WorldWideScience

Sample records for thermionic conversion technology

  1. MATERIALS REQUIREMENTS FOR THERMIONIC ENERGY CONVERSION

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R. C.; Skeen, C. H.

    1963-03-15

    The fundamentals of the thermionic energy conversion and its potential applications are reviewed. Materials problems associated with thermionic emitters are considered in relation to the following: work function; emissivity; vaporization; thermal, mechanical, and electrical properties; chemical stability; permeation; and stability under nuclear radiation. Cesium purity and materials suitable for collectors, electrical leads, support structures, insulators, and seals are also discussed. Experimental work on problems involved is reviewed. It is concluded that significant developments have occurred recently in all areas of thermionic energy conversion. (40 references) (A.G.W.)

  2. Oscillating thermionic conversion for high-density space power

    International Nuclear Information System (INIS)

    Jacobson, D.L.; Morris, J.F.

    1988-01-01

    The compactness, maneuverability, and productive weight utilization of space nuclear reactors benefit from the use of thermionic converters at high temperature. Nuclear-thermionic-conversion power requirements are discussed, and the role of oscillations in thermionic energy conversion (TEC) history is examined. Proposed TEC oscillations are addressed, and the results of recent studies of TEC oscillations are reviewed. The possible use of high-frequency TEC oscillations to amplify low-frequency ones is considered. The accomplishments of various programs studying the use of high-temperature thermionic oscillators are examined. 16 references

  3. NASA thermionic-conversion program

    International Nuclear Information System (INIS)

    Morris, J.F.

    1977-01-01

    NASA's program for applied research and technology (ART) in thermionic energy conversion (TEC) has made worthwhile contributions in a relatively short time: Many of these accomplishments are incremental, yet important. And their integration has yielded gains in performance as well as in the knowledge necessary to point productive directions for future work. Both promise and problems derive from the degrees of freedom allowed by the current programmatic emphasis on out-of-core thermionics. Materials and designs previously prohibited by in-core nucleonics and geometries now offer new potentialities. But as a result a major TEC-ART responsibility is the efficient reduction of the glitter of diverse possibilities to the hard glint of reality. As always high-temperature material effects are crucial to the level and duration of TEC performance: New electrodes must increase and maintain power output regardless of emitter-vapor deposition on collectors. They must also serve compatibly with hot-shell alloys. And while space TEC must face high-temperature vaporization problems externally as well as internally, terrestrial TEC must tolerate hot corrosive atmospheres outside and near-vacuum inside. Furthermore, some modes for decreasing interelectrode losses appear to require rather demanding converter geometries to produce practical power densities. In these areas and others significant progress is being made in the NASA TEC-ART Program

  4. NUCLEAR THERMIONIC SPACE POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Howard, R. C.; Rasor, N. S.

    1963-03-15

    The various concepts for utilizing thermionic conversion in space reactor power plants are described and evaluated. The problems (and progress toward their solution) of the in-core concept, particularly, are considered. Progress in thermionic conversion technology is then reviewed from both the hardware and research points of view. Anticipated progress in thermionic conversion and the possible consequences for the performance of electrical propulsion systems are summarized. 46 references. (D.C.W.)

  5. Near-field enhanced thermionic energy conversion for renewable energy recycling

    Science.gov (United States)

    Ghashami, Mohammad; Cho, Sung Kwon; Park, Keunhan

    2017-09-01

    This article proposes a new energy harvesting concept that greatly enhances thermionic power generation with high efficiency by exploiting the near-field enhancement of thermal radiation. The proposed near-field enhanced thermionic energy conversion (NETEC) system is uniquely configured with a low-bandgap semiconductor cathode separated from a thermal emitter with a subwavelength gap distance, such that a significant amount of electrons can be photoexcited by near-field thermal radiation to contribute to the enhancement of thermionic current density. We theoretically demonstrate that the NETEC system can generate electric power at a significantly lower temperature than the standard thermionic generator, and the energy conversion efficiency can exceed 40%. The obtained results reveal that near-field photoexcitation can enhance the thermionic power output by more than 10 times, making this hybrid system attractive for renewable energy recycling.

  6. Thermionic conversion reactor technology assessment. Final report

    International Nuclear Information System (INIS)

    1984-02-01

    The in-core thermionic space nuclear power supply may be the only identified reactor-power concept that can meet the SP-100 size functional requirements with demonstrated state-of-the-art reactor system and space-qualified power system component temperatures. The SP-100 configuration limits provide a net 40 m 2 of primary non-deployed radiator area. If a reasonable 7-year degradation allowance of 15% to 20% is provided then the beginning of life (BOL) net power output requirement is about 120 kWe. Consequently, the SP-100 power system must produce a P/A of 2.7 kWe/m 2 . This non-deployed radiator area power density performance can only be reasonably achieved by the thermionic in-core convertr system, the potassium Rankine turbine system and the Stirling engine system. The purpose of this study is to examine past and current tests and data, and to assess the potential for successful development of suitable fueled-thermionic converters that will meet SP-100 and growth requirements. The basis for the assessment will be provided and the recommended key developments plan set forth

  7. Solar electron source and thermionic solar cell

    Directory of Open Access Journals (Sweden)

    Parham Yaghoobi

    2012-12-01

    Full Text Available Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed “Heat Trap” effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

  8. Thermionic and Photo-excited Electron Emission for Energy Conversion Processes

    Directory of Open Access Journals (Sweden)

    Patrick T. McCarthy

    2014-12-01

    Full Text Available This article describes advances in thermionic and photoemission materials and applications dating back to the work on thermionic emission by Guthrie in 1873 and the photoelectric effect by Hertz in 1887. Thermionic emission has been employed for electron beam generation from Edison’s work with the light bulb to modern day technologies such as scanning and transmission electron microscopy. The photoelectric effect has been utilized in common devices such as cameras and photocopiers while photovoltaic cells continue to be widely successful and further researched. Limitations in device efficiency and materials have thus far restricted large-scale energy generation sources based on thermionic and photoemission. However, recent advances in the fabrication of nanoscale emitters suggest promising routes for improving both thermionic and photo-enhanced electron emission along with newly developed research concepts, e.g., photonically enhanced thermionic emission. However, the abundance of new emitter materials and reduced dimensions of some nanoscale emitters increases the complexity of electron emission theory and engender new questions related to the dimensionality of the emitter. This work presents derivations of basic two and three-dimensional thermionic and photoemission theory along with comparisons to experimentally acquired data. The resulting theory can be applied to many different material types regardless of composition, bulk and surface structure.

  9. Thermionic and Photo-Excited Electron Emission for Energy-Conversion Processes

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Patrick T. [Birck Nanotechnology Center, School of Mechanical Engineering, Purdue University, West Lafayette, IN (United States); Reifenberger, Ronald G. [Birck Nanotechnology Center, School of Physics, Purdue University, West Lafayette, IN (United States); Fisher, Timothy S., E-mail: tsfisher@purdue.edu [Birck Nanotechnology Center, School of Mechanical Engineering, Purdue University, West Lafayette, IN (United States)

    2014-12-09

    This article describes advances in thermionic and photo-emission materials and applications dating back to the work on thermionic emission by Guthrie (1873) and the photoelectric effect by Hertz (1893). Thermionic emission has been employed for electron beam generation from Edison’s work with the light bulb to modern day technologies such as scanning and transmission electron microscopy. The photoelectric effect has been utilized in common devices such as cameras and photocopiers while photovoltaic cells continue to be widely successful and further researched. Limitations in device efficiency and materials have thus far restricted large-scale energy generation sources based on thermionic and photoemission. However, recent advances in the fabrication of nanoscale emitters suggest promising routes for improving both thermionic and photo-enhanced electron emission along with newly developed research concepts, e.g., photonically enhanced thermionic emission. However, the abundance of new emitter materials and reduced dimensions of some nanoscale emitters increases the complexity of electron-emission theory and engender new questions related to the dimensionality of the emitter. This work presents derivations of basic two and three-dimensional thermionic and photo-emission theory along with comparisons to experimentally acquired data. The resulting theory can be applied to many different material types regardless of composition, bulk, and surface structure.

  10. DOD's advanced thermionics program an overview

    International Nuclear Information System (INIS)

    Drake, T.R.

    1998-01-01

    The Defense Special Weapons Agency (DSWA) manages a congressionally mandated program in advanced thermionics research. Guided by congressional language to advance the state-of-the-art in the US and support the Integrated Solar Upper Stage (ISUS) program, DSWA efforts concentrate on four areas: an electrically testable design of a high-performance, in-core thermionic fuel element (TFE), the ISUS program, a microminiature thermionic converter and several modeling efforts. The DSWA domestic program is augmented by several small contracts with Russian institutes, awarded under the former TOPAZ International Program that the Ballistic Missile Defense Organization transferred to DSWA. The design effort at General Atomics will result in an electrically testable, multi-cell TFE for in-core conversion, involving system design and advanced collector and emitter technologies. For the ISUS program, DSWA funded a portion of the engine ground demonstration, including development of the power management system and the planar diodes. Current efforts supporting ISUS include continued diode testing and developing an advanced planar diode. The MTC program seeks to design a mass producable, close-spaced thermionic converter using integrated circuit technologies. Modeling and analysis at DSWA involves development of the Reactor System Mass with Thermionics estimation model (RSMASS-T), developing a new thermionic theory, and reviewing applications for the MTC technology. The Russian deliverables include several reports and associated hardware that describe many of its state-of-the-art thermionic technologies and processes

  11. Thermionic integrated circuit technology for high power space applications

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1984-01-01

    Thermionic triode and integrated circuit technology is in its infancy and it is emerging. The Thermionic triode can operate at relatively high voltages (up to 2000V) and at least tens of amperes. These devices, including their use in integrated circuitry, operate at high temperatures (800 0 C) and are very tolerant to nuclear and other radiations. These properties can be very useful in large space power applications such as that represented by the SP-100 system which uses a nuclear reactor. This paper presents an assessment of the application of thermionic integrated circuitry with space nuclear power system technology. A comparison is made with conventional semiconductor circuitry considering a dissipative shunt regulator for SP-100 type nuclear power system rated at 100 kW. The particular advantages of thermionic circuitry are significant reductions in size and mass of heat dissipation and radiation shield subsystems

  12. Advances in Thermionic Energy Conversion through Single-Crystal n-Type Diamond

    Directory of Open Access Journals (Sweden)

    Franz A. M. Koeck

    2017-12-01

    Full Text Available Thermionic energy conversion, a process that allows direct transformation of thermal to electrical energy, presents a means of efficient electrical power generation as the hot and cold side of the corresponding heat engine are separated by a vacuum gap. Conversion efficiencies approaching those of the Carnot cycle are possible if material parameters of the active elements at the converter, i.e., electron emitter or cathode and collector or anode, are optimized for operation in the desired temperature range. These parameters can be defined through the law of Richardson–Dushman that quantifies the ability of a material to release an electron current at a certain temperature as a function of the emission barrier or work function and the emission or Richardson constant. Engineering materials to defined parameter values presents the key challenge in constructing practical thermionic converters. The elevated temperature regime of operation presents a constraint that eliminates most semiconductors and identifies diamond, a wide band-gap semiconductor, as a suitable thermionic material through its unique material properties. For its surface, a configuration can be established, the negative electron affinity, that shifts the vacuum level below the conduction band minimum eliminating the surface barrier for electron emission. In addition, its ability to accept impurities as donor states allows materials engineering to control the work function and the emission constant. Single-crystal diamond electrodes with nitrogen levels at 1.7 eV and phosphorus levels at 0.6 eV were prepared by plasma-enhanced chemical vapor deposition where the work function was controlled from 2.88 to 0.67 eV, one of the lowest thermionic work functions reported. This work function range was achieved through control of the doping concentration where a relation to the amount of band bending emerged. Upward band bending that contributed to the work function was attributed to

  13. System modeling for the advanced thermionic initiative single cell thermionic space nuclear reactor

    International Nuclear Information System (INIS)

    Lee, H.H.; Lewis, B.R.; Klein, A.C.; Pawlowski, R.A.

    1993-01-01

    Incore thermionic space reactor design concepts which operate in a nominal power output range of 20 to 40 kWe are described. Details of the neutronics, thermionic, shielding, and heat rejection performance are presented. Two different designs, ATI-Driven and ATI-Driverless, are considered. Comparison of the core overall performance of these two configurations are described. The comparison of these two cores includes the overall conversion efficiency, reactor mass, shield mass, and heat rejection mass. An overall system design has been developed to model the advanced incore thermionic energy conversion based nuclear reactor systems for space applications in this power range

  14. Thermionic photovoltaic energy converter

    Science.gov (United States)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  15. Solid-State Thermionic Nuclear Power for Megawatt Propulsion, Planetary Surface and Commercial Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermionic (TI) power conversion is a promising technology first investigated for power conversion in the 1960’s, and of renewed interest due to modern...

  16. A program-management plan with critical-path definition for Combustion Augmentation with Thermionic Energy Conversion (CATEC)

    Science.gov (United States)

    Morris, J. F.; Merrill, O. S.; Reddy, H. K.

    1981-01-01

    Thermionic energy conversion (TEC) is discussed. In recent TEC-topping analyses, overall plant efficiency (OPE) and cost of electricity (COE) improved slightly with current capabilities and substantially with fully matured technologies. Enhanced credibility derives from proven hot-corrosion protection for TEC by silicon-carbide clads in fossil fuel combustion products. Combustion augmentation with TEC (CATEC) affords minimal cost and plant perturbation, but with smaller OPE and COE improvements than more conventional topping applications. Risk minimization as well as comparative simplicity and convenience, favor CATEC for early market penetration. A program-management plan is proposed. Inputs, characteristics, outputs and capabilities are discussed.

  17. A program-management plan with critical-path definition for Combustion Augmentation with Thermionic Energy Conversion (CATEC)

    Science.gov (United States)

    Morris, J. F.; Merrill, O. S.; Reddy, H. K.

    Thermionic energy conversion (TEC) is discussed. In recent TEC-topping analyses, overall plant efficiency (OPE) and cost of electricity (COE) improved slightly with current capabilities and substantially with fully matured technologies. Enhanced credibility derives from proven hot-corrosion protection for TEC by silicon-carbide clads in fossil fuel combustion products. Combustion augmentation with TEC (CATEC) affords minimal cost and plant perturbation, but with smaller OPE and COE improvements than more conventional topping applications. Risk minimization as well as comparative simplicity and convenience, favor CATEC for early market penetration. A program-management plan is proposed. Inputs, characteristics, outputs and capabilities are discussed.

  18. The advanced thermionics initiative...program update

    International Nuclear Information System (INIS)

    Lamp, T.R.; Donovan, B.D.

    1993-01-01

    The United States Air Force has had a long standing interest in thermionic space power dating back to the early 1960s when a heat pipe cooled thermionic converter was demonstrated through work at the predecessor to Wright Laboratory (WL). With the exception of the short hiatus in the mid-70s, Air Force thermionics work at Wright Laboratory has continued to the present time with thermionic technology programs including the burst power thermionic phase change concepts, heat pipe cooled planar diodes, and advanced in-core concept developments such as composite materials, insulators and oxygenation. The Advanced Thermionics Initiative (ATI) program was organized to integrate thermionic technology advances into a converter suitable for in-core reactor applications in the 10 to 40 kWe power range. As an advanced thermionics technology program, the charter and philosophy of the ATI program is to provide the needed advanced converter concepts in support of national thermionic space power programs

  19. Theoretical studies of thermionic conversion of solar energy with graphene as emitter and collector

    Science.gov (United States)

    Olawole, Olukunle C.; De, Dilip Kumar

    2018-01-01

    Thermionic energy conversion (TEC) using nanomaterials is an emerging field of research. It is known that graphene can withstand temperatures as high as 4600 K in vacuum, and it has been shown that its work function can be engineered from a high value (for monolayer/bilayer) of 4.6 eV to as low as 0.7 eV. Such attractive electronic properties (e.g., good electrical conductivity and high dielectric constant) make engineered graphene a good candidate as an emitter and collector in a thermionic energy converter for harnessing solar energy efficiently. We have used a modified Richardson-Dushman equation and have adopted a model where the collector temperature could be controlled through heat extraction in a calculated amount and a magnet can be attached on the back surface of the collector for future control of the space-charge effect. Our work shows that the efficiency of solar energy conversion also depends on power density falling on the emitter surface, and that a power conversion efficiency of graphene-based solar TEC as high as 55% can be easily achieved (in the absence of the space-charge effect) through proper choice of work functions, collector temperature, and emissivity of emitter surfaces. Such solar energy conversion would reduce our dependence on silicon solar panels and offers great potential for future renewable energy utilization.

  20. Mechanism of explosive emission excitation in thermionic energy conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Bulyga, A.V.

    1983-01-01

    A study has been made of the mechanism of explosive electron emission in vacuum thermionic converters induced by thermionic currents in the case of the anomalous Richardson effect. The latter is associated with a spotted emitting surface and temperature fluctuations. In order to account for one of the components of the electrode potential difference, it is proposed that allowance be made for the difference between the polarization signal velocity in a dense metal electron gas and that in the electron-ion gas of the electrode gap. Ways to achieve explosive emission in real thermionic converters are discussed.

  1. SP-100 thermionic technology program annual integrated technical progress report for the period ending September 30, 1984

    International Nuclear Information System (INIS)

    Holland, J.W.

    1984-11-01

    The thermionic technology program addresses the feasibility issues of a seven-year-life thermionic fuel element (TFE) for the SP-100 Thermionic Reactor Space Power System. These issues relate to the extension of TFE lifetime from three to seven years, one of the SP-100 requirements. The technology to support three-year lifetimes was demonstrated in the earlier TFE development program conducted in the late-1960s and 1970s. Primary life-limiting factors were recognized to be thermionic emitter dimensional increases due to swelling of the nuclear fuel and electrical structural damage from fast neutrons. The 1984-85 technology program is investigating the fueled emitter and insulator lifetime issues, both experimentally and analytically. The goal is to analytically project the lifetime of the fueled emitter and insulator and to experimentally verify these projection methods. In 1984, the efforts were largely devoted to the design and building of fueled emitters for irradiation in 1985, validation of fuel-emitter models, development of irradiation-resistant metal-ceramic seal and sheath insulator, modeling of insulator lifetime, and development of wide-spread, high-performance thermionic converters

  2. Fracture-resistant ultralloys for space-power systems: nuclear-thermionic-conversion implications of W,27Re

    International Nuclear Information System (INIS)

    Moraga, N.O.; Jacobsen, D.L.; Morris, J.F.

    1989-01-01

    Rhenium (Re) added to tungsten (W) improves the creep strength, recrystallization resistance and ductility. W,27Re is a good workable ultra alloy for use in space nuclear reactor (SNR) systems and perhaps its most practical processing procedure is sintering. A promising SNR application for such ultralloys is very-high-temperature thermionic energy conversion. Therefore determinations of thermionic and thermal emissive characteristics for sintered W,27Re at temperatures near and above 2000 K in hard vacuum enable both scientific and pragmatic progress. Such research results comprise the data and interpretive presentations in this paper. These findings emphasize the fallacy of characterizing ultralloys similar to W,27Re with single-valued thermophysicochemical properties - such as the work function. They further stress the necessity for investigations of this type to determine and demonstrate effective prototypic ultralloy compositions and processing methods. (author)

  3. Beta Radiation Enhanced Thermionic Emission from Diamond Thin Films

    Directory of Open Access Journals (Sweden)

    Alex Croot

    2017-11-01

    Full Text Available Diamond-based thermionic emission devices could provide a means to produce clean and renewable energy through direct heat-to-electrical energy conversion. Hindering progress of the technology are the thermionic output current and threshold temperature of the emitter cathode. In this report, we study the effects on thermionic emission caused by in situ exposure of the diamond cathode to beta radiation. Nitrogen-doped diamond thin films were grown by microwave plasma chemical vapor deposition on molybdenum substrates. The hydrogen-terminated nanocrystalline diamond was studied using a vacuum diode setup with a 63Ni beta radiation source-embedded anode, which produced a 2.7-fold increase in emission current compared to a 59Ni-embedded control. The emission threshold temperature was also examined to further assess the enhancement of thermionic emission, with 63Ni lowering the threshold temperature by an average of 58 ± 11 °C compared to the 59Ni control. Various mechanisms for the enhancement are discussed, with a satisfactory explanation remaining elusive. Nevertheless, one possibility is discussed involving excitation of preexisting conduction band electrons that may skew their energy distribution toward higher energies.

  4. Thermionic nuclear reactor systems

    International Nuclear Information System (INIS)

    Kennel, E.B.

