J. Comput. Phys. 73 (1987) 85). The mainframe was removed in June 2001 and Solaris and Linux are now the main data storage and analysis platforms. New data storage and retrieval systems have therefore been developed: the Data Warehouse, the JET pulse file server, and the processed pulse file system. In this paper, the new systems will be described, and the design decisions that led to the final systems will be outlined.

  14. New data storage and retrieval systems for JET data

    International Nuclear Information System (INIS)

    Layne, Richard; Wheatley, Martin

    2002-01-01

    Since the start of the Joint European Torus (JET), an IBM mainframe has been the main platform for data analysis and storage (J. Comput. Phys. 73 (1987) 85). The mainframe was removed in June 2001 and Solaris and Linux are now the main data storage and analysis platforms. New data storage and retrieval systems have therefore been developed: the Data Warehouse, the JET pulse file server, and the processed pulse file system. In this paper, the new systems will be described, and the design decisions that led to the final systems will be outlined

  15. Detailed modeling of superconducting magnetic energy storage (SMES) system

    NARCIS (Netherlands)

    Chen, L.; Liu, Y.; Arsoy, A.B.; Ribeiro, P.F.; Steurer, M.; Iravani, M.R.

    2006-01-01

    This paper presents a detailed model for simulation of a Superconducting Magnetic Energy Storage (SMES) system. SMES technology has the potential to bring real power storage characteristic to the utility transmission and distribution systems. The principle of SMES system operation is reviewed in

  16. Energy conversion & storage program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  17. Solar hydrogen hybrid system with carbon storage

    International Nuclear Information System (INIS)

    Zini, G.; Marazzi, R.; Pedrazzi, S.; Tartarini, P.

    2009-01-01

    A complete solar hydrogen hybrid system has been developed to convert, store and use energy from renewable energy sources. The theoretical model has been implemented in a dynamic model-based software environment and applied to real data to simulate its functioning over a one-year period. Results are used to study system design and performance. A photovoltaic sub-system directly drives a residential load and, if a surplus of energy is available, an electrolyzer to produce hydrogen which is stored in a cluster of nitrogen-cooled tanks filled with AX-21 activated carbons. When the power converted from the sun is not sufficient to cover load needs, hydrogen is desorbed from activated carbon tanks and sent to the fuel-cell sub-system so to obtain electrical energy. A set of sub-systems (bus-bar, buck- and boost-converters, inverter, control circuits), handle the electrical power according to a Programmable Logic Control unit so that the load can be driven with adequate Quality of Service. Hydrogen storage is achieved through physisorption (weak van der Waals interactions) between carbon atoms and hydrogen molecules occurring at low temperature (77 K) in carbon porous solids at relatively low pressures. Storage modeling has been developed using a Langmuir-Freundlich 1st type isotherm and experimental data available in literature. Physisorption storage provides safer operations along with good gravimetric (10.8% at 6 MPa) and volumetric (32.5 g/l at 6 MPa) storage capacities at costs that can be comparable to, or smaller than, ordinary storage techniques (compression or liquefaction). Several test runs have been performed on residential user data-sets: the system is capable of providing grid independence and can be designed to yield a surplus production of hydrogen which can be used to recharge electric car batteries or fill tanks for non-stationary uses. (author)

  18. Preparation and thermochemical stability of uranium-zirconium-carbonitrides

    International Nuclear Information System (INIS)

    Kouhsen, C.

    1975-08-01

    This investigation deals with the preparation and the thermochemical stability of uranium-zirconium-carbonitrides as well as with the mechanism of (U,Zr) (C,N)-preparation by carbothermic reduction of uranium-zirconium-oxide. Single-phase (U,Zr) (C,N)-solid solutions with U:Zr-propertions of 3:1, 1:1, and 1:3 were prepared from oxide powder. The thermochemical stability of the (U,Zr) (C,N)-solid solutions against carbon was measured for varying Zr- and N-contents and for several temperatures; the results indicate an increase of the uranium carbide stability potential by the formation of (U,Zr) (C,N)-solid solutions. The thermodynamic properties ΔG 0 , ΔH 0 , and ΔS 0 were calculated and the correlation between the M(C,N)-lattice constant and the N-content was evaluated. Through an intensive investigation of the reaction mechanism, several different reaction paths were found; for each of them the characteristical diffusion of matter was explained by means of the microsections. It was shown that the Zr-concentration of the oxide reactant and the heating rate during the carbothermic reduction influence the species of the reaction product, especially the homogeneity of the (U,Zr) (C,N)-solid solution. (orig.) [de

  19. Thermo-Chemical Conversion of Microwave Activated Biomass Mixtures

    Science.gov (United States)

    Barmina, I.; Kolmickovs, A.; Valdmanis, R.; Vostrikovs, S.; Zake, M.

    2018-05-01

    Thermo-chemical conversion of microwave activated wheat straw mixtures with wood or peat pellets is studied experimentally with the aim to provide more effective application of wheat straw for heat energy production. Microwave pre-processing of straw pellets is used to provide a partial decomposition of the main constituents of straw and to activate the thermo-chemical conversion of wheat straw mixtures with wood or peat pellets. The experimental study includes complex measurements of the elemental composition of biomass pellets (wheat straw, wood, peat), DTG analysis of their thermal degradation, FTIR analysis of the composition of combustible volatiles entering the combustor, the flame temperature, the heat output of the device and composition of the products by comparing these characteristics for mixtures with unprocessed and mw pre-treated straw pellets. The results of experimental study confirm that mw pre-processing of straw activates the thermal decomposition of mixtures providing enhanced formation of combustible volatiles. This leads to improvement of the combustion conditions in the flame reaction zone, completing thus the combustion of volatiles, increasing the flame temperature, the heat output from the device, the produced heat energy per mass of burned mixture and decreasing at the same time the mass fraction of unburned volatiles in the products.

  20. Screening analysis of solar thermochemical hydrogen concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Diver, Richard B., Jr.; Kolb, Gregory J.

    2008-03-01

    A screening analysis was performed to identify concentrating solar power (CSP) concepts that produce hydrogen with the highest efficiency. Several CSP concepts were identified that have the potential to be much more efficient than today's low-temperature electrolysis technology. They combine a central receiver or dish with either a thermochemical cycle or high-temperature electrolyzer that operate at temperatures >600 C. The solar-to-hydrogen efficiencies of the best central receiver concepts exceed 20%, significantly better than the 14% value predicted for low-temperature electrolysis.

  1. Systems Based Approaches for Thermochemical Conversion of Biomass to Bioenergy and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Steven [Auburn Univ., AL (United States)

    2016-07-11

    Auburn’s Center for Bioenergy and Bioproducts conducts research on production of synthesis gas for use in power generation and the production of liquid fuels. The overall goal of our gasification research is to identify optimal processes for producing clean syngas to use in production of fuels and chemicals from underutilized agricultural and forest biomass feedstocks. This project focused on construction and commissioning of a bubbling-bed fluidized-bed gasifier and subsequent shakedown of the gasification and gas cleanup system. The result of this project is a fully commissioned gasification laboratory that is conducting testing on agricultural and forest biomass. Initial tests on forest biomass have served as the foundation for follow-up studies on gasification under a more extensive range of temperatures, pressures, and oxidant conditions. The laboratory gasification system consists of a biomass storage tank capable of holding up to 6 tons of biomass; a biomass feeding system, with loss-in-weight metering system, capable of feeding biomass at pressures up to 650 psig; a bubbling-bed fluidized-bed gasification reactor capable of operating at pressures up to 650 psig and temperatures of 1500oF with biomass flowrates of 80 lb/hr and syngas production rates of 37 scfm; a warm-gas filtration system; fixed bed reactors for gas conditioning; and a final quench cooling system and activated carbon filtration system for gas conditioning prior to routing to Fischer-Tropsch reactors, or storage, or venting. This completed laboratory enables research to help develop economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program provides the infrastructure to educate the next generation of engineers and scientists needed to implement these technologies.

  2. Activation of hydrogen storage materials in the Li-Mg-N-H system: Effect on storage properties

    International Nuclear Information System (INIS)

    Yang, Jun; Sudik, Andrea; Wolverton, C.

    2007-01-01

    We investigate the thermodynamics, kinetics, and capacity of the hydrogen storage reaction: Li 2 Mg(NH) 2 + 2H 2 ↔ Mg(NH 2 ) 2 + 2LiH. Starting with LiNH 2 and MgH 2 , two distinct procedures have been previously proposed for activating samples to induce the reversible storage reaction. We clarify here the impact of these two activation procedures on the resulting capacity for the Li-Mg-N-H reaction. Additionally, we measure the temperature-dependent kinetic absorption data for this hydrogen storage system. Finally, our experiments confirm the previously reported formation enthalpy (ΔH), hydrogen capacity, and pressure-composition-isotherm (PCI) data, and suggest that this system represents a kinetically (but not thermodynamically) limited system for vehicular on-board storage applications

  3. Study of the valorisation of thermal storage and of power-to-heat. Study report + Study synthesis

    International Nuclear Information System (INIS)

    Canal, Patrick; Gerbaud, Manon; Mouret, Sylvain; Chammas, Maxime; Attard, Pierre; Bucy, Jacques de; Lochmann, Hugo; Le Gars, Loic; Payen, Luc; Lesueur, Herve

    2016-11-01

    This study aimed at assessing the potential of thermal storage and of power-to-heat in France, and at identifying relevant technological sectors by 2030. In order to do so, the study aimed at quantifying the value of these sectors for applications considered as relevant, this value lying in the valorisation of heat or electric power excesses, in the power arbitration, and in investment savings. Analyses have have been performed on case studies through an assessment of storage value and of P2H (Power-to-Heat) for the collectivity, a joint optimisation of fleet sizing and management, a modelling of power system fundamentals, an analysis of the profitability of storage and P2H projects, and an assessment of the technical source and of the impact on jobs. Thus, after an overview of thermal storage and power-to-heat technologies, and a presentation of the adopted methodology (definition of case studies, case study methodology, modelling hypotheses related to production and consumption, and modelling of the power system), the authors report the study of the sizing of biomass boilers in an urban heat network (determination of the storage value for the community), the study of development of an urban heat network (storage value for the community and for the operator, technological perspective by 2030), the study of the use of power-to-heat and storage for an urban heat network (value for the community, profitability and business model, perspective by 2030), the study of unavoidable heat recovery on an industrial site (value, profitability and business model, perspective by 2030), the study of co-generation and thermal storage on an industrial site (value, impact on income), the study of domestic thermal storage and of the flexibility of the French electric power system (impact of thermal water heaters on the flexibility), and the study of the impact on employment (jobs related to the domestic market and to the development of an exporting sector). Appendices propose sheets

  4. Induction Motors Most Efficient Operation Points in Pumped Storage Systems

    DEFF Research Database (Denmark)

    Busca-Forcos, Andreea; Marinescu, Corneliu; Busca, Cristian

    2015-01-01

    A clear focus is nowadays on developing and improving the energy storage technologies. Pumped storage is a well-established one, and is capable of enhancing the integration of renewable energy sources. Pumped storage has an efficiency between 70-80%, and each of its elements affects it. Increased...... efficiency is desired especially when operating with renewable energy systems, which present low energy conversion factor (up to 50% - performance coefficient for wind turbines, and efficiency up to 40% for photovoltaic systems). In this paper the most efficient operation points of the induction motors...... in pumped storage systems are established. The variable speed operation of the pumped storage systems and motor loading conditions for pump applications have been the key factors for achieving the purpose of the paper....

  5. Exergy analysis of a gas-hydrate cool storage system

    International Nuclear Information System (INIS)

    Bi, Yuehong; Liu, Xiao; Jiang, Minghe

    2014-01-01

    Based on exergy analysis of charging and discharging processes in a gas-hydrate cool storage system, the formulas for exergy efficiency at the sensible heat transfer stage and the phase change stage corresponding to gas-hydrate charging and discharging processes are obtained. Furthermore, the overall exergy efficiency expressions of charging, discharging processes and the thermodynamic cycle of the gas-hydrate cool storage system are obtained. By using the above expressions, the effects of number of transfer units, the inlet temperatures of the cooling medium and the heating medium on exergy efficiencies of the gas-hydrate cool storage system are emphatically analyzed. The research results can be directly used to evaluate the performance of gas-hydrate cool storage systems and design more efficient energy systems by reducing the sources of inefficiency in gas-hydrate cool storage systems. - Highlights: • Formulas for exergy efficiency at four stages are obtained. • Exergy efficiency expressions of two processes and one cycle are obtained. • Three mainly influencing factors on exergy efficiencies are analyzed. • With increasing the inlet temperature of cooling medium, exergy efficiency increases. • With decreasing the inlet temperature of heating medium, exergy efficiency increases

  6. Cascading pressure reactor and method for solar-thermochemical reactions

    Science.gov (United States)

    Ermanoski, Ivan

    2017-11-14

    Reactors and methods for solar thermochemical reactions are disclosed. The reactors and methods include a cascade of reduction chambers at successively lower pressures that leads to over an order of magnitude pressure decrease compared to a single-chambered design. The resulting efficiency gains are substantial, and represent an important step toward practical and efficient solar fuel production on a large scale.

  7. Storage monitoring systems for the year 2000

    International Nuclear Information System (INIS)

    Nilsen, C.; Pollock, R.

    1997-01-01

    In September 1993, President Clinton stated the US would ensure that its fissile material meet the highest standards of safety, security, and international accountability. Frequent human inspection of the material could be used to ensure these standards. However, it may be more effective and less expensive to replace these manual inspections with virtual inspections via remote monitoring technologies. To prepare for this future, Sandia National Laboratories has developed several monitoring systems, including the Modular Integrated Monitoring System (MIMS) and Project Straight-Line. The purpose of this paper is to describe a Sandia effort that merges remote monitoring technologies into a comprehensive storage monitoring system that will meet the near-term as well as the long-term requirements for these types of systems. Topics discussed include: motivations for storage monitoring systems to include remote monitoring; an overview of the needs and challenges of providing a storage monitoring system for the year 2000; an overview of how the MIMS and Straight-Line can be enhanced so that together they create an integrated and synergistic information system by the end of 1997; and suggested milestones for 1998 and 1999 to assure steady progress in preparing for the needs of 2000

  8. Numerical modeling of underground storage system for natural gas

    Science.gov (United States)

    Ding, J.; Wang, S.

    2017-12-01

    Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).

  9. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  10. Communication: The electronic entropy of charged defect formation and its impact on thermochemical redox cycles

    Science.gov (United States)

    Lany, Stephan

    2018-02-01

    The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.

  11. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.; Hagstroem, M.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The main technical constraint in solar energy systems which operate around the year is the lack of suitable long-term energy storage. Conventional solutions to overcome the problem of seasonal storage in PV power systems are to use oversized batteries as a seasonal energy storage, or to use a diesel back-up generator. However, affordable lead-acid batteries are not very suitable for seasonal energy storage because of a high self-discharge rate and enhanced deterioration and divergence of the single cells during prolonged periods of low state of charge in times of low irradiation. These disadvantages can be avoided by a back-up system, e.g. a diesel generator, which car supply energy to the loads and charge the battery to the full state of charge to avoid the above mentioned disadvantages. Unfortunately, diesel generators have several disadvantages, e.g. poor starting reliability, frequent need for maintenance and noise

  12. Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Dey, Sunita

    2016-01-01

    Generation of H 2 and CO by splitting H 2 O and CO 2 respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H 2 O or CO 2 over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H 2 O or CO 2 . While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln 1−x A x Mn 1−y M y O 3 (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H 2 and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y 0.5 Sr 0.5 MnO 3 which releases 483 µmol/g of O 2 at 1673 K and produces 757 µmol/g of CO from CO 2 at 1173 K. The production of H 2 from H 2 O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H 2 based on the Mn 3 O 4 /NaMnO 2 cycle briefly. - Graphical abstract: Ln 0.5 A 0.5 Mn 1−x M x O 3 (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO 2 and H 2 O for the generation of CO and H 2 . - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO 2 and H 2 O. • In Ln 1−x A x MnO 3 perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles in the thermochemical process. • H 2 O splitting is also achieved by the use of the Mn 3 O 4 -sodium carbonate system. • Thermochemical splitting of CO 2 and H

  13. Monitored Retrievable Storage System Requirements Document. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This Monitored Retrievable Storage System Requirements Document (MRS-SRD) describes the functions to be performed and technical requirements for a Monitored Retrievable Storage (MRS) facility subelement and the On-Site Transfer and Storage (OSTS) subelement. The MRS facility subelement provides for temporary storage, at a Civilian Radioactive Waste Management System (CRWMS) operated site, of spent nuclear fuel (SNF) contained in an NRC-approved Multi-Purpose Canister (MPC) storage mode, or other NRC-approved storage modes. The OSTS subelement provides for transfer and storage, at Purchaser sites, of spent nuclear fuel (SNF) contained in MPCs. Both the MRS facility subelement and the OSTS subelement are in support of the CRWMS. The purpose of the MRS-SRD is to define the top-level requirements for the development of the MRS facility and the OSTS. These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MRS facility and the OSTS. The document also presents an overall description of the MRS facility and the OSTS, their functions (derived by extending the functional analysis documented by the Physical System Requirements (PSR) Store Waste Document), their segments, and the requirements allocated to the segments. In addition, the top-level interface requirements of the MRS facility and the OSTS are included. As such, the MRS-SRD provides the technical baseline for the MRS Safety Analysis Report (SAR) design and the OSTS Safety Analysis Report design.

  14. Sequencing dynamic storage systems with multiple lifts and shuttles

    NARCIS (Netherlands)

    Carlo, Hector J.; Vis, Iris F. A.

    2012-01-01

    New types of Automated Storage and Retrieval Systems (AS/RS) able to achieve high throughput are continuously being developed and require new control polices to take full advantage of the developed system. In this paper, a dynamic storage system has been studied as developed by Vanderlande

  15. On the thermo-chemical origin of the stratified region at the top of the Earth's core

    Science.gov (United States)

    Nakagawa, Takashi

    2018-03-01

    I developed a combined model of the thermal and chemical evolution of the Earth's core and investigated its influence on a thermochemically stable region beneath the core-mantle boundary (CMB). The chemical effects of the growing stable region are caused by the equilibrium chemical reaction between silicate and the metallic core. The thermal effects can be characterized by the growth of the sub-isentropic shell, which may have a rapid growth rate compared to that of the chemically stable region. When the present-day CMB heat flow was varied, the origin of the stable region changed from chemical to thermochemical to purely thermal because the rapid growth of the sub-isentropic shell can replace the chemically stable region. Physically reasonable values of the present-day CMB heat flow that can maintain the geodynamo action over 4 billion years should be between 8 and 11 TW. To constrain the thickness of the thermochemically stable region beneath the CMB, the chemical diffusivity is important and should be ∼O(10-8) m2/s to obtain a thickness of the thermochemically stable region beneath the CMB consistent with that inferred from geomagnetic secular variations (140 km). However, the strength of the stable region found in this study is too high to be consistent with the constraint on the stability of the stable region inferred from geomagnetic secular variations.

  16. The Impact Of Optical Storage Technology On Image Processing Systems

    Science.gov (United States)

    Garges, Daniel T.; Durbin, Gerald T.