    1986-01-01

    Thermionic nuclear reactors can be expected to be candidate space power supplies for power demands ranging from about ten kilowatts to several megawatts. The conventional ''ignited mode'' thermionic fuel element (TFE) is the basis for most reactor designs to date. Laboratory converters have been built and tested with efficiencies in the range of 7-12% for over 10,000 hours. Even longer lifetimes are projected. More advanced capabilities are potentially achievable in other modes of operation, such as the self-pulsed or unignited diode. Coupled with modest improvements in fuel and emitter material performance, the efficiency of an advanced thermionic conversion system can be extended to the 15-20% range. Advanced thermionic power systems are expected to be compatible with other advanced features such as: (1) Intrinsic subcritically under accident conditions, ensuring 100% safety upon launch abort; (2) Intrinsic low radiation levels during reactor shutdown, allowing manned servicing and/or rendezvous; (3) DC to DC power conditioning using lightweight power MOSFETS; and (4) AC output using pulsed converters

  5. The mechanism of explosive emission excitation in thermionic energy conversion processes

    Science.gov (United States)

    Bulyga, A. V.

    A study has been made of the mechanism of explosive electron emission in vacuum thermionic converters induced by thermionic currents in the case of the anomalous Richardson effect. The latter is associated with a spotted emitting surface and temperature fluctuations. In order to account for one of the components of the electrode potential difference, it is proposed that allowance be made for the difference between the polarization signal velocity in a dense metal electron gas and that in the electron-ion gas of the electrode gap. Ways to achieve explosive emission in real thermionic converters are discussed.

  6. Thermionic emission from monolayer graphene, sheath formation and its feasibility towards thermionic converters

    Science.gov (United States)

    Misra, Shikha; Upadhyay Kahaly, M.; Mishra, S. K.

    2017-02-01

    A formalism describing the thermionic emission from a single layer graphene sheet operating at a finite temperature and the consequent formation of the thermionic sheath in its proximity has been established. The formulation takes account of two dimensional densities of state configuration, Fermi-Dirac (f-d) statistics of the electron energy distribution, Fowler's treatment of electron emission, and Poisson's equation. The thermionic current estimates based on the present analysis is found to be in reasonably good agreement with experimental observations (Zhu et al., Nano Res. 07, 1 (2014)). The analysis has further been simplified for the case where f-d statistics of an electron energy distribution converges to Maxwellian distribution. By using this formulation, the steady state sheath features, viz., spatial dependence of the surface potential and electron density structure in the thermionic sheath are derived and illustrated graphically for graphene parameters; the electron density in the sheath is seen to diminish within ˜10 s of Debye lengths. By utilizing the graphene based cathode in configuring a thermionic converter (TC), an appropriate operating regime in achieving the efficient energy conversion has been identified. A TC configured with the graphene based cathode (operating at ˜1200 K/work function 4.74 V) along with the metallic anode (operating at ˜400 K/ work function 2.0 V) is predicted to display ˜56% of the input thermal flux into the electrical energy, which infers approximately ˜84% of the Carnot efficiency.

  7. Development of a thermionic-reactor space-power system. Final summary report

    International Nuclear Information System (INIS)

    1973-01-01

    Initial experimental work led to the award of the first AEC thermionic contract on May 1, 1962, for the development of fission heated thermionic cells with an operating life of 10,000 hours or more. Two types of converters were fabricated: (1) electrically heated, and (2) fission heated where the fuel was either uranium carbide or uranium oxide. Competition between GGA and GE was climaxed on July 1, 1970 by the award to GGA of a contract to develop an in-core thermionic reactor. This report is divided into the following: thermionic research, materials technology, thermionic fuel element development, reactor technology, and systems technology

  8. Hybrid thermionic-photovoltaic converter

    Energy Technology Data Exchange (ETDEWEB)

    Datas, A. [Instituto de Energía Solar, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2016-04-04

    A conceptual device for the direct conversion of heat into electricity is presented. This concept hybridizes thermionic (TI) and thermophotovoltaic (TPV) energy conversion in a single thermionic-photovoltaic (TIPV) solid-state device. This device transforms into electricity both the electron and photon fluxes emitted by an incandescent surface. This letter presents an idealized analysis of this device in order to determine its theoretical potential. According to this analysis, the key advantage of this converter, with respect to either TPV or TI, is the higher power density in an extended temperature range. For low temperatures, TIPV performs like TPV due to the negligible electron flux. On the contrary, for high temperatures, TIPV performs like TI due to the great enhancement of the electron flux, which overshadows the photon flux contribution. At the intermediate temperatures, ∼1650 K in the case of this particular study, I show that the power density potential of TIPV converter is twice as great as that of TPV and TI. The greatest impact concerns applications in which the temperature varies in a relatively wide range, for which averaged power density enhancement above 500% is attainable.

  9. Thermionic energy conversion heat - electric power; Termojonisk energiomvandling vaerme-elektrisk energi

    Energy Technology Data Exchange (ETDEWEB)

    Holmlid, L; Svensson, R [Gothenburg Univ. and Chalmers Univ. of Technology (Sweden)

    1993-09-15

    Research and development related to Thermionic Energy Converters (TEC) in Holland and Sweden is directed towards terrestrial applications, while the development work in Russia and the US primarily is directed towards thermionic nuclear reactor for use in space. We have during the project continued our work on the utilization of the so called Rydberg matter in converters. Our patented construction has very good (low) values of the barrier index (figure of merit for the converter), probably the lowest ones ever measured. International patents have been applied for as well. We can summarize the achievements of the project such that solutions to practically all the problems related to the inner function of thermionic converters have been found. During this year a large number of studies have been carried out concerning the properties of the Rydberg matter in the TEC, and related to the highly excited states of Cs which exist in the TEC, partially in cooperation with an American research company. An international conference within the TEC field has been arranged in Gothenburg. Two Ph.D. theses are also under completion within the project

  10. Isotopic Thermionic Generator

    International Nuclear Information System (INIS)

    Clemot, M.; Devin, B.; Durand, J.P.

    1967-01-01

    This report describes the general design of a thermionic direct conversion space generator. The power source used is a radioisotope. Two radioisotopes are considered: Pu 238 and Cm 244. The system is made up of a heat pipe concentrating the thermal flux from the isotope to the emitter, and of a second heat pipe evacuating the waste heat from the collector to the outer wall used as radiating panel. Calculations are given in the particular case of a 100 electrical watts output power. (authors) [fr

  11. High power densities from high-temperature material interactions. [in thermionic energy conversion and metallic fluid heat pipes

    Science.gov (United States)

    Morris, J. F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.

  12. Photon enhanced thermionic emission

    Science.gov (United States)

    Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

    2014-10-07

    Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

  13. High temperature cogeneration with thermionic burners

    International Nuclear Information System (INIS)

    Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S.

    1981-01-01

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging

  14. High temperature cogeneration with thermionic burners

    Science.gov (United States)

    Fitzpatrick, G. O.; Britt, E. J.; Dick, R. S.

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging.

  15. Development of a high temperature solar receiver for high-efficient thermionic conversion systems; Fukugo netsuden henkan system yo chokoon taiyo junetsuki no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Umeoka, T; Naito, H; Yugami, H; Arashi, H [Tohoku University, Sendai (Japan). Faculty of Engineering

    1996-10-27

    For thermionic conversion systems (TIC) using concentrated sunlight as heat source, the newly developed solar receiver was tested. Concentrated sunlight aims at the inner surface of the cavity type solar receiver. The emitter of TIC installed in the rear of the solar receiver is uniformly heated over 1700K by thermal radiation from the rear of the solar receiver, emitting thermion. Electric power is generated by collecting the thermion by collector. Mo is used as emitter material, however, because of poor heat absorption of Mo, high-absorptive TiC is used for heat absorption surface to heat Mo by thermal conduction from high-temperature TiC. Functionally gradient material (FGM) with an intermediate layer of gradient TiC/Mo ratios between TiC and Mo is used as emitter material. The emitter is thus uniformly heated at high temperatures of 1723{plus_minus}12K. As a result, the developed solar receiver is applicable to heat the emitter of TIC. Heat flux measurement at the graphite cavity clarified that cavity temperature of as high as 1780K and heat flow of 50W/cm{sup 2} are obtained at 4.7kW in input. 6 figs.

  16. Thermionic integrated circuits: electronics for hostile environments

    International Nuclear Information System (INIS)

    Lynn, D.K.; McCormick, J.B.; MacRoberts, M.D.J.; Wilde, D.K.; Dooley, G.R.; Brown, D.R.

    1985-01-01

    Thermionic integrated circuits combine vacuum tube technology with integrated circuit techniques to form integrated vacuum triode circuits. These circuits are capable of extended operation in both high-temperature and high-radiation environments

  17. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...

  18. Advantages and implications of U233 fueled thermionic space power energy conversion

    International Nuclear Information System (INIS)

    Terrell, C.W.

    1992-01-01

    In this paper two recent analyses are reported which demonstrate advantages of a U233 fueled thermionic fuel element (TFE) compared to 93 w/o U235, and that application (mission) has broad latitude in how space power reactor systems could or should be optimized. A reference thermionic reactor system was selected to provide the basis for the fuel comparisons. Both oxide and metal fuel forms were compared. Of special interest was to estimate the efficiencies of the four fuel forms to produce electrical power. A figure of merit (FOM) was defined which is directly proportional to the electrical average electrical power produced is proportional to the electrical power produced per unit uranium mass. In a TFE the average electrical power produced is proportional to the emitter surface area (Esa), hence the ratio Esa/Mu was selected as the FOM. Results indicate that the choice of fuel type and form leads to wide variations in critical and system masses FOM values, and system total power

  19. Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating. [coal combustion product environments

    Science.gov (United States)

    Morris, J. F.

    1980-01-01

    Applied research-and-technology (ART) work reveals that optimal thermionic energy conversion (TEC) with approximately 1000 K to approximately 1100 K collectors is possible using well established tungsten electrodes. Such TEC with 1800 K emitters could approach 26.6% efficiency at 27.4 W/sq cm with approximately 1000 K collectors and 21.7% at 22.6 W/sq cm with approximately 1100 K collectors. These performances require 1.5 and 1.7 eV collector work functions (not the 1 eV ultimate) with nearly negligible interelectrode losses. Such collectors correspond to tungsten electrode systems in approximately 0.9 to approximately 6 torr cesium pressures with 1600 K to 1900 K emitters. Because higher heat-rejection temperatures for TEC allow greater collector work functions, interelectrode loss reduction becomes an increasingly important target for applications aimed at elevated temperatures. Studies of intragap modifications and new electrodes that will allow better electron emission and collection with lower cesium pressures are among the TEC-ART approaches to reduced interelectrode losses. These solutions will provide very effective TEC to serve directly in coal-combustion products for high-temperature topping and process heating. In turn this will help to use coal and to use it well.

  20. Photophysics of fullerenes: Thermionic emission

    International Nuclear Information System (INIS)

    Compton, R.N.; Tuinman, A.A.; Huang, J.

    1996-01-01

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C 60 excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs + is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C 60 in the energy range from 8 to 12 eV results in C 60 anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements

  1. Photophysics of fullerenes: Thermionic emission

    Energy Technology Data Exchange (ETDEWEB)

    Compton, R.N. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States); Tuinman, A.A. [Univ. of Tennessee, Knoxville, TN (United States); Huang, J. [Ames Lab., IA (United States)

    1996-09-01

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C{sub 60} excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs{sup +} is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C{sub 60} in the energy range from 8 to 12 eV results in C{sub 60} anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements.

  2. The Thermionic System Evaluation Test (TSET): Descriptions, limitations, and the involvement of the space nuclear power community

    International Nuclear Information System (INIS)

    Morris, D.B.

    1993-01-01

    Project and test planning for the Thermionic System Evaluation Test (TSET) Project began in August 1990. Since the formalization of the contract agreement two years ago, the TOPAZ-II testing hardware was delivered in May 1992. In the months since the delivery of the test hardware, Russians and Americans working side-by-side installed the equipment and are preparing to begin testing in early 1993. The procurement of the Russian TOPAZ-II unfueled thermionic space nuclear power system (SNP) provides a unique opportunity to understand a complete thermionic system and enhances the possibility for further study of this type of power conversion for space applications. This paper will describe the program and test article, facility and test article limitations, and how the government and industry are encouraged to be involved in the program

  3. Radioisotope thermionic converters for space applications

    International Nuclear Information System (INIS)

    Miskolczy, G.; Lieb, D.P.

    1990-01-01

    The recent history of radioisotope thermionics is reviewed, with emphasis on the U.S. programs, and the prospects for the future are assessed. In radioisotope thermionic converters the emitter heat is generated by the decay of a radioactive isotope. The thermionic converter emitter is mounted directly on a capsule containing the isotope. The rest of the capsule is generally insulated to reduce thermal loss. The development of isotope-fueled thermionic power systems for space application has been pursued since the late 1950's. The U.S. effort was concentrated on modular systems with alpha emitters as the isotope heat source. In the SNAP-13 program, the heat sources were Cerium isotopes and each module produced about 100 watts. The converters were planar diodes and the capsule was insulated with multi-foil insulation

  4. System modeling and reactor design studies of the Advanced Thermionic Initiative space nuclear reactor

    International Nuclear Information System (INIS)

    Lee, H.H.; Abdul-Hamid, S.; Klein, A.C.

    1996-01-01

    In-core thermionic space reactor design concepts that operate at a nominal power output range of 20 to 50 kW(electric) are described. Details of the neutronic, thermionic, thermal hydraulics, and shielding performance are presented. Because of the strong absorption of thermal neutrons by natural tungsten and the large amount of natural tungsten within the reactor core, two designs are considered. An overall system design code has been developed at Oregon State University to model advanced in-core thermionic energy conversion-based nuclear reactor systems for space applications. The results show that the driverless single-cell Advanced Thermionic Initiative (ATI) configuration, which does not have driver fuel rods, proved to be more efficient than the driven core, which has driver rods. The results also show that the inclusion of the true axial and radial power distribution decrease the overall conversion efficiency. The flattening of the radial power distribution by three different methods would lead to a higher efficiency. The results show that only one TFE works at the optimum emitter temperature; all other TFEs are off the optimum performance and result in a 40% decrease of the efficiency of the overall system. The true axial profile is significantly different as there is a considerable amount of neutron leakage out of the top and bottom of the reactor. The analysis reveals that the axial power profile actually has a chopped cosine shape. For this axial profile, the reactor core overall efficiency for the driverless ATI reactor version is found to be 5.84% with a total electrical power of 21.92 kW(electric). By considering the true axial power profile instead of the uniform power profile, each TFE loses ∼80 W(electric)

  5. Isotopic Thermionic Generator; Generateur thermoionique isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Clemot, M; Devin, B; Durand, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    This report describes the general design of a thermionic direct conversion space generator. The power source used is a radioisotope. Two radioisotopes are considered: Pu 238 and Cm 244. The system is made up of a heat pipe concentrating the thermal flux from the isotope to the emitter, and of a second heat pipe evacuating the waste heat from the collector to the outer wall used as radiating panel. Calculations are given in the particular case of a 100 electrical watts output power. (authors) [French] Ce rapport decrit la structure d'un generateur spatial d'electricite a conversion directe du type thermoionique. La source d'energie est un radioisotope. Deux isotopes sont envisages: le Pu 238 et le Cm 244. Le systeme comporte pour l'emetteur un caloduc concentreur de flux thermique et pour le collecteur, un caloduc evacuateur vers l'enveloppe du generateur utilise, en panneau rayonnant. Les calculs ont ete conduits dans le cas particulier d'une puissance convertie de 100 watts electriques. (auteurs)

  6. High-efficiency AlxGa1-xAs/GaAs cathode for photon-enhanced thermionic emission solar energy converters

    Science.gov (United States)

    Feng, Cheng; Zhang, Yijun; Qian, Yunsheng; Wang, Ziheng; Liu, Jian; Chang, Benkang; Shi, Feng; Jiao, Gangcheng

    2018-04-01

    A theoretical emission model for AlxGa1-xAs/GaAs cathode with complex structure based on photon-enhanced thermionic emission is developed by utilizing one-dimensional steady-state continuity equations. The cathode structure comprises a graded-composition AlxGa1-xAs window layer and an exponential-doping GaAs absorber layer. In the deduced model, the physical properties changing with the Al composition are taken into consideration. Simulated current-voltage characteristics are presented and some important factors affecting the conversion efficiency are also illustrated. Compared with the graded-composition and uniform-doping cathode structure, and the uniform-composition and uniform-doping cathode structure, the graded-composition and exponential-doping cathode structure can effectively improve the conversion efficiency, which is ascribed to the twofold built-in electric fields. More strikingly, this graded bandgap structure is especially suitable for photon-enhanced thermionic emission devices since a higher conversion efficiency can be achieved at a lower temperature.

  7. Thermionics basic principles of electronics

    CERN Document Server

    Jenkins, J; Ashhurst, W

    2013-01-01

    Basic Principles of Electronics, Volume I : Thermionics serves as a textbook for students in physics. It focuses on thermionic devices. The book covers topics on electron dynamics, electron emission, and the themionic vacuum diode and triode. Power amplifiers, oscillators, and electronic measuring equipment are studied as well. The text will be of great use to physics and electronics students, and inventors.

  8. Comparative assessment of out-of-core nuclear thermionic power systems

    International Nuclear Information System (INIS)

    Estabrook, W.C.; Koenig, D.R.; Prickett, W.Z.

    1975-01-01

    The hardware selections available for fabrication of a nuclear electric propulsion stage for planetary exploration were explored. The investigation was centered around a heat-pipe-cooled, fast-spectrum nuclear reactor for an out-of-core power conversion system with sufficient detail for comparison with the in-core system studies completed previously. A survey of competing power conversion systems still indicated that the modular reliability of thermionic converters makes them the desirable choice to provide the 240-kWe end-of-life power for at least 20,000 full power hours. The electrical energy will be used to operate a number of mercury ion bombardment thrusters with a specific impulse in the range of about 4,000-5,000 seconds. (Author)

  9. Thermionic detector with multiple layered ionization source

    International Nuclear Information System (INIS)

    Patterson, P. L.

    1985-01-01

    Method and apparatus for analyzing specific chemical substances in a gaseous environment comprises a thermionic source formed of multiple layers of ceramic material composition, an electrical current instrumentality for heating the thermionic source to operating temperatures in the range of 100 0 C. to 1000 0 C., an instrumentality for exposing the surface of the thermionic source to contact with the specific chemical substances for the purpose of forming gas phase ionization of the substances by a process of electrical charge emission from the surface, a collector electrode disposed adjacent to the thermiomic source, an instrumentality for biasing the thermionic source at an electrical potential which causes the gas phase ions to move toward the collector, and an instrumentality for measuring the ion current arriving at the collector. The thermionic source is constructed of a metallic heater element molded inside a sub-layer of hardened ceramic cement material impregnated with a metallic compound additive which is non-corrosive to the heater element during operation. The sub-layer is further covered by a surface-layer formed of hardened ceramic cement material impregnated with an alkali metal compound in a manner that eliminates corrosive contact of the alkali compounds with the heater element. The sub-layer further protects the heater element from contact with gas environments which may be corrosive. The specific ionization of different chemical substances is varied over a wide range by changing the composition and temperature of the thermionic source, and by changing the composition of the gas environment

  10. Thermionic nuclear reactor with internal heat distribution and multiple duct cooling

    Science.gov (United States)

    Fisher, C.R.; Perry, L.W. Jr.

    1975-11-01

    A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.

  11. Thermionic cogeneration burner design

    Science.gov (United States)

    Miskolczy, G.; Goodale, D.; Moffat, A. L.; Morgan, D. T.

    Since thermionic converters receive heat at very high temperatures (approximately 1800 K) and reject heat at moderately high temperatures (approximately 800 K), they are useful for cogeneration applications involving high temperature processes. The electric power from thermionic converters is produced as a high amperage, low-voltage direct current. An ideal cogeneration application would be to utilize the reject heat at the collector temperature and the electricity without power conditioning. A cogeneration application in the edible oil industry fulfills both of these requirements since both direct heat and hydrogen gas are required in the hydrogenation of the oils. In this application, the low-voltage direct current would be used in a hydrogen electrolyzer.

  12. Thermionic reactors for space nuclear power

    Science.gov (United States)

    Homeyer, W. G.; Merrill, M. H.; Holland, J. W.; Fisher, C. R.; Allen, D. T.

    1985-01-01

    Thermionic reactor designs for a variety of space power applications spanning the range from 5 kWe to 3 MWe are described. In all of these reactors, nuclear heat is converted directly to electrical energy in thermionic fuel elements (TFEs). A circulating reactor coolant carries heat from the core of TFEs directly to a heat rejection radiator system. The recent design of a thermionic reactor to meet the SP-100 requirements is emphasized. Design studies of reactors at other power levels show that the same TFE can be used over a broad range in power, and that design modifications can extend the range to many megawatts. The design of the SP-100 TFE is similar to that of TFEs operated successfully in test reactors, but with design improvements to extend the operating lifetime to seven years.

  13. A new concept of thermionic converter

    International Nuclear Information System (INIS)

    Musa, G.