    1984-09-01

    The recent announcement of commercially available high density optical storage devices will have a profound impact on the information processing industry. Just as the initial introduction of random access storage created entirely new processing strategies, optical technology will allow dramatic changes in the storage, retrieval, and dissemination of engineering drawings and other pictorial or text-based documents. Storage Technology Corporation has assumed a leading role in this arena with the introduction of the 7600 Optical Storage Subsystem, and the formation of StorageTek Integrated Systems, a subsidiary chartered to incorporate this new technology into deliverable total systems. This paper explores the impact of optical storage technology from the perspective of a leading-edge manufacturer and integrator.

  17. Haemolytic activity of uranium compounds haemolysis by thermochemical derivatives of ammonium uranate

    International Nuclear Information System (INIS)

    Stuart, W.I.; Tucker, A.D.; Adams, R.B.

    1975-01-01

    A study has been made of the haemolytic action on human erythrocytes by ammonium uranate (AU) and various thermochemical products of AU. These products were obtained by heating AU in hydrogen at 5 0 C min -1 to various temperatures. Haemolysis has been interpreted in terms of a diffusion model which for each product yields a single parameter Ksub(N), the haemolytic activity factor. The magnitude of Ksub(N) is a convenient measure of the ability of a powder to damage erythrocytes. The haemolytic activity of certain thermochemical derivatives indicates an exceptionally high potential for damage to erythrocytes. Infrared and thermoanalytical measurements have shown that the high activity of these products derives principally from a self-reduction reaction, induced by heating AU to 400-420 0 C in hydrogen. (author)

  18. Development of a Thermo-chemical Non-equilibrium Solver for Hypervelocity Flows

    Science.gov (United States)

    Balasubramanian, R.; Anandhanarayanan, K.

    2015-04-01

    In the present study, a three dimensional flowsolver is indigenously developed to numerically simulate hypervelocity thermal and chemical non equilibrium reactive air flow past flight vehicles. The two-temperature, five species, seventeen reactions, thermo-chemical non equilibrium, non-ionizing, air-chemistry model of Park is implemented in a compressible viscous code CERANS and solved in the finite volume framework. The energy relaxation is addressed by a conservation equation for the vibrational energy of the gas mixture resulting in the evaluation of its vibrational temperature. The AUSM-PW+ numerical flux function has been used for modeling the convective fluxes and a central differencing approximation is used for modeling the diffusive fluxes. The flowsolver had been validated for specifically chosen test cases with inherent flow complexities of non-ionizing hypervelocity thermochemical nonequilibrium flows and results obtained are in good agreement with results available in open literature.

  19. Economic analysis of using above ground gas storage devices for compressed air energy storage system

    Science.gov (United States)

    Liu, Jinchao; Zhang, Xinjing; Xu, Yujie; Chen, Zongyan; Chen, Haisheng; Tan, Chunqing

    2014-12-01

    Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis. The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number. The LCCs of the three types are comprehensively analyzed and compared. The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types. This study may serve as a reference for designing large-scale CAES systems.

  20. Economic feasibility of thermal energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Habeebullah, B.A. [Faculty of Engineering, King Abdulaziz University, Jeddah (Saudi Arabia)

    2007-07-01

    This paper investigates the economic feasibility of both building an ice thermal storage and structure a time of rate tariff for the unique air conditioning (A/C) plant of the Grand Holy Mosque of Makkah, Saudi Arabia. The features of the building are unique where the air-conditioned 39,300 m{sup 2} zone is open to the atmosphere and the worshippers fully occupy the building five times a day, in addition hundreds of thousands of worshippers attend the blessed weekend's prayer at noontime, which escalates the peak electricity load. For economic analysis, the objective function is the daily electricity bill that includes the operation cost and the capital investment of the ice storage system. The operation cost is function of the energy imported for operating the plant in which the tariff structure, number of operating hours and the ambient temperature are parameters. The capital recovery factor is calculated for 10% interest rate and payback period of 10 years. Full and partial load storage scenarios are considered. The results showed that with the current fixed electricity rate (0.07 $/kWh), there is no gain in introducing ice storage systems for both storage schemes. Combining energy storage and an incentive time structured rate showed reasonable daily bill savings. For base tariff of 0.07 $/kWh during daytime operation and 0.016 $/kWh for off-peak period, savings were achieved for full load storage scenario. Different tariff structure is discussed and the break-even nighttime rate was determined (varies between 0.008 and 0.03 $/kWh). Partial load storage scenario showed to be unattractive where the savings for the base structured tariff was insignificant. (author)

  1. Graphene-Based Systems for Energy Storage

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Phillips, James, III; Hogue, Michael; Kaner, Richard B.; El-Kady, Maher

    2016-01-01

    Development of graphene-based energy storage devices based on the Laser Scribe system developed by the University of California Los Angeles. These devices These graphene-based devices store charge on graphene sheets and take advantage of the large accessible surface area of graphene (2,600 m2g) to increase the electrical energy that can be stored. The proposed devices should have the electrical storage capacity of thin-film-ion batteries but with much shorter charge discharge cycle times as well as longer lives The proposed devices will be carbon-based and so will not have the same issues with flammability or toxicity as the standard lithium-based storage cells.

  2. A new compressed air energy storage refrigeration system

    International Nuclear Information System (INIS)

    Wang Shenglong; Chen Guangming; Fang Ming; Wang Qin

    2006-01-01

    In this study, a new compressed air energy storage (CAES) refrigeration system is proposed for electrical power load shifting application. It is a combination of a gas refrigeration cycle and a vapor compression refrigeration cycle. Thermodynamic calculations are conducted to investigate the performance of this system. Economic analysis is performed to study the operating cost of the system, and comparison is made with a vapor compression refrigeration system and an ice storage refrigeration system. The results indicate that the CAES refrigeration system has the advantages of simple structure, high efficiency and low operating cost

  3. Development of HF-systems for electron storage systems

    International Nuclear Information System (INIS)

    Androsov, V.P.; Karnaukhov, I.M.; Popkov, Yu.P.; Reva, S.N.; Telegin, Yu.N.

    1999-01-01

    Development of HF systems for electron storages is described. Its final task is construction of 100 kW HF station at 699,3 MHz frequency consisting from low-power HF system, klystron amplifier, wave line for HF power transmission and accelerating section. Functional parameters of HF station are given

  4. Hydrogen Production From Water By Thermo-Chemical Methods (UT-3): Evaluation of Side Reactions By Simulation Process

    International Nuclear Information System (INIS)

    Rusli, A.

    1997-01-01

    Hydogen fuel with its advantages will be able to replace all the positions of fossil fuels post o il and gas or migas . Among the advantages of hydrogen fuel are pollution free, abundant of raw material in the form of water molecule, flexible in application, able to stroge and transport as well as fossil energy sources (oil and gas). Hydogen could be produced from water by means of thermochemical, thermolysis, photolysis and electrolysis. Nuclear heat (HTGR), solar heat or waste heat from steel industry can be used as energy source for these processes. In case of thermochemical method, some problems realated to production process should be studied and evaluated. Simulation is considered can be applied to study the effects of side reactions and also to resolve its problems in hydrogen production process. In this paper is reported the evalution results of hydrogen production process by thermochemical (UT-3) through both of the experimental and computer simulation. It has been proposed a new flow chart of hydrogen production to achieve the hydrogen production continuously. A simulator has been developed based on experimental data and related mathematical equations. This simulator can be used to scle-up the UT-3 thermochemical cycle for hydrogen production process

  5. Kinetic Storage as an Energy Management System

    International Nuclear Information System (INIS)

    Garcia-Tabares, L.

    2007-01-01

    The possibility of storing energy is increasingly important and necessary. The reason is that storage modifies the basic equation of the energy production balance which states that the power produced should equal the power consumed. When there is a storage device in the grid, this equation is modified such that, in the new balance, the energy produced should equal the algebraic sum of the energy consumed and the energy stored (positive in storage phase and negative when released). This means that the generation profile can be uncoupled from the consumption profile, with the resulting improvement of efficiency. Even small-sized storage systems can be very effective. (Author) 10 refs

  6. Compressed gas fuel storage system

    Science.gov (United States)

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  7. Fast multichannel analog storage system

    International Nuclear Information System (INIS)

    Freytag, D.R.

    1982-11-01

    A Multichannel Analog Storage System based on a commercial 32-channel parallel in/serial out (PISO) analog shift register is described. The basic unit is a single width CAMAC module containing 512 analog cells and the associated logic for data storage and subsequent readout. At sampling rates of up to 30 MHz the signals are strobed directly into the PISO. At higher rates signals are strobed into a fast presampling stage and subsequently transferred in block form into an array of PISO's. Sampling rates of 300 MHz have been achieved with the present device and 1000 MHz are possible with improved signal drivers. The system is well suited for simultaneous handling of many signal channels with moderate numbers of samples in each channel. RMS noise over full scale signal has been measured as 1:3000 (approx. = 11 bit). However, nonlinearities in the response and differences in sensitivity of the analog cells require an elaborate calibration system in order to realize 11 bit accuracy for the analog information

  8. A Network-Attached Storage System Supporting Guaranteed QoS

    Institute of Scientific and Technical Information of China (English)

    KONG Hua-feng; YU Sheng-sheng; LU Hong-wei

    2005-01-01

    We propose a network-attached storage system that can support guaranteed Quality of Service (QoS), called POPNet Storage. The special policy of date access and disk scheduling is enable users to access files quickly and directly with guaranteed QoS in the POPNet Storage. The POPNet Storage implements a measurement-based admission control algorithm (PSMBAC) to determine whether to admit a new data access request stream and admit as many requests as possible while meeting the QoS guarantees to its clients. The data reconstruction algorithms in the POPNet Storage also put more emphasis on data availability and guaranteed QoS, thus it is designed to complete the data recovery as soon as possible and at the same time provide the guaranteed QoS for high-priority data access. The experiment results show that the POPNet Storage can provide more significant performance, reliability, and guaranteed QoS than conventional storage systems.

  9. Solar hydrogen project - Thermochemical process design

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J.; Ng, L.F.; Rao, M.S.M.; Wu, S.F.; Zoschak, R.J.

    1984-08-01

    The thermochemical decomposition of water using solar energy offers an elegant way of combining solar and chemical technologies to produce a high quality fuel. The DOE has sponsored Foster Wheeler to develop a process design for a solar water-splitting process based on the sulfuric acid/iodine cycle. The study has centered around the design of a sulfuric acid decomposition reactor and the central receiver. Materials' properties impose severe constraints upon the design of decomposition reactor. In this paper, the constraints imposed on the design are specified and a reactor and receiver design is presented together with a preliminary design of the balance of plant.

  10. Chelonia: A self-healing, replicated storage system

    International Nuclear Information System (INIS)

    Kerr Nilsen, Jon; Read, Alex; Toor, Salman; Nagy, Zsombor

    2011-01-01

    Chelonia is a novel grid storage system designed to fill the requirements gap between those of large, sophisticated scientific collaborations which have adopted the grid paradigm for their distributed storage needs, and of corporate business communities gravitating towards the cloud paradigm. Chelonia is an integrated system of heterogeneous, geographically dispersed storage sites which is easily and dynamically expandable and optimized for high availability and scalability. The architecture and implementation in term of web-services running inside the Advanced Resource Connector Hosting Environment Dameon (ARC HED) are described and results of tests in both local -area and wide-area networks that demonstrate the fault tolerance, stability and scalability of Chelonia will be presented. In addition, example setups for production deployments for small and medium-sized VO's are described.

  11. Chelonia: A self-healing, replicated storage system

    Science.gov (United States)

    Kerr Nilsen, Jon; Toor, Salman; Nagy, Zsombor; Read, Alex

    2011-12-01

    Chelonia is a novel grid storage system designed to fill the requirements gap between those of large, sophisticated scientific collaborations which have adopted the grid paradigm for their distributed storage needs, and of corporate business communities gravitating towards the cloud paradigm. Chelonia is an integrated system of heterogeneous, geographically dispersed storage sites which is easily and dynamically expandable and optimized for high availability and scalability. The architecture and implementation in term of web-services running inside the Advanced Resource Connector Hosting Environment Dameon (ARC HED) are described and results of tests in both local -area and wide-area networks that demonstrate the fault tolerance, stability and scalability of Chelonia will be presented. In addition, example setups for production deployments for small and medium-sized VO's are described.

  12. OPTIMUM HEAT STORAGE DESIGN FOR SDHW SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1997-01-01

    Two simulation models have been used to analyse the heat storage design’s influence on the thermal performance of solar domestic hot water (SDHW) systems. One model is especially designed for traditional SDHW systems based on a heat storage design where the solar heat exchanger is a built-in spiral....... The other model is especially designed for low flow SDHW systems based on a mantle tank.The tank design’s influence on the thermal performance of the SDHW systems has been investigated in a way where only one tank parameter has been changed at a time in the calculations. In this way a direct analysis...

  13. Thermochemical investigations on uranyl phosphates and arsenates

    International Nuclear Information System (INIS)

    Barten, H.

    1986-01-01

    Results are described of a study of the thermochemical stability of anhydrous phosphates and arsenates. The results of phase studies deal with compound formation and characterization, coexisting phases and limiting physical or chemical properties. The uranyl phosphates evolve oxygen at higher temperatures and the arsenates lose arsenic oxide vapour. These phenomena give the possibility to describe their thermodynamic stabilities. Thus oxygen pressures of uranyl phosphates have been measured using a static, non-isothermal method. Having made available the pure anhydrous compounds in the course of this investigation, molar thermodynamic quantities have been measured as well. These include standard enthalpies of formation from solution calorimetry and high-temperature heat-capacity functions derived from enthalpy increments measured. Some attention is given to compounds with uranium in valencies lower than six which have been met during the investigation. An evaluation is made of the thermodynamics of the compounds studied, to result in tabulized high-temperature thermodynamic functions. Relative stabilities within the systems are discussed and comparisons of the uranyl phosphates and the arsenates are made. (Auth.)

  14. Neutronic and thermal hydraulic of dry cask storage systems

    International Nuclear Information System (INIS)

    Yavuz, U.

    2000-01-01

    Interim spent fuel storage systems must provide for the safe receipt, handling, retrieval and storage of spent nuclear fuel before reprocessing or disposal. In the context of achieving these objectives, the following features of the design are to be taken into consideration: to maintain fuel subcritical, to remove spent fuel residualheat, and to provide for radiation protection. These features in the design of a dry cask storage system were analyzed for normal operating conditions by employing COBRA-SFS, SCALE4.4 (ORIGEN, XSDOSE, CSAS6) codes. For a metal-shielded type storage system, appropriate designs, in accordance with safety assurance limits of IAEA, were obtained for spent fuel burned to 33000, 45000 and 55000 MW d/t and cooled for 5 and 10 years

  15. Wind turbine storage systems

    International Nuclear Information System (INIS)

    Ibrahim, H.; Ilinca, A.; Perron, J.

    2005-01-01

    Electric power is often produced in locations far from the point of utilization which creates a challenge in stabilizing power grids, particularly since electricity cannot be stored. The production of decentralized electricity by renewable energy sources offers a greater security of supply while protecting the environment. Wind power holds the greatest promise in terms of environmental protection, competitiveness and possible applications. It is known that wind energy production is not always in phase with power needs because of the uncertainty of wind. For that reason, energy storage is the key for the widespread integration of wind energy into the power grids. This paper proposed various energy storage methods that can be used in combination with decentralized wind energy production where an imbalance exists between electricity production and consumption. Energy storage can play an essential role in bringing value to wind energy, particularly if electricity is to be delivered during peak hours. Various types of energy storage are already in use or are being developed. This paper identified the main characteristics of various electricity storage techniques and their applications. They include stationary or embarked storage for long or short term applications. A comparison of characteristics made it possible to determine which types of electricity storage are best suited for wind energy. These include gravity energy; thermal energy; compressed air energy; coupled storage with natural gas; coupled storage with liquefied gas; hydrogen storage for fuel cells; chemical energy storage; storage in REDOX batteries; storage by superconductive inductance; storage in supercondensers; and, storage as kinetic energy. 21 refs., 21 figs

  16. Energy Storage System with Voltage Equalization Strategy for Wind Energy Conversion

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2012-07-01

    Full Text Available In this paper, an energy storage system with voltage equalization strategy for wind energy conversion is presented. The proposed energy storage system provides a voltage equalization strategy for series-connected lead-acid batteries to increase their total storage capacity and lifecycle. In order to draw the maximum power from the wind energy, a perturbation-and-observation method and digital signal processor (DSP are incorporated to implement maximum power point tracking (MPPT algorithm and power regulating scheme. In the proposed energy storage system, all power switches have zero-voltage-switching (ZVS feature at turn-on transition. Therefore, the conversion efficiency can be increased. Finally, a prototype energy storage system for wind energy conversion is built and implemented. Experimental results have verified the performance and feasibility of the proposed energy storage system for wind energy conversion.

  17. Observations of Circumstellar Thermochemical Equilibrium: The Case of Phosphorus

    Science.gov (United States)

    Milam, Stefanie N.; Charnley, Steven B.

    2011-01-01

    We will present observations of phosphorus-bearing species in circumstellar envelopes, including carbon- and oxygen-rich shells 1. New models of thermochemical equilibrium chemistry have been developed to interpret, and constrained by these data. These calculations will also be presented and compared to the numerous P-bearing species already observed in evolved stars. Predictions for other viable species will be made for observations with Herschel and ALMA.

  18. Energy conversion, storage and transportation by means of hydrogen

    International Nuclear Information System (INIS)

    Friedlmeier, G; Mateos, P; Bolcich, J.C.

    1988-01-01

    Data concerning the present consumption of energy indicate that the industrialized countries (representing 25% of the world's population) consume almost 75% of the world's energy production, while the need for energy aimed at maintaining the growth of non-industrialized countries increases day after day. Since estimations indicate that the fossil reverses will exhaust within frightening terms, the production of hydrogen from fossil fuels and, fundamentally, from renewable sources constitute a response to future energy demand. The production of hydrogen from water is performed by four different methods: direct thermal, thermochemical, electrolysis and photolysis. Finally, different ways of storaging and using hydrogen are proposed. (Author)

  19. Biomass Program 2007 Program Peer Review - Thermochemical Conversion Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biomass Program Peer Review for the Thermochemical Platform, held on July 9th and 10th in Golden, Colorado.

  20. Influence of Hydrogen-Based Storage Systems on Self-Consumption and Self-Sufficiency of Residential Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Christian Pötzinger

    2015-08-01

    Full Text Available This paper analyzes the behavior of residential solar-powered electrical energy storage systems. For this purpose, a simulation model based on MATLAB/Simulink is developed. Investigating both short-time and seasonal hydrogen-based storage systems, simulations on the basis of real weather data are processed on a timescale of 15 min for a consideration period of 3 years. A sensitivity analysis is conducted in order to identify the most important system parameters concerning the proportion of consumption and the degree of self-sufficiency. Therefore, the influences of storage capacity and of storage efficiencies are discussed. A short-time storage system can increase the proportion of consumption by up to 35 percentage points compared to a self-consumption system without storage. However, the seasonal storing system uses almost the entire energy produced by the photovoltaic (PV system (nearly 100% self-consumption. Thereby, the energy drawn from the grid can be reduced and a degree of self-sufficiency of about 90% is achieved. Based on these findings, some scenarios to reach self-sufficiency are analyzed. The results show that full self-sufficiency will be possible with a seasonal hydrogen-based storage system if PV area and initial storage level are appropriate.

  1. Valuing the Resilience Provided by Solar and Battery Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mullendore, Seth [Clean Energy Group

    2018-02-05

    This paper explores the impact of valuing resilience on the economics of photovoltaics (PV) and storage systems for commercial buildings. The analysis presented here illustrates that accounting for the cost of grid power outages can change the breakeven point for PV and storage system investment, and increase the size of systems designed to deliver the greatest economic benefit over time. In other words, valuing resilience can make PV and storage systems economical in cases where they would not be otherwise. As storage costs decrease, and outages occur more frequently, PV and storage are likely to play a larger role in building design and management considerations.

  2. Environmental impacts of thermochemical biomass conversion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; McKinney, M.D.; Norton, M.V.; Abrams, C.W. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    Thermochemical conversion in this study is limited to fast pyrolysis, upgrading of fast pyrolysis oils, and gasification. Environmental impacts of all types were considered within the project, but primary emphasis was on discharges to the land, air, and water during and after the conversion processes. The project discussed here is divided into five task areas: (1) pyrolysis oil analysis; (2) hydrotreating of pyrolysis oil; (3) gas treatment systems for effluent minimization; (4) strategic analysis of regulatory requirements; and (5) support of the IEA Environmental Systems Activity. The pyrolysis oil task was aimed at understanding the oil contaminants and potential means for their removal. The hydrotreating task was undertaken to better define one potential means for both improving the quality of the oil but also removing contaminants from the oil. Within Task 3, analyses were done to evaluate the results of gasification product treatment systems. Task 4 was a review and collection of regulatory requirements which would be applicable to the subject processes. The IEA support task included input to and participation in the IEA Bioenergy activity which directly relates to the project subject. Each of these tasks is described along with the results. Conclusions and recommendations from the overall project are given.

  3. Environmental impacts of thermochemical biomass conversion. Final report

    International Nuclear Information System (INIS)

    Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; McKinney, M.D.; Norton, M.V.; Abrams, C.W.

    1995-06-01

    Thermochemical conversion in this study is limited to fast pyrolysis, upgrading of fast pyrolysis oils, and gasification. Environmental impacts of all types were considered within the project, but primary emphasis was on discharges to the land, air, and water during and after the conversion processes. The project discussed here is divided into five task areas: (1) pyrolysis oil analysis; (2) hydrotreating of pyrolysis oil; (3) gas treatment systems for effluent minimization; (4) strategic analysis of regulatory requirements; and (5) support of the IEA Environmental Systems Activity. The pyrolysis oil task was aimed at understanding the oil contaminants and potential means for their removal. The hydrotreating task was undertaken to better define one potential means for both improving the quality of the oil but also removing contaminants from the oil. Within Task 3, analyses were done to evaluate the results of gasification product treatment systems. Task 4 was a review and collection of regulatory requirements which would be applicable to the subject processes. The IEA support task included input to and participation in the IEA Bioenergy activity which directly relates to the project subject. Each of these tasks is described along with the results. Conclusions and recommendations from the overall project are given

  4. Fiscal 1975 Sunshine Project research report. General research on hydrogen energy subsystems and their peripheral technologies (Research on peripheral technologies around hydrogen); 1975 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Suiso no shuhen gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-01

    This report summarizes the fiscal 1975 research result on peripheral and seed technologies for hydrogen energy systems. Chapter 1 'Evaluation method for thermochemical techniques' reports critical study on qualitative evaluation method, estimation method for thermal efficiencies, and trial cost calculation example. Chapter 2 'Current state and problems of water electrolysis and hybrid technique composed of electrolysis and thermochemical technique' reports general survey on current water electrolysis and new technologies under development to clarify possible electrolytic voltage drop, from the practical viewpoint. Chapter 3 'Use of a high- temperature gas cooling reactor for hydrogen production' reports survey on the current and future reactors, and characteristics of such nuclear reactors, from the viewpoint that study on thermochemical technique is dependent on use of a high-temperature gas cooling reactor. Chapter 4 'Hydrogen transport and storage technology using organic compounds including oxygen' reports that acetone-isopropanol system is better for hydrogen storage. Chapter 5 'Water electrolysis using photo-semiconducting electrode' reports the additional survey. (NEDO)

  5. Energy balance calculations and assessment of two thermochemical sulfur cycles

    International Nuclear Information System (INIS)

    Leger, D.; Lessart, P.; Manaud, J.P.; Benizri, R.; Courvoisier, P.

    1978-01-01

    Thermochemical cyclic processes which include the highly endothermal decomposition of sulphuric acid are promising for hydrogen production by water-splitting. Our study is directed toward two cycles of this family, each involving the formation and decomposition of sulphuric acid and including other reactions using iron sulphide for the first and oxides and bromides of copper and magnesium for the second. Thermochemical analyses of the two cycles are undertaken. Thermodynamic studies of the reactions are carried out, taking into account possible side-reactions. The concentration of reactants, products and by-products resulting from simultaneous equilibria are calculated, the problems of separation thoroughly studied and the flow-diagrams of the processes drawn up. Using as heat source the helium leaving a 3000 MWth high temperature nuclear reactor and organizing internal heat exchange the enthalpy diagrams are drawn up and the net energy balances evaluated. The overall thermal efficiencies are about 28%, a value corresponding to non-optimized process schemes. Possible improvements aiming at energy-saving and increased efficiency are indicated

  6. Cost Benefit and Alternatives Analysis of Distribution Systems with Energy Storage Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Tom; Nagarajan, Adarsh; Baggu, Murali; Bialek, Tom

    2017-06-27

    This paper explores monetized and non-monetized benefits from storage interconnected to distribution system through use cases illustrating potential applications for energy storage in California's electric utility system. This work supports SDG&E in its efforts to quantify, summarize, and compare the cost and benefit streams related to implementation and operation of energy storage on its distribution feeders. This effort develops the cost benefit and alternatives analysis platform, integrated with QSTS feeder simulation capability, and analyzed use cases to explore the cost-benefit of implementation and operation of energy storage for feeder support and market participation.

  7. Optimal control of building storage systems using both ice storage and thermal mass – Part I: Simulation environment

    International Nuclear Information System (INIS)

    Hajiah, Ali; Krarti, Moncef

    2012-01-01

    Highlights: ► A simulation environment is described to account for both passive and active thermal energy storage (TES) systems. ► Laboratory testing results have been used to validate the predictions from the simulation environment. ► Optimal control strategies for TES systems have been developed as part of the simulation environment. - Abstract: This paper presents a simulation environment that can evaluate the benefits of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs including energy and demand charges while maintaining adequate occupant comfort conditions within commercial buildings. The building thermal storage is controlled through pre-cooling strategies by setting space indoor air temperatures. The ice storage system is controlled by charging the ice tank and operating the chiller during low electrical charge periods and melting the ice during on-peak periods. Optimal controls for both building thermal storage and ice storage are developed to minimize energy charges, demand charges, or combined energy and demand charges. The results obtained from the simulation environment are validated using laboratory testing for an optimal controller.

  8. PNNL Development and Analysis of Material-Based Hydrogen Storage Systems for the Hydrogen Storage Engineering Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Kenneth I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Klymyshyn, Nicholas A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pires, Richard P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ronnebro, Ewa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Simmons, Kevin L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-29

    The Hydrogen Storage Engineering Center of Excellence is a team of universities, industrial corporations, and federal laboratories with the mandate to develop lower-pressure, materials-based, hydrogen storage systems for hydrogen fuel cell light-duty vehicles. Although not engaged in the development of new hydrogen storage materials themselves, it is an engineering center that addresses engineering challenges associated with the currently available hydrogen storage materials. Three material-based approaches to hydrogen storage are being researched: 1) chemical hydrogen storage materials 2) cryo-adsorbents, and 3) metal hydrides. As a member of this Center, Pacific Northwest National Laboratory (PNNL) has been involved in the design and evaluation of systems developed with each of these three hydrogen storage materials. This report is a compilation of the work performed by PNNL for this Center.

  9. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  10. Synfuels from fusion: producing hydrogen with the tandem mirror reactor and thermochemical cycles

    International Nuclear Information System (INIS)

    Ribe, F.L.; Werner, R.W.

    1981-01-01

    This report examines, for technical merit, the combination of a fusion reactor driver and a thermochemical plant as a means for producing synthetic fuel in the basic form of hydrogen. We studied: (1) one reactor type - the Tandem Mirror Reactor - wishing to use to advantage its simple central cell geometry and its direct electrical output; (2) two reactor blanket module types - a liquid metal cauldron design and a flowing Li 2 O solid microsphere pellet design so as to compare the technology, the thermal-hydraulics, neutronics and tritium control in a high-temperature operating mode (approx. 1200 K); (3) three thermochemical cycles - processes in which water is used as a feedstock along with a high-temperature heat source to produce H 2 and O 2

  11. Integrated Bidding and Operating Strategies for Wind-Storage Systems

    DEFF Research Database (Denmark)

    Ding, Huajie; Pinson, Pierre; Hu, Zechun

    2016-01-01

    Due to their flexible charging and discharging capabilities, energy storage systems (ESS) are considered a promising complement to wind farms (WFs) participating in electricity markets. This paper presents integrated day-ahead bidding and real-time operation strategies for a wind-storage system...

  12. A hydrogen production experiment by the thermo-chemical and electrolytic hybrid hydrogen production in lower temperature range. System viability and preliminary thermal efficiency estimation

    International Nuclear Information System (INIS)

    Takai, Toshihide; Nakagiri, Toshio; Inagaki, Yoshiyuki

    2008-10-01

    A new experimental apparatus by the thermo-chemical and electrolytic Hybrid-Hydrogen production in Lower Temperature range (HHLT) was developed and hydrogen production experiment was performed to confirm the system operability. Hydrogen production efficiency was estimated and technical problems were clarified through the experimental results. Stable operation of the SO 3 electrolysis cell and the sulfur dioxide solution electrolysis cell were confirmed during experimental operation and any damage which would be affected solid operation was not detected under post operation inspection. To improve hydrogen production efficiency, it was found that the reduction of sulfuric acid circulation and the decrease in the cell voltage were key issues. (author)

  13. Performance characteristics of solar-photovoltaic flywheel-storage systems

    Science.gov (United States)

    Jarvinen, P. O.; Brench, B. L.; Rasmussen, N. E.

    A solar photovoltaic energy flywheel storage and conversion system for residential applications was tested. Performance and efficiency measurements were conducted on the system, which utilizes low loss magnetic bearings, maximum power point tracking of the photovoltaic array, integrated permanent magnet motor generator, and output power conditioning sections of either the stand alone cycloconverter or utility interactive inverter type. The overall in/out electrical storage efficiency of the flywheel system was measured along with the power transfer efficiencies of the individual components and the system spin down tare losses. The system compares favorably with systems which use batteries and inverters.

  14. Design and management of energy-efficient hybrid electrical energy storage systems

    CERN Document Server

    Kim, Younghyun

    2014-01-01

    This book covers system-level design optimization and implementation of hybrid energy storage systems. The author introduces various techniques to improve the performance of hybrid energy storage systems, in the context of design optimization and automation. Various energy storage techniques are discussed, each with its own advantages and drawbacks, offering viable, hybrid approaches to building a high performance, low cost energy storage system. Novel design optimization techniques and energy-efficient operation schemes are introduced. The author also describes the technical details of an act

  15. Optimum Design and Operation of Cyclic Storage Systems; Lumped Approach

    Directory of Open Access Journals (Sweden)

    Leila Ostadrahimi

    2007-01-01

    Full Text Available Conjunctive use of surface and groundwater resources is a preferred approach in water resources management. Compared to dam construction, groundwater has certain advantages, among which are less costs, less sedimentation and evaporation, fewer water quality problems, and less social and cultural problems. To reduce the major problems associated with the development of large-scale surface impoundment systems, cyclic storage systems can be used as an alternative. A cyclic storage system (CYCS is an integrated interactive system consisting of two subsystems of surface water storage (reservoir and groundwater; this system together with artificial recharge is able to satisfy the predefined demands with rather high reliability. In order to optimize these systems, one must consider the hydraulic interactions between all the components, but unfortunately it has been neglected in many studies. In this article, a nonlinear optimization model for design and operation of cyclic storage systems has been developed using the lumped approach. In order to evaluate the model, its results have been compared with the results of a model in which distributed approach had been deployed, and so the efficiency of lumped models to solve the problems of cyclic storage systems has been investigated.

  16. Surface-enhanced raman optical data storage system

    Science.gov (United States)

    Vo-Dinh, Tuan

    1994-01-01

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level.

  17. The design of data storage system based on Lustre for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng, E-mail: wangfeng@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Chen, Ying; Li, Shi [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Yang, Fei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Department of Computer Science, Anhui Medical University, Hefei, Anhui (China); Xiao, Bingjia [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui (China)

    2016-11-15

    Highlights: • A high performance data storage system based on Lustre and InfiniBand network has been designed and implemented on EAST tokamak. • The acquired data are stored into MDSplus database continuously on Lustre storage system during discharge. • The high performance computing clusters are interconnected with data acquisition and storage system by Lustre and InfiniBand network. - Abstract: The quasi-steady state operation is one of the main purposes of EAST tokamak, and more than 400 s discharge pulse has been achieved in the past campaigns. The acquired data amount increases continuously with the discharge length. At the same time to meet the requirement of the upgrade and improvement of the diagnostic systems, more and more data acquisition channels have come into service. Some new diagnostic systems require high sampling rate data acquisition more than 10MSPS. In the last campaign 2014, the data streaming is about 2000MB/s and the total data amount is more than 100TB. How to store the huge data continuously becomes a big problem. A new data storage system based on Lustre has been designed to solve the problem. All the storage nodes and servers are connected to InfiniBand FDR 56Gbps network. The maximum parallel throughput of the total storage system is about 10GB/s. It is easy to expand the storage system by adding I/O nodes when more capacity and performance are required in the future. The new data storage system will be applied in the next campaign of EAST. The system details are given in the paper.

  18. The design of data storage system based on Lustre for EAST

    International Nuclear Information System (INIS)

    Wang, Feng; Chen, Ying; Li, Shi; Yang, Fei; Xiao, Bingjia

    2016-01-01

    Highlights: • A high performance data storage system based on Lustre and InfiniBand network has been designed and implemented on EAST tokamak. • The acquired data are stored into MDSplus database continuously on Lustre storage system during discharge. • The high performance computing clusters are interconnected with data acquisition and storage system by Lustre and InfiniBand network. - Abstract: The quasi-steady state operation is one of the main purposes of EAST tokamak, and more than 400 s discharge pulse has been achieved in the past campaigns. The acquired data amount increases continuously with the discharge length. At the same time to meet the requirement of the upgrade and improvement of the diagnostic systems, more and more data acquisition channels have come into service. Some new diagnostic systems require high sampling rate data acquisition more than 10MSPS. In the last campaign 2014, the data streaming is about 2000MB/s and the total data amount is more than 100TB. How to store the huge data continuously becomes a big problem. A new data storage system based on Lustre has been designed to solve the problem. All the storage nodes and servers are connected to InfiniBand FDR 56Gbps network. The maximum parallel throughput of the total storage system is about 10GB/s. It is easy to expand the storage system by adding I/O nodes when more capacity and performance are required in the future. The new data storage system will be applied in the next campaign of EAST. The system details are given in the paper.

  19. A novel storage system for cryoEM samples.

    Science.gov (United States)

    Scapin, Giovanna; Prosise, Winifred W; Wismer, Michael K; Strickland, Corey

    2017-07-01

    We present here a new CryoEM grid boxes storage system designed to simplify sample labeling, tracking and retrieval. The system is based on the crystal pucks widely used by the X-ray crystallographic community for storage and shipping of crystals. This system is suitable for any cryoEM laboratory, but especially for large facilities that will need accurate tracking of large numbers of samples coming from different sources. Copyright © 2017. Published by Elsevier Inc.

  20. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    International Nuclear Information System (INIS)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-01-01

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study

  1. Electromechanical Storage Systems for Application to Isolated Wind Energy Plants

    International Nuclear Information System (INIS)

    Avia Aranda, F.; Cruz Cruz, I.

    1999-01-01

    Substantial technology advances have occurred during the last decade that have had and appreciated impact on performance and feasibility of the Electromechanical Storage Systems. Improvements in magnetic bearings, composite materials, power conversion systems, microelectronic control systems and computer simulation models have increased flywheel reliability, and energy storage capacity, while decreasing overall system size, weight and cost. These improvements have brought flywheels to the forefront in the quest for alternate systems. The result of the study carried out under the scope of the SEDUCTOR, about the state of art of the Electromechanical Storage Systems is presented in this report. (Author) 15 refs

  2. Bulk energy storage increases United States electricity system emissions.

    Science.gov (United States)

    Hittinger, Eric S; Azevedo, Inês M L

    2015-03-03

    Bulk energy storage is generally considered an important contributor for the transition toward a more flexible and sustainable electricity system. Although economically valuable, storage is not fundamentally a "green" technology, leading to reductions in emissions. We model the economic and emissions effects of bulk energy storage providing an energy arbitrage service. We calculate the profits under two scenarios (perfect and imperfect information about future electricity prices), and estimate the effect of bulk storage on net emissions of CO2, SO2, and NOx for 20 eGRID subregions in the United States. We find that net system CO2 emissions resulting from storage operation are nontrivial when compared to the emissions from electricity generation, ranging from 104 to 407 kg/MWh of delivered energy depending on location, storage operation mode, and assumptions regarding carbon intensity. Net NOx emissions range from -0.16 (i.e., producing net savings) to 0.49 kg/MWh, and are generally small when compared to average generation-related emissions. Net SO2 emissions from storage operation range from -0.01 to 1.7 kg/MWh, depending on location and storage operation mode.

  3. Mass storage system by using broadcast technology

    International Nuclear Information System (INIS)

    Fujii, Hirofumi; Itoh, Ryosuke; Manabe, Atsushi; Miyamoto, Akiya; Morita, Youhei; Nozaki, Tadao; Sasaki, Takashi; Watase, Yoshiyuko; Yamasaki, Tokuyuki

    1996-01-01

    There are many similarities between data recording systems for high energy physics and broadcast systems; the data flow is almost one-way, requires real-time recording; requires large-scale automated libraries for 24-hours operation, etc. In addition to these functional similarities, the required data-transfer and data-recording speeds are also close to those for near future experiments. For these reasons, we have collaborated with SONY Broadcast Company to study the usability of broadcast devices for our data storage system. Our new data storage system consists of high-speed data recorders and tape-robots which are originally based on the digital video-tape recorder and the tape-robot for broadcast systems. We are also studying the possibility to use these technologies for the online data-recording system for B-physics experiment at KEK. (author)

  4. Screening of metal hydride pairs for closed thermal energy storage systems

    International Nuclear Information System (INIS)

    Aswin, N.; Dutta, Pradip; Murthy, S. Srinivasa

    2016-01-01

    Thermal energy storage systems based on metal/hydrides usually are closed systems composed of two beds of metal/alloy – one meant for energy storage and the other for hydrogen storage. It can be shown that a feasible operating cycle for such a system using a pair of metals/alloys operating between specified temperature values can be ensured if the equilibrium hydrogen intake characteristics satisfy certain criteria. In addition, application of first law of thermodynamics to an idealized operating cycle can provide the upper bounds of selected performance indices, namely volumetric energy storage density, energy storage efficiency and peak discharge temperature. This is demonstrated for a representative system composed of LaNi 4.7 Al 0.3 –LaNi 5 operating between 353 K and 303 K which gave values of about 56 kW h m −3 for volumetric storage density, about 85% for energy storage efficiency and 343 K for peak discharge temperature. A system level heat and mass transfer study considering the reaction kinetics, hydrogen flow between the beds and heat exchanger models is presented which gave second level estimates of about 40 kW h m −3 for volumetric energy storage density, 73% for energy storage efficiency and 334 K for peak temperature for the representative system. The results from such studies lead to identifying metal/alloy pairs which can be shortlisted for detailed studies.