    1978-10-01

    The parameters of a new type of thermionic converter which has a number of concentric electrodes, is computed. The obtained theoretical efficiency of this new type of converter is nearly the efficiency of the ideal thermionic converter. The obtained results are explained by the reduction of the radiation loss from the emitter due to the electrode configuration. Efficiencies as high as 20% are expected from this type of converter now in construction. (author)

  14. Thermionic phenomena the collected works of Irving Langmuir

    CERN Document Server

    Suits, C Guy

    1961-01-01

    Thermionic Phenomena is the third volume of the series entitled The Collected Works of Irving Langmuir. This volume compiles articles written during the 1920's and early 1930's, the period when the science of thermionics is beginning to be of importance. This text is divided into two parts. The first part discusses vacuum pumps, specifically examining the effect of space charge and residual gases on thermionic currents in high vacuum. This part also explains fundamental phenomena in electron tubes having tungsten cathodes and the use of high-power vacuum tubes. The second part of this text loo

  15. Work function and surface stability of tungsten-based thermionic electron emission cathodes

    Science.gov (United States)

    Jacobs, Ryan; Morgan, Dane; Booske, John

    2017-11-01

    Materials that exhibit a low work function and therefore easily emit electrons into vacuum form the basis of electronic devices used in applications ranging from satellite communications to thermionic energy conversion. W-Ba-O is the canonical materials system that functions as the thermionic electron emitter commercially used in a range of high-power electron devices. However, the work functions, surface stability, and kinetic characteristics of a polycrystalline W emitter surface are still not well understood or characterized. In this study, we examined the work function and surface stability of the eight lowest index surfaces of the W-Ba-O system using density functional theory methods. We found that under the typical thermionic cathode operating conditions of high temperature and low oxygen partial pressure, the most stable surface adsorbates are Ba-O species with compositions in the range of Ba0.125O-Ba0.25O per surface W atom, with O passivating all dangling W bonds and Ba creating work function-lowering surface dipoles. Wulff construction analysis reveals that the presence of O and Ba significantly alters the surface energetics and changes the proportions of surface facets present under equilibrium conditions. Analysis of previously published data on W sintering kinetics suggests that fine W particles in the size range of 100-500 nm may be at or near equilibrium during cathode synthesis and thus may exhibit surface orientation fractions well described by the calculated Wulff construction.

  16. HEAT Sensor: Harsh Environment Adaptable Thermionic Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Limb, Scott J. [Palo Alto Research Center, Palo Alto, CA (United States)

    2016-05-31

    This document is the final report for the “HARSH ENVIRONMENT ADAPTABLE THERMIONIC SENSOR” project under NETL’s Crosscutting contract DE-FE0013062. This report addresses sensors that can be made with thermionic thin films along with the required high temperature hermetic packaging process. These sensors can be placed in harsh high temperature environments and potentially be wireless and self-powered.

  17. Gridded thermionic gun and integral superconducting ballistic bunch compression cavity

    Energy Technology Data Exchange (ETDEWEB)

    Schultheiss, Thomas [Advanced Energy Systems, Inc., Medford, NY (United States)

    2015-11-16

    Electron-Ion colliders such as the Medium energy Electron Ion Collider (MEIC) being developed by JLAB require high current electrons with low energy spread for electron cooling of the collider ring. Accelerator techniques for improving bunch charge, average current, emittance, and energy spread are required for Energy Recovery Linacs (ERLs) and Circulator Rings (CR) for next generation colliders for nuclear physics experiments. Example candidates include thermionic-cathode electron guns with RF accelerating structures. Thermionic cathodes are known to produce high currents and have excellent lifetime. The success of the IR and THz Free-Electron Laser (FEL) designed and installed by Advanced Energy Systems at the Fritz Haber Institute (FHI) of the Max Planck Society in Berlin [1,2] demonstrates that gridded thermionic cathodes and rf systems be considered for next generation collider technology. In Phase 1 Advanced Energy Systems (AES) developed and analyzed a design concept using a superconducting cavity pair and gridded thermionic cathode. Analysis included Beam Dynamics and thermal analysis to show that a design of this type is feasible. The latest design goals for the MEIC electron cooler were for electron bunches of 420 pC at a frequency of 952.6 MHz with a magnetic field on the cathode of 2kG. This field magnetizes the beam imparting angular momentum that provides for helical motion of the electrons in the cooling solenoid. The helical motion increases the interaction time and improves the cooling efficiency. A coil positioned around the cathode providing 2kG field was developed. Beam dynamics simulations were run to develop the particle dynamics near the cathode and grid. Lloyd Young added capability to Tstep to include space charge effects between two plates and include image charge effects from the grid. He also added new pepper-pot geometry capability to account for honeycomb grids. These additions were used to develop the beam dynamics for this gun. The

  18. Negative space charge effects in photon-enhanced thermionic emission solar converters

    International Nuclear Information System (INIS)

    Segev, G.; Weisman, D.; Rosenwaks, Y.; Kribus, A.

    2015-01-01

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionic converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163

  19. A50-kW(el) solar energy thermionic power generator for spacecraft

    International Nuclear Information System (INIS)

    Sahin, S.

    1978-01-01

    The technical limits of thermionic reactors in space craft and the potentials of solar energy thermionic converters are discussed. The technical design of a solar energy thermionic generator for 50 kW(el) as a secondary energy source in unmanned space craft is presented. (GG) [de

  20. Advanced conversion technology review panel report

    International Nuclear Information System (INIS)

    Frazier, T.A.

    1998-01-01

    The Department of Energy (DOE), the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) established a DOE lead management team and an Advanced Conversion Technology Review Panel. The panel was tasked with providing the management team with an assessment and ranking of the three advanced conversion technologies. The three advanced conversion technologies were alkali metal thermal to electric converter (AMTEC), Stirling engine converter (SEC), and thermophotovoltaic (TPV). To rate and rank these three technologies, five criteria were developed: (1) Performance, (2) Development and Cost/Production and Cost/Schedule Risk, (3) Spacecraft Interface and Operations, (4) Ability to Scale Conversion, and (5) Safety. Discussed are the relative importance of each of these criteria and the rankings of the three advanced conversion technologies. It was the conclusion of the panel that the technology decision should be based on the risk that DOE and NASA are willing to accept. SEC is the most mature technology and would provide the lowest risk option. However, if more risk is acceptable, AMTEC not only provides benefits in the spacecraft interface but is also predicted to outperform the SEC. It was proposed that if AMTEC were selected, funding should be provided at a reasonable level to support back-up technology to be developed in a parallel fashion until AMTEC has proven its capability. The panel report and conclusion were provided to DOE in February 1997

  1. Thermionic system evaluated test (TSET) facility description

    Science.gov (United States)

    Fairchild, Jerry F.; Koonmen, James P.; Thome, Frank V.

    1992-01-01

    A consortium of US agencies are involved in the Thermionic System Evaluation Test (TSET) which is being supported by the Strategic Defense Initiative Organization (SDIO). The project is a ground test of an unfueled Soviet TOPAZ-II in-core thermionic space reactor powered by electrical heat. It is part of the United States' national thermionic space nuclear power program. It will be tested in Albuquerque, New Mexico at the New Mexico Engineering Research Institute complex by the Phillips Laboratoty, Sandia National Laboratories, Los Alamos National Laboratory, and the University of New Mexico. One of TSET's many objectives is to demonstrate that the US can operate and test a complete space nuclear power system, in the electrical heater configuration, at a low cost. Great efforts have been made to help reduce facility costs during the first phase of this project. These costs include structural, mechanical, and electrical modifications to the existing facility as well as the installation of additional emergency systems to mitigate the effects of utility power losses and alkali metal fires.

  2. Transient and steady-state analyses of an electrically heated Topaz-II Thermionic Fuel Element

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Xue, H.

    1992-01-01

    Transient and steady-state analyses of electrically heated, Thermionic Fuel Elements (TFEs) for Topaz-II space power system are performed. The calculated emitter and collector temperatures, load electric power and conversion efficiency are in good agreement with reported data. In this paper the effects or Cs pressure, thermal power input, and load resistance on the steady-state performance of the TFE are also investigated. In addition, the thermal response of the ZrH moderator during a startup transient and following a change in the thermal power input is examined

  3. Energy and cost saving results for advanced technology systems from the Cogeneration Technology Alternatives Study (CTAS)

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.

  4. Progress in radiation immune thermionic integrated circuits

    International Nuclear Information System (INIS)

    Lynn, D.K.; McCormick, J.B.

    1985-08-01

    This report describes the results of a program directed at evaluating the thermionic integrated circuit (TIC) technology for applicability to military systems. Previous programs under the sponsorship of the Department of Energy, Office of Basic Energy Sciences, have developed an initial TIC technology base and demonstrated operation in high-temperature and high-radiation environments. The program described in this report has two parts: (1) a technical portion in which experiments and analyses were conducted to refine perceptions of near-term as well as ultimate performance levels of the TIC technology and (2) an applications portion in which the technical conclusions were to be evaluated against potential military applications. This report draws several conclusions that strongly suggest that (1) useful radiation-hard/high-temperature operable integrated circuits can be developed using the TIC technology; (2) because of their ability to survive and operate in hostile environments, a variety of potential military applications have been projected for this technology; and (3) based on the above two conclusions, an aggressive TIC development program should be initiated to provide the designers of future systems with integrated circuits and devices with the unique features of the TICs

  5. Progress in radiation immune thermionic integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, D.K.; McCormick, J.B. (comps.)

    1985-08-01

    This report describes the results of a program directed at evaluating the thermionic integrated circuit (TIC) technology for applicability to military systems. Previous programs under the sponsorship of the Department of Energy, Office of Basic Energy Sciences, have developed an initial TIC technology base and demonstrated operation in high-temperature and high-radiation environments. The program described in this report has two parts: (1) a technical portion in which experiments and analyses were conducted to refine perceptions of near-term as well as ultimate performance levels of the TIC technology and (2) an applications portion in which the technical conclusions were to be evaluated against potential military applications. This report draws several conclusions that strongly suggest that (1) useful radiation-hard/high-temperature operable integrated circuits can be developed using the TIC technology; (2) because of their ability to survive and operate in hostile environments, a variety of potential military applications have been projected for this technology; and (3) based on the above two conclusions, an aggressive TIC development program should be initiated to provide the designers of future systems with integrated circuits and devices with the unique features of the TICs.

  6. A NEW THERMIONIC RF ELECTRON GUN FOR SYNCHROTRON LIGHT SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey; Agustsson, R.; Hartzell, J; Murokh, A.; Nassiri, A.; Savin, E.; Smirnov, A.V.; Smirnov, A. Yu; Sun, Y.; Verma, A; Waldschmidt, Geoff; Zholents, A.

    2017-06-02

    A thermionic RF gun is a compact and efficient source of electrons used in many practical applications. RadiaBeam Systems and the Advanced Photon Source at Argonne National Laboratory collaborate in developing of a reliable and robust thermionic RF gun for synchrotron light sources which would offer substantial improvements over existing thermionic RF guns and allow stable operation with up to 1A of beam peak current at a 100 Hz pulse repetition rate and a 1.5 μs RF pulse length. In this paper, we discuss the electromagnetic and engineering design of the cavity and report the progress towards high power tests of the cathode assembly of the new gun.

  7. Thermodynamics of photon-enhanced thermionic emission solar cells

    International Nuclear Information System (INIS)

    Reck, Kasper; Hansen, Ole

    2014-01-01

    Photon-enhanced thermionic emission (PETE) cells in which direct photon energy as well as thermal energy can be harvested have recently been suggested as a new candidate for high efficiency solar cells. Here, we present an analytic thermodynamical model for evaluation of the efficiency of PETE solar cells including an analysis of the entropy production due to thermionic emission of general validity. The model is applied to find the maximum efficiency of a PETE cell for given cathode and anode work functions and temperatures

  8. The direct conversion of heat into electricity in reactors

    International Nuclear Information System (INIS)

    Devin, B.; Bliaux, J.; Lesueur, R.

    1964-01-01

    The direct conversion of heat into electricity by thermionic emission in an atomic reactor has been studied with the triple aim of its utilisation: as an energy source for a space device, at the head of a conventional conversion system in power installations, or finally in association with the thermoelectric conversion in very low power installations. The laboratory experiments were mainly orientated towards the electron extraction of metals and compounds and their behaviour at high temperatures. Converters furnishing up to 50 amps at 0. 4 volts with an efficiency close to 10 p. 100 have been constructed in the laboratory; the emitters were heated by electron bombardment and were composed of tungsten covered with an uranium carbide deposit or molybdenum covered with cesium. The main aspects of the coupling between the converter and the reactor have been covered from the point of view of electronics: the influence of the mismatching of the load on the temperature of the emitter and the influence of thermal flux density on the temperature of the emitter and the stability of the converter. Converters using uranium carbide as the electron emitter have been tested in reactors. Tests have been made under dynamic conditions in order to determine the dynamic characteristics. The load matching curves have been constructed and the overall performances of several cells coupled in such a way as to form a reactor rod have been deduced. This information is fundamental to the design of a control system for a thermionic conversion reactor. The problems associated with the reliability of thermionic converters connected in series in the same reactor rod have been examined theoretically. Finally, the absorption isotherms have been drawn at the ambient temperatures for krypton and xenon on activated carbon with the aim of investigating the escape of fission products in a converter. (author) [fr

  9. Advanced Radioisotope Power Conversion Technology Research and Development

    Science.gov (United States)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  10. Prospects for the use of thermionic nuclear power plants for interorbital transfers of space vehicles in near space

    International Nuclear Information System (INIS)

    Andreev, P.V.; Zhabotinskii, E.E.; Nikonov, A.M.

    1993-01-01

    In a previous study the authors considered the use of thermionic nuclear power plants with a thermal reactor for interorbital transfers of space vehicles by electrojet propulsion systems (EJPSs), opening up broad prospects for putting payloads into a high orbit with relatively inexpensive means for a launch into a reference orbit, e.g., the Proton launch vehicle. This is of major importance for the commercial use of space technology, in particular, for erecting technological platforms for the production of various materials. In the work reported here the authors continue the study of interorbital transfers and explore the potentialities of thermionic NPPs with a thermal reactor and with a fast reactor. In boosted operation the electrical power of the latter may reach several hundred kilowatts. What type of NPP is desirable for testing an electrojet propulsion system in interorbital transfers from a reference orbit to a high orbit, providing that the time is limited, depends on the class of the launch vehicle characterized by the mass M o that the vehicle can carry into the reference orbit, where radiation safety conditions allow the NPP to be started up. Results of studies are presented that give an idea of the rational choice of type of thermionic NPP for the organization in interorbital transfers

  11. Power conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Newton, M. A.

    1997-02-01

    The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

  12. Materials for thermionic energy converters

    NARCIS (Netherlands)

    Wolff, L.R.; Hermans, J.M.; Adriaansen, J.K.M.; Gubbels, G.H.M.; Vincenzini, P.

    1987-01-01

    This paper deals with the design and construction of a combustion heated Thermionic Energy Converter (TEC). Main components of this TEC are: 1. A ''Hot Shell'' protecting the TEC from the combustion environment 2. A ''Ceramic Seal'' electrically insulating the emitter from the collector 3. A

  13. Thermionic refrigeration at CNT-CNT junctions

    Science.gov (United States)

    Li, C.; Pipe, K. P.

    2016-10-01

    Monte Carlo (MC) simulation is used to study carrier energy relaxation following thermionic emission at the junction of two van der Waals bonded single-walled carbon nanotubes (SWCNTs). An energy-dependent transmission probability gives rise to energy filtering at the junction, which is predicted to increase the average electron transport energy by as much as 0.115 eV, leading to an effective Seebeck coefficient of 386 μV/K. MC results predict a long energy relaxation length (˜8 μm) for hot electrons crossing the junction into the barrier SWCNT. For SWCNTs of optimal length, an analytical transport model is used to show that thermionic cooling can outweigh parasitic heat conduction due to high SWCNT thermal conductivity, leading to a significant cooling capacity (2.4 × 106 W/cm2).

  14. Thermionics. A bibliography with abstracts. Search period covered: 1970--Apr 1975. [190 references

    Energy Technology Data Exchange (ETDEWEB)

    Grooms, D.W.

    1975-04-01

    Research on thermionic power generation, power plant design, converter design, and basic research on thermionic materials are cited in the bibliography. Spacecraft applications are included. (Contains 190 abstracts).

  15. Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology

    Energy Technology Data Exchange (ETDEWEB)

    Piazza, L., E-mail: luca.piazza@epfl.ch [Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), ICMP, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Masiel, D.J. [Integrated Dynamic Electron Solutions, Inc., 455 Bolero Drive, Danville, CA 94526 (United States); LaGrange, T.; Reed, B.W. [Condensed Matter and Materials Division Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Barwick, B. [Department of Physics, Trinity College, 300 Summit St., Hartford, CT 06106 (United States); Carbone, Fabrizio [Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), ICMP, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2013-09-23

    Highlights: • We present the implementation of a femtosecond-resolved ultrafast TEM. • This is the first ultrafast TEM based on a thermionic gun geometry. • An additional condenser lens has been used to maximize the electron count. • We achieved a time resolution of about 300 fs and an energy resolution of 1 eV. - Abstract: In this paper, the design and implementation of a femtosecond-resolved ultrafast transmission electron microscope is presented, based on a thermionic gun geometry. Utilizing an additional magnetic lens between the electron acceleration and the nominal condenser lens system, a larger percentage of the electrons created at the cathode are delivered to the specimen without degrading temporal, spatial and energy resolution significantly, while at the same time maintaining the femtosecond temporal resolution. Using the photon-induced near field electron microscopy effect (PINEM) on silver nanowires the cross-correlation between the light and electron pulses was measured, showing the impact of the gun settings and initiating laser pulse duration on the electron bunch properties. Tuneable electron pulses between 300 fs and several ps can be obtained, and an overall energy resolution around 1 eV was achieved.

  16. Photocathode operation of a thermionic RF gun

    International Nuclear Information System (INIS)

    Thorin, S.; Cutic, N.; Lindau, F.; Werin, S.; Curbis, F.

    2009-01-01

    The thermionic RF gun using a BaO cathode at the MAX-lab linac injector has been successfully commissioned for additional operation as a photocathode gun. By retaining the BaO cathode, lowering the temperature below thermal emission and illuminating it with a UV (263 nm) 9 ps laser pulse a reduced emittance and enhanced emission control has been achieved. Measurements show a normalised emittance of 5.5 mm mrad at 200 pC charge and a maximum quantum efficiency of 1.1x10 -4 . The gun is now routinely switched between storage ring injections in thermionic mode and providing a beam for the MAX-lab test FEL in photocathode mode.

  17. maximum conversion efficiency of thermionic heat to electricity

    African Journals Online (AJOL)

    DJFLEX

    Dushman constant ... Several attempts on the direct conversion of heat to electricity ... The net current density in the system is equal to jE – jC , which gets over the potential barrier. jE and jC are given by the Richardson-. Dushman equation as. │. ⌋.

  18. Energy conversion and utilization technologies

    International Nuclear Information System (INIS)

    1988-01-01

    The DOE Energy Conversion and Utilization Technologies (ECUT) Program continues its efforts to expand the generic knowledge base in emerging technological areas that support energy conservation initiatives by both the DOE end-use sector programs and US private industry. ECUT addresses specific problems associated with the efficiency limits and capabilities to use alternative fuels in energy conversion and end-use. Research is aimed at understanding and improving techniques, processes, and materials that push the thermodynamic efficiency of energy conversion and usage beyond the state of the art. Research programs cover the following areas: combustion, thermal sciences, materials, catalysis and biocatalysis, and tribology. Six sections describe the status of direct contact heat exchange; the ECUT biocatalysis project; a computerized tribology information system; ceramic surface modification; simulation of internal combustion engine processes; and materials-by-design. These six sections have been indexed separately for inclusion on the database. (CK)

  19. Graphene for thermoelectronic solar energy conversion

    Science.gov (United States)

    De, Dilip K.; Olukunle, Olawole C.

    2017-08-01

    Graphene is a high temperature material which can stand temperature as high as 4600 K in vacuum. Even though its work function is high (4.6 eV) the thermionic emission current density at such temperature is very high. Graphene is a wonderful material whose work function can be engineered as desired. Kwon et al41 reported a chemical approach to reduce work function of graphene using K2CO3, Li2CO3, Rb2CO3, Cs2CO3. The work functions are reported to be 3.7 eV, 3.8 eV, 3.5 eV and 3.4 eV. Even though they did not report the high temperature tolerance of such alkali metal carbonate doped graphene, their works open a great promise for use of pure graphene and doped graphene as emitter (cathode) and collector (anode) in a solar thermionic energy converter. This paper discusses the dynamics of solar energy conversion to electrical energy using thermionic energy converter with graphene as emitter and collector. We have considered parabolic mirror concentrator to focus solar energy onto the emitter to achieve temperature around 4300 K. Our theoretical calculations and the modelling show that efficiency as high as 55% can easily be achieved if space-charge problem can be reduced and the collector can be cooled to certain proper temperature. We have discussed methods of controlling the associated space-charge problems. Richardson-Dushman equation modified by the authors have been used in this modelling. Such solar energy conversion would reduce the dependence on silicon solar panel and has great potential for future applications.

  20. Energy conversion options for ARIES-III - A conceptual D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Santarius, J.F.; Blanchard, J.P.; Emmert, G.A.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Ghoneim, N.M.; Hasan, M.Z.; Mau, T.K.; Greenspan, E.; Herring, J.S.; Kernbichler, W.; Klein, A.C.; Miley, G.H.; Miller, R.L.; Peng, Y.K.M.

    1989-01-01

    The potential for highly efficient conversion of fusion power to electricity provides one motivation for investigating D- 3 He fusion reactors. This stems from: (1) the large fraction of D- 3 He power produced in the forms of charged particles and synchrotron radiation which are amenable to direct conversion, and (2) the low neutron fluence and lack of tritium breeding constraints, which increase design flexibility. The design team for a conceptual D- 3 He tokamak reactor, ARIES-III, has investigated numerous energy conversion options at a scoping level in attempting to realize high efficiency. The energy conversion systems have been studied in the context of their use on one or more of three versions of a D- 3 He tokamak: a first stability regime device, a second stability regime device, and a spherical torus. The set of energy conversion options investigated includes bootstrap current conversion, compression-expansion cycles, direct electrodynamic conversion, electrostatic direct conversion, internal electric generator, liquid metal heat engine blanket, liquid metal MHD, plasma MHD, radiation boiler, scrape-off layer thermoelectric, synchrotron radiation conversion by rectennas, synchrotron radiation conversion by thermal cycles, thermionic/AMTEC/thermal systems, and traveling wave conversion. The original set of options is briefly discussed, and those selected for further study are described in more detail. The four selected are liquid metal MHD, plasma MHD, rectenna conversion, and direct electrodynamic conversion. Thermionic energy conversion is being considered, and some options may require a thermal cycle in parallel or series. 17 refs., 3 figs., 1 tab

  1. CID thermionic gun system

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1981-10-01

    A new high-current thermionic gun has been installed on the CID injector at SLAC and brought into operation. The gun and pulser system generate three nanosecond pulses of about six amps peak which, when bunched in the subharmonic buncher system, produce in excess of 10 11 electrons in a single S-band accelerated bunch. Preliminary operation of the gun is described, and details of the avalanche cathode drive pulser are presented

  2. CID thermionic gun system

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1982-01-01

    A new high-current thermionic gun has been installed on the CID injector at SLAC and brought into operation. The gun and pulser system generate three nanosecond pulses of about six amps peak which, when bunched in the subharmonic buncher system, produce in excess of 10 11 electrons in a single S-band accelerated bunch. Preliminary operation of the gun is described, and details of the avalanche cathode drive pulser are presented

  3. Advanced thermionic reactor systems design code

    International Nuclear Information System (INIS)

    Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C.

    1991-01-01

    An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance

  4. New features of the MAX IV thermionic pre-injector

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, J., E-mail: joel.andersson@maxiv.lu.se; Olsson, D., E-mail: david.olsson@maxiv.lu.se; Curbis, F.; Malmgren, L.; Werin, S.

    2017-05-21

    The MAX IV facility in Lund, Sweden consists of two storage rings for production of synchrotron radiation. The smaller 1.5 GeV ring is presently under construction, while the larger 3 GeV ring is being commissioned. Both rings will be operating with top-up injections from a full-energy injector. During injection, the electron beam is first delivered to the main injector from a thermionic pre-injector which consists of a thermionic RF gun, a chopper system, and an energy filter. In order to reduce losses of high-energy electrons along the injector and in the rings, the electron beam provided by the thermionic pre-injector should have the correct time structure and energy distribution. In this paper, the design of the MAX IV thermionic pre-injector with all its sub components is presented. The electron beam delivered by the pre-injector and its dependence on parameters such as optics, cathode temperature, and RF power are studied. Measurements are here compared with simulation results obtained by particle tracking and electromagnetic codes. The chopper system is described in detail, and different driving schemes that optimize the injection efficiency for the two storage rings are investigated. During operation, it was discovered that the structure of the beam delivered by the gun is affected by mode beating between the accelerating and a low-order mode. This mode beating is also studied in detail. Finally, initial measurements of the electron beam delivered to the 3 GeV ring during commissioning are presented.

  5. Thermionic Power Cell To Harness Heat Energies for Geothermal Applications

    Science.gov (United States)

    Manohara, Harish; Mojarradi, Mohammad; Greer, Harold F.

    2011-01-01

    A unit thermionic power cell (TPC) concept has been developed that converts natural heat found in high-temperature environments (460 to 700 C) into electrical power for in situ instruments and electronics. Thermionic emission of electrons occurs when an emitter filament is heated to gwhite hot h temperatures (>1,000 C) allowing electrons to overcome the potential barrier and emit into the vacuum. These electrons are then collected by an anode, and transported to the external circuit for energy storage.

  6. Advances in wind energy conversion technology

    CERN Document Server

    Sathyajith, Mathew

    2011-01-01

    The technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - from wind resource analysis to grid integration of generated electricity.

  7. Dexter - A one-dimensional code for calculating thermionic performance of long converters.

    Science.gov (United States)

    Sawyer, C. D.

    1971-01-01

    This paper describes a versatile code for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are given.

  8. DEXTER: A one-dimensional code for calculating thermionic performance of long converters

    Science.gov (United States)

    Sawyer, C. D.

    1971-01-01

    A versatile code is described for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are included along with a user's manual.

  9. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  10. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I W; Yoon, K S; Cho, B W [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  11. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  12. A high-brightness thermionic microwave electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Borland, Michael [Stanford Univ., CA (United States)

    1991-02-01

    In a collaborative effort by SSRL, AET Associates, and Varian Associates, a high-brightness microwave electron gun using a thermionic cathode has been designed, built, tested, and installed for use with the SSRL 150 MeV linear accelerator. This thesis discusses the physics behind the design and operation of the gun and associated systems, presenting predictions and experimental tests of the gun`s performance. The microwave gun concept is of increasing interest due to its promise of providing higher-current, lower-emittance electron beams than possible from conventional, DC gun technology. In a DC guns, accelerating gradients are less than 8 MV/m, while those in a microwave gun can exceed 100 MV/m, providing much more rapid initial acceleration, thereby reducing the deleterious effects of space-charge. Microwave guns produce higher momentum beams than DC guns, thus lessening space-charge effects during subsequent beam transport. Typical DC guns produce kinetic energies of 80--400 KeV, compared to 2--3 MeV for the SSRL microwave gun. ``State-of-the-art`` microwave gun designs employ laser-driven photocathodes, providing excellent performance but with greater complexity and monetary costs. A thermionic microwave gun with a magnetic bunching system is comparable in cost and complexity to a conventional system, but provides performance that is orders of magnitude better. Simulations of the SSRL microwave gun predict a normalized RMS emittance at the gun exist of < 10 π • mec • μm for a beam consisting of approximately 50% of the particles emitted from the gun, and having a momentum spread ±10%. These emittances are for up to 5 x 109e- per bunch. Chromatic aberrations in the transport line between the gun and linear accelerator increase this to typically < 30 π • me • μm.

  13. A high-brightness thermionic microwave electron gun

    International Nuclear Information System (INIS)

    Borland, M.

    1991-02-01

    In a collaborative effort by SSRL, AET Associates, and Varian Associates, a high-brightness microwave electron gun using a thermionic cathode has been designed, built, tested, and installed for use with the SSRL 150 MeV linear accelerator. This thesis discusses the physics behind the design and operation of the gun and associated systems, presenting predictions and experimental tests of the gun's performance. The microwave gun concept is of increasing interest due to its promise of providing higher-current, lower-emittance electron beams than possible from conventional, DC gun technology. In a DC guns, accelerating gradients are less than 8 MV/m, while those in a microwave gun can exceed 100 MV/m, providing much more rapid initial acceleration, thereby reducing the deleterious effects of space-charge. Microwave guns produce higher momentum beams than DC guns, thus lessening space-charge effects during subsequent beam transport. Typical DC guns produce kinetic energies of 80--400 KeV, compared to 2--3 MeV for the SSRL microwave gun. ''State-of-the-art'' microwave gun designs employ laser-driven photocathodes, providing excellent performance but with greater complexity and monetary costs. A thermionic microwave gun with a magnetic bunching system is comparable in cost and complexity to a conventional system, but provides performance that is orders of magnitude better. Simulations of the SSRL microwave gun predict a normalized RMS emittance at the gun exist of e c · μm for a beam consisting of approximately 50% of the particles emitted from the gun, and having a momentum spread ±10%. These emittances are for up to 5 x 10 9 e - per bunch. Chromatic aberrations in the transport line between the gun and linear accelerator increase this to typically e · μm

  14. Evidence for cluster shape effects on the kinetic energy spectrum in thermionic emission.

    Science.gov (United States)

    Calvo, F; Lépine, F; Baguenard, B; Pagliarulo, F; Concina, B; Bordas, C; Parneix, P

    2007-11-28

    Experimental kinetic energy release distributions obtained for the thermionic emission from C(n) (-) clusters, 10theory, these different features are analyzed and interpreted as the consequence of contrasting shapes in the daughter clusters; linear and nonlinear isomers have clearly distinct signatures. These results provide a novel indirect structural probe for atomic clusters associated with their thermionic emission spectra.

  15. Synthesis, thermionic emission and magnetic properties of (NdxGd1–x)B6

    International Nuclear Information System (INIS)

    Bao Li-Hong; Zhang Jiu-Xing; Zhou Shen-Lin; Tegus

    2011-01-01

    Polycrystalline rare-earth hexaborides (Nd x Gd 1–x )B 6 (x = 0, 0.2, 0.6, 0.8, 1) were prepared by the reactive spark plasma sintering (SPS) method using mixed powder of GdH 2 , NdH 2 and B. The effects of Nd doping on the crystal structure, the grain orientation, the thermionic emission and the magnetic properties of the hexaboride were investigated by X-ray diffraction, electron backscattered diffraction and magnetic measurements. It is found that all the samples sintered by the SPS method exhibit high densities (> 95%) and high values of Vickers hardness (2319 kg/mm 2 ). The values are much higher than those obtained in the traditional method. With the increase of Nd content, the thermionic emission current density increases from 11 to 16.30 A/cm 2 and the magnetic phase transition temperature increases from 5.85 to 7.95 K. Thus, the SPS technique is a suitable method to synthesize the dense rare-earth hexaborides with excellent properties. (interdisciplinary physics and related areas of science and technology)

  16. Direct digital conversion detector technology

    Science.gov (United States)

    Mandl, William J.; Fedors, Richard

    1995-06-01

    Future imaging sensors for the aerospace and commercial video markets will depend on low cost, high speed analog-to-digital (A/D) conversion to efficiently process optical detector signals. Current A/D methods place a heavy burden on system resources, increase noise, and limit the throughput. This paper describes a unique method for incorporating A/D conversion right on the focal plane array. This concept is based on Sigma-Delta sampling, and makes optimum use of the active detector real estate. Combined with modern digital signal processors, such devices will significantly increase data rates off the focal plane. Early conversion to digital format will also decrease the signal susceptibility to noise, lowering the communications bit error rate. Computer modeling of this concept is described, along with results from several simulation runs. A potential application for direct digital conversion is also reviewed. Future uses for this technology could range from scientific instruments to remote sensors, telecommunications gear, medical diagnostic tools, and consumer products.

  17. Energy and cost savings results for advanced technology systems from the Cogeneration Technology Alternatives Study /CTAS/

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.

  18. Microbial conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lau, P. [National Research Council of Canada, Ottawa, ON (Canada). Bioconversion and Sustainable Development

    2006-07-01

    Microbes are a biomass and an valuable resource. This presentation discussed microbial conversion technologies along with background information on microbial cells, their characteristics and microbial diversity. Untapped opportunities for microbial conversion were identified. Metagenomic and genome mining approaches were also discussed, as they can provide access to uncultivated or unculturable microorganisms in communal populations and are an unlimited resource for biocatalysts, novel genes and metabolites. Genome mining was seen as an economical approach. The presentation also emphasized that the development of microbial biorefineries would require significant insights into the relevant microorganisms and that biocatalysts were the ultimate in sustainability. In addition, the presentation discussed the natural fibres initiative for biochemicals and biomaterials. Anticipated outputs were identified and work in progress of a new enzyme-retting cocktail to provide diversity and/or consistency in fibre characteristics for various applications were also presented. It was concluded that it is necessary to leverage understanding of biological processes to produce bioproducts in a clean and sustainable manner. tabs., figs.

  19. On thermionic emission from plasma-facing components in tokamak-relevant conditions.

    Czech Academy of Sciences Publication Activity Database

    Komm, Michael; Ratynskaia, S.; Tolias, P.; Cavalier, Jordan; Dejarnac, Renaud; Gunn, J. P.; Podolník, Aleš

    2017-01-01

    Roč. 59, č. 9 (2017), č. článku 094002. ISSN 0741-3335 R&D Projects: GA ČR(CZ) GA16-14228S; GA MŠk(CZ) 8D15001 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : thermionic * PIC * tungsten * tokamak * thermionic emission * plasma facing components * particle-in-cell Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.392, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6587/aa78c4/pdf

  20. The Nature of Primary Students' Conversation in Technology Education

    Science.gov (United States)

    Fox-Turnbull, Wendy H.

    2016-01-01

    Classroom conversations are core to establishing successful learning for students. This research explores the nature of conversation in technology education in the primary classroom and the implications for teaching and learning. Over a year, two units of work in technology were taught in two primary classrooms. Most data was gathered in Round 2…

  1. Electrochemical conversion technologies for optimal design of decentralized multi-energy systems : Modeling framework and technology assessment

    NARCIS (Netherlands)

    Gabrielli, Paolo; Gazzani, Matteo; Mazzotti, Marco

    2018-01-01

    The design and operation of integrated multi-energy systems require models that adequately describe the behavior of conversion and storage technologies. Typically, linear conversion performance or fixed data from technology manufacturers are employed, especially for new or advanced technologies.

  2. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan; Biddy, Mary J.; Tan, Eric; Tao, Ling; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  3. Thermionic combustor application to combined gas and steam turbine power plants

    Science.gov (United States)

    Miskolczy, G.; Wang, C. C.; Lieb, D. P.; Margulies, A. E.; Fusegni, L. J.; Lovell, B. J.

    A design for the insertion of thermionic converters into the wall of a conventional combustor to produce electricity in a topping cycle is described, and a study for applications in gas and steam generators of 70 and 30 MW is evaluated for engineering and economic feasibility. Waste heat from the thermionic elements is used to preheat the combustor air; the heat absorbed by the elements plus further quenching of the exhaust gases with ammonia is projected to reduce NO(x) emissions to acceptable levels. Schematics, flow diagrams, and components of a computer model for cost projections are provided. It was found that temperatures around the emitters must be maintained above 1,600 K, with maximum efficiency and allowable temperature at 1,800 K, while collectors generate maximally at 950 K, with a corresponding work function of 1.5 eV. Cost sensitive studies indicate an installed price of $475/kW for the topping cycle, with improvements in thermionic converter characteristics bringing the cost to $375/kW at a busbar figure of 500 mills/kWh.

  4. Thermionic combustor application to combined gas and steam turbine power plants

    International Nuclear Information System (INIS)

    Miskolczy, G.; Wang, C.C.; Lieb, D.P.

    1981-01-01

    A design for the insertion of thermionic converters into the wall of a conventional combustor to produce electricity in a topping cycle is described, and a study for applications in gas and steam generators of 70 and 30 MW is evaluated for engineering and economic feasibility. Waste heat from the thermionic elements is used to preheat the combustor air, the heat absorbed by the elements plus further quenching of the exhaust gases with ammonia is projected to reduce NO(x) emissions to acceptable levels. Schematics, flow diagrams, and components of a computer model for cost projections are provided. It was found that temperatures around the emitters must be maintained above 1,600 K, with maximum efficiency and allowable temperature at 1,800 K, while collectors generate maximally at 950 K, with a corresponding work function of 1.5 eV. Cost sensitive studies indicate an installed price of $475/kW for the topping cycle, with improvements in thermionic converter characteristics bringing the cost to $375/kW at a busbar figure of 500 mills/kWh

  5. Overview of biomass conversion technologies

    International Nuclear Information System (INIS)

    Noor, S.; Latif, A.; Jan, M.

    2011-01-01

    A large part of the biomass is used for non-commercial purposes and mostly for cooking and heating, but the use is not sustainable, because it destroys soil-nutrients, causes indoor and outdoor pollution, adds to greenhouse gases, and results in health problems. Commercial use of biomass includes household fuelwood in industrialized countries and bio-char (charcoal) and firewood in urban and industrial areas in developing countries. The most efficient way of biomass utilization is through gasification, in which the gas produced by biomass gasification can either be used to generate power in an ordinary steam-cycle or be converted into motor fuel. In the latter case, there are two alternatives, namely, the synthesis of methanol and methanol-based motor fuels, or Fischer-Tropsch hydrocarbon synthesis. This paper deals with the technological overview of the state-of-the-art key biomass-conversion technologies that can play an important role in the future. The conversion routes for production of Heat, power and transportation fuel have been summarized in this paper, viz. combustion, gasification, pyrolysis, digestion, fermentation and extraction. (author)

  6. Cesium-plasma-conductivity enhancement in the advanced thermionic energy converter. Final report

    International Nuclear Information System (INIS)

    Manikopoulos, C.N.

    Two methods of plasma conductivity enhancement in a cesium vapor thermionic energy converter have been studied. The first involved resonance photoabsorption of several cesium lines and the second utilized cesium plasma sustenance by application of microwave power. An extensive study of ionization processes in a cesium discharge in the presence of resonance ionization was made. Calculations were made of expected percentage excitation levels for several cesium resonance transitions for different values of neutral density and temperature as well as incident radiation power levels. The results of some of these computations were tabulated. Several ionization schemes were considered. A number of cesium transitions were investigated in the range of 799 to 870 nanometers for four different cesium reservoir temperatures, 467, 511, 550 and 591 K. The related absorption coefficients of the radiation lines in the plasma were deduced and tabulated. The resulting plasma conductivity increase was recorded and the associated ionization enhancement was deduced. A microwave cavity was built where the emitter and collector of a simple thermionic converter made up two of the cavity walls and resonant microwave power was externally applied. The I-V characteristics of the thermionic converter were studied under several microwave power levels in the range of 0 to 2 watts. Significant shifts to higher currents were observed as the microwave power levels were raised. In conclusion, both methods show promise as auxiliary ionization mechanisms for the thermionic energy converter, especially at low emitter temperatures

  7. Direct energy conversion - state of the art in 1981

    International Nuclear Information System (INIS)

    Euler, K.J.

    1981-01-01

    Contemporary research and development of direct energy conversion (D.E.C.) started about 25 years ago. Having considered possibilities, cost, and advantages, the efforts have become more and more steady during the last decade. It has been recognized that, in most cases, D.E.C. methods will serve only as electricity sources for special application. This is true for radioisotopic generators used in space and submarine technologies, for thermoelectric devices used in air defence and along desert pipelines, and for thermionic convertors used in television satellites. Thus, the goal, to introduce these D.E.C. units in large scale manufacture has not been reached, and will not be reached even in the future. Only magneto-hydrodynamic channels exhibit a certain innovation potential as topping devices in advanced thermal power stations. Fuel cells will not be treated here, solar cells only mentioned briefly. (orig.) [de

  8. Thermodynamics of photon-enhanced thermionic emission solar cells

    DEFF Research Database (Denmark)

    Reck, Kasper; Hansen, Ole

    2014-01-01

    Photon-enhanced thermionic emission (PETE) cells in which direct photon energy as well as thermal energy can be harvested have recently been suggested as a new candidate for high efficiency solar cells. Here, we present an analytic thermodynamical model for evaluation of the efficiency of PETE...

  9. Thermionic emission of cermets made of refractory carbides

    International Nuclear Information System (INIS)

    Samsonow, G.W.; Bogomol, I.W.; Ochremtschuk, L.N.; Podtschernjajewa, I.A.; Fomenko, W.S.