  5. Space Station thermal storage/refrigeration system research and development

    Science.gov (United States)

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  6. Revisiting dibenzothiophene thermochemical data: Experimental and computational studies

    International Nuclear Information System (INIS)

    Freitas, Vera L.S.; Gomes, Jose R.B.; Ribeiro da Silva, Maria D.M.C.

    2009-01-01

    Thermochemical data of dibenzothiophene were studied in the present work by experimental techniques and computational calculations. The standard (p 0 =0.1MPa) molar enthalpy of formation, at T = 298.15 K, in the gaseous phase, was determined from the enthalpy of combustion and sublimation, obtained by rotating bomb calorimetry in oxygen, and by Calvet microcalorimetry, respectively. This value was compared with estimated data from G3(MP2)//B3LYP computations and also with the other results available in the literature.

  7. Lessons Learned from the Puerto Rico Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

  8. Optimizing MEMS-Based Storage Devices for Mobile Battery-Powered Systems

    NARCIS (Netherlands)

    Khatib, M.G.; Hartel, Pieter H.

    An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such

  9. Exergy analysis of thermochemical ethanol production via biomass gasification and catalytic synthesis

    NARCIS (Netherlands)

    van der Heijden, H.H.J.L.; Ptasinski, K.J.

    2012-01-01

    In this paper an exergy analysis of thermochemical ethanol production from biomass is presented. This process combines a steam-blown indirect biomass gasification of woody feedstock, with a subsequent conversion of produced syngas into ethanol. The production process involves several process

  10. Virtual model of an automated system for the storage of collected waste

    Directory of Open Access Journals (Sweden)

    Enciu George

    2017-01-01

    Full Text Available One of the problems identified in waste collection integrated systems is the storage space. The design process of an automated system for the storage of collected waste includes finding solutions for the optimal exploitation of the limited storage space, seen that the equipment for the loading, identification, transport and transfer of the waste covers most of the available space inside the integrated collection system. In the present paper a three-dimensional model of an automated storage system designed by the authors for a business partner is presented. The storage system can be used for the following types of waste: plastic and glass recipients, aluminium cans, paper, cardboard and WEEE (waste electrical and electronic equipment. Special attention has been given to the transfer subsystem, specific for the storage system, which should be able to transfer different types and shapes of waste. The described virtual model of the automated system for the storage of collected waste will be part of the virtual model of the entire integrated waste collection system as requested by the beneficiary.

  11. An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul; Ganjehkaviri, A.

    2015-01-01

    Highlights: • 40% of energy demand of Malaysia could be supplied by thermochemical process of PSR. • SCWG of PSR is preferable thermochemical process due to char and tar elimination. • Potential of H 2 production from SCWG of PSR is 1.05 × 10 10 kgH 2 per year in Malaysia. • Highly moisturized PSR could be used in hydrogen production by SCWG process. - Abstract: Hydrogen is one of the most promising energy carriers for the future of the world due to its tremendous capability of pollution reduction. Hydrogen utilization is free of toxic gases formation as well as carbon dioxide (CO 2 ) emission. Hydrogen production can be implemented using a wide variety of resources including fossil fuels, nuclear energy and renewable and sustainable energy (RSE). Amongst various RSE resources, biomass has great capacity to be employed for renewable hydrogen production. Hydrogen production from palm solid residue (PSR) via thermochemical process is a perfect candidate for waste-to-well strategy in palm oil mills in Malaysia. In this paper, various characteristics of hydrogen production from thermochemical process of PSR includes pyrolysis and gasification are reviewed. The annual oil palm fruits production in Malaysia is approximately 100 million tonnes which the solid waste of the fruits is capable to generate around 1.05 × 10 10 kgH 2 (1.26 EJ) via supercritical water gasification (SCWG) process. The ratio of energy output to energy input of SCWG process of PSR is about 6.56 which demonstrates the priority of SCWG to transform the energy of PSR into a high energy end product. The high moisture of PSR which is the most important barrier for its direct combustion, emerges as an advantage in thermochemical reactions and highly moisturized PSR (even more than 50%) is utilized directly in SCWG without application of any high cost drying process. Implementation of appropriate strategies could lead Malaysia to supply about 40% of its annual energy demand by hydrogen yield from

  12. A Comparison of Producer Gas, Biochar, and Activated Carbon from Two Distributed Scale Thermochemical Conversion Systems Used to Process Forest Biomass

    Directory of Open Access Journals (Sweden)

    Nathaniel Anderson

    2013-01-01

    Full Text Available Thermochemical biomass conversion systems have the potential to produce heat, power, fuels and other products from forest biomass at distributed scales that meet the needs of some forest industry facilities. However, many of these systems have not been deployed in this sector and the products they produce from forest biomass have not been adequately described or characterized with regards to chemical properties, possible uses, and markets. This paper characterizes the producer gas, biochar, and activated carbon of a 700 kg h−1 prototype gasification system and a 225 kg h−1 pyrolysis system used to process coniferous sawmill and forest residues. Producer gas from sawmill residues processed with the gasifier had higher energy content than gas from forest residues, with averages of 12.4 MJ m−3 and 9.8 MJ m−3, respectively. Gases from the pyrolysis system averaged 1.3 MJ m−3 for mill residues and 2.5 MJ m−3 for forest residues. Biochars produced have similar particle size distributions and bulk density, but vary in pH and carbon content. Biochars from both systems were successfully activated using steam activation, with resulting BET surface area in the range of commercial activated carbon. Results are discussed in the context of co-locating these systems with forest industry operations.

  13. Solar Thermochemical Hydrogen Production Research (STCH)

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Robert [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-05-01

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meeting on October 8 and 9, 2008. This document reports the initial selection process for development investment in STCH projects, the evaluation process meant to reduce the number of projects as a means to focus resources on development of a few most-likely-to-succeed efforts, the obstacles encountered in project inventory reduction and the outcomes of the evaluation process. Summary technical status of the projects under evaluation is reported and recommendations identified to improve future project planning and selection activities.

  14. The Grid Enabled Mass Storage System (GEMSS): the Storage and Data management system used at the INFN Tier1 at CNAF

    International Nuclear Information System (INIS)

    Ricci, Pier Paolo; Cavalli, Alessandro; Dell'Agnello, Luca; Gregori, Daniele; Prosperini, Andrea; Rinaldi, Lorenzo; Sapunenko, Vladimir; Bonacorsi, Daniele; Vagnoni, Vincenzo

    2012-01-01

    The storage system currently used in production at the INFN Tier1 at CNAF is the result of several years of case studies, software development and tests. This solution, called the Grid Enabled Mass Storage System (GEMSS), is based on a custom integration between a fast and reliable parallel filesystem (the IBM General Parallel File System, GPFS), with a complete integrated tape backend based on the Tivoli Storage Manager (TSM), which provides Hierarchical Storage Management (HSM) capabilities, and the Grid Storage Resource Manager (StoRM), providing access to grid users through a standard SRM interface. Since the start of the Large Hadron Collider (LHC) operation, all LHC experiments have been using GEMSS at CNAF for both disk data access and long-term archival on tape media. Moreover, during last year, GEMSS has become the standard solution for all other experiments hosted at CNAF, allowing the definitive consolidation of the data storage layer. Our choice has proved to be very successful during the last two years of production with continuous enhancements, accurate monitoring and effective customizations according to the end-user requests. In this paper a description of the system is reported, addressing recent developments and giving an overview of the administration and monitoring tools. We also discuss the solutions adopted in order to grant the maximum availability of the service and the latest optimization features within the data access process. Finally, we summarize the main results obtained during these last years of activity from the perspective of some of the end-users, showing the reliability and the high performances that can be achieved using GEMSS.

  15. Third millenium ideal gas and condensed phase thermochemical database for combustion (with update from active thermochemical tables).

    Energy Technology Data Exchange (ETDEWEB)

    Burcat, A.; Ruscic, B.; Chemistry; Technion - Israel Inst. of Tech.

    2005-07-29

    The thermochemical database of species involved in combustion processes is and has been available for free use for over 25 years. It was first published in print in 1984, approximately 8 years after it was first assembled, and contained 215 species at the time. This is the 7th printed edition and most likely will be the last one in print in the present format, which involves substantial manual labor. The database currently contains more than 1300 species, specifically organic molecules and radicals, but also inorganic species connected to combustion and air pollution. Since 1991 this database is freely available on the internet, at the Technion-IIT ftp server, and it is continuously expanded and corrected. The database is mirrored daily at an official mirror site, and at random at about a dozen unofficial mirror and 'finger' sites. The present edition contains numerous corrections and many recalculations of data of provisory type by the G3//B3LYP method, a high-accuracy composite ab initio calculation. About 300 species are newly calculated and are not yet published elsewhere. In anticipation of the full coupling, which is under development, the database started incorporating the available (as yet unpublished) values from Active Thermochemical Tables. The electronic version now also contains an XML file of the main database to allow transfer to other formats and ease finding specific information of interest. The database is used by scientists, educators, engineers and students at all levels, dealing primarily with combustion and air pollution, jet engines, rocket propulsion, fireworks, but also by researchers involved in upper atmosphere kinetics, astrophysics, abrasion metallurgy, etc. This introductory article contains explanations of the database and the means to use it, its sources, ways of calculation, and assessments of the accuracy of data.

  16. Motivation and Design of the Sirocco Storage System Version 1.0.

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Matthew Leon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ward, H. Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Danielson, Geoffrey Charles [Hewlett-Packard Company, Palo Alto, CA (United States)

    2015-07-01

    Sirocco is a massively parallel, high performance storage system for the exascale era. It emphasizes client-to-client coordination, low server-side coupling, and free data movement to improve resilience and performance. Its architecture is inspired by peer-to-peer and victim- cache architectures. By leveraging these ideas, Sirocco natively supports several media types, including RAM, flash, disk, and archival storage, with automatic migration between levels. Sirocco also includes storage interfaces and support that are more advanced than typical block storage. Sirocco enables clients to efficiently use key-value storage or block-based storage with the same interface. It also provides several levels of transactional data updates within a single storage command, including full ACID-compliant updates. This transaction support extends to updating several objects within a single transaction. Further support is provided for con- currency control, enabling greater performance for workloads while providing safe concurrent modification. By pioneering these and other technologies and techniques in the storage system, Sirocco is poised to fulfill a need for a massively scalable, write-optimized storage system for exascale systems. This is version 1.0 of a document reflecting the current and planned state of Sirocco. Further versions of this document will be accessible at http://www.cs.sandia.gov/Scalable_IO/ sirocco .

  17. Conceptual design of SO3 decomposer for thermo-chemical iodine-sulfur process pilot plant

    International Nuclear Information System (INIS)

    Akihiro Kanagawa; Seiji Kasahara; Atsuhiko Terada; Shinji Kubo; Ryutaro Hino; Yoshiyuki Kawahara; Masaharu Watabe; Hiroshi Fukui; Kazuo Ishino; Toshio Takahashi

    2005-01-01

    Thermo-chemical water-splitting cycle is a method to make an effective use of the high temperature nuclear heat for hydrogen production. Japan Atomic Energy Research Institute (JAERI) has been conducting R and D on HTGR and also on thermo-chemical hydrogen production by using a thermo-chemical iodine-sulfur cycle (IS process). Based on the test results and know-how obtained through a bench-scale tests of hydrogen production of about 30 NL/hr, JAERI has a plan to construct a pilot test plant heated by high temperature helium gas, which has a hydrogen production performance of 30 Nm 3 /hr and will be operated under the high pressure up to 2 MPa. One of the key components of the pilot test plant is a SO 3 decomposer under high temperature conditions up to 850 degree C and high pressure up to 2 MPa. In this paper, a concept of the SO 3 decomposer for the pilot test plant fabricated with SiC ceramics, a corrosion-resistant material is investigated. Preliminary analyses on temperature and flow-rate distributions in the SO 3 decomposer and on thermal stress were carried out. A SO 3 decomposer model was experimentally manufactured. (authors)

  18. Hydrogen storage and generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  19. Coupling of copper-chloride hybrid thermochemical water splitting cycle with a desalination plant for hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Orhan, Mehmet F.; Dincer, Ibrahim; Naterer, Greg F.; Rosen, Marc A.

    2010-01-01

    Energy and environmental concerns have motivated research on clean energy resources. Nuclear energy has the potential to provide a significant share of energy supply without contributing to environmental emissions and climate change. Nuclear energy has been used mainly for electric power generation, but hydrogen production via thermochemical water decomposition provides another pathway for the utilization of nuclear thermal energy. One option for nuclear-based hydrogen production via thermochemical water decomposition uses a copper-chloride (Cu-Cl) cycle. Another societal concern relates to supplies of fresh water. Thus, to avoid causing one problem while solving another, hydrogen could be produced from seawater rather than limited fresh water sources. In this study we analyze a coupling of the Cu-Cl cycle with a desalination plant for hydrogen production from nuclear energy and seawater. Desalination technologies are reviewed comprehensively to determine the most appropriate option for the Cu-Cl cycle and a thermodynamic analysis and several parametric studies of this coupled system are presented for various configurations. (author)

  20. Chemical engineering challenges in driving thermochemical hydrogen processes with the tandem mirror reactor

    International Nuclear Information System (INIS)

    Galloway, T.R.; Werner, R.W.

    1980-01-01

    The Tandem Mirror Reactor is described and compared with Tokamaks, both from a basic physics viewpoint and from the suitability of the respective reactor for synfuel production. Differences and similarities between the TMR as an electricity producer or a synfuel producer are also cited. The Thermochemical cycle chosen to link with the fusion energy source is the General Atomic Sulfur-Iodine Cycle, which is a purely thermal-driven process with no electrochemical steps. There are real chemical engineering challenges of getting this high quality heat into the large thermochemical plant in an efficient manner. We illustrate with some of our approaches to providing process heat via liquid sodium to drive a 1050 K, highly-endothermic, catalytic and fluidized-bed SO 3 Decomposition Reactor. The technical, economic, and safety tradeoffs that arise are discussed

  1. Design method for photovoltaics-battery storage systems under tropical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Salem, A I.E.; Bassyouni, A H; Al-Motawakel, M K

    1989-01-01

    A very limited number of the available design methods can be used with confidence in sizing and costing the stand-alone photovoltaic-battery storage systems operating under the weather conditions of the tropical countries located between 0 and 30/sup 0/N. For this reason we investigated the performance and economics of various photovoltaic-battery storage system configurations. The aim was to prepare a number of sizing and costing design diagrams which detail the effect of climatic, social, and economics parameters on the choice of the stand-alone photovoltaic-battery storage systems. Our strategy was to guide designers, particularly those trying to utilize the stand-alone photovoltaic-battery storage systems in Sana'a (15/sup 0/N) and Cairo (30/sup 0/N), to the logic for selecting a system that physically and economically matches the site potential and the user's electrical needs. Considered here are the relatively small stand-alone photovoltaic-battery storage systems that can be purchased by individuals or commercial and governmental firms to supply all or part of the electrical needs consumed in residence, farms, remote rural communities, or small factories.

  2. Force balanced magnetic energy storage system

    International Nuclear Information System (INIS)

    Mawardi, O.K.; Nara, H.; Grabnic, M.

    1979-01-01

    A novel scheme of constructing coils suited for inductive storage system is described. By means of a force-compensating method, the reinforcement structure can be made considerably smaller than that needed for conventional coils. The economics of this system is shown to be capable of achieving savings of upwards of 40% when compared to a conventional system

  3. A Shaftless Magnetically Levitated Multifunctional Spacecraft Flywheel Storage System

    Science.gov (United States)

    Stevens, Ken; Thornton, Richard; Clark, Tracy; Beaman, Bob G.; Dennehy, Neil; Day, John H. (Technical Monitor)

    2002-01-01

    Presently many types of spacecraft use a Spacecraft Attitude Control System (ACS) with momentum wheels for steering and electrochemical batteries to provide electrical power for the eclipse period of the spacecraft orbit. Future spacecraft will use Flywheels for combined use in ACS and Energy Storage. This can be done by using multiple wheels and varying the differential speed for ACS and varying the average speed for energy storage and recovery. Technology in these areas has improved since the 1990s so it is now feasible for flywheel systems to emerge from the laboratory for spacecraft use. This paper describes a new flywheel system that can be used for both ACS and energy storage. Some of the possible advantages of a flywheel system are: lower total mass and volume, higher efficiency, less thermal impact, improved satellite integration schedule and complexity, simplified satellite orbital operations, longer life with lower risk, less pointing jitter, and greater capability for high-rate slews. In short, they have the potential to enable new types of missions and provide lower cost. Two basic types of flywheel configurations are the Flywheel Energy Storage System (FESS) and the Integrated Power and Attitude Control System (IPACS).

  4. Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds

    Science.gov (United States)

    Bamberger, C.E.

    A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.

  5. Small magnetic energy storage systems using high temperature superconductors

    International Nuclear Information System (INIS)

    Kumar, B.

    1991-01-01

    This paper reports on magnetic energy storage for power systems that has been considered for commercial utility power, air and ground mobile power sources, and spacecraft applications. Even at the current technology limits of energy storage (100 KJ/Kg*), superconducting magnetic energy storage inductors do not offer a strong advantage over state-of-the-art batteries. The commercial utility application does not have a weight and volume limitation, and is under intense study in several countries for diurnal cycle energy storage and high power delivery. The advent of high temperature superconductors has reduced one of the penalties of superconducting magnetic energy storage in that refrigeration and cryocontainers become greatly simplified. Still, structural and current density issues that limit the energy density and size of superconducting inductors do not change. Cold weather starting of aircraft engines is an application where these limitations are not as significant, and where current systems lack performance. The very cold environments make it difficult to achieve high power densities in state-of-the-art batteries and hydraulically activated starters. The same cold environments make it possible to cool superconducting systems for weeks using a single charge of liquid nitrogen. At the same, the ground carts can handle the size and weight of superconducting magnetic storage (SMES) devices

  6. Materials-Related Aspects of Thermochemical Water and Carbon Dioxide Splitting: A Review

    Directory of Open Access Journals (Sweden)

    Robert Pitz-Paal

    2012-10-01

    Full Text Available Thermochemical multistep water- and CO2-splitting processes are promising options to face future energy problems. Particularly, the possible incorporation of solar power makes these processes sustainable and environmentally attractive since only water, CO2 and solar power are used; the concentrated solar energy is converted into storable and transportable fuels. One of the major barriers to technological success is the identification of suitable active materials like catalysts and redox materials exhibiting satisfactory durability, reactivity and efficiencies. Moreover, materials play an important role in the construction of key components and for the implementation in commercial solar plants. The most promising thermochemical water- and CO2-splitting processes are being described and discussed with respect to further development and future potential. The main materials-related challenges of those processes are being analyzed. Technical approaches and development progress in terms of solving them are addressed and assessed in this review.