    1975-01-01

    In order to improve the resistance to thermal variations of refractory carbides having good behavior for thermionic emission, they have been combined with transition metals d. Thermionic emission was studied with cermets in compact samples. Following systems were examined: TiC-Nb, TiC-Mo, TiC-W, ZrC-Nb, ZrC-Mo, ZrC-W, WC-Mo with compositions of: 75% M 1 C-25% M 2 , 50%M 1 C-50%M 2 , 25%M 1 C-75%M 2 . When following the variation of electron emission energy phi versus the composition, it appears that in the range of mixed crystals (M 1 M 2 )C, phi decreases and the resistance to thermal variations of these phases is higher than that of individual carbides. The study of obtained cermets shows that their resistance to thermal variations is largely superior to the one of starting carbides; TiC and ZrC carbides, combined with molybdenum and tungsten support the highest number of thermic cycles

  10. Deep conversion of black oils with Eni Slurry technology

    Energy Technology Data Exchange (ETDEWEB)

    Panariti, Nicoletta; Rispoli, Giacomo

    2010-09-15

    Eni Slurry Technology represents a significant technological innovation in residue conversion and unconventional oils upgrading. EST allows the almost total conversion of heavy feedstocks into useful products, mainly transportation fuels, with a great major impact on the economic and environmental valorization of hydrocarbon resources. The peculiar characteristics of EST in terms of yields, products quality, absence of undesired by-products and feedstock flexibility constitute its superior economic and environmental attractiveness. The first full scale industrial plant based on this new technology will be realized in Eni's Sannazzaro refinery (23,000 bpd). Oil in is scheduled by 4th quarter 2012.

  11. Plasma technology - a novel solution for CO2 conversion?

    Science.gov (United States)

    Snoeckx, Ramses; Bogaerts, Annemie

    2017-10-02

    CO 2 conversion into value-added chemicals and fuels is considered as one of the great challenges of the 21st century. Due to the limitations of the traditional thermal approaches, several novel technologies are being developed. One promising approach in this field, which has received little attention to date, is plasma technology. Its advantages include mild operating conditions, easy upscaling, and gas activation by energetic electrons instead of heat. This allows thermodynamically difficult reactions, such as CO 2 splitting and the dry reformation of methane, to occur with reasonable energy cost. In this review, after exploring the traditional thermal approaches, we have provided a brief overview of the fierce competition between various novel approaches in a quest to find the most effective and efficient CO 2 conversion technology. This is needed to critically assess whether plasma technology can be successful in an already crowded arena. The following questions need to be answered in this regard: are there key advantages to using plasma technology over other novel approaches, and if so, what is the flip side to the use of this technology? Can plasma technology be successful on its own, or can synergies be achieved by combining it with other technologies? To answer these specific questions and to evaluate the potentials and limitations of plasma technology in general, this review presents the current state-of-the-art and a critical assessment of plasma-based CO 2 conversion, as well as the future challenges for its practical implementation.

  12. Green technology for conversion of renewable hydrocarbon based on plasma-catalytic approach

    Science.gov (United States)

    Fedirchyk, Igor; Nedybaliuk, Oleg; Chernyak, Valeriy; Demchina, Valentina

    2016-09-01

    The ability to convert renewable biomass into fuels and chemicals is one of the most important steps on our path to green technology and sustainable development. However, the complex composition of biomass poses a major problem for established conversion technologies. The high temperature of thermochemical biomass conversion often leads to the appearance of undesirable byproducts and waste. The catalytic conversion has reduced yield and feedstock range. Plasma-catalytic reforming technology opens a new path for biomass conversion by replacing feedstock-specific catalysts with free radicals generated in the plasma. We studied the plasma-catalytic conversion of several renewable hydrocarbons using the air plasma created by rotating gliding discharge. We found that plasma-catalytic hydrocarbon conversion can be conducted at significantly lower temperatures (500 K) than during the thermochemical ( 1000 K) and catalytic (800 K) conversion. By using gas chromatography, we determined conversion products and found that conversion efficiency of plasma-catalytic conversion reaches over 85%. We used obtained data to determine the energy yield of hydrogen in case of plasma-catalytic reforming of ethanol and compared it with other plasma-based hydrogen-generating systems.

  13. The Properties of Binary and Ternary Ti Based Coatings Produced by Thermionic Vacuum Arc (TVA Technology

    Directory of Open Access Journals (Sweden)

    Aurelia Mandes

    2018-03-01

    Full Text Available A series of the multicomponent thin films (binary: Ti-C; Ti-Ag and ternary: Ti-C-Ag; Ti-C-Al were fabricated by Thermionic Vacuum Arc (TVA technology in order to study the wear resistance and the anticorrosion properties. The effects of Ti amount on the microstructure, tribological and morphological properties were subsequently investigated. TVA is an original deposition method using a combination of anodic arc and electron gun systems for the growth of films. The samples were characterized using scanning electron microscope (SEM and a transmission electron microscope (TEM accompanied by selected area electron diffraction (SAED. Tribological properties were studied by a ball-on-disc tribometer in the dry regime and the wettability was assessed by measuring the contact angle with the See System apparatus. Wear Rate results indicate an improved sliding wear behavior for Ti-C-Ag: 1.31 × 10−7 mm3/N m (F = 2 N compared to Ti-C-Al coating wear rate: 4.24 × 10−7 mm3/N m. On the other hand, by increasing the normal load to 3 N an increase to the wear rate was observed for Ti-C-Ag: 2.58 × 10−5 mm3 compared to 2.33 × 10−6 mm3 for Ti-C-Al coating.

  14. IECEC '92; Proceedings of the 27th Intersociety Energy Conversion Engineering Conference, San Diego, CA, Aug. 3-7, 1992. Vols. 1-6

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The present conference discusses spacecraft power requirements, spacecraft nuclear power reactors, power electronics, aerospace fuel cells and batteries, automated spacecraft power systems and power electronics, small excore heat pipe thermionic reactor technology, spacecraft solar power, thermoelectrics for reactors, high voltage systems, spacecraft static/dynamic conversion component technology, wireless power transmission, isotopic-fueled power systems, and aircraft electric power. Also discussed are alkali-metal thermoelectric converters, advanced heat engine cycles, terrestrial electric propulsion, fuel cells for terrestrial applications, MHD systems, magnetic bearings and flywheels, aquifer thermal storage, superconducting devices, nucler fusion power, marine energy systems, Stirling engine cycle analyses and models, Stirling refrigerators and cryocoolers, efficiency and conservation-related practices, Stirling heat pumps, Stirling cycle solar (terrestrial) energy systems, Stirling engine component technologies, environmental impacts of energy systems, Stirling-based power generation, and Stirling heat transport systems

  15. The 20 year evolution of an energy conversion course at the United States Military Academy

    International Nuclear Information System (INIS)

    Bailey, Margaret; Oezer Arnas, A.; Potter, Robert; Samples, Jerry W.

    2004-01-01

    Over the past several years, an energy conversion course offered by the Mechanical Engineering Program at the United States Military Academy in West Point, New York, has evolved into a cohesive series of lessons addressing three general topical areas: advanced thermodynamics, advanced mechanical system analysis, and direct energy conversion systems. Mechanical engineering majors enroll in Energy Conversion Systems (ME 472) during the fall semester of their senior year as an advanced elective. ME 472 builds directly on the material covered in Thermodynamics (EM 301) taken during the student's junior year. In the first segment of ME 472, the students study advanced thermodynamic topics including exergy and combustion analyses. The students then analyze various mechanical systems including refrigeration systems, internal combustion engines, boilers, and fossil fuel fired steam and gas turbine combined power plants. Exergetic efficiencies of various equipment and systems are determined. The final portion of the course covers direct energy conversion technology, including fuel cells, photovoltaics, thermoelectricity, thermionics and magnetohydrodynamics. Supplemental lessons on energy storage, semi-conductors and nonreactive energy sources (such as solar collectors, wind turbines, and hydroelectric plants) are included here. This paper discusses the evolution of ME 472 since its inception and explains the motivations for the course's progress

  16. X-Band Thermionic Cathode RF Gun at UTNL

    CERN Document Server

    Fukasawa, Atsushi; Dobashi, Katsuhiro; Ebina, Futaro; Hayano, Hitoshi; Higo, Toshiyasu; Kaneyasu, Tatsuo; Matsuo, Kennichi; Ogino, Haruyuki; Sakae, Hisaharu; Sakamoto, Fumito; Uesaka, Mitsuru; Urakawa, Junji

    2005-01-01

    The X-band (11.424 GHz) linac for compact Compton scattering hard X-ray source are under construction at Nuclear Engineering Research Laboratory, University of Tokyo. This linac designed to accelerate up to 35 MeV, and this electron beam will be used to produce hard X-ray by colliding with laser. It consists of a thermionic cathode RF gun, an alpha magnet, and a traveling wave tube. The gun has 3.5 cells (unloaded Q is 8250) and will be operated at pi-mode. A dispenser cathode is introduced. Since the energy spread of the beam from the gun is predicted to be broad due to the continuous emission from the thermionic cathode, a slit is placed in the alpha magnet to eliminate low energy electrons. The simulation on the injector shows the beam energy 2.9 MeV, the charge 23 pC/bunch, and the emittance less than 10 mm.mrad. The experiment on the gun is planed in the beginning of 2005, and the details will be discussed on the spot.

  17. Thermionic cogeneration burner assessment study. Third quarterly technical progress report, April-June, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The specific tasks of this study are to mathematically model the thermionic cogeneration burner, experimentally confirm the projected energy flows in a thermal mock-up, make a cost estimate of the burner, including manufacturing, installation and maintenance, review industries in general and determine what groups of industries would be able to use the electrical power generated in the process, select one or more industries out of those for an in-depth study, including determination of the performance required for a thermionic cogeneration system to be competitive in that industry. Progress is reported. (WHK)

  18. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  19. Energy technology sources, systems and frontier conversion

    CERN Document Server

    Ohta, Tokio

    1994-01-01

    This book provides a concise and technical overview of energy technology: the sources of energy, energy systems and frontier conversion. As well as serving as a basic reference book for professional scientists and students of energy, it is intended for scientists and policy makers in other disciplines (including practising engineers, biologists, physicists, economists and managers in energy related industries) who need an up-to-date and authoritative guide to the field of energy technology.Energy systems and their elemental technologies are introduced and evaluated from the view point

  20. Biomass energy conversion: conventional and advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Young, B C; Hauserman, W B [Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  1. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  2. Processes of preparation, deposition and analysis of thermionic emissive substances

    International Nuclear Information System (INIS)

    Romao, B.M. Verdelli; Muraro Junior, A.; Tessaroto, L.A.B.; Takahashi, J.

    1992-09-01

    This paper shows the results of the optimization of the process of preparation and deposition of thermionic emissive substances that are used in the oxide-cathodes which are utilized in the gun of the IEAv linear electron accelerator. (author). 5 refs., 5 figs

  3. Non-equilibrium thermionic electron emission for metals at high temperatures

    Science.gov (United States)

    Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.

    2015-08-01

    Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.

  4. Thermionic reactor power conditioner design for nuclear electric propulsion.

    Science.gov (United States)

    Jacobsen, A. S.; Tasca, D. M.

    1971-01-01

    Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.

  5. Technology and Teaching: A Conversation among Faculty Regarding the Pros and Cons of Technology

    Science.gov (United States)

    Kemp, Andrew T.; Preston, John; Page, C. Steven; Harper, Rebecca; Dillard, Benita; Flynn, Joseph; Yamaguchi, Misato

    2014-01-01

    Technology is often touted as the savior of education (Collins & Haverson, 2009). However, is technology the panacea that it is made out to be? This paper is an extended conversation among a group of faculty members at three different universities and their attitudes and beliefs about technology and education. Three professors shared their…

  6. Research and Technology Activities Supporting Closed-Brayton-Cycle Power Conversion System Development

    Science.gov (United States)

    Barrett, Michael J.

    2004-01-01

    The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.

  7. Composite metal-ceramic material for high temperature energy conversion applications

    NARCIS (Netherlands)

    Wolff, L.R.

    1988-01-01

    At Eindhoven Universitu of technology a composite metal-ceramic material is being developed. It will serve as a protective confinement for a combustion heated Thermionic Energy Converter (TEC). This protective confinement of 'hot shell' consists of a composite W-TiN-SiC layer structure. The outer

  8. Thermionic vacuum arc (TVA) technique for magnesium thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Balbag, M.Z., E-mail: zbalbag@ogu.edu.t [Eskisehir Osmangazi University, Education Faculty, Primary Education, Meselik Campus, Eskisehir 26480 (Turkey); Pat, S.; Ozkan, M.; Ekem, N. [Eskisehir Osmangazi University, Art and Science Faculty, Physics Department, Eskisehir 26480 (Turkey); Musa, G. [Ovidius University, Physics Department, Constanta (Romania)

    2010-08-15

    In this study, magnesium thin films were deposited on glass substrate by the Thermionic Vacuum Arc (TVA) technique for the first time. We present a different technique for deposition of high-quality magnesium thin films. By means of this technique, the production of films is achieved by condensing the plasma of anode material generated using Thermionic Vacuum Arc (TVA) under high vacuum conditions onto the surface to be coated. The crystal orientation and morphology of the deposited films were investigated by using XRD, EDX, SEM and AFM. The aim of this study is to search the use of TVA technique to coat magnesium thin films and to determine some of the physical properties of the films generated. Furthermore, this study will contribute to the scientific studies which search the thin films of magnesium or the compounds containing magnesium. In future, this study will be preliminary work to entirely produce magnesium diboride (MgB{sub 2}) superconductor thin film with the TVA technique.

  9. High performance emitter for thermionic diode obtained by chemical vapor deposition

    International Nuclear Information System (INIS)

    Faron, R.; Bargues, M.; Durand, J.P.; Gillardeau, J.

    1973-01-01

    Vapor deposition process conditions presently known for tungsten and molybdenum (specifically the range of high temperatures and low pressures) permit the achievement of high performance thermionic emitters when used with an appropriate technology. One example of this uses the following series of successive vapor deposits, the five last vapor deposits constituting the fabrication of the emitting layer: Mo deposit for the formation of the nuclear fuel mechanical support; Mo deposit, which constitutes the sheath of the nuclear fuel; epitaxed Mo--W alloy deposit; epitaxed tungsten deposit; fine-grained tungsten deposit; and tungsten deposit with surface orientation according to plane (110)W. In accordance with vapor deposition techniques previously developed, such a sequence of deposits can easily be achieved with the same equipment, even without having to take out the part during the course of the process. (U.S.)

  10. Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development

    Science.gov (United States)

    Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.

    2006-01-01

    NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.

  11. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Energy conversion system characteristics

    Science.gov (United States)

    1980-01-01

    Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a frame work for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasifications. Data and information for both current and advanced energy conversion technology are presented. Schematic and physical descriptions, performance data, equipment cost estimates, and predicted emissions are included. Technical developments which are needed to achieve commercialization in the 1985-2000 period are identified.

  12. Highly-Efficient Thermoelectronic Conversion of Heat and Solar Radiation to Electric Power

    OpenAIRE

    Meir, Stefan

    2013-01-01

    Thermionic energy conversion has long been a candidate to convert solar radiation and the combustion heat of fossil fuels into electricity at high efficiencies. However, the formation of electron space charges has prevented the widespread use of the principle since its was first suggested in 1915. In this work, a novel mechanism to suppress the effects of the space charge was investigated: the acceleration of electrons in a special configuration of electric and magnetic fields. This work d...

  13. 3-D simulation study for a thermionic RF gun using an FDTD method

    Energy Technology Data Exchange (ETDEWEB)

    Hama, H. E-mail: hama@lns.tohoku.ac.jp; Hinode, F.; Shinto, K.; Miyamoto, A.; Tanaka, T

    2004-08-01

    Beam dynamics in a thermionic RF gun for a new pre-injector in a future synchrotron radiation facility at Tohoku university has been studied by developing a 3-D Maxwell's equation solver. Backbombardment (BB) effect on a cathode, which is a crucial problem for performance of the thermionic RF gun, has been investigated. It is found that an external dipole magnetic field applying around the cathode is effective to reduce high-energy backstreaming electrons from the accelerating cell. However, the low-energy electrons coming back from the first cell inevitably hit the cathode, so that characteristics of the cathode material seems to be crucial for reduction of the BB effect.

  14. A thermionic energy converter with a molybdenum-alumina cermet emitter

    NARCIS (Netherlands)

    Gubbels, G.H.M.; Wolff, L.R.; Metselaar, R.

    1990-01-01

    A study is made of the properties of cermets as electrode materials for thermionic energy converters. For thermodynamic reasons it is expected that all cermets composed of pure Mo and refractory oxides have the same bare work function. From data on the work function of Mo in an oxygen atmosphere

  15. The direct conversion of heat into electricity in reactors; Conversion directe de la chaleur en electricite dans les piles

    Energy Technology Data Exchange (ETDEWEB)

    Devin, B; Bliaux, J; Lesueur, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The direct conversion of heat into electricity by thermionic emission in an atomic reactor has been studied with the triple aim of its utilisation: as an energy source for a space device, at the head of a conventional conversion system in power installations, or finally in association with the thermoelectric conversion in very low power installations. The laboratory experiments were mainly orientated towards the electron extraction of metals and compounds and their behaviour at high temperatures. Converters furnishing up to 50 amps at 0. 4 volts with an efficiency close to 10 p. 100 have been constructed in the laboratory; the emitters were heated by electron bombardment and were composed of tungsten covered with an uranium carbide deposit or molybdenum covered with cesium. The main aspects of the coupling between the converter and the reactor have been covered from the point of view of electronics: the influence of the mismatching of the load on the temperature of the emitter and the influence of thermal flux density on the temperature of the emitter and the stability of the converter. Converters using uranium carbide as the electron emitter have been tested in reactors. Tests have been made under dynamic conditions in order to determine the dynamic characteristics. The load matching curves have been constructed and the overall performances of several cells coupled in such a way as to form a reactor rod have been deduced. This information is fundamental to the design of a control system for a thermionic conversion reactor. The problems associated with the reliability of thermionic converters connected in series in the same reactor rod have been examined theoretically. Finally, the absorption isotherms have been drawn at the ambient temperatures for krypton and xenon on activated carbon with the aim of investigating the escape of fission products in a converter. (author) [French] La conversion directe de chaleur en electricite par emission thermionique dans une

  16. Nanoscale Materials and Architectures for Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Grulke, Eric A. [Univ. of Kentucky, Lexington, KY (United States); Sunkara, Mahendra K. [University of Louisville, KY (United States)

    2011-05-25

    The Kentucky EPSCoR Program supported an inter-university, multidisciplinary energy-related research cluster studying nanomaterials for converting solar radiation and residual thermal energy to electrical energy and hydrogen. It created a collaborative center of excellence based on research expertise in nanomaterials, architectures, and their synthesis. The project strengthened and improved the collaboration between the University of Louisville, the University of Kentucky, and NREL. The cluster hired a new faculty member for ultra-fast transient spectroscopy, and enabled the mentoring of one research scientist, two postdoctoral scholars and ten graduate students. Work was accomplished with three focused cluster projects: organic and photoelectrochemical solar cells, solar fuels, and thermionic energy conversion.

  17. IECEC '87; Proceedings of the Twenty-second Intersociety Energy Conversion Engineering Conference, Philadelphia, PA, Aug. 10-14, 1987. Volumes 1, 2, 3, and 4

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Papers are presented on space power requirements and issues, space photovoltaic systems, space solar dynamic systems, space thermal systems, manned and unmanned space power systems, thermionics, and thermoelectrics. Also considered are high power devices for space power systems, high power conversion for space power systems, 1-10 kWe nuclear space power sources, 100-kW class nuclear power concepts, space reactor safety, and multimegawatt space nuclear power systems. Other topics include space power systems automation, space kilovolt technology, space power electronics, space lithium and nickel-cadmium batteries, lithium sodium storage, and space fuel cells. Papers are also presented on space nickel hydrogen batteries, alternative energy concepts and fuels, fuel cell technology, flow batteries, high-temperature batteries, energy conservation, battery energy storage, thermal energy storage, heat engines, MHD power systems, nuclear fission, and the Stirling cycle

  18. Control for nuclear thermionic power source

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Sawyer, C.D.

    1978-01-01

    A control for a power source is described which includes nuclear fuel interspersed with thermionic converters, including a power regulator that maintains a substantially constant output voltage to a variable load, and a control circuit that drives a neutron flux regulator in accordance with the current supplied to the power regulator and the neutron flux density in the region of the converters. The control circuit generates a control signal which is the difference between the neutron flux density and a linear fucntion of the current, and which drives the neutron regulator in a direction to decrease or increase the neutron flux according to the polarity of the control signal

  19. Development of integrated thermionic circuits for high-temperature applications

    International Nuclear Information System (INIS)

    McCormick, J.B.; Wilde, D.; Depp, S.; Hamilton, D.J.; Kerwin, W.; Derouin, C.; Roybal, L.; Dooley, R.

    1981-01-01

    A class of devices known as integrated thermionic circuits (ITC) capable of extended operation in ambient temperatures up to 500 0 C is described. The evolution of the ITC concept is discussed. A set of practical design and performance equations is demonstrated. Recent experimental results are discussed in which both devices and simple circuits have successfully operated in 500 0 C environments for extended periods of time

  20. Design study on an independently-tunable-cells thermionic RF gun

    International Nuclear Information System (INIS)

    Hama, H.; Tanaka, T.; Hinode, F.; Kawai, M.

    2006-01-01

    Characteristics of a thermionic RF gun have been studied by a 3-D simulation code developed using an FDTD (Finite Difference Time Domain) method as a Maxwell's equations solver. The gun is consists of two independent power feeding cavities, so that we call it independently-tunable-cells (ITC)'-RF gun. The first cell is the cathode cell and the second one is an accelerating cell. The ITC gun can be operated at various modes of different RF-power ratio and phase between two cavities. Simulation study shows a velocity-bunching like effect may be occurred in the gun, so that the short pulse beam from the thermionic RF gun is a better candidate to produce the coherent THz synchrotron radiation. Expected bunch length with a total charge of ∼20 pC (1% energy width from the top energy) is around 200 fs (fwhm). Even the beam energy extracted from the gun is varied by which the input powers are changed, almost same shape of the longitudinal phase space can be produced by tuning the phase. (author)

  1. A thermionic energy converter with A molybdenum alumina cermet emitter

    NARCIS (Netherlands)

    Gubbels, G.H.M.; Wolff, L.R.; Metselaar, R.; Yogi Goswami, D.

    1988-01-01

    The I-V characteristics of a thermionic converter equipped with a Mo-1w/o AI203 emitter and a Mo collector were measured. The conditions were varied over a limited range without, as well as with Cs. Work functions of Mo as well as Mo-1w/o AI203 were determined. Measurements were carried out in a

  2. Photovoltaic and thermal energy conversion for solar powered satellites

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  3. Symposium proceedings: environmental aspects of fuel conversion technology, II, December 1975, Hollywood, Florida. [34 papers

    Energy Technology Data Exchange (ETDEWEB)

    Ayer, F.A. (comp.)

    1976-06-01

    The report covers EPA's second symposium on the environmental aspects of fuel conversion technology. Its main objective was to review and discuss environmentally related information in the field of fuel conversion technology. Specific topics were environmental problem definition, process technology, control technology, and process measurements. Thirty-four papers were abstracted and indexed separately.

  4. Communication: IR spectroscopy of neutral transition metal clusters through thermionic emission

    NARCIS (Netherlands)

    Lapoutre, V. J. F.; Haertelt, M.; Meijer, G.; Fielicke, A.; Bakker, J. M.

    2013-01-01

    The resonant multiple photon excitation of neutral niobium clusters using tunable infrared (IR) radiation leads to thermionic emission. By measuring the mass-resolved ionization yield as a function of IR wavenumber species selective IR spectra are obtained for Nb-n (n = 5-20) over the 200-350 cm(-1)

  5. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes

    Science.gov (United States)

    Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.

    1980-01-01

    Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.

  6. Technology transfer and design conversion of a dry spent fuel storage system in Ukraine

    International Nuclear Information System (INIS)

    Peacock, R.C.; Marcelli, D.G.

    1998-01-01

    A number of unique issues surfaced in the technology transfer and design conversion of a US dry spent fuel storage technology in Ukraine. Unique challenges were encountered in the areas of nuclear design conversion, technical codes and standards, material selection and qualification, fabrication, construction and testing, quality assurance, documentation, and translation and verification processes. Technology transfer and design conversion were undertaken for both concrete and steel components for the project. The overall effort presented significant technical and cultural challenges to both the US and Ukrainian side, but technical exchange and design improvements to achieve a common goal have been reached. (author)

  7. Surface properties of ceramic/metal composite materials for thermionic converter applications

    International Nuclear Information System (INIS)

    Davis, P.R.; Bozack, M.J.; Swanson, L.W.

    1983-01-01

    Ceramic/metal composite electrode materials are of interest for thermionic energy conversion (TEC) applications for several reasons. These materials consist of submicron metal fibers or islands in an oxide matrix and therefore provide a basis for fabricating finely structured electrodes, with projecting or recessed metallic regions for more efficient electron emission or collection. Furthermore, evaporation and surface diffusion of matrix oxides may provide oxygen enhancement of cesium adsorption and work function lowering at both the collecting and emitting electrode surfaces of the TEC. Finally, the high work function oxide matrix or oxide-metal interfaces may provide efficient surface ionization of cesium for space-charge reduction in the device. The authors are investigating two types of ceramic/metal composite materials. One type is a directionally solidified eutectic consisting of a bulk oxide matrix such as UO 2 or stabilized ZrO 2 with parallel metal fibers (W) running through the oxide being exposed at the surface by cutting perpendicular to the fiber direction. The second type of material, called a surface eutectic, consists of a refractory substrate (Mo) with a thin layer of deposited and segregated material (Mo-Cr 2 O 3 -A1 2 O 3 ) on the surface. The final configuration of this layer is an oxide matrix with metallic islands scattered throughout

  8. The state of the art of wind energy conversion systems and technologies: A review

    International Nuclear Information System (INIS)

    Cheng, Ming; Zhu, Ying

    2014-01-01

    Highlights: • This paper reviews the state of the art of wind energy conversion systems. • Different types of common wind energy conversion systems are classified and compared. • The four most popular MPPT control methods are reviewed and compared. • The latest development of wind energy conversion technologies is introduced. • Future trends of the wind energy conversion technologies are discussed. - Abstract: This paper gives a comprehensive review of the state of the art of wind energy conversion systems (WECS) and technologies, with an emphasis on wind power generator and control. First, different types of common WECSs are classified according to their features and drive train types. The WECSs are compared on the basis of the volume, weight, cost, efficiency, system reliability and fault ride through capability. The maximum power point tracking (MPPT) control, which aims to make the generator speed meet an optimum value to ensure the maximum energy yield, plays a key role in the variable speed WECSs. A comprehensive review and comparison of the four most popular MPPT control methods are carried out and improvements for each method are presented. Furthermore, the latest development of wind energy conversion technologies is introduced, such as the brushless doubly fed induction generator (BDFIG), the stator permanent magnet synchronous generators, the magnetic-geared generators, dual power flow WECS with the electrical variable transmission (EVT) machine, and direct grid-connected WECS. Finally, the future trends of the technologies are discussed

  9. Beam emittance measurement from CERN thermionic guns

    International Nuclear Information System (INIS)

    Kester, O.; Rao, R.; Rinolfi, L.

    1992-01-01

    In the LEP Injector Linacs (LIL) a thermionic gun provides electron beams with different peak intensities at an energy of 80 keV. The beam emittances were estimated from the EGUN programme. Since the gun is of triode type, the main contribution to the emittance comes from the grid. The simulation programme does not model the real geometry by assuming a cylindrical symmetry, while the grid does not have such symmetry. A Gun Test Facility (GTF), allowing emittance measurements, based on the 3-gradients-method was installed. The experimental results are presented. (author) 6 refs.; 6 figs

  10. A PVTC system integrating photon-enhanced thermionic emission and methane reforming for efficient solar power generation

    Institute of Scientific and Technical Information of China (English)

    Wenjia Li; Hongsheng Wang; Yong Hao

    2017-01-01

    A new photovoltaic-thermochemical (PVTC) conceptual system integrating photon-enhanced thermionic emission (PETE) and methane steam reforming is proposed.Major novelty of the system lies in its potential adaptivity to primary fuels (e.g.methane) and high efficiencies of photovoltaic and thermochemical power generation,both of which result from its operation at much elevated temperatures (700-1000 ℃)compared with conventional photovoltaic-thermal (PVT) systems.Analysis shows that an overall power generation efficiency of 45.3% and a net solar-to-electric efficiency of 39.1% could be reached at an operating temperature of 750 ℃,after considering major losses during solar energy capture and conversion processes.The system is also featured by high solar share (37%) in the total power output,as well as high energy storage capability and very low CO2 emissions,both enabled by the integration of methane reforming with photovoltaic generation at high temperatures.

  11. Small ex-core heat pipe thermionic reactor concept (SEHPTR)

    International Nuclear Information System (INIS)

    Jacox, M.G.; Bennett, R.G.; Lundberg, L.B.; Miller, B.G.; Drexler, R.L.

    1991-01-01

    The Idaho National Engineering Laboratory (INEL) has developed an innovative space nuclear power concept with unique features and significant advantages for both Defense and Civilian space missions. The Small Ex-core Heat Pipe Thermionic Reactor (SEHPTR) concept was developed in response to Air Force needs for space nuclear power in the range of 10 to 40 kilowatts. This paper describes the SEHPTR concept and discusses the key technical issues and advantages of such a system

  12. Thermionic field emission in gold nitride Schottky nanodiodes

    Science.gov (United States)

    Spyropoulos-Antonakakis, N.; Sarantopoulou, E.; Kollia, Z.; Samardžija, Z.; Kobe, S.; Cefalas, A. C.

    2012-11-01

    We report on the thermionic field emission and charge transport properties of gold nitride nanodomains grown by pulsed laser deposition with a molecular fluorine laser at 157 nm. The nanodomains are sandwiched between the metallic tip of a conductive atomic force microscope and a thin gold layer forming thus a metal-semiconductor-metal junction. Although the limited existing data in the literature indicate that gold nitride was synthesized previously with low efficiency, poor stability, and metallic character; in this work, it is shown that gold nitride nanodomains exhibit semiconducting behavior and the metal-semiconductor-metal contact can be modeled with the back-to-back Schottky barrier model. From the experimental I-V curves, the main charge carrier transport process is found to be thermionic field emission via electron tunneling. The rectifying, near symmetric and asymmetric current response of nanocontacts is related to the effective contact area of the gold nitride nanodomains with the metals. A lower limit for the majority charge carriers concentration at the boundaries of nanodomains is also established using the full depletion approximation, as nanodomains with thickness as low as 6 nm were found to be conductive. Current rectification and charge memory effects are also observed in "quite small" conductive nanodomains (6-10 nm) due to stored charges. Indeed, charges near the surface are identified as inversion domains in the phase shift mapping performed with electrostatic force microscopy and are attributed to charge trapping at the boundaries of the nanodomains.

  13. Thermionic Properties of Carbon Based Nanomaterials Produced by Microhollow Cathode PECVD

    Science.gov (United States)

    Haase, John R.; Wolinksy, Jason J.; Bailey, Paul S.; George, Jeffrey A.; Go, David B.

    2015-01-01

    Thermionic emission is the process in which materials at sufficiently high temperature spontaneously emit electrons. This process occurs when electrons in a material gain sufficient thermal energy from heating to overcome the material's potential barrier, referred to as the work function. For most bulk materials very high temperatures (greater than 1500 K) are needed to produce appreciable emission. Carbon-based nanomaterials have shown significant promise as emission materials because of their low work functions, nanoscale geometry, and negative electron affinity. One method of producing these materials is through the process known as microhollow cathode PECVD. In a microhollow cathode plasma, high energy electrons oscillate at very high energies through the Pendel effect. These high energy electrons create numerous radical species and the technique has been shown to be an effective method of growing carbon based nanomaterials. In this work, we explore the thermionic emission properties of carbon based nanomaterials produced by microhollow cathode PECVD under a variety of synthesis conditions. Initial studies demonstrate measureable current at low temperatures (approximately 800 K) and work functions (approximately 3.3 eV) for these materials.

  14. THERMIONIC EMISSION ENHANCEMENT FROM CESIUM COATED RHENIUM IN ELECTRIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    de Steese, J. G.; Zollweg, R. J.

    1963-04-15

    The plasma-anode technique was used to observe anomalously high thermionic emission from a rhenium surface with small cesium coverage, where the work function of the composite surface is greater than the ionization potential of cesium. Data suggest that emission enhancement is caused by increased cesium coverage because of cesiumion trapping near the emitter surface under the influence of an ion-rich sheath. (auth)

  15. Microturbine Power Conversion Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.

    2003-07-21

    In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to

  16. Nano-textured W shows improvement of thermionic emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Barmina, E.V.; Serkov, A.A.; Shafeev, G.A. [General Physics Institute of the Russian Academy of Sciences, Wave Research Center of A.M. Prokhorov, Moscow (Russian Federation); Stratakis, E. [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, (IESL-FORTH), Heraklion (Greece); University of Crete, Materials Science and Technology Department, Heraklion (Greece); Fotakis, C. [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, (IESL-FORTH), Heraklion (Greece); University of Crete, Physics Department, Heraklion (Greece); Stolyarov, V.N.; Stolyarov, I.N. [Roentgenprom, Protvino, Moscow (Russian Federation)

    2012-01-15

    Laser-assisted nano-texturing of W substrates cathodes via ablation in liquid environment is experimentally realized. Two laser sources are used, either a Ti:sapphire femtosecond laser or a Nd:YAG laser with pulse duration of 350 ps. Laser exposure of W results in the formation of hemi-spherical nanostructures situated on top of periodic ripples. Nano-textured thermionic W cathode demonstrates the decrease of the efficient work function by 0.3 eV compared to pristine surface. (orig.)

  17. X-ray Diffraction Studies of the Structure and Thermochemistry of Alkaline-Earth Oxide-Coated Thermionic Cathodes

    Science.gov (United States)

    Karikari, E. K.; Bassey, E.; Wintucky, Edwin G.

    1998-01-01

    NASA LeRC has a broad, active cathode technology development program in which both experimental and theoretical studies are being employed to further development of thermionic cathodes for use as electron sources in vacuum devices for communications and other space applications. One important type of thermionic cathode under development is the alkaline-earth oxide-coated (BaO, SrO, CaO) cathode. Significant improvements in the emission characteristics of this cathode have been obtained through modification of the chemical composition and morphology of the oxide coating, with the best result thus far coming from the addition of In2O3 and Sc2O3. Whereas the In2O3 produces a finer, more uniform particle structure, the exact chemical state and role of the Sc2O3 in the emission enhancement is unknown. The purpose of this cooperative agreement is to combine the studies of the surface chemistry and electron emission at NASA LeRC of chemically modified oxide coatings with a study of the thermochemistry and crystal structure using X-ray diffraction equipment and expertise at Clark Atlanta University (CAU). The study at CAU is intended to provide the description and understanding of the structure and thermochemistry needed for further improvement and optimization of the modified coatings. A description of the experimental procedure, preliminary X-ray diffraction test results, together with the design of an ultrahigh vacuum chamber necessary for high temperature thermochemistry studies will be presented.

  18. High Efficiency Thermionics (HET-IV) and Converter Advancement (CAP) programs. Final reports

    Energy Technology Data Exchange (ETDEWEB)

    Geller, C.B.; Murray, C.S.; Riley, D.R. [Bettis Atomic Power Lab., West Mifflin, PA (United States); Desplat, J.L.; Hansen, L.K.; Hatch, G.L.; McVey, J.B.; Rasor, N.S. [Rasor Associates, Inc., Sunnyvale, CA (United States)

    1996-04-01

    This report contains the final report of the High Efficiency Thermionics (HET-IV) Program, Attachment A, performed at Rasor Associates, Inc. (RAI); and the final report of the Converter Advancement Program (CAP), performed at the Bettis Atomic Power Laboratory, Attachment B. The phenomenology of cesium-oxygen thermionic converters was elucidated in these programs, and the factors that had prevented the achievement of stable, enhanced cesium-oxygen converter performance for the previous thirty years were identified. Based on these discoveries, cesium-oxygen vapor sources were developed that achieved stable performance with factor-of-two improvements in power density and thermal efficiency, relative to conventional, cesium-only ignited mode thermionic converters. Key achievements of the HET-IV/CAP programs are as follows: a new technique for measuring minute traces of oxygen in cesium atmospheres; the determination of the proper range of oxygen partial pressures for optimum converter performance--10{sup {minus}7} to 10{sup {minus}9} torr; the discovery, and analysis of the cesium-oxygen liquid migration and compositional segregation phenomena; the successful use of capillary forces to contain the migration phenomenon; the use of differential heating to control compositional segregation, and induce vapor circulation; the development of mechanically and chemically stable, porous reservoir structures; the development of precise, in situ oxygen charging methods; stable improvements in emitter performance, up to effective emitter bare work functions of 5.4 eV; stable improvements in barrier index, to value below 1.8 Volts; the development of detailed microscopic models for cesium-oxygen reservoir dynamics and collector work function behavior; and the discovery of new relationships between electrode geometry and Schock Instability.

  19. Concept of Lunar Energy Park

    Science.gov (United States)

    Niino, Masayuki; Kisara, Katsuto; Chen, Lidong

    1993-10-01

    This paper presents a new concept of energy supply system named Lunar Energy Park (LEP) as one of the next-generation clean energy sources. In this concept, electricity is generated by nuclear power plants built on the moon and then transmitted to receiving stations on the earth by laser beam through transporting systems situated in geostationary orbit. The lunar nuclear power plants use a high-efficiency composite energy conversion system consisting of thermionic and thermoelectric generators to change nuclear thermal energy into electricity directly. The nuclear resources are considered to be available from the moon, and nuclear fuel transport from earth to moon is not necessary. Because direct energy conversion systems are employed, the lunar nuclear plants can be operated and controlled by robots and are maintenance-free, and so will cause no pollution to humans. The key technologies for LEP include improvements of conversion efficiency of both thermionic and thermoelectric converters, and developments of laser-beam power transmission technology as well. The details, including the construction of lunar nuclear plants, energy conversion and energy transmission systems, as well as the research plan strategies for this concept are reviewed.

  20. Thermionic system evaluation test (TSET) facility construction: A United States and Russian effort

    International Nuclear Information System (INIS)

    Wold, S.K.

    1993-01-01

    The Thermionic System Evaluation Test (TSET) is a ground test of an unfueled Russian TOPAZ-II in-core thermionic space reactor powered by electric heaters. The facility that will be used for testing of the TOPAZ-II systems is located at the New Mexico Engineering Research Institute (NMERI) complex in Albuquerque, NM. The reassembly of the Russian test equipment is the responsibility of International Scientific Products (ISP), a San Jose, CA, company and Inertek, a Russian corporation, with support provided by engineers and technicians from Phillips Laboratory (PL), Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and the University of New Mexico (UNM). This test is the first test to be performed under the New Mexico Strategic Alliance agreement. This alliance consists of the PL, SNL, LANL, and UNM. The testing is being funded by the Strategic Defense Initiative Organization (SDIO) with the PL responsible for project execution

  1. Hollywood's Conversion to Color: The Technological, Economic and Aesthetic Factors.

    Science.gov (United States)

    Kindem, Forham A.

    1979-01-01

    Discusses the film industry's conversion to color cinematography in the period between the 1920s and 1960s. Cites economic considerations, technological modifications, and aesthetic preferences by audiences as factors in this development. (JMF)

  2. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Biddy, M.; Tan, E.; Tao, L.; Jones, S.

    2013-03-01

    This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  3. Fermi level splitting and thermionic current improvement in low-dimensional multi-quantum-well (MQW) p-i-n structures

    International Nuclear Information System (INIS)

    Varonides, Argyrios C.

    2006-01-01

    Photo-excitation and subsequent thermionic currents are essential components of photo-excited carrier transport in multi-quantum-well photovoltaic (hetero-PV) structures. p-i-n multi-quantum structures are useful probes for a better understanding of PV device properties. Illumination of the intrinsic region of p-i-n multi-structures causes carrier trapping in any of the quantum wells, and subsequent carrier recombination or thermal escape is possible. At the vicinity of a quantum well, we find that the (quasi) Fermi levels undergo an upward split by a small, but non-negligible, energy amount ΔE F in the order of 12 meV. We conclude this fact by comparing the photo-excited carriers trapped in a quantum well, under illumination, to the carrier concentrations under dark. Based on such a prediction, we subsequently relate thermionic current density dependence on Fermi level splitting, concluding that excess thermal currents may increase by a factor of the order of 2. We conclude that illumination causes (a) Fermi level separation and (b) an apparent increase in thermionic currents

  4. Food waste-to-energy conversion technologies: current status and future directions.

    Science.gov (United States)

    Pham, Thi Phuong Thuy; Kaushik, Rajni; Parshetti, Ganesh K; Mahmood, Russell; Balasubramanian, Rajasekhar

    2015-04-01

    Food waste represents a significantly fraction of municipal solid waste. Proper management and recycling of huge volumes of food waste are required to reduce its environmental burdens and to minimize risks to human health. Food waste is indeed an untapped resource with great potential for energy production. Utilization of food waste for energy conversion currently represents a challenge due to various reasons. These include its inherent heterogeneously variable compositions, high moisture contents and low calorific value, which constitute an impediment for the development of robust, large scale, and efficient industrial processes. Although a considerable amount of research has been carried out on the conversion of food waste to renewable energy, there is a lack of comprehensive and systematic reviews of the published literature. The present review synthesizes the current knowledge available in the use of technologies for food-waste-to-energy conversion involving biological (e.g. anaerobic digestion and fermentation), thermal and thermochemical technologies (e.g. incineration, pyrolysis, gasification and hydrothermal oxidation). The competitive advantages of these technologies as well as the challenges associated with them are discussed. In addition, the future directions for more effective utilization of food waste for renewable energy generation are suggested from an interdisciplinary perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Abstracts of the international scientific-practical conference on space research, technology and conversion-II

    International Nuclear Information System (INIS)

    1997-04-01

    The International Conference on space research, technology and conversion-II was held on 16-18 April, 1997 in Tashkent, Uzbekistan. The specialists discussed various aspects of space research, technology and conversion problems. More than 60 talks were presented in the meeting on the following subjects: remote sensing and the processing of satellite information; space navigation and others, including radiation effects in silicon solar cells caused by cosmic radiation. (A.A.D.)