  7. Thermochemical properties of oxides in Y-Ba-Cu-O, Sr-Bi-O, Cu-Nb-O, Sr-Cu-O, Ca-Cu-O, Cu-O and Hg-Ba-Ca-Cu-O systems

    International Nuclear Information System (INIS)

    Moiseev, G.K.; Vatolin, N.A.; Il'inykh, N.I.

    2000-01-01

    Thermochemical properties (ΔH 0 298 , S 0 298 , H 0 298 -H 0 0 , C p (T), C p at T>T melt ) of complex oxides in Y-Ba-Cu-O, Sr-Bi-O, Cu-Nb-O, Sr-Cu-O, Ca-Cu-O, Cu-O and Hg-Ba-Ca-Cu-O systems obtained with application of calculation methods are presented. Nonexperimental methods of estimation, revision and correction of standard formation enthalpies of inorganic compounds are described [ru

  8. Construction of VLCC marine oil storage cost index system

    Science.gov (United States)

    Li, Yuan; Li, Yule; Lu, Jinshu; Wu, Wenfeng; Zhu, Faxin; Chen, Tian; Qin, Beichen

    2018-04-01

    VLCC as the research object, the basic knowledge of VLCC is summarized. According to the phenomenon that VLCC is applied to offshore oil storage gradually, this paper applies the theoretical analysis method to analyze the excess capacity from VLCC, the drop of oil price, the aging VLCC is more suitable for offshore storage The paper analyzes the reason of VLCC offshore oil storage from three aspects, analyzes the cost of VLCC offshore storage from the aspects of manpower cost and shipping cost, and constructs the cost index system of VLCC offshore oil storage.

  9. Failure Analysis of Storage Data Magnetic Systems

    Directory of Open Access Journals (Sweden)

    Ortiz–Prado A.

    2010-10-01

    Full Text Available This paper shows the conclusions about the corrosion mechanics in storage data magnetic systems (hard disk. It was done from the inspection of 198 units that were in service in nine different climatic regions characteristic for Mexico. The results allow to define trends about the failure forms and the factors that affect them. In turn, this study has analyzed the causes that led to mechanical failure and those due to deterioration by atmospheric corrosion. On the basis of the results obtained from the field sampling, demonstrates that the hard disk failure is fundamentally by mechanical effects. The deterioration by environmental effects were found in read-write heads, integrated circuits, printed circuit boards and in some of the electronic components of the controller card of the device, but not in magnetic storage surfaces. There fore, you can discard corrosion on the surface of the disk as the main kind of failure due to environmental deterioration. To avoid any inconvenience in the magnetic data storage system it is necessary to ensure sealing of the system.

  10. High Efficiency Solar Thermochemical Reactor for Hydrogen Production.

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Anthony H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-09-30

    This research and development project is focused on the advancement of a technology that produces hydrogen at a cost that is competitive with fossil-based fuels for transportation. A twostep, solar-driven WS thermochemical cycle is theoretically capable of achieving an STH conversion ratio that exceeds the DOE target of 26% at a scale large enough to support an industrialized economy [1]. The challenge is to transition this technology from the laboratory to the marketplace and produce hydrogen at a cost that meets or exceeds DOE targets.

  11. Battery storage for PV power systems: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Chaurey, A; Deambi, S [Tata Energy Research Inst., New Delhi (India)

    1992-06-01

    Batteries used in photovoltaic applications are required to have particular properties in order to minimize the system cost, in addition to meeting stringent reliability requirements associated with PV system installations. The battery sizing, installations, operation and maintenance, thus, are fundamentally different from those used in several other energy storage applications. The current paper gives an overview of battery systems commonly used in PV installation, as well as several new options which are found suitable or have been modified suitably to meet PV energy storage requirements. The systems are discussed briefly with respect to their construction, performance characteristics and compatibility with PV systems. The battery sizing procedures are also reviewed. (Author).

  12. Efficiency improvement for wind energy pumped storage systems

    DEFF Research Database (Denmark)

    Forcos, A.; Marinescu, C.; Teodorescu, Remus

    2011-01-01

    Integrating wind energy into the grid may raise stability problems. Solutions for avoiding these situations are studied and energy storage methods are suitable for balancing the energy between the wind turbine and grid. In this paper, an autonomous wind turbine pumped storage system is presented...

  13. Thermodynamic analysis of a liquid air energy storage system

    International Nuclear Information System (INIS)

    Guizzi, Giuseppe Leo; Manno, Michele; Tolomei, Ludovica Maria; Vitali, Ruggero Maria

    2015-01-01

    The rapid increase in the share of electricity generation from renewable energy sources is having a profound impact on the power sector; one of the most relevant effects of this trend is the increased importance of energy storage systems, which can be used to smooth out peaks and troughs of production from renewable energy sources. Besides their role in balancing the electric grid, energy storage systems may provide also several other useful services, such as price arbitrage, stabilizing conventional generation, etc.; therefore, it is not surprising that many research projects are under way in order to explore the potentials of new technologies for electric energy storage. This paper presents a thermodynamic analysis of a cryogenic energy storage system, based on air liquefaction and storage in an insulated vessel. This technology is attractive thanks to its independence from geographical constraints and because it can be scaled up easily to grid-scale ratings, but it is affected by a low round-trip efficiency due to the energy intensive process of air liquefaction. The present work aims to assess the efficiency of such a system and to identify if and how it can achieve an acceptable round-trip efficiency (in the order of 50–60%).

  14. Energy Storage Management in Grid Connected Solar Photovoltaic System

    OpenAIRE

    Vidhya M.E

    2015-01-01

    The penetration of renewable sources in the power system network in the power system has been increasing in the recent years. One of the solutions being proposed to improve the reliability and performance of these systems is to integrate energy storage device into the power system network. This paper discusses the modeling of photo voltaic and status of the storage device such as lead acid battery for better energy management in the system. The energy management for the grid conne...

  15. 78 FR 32077 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Science.gov (United States)

    2013-05-29

    ... Fuel Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear Regulatory Commission. ACTION: Direct... All-purpose Storage (MAGNASTOR[supreg]) System listing within the ``List of Approved Spent Fuel... CoC No. 1031, MAGNASTOR[supreg] System listing within the ``List of Approved Spent Fuel Storage Casks...

  16. Four-channel high speed synchronized acquisition multiple trigger storage measurement system

    International Nuclear Information System (INIS)

    Guo Jian; Wang Wenlian; Zhang Zhijie

    2010-01-01

    A new storage measurement system based on the CPLD, MCU and FLASH (large-capacity flash memory) is proposed. The large capacity storage characteristic of the FLASH MEMORY is used to realize multi channel synchronized acquisition and the function of multiple records and read once. The function of multi channel synchronization, high speed data acquisition, the triggering several times, and the adjustability of working parameters expands the application of storage measurement system. The storage measurement system can be used in a variety of pressure and temperature test in explosion field. (authors)

  17. Development of hydrogen storage systems using sodium alanate

    Energy Technology Data Exchange (ETDEWEB)

    Lozano Martinez, Gustavo Adolfo

    2010-12-06

    In this work, hydrogen storage systems based on sodium alanate were studied, modelled and optimised, using both experimental and theoretical approaches. The experimental approach covered investigations of the material from mg scale up to kg scale in demonstration test tanks, while the theoretical approach discussed modelling and simulation of the hydrogen sorption process in a hydride bed. Both approaches demonstrated the strong effect of heat transfer on the sorption behaviour of the hydride bed and led to feasible methods to improve and optimise the volumetric and gravimetric capacities of hydrogen storage systems. The applied approaches aimed at an optimal integration of sodium alanate material in practical hydrogen storage systems. First, it was experimentally shown that the size of the hydride bed influences the hydrogen sorption behaviour of the material. This is explained by the different temperature profiles that are developed inside the hydride bed during the sorptions. In addition, in a self-constructed cell it was possible to follow the hydrogen sorptions and the developed temperature profiles within the bed. Moreover, the effective thermal conductivity of the material was estimated in-situ in this cell, given very good agreement with reported values of ex-situ measurements. It was demonstrated that the effective thermal conductivity of the hydride bed can be enhanced by the addition of expanded graphite. This enhancement promotes lower temperature peaks during the sorptions due to faster heat conduction through the bed, which in addition allows faster heat transfer during sorption. Looking towards simulations and further evaluations, empirical kinetic models for both hydrogen absorption and desorption of doped sodium alanate were developed. Based on the results of the model, the optimal theoretical pressure-temperature conditions for hydrogen sorptions were determined. A new approach is proposed for the mass balance of the reactions when implementing

  18. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Hagstroem, M.T.; Lund, P.H. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.R.; Nieminen, J.P. [Neste Oy (Finland)

    1998-12-31

    Hydrogen based energy storage options for solar energy systems was studied in order to improve their overall performance. A 1 kW photovoltaic hydrogen (PV-H2) pilot-plant and commercial prototype were constructed and a numerical simulation program H2PHOTO for system design and optimisation was developed. Furthermore, a comprehensive understanding of conversion (electrolysers and fuel cells) and storage (metal hydrides) technologies was acquired by the project partners. The PV-H{sub 2} power system provides a self-sufficient solution for applications in remote locations far from electric grids and maintenance services. (orig.)

  19. Environmental performance of electricity storage systems for grid applications, a life cycle approach

    International Nuclear Information System (INIS)

    Oliveira, L.; Messagie, M.; Mertens, J.; Laget, H.; Coosemans, T.; Van Mierlo, J.

    2015-01-01

    Highlights: • Large energy storage systems: environmental performance under different scenarios. • ReCiPe midpoint and endpoint impact assessment results are analyzed. • Energy storage systems can replace peak power generation units. • Energy storage systems and renewable energy have the best environmental scores. • Environmental performance of storage systems is application dependent. - Abstract: In this paper, the environmental performance of electricity storage technologies for grid applications is assessed. Using a life cycle assessment methodology we analyze the impacts of the construction, disposal/end of life, and usage of each of the systems. Pumped hydro and compressed air storage are studied as mechanical storage, and advanced lead acid, sodium sulfur, lithium-ion and nickel–sodium-chloride batteries are addressed as electrochemical storage systems. Hydrogen production from electrolysis and subsequent usage in a proton exchange membrane fuel cell are also analyzed. The selected electricity storage systems mimic real world installations in terms of capacity, power rating, life time, technology and application. The functional unit is one kW h of energy delivered back to the grid, from the storage system. The environmental impacts assessed are climate change, human toxicity, particulate matter formation, and fossil resource depletion. Different electricity mixes are used in order to exemplify scenarios where the selected technologies meet specific applications. Results indicate that the performance of the storage systems is tied to the electricity feedstocks used during use stage. Renewable energy sources have lower impacts throughout the use stage of the storage technologies. Using the Belgium electricity mix of 2011 as benchmark, the sodium sulfur battery is shown to be the best performer for all the impacts analyzed. Pumped hydro storage follows in second place. Regarding infrastructure and end of life, results indicate that battery systems

  20. 78 FR 16601 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Science.gov (United States)

    2013-03-18

    ... Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule... (MAGNASTOR[supreg]) System listing within the ``List of Approved Spent Fuel Storage Casks'' to include... for the MAGNASTOR[supreg] System cask design within the list of approved spent fuel storage casks that...

  1. Experimental investigation of thermal storage integrated micro trigeneration system

    International Nuclear Information System (INIS)

    Johar, Dheeraj Kishor; Sharma, Dilip; Soni, Shyam Lal; Goyal, Rahul; Gupta, Pradeep K.

    2017-01-01

    Highlights: • Energy Storage System is integrated with Micro trigeneration system. • Erythritol is used as Phase Change Material. • Maximum energy saved is 15.30%. • Combined systems are feasible to increase energy efficiency. - Abstract: In this study a 4.4 kW stationary compression ignition engine is coupled with a double pipe heat exchanger, vapour absorption refrigeration system and thermal energy storage system to achieve Trigeneration i.e. power, heating and cooling. A shell and tube type heat exchanger filled with erythritol is used to store thermal energy of engine exhaust. Various combinations of thermal energy storage system integrated micro-trigeneration were investigated and results related to performance and emissions are reported in this paper. The test results show that micro capacity (4.4 kW) stationary single cylinder diesel engine can be successfully modified to simultaneously produce power, heating and cooling and also store thermal energy.

  2. Experimental Results of Integrated Refrigeration and Storage System Testing

    Science.gov (United States)

    Notardonato, W. U.; Johnson, W. L.; Jumper, K.

    2009-01-01

    Launch operations engineers at the Kennedy Space Center have identified an Integrated Refrigeration and Storage system as a promising technology to reduce launch costs and enable advanced cryogenic operations. This system uses a close cycle Brayton refrigerator to remove energy from the stored cryogenic propellant. This allows for the potential of a zero loss storage and transfer system, as well and control of the state of the propellant through densification or re-liquefaction. However, the behavior of the fluid in this type of system is different than typical cryogenic behavior, and there will be a learning curve associated with its use. A 400 liter research cryostat has been designed, fabricated and delivered to KSC to test the thermo fluid behavior of liquid oxygen as energy is removed from the cryogen by a simulated DC cycle cryocooler. Results of the initial testing phase focusing on heat exchanger characterization and zero loss storage operations using liquid oxygen are presented in this paper. Future plans for testing of oxygen densification tests and oxygen liquefaction tests will also be discussed. KEYWORDS: Liquid Oxygen, Refrigeration, Storage

  3. Thermoeconomic evaluation of air conditioning system with chilled water storage

    International Nuclear Information System (INIS)

    Lin, Hu; Li, Xin-hong; Cheng, Peng-sheng; Xu, Bu-gong

    2014-01-01

    Highlights: • A new thermoeconomic evaluation methodology has been presented. • The relationship between thermodynamic and economic performances has been revealed. • A key point for thermal storage technology further application is discovered. • A system has been analyzed via the new method and EUD method. - Abstract: As a good load shifting technology for power grid, chilled energy storage has been paid more and more attention, but it always consumes more energy than traditional air conditioning system, and the performance analysis is mostly from the viewpoint of peak-valley power price to get cost saving. The paper presents a thermoeconomic evaluation methodology for the system with chilled energy storage, by which thermodynamic performance influence on cost saving has been revealed. And a system with chilled storage has been analyzed, which can save more than 15% of power cost with no energy consumption increment, and just certain difference between peak and valley power prices can make the technology for good economic application. The results show that difference between peak and valley power prices is not the only factor on economic performance, thermodynamic performance of the storage system is the more important factor, and too big price difference is a barrier for its application, instead of for more cost saving. All of these give a new direction for thermal storage technology application

  4. Review and analysis of the 1980-1989 biomass thermochemical conversion program

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.J.

    1994-09-01

    In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

  5. Thermochemical aspects of fuel-cladding and fuel-coolant interactions in LMFBR oxide fuel pins

    International Nuclear Information System (INIS)

    Adamson, M.G.; Aitken, E.A.; Caputi, R.W.; Potter, P.E.; Mignanelli, M.A.

    1979-01-01

    This paper examines several thermochemical aspects of the fuel-cladding, fuel-coolant and fuel-fission product interactions that occur in LMFBR austenitic stainless steel-clad mixed (U,Pu)-oxide fuel pins during irradiation under normal operating conditions. Results are reported from a variety of high temperature EMF cell experiments in which continuous oxygen activity measurements on reacting and equilibrium mixtures of metal oxides and (excess) liquid alkali metal (Na, K, Cs) were performed. Oxygen potential and 0:M thresholds for Na-fuel reactions are re-evaluated in the light of new measurements and newly-assessed thermochemical data, and the influence on oxygen potential of possible U-Pu segregation between oxide and urano-plutonate (equilibrium) phases has been analyzed. (orig./RW) [de

  6. Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids

    Directory of Open Access Journals (Sweden)

    Holger C. Hesse

    2017-12-01

    Full Text Available Battery energy storage systems have gained increasing interest for serving grid support in various application tasks. In particular, systems based on lithium-ion batteries have evolved rapidly with a wide range of cell technologies and system architectures available on the market. On the application side, different tasks for storage deployment demand distinct properties of the storage system. This review aims to serve as a guideline for best choice of battery technology, system design and operation for lithium-ion based storage systems to match a specific system application. Starting with an overview to lithium-ion battery technologies and their characteristics with respect to performance and aging, the storage system design is analyzed in detail based on an evaluation of real-world projects. Typical storage system applications are grouped and classified with respect to the challenges posed to the battery system. Publicly available modeling tools for technical and economic analysis are presented. A brief analysis of optimization approaches aims to point out challenges and potential solution techniques for system sizing, positioning and dispatch operation. For all areas reviewed herein, expected improvements and possible future developments are highlighted. In order to extract the full potential of stationary battery storage systems and to enable increased profitability of systems, future research should aim to a holistic system level approach combining not only performance tuning on a battery cell level and careful analysis of the application requirements, but also consider a proper selection of storage sub-components as well as an optimized system operation strategy.

  7. System Specification for Immobilized High-Level Waste Interim Storage

    International Nuclear Information System (INIS)

    CALMUS, R.B.

    2000-01-01

    This specification establishes the system-level functional, performance, design, interface, and test requirements for Phase 1 of the IHLW Interim Storage System, located at the Hanford Site in Washington State. The IHLW canisters will be produced at the Hanford Site by a Selected DOE contractor. Subsequent to storage the canisters will be shipped to a federal geologic repository

  8. Neutralization and Acid Dissociation of Hydrogen Carbonate Ion: A Thermochemical Approach

    Science.gov (United States)

    Koga, Nobuyoshi; Shigedomi, Kana; Kimura, Tomoyasu; Tatsuoka, Tomoyuki; Mishima, Saki

    2013-01-01

    A laboratory inquiry into the thermochemical relationships in the reaction between aqueous solutions of NaHCO[subscript 3] and NaOH is described. The enthalpy change for this reaction, delta[subscript r]H, and that for neutralization of strong acid and NaOH(aq), delta[subscript n]H, are determined calorimetrically; the explanation for the…

  9. Optimal sizing of energy storage system for microgrids

    Indian Academy of Sciences (India)

    Microgrids (MGs) are Low Voltage distribution networks comprising various distributed generators (DG), storage devices and controllable loads that can operate either interconnected or isolated from the main distribution grid as a controlled entity. Energy storage system (ESS) is a vital part of an MG. In this paper, a ...

  10. Standardized, utility-DOE compatible, spent fuel storage-transport systems

    International Nuclear Information System (INIS)

    Smith, M.L.

    1991-01-01

    Virginia Power has developed and licensed a facility for dry storage of spent nuclear fuel in metal spent fuel storage casks. The modifications to the design of these casks necessary for licensing for both storage and transport of spent fuel are discussed along with the operational advantages of dual purpose storage-transport casks. Dual purpose casks can be used for storage at utility and DOE sites (MRS or repository) and for shipment between these sites with minimal spent fuel handling. The cost for a standardized system of casks that are compatible for use at both DOE and utility sites is discussed along with possible arrangements for sharing both the cost and benefits of dual purpose storage-transport casks

  11. Optimal Scheduling of Residential Microgrids Considering Virtual Energy Storage System

    Directory of Open Access Journals (Sweden)

    Weiliang Liu

    2018-04-01

    Full Text Available The increasingly complex residential microgrids (r-microgrid consisting of renewable generation, energy storage systems, and residential buildings require a more intelligent scheduling method. Firstly, aiming at the radiant floor heating/cooling system widely utilized in residential buildings, the mathematical relationship between the operative temperature and heating/cooling demand is established based on the equivalent thermodynamic parameters (ETP model, by which the thermal storage capacity is analyzed. Secondly, the radiant floor heating/cooling system is treated as virtual energy storage system (VESS, and an optimization model based on mixed-integer nonlinear programming (MINLP for r-microgrid scheduling is established which takes thermal comfort level and economy as the optimization objectives. Finally, the optimal scheduling results of two typical r-microgrids are analyzed. Case studies demonstrate that the proposed scheduling method can effectively employ the thermal storage capacity of radiant floor heating/cooling system, thus lowering the operating cost of the r-microgrid effectively while ensuring the thermal comfort level of users.

  12. Water-storage-tube systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hemker, P.

    1981-12-24

    Passive solar collection/storage/distribution systems were surveyed, designed, fabricated, and mechanically and thermally tested. The types studied were clear and opaque fiberglass tubes, metal tubes with plastic liners, and thermosyphoning tubes. (MHR)

  13. Thermo-chemical simulation of a composite offshore vertical axis wind turbine blade

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study three dimensional steady state thermo-chemical simulation of a pultrusion process is investigated by using the finite element/nodal control volume (FE/NCV) technique. Pultrusion simulation of a composite having a C-shaped cross section is performed as a validation case. The o...

  14. Thermo-chemical simultion of a composite offshore vertical axis wind turbine blade

    NARCIS (Netherlands)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study three dimensional steady state thermo-chemical simulation of a pultrusion process is investigated by using the finite element/nodal control volume (FE/NCV) technique. Pultrusion simulation of a composite having a C-shaped cross section is performed as a validation case. The

  15. Wind energy management for smart grids with storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, Manuel [Universidad de Alicante (Spain). Area de Ingenieria Electrica; Rios, Alberto [Universidad Europea de Madrid (Spain). Area de Ingenieria Electrica

    2012-07-01

    Increasing integration of wind energy into the power system makes the optimal management of different situations that can occur more and more important. The objective of the present study is to replace the power necessary for electrical feed when the wind resources are not available, and to make a continuous demand tracking of the power. The energy storage systems treated in this study are as follows: a fuel cell, flywheel, pump systems and turbine systems, compressed air systems, electrochemical cells, electric vehicles, supercapacitors and superconductors. As a result the maximum benefit of the smart grid is achieved and it includes coexistence of the energy storage systems described and integrated in the numerous microgrids which can form the distribution grid. The current capacity is observed in order to be able to manage the wind generation for short periods of time. This way it is possible to plan the production which would be adjusted to the variations through these storage systems allowing the systems to maintain their constant programming for the base plants, adjusting the variations in these systems in the short term. (orig.)

  16. Thermochemical study of cyanopyrazines: Experimental and theoretical approaches

    International Nuclear Information System (INIS)

    Miranda, Margarida S.; Morais, Victor M.F.; Matos, M. Agostinha R.

    2006-01-01

    The standard (p - bar =0.1MPa) molar energy of combustion, at T=298.15K, of crystalline 2,3-dicyanopyrazine was measured by static bomb calorimetry, in oxygen atmosphere. The standard molar enthalpy of sublimation, at T=298.15K, was obtained by Calvet Microcalorimetry, allowing the calculation of the standard molar enthalpy of formation of the compound, in the gas phase, at T=298.15K: Δ f H m - bar (g)=(518.7+/-3.4)kJ.mol -1 . In addition, the geometries of all cyanopyrazines were obtained using density functional theory with the B3LYP functional and two basis sets: 6-31G* and 6-311G**. These calculations were then used for a better understanding of the relation between structure and energetics of the cyanopyrazine systems. These calculations also reproduce measured standard molar enthalpies of formation with some accuracy and do provide estimates of this thermochemical parameter for those compounds that could not be studied experimentally, namely the tri- and tetracyanopyrazines: the strong electron withdrawing cyano group on the pyrazine ring makes cyanopyrazines highly destabilized compounds

  17. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  18. Thermochemical data acquisition: technical progress report, 1 January - 30 June 1990

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Dickinson, S.; Newland, M.S.; Ogden, J.S.; Potter, P.E.

    1990-07-01

    Thermochemical data are being determined for a number of compounds of fission products and reactor materials. The compounds selected for this experimental study were chosen where thermodynamic data did not exist or were inadequate, based on the assessment and recommendations of a specialists' meeting. The vaporisation behaviour of indium telluride, indium (III) iodide, caesium molybdate, cadmium iodide and a caesium-cadmium-iodine ternary salt have been studied by mass spectrometry and matrix isolation-infrared spectroscopy. The resulting vapour species have been identified, and thermodynamic quantities have been calculated for the following molecules: In 2 Te, In 2 I 6 , InI 3 , InI and Cs 2 MoO 4 . The vaporisation behaviour of Ag-In-Cd control rod alloy has been studied by simultaneous differential thermal analysis and thermogravimetry; observations are consistent with theoretical predictions for the non-ideal Ag-In system. Critical assessment of the cadmium-hydrogen-iodine-oxygen system have also begun. (author)

  19. Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford

    International Nuclear Information System (INIS)

    Raymond, Rick E.; Frederickson, James R.; Criddle, James; Hamilton, Dennis; Johnson, Mike W.

    2012-01-01

    This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS)

  20. Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Rick E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Frederickson, James R. [AREVA, Avignon (France); Criddle, James [AREVA, Avignon (France); Hamilton, Dennis [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Johnson, Mike W. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-10-18

    This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS).

  1. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    International Nuclear Information System (INIS)

    Werner, R.W.; Ribe, F.L.

    1981-01-01

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units

  2. Order Picking Optimization in Carousels Storage System

    Directory of Open Access Journals (Sweden)

    Xiong-zhi Wang

    2013-01-01

    Full Text Available This paper addresses the order picking problem in a material handling system consisting of multiple carousels and one picker. Carousels are rotatable closed-loop storage systems for small items, where items are stored in bins along the loop. An order at carousels consists of n different items stored there. The objective is to find an optimal picking sequence to minimizing the total order picking time. After proving the problem to be strongly NP-hard and deriving two characteristics, we develop a dynamic programming algorithm (DPA for a special case (two-carousel storage system and an improved nearest items heuristics (INIH for the general problem. Experimental results verify that the solutions are quickly and steadily achieved and show their better performance.

  3. Joint Optimal Design and Operation of Hybrid Energy Storage Systems

    NARCIS (Netherlands)

    Y. Ghiassi-Farrokhfal (Yashar); C. Rosenberg; S. Keshav (Srinivasam); M.-B. Adjaho (Marie-Benedicte)

    2016-01-01

    markdownabstractThe wide range of performance characteristics of storage technologies motivates the use of a hybrid energy storage systems (HESS) that combines the best features of multiple technologies. However, HESS design is complex, in that it involves the choice of storage technologies, the

  4. Energy storage in future power systems

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Østergaard, Jacob; Divya, K. C.

    2011-01-01

    Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional conventi......Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional...... conventional generation form being used. In addition to this, one of the strongest concerns in relation to renewable power is the instability in the electric power system that it may introduce as a result of large and relatively fast power fluctuations. An additional benefit of energy storage is therefore its...

  5. Primary frequency regulation supported by battery storage systems in power systems dominated by renewable energy sources

    DEFF Research Database (Denmark)

    Turk, Ana; Sandelic, Monika; Noto, Giancarlo

    2018-01-01

    replaced by intermittent renewable generators. Therefore, maintaining system quality and stability in terms of power system frequency control is one of the major challenges that requires new resources and their system integration. Battery energy storage systems (BESS), as fast-acting energy storage systems...

  6. A fast multichannel analog storage system

    International Nuclear Information System (INIS)

    Freytag, D.R.

    1983-01-01

    A Multichannel Analog Storage System based on a commercial 32-channel parallel in/serial out (PISO) analog shift register is described. The basic unit is a single width CAMAC module containing 512 analog cells and the associated logic for data storage and subsequent readout. At sampling rates of up to 30 MHz the signals are strobed directly into the PISO. At higher rates signals are strobed into a fast presampling stage and subsequently transferred in block form into an array of PISO's. Sampling rates of 300 MHz have been achieved with the present device and 1000 MHz are possible with improved signal drivers. The system is well suited for simultaneous handling of many signal channels with moderate numbers of samples in each channel. RMS noise over full scale signal has been measured as 1:3000 (approx. =11 bit). However, nonlinearities in the response and differences in sensitivity of the analog cells require an elaborate calibration system in order to realize 11 bit accuracy for the analog information

  7. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  8. On the Fracture Toughness and Crack Growth Resistance of Bio-Inspired Thermal Spray Hybrid Composites

    Science.gov (United States)

    Resnick, Michael Murray

    Surface exploration of the Moon and Asteroids can provide important information to scientists regarding the origins of the solar-system and life . Small robots and sensor modules can enable low-cost surface exploration. In the near future, they are the main machines providing these answers. Advanced in electronics, sensors and actuators enable ever smaller platforms, with compromising functionality. However similar advances haven't taken place for power supplies and thermal control system. The lunar south pole has temperatures in the range of -100 to -150 °C. Similarly, asteroid surfaces can encounter temperatures of -150 °C. Most electronics and batteries do not work below -40 °C. An effective thermal control system is critical towards making small robots and sensors module for extreme environments feasible. In this work, the feasibility of using thermochemical storage materials as a possible thermal control solution is analyzed for small robots and sensor modules for lunar and asteroid surface environments. The presented technology will focus on using resources that is readily generated as waste product aboard a spacecraft or is available off-world through In-Situ Resource Utilization (ISRU). In this work, a sensor module for extreme environment has been designed and prototyped. Our intention is to have a network of tens or hundreds of sensor modules that can communicate and interact with each other while also gathering science data. The design contains environmental sensors like temperature sensors and IMU (containing accelerometer, gyro and magnetometer) to gather data. The sensor module would nominally contain an electrical heater and insulation. The thermal heating effect provided by this active heater is compared with the proposed technology that utilizes thermochemical storage chemicals. Our results show that a thermochemical storage-based thermal control system is feasible for use in extreme temperatures. A performance increase of 80% is predicted for

  9. Data systems and computer science space data systems: Onboard memory and storage

    Science.gov (United States)

    Shull, Tom

    1991-01-01

    The topics are presented in viewgraph form and include the following: technical objectives; technology challenges; state-of-the-art assessment; mass storage comparison; SODR drive and system concepts; program description; vertical Bloch line (VBL) device concept; relationship to external programs; and backup charts for memory and storage.

  10. Molten salt thermal energy storage systems: salt selection

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Dullea, J.F.; Huang, V.S.

    1976-08-01

    A research program aimed at the development of a molten salt thermal energy storage system commenced in June 1976. This topical report describes Work performed under Task I: Salt Selection is described. A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000/sup 0/F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. We concluded that because alkali carbonate mixtures show high thermal conductivity, low volumetric expansion on melting, low corrosivity and good stability, they are attractive as heat-of-fusion storage materials in this temperature range. A 35 wt percent Li/sub 2/CO/sub 3/-65 wt percent K/sub 2/CO/sub 3/ (50 mole percent Li/sub 2/CO/sub 3/-50 mole percent K/sub 2/CO/sub 3/) mixture was selected as a model system for further experimental work. This is a eutectoid mixture having a heat of fusion of 148 Btu/lb (82 cal/g) that forms an equimolar compound, LiKCO/sub 3/. The Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ mixture is intended to serve as a model system to define heat transfer characteristics, potential problems, and to provide ''first-cut'' engineering data required for the prototype system. The cost of a thermal energy storage system containing this mixture cannot be predicted until system characteristics are better defined. However, our comparison of different salts indicated that alkali and alkaline earth chlorides may be more attractive from a salt cost point of view. The long-term corrosion characteristics and the effects of volume change on melting for the chlorides should be investigated to determine their overall suitability as a heat-of-fusion storage medium.

  11. Thermodynamic characteristics of a novel supercritical compressed air energy storage system

    International Nuclear Information System (INIS)

    Guo, Huan; Xu, Yujie; Chen, Haisheng; Zhou, Xuezhi

    2016-01-01

    Highlights: • A novel supercritical compressed air energy storage system is proposed. • The energy density of SC-CAES is approximately 18 times larger than that of conventional CAES. • The characteristic of thermodynamics and exergy destruction is comprehensively analysed. • The corresponding optimum relationship between charging and discharging pressure is illustrated. • A turning point of efficiency is indicated because of the heat transfer of crossing the critical point. - Abstract: A novel supercritical compressed air energy storage (SC-CAES) system is proposed by our team to solve the problems of conventional CAES. The system eliminates the dependence on fossil fuel and large gas-storage cavern, as well as possesses the advantages of high efficiency by employing the special properties of supercritical air, which is significant for the development of electrical energy storage. The thermodynamic model of the SC-CAES system is built, and the thermodynamic characters are revealed. Through the exergy analysis of the system, the processes of the larger exergy destruction include compression, expansion, cold storage/heat exchange and throttle. Furthermore, sensitivity analysis shows that there is an optimal energy releasing pressure to make the system achieve the highest efficiency when energy storage pressure is constant. The efficiency of SC-CAES is expected to reach about 67.41% when energy storage pressure and energy releasing pressure are 120 bar and 95.01 bar, respectively. At the same time, the energy density is 18 times larger than that of conventional CAES. Sensitivity analysis also shows the change laws of system efficiency varying with other basic system parameters. The study provides support for the design and engineering of SC-CAES.

  12. Materials used in refrigerated storage system

    Energy Technology Data Exchange (ETDEWEB)

    Abakians, H

    1970-09-01

    Applications of cryogenic technology have increased at a phenomenal rate during the past decade. With the installation of a number of refrigerated storage tanks in Iran, e.g., LPG storage at Bandar Mah Shahr and Kharg Is., and ammonia storage at Bandar Shahpour, it is appropriate to review the materials used in constructing low temperature storage systems. In order to have an economical fully refrigerated storage installation without assuming the risk of brittle fracture, appropriate notch-tough material should be selected for the important and highly stressed components. In general, the lower the operating temperature, the more expensive is the material to be used. Hence, care should be taken to select the required material in such a manner that it will be suitable for the operating temperature and not lower. The most economical materials for low temperatures are steels. Ordinary carbon steel can be used down to -20$F and the Killed carbon steel down to -50$F. Nickel steels (2 1/4%) can be used down to -75$ to 100$F, Nickel steels (3 1/2%) down to -150$F, and 9% nickel steels down to 1,320$F. Stainless and aluminum alloys can be used down to -423$F. Tabular data give some commonly used materials in low temperature and cryogenic services with their lowest allowable temperature, tensile strength, and relative cost.

  13. Current status of and problems in ice heat storage systems contributing to improving load rate. Air conditioning system utilizing ice heat storage and building frame storage (Takenaka Corporation); Fukaritsu kaizen ni kokensuru kori chikunetsu system no genjo to kadai. Kori chikunetsu to kutai chikunetsu wo riyoshita kucho system

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y.; Yoshitake, Y. [Takenaka Corp., Osaka (Japan)

    1998-02-01

    Development was made on a new air conditioning system, `building frame heat storage air conditioning system`, which combines an ice heat storage system with a building frame heat storage. With the building frame heat storage system, a damper is installed on an indoor device to blow cold air from the air conditioner onto slabs on the upper floor during nighttime power generating period. Heat is stored in beams, pillars and walls, and the shell absorbs and dissipates heat during daytime. Since general office buildings consume primary energy at 22.8% for heat source and 26.9% for transportation, which is greater, a natural coolant circulation type air conditioning system was developed as an air conditioning system for the secondary side. This made the building frame heat regeneration possible for the first time. With regard to heat storage quantity and heat dissipation quantity, the quantity of heat which can be stored during nighttime (10 hours) and dissipated during air conditioning using period in daytime (10 hours) is 80% of the stored heat quantity. This system was installed in a building in Kobe City. As a result of the measurement, it was found that indoor heat load reduction rate as a result of using the building frame heat storage was 24% or more in summer and 80% or more in winter. 7 figs., 2 tabs.

  14. Clean energy storage technology in the making: An innovation systems perspective on flywheel energy storage.

    Science.gov (United States)

    Wicki, Samuel; Hansen, Erik G

    2017-09-20

    The emergence and diffusion of green and sustainable technologies is full of obstacles and has therefore become an important area of research. We are interested in further understanding the dynamics between entrepreneurial experimentation, market formation, and institutional contexts, together playing a decisive role for successful diffusion of such technologies. Accordingly, we study these processes by adopting a technological innovation system perspective focusing on actors, networks, and institutions as well as the functions provided by them. Using a qualitative case study research design, we focus on the high-speed flywheel energy storage technology. As flywheels are based on a rotating mass allowing short-term storage of energy in kinetic form, they represent an environmentally-friendly alternative to electrochemical batteries and therefore can play an important role in sustainable energy transitions. Our contribution is threefold: First , regarding the flywheel energy storage technology, our findings reveal two subsystems and related markets in which development took different courses. In the automotive sector, flywheels are developing well as a braking energy recovery technology under the influence of two motors of innovation. In the electricity sector, they are stagnating at the stage of demonstration projects because of two important system weaknesses that counteract demand for storage. Second , we contribute to the theory of technological innovation systems by better understanding the internal dynamics between different functions of an innovation system as well as between the innovation system and its (external) contextual structures. Our third contribution is methodological. According to our best knowledge, we are the first to use system dynamics to (qualitatively) analyze and visualize dynamics between the diverse functions of innovation systems with the aim of enabling a better understanding of complex and iterative system processes. The paper also

  15. (LiNH2-MgH2): a viable hydrogen storage system

    International Nuclear Information System (INIS)

    Luo Weifang

    2004-01-01

    One of the problems related to the employment of hydrogen-based fuel cells for vehicular transportation is 'on board' storage. Hydrogen storage in solids has long been recognized as one of the most practical approaches for this purpose. The capacity of existing storage materials is markedly below that needed for vehicular use. Recently Chen et al. [Nature 420 (21) (2002) 302; J. Phys. Chem. B 107 (2003) 10967] reported a lithium nitride/imide system, with a high capacity, 11.5 wt.%, however, its operating temperature and pressure are not satisfactory for vehicular application. In this research a new storage material has been developed, which is from the partial substitution of lithium by magnesium in the nitride/imide system. The plateau pressure of this new Mg-substituted system is about 30 bar and 200 deg. C with a H capacity of 4.5 wt.% and possibly higher. This is a very promising H-storage material for 'on board' storage for vehicular applications

  16. Grid Converters for Stationary Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Trintis, Ionut

    The integration of renewable energy sources in the power system, with high percentage, is a well known challenge nowadays. Power sources like wind and solar are highly volatile, with uctuations on various time scales. One long term solution is to build a continentwide or worldwide supergrid....... Another solution is to use distributed energy storage units, and create virtual power plants. Stationary energy storage is a complementary solution, which can postpone the network expansion and can be optimized for dierent kind of grid services. As an energy storage solution with timing for few seconds...... multilevel converter structure with integrated energy storage is introduced. This converter structure is suitable to interface low and medium voltage energy storage units to medium and high voltage grids. It can also interconnect a DC and AC grid with bidirectional power ow, were both can be backed...