  6. Cogeneration Technology Alternatives Study (CTAS). Volume 6: Computer data. Part 1: Coal-fired nocogeneration process boiler, section A

    Science.gov (United States)

    Knightly, W. F.

    1980-01-01

    Various advanced energy conversion systems (ECS) are compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented for coal fired process boilers. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented.

  7. Thermoelectron corporation: From space power to Fortune 500

    Science.gov (United States)

    Scoville, A. Nancy; Masters, Richard

    1995-01-01

    ThermoElectron Corporation was founded in 1957 to commercialize thermionic energy conversion technologies. Today the company is a Fortune 500 company with 1993 revenues of 1.2 billion. In this paper the methods ThermoElectron used to achieve this result will be discussed with emphasis on the corporate philosophy.

  8. Numerical simulations of the thermionic electron gun for electron-beam welding and micromachining

    Czech Academy of Sciences Publication Activity Database

    Jánský, Pavel; Zlámal, J.; Lencová, Bohumila; Zobač, Martin; Vlček, Ivan; Radlička, Tomáš

    2009-01-01

    Roč. 84, č. 2 (2009), s. 357-362 ISSN 0042-207X R&D Projects: GA AV ČR IAA100650805 Institutional research plan: CEZ:AV0Z20650511 Keywords : Numerical simulation * Thermionic emission * Electron gun Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.975, year: 2009

  9. Simple model for the description of a thermionic Cs diode in operation

    International Nuclear Information System (INIS)

    Tschersich, K.G.

    1975-01-01

    Because of the small voltage loss in the space between the electrodes, Cs is the most common work medium in thermionic diodes. With the model calculations of the processes in the space between the electrodes, the author aims to explain the formation of Cs ions and the current transport through the electrode gap at these low voltages. (RW/AK) [de

  10. Measures to alleviate the back bombardment effect of thermionic rf electron gun

    International Nuclear Information System (INIS)

    Huang, Y.; Xie, J.

    1991-01-01

    Thermionic rf electron gun finds application as a high brightness electron source for rf linacs. However, cathode heating from back-bombardment effect causes a ramp in the macro-pulse beam current and limit the usable pulse width. Three methods: ring cathode, magnetic deflection and laser assisted heating are studied in theory and in experiment. The results of these studies are reported

  11. 29th Intersociety energy conversion engineering conference: Technical papers. Part 1

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Part 1 of these proceedings contains 96 papers covering the following topics: Aircraft power; Aerospace power systems--Automation; Batteries for aerospace power; Computer modeling of spacecraft systems; Fuel cells for aerospace; Power electronics; Power management and distribution; Space solar power; Space power systems; Solar dynamic ground test demonstrator; Space nuclear systems--Applications; Space nuclear systems--Reactor technology thermionics; Space nuclear systems reactor technology--Thermoelectrics; Space nuclear systems--Bimodal propulsion; Space nuclear systems--Isotopic power; and Space nuclear systems--thermoelectric materials. Most of the papers have been processed separately for inclusion on the data base

  12. Technology assessment of wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  13. TECHNOLOGICAL AND ENVIRONMENTAL PROBLEMS CONNECTED WITH THERMAL CONVERSION OF SEWAGE SLUDGE

    Directory of Open Access Journals (Sweden)

    Alina Żogała

    2016-02-01

    Full Text Available Overview of the most common technological and environmental problems connected with thermal conversion of sewage sludge was presented in the article. Such issues as the influence of content of moisture and mineral matter on fuel properties of sludge, problem of emission of pollutants, problem of management of solid residue, risk of corrosion, were described. Besides, consolidated characteristic of the most important methods of thermal conversion of sewage sludge, with their advantages and disadvantages, was presented in the paper.

  14. Theory of thermionic emission from a two-dimensional conductor and its application to a graphene-semiconductor Schottky junction

    Science.gov (United States)

    Trushin, Maxim

    2018-04-01

    The standard theory of thermionic emission developed for three-dimensional semiconductors does not apply to two-dimensional materials even for making qualitative predictions because of the vanishing out-of-plane quasiparticle velocity. This study reveals the fundamental origin of the out-of-plane charge carrier motion in a two-dimensional conductor due to the finite quasiparticle lifetime and huge uncertainty of the out-of-plane momentum. The theory is applied to a Schottky junction between graphene and a bulk semiconductor to derive a thermionic constant, which, in contrast to the conventional Richardson constant, is determined by the Schottky barrier height and Fermi level in graphene.

  15. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    Directory of Open Access Journals (Sweden)

    Kalomba Mboyi

    2015-04-01

    Full Text Available A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the emitting material with the radioisotope decay heat and by powering the different valves of the plasma rocket engine with the same radioisotope decay heat using a radioisotope thermoelectric generator. This rocket engine is then benchmarked against a 1 N hydrazine thruster configuration operated on one of the Pleiades-HR-1 constellation spacecraft. A maximal specific impulse and power saving of respectively 529 s and 32% are achieved with helium as propellant. Its advantages are its power saving capability, high specific impulses and simultaneous ease of storage and restart. It can however be extremely voluminous and potentially hazardous. The Kabila rocket is found to bring great benefits to the existing spacecraft and further research should optimize its geometric characteristics and investigate the physical principals of its operation.

  16. Nuclear thermionic power plant integration problems

    International Nuclear Information System (INIS)

    Fraas, A.P.

    1967-02-01

    The numerous boundary conditions to be met in preparing a well proportioned, properly integrated design for a thermionic cell reactor are discussed with the emphasis on materials and fabrication problems. Pertinent experience with fuel elements, tube header sheets, electric heaters, and pressure vessels is cited to highlight key limitations that have been encountered in structurally similar equipment. A reference design is presented to indicate how one might attempt to satisfy all of the many boundary conditions. The study indicates that it will be difficult to get a reactor core power density greater than about 35 w/cm 3 and that, while it is possible to minimize the ill effects of failures within individual cells by employing series-parallel connections, the study further indicates that there is inherently a high probability of leaks and electrical shorts and arcs within the reactor so that it is doubtful that good reliability can be obtained

  17. Research on novel coal conversion technology for energy and environment in 21st century

    Energy Technology Data Exchange (ETDEWEB)

    T. Takarada [Gunma University (Japan)

    2003-07-01

    In the 21st century, more efficient coal conversion technology will be needed. In this paper, novel gasification, pyrolysis and desulfurization processes using active catalysts are introduced. In particular, the application of ion-exchanged metals in brown coal to coal conversion technology is featured in this study. Other topics discussed include: Catalysis of mineral matter in coal; Catalytic effectiveness of Ni and K{sub 2}CO{sub 3} for various coals; Direct production of methane from steam gasification; Preparation of active catalysts from NaCl and KCl using brown coal; Gasification of high rank coal by mixing K-exchanged brown coal; Recovery of sulfur via catalytic SO{sub 2} gasification of coal char; Research on novel coal conversion technology BTX production by hydropyrolysis of coal in PPFB using catalyst; High BTU gas production by low-temperature catalytic hydropyrolysis of coal; and Ca-exchanged brown coal as SO{sub 2} and H{sub 2}S sorbents. 12 refs., 17 figs.

  18. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Čada, Glenn F.

    2007-04-01

    A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices and their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.

  19. Thermionic detection of the ionic fragments of continiuum-state pair absorption systems

    International Nuclear Information System (INIS)

    Hotop, R.; Niemax, K.; Richter, J.; Weber, K.H.

    1981-01-01

    Using a thermionic diode we have detected the ionic fragments formed by associative ionization and dissociation after continuum-state pair absorption processes in Cs-Cs and Cs-K systems. Assuming an ionization probability of unity of the excited species and calibrating the pair absorption bands by taking into account the known photoionization cross section of the atoms we found excellent agreement with data from classical absorption measurements. (orig.)

  20. Using Multispectral Imaging to Measure Temperature Profiles and Emissivity of Large Thermionic Dispenser, Cathodes

    International Nuclear Information System (INIS)

    Simmons, D.F.; Fortgang, C.M.; Holtkamp, D.B.

    2001-01-01

    Thermionic dispenser cathodes are widely used in modern high-power microwave tubes. Use of these cathodes has led to significant improvement in performance. In recent years these cathodes have been used in electron linear accelerators (LINACs), particularly in induction LINACs, such as the Experimental Test Accelerator at Lawrence Livermore National Laboratory and the Relativistic Test Accelerator at Lawrence Berkeley National Laboratory. For induction LINACs, the thermionic dispenser cathode provides greater reproducibility, longer pulse lengths, and lower emittance beams than does a field emission cathode. Los Alamos National Laboratory is fabricating a dual-axis X-ray radiography machine called dual-axis radiograph hydrodynamic test (DARHT). The second axis of DARHT consists of a 2-kA, 20-MeV induction LINAC that uses a 3.2-MeV electron gun with a tungsten thermionic-dispenser cathode. Typically the DARHT cathode current density is 10 A/cm 2 at 1050 C. Under these conditions current density is space-charge limited, which is desirable since current density is independent of temperature. At lower temperature (the temperature-limited regime) there are variations in the local current density due to a nonuniform temperature profile. To obtain the desired uniform current density associated with space-charge limited operation, the coolest area on the cathode must be at a sufficiently high temperature so that the emission is space-charge limited. Consequently, the rest of the cathode is emitting at the same space-charge-limited current density but is at a higher temperature than necessary. Because cathode lifetime is such a strong function of cathode temperature, there is a severe penalty for nonuniformity in the cathode temperature. For example, a temperature increase of 50 C means cathode lifetime will decrease by a factor of at least four. Therefore, we are motivated to measure the temperature profiles of our large-area cathodes

  1. Simulations of thermionic suppression during tungsten transient melting experiments.

    Czech Academy of Sciences Publication Activity Database

    Komm, Michael; Tolias, P.; Ratynskaia, S.; Dejarnac, Renaud; Gunn, J. P.; Krieger, K.; Podolník, Aleš; Pitts, R.A.; Pánek, Radomír

    T170, December (2017), č. článku 014069. ISSN 0031-8949. [PFMC 2017: 16th International Conference on Plasma-Facing Materials and Components for Fusion Applications. Düsseldorf, 16.05.2017-19.05.2017] R&D Projects: GA ČR(CZ) GA16-14228S; GA MŠk(CZ) 8D15001 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : tokamak * thermionic emission * tungsten * melt * plasma-facing component Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 1.3 Physical sciences Impact factor: 1.280, year: 2016 http://iopscience.iop.org/article/10.1088/1402-4896/aa9209

  2. Design and operation of a thermionic converter in air

    International Nuclear Information System (INIS)

    Horner, M.H.; Begg, L.L.; Smith, J.N. Jr.; Geller, C.B.; Kallnowski, J.E.

    1995-01-01

    An electrically heated thermionic converter has been designed, built and successfully tested in air. Several unique features were incorporated in this converter: an integral cesium reservoir, innovative ceramic-to-metal seals, a heat rejection system coupling the collector to a low temperature heat sink and an innovative cylindrical heater filament. The converter was operated for extended periods of time with the emitter at about 1900 K. the collector at about 700 K, and a power density of over 2 w(e)/sq. cm. Input power transients were run between 50% and 100% thermal power, at up to 1% per second, without instabilities in performance

  3. Multi-channel pulser for the SLC thermionic electron source

    International Nuclear Information System (INIS)

    Browne, M.J.; Clendenin, J.E.; Corredoura, P.L.; Jobe, R.K.; Koontz, R.F.; Sodja, J.

    1985-01-01

    A new pulser developed for the SLC thermionic gun has been operational since September 1984. It consists of two planar triode amplifiers with a common output triode driving the gun cathode to produce two independent pulses of up to 9A with a 3 nsec FWHM pulse width. Three long-pulse amplifiers are also connected to the cathode to produce pulses with widths controllable between 100 nsec and 1.6 μsec. Each amplifier has independent timing and amplitude control through a fiber optic link to the high voltage plane of the gun cathode-grid structure. The pulser and its operating characteristics are described. 15 refs., 3 figs

  4. Selection of biomass thermochemical conversion technology in the Netherlands : A best worst method approach

    NARCIS (Netherlands)

    van de Kaa, G.; Kamp, L.M.; Rezaei, J.

    2017-01-01

    This paper studies the technology battle for biomass conversion in the Netherlands. Three types of technologies are currently fighting the battle for standard dominance: combustion, pyrolysis, and gasification. Twelve relevant factors for standard dominance were found: ‘financial strength’,

  5. Wavelength conversion technology

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    1998-01-01

    Optical wavelength conversion is currently attracting much interest. This is because it enables full flexibility and eases management of WDM fibre networks. The tutorial will review existing and potential application areas. Examples of node architectures and network demonstrators that use wavelen...

  6. Work Began on Contracts for Radioisotope Power Conversion Technology Research and Development

    Science.gov (United States)

    Wong, Wayne A.

    2005-01-01

    NASA has had a history of successful space flight missions that depended on radioisotope-fueled power systems. These Radioisotope Power Systems (RPSs) converted the heat generated from the decay of radioisotope material into useful electrical power. An RPS is most attractive in applications where photovoltaics are not optimal, such as deep-space applications where the solar flux is too low or extended applications on planets such as Mars where the day/night cycle, settling of dust, and life requirements limit the usefulness of photovoltaics. NASA s Radioisotope Power Conversion Technology (RPCT) Program is developing next-generation power-conversion technologies that will enable future missions that have requirements that cannot be met by the two RPS flight systems currently being developed by the Department of Energy for NASA: the Multi-Mission Radioisotope Thermoelectric Generator and the Stirling Radioisotope Generator (SRG).

  7. Reducing Energy Degradation Due to Back-bombardment Effect with Modulated RF Input in S-band Thermionic RF Gun

    Science.gov (United States)

    Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo

    2007-01-01

    Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.

  8. Summary of space nuclear reactor power systems, 1983--1992

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  9. Summary of space nuclear reactor power systems, 1983--1992

    International Nuclear Information System (INIS)

    Buden, D.

    1993-01-01

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power

  10. The effect of samarium doping on structure and enhanced thermionic emission properties of lanthanum hexaboride fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shenlin; Hu, Qianglin [College of Mathematics and Physics, Jinggangshan University, Jian (China); Zhang, Jiuxing; Liu, Danmin [Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing (China); Huang, Qingzhen [NIST Center for Neutron Research, National Institute of Standards and Technology, MD (United States)

    2014-03-15

    Single-phase polycrystalline solid solutions (La{sub 1-x}Sm{sub x})B{sub 6} (x = 0, 0.2, 0.4, 0.8, 1) are fabricated by spark plasma sintering (SPS). This study demonstrates a systematic investigation of structure-property relationships in Sm-doped LaB{sub 6} ternary rare-earth hexaborides. The microstructure, crystallographic orientation, electrical resistivity, and thermionic emission performance of these compounds are investigated. Analysis of the results indicates that samarium (Sm) doping has a noticeable effect on the structure and performance of lanthanum hexaboride (LaB{sub 6}). The analytical investigation of the electron backscatter diffraction confirms that (La{sub 0.6}Sm{sub 0.4})B{sub 6} exhibits a clear (001) texture that results in a low work function. Work functions are determined by pulsed thermionic diode measurements at 1500-1873 K. The (La{sub 0.6}Sm{sub 0.4})B{sub 6} possesses improved thermionic emission properties compared to LaB{sub 6}. The current density of (La{sub 0.6}Sm{sub 0.4})B{sub 6} is 42.4 A cm{sup -2} at 1873 K, which is 17.5% larger than that of LaB{sub 6}. The values of Φ{sub R} for (La{sub 0.6}Sm{sub 0.4})B{sub 6} and LaB{sub 6} are 1.98 ± 0.03 and 1.67 ± 0.03 eV, respectively. Furthermore, the Sm substitution of lanthanum (La) effectively increases the electrical resistivity. These results reveal that Sm doping lead to significantly enhanced thermionic emission properties of LaB{sub 6}. The compound (La{sub 0.6}Sm{sub 0.4})B{sub 6} appears most promising as a future emitter material. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Design, construction and measurements of an alpha magnet as a solution for compact bunch compressor for the electron beam from Thermionic RF Gun

    Science.gov (United States)

    Rajabi, A.; Jazini, J.; Fathi, M.; Sharifian, M.; Shokri, B.

    2018-03-01

    The beam produced by a thermionic RF gun has wide energy spread that makes it unsuitable for direct usage in photon sources. Here in the present work, we optimize the extracted beam from a thermionic RF gun by a compact economical bunch compressor. A compact magnetic bunch compressor (Alpha magnet) is designed and constructed. A comparison between simulation results and experimental measurements shows acceptable conformity. The beam dynamics simulation results show a reduction of the energy spread as well as a compression of length less than 1 ps with 2.3 mm-mrad emittance.

  12. Research and Development of a New Field Enhanced Low Temperature Thermionic Cathode that Enables Fluorescent Dimming and Loan Shedding without Auxiliary Cathode Heating

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jin

    2009-01-07

    This is the final report for project entitled 'Research and development of a new field enhanced low temperature thermionic cathode that enables fluorescent dimming and load shedding without auxiliary cathode heating', under Agreement Number: DE-FC26-04NT-42329. Under this project, a highly efficient CNT based thermionic cathode was demonstrated. This cathode is capable of emitting electron at a current density two order of magnitude stronger then a typical fluorescent cathode at same temperatures, or capable of emitting at same current density but at temperature about 300 C lower than that of a fluorescent cathode. Detailed fabrication techniques were developed including CVD growth of CNTs and sputter deposition of oxide thin films on CNTs. These are mature technologies that have been widely used in industry for large scale materials processing and device fabrications, thus, with further development work, the techniques developed in this project can be scaled-up in manufacturing environment. The prototype cathodes developed in this project were tested in lighting plasma discharge environment. In many cases, they not only lit and sustain the plasma, but also out perform the fluorescent cathodes in key parameters such like cathode fall voltages. More work will be needed to further evaluate more detailed and longer term performance of the prototype cathode in lighting plasma.

  13. Injection of holes at indium tin oxide/dendrimer interface: An explanation with new theory of thermionic emission at metal/organic interfaces

    International Nuclear Information System (INIS)

    Peng Yingquan; Lu Feiping

    2006-01-01

    The traditional theory of thermionic emission at metal/inorganic crystalline semiconductor interfaces is no longer applicable for the interface between a metal and an organic semiconductor. Under the assumption of thermalization of hot carriers in the organic semiconductor near the interface, a theory for thermionic emission of charge carriers at metal/organic semiconductor interfaces is developed. This theory is used to explain the experimental result from Samuel group [J.P.J. Markham, D.W. Samuel, S.-C. Lo, P.L. Burn, M. Weiter, H. Baessler, J. Appl. Phys. 95 (2004) 438] for the injection of holes from indium tin oxide into the dendrimer based on fac-tris(2-phenylpyridyl) iridium(III)

  14. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.

    Science.gov (United States)

    Kumar, Ashutosh; Kashid, Ranjit; Ghosh, Arindam; Kumar, Vikram; Singh, Rajendra

    2016-03-01

    Temperature-dependent electrical transport characteristics of exfoliated graphene/GaN Schottky diodes are investigated and compared with conventional Ni/GaN Schottky diodes. The ideality factor of graphene/GaN and Ni/GaN diodes are measured to be 1.33 and 1.51, respectively, which is suggestive of comparatively higher thermionic emission current in graphene/GaN diode. The barrier height values for graphene/GaN diode obtained using thermionic emission model and Richardson plots are found to be 0.60 and 0.72 eV, respectively, which are higher than predicted barrier height ∼0.40 eV as per the Schottky-Mott model. The higher barrier height is attributed to hole doping of graphene due to graphene-Au interaction which shifts the Fermi level in graphene by ∼0.3 eV. The magnitude of flicker noise of graphene/GaN Schottky diode increases up to 175 K followed by its decrease at higher temperatures. This indicates that diffusion currents and barrier inhomogeneities dominate the electronic transport at lower and higher temperatures, respectively. The exfoliated graphene/GaN diode is found to have lower level of barrier inhomogeneities than conventional Ni/GaN diode, as well as earlier reported graphene/GaN diode fabricated using chemical vapor deposited graphene. The lesser barrier inhomogeneities in graphene/GaN diode results in lower flicker noise by 2 orders of magnitude as compared to Ni/GaN diode. Enhanced thermionic emission current, lower level of inhomogeneities, and reduced flicker noise suggests that graphene-GaN Schottky diodes may have the underlying trend for replacing metal-GaN Schottky diodes.