  17. Optimal controls of building storage systems using both ice storage and thermal mass – Part II: Parametric analysis

    International Nuclear Information System (INIS)

    Hajiah, Ali; Krarti, Moncef

    2012-01-01

    Highlights: ► A detailed analysis is presented to assess the performance of thermal energy storage (TES) systems. ► Utility rates have been found to be significant in assessing the operation of TES systems. ► Optimal control strategies for TES systems can save up to 40% of total energy cost of office buildings. - Abstract: This paper presents the results of a series of parametric analysis to investigate the factors that affect the effectiveness of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs (including energy and demand costs) while maintaining adequate occupant comfort conditions in buildings. The analysis is based on a validated model-based simulation environment and includes several parameters including the optimization cost function, base chiller size, and ice storage tank capacity, and weather conditions. It found that the combined use of building thermal mass and active thermal energy storage system can save up to 40% of the total energy costs when integrated optimal control are considered to operate commercial buildings.

  18. Sharing economy as a new business model for energy storage systems

    International Nuclear Information System (INIS)

    Lombardi, P.; Schwabe, F.

    2017-01-01

    Highlights: • Sharing economy as new business model for Energy Storage Operators. • More attractiveness of Battery Storage Systems. • Optimal Dimensioning of Battery Storage Systems for sharing economy application. - Abstract: Energy storage systems (ESS) are the candidate solution to integrate the high amount of electric power generated by volatile renewable energy sources into the electric grid. However, even though the investment costs of some ESS technologies have decreased over the last few years, few business models seem to be attractive for investors. In most of these models, ESS are applied only for one use case, such as primary control reserve. In this study, a business model based on the sharing economy principle has been developed and analyzed. In this model, the energy storage operator offers its storage system to different kinds of customers. Each customer uses the ESS for their single use case. A set of different use cases has been identified to make the operation of the ESS profitable (e.g. peak shaving, self-consumption and day-ahead market participation). Different kinds of stationary batteries (lithium-ion, sodium-sulfur and vanadium redox-flow) have been considered as energy storage technologies, which differ both in their investment costs and their technical properties, such as round-trip efficiency. The simulation of the business model developed showed that a sharing economy-based model may increase the profitability of operating a battery storage system compared to the single use case business model. Additionally, larger battery dimensions regarding power and capacity were found to be profitable and resulted in an increased revenue stream.

  19. A Novel Constant-Pressure Pumped Hydro Combined with Compressed Air Energy Storage System

    Directory of Open Access Journals (Sweden)

    Erren Yao

    2014-12-01

    Full Text Available As intermittent renewable energy is receiving increasing attention, the combination of intermittent renewable energy with large-scale energy storage technology is considered as an important technological approach for the wider application of wind power and solar energy. Pumped hydro combined with compressed air energy storage system (PHCA is one of the energy storage systems that not only integrates the advantages but also overcomes the disadvantages of compressed air energy storage (CAES systems and pumped hydro energy storage systems to solve the problem of energy storage in China’s arid regions. Aiming at the variable working conditions of PHCA system technology, this study proposes a new constant-pressure PHCA. The most significant characteristics of this system were that the water pump and hydroturbine work under stable conditions and this improves the working efficiency of the equipment without incurring an energy loss. In addition, the constant-pressure PHCA system was subjected to energy and exergy analysis, in expectation of exploring an attractive solution for the large-scale storage of existing intermittent renewable energy.

  20. Eco-friendly Energy Storage System: Seawater and Ionic Liquid Electrolyte.

    Science.gov (United States)

    Kim, Jae-Kwang; Mueller, Franziska; Kim, Hyojin; Jeong, Sangsik; Park, Jeong-Sun; Passerini, Stefano; Kim, Youngsik

    2016-01-08

    As existing battery technologies struggle to meet the requirements for widespread use in the field of large-scale energy storage, novel concepts are urgently needed concerning batteries that have high energy densities, low costs, and high levels of safety. Here, a novel eco-friendly energy storage system (ESS) using seawater and an ionic liquid is proposed for the first time; this represents an intermediate system between a battery and a fuel cell, and is accordingly referred to as a hybrid rechargeable cell. Compared to conventional organic electrolytes, the ionic liquid electrolyte significantly enhances the cycle performance of the seawater hybrid rechargeable system, acting as a very stable interface layer between the Sn-C (Na storage) anode and the NASICON (Na3 Zr2 Si2 PO12) ceramic solid electrolyte, making this system extremely promising for cost-efficient and environmentally friendly large-scale energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Understanding I/O workload characteristics of a Peta-scale storage system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngjae [ORNL; Gunasekaran, Raghul [ORNL

    2015-01-01

    Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the I/O workloads of scientific applications of one of the world s fastest high performance computing (HPC) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). OLCF flagship petascale simulation platform, Titan, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize the system utilization, the demands of reads and writes, idle time, storage space utilization, and the distribution of read requests to write requests for the Peta-scale Storage Systems. From this study, we develop synthesized workloads, and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution. We also study the I/O load imbalance problems using I/O performance data collected from the Spider storage system.

  2. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  3. Recommended Ideal-Gas Thermochemical Functions for Heavy Water and its Substituent Isotopologues

    Czech Academy of Sciences Publication Activity Database

    Simkó, I.; Furtenbacher, T.; Hrubý, Jan; Zobov, N. F.; Polyansky, O. L.; Tennyson, J.; Gamache, R. R.; Szidarovszky, T.; Dénes, N.; Császár, A. G.

    2017-01-01

    Roč. 46, č. 2 (2017), č. článku 023104. ISSN 0047-2689 R&D Projects: GA ČR GA16-02647S Institutional support: RVO:61388998 Keywords : heavy water * ideal-gas thermochemical functions * partition function Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 4.204, year: 2016

  4. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Directory of Open Access Journals (Sweden)

    Guangwen Fan

    2015-09-01

    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  5. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    Science.gov (United States)

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  6. Simulation of interim spent fuel storage system with discrete event model

    International Nuclear Information System (INIS)

    Yoon, Wan Ki; Song, Ki Chan; Lee, Jae Sol; Park, Hyun Soo

    1989-01-01

    This paper describes dynamic simulation of the spent fuel storage system which is described by statistical discrete event models. It visualizes flow and queue of system over time, assesses the operational performance of the system activities and establishes the system components and streams. It gives information on system organization and operation policy with reference to the design. System was tested and analyzed over a number of critical parameters to establish the optimal system. Workforce schedule and resources with long processing time dominate process. A combination of two workforce shifts a day and two cooling pits gives the optimal solution of storage system. Discrete system simulation is an useful tool to get information on optimal design and operation of the storage system. (Author)

  7. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.)

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Kuglarz, Mariusz; Karakashev, Dimitar Borisov

    2015-01-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior...... to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted...... in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9gL-1), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid....

  8. Utility battery storage systems. Program report for FY95

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1996-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  9. Utility battery storage systems program report for FY 94

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  10. Availability-based computer management of a cold thermal storage system

    International Nuclear Information System (INIS)

    Wong, K.F.V.; Ferrano, F.J.

    1990-01-01

    This paper reports on work to develop an availability-based, on-line expert system to manage a thermal energy storage air-conditioning system. The management system is designed to be used by mechanical engineers in the field of air-conditioning control and maintenance. Specifically, the expert system permits the user to easily monitor the second law of thermodynamics operating efficiencies of the major components and the system as a whole in addition to the daily scheduled operating parameters of a cold thermal storage system. Through the use of computer-generated and continually updated screen display pages, the user is permitted interaction with the expert system. The knowledge-based system is developed with a commercially available expert system shell that is resident in a personal computer. In the case studied, 130 various analog and binary inputs/outputs are used. The knowledge base for the thermal energy storage expert system included nine different display pages that are continually updated, 25 rules, three tasks, and three loops

  11. Safety Test Report for the SNF Dry Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Seo, K. S.; Lee, J. H.; Lee, J. C.; Choi, W. S

    2008-11-15

    This is technical report conducted by KAERI under the contract with NETEC for safety test for the PWR S/F dry storage system. Leak Test was performed after drop test and turn-over test, the measured leakage rate was lower than allowable leakage rate. It is revealed that the containment integrity of the dry storage system is maintained. In the seismic test, the moving of the model was measured at SRTH seismic response of 0.4 g and 0.8 g. Therefore the seismic test results can be used fully to the test data for verification of the seismic analysis. In the thermal test, the direction of the inlet and outlet of the air has no effect on the heat transfer performance. The passive heat removal system of the horizontal storage module was designed well.

  12. Demonstration of a transportable storage system for spent nuclear fuel

    International Nuclear Information System (INIS)

    Shetler, J.R.; Miller, K.R.; Jones, R.E.

    1993-01-01

    The purpose of this paper is to discuss the joint demonstration project between the Sacramento Municipal Utility District (SMUD) and the US Department of Energy (DOE) regarding the use of a transportable storage system for the long-term storage and subsequent transport of spent nuclear fuel. SMUD's Rancho Seco nuclear generating station was shut down permanently in June 1989. After the shutdown, SMUD began planning the decommissioning process, including the disposition of the spent nuclear fuel. Concurrently, Congress had directed the Secretary of Energy to develop a plan for the use of dual-purpose casks. Licensing and demonstrating a dual-purpose cask, or transportable storage system, would be a step toward achieving Congress's goal of demonstrating a technology that can be used to minimize the handling of spent nuclear fuel from the time the fuel is permanently removed from the reactor through to its ultimate disposal at a DOE facility. For SMUD, using a transportable storage system at the Rancho Seco Independent Spent-Fuel Storage Installation supports the goal of abandoning Rancho Seco's spent-fuel pool as decommissioning proceeds

  13. Control system design for robotic underground storage tank inspection systems

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1994-09-01

    Control and data acquisition systems for robotic inspection and surveillance systems used in nuclear waste applications must be capable, versatile, and adaptable to changing conditions. The nuclear waste remediation application is dynamic -- requirements change as public policy is constantly re-examined and refocused, and as technology in this area advances. Control and data acquisition systems must adapt to these changing conditions and be able to accommodate future missions, both predictable and unexpected. This paper describes the control and data acquisition system for the Light Duty Utility Arm (LDUA) System that is being developed for remote surveillance and inspection of underground storage tanks at the Hanford Site and other US Department of Energy (DOE) sites. It is a high-performance system which has been designed for future growth. The priority mission at the Hanford site is to retrieve the waste generated by 50 years of production from its present storage and process it for final disposal. The LDUA will help to gather information about the waste and the tanks it is stored in to better plan and execute the cleanup mission

  14. Thermoeconomic analysis of a copper-chlorine thermochemical cycle for nuclear-based hydrogen production

    International Nuclear Information System (INIS)

    Orhan, Mehmet F.; Dincer, Ibrahim; Rosen, Marc A.

    2010-01-01

    Thermochemical water splitting with a copper-chlorine (Cu-Cl) cycle is a promising process that could be linked with nuclear reactors to decompose water into its constituents, oxygen and hydrogen, through intermediate copper and chlorine compounds. In this paper, a comprehensive exergoeconomic analysis of the Cu-Cl cycle is reported to evaluate the production costs as a function of the amount and quality of the energy used for hydrogen production, as well as the costs of the exergy losses and the exergoeconomic improvement potential of the equipment used in the process. An additional objective is to determine changes in the design parameters of the Cu-Cl cycle that improve the cost effectiveness of the overall system. (orig.)

  15. Final Report: Hydrogen Storage System Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel A. [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-30

    The Fuel Cell Technologies Office (FCTO) has identified hydrogen storage as a key enabling technology for advancing hydrogen and fuel cell power technologies in transportation, stationary, and portable applications. Consequently, FCTO has established targets to chart the progress of developing and demonstrating viable hydrogen storage technologies for transportation and stationary applications. This cost assessment project supports the overall FCTO goals by identifying the current technology system components, performance levels, and manufacturing/assembly techniques most likely to lead to the lowest system storage cost. Furthermore, the project forecasts the cost of these systems at a variety of annual manufacturing rates to allow comparison to the overall 2017 and “Ultimate” DOE cost targets. The cost breakdown of the system components and manufacturing steps can then be used to guide future research and development (R&D) decisions. The project was led by Strategic Analysis Inc. (SA) and aided by Rajesh Ahluwalia and Thanh Hua from Argonne National Laboratory (ANL) and Lin Simpson at the National Renewable Energy Laboratory (NREL). Since SA coordinated the project activities of all three organizations, this report includes a technical description of all project activity. This report represents a summary of contract activities and findings under SA’s five year contract to the US Department of Energy (Award No. DE-EE0005253) and constitutes the “Final Scientific Report” deliverable. Project publications and presentations are listed in the Appendix.

  16. IS process for thermochemical hydrogen production

    International Nuclear Information System (INIS)

    Onuki, Kaoru; Nakajima, Hayato; Ioka, Ikuo; Futakawa, Masatoshi; Shimizu, Saburo

    1994-11-01

    The state-of-the-art of thermochemical hydrogen production by IS process is reviewed including experimental data obtained at JAERI on the chemistry of the Bunsen reaction step and on the corrosion resistance of the structural materials. The present status of laboratory scale demonstration at JAERI is also included. The study on the chemistry of the chemical reactions and the products separations has identified feasible methods to function the process. The flowsheeting studies revealed a process thermal efficiency higher than 40% is achievable under efficient process conditions. The corrosion resistance of commercially available structural materials have been clarified under various process conditions. The basic scheme of the process has been realized in a laboratory scale apparatus. R and D requirements to proceed to the engineering demonstration coupled with HTTR are briefly discussed. (author)

  17. Method for thermochemical decomposition of water

    Science.gov (United States)

    Abraham, Bernard M.; Schreiner, Felix

    1977-01-11

    Water is thermochemically decomposed to produce hydrogen by the following sequence of reactions: KI, NH.sub.3, CO.sub. 2 and water in an organic solvent such as ethyl or propyl alcohol are reacted to produce KHCO 3 and NH.sub.4 I. The KHCO.sub.3 is thermally decomposed to K.sub.2 CO.sub.3, H.sub.2 O and CO.sub.2, while the NH.sub.4 I is reacted with Hg to produce HgI.sub.2, NH.sub.3 and H.sub.2. The K.sub.2 CO.sub.3 obtained by calcining KHCO.sub.3 is then reacted with HgI.sub.2 to produce Hg, KI, CO and O.sub.2. All products of the reaction are recycled except hydrogen and oxygen.

  18. Air ejector augmented compressed air energy storage system

    Science.gov (United States)

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  19. Use of compressed-air storage systems; Einsatz von Druckluftspeichersystemen

    Energy Technology Data Exchange (ETDEWEB)

    Cyphely, I.; Rufer, A.; Brueckmann, Ph.; Menhardt, W.; Reller, A.

    2004-07-01

    This final report issued by the Swiss Federal Office of Energy (SFOE) looks at the use of compressed air as a means of storing energy. Historical aspects are listed and compressed-air storage as an alternative to current ideas that use electrolysis and hydrogen storage is discussed. The storage efficiency advantages of compressed-air storage is stressed and the possibilities it offers for compensating the stochastic nature of electricity production from renewable energy sources are discussed. The so-called BOP (Battery with Oil-hydraulics and Pneumatics) principle for the storage of electricity is discussed and its function is described. The advantages offered by such a system are listed and the development focus necessary is discussed.

  20. 78 FR 16619 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Science.gov (United States)

    2013-03-18

    ...-0308] RIN 3150-AJ22 List of Approved Spent Fuel Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear... proposing to amend its spent fuel storage regulations by revising the NAC International, Inc., Modular Advanced Generation Nuclear All-purpose Storage (MAGNASTOR[supreg]) Cask System listing within the ``List...

  1. Modeling and analysing storage systems in agricultural biomass supply chain for cellulosic ethanol production

    International Nuclear Information System (INIS)

    Ebadian, Mahmood; Sowlati, Taraneh; Sokhansanj, Shahab; Townley-Smith, Lawrence; Stumborg, Mark

    2013-01-01

    Highlights: ► Studied the agricultural biomass supply chain for cellulosic ethanol production. ► Evaluated the impact of storage systems on different supply chain actors. ► Developed a combined simulation/optimization model to evaluate storage systems. ► Compared two satellite storage systems with roadside storage in terms of costs and emitted CO 2 . ► SS would lead to a more cost-efficient supply chain compared to roadside storage. -- Abstract: In this paper, a combined simulation/optimization model is developed to better understand and evaluate the impact of the storage systems on the costs incurred by each actor in the agricultural biomass supply chain including farmers, hauling contractors and the cellulosic ethanol plant. The optimization model prescribes the optimum number and location of farms and storages. It also determines the supply radius, the number of farms required to secure the annual supply of biomass and also the assignment of farms to storage locations. Given the specific design of the supply chain determined by the optimization model, the simulation model determines the number of required machines for each operation, their daily working schedule and utilization rates, along with the capacities of storages. To evaluate the impact of the storage systems on the delivered costs, three storage systems are molded and compared: roadside storage (RS) system and two satellite storage (SS) systems including SS with fixed hauling distance (SF) and SS with variable hauling distance (SV). In all storage systems, it is assumed the loading equipment is dedicated to storage locations. The obtained results from a real case study provide detailed cost figures for each storage system since the developed model analyses the supply chain on an hourly basis and considers time-dependence and stochasticity of the supply chain. Comparison of the storage systems shows SV would outperform SF and RS by reducing the total delivered cost by 8% and 6%, respectively

  2. MRS [monitored retrievable storage] systems study Task G report: The role and functions of surface storage of radioactive material in the federal waste management system

    International Nuclear Information System (INIS)

    Wood, T.W.; Short, S.M.; Woodruff, M.G.; Altenhofen, M.K.; MacKay, C.A.