  15. The Impacts on Illegal Farmland Conversion of Adopting Remote Sensing Technology for Land Inspection in China

    Directory of Open Access Journals (Sweden)

    Taiyang Zhong

    2014-07-01

    Full Text Available While China’s central government has adopted remote sensing technology in land inspection since 2000, little empirical research has been done on its effect. This study aims to measure the effect of satellite imagery-based land inspection (SIBI on illegal farmland conversion. The data used in this study were collected for the period from 1997 to 2010 at the province-level. The econometrics approach for panel data model was used in this research. The results showed that SIBI has a deterrent effect of approximately 2.42 ha for every increase of 1% in proportion to the area of prefecture-level regions inspected in a province-level region. The results also indicate land inspections with RS (Remote Sensing technology saved approximately 11,880 ha farmland from illegal conversion during 2000–2010 with an estimated contribution of reducing illegal farmland conversion by nearly 11%. Furthermore, the governance structure change for land inspection has also contributed to deterring illegal farmland conversion. The deterrent effects due to land inspection by the Supervisor of State Land (SSL are about 7332 ha during 2008–2010 with an estimated contribution of reducing illegal farmland conversion by nearly 33%. In conclusion, although SIBI has strengthened China’s central capacity to uncover illegal farmland conversion and weakened local governments’ abilities to hide illegal farmland conversion, it has limited impact on illegal farmland conversion since it is just a technical tool. Improvements in the land inspection governance structure have also helped to deter illegal farmland conversion.

  16. Evaluation of precision in measurements of uranium isotope ratio by thermionic mass spectrometry

    International Nuclear Information System (INIS)

    Moraes, N.M.P. de; Rodrigues, C.

    1977-01-01

    The parameters which affect the precision and accuracy of uranium isotopic ratios measurements by thermionic mass spectrometry are discussed. A statistical designed program for the analysis of the internal and external variances are presented. It was done an application of this statistical methods, in order to get mass discrimination factor, and its standard mean deviation, by using some results already published for 235 U/ 238 U ratio in NBS uranium samples, and natural uranium [pt

  17. THz and Sub-THz Capabilities of a Table-Top Radiation Source Driven by an RF Thermionic Electron Gun

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Alexei V.; Agustsson, R.; Boucher, S.; Campese, Tara; Chen, Y.C.; Hartzell, Josiah J.; Jocobson, B.T.; Murokh, A.; O' Shea, F.H.; Spranza, E.; Berg, W.; Borland, M.; Dooling, J. C.; Erwin, L.; Lindberg, R. R.; Pasky, S.J.; Sereno, N.; Sun, Y.; Zholents, A.

    2017-06-01

    Design features and experimental results are presented for a sub-mm wave source [1] based on APS RF thermionic electron gun. The setup includes compact alpha-magnet, quadrupoles, sub-mm-wave radiators, and THz optics. The sub-THz radiator is a planar, oversized structure with gratings. Source upgrade for generation frequencies above 1 THz is discussed. The THz radiator will use a short-period undulator having 1 T field amplitude, ~20 cm length, and integrated with a low-loss oversized waveguide. Both radiators are integrated with a miniature horn antenna and a small ~90°-degree in-vacuum bending magnet. The electron beamline is designed to operate different modes including conversion to a flat beam interacting efficiently with the radiator. The source can be used for cancer diagnostics, surface defectoscopy, and non-destructive testing. Sub-THz experiment demonstrated a good potential of a robust, table-top system for generation of a narrow bandwidth THz radiation. This setup can be considered as a prototype of a compact, laser-free, flexible source capable of generation of long trains of Sub-THz and THz pulses with repetition rates not available with laser-driven sources.

  18. Impact of the use of low or medium enriched uranium on the masses of space nuclear reactor power systems

    International Nuclear Information System (INIS)

    1994-12-01

    The design process for determining the mass increase for the substitution of low-enriched uranium (LEU) for high-enriched uranium (HEU) in space nuclear reactor systems is an optimization process which must simultaneously consider several variables. This process becomes more complex whenever the reactor core operates on an in-core thermionic power conversion, in which the fissioning of the nuclear fuel is used to directly heat thermionic emitters, with the subsequent elimination of external power conversion equipment. The increased complexity of the optimization process for this type of system is reflected in the work reported herein, where considerably more information has been developed for the moderated in-core thermionic reactors

  19. Analysis of thermionic DC electron gun for 125 MeV linac

    International Nuclear Information System (INIS)

    Kanno, K.; Sato, Isamu; Sato, K.

    2000-01-01

    The beam trace calculation for the 100 kV thermionic DC electron gun with EIMAC 646E cathode, which is currently used for the 125 MeV linac at Nihon University, has been performed using EGUN code. The result showed a strong focus of the beam at the exit of the anode. A better geometry of the gun has been investigated by varying the shape of the wehnelt electrode. Also the trace calculation has been performed for the case of EIMAC 646B, which showed a considerably small emittance compared with that estimated for the present gun. (author)

  20. Analysis of thermionic DC electron gun for 125 MeV linac

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, K. [Graduate School of Science and Technology, Nihon Univ., Funabashi, Chiba (Japan); Sato, Isamu; Sato, K. [Nihon Univ., Funabashi, Chiba (Japan). Atomic Energy Research Inst] [and others

    2000-07-01

    The beam trace calculation for the 100 kV thermionic DC electron gun with EIMAC 646E cathode, which is currently used for the 125 MeV linac at Nihon University, has been performed using EGUN code. The result showed a strong focus of the beam at the exit of the anode. A better geometry of the gun has been investigated by varying the shape of the wehnelt electrode. Also the trace calculation has been performed for the case of EIMAC 646B, which showed a considerably small emittance compared with that estimated for the present gun. (author)

  1. Particle Simulations of a Thermionic RF Gun with Gridded Triode Structure for Reduction of Back-Bombardment

    CERN Document Server

    Kusukame, K; Kii, T; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    Thermionic RF guns show advantageous features compared with photocathode ones such as easy operation and much higher repetition rate of micropulses, both of which are suitable for their application to high average power FELs. They however suffer from the back-bombardment effect [1], i.e., in conventional RF guns, electrons are extracted from cathode also in the latter half of accelerating phase and tend to back-stream to hit the cathode, and as a result the macropulse duration is limited down to severalμsec Against this adverse effect in thermionic RF guns, introduction of the triode structure has been proposed [2], where the accelerating phase and amplitude nearby the cathode can be controlled regardless of the phase of the first accelerating cell in the conventional RF gun. Our one-dimensional particle simulation results predict that the back-bombardment power can be reduced by 99 % only with 30-40 kW RF power fed to the grid in the present triode structure with an optimal phase difference from th...

  2. Performance review of thermionic electron gun developed for RF linear accelerators at RRCAT

    International Nuclear Information System (INIS)

    Wanmode, Yashwant; Mulchandani, J.; Reddy, T.S.; Bhisikar, A.; Singh, H.G.; Shrivastava, Purushottam

    2015-01-01

    RRCAT is engaged in development of RF electron linear accelerator for irradiation of industrial and agricultural products. Thermionic electron gun is primary source for this accelerator as beam current in the RF accelerator is modest and thermionic emission is most prevalent option for electron gun development. An electron gun has to meet high cathode emission capability, low filament power, good accessibility for cathode replacement and should provide short time for maintenance. Electron linear accelerator up to beam energy of 10 MeV require electron source of 45-50 keV beam energy and emission current of 1 A. Electron optics of gun and electron beam profile simulations were carried out using CST's particle tracking code and EGUN code. Triode type electron gun of cathode voltage 50 kV pulsed has been designed, developed and integrated with 10 MeV electron linear accelerators at RRCAT. Beam current of more than 600 mA has been measured with faraday cup in the test stand developed for characterizing the electron gun. Two accelerators one is imported and another one developed indigenously has been energized using this electron gun. Beam energy of 5-10 MeV has been achieved with beam current of 250-400 mA by integrating this electron gun with the linear accelerator. This paper reviews the performance of indigenously developed electron gun for both linear accelerators. (author)

  3. Low-cost feedstock conversion to biodiesel via ultrasound technology

    Energy Technology Data Exchange (ETDEWEB)

    Babajide, O.; Petrik, L.; Amigun, B.; Ameer, F. [Environmental and Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Amigun, B. [Sustainable Energy Futures, Council for Scientific and Industrial Research (CSIR), Stellenbosch (South Africa)

    2010-10-15

    Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock - in this case waste cooking oil - in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 {sup o}C, a reaction time of 30 min and 0.75% KOH (wt/wt) catalyst concentration were obtained for the transesterification of the waste oil via the use of ultrasound. (authors)

  4. Low-Cost Feedstock Conversion to Biodiesel via Ultrasound Technology

    Energy Technology Data Exchange (ETDEWEB)

    Babajide, Omotola [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa); Petrik, Leslie [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa); Amigun, Bamikole [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa) and Sustainable Energy Futures, Council for Scientific and Industrial Research (CSIR), Stellenbosch (South Africa); Ameer, Faraouk [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa)

    2010-09-15

    Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock – in this case waste cooking oil – in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 deg C and a reaction time of 30 min and 0.75% KOH (wt/wt) catalyst concentration was obtained for the transesterification of the waste oil via the use of ultrasound.

  5. Development of a thermionic magnicon amplifier at 11.4 GHz. Technical progress report, 16 May 1994--31 December 1995

    International Nuclear Information System (INIS)

    Gold, S.H.; Fliflet, A.W.; Manheimer, W.M.

    1995-01-01

    This is a progress report on a four-year research program entitled 'Development of a Thermionic Magnicon Amplifier at 11.4 GHz', which is under way in the Plasma Physics Division of the Naval Research Laboratory (NRL) under Interagency Agreement DE-AI02-94ER40681. This report covers the period 16 May 1994 through 31 December 1995. The magnicon is an advanced microwave tube with potential application to future high gradient linear accelerators such as TeV colliders. Under this program, NRL plans to build and test a thermionic magnicon amplifier tube powered by a 500 kV, 200 A, 10 Hz modulator with a 1 μsec pulse. However, the experiments that were carried out during the period covered by this report were driven by a single-shot Marx generator, and the electron beam was produced from a graphite plasma cathode

  6. The feasibility of using conversational agent technology to improve problem-solving and coping skills of young adults with cancer

    Directory of Open Access Journals (Sweden)

    von Friederichs-Fitzwater M

    2011-04-01

    Full Text Available Marlene M von Friederichs-Fitzwater1, Frederick J Meyers21Division of Hematology/Oncology, Internal Medicine, 2School of Medicine, University of California Davis, Sacramento, CA, USAObjective: Young adults with cancer have unique psychosocial needs and often lack the problem-solving and coping skills for effective resolution. We conducted a study to clarify these needs and then developed and tested an educational intervention to coach young adults with cancer in problem-solving and coping skills using a new conversational agent technology that uses a multi-media format to simulate face-to-face encounters.Methods: We qualitatively assessed online focus groups and chat rooms with 45 young adults with cancer and used the results to develop and test an online 15-minute educational prototype using a new conversational agent technology with 49 young adults (18–35 years of age with cancer.Results: Young adults with cancer are most concerned about reproductive issues, emotional issues, communicating with healthcare providers, and the risks and benefits of treatments. The study participants found the I-COPE prototype to be useful, easy to use, and worth recommending to others. They wanted to have more video segments about the experiences of other young adults with cancer; more video segments of actual procedures and treatments; more Internet links to information and resources; and more opportunities to interact with the conversational agent.Conclusion: New conversational agent technology is useful in coaching problem-solving and coping skills to empower young adults with cancer.Practice implications: New conversational agent technology is a useful tool in patient education and skill development, particularly among young adults.Keywords: young adult cancer patients, conversational agent technology, problem-solving, coping, self-efficacy, survivorship

  7. Design study of a low-emittance high-repetition rate thermionic rf gun

    Directory of Open Access Journals (Sweden)

    A. Opanasenko

    2017-05-01

    Full Text Available We propose a novel gridless continuous-wave radiofrequency (rf thermionic gun capable of generating nC ns electron bunches with a rms normalized slice emittance close to the thermal level of 0.3 mm mrad. In order to gate the electron emission, an externally heated thermionic cathode is installed into a stripline-loop conductor. Two high-voltage pulses propagating towards each other in the stripline-loop overlap in the cathode region and create a quasielectrostatic field gating the electron emission. The repetition rate of pulses is variable and can reach up to one MHz with modern solid-state pulsers. The stripline attached to a rf gun cavity wall has with the wall a common aperture that allows the electrons to be injected into the rf cavity for further acceleration. Thanks to this innovative gridless design, simulations suggest that the bunch emittance is approximately at the thermal level after the bunch injection into the cavity provided that the geometry of the cathode and aperture are properly designed. Specifically, a concave cathode is adopted to imprint an Ƨ-shaped distribution onto the beam transverse phase-space to compensate for an S-shaped beam distribution created by the spherical aberration of the aperture-cavity region. In order to compensate for the energy spread caused by rf fields of the rf gun cavity, a 3rd harmonic cavity is used. A detailed study of the electrodynamics of the stripline and rf gun cavity as well as the beam optics and bunch dynamics are presented.

  8. The design of a 3 GHz thermionic RF-gun and energy filter for MAX-lab

    CERN Document Server

    Anderberg, B; Demirkan, M; Eriksson, M; Malmgren, L; Werin, S

    2002-01-01

    A new pre-injector has been designed for the MAX-laboratory. It consists of an RF-gun and a magnetic energy filter. The newly designed RF-gun geometry will be operated at 3 GHz in the thermionic mode using a BaO cathode. The pre-injector will provide a 2.3 MeV electron beam in 3 ps micro pulses to a new injector system currently under construction.

  9. Low-Cost Feedstock Conversion to Biodiesel via Ultrasound Technology

    Directory of Open Access Journals (Sweden)

    Farouk Ameer

    2010-10-01

    Full Text Available Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock – in this case waste cooking oil – in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 °C and a reaction time of 30 min and 0.75% KOH (wt/wt catalyst concentration was obtained for the transesterification of the waste oil via the use of ultrasound.

  10. Low work-function thermionic emission and orbital-motion-limited ion collection at bare-tether cathodic contact

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin, E-mail: xin.chen@upm.es; Sanmartín, J. R., E-mail: juanr.sanmartin@upm.es [Departamento de Física Aplicada, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros, 3, 28040 Madrid (Spain)

    2015-05-15

    With a thin coating of low-work-function material, thermionic emission in the cathodic segment of bare tethers might be much greater than orbital-motion-limited (OML) ion collection current. The space charge of the emitted electrons decreases the electric field that accelerates them outwards, and could even reverse it for high enough emission, producing a potential hollow. In this work, at the conditions of high bias and relatively low emission that make the potential monotonic, an asymptotic analysis is carried out, extending the OML ion-collection analysis to investigate the probe response due to electrons emitted by the negatively biased cylindrical probe. At given emission, the space charge effect from emitted electrons increases with decreasing magnitude of negative probe bias. Although emitted electrons present negligible space charge far away from the probe, their effect cannot be neglected in the global analysis for the sheath structure and two thin layers in between sheath and the quasineutral region. The space-charge-limited condition is located. It is found that thermionic emission increases the range of probe radius for OML validity and is greatly more effective than ion collection for cathodic contact of tethers.

  11. Low-temperature thermionics in space nuclear power systems with the safe-type fast reactor

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Yarygin, V.I.; Lazarenko, G.E.; Zabudko, A.N.; Ovcharenko, M.K.; Pyshko, A.P.; Mironov, V.S.; Kuznetsov, R.V.

    2007-01-01

    The potentialities of the use of the low-temperature thermionic converters (TIC) with the emitter temperature ≤ 1500 K in the space nuclear power system (SNPS) with the SAFE-type (Safe Affordable Fission Engine) fast reactor proposed and developed by common efforts of American experts have been considered. The main directions of the 'SAFE-300-TEG' SNPS (300 kW(thermal)) design update by replacing the thermoelectric converters with the low-temperature high-performance thermionic converters (with the barrier index V B ≤ 1.9 eV and efficiency ≥ 10%) meant for a long-term operation (5 years at least) as the components of the SAFE-300-TIC SNPS for a Lunar base have been discussed. The concept of the SNPS with the SAFE-type fast reactor and low-temperature TICs with specific electric power of about 1.45 W/cm 2 as the components of the SAFE-300-TIC system meeting the Nasa's initial requirements to a Lunar base with the electric power demand of about 30 kW(electrical) for robotic mission has been considered. The results, involving optimization and mass-and-size estimation, show that the SAFE-300-TIC system meets the initial requirements by Nasa to the lunar base power supply. The main directions of the system update aimed at the output electric power increase up to 100 kW(electrical) have also been presented. (authors)

  12. Analysis of instability growth and collisionless relaxation in thermionic converters using 1-D PIC simulations

    International Nuclear Information System (INIS)

    Kreh, B.B.

    1994-12-01

    This work investigates the role that the beam-plasma instability may play in a thermionic converter. The traditional assumption of collisionally dominated relaxation is questioned, and the beam-plasma instability is proposed as a possible dominant relaxation mechanism. Theory is developed to describe the beam-plasma instability in the cold-plasma approximation, and the theory is tested with two common Particle-in-Cell (PIC) simulation codes. The theory is first confirmed using an unbounded plasma PIC simulation employing periodic boundary conditions, ES1. The theoretically predicted growth rates are on the order of the plasma frequencies, and ES1 simulations verify these predictions within the order of 1%. For typical conditions encountered in thermionic converters, the resulting growth period is on the order of 7 x 10 -11 seconds. The bounded plasma simulation PDP1 was used to evaluate the influence of finite geometry and the electrode boundaries. For this bounded plasma, a two-stream interaction was supported and resulting in nearly complete thermalization in approximately 5 x 10 -10 seconds. Since the electron-electron collision rate of 10 9 Hz and the electron atom collision rate of 10 7 Hz are significantly slower than the rate of development of these instabilities, the instabilities appear to be an important relaxation mechanism

  13. Product information representation for feature conversion and implementation of group technology automated coding

    Science.gov (United States)

    Medland, A. J.; Zhu, Guowang; Gao, Jian; Sun, Jian

    1996-03-01

    Feature conversion, also called feature transformation and feature mapping, is defined as the process of converting features from one view of an object to another view of the object. In a relatively simple implementation, for each application the design features are automatically converted into features specific for that application. All modifications have to be made via the design features. This is the approach that has attracted most attention until now. In the ideal situation, however, conversions directly from application views to the design view, and to other applications views, are also possible. In this paper, some difficulties faced in feature conversion are discussed. A new representation scheme of feature-based parts models has been proposed for the purpose of one-way feature conversion. The parts models consist of five different levels of abstraction, extending from an assembly level and its attributes, single parts and their attributes, single features and their attributes, one containing the geometric reference element and finally one for detailed geometry. One implementation of feature conversion for rotational components within GT (Group Technology) has already been undertaken using an automated coding procedure operating on a design-feature database. This database has been generated by a feature-based design system, and the GT coding scheme used in this paper is a specific scheme created for a textile machine manufacturing plant. Such feature conversion techniques presented here are only in their early stages of development and further research is underway.

  14. Biomass thermochemical conversion program: 1987 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1988-01-01

    The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

  15. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  16. Conceptual engineering design study of thermionic topping of fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-15

    Primary objectives of this study are to investigate alternative design concepts of thermal coupling of thermionic energy converters (TECs) to the steam cycle and the mechanical and electrical aspects of integrating TEC design into the steam power station. The specific tasks include: (1) evaluate design concepts of TEC topping of solvent refined liquified coal-fired steam power plants, with main emphasis devoted to thermal, mechanical, and electrical design aspects. (2) Develop preliminary conceptual design of a modular TEC assembly. (3) Develop preliminary cost estimates of the design modification to a liquified coal-fired steam power plant with TEC topping. (4) Provide support to Thermo Electron Corporation in planning TEC hardware testing. Results are presented in detail.

  17. Symposium proceedings: environmental aspects of fuel conversion technology, IV (April 1979, Hollywood, FL)

    Energy Technology Data Exchange (ETDEWEB)

    Ayer, F.A.; Jones, N.S. (comps.)

    1979-09-01

    The proceedings document presentations made at the symposium on Environmental Aspects of Fuel Conversion Technology are presented. The symposium acted as a colloquium for discussion of environmentally related information on coal gasification and liquefaction. The program included sessions on program approach, environmental assessment, and control technology development. Process developers, process users, research scientists and state and federal government officials participated in this symposium, the fourth to be conducted by IERL-RTP on the subject since 1974. Separate abstracts have been prepared of individual presentations for inclusion in the Energy Data Base.

  18. Assessment of tidal and wave energy conversion technologies in Canada

    International Nuclear Information System (INIS)

    2009-01-01

    This paper