    1989-04-01

    This is one of nine studies undertaken by contractors to the US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), to provide a technical basis for re-evaluating the role of a monitored retrievable storage (MRS) facility. The study investigates the functions that could be performed by surface storage of radioactive material within the federal radioactive waste management system, including enabling acceptance of spent fuel from utility owners, scheduling of waste-preparation processes within the system, enhancement of system operating reliability, and conditioning the thermal (decay heat) characteristics of spent fuel emplaced in a repository. The analysis focuses particularly on the effects of storage capacity and DOE acceptance schedule on power reactors. Figures of merit developed include the storage capacity [in metric tons of uranium (MTU)] required to be added beyond currently estimated maximum spent fuel storage capacities and its associated cost, and the number of years that spent fuel pools would remain open after last discharge (in pool-years) and the cost of this period of operation. 27 refs., 36 figs., 18 tabs

  3. Multiple products management system with sensors array in automated storage and retrieval systems

    Science.gov (United States)

    Vongbunyong, Supachai; Roengritronnachai, Perawat; Kongsanit, Savanut; Chanok-owat, Chawisa; Polchankajorn, Pongsakorn

    2018-01-01

    Automated Storage and Retrieval Systems (AS/RS) have now been widely used in a number of industries due to its capability to automatically manage the storage of products in effective ways. One of the key features of AS/RS is that each rack is not assigned for a specific product resulting in the benefit of space utilization and logistics related issues. In this research, sensor arrays are equipped at each rack in order to enhance this feature. As a result, various products can be identified and mixed in each rack, so that the space utilization efficiency can be increased. To prove the concept, a prototype system consisting of a Cartesian robot that manages the storage and retrieval of products with 9 variations based on size and color. The concept of Cyber-Physical System and self-awareness of the system are also implemented in this concept prototype.

  4. To Error Problem Concerning Measuring Concentration of Carbon Oxide by Thermo-Chemical Sen

    Directory of Open Access Journals (Sweden)

    V. I. Nazarov

    2007-01-01

    Full Text Available The paper gives additional errors in respect of measuring concentration of carbon oxide by thermo-chemical sensors. A number of analytical expressions for calculation of error data and corrections for environmental factor deviations from admissible ones have been obtained in the paper

  5. Statement of Work Electrical Energy Storage System Installation at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    Sandia is seeking to procure a 1 MWh energy storage system. It will be installed at the existing Energy Storage Test Pad, which is located at Sandia National Laboratories in Albuquerque, New Mexico. This energy storage system will be a daily operational system, but will also be used as a tool in our Research and development work. The system will be part of a showcase of Sandia distributed energy technologies viewed by many distinguished delegates.

  6. Thermochemical and thermophysical properties of alkaline-earth perovskites

    International Nuclear Information System (INIS)

    Yamanaka, Shinsuke; Kurosaki, Ken; Maekawa, Takuji; Matsuda, Tetsushi; Kobayashi, Shin-ichi; Uno, Masayoshi

    2005-01-01

    In order to contribute to safety evaluation of high burnup oxide fuels, we studied the thermochemical and thermophysical properties of alkaline-earth perovskites known as oxide inclusions. Polycrystalline samples of alkaline-earth perovskites, BaUO 3 , BaZrO 3 , BaCeO 3 , BaMoO 3 , SrTiO 3 , SrZrO 3 , SrCeO 3 , SrMoO 3 , SrHfO 3 and SrRuO 3 , were prepared and the thermal expansion coefficient, melting temperature, elastic moduli, Debye temperature, microhardness, heat capacity, and thermal conductivity were measured. The relationship between some physical properties was studied

  7. Beam vacuum system of Brookhaven's muon storage ring

    International Nuclear Information System (INIS)

    Hseuth, H.C.; Snydstrup, L.; Mapes, M.

    1995-01-01

    A storage ring with a circumference of 45 m is being built at Brookhaven to measure the g-2 value of the muons to an accuracy of 0.35 ppm.. The beam vacuum system of the storage ring will operate at 10 -7 Torr and has to be completely non-magnetic. It consists of twelve sector chambers. The chambers are constructed of aluminum and are approximately 3.5 m in length with a rectangular cross-section of 16.5 cm high by 45 cm at the widest point. The design features, fabrication techniques and cleaning methods for these chambers are described. The beam vacuum system will be pumped by forty eight non-magnetic distributed ion pumps with a total pumping speed of over 2000 ell/sec. Monte Carlo simulations of the pressure distribution in the muon storage region are presented

  8. The NOAO Data Lab virtual storage system

    Science.gov (United States)

    Graham, Matthew J.; Fitzpatrick, Michael J.; Norris, Patrick; Mighell, Kenneth J.; Olsen, Knut; Stobie, Elizabeth B.; Ridgway, Stephen T.; Bolton, Adam S.; Saha, Abhijit; Huang, Lijuan W.

    2016-07-01

    Collaborative research/computing environments are essential for working with the next generations of large astronomical data sets. A key component of them is a distributed storage system to enable data hosting, sharing, and publication. VOSpace1 is a lightweight interface providing network access to arbitrary backend storage solutions and endorsed by the International Virtual Observatory Alliance (IVOA). Although similar APIs exist, such as Amazon S3, WebDav, and Dropbox, VOSpace is designed to be protocol agnostic, focusing on data control operations, and supports asynchronous and third-party data transfers, thereby minimizing unnecessary data transfers. It also allows arbitrary computations to be triggered as a result of a transfer operation: for example, a file can be automatically ingested into a database when put into an active directory or a data reduction task, such as Sextractor, can be run on it. In this paper, we shall describe the VOSpace implementations that we have developed for the NOAO Data Lab. These offer both dedicated remote storage, accessible as a local file system via FUSE, and a local VOSpace service to easily enable data synchronization.

  9. Role of Pumped Storage Hydro Resources in Electricity Markets and System Operation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ela, E.; Kirby, B.; Botterud, A.; Milostan, C.; Krad, I.; Koritarov, V.

    2013-05-01

    The most common form of utility- sized energy storage system is the pumped storage hydro system. Originally, these types of storage systems were economically viable simply because they displace more expensive generating units. However, over time, as those expensive units became more efficient and costs declined, pumped hydro storage units no longer have the operational edge. As a result, in the current electricity market environment, pumped storage hydro plants are struggling. To offset this phenomenon, certain market modifications should be addressed. This paper will introduce some of the challenges faced by pumped storage hydro plants in today's markets and purpose some solutions to those problems.

  10. Energy Storage System for a Pulsed DEMO

    International Nuclear Information System (INIS)

    Lucas, J.; Cortes, M.; Mendez, P.; Maisonnier, D.; Hayward, J.

    2006-01-01

    Several designs have been proposed for DEMO, some of which will operate in pulsed mode. Since a fusion power plant will be required to deliver continuous output, this challenge must be solved. For the reference DEMO, energy storage is required at a level of 250 MWhe with a capability of delivering a power of 1 GWe. Although DEMO is scheduled to be built in about 30 years, the design of the energy storage system must be based on current technology, focusing on commercially available products and on their expected future trends. From a thorough review of the different technologies available, thermal energy storage, compressed air energy storage, water pumping, fuel cells, batteries, flywheels and ultracapacitors are the most promising solutions to energy storage for a pulsed DEMO. An outline of each of these technologies is described in the paper, showing its basis, features, advantages and disadvantages for this application. Following this review, the most suitable methods capable of storing the required energy are examined. Fuel cells are not suitable due to the power requirement. Compressed air energy storage has a lower efficiency than the required one. Thermal energy storage, based on molten salts, so more energy can be stored with a better efficiency, and water pumping are shown as the main solutions, based on existing technology. However, those are not the only solutions capable of solving our challenge. Hydrogen production, using water electrolysis, hydrogen storage and combustion in a combined cycle can achieve our energy and power requirements with an acceptable efficiency. All these solutions are studied in detail and described, evaluating their current cost and efficiency in order to compare them all. (author)

  11. A systems evaluation model for selecting spent nuclear fuel storage concepts

    International Nuclear Information System (INIS)

    Postula, F.D.; Finch, W.C.; Morissette, R.P.

    1982-01-01

    This paper describes a system evaluation approach used to identify and evaluate monitored, retrievable fuel storage concepts that fulfill ten key criteria for meeting the functional requirements and system objectives of the National Nuclear Waste Management Program. The selection criteria include health and safety, schedules, costs, socio-economic factors and environmental factors. The methodology used to establish the selection criteria, develop a weight of importance for each criterion and assess the relative merit of each storage system is discussed. The impact of cost relative to technical criteria is examined along with experience in obtaining relative merit data and its application in the model. Topics considered include spent fuel storage requirements, functional requirements, preliminary screening, and Monitored Retrievable Storage (MRS) system evaluation. It is concluded that the proposed system evaluation model is universally applicable when many concepts in various stages of design and cost development need to be evaluated

  12. Laser thermal effect on silicon nitride ceramic based on thermo-chemical reaction with temperature-dependent thermo-physical parameters

    International Nuclear Information System (INIS)

    Pan, A.F.; Wang, W.J.; Mei, X.S.; Wang, K.D.; Zhao, W.Q.; Li, T.Q.

    2016-01-01

    Highlights: • A two-dimensional thermo-chemical reaction model is creatively built. • Thermal conductivity and heat capacity of β-Si_3N_4 are computed accurately. • The appropriate thermo-chemical reaction rate is fitted and reaction element length is set to assure the constringency. • The deepest ablated position was not the center of the ablated area due to plasma absorption. • The simulation results demonstrate the thermo-chemical process cant be simplified to be physical phase transition. - Abstract: In this study, a two-dimensional thermo-chemical reaction model with temperature-dependent thermo-physical parameters on Si_3N_4 with 10 ns laser was developed to investigate the ablated size, volume and surface morphology after single pulse. For model parameters, thermal conductivity and heat capacity of β-Si_3N_4 were obtained from first-principles calculations. Thermal-chemical reaction rate was fitted by collision theory, and then, reaction element length was deduced using the relationship between reaction rate and temperature distribution. Furthermore, plasma absorption related to energy loss was approximated as a function of electron concentration in Si_3N_4. It turned out that theoretical ablated volume and radius increased and then remained constant with increasing laser energy, and the maximum ablated depth was not in the center of the ablated zone. Moreover, the surface maximum temperature of Si_3N_4 was verified to be above 3000 K within pulse duration, and it was much higher than its thermal decomposition temperature of 1800 K, which indicated that Si_3N_4 was not ablated directly above the thermal decomposition temperature. Meanwhile, the single pulse ablation of Si_3N_4 was performed at different powers using a TEM_0_0 10 ns pulse Nd:YAG laser to validate the model. The model showed a satisfactory consistence between the experimental data and numerical predictions, presenting a new modeling technology that may significantly increase the

  13. Thermochemical data acquisition - Reactor safety programme 1988-1991

    International Nuclear Information System (INIS)

    Ball, R.G.J.; Rand, M.H.; Cordfunke, E.H.P.; Konings, R.J.M.

    1991-10-01

    Thermochemical data are required for specific fission product and reactor materials compounds in order to quantify the consequences of a severe accident within a light water reactor. Approximately 40 important compounds/systems have been identified for study for which thermodynamic data did not exist or were inadequate. Work is described on the analysis of approximately half of these systems. Experimental studies have been undertaken to determine the thermodynamic quantities of the following compounds : Cs 2 MoO 4 , CsBO 2 , Cs 2 RuO 4 , Cs 2 RuO 4 , Cs 2 Mno 4 , Cs 2 CrO 4 , Cs 2 TeO 3 ,Cs 2 Te, InI, InI 3 , In 2 I 6 , In 2 Te, Cd(OH) 2 , Cd(OH) 2 , TeO(OH) 2 ,CdI 2 , Cd 2 I 4 , Cs 2 CdI 4 , CsCdI 3 , Cs 2 CdI 4 , Cs 3 PO 4 and Cd-In-Ag. Critical assessments have been made on the following systems : In-I, In-Te, Cd-I, Sr-B-O and Ba-B-O. The thermodynamic quantities of these compounds have been calculated over the temperature range from 298 to 3000 K. The adoption of these data within appropriate modelling codes will allow the fission product species and transport to be predicted with greater confidence, thus providing more accurate assessments of the consequences of severe reactor accidents

  14. Benchmarking the DFT+U method for thermochemical calculations of uranium molecular compounds and solids.

    Science.gov (United States)

    Beridze, George; Kowalski, Piotr M

    2014-12-18

    Ability to perform a feasible and reliable computation of thermochemical properties of chemically complex actinide-bearing materials would be of great importance for nuclear engineering. Unfortunately, density functional theory (DFT), which on many instances is the only affordable ab initio method, often fails for actinides. Among various shortcomings, it leads to the wrong estimate of enthalpies of reactions between actinide-bearing compounds, putting the applicability of the DFT approach to the modeling of thermochemical properties of actinide-bearing materials into question. Here we test the performance of DFT+U method--a computationally affordable extension of DFT that explicitly accounts for the correlations between f-electrons - for prediction of the thermochemical properties of simple uranium-bearing molecular compounds and solids. We demonstrate that the DFT+U approach significantly improves the description of reaction enthalpies for the uranium-bearing gas-phase molecular compounds and solids and the deviations from the experimental values are comparable to those obtained with much more computationally demanding methods. Good results are obtained with the Hubbard U parameter values derived using the linear response method of Cococcioni and de Gironcoli. We found that the value of Coulomb on-site repulsion, represented by the Hubbard U parameter, strongly depends on the oxidation state of uranium atom. Last, but not least, we demonstrate that the thermochemistry data can be successfully used to estimate the value of the Hubbard U parameter needed for DFT+U calculations.

  15. Redundancy Maintenance and Garbage Collection Strategies in Peer-to-Peer Storage Systems

    Science.gov (United States)

    Liu, Xin; Datta, Anwitaman

    Maintaining redundancy in P2P storage systems is essential for reliability guarantees. Numerous P2P storage system maintenance algorithms have been proposed in the last years, each supposedly improving upon the previous approaches. We perform a systematic comparative study of the various strategies taking also into account the influence of different garbage collection mechanisms, an issue not studied so far. Our experiments show that while some strategies generally perform better than some others, there is no universally best strategy, and their relative superiority depends on various other design choices as well as the specific evaluation criterion. Our results can be used by P2P storage systems designers to make prudent design decisions, and our exploration of the various evaluation metrics also provides a more comprehensive framework to compare algorithms for P2P storage systems. While there are numerous network simulators specifically developed even to simulate peer-to-peer networks, there existed no P2P storage simulators - a byproduct of this work is a generic modular P2P storage system simulator which we provide as open-source. Different redundancy, maintenance, placement, garbage-collection policies, churn scenarios can be easily integrated to the simulator to try out new schemes in future, and provides a common framework to compare (future) p2p storage systems designs - something which has not been possible so far.

  16. A gas dynamic and thermochemical model of steam/sodium microleak phenomena

    International Nuclear Information System (INIS)

    Perkins, R.; Airey, R.; Daniels, L.C.

    1985-06-01

    Conflicting findings have been reported by 3 UK laboratories for the blockage or rapid escalation of steam/sodium microleaks. In an earlier paper it was shown that this discrepancy could be resolved through the influence on the steam flow of the geometry of the leak paths; the geometry being dependent upon the method of manufacture. The application of gas dynamics and thermochemical methods could account for the rapid escalation of some leaks in terms of the presence of shock waves in the gas flow within the leak path. In this paper the gas dynamic and thermochemical theories are re-stated and a series of leak experiments conducted to test the validity of the theory is described. The theory predicts that for some leaks of variable area of cross-section the blockage/escalation behaviour is determined by small changes in the sodium-side pressure; this effect was found and is discussed as a validation of the theory. Other aspects of leak phenomena are discussed and conclusions are drawn with emphasis on implications for further programmes of leak study and for leaks in LMFBR steam generators in service. (author)

  17. Thermochemical water-splitting cycle, bench-scale investigations and process engineering. Annual report, October 1, 1978-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Caprioglio, G.; McCorkle, K.H.; Besenbruch, G.E.; Rode, J.S.

    1980-03-01

    A program to investigate thermochemical water splitting has been under way at General Atomic Company (GA) since October 1972. This document is an annual progress report of Department of Energy (DOE) sponsored process development work on the GA sulfur-iodine thermochemical water splitting cycle. The work consisted of laboratory bench-scale investigations, demonstration of the process in a closed-loop cycle demonstrator, and process engineering design studies. A bench-scale system, consisting of three subunits, has been designed to study the cycle under continuous flow conditions. The designs of subunit I, which models the main solution reaction and product separation, and subunit II, which models the concentration and decomposition of sulfuric acid, were presented in an earlier annual report. The design of subunit III, which models the purification and decomposition of hydrogen iodide, is given in this report. Progress on the installation and operation of subunits I and II is described. A closed-loop cycle demonstrator was installed and operated based on a DOE request. Operation of the GA sulfur-iodine cycle was demonstrated in this system under recycle conditions. The process engineering addresses the flowsheet design of a large-scale production process consisting of four chemical sections (I through IV) and one helium heat supply section (V). The completed designs for sections I through V are presented. The thermal efficiency of the process calculated from the present flowsheet is 47%.

  18. Impact of Screening on Behavior During Storage and Cost of Ground Small-Diameter Pine Trees: A Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Erin Searcy; Brad D Blackwelder; Mark E Delwiche; Allison E Ray; Kevin L Kenney

    2011-10-01

    Whole comminuted trees are known to self-heat and undergo quality changes during storage. Trommel screening after grinding is a process that removes fines from the screened material and removes a large proportion of high-ash, high-nutrient material. In this study, the trade-off between an increase in preprocessing cost from trommel screening and an increase in quality of the screened material was examined. Fresh lodgepole pine (Pinus contorta) was comminuted using a drum grinder with a 10-cm screen, and the resulting material was distributed into separate fines and overs piles. A third pile of unscreened material, the unsorted pile, was also examined. The three piles exhibited different characteristics during a 6-week storage period. The overs pile was much slower to heat. The overs pile reached a maximum temperature of 56.88 degrees C, which was lower than the maximum reached by the other two piles (65.98 degrees C and 63.48 degrees C for the unsorted and fines, respectively). The overs also cooled faster and dried to a more uniform moisture content and had a lower ash content than the other two piles. Both piles of sorted material exhibited improved airflow and more drying than the unsorted material. Looking at supply system costs from preprocessing through in-feed into thermochemical conversion, this study found that trommel screening reduced system costs by over $3.50 per dry matter ton and stabilized material during storage.

  19. Optimizing Storage and Renewable Energy Systems with REopt

    Energy Technology Data Exchange (ETDEWEB)

    Elgqvist, Emma M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Anderson, Katherine H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); DiOrio, Nicholas A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Laws, Nicholas D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Olis, Daniel R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Walker, H. A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-12-27

    Under the right conditions, behind the meter (BTM) storage combined with renewable energy (RE) technologies can provide both cost savings and resiliency. Storage economics depend not only on technology costs and avoided utility rates, but also on how the technology is operated. REopt, a model developed at NREL, can be used to determine the optimal size and dispatch strategy for BTM or off-grid applications. This poster gives an overview of three applications of REopt: Optimizing BTM Storage and RE to Extend Probability of Surviving Outage, Optimizing Off-Grid Energy System Operation, and Optimizing Residential BTM Solar 'Plus'.

  20. Computer system for environmental sample analysis and data storage and analysis

    International Nuclear Information System (INIS)

    Brauer, F.P.; Fager, J.E.

    1976-01-01

    A mini-computer based environmental sample analysis and data storage system has been developed. The system is used for analytical data acquisition, computation, storage of analytical results, and tabulation of selected or derived results for data analysis, interpretation and reporting. This paper discussed the structure, performance and applications of the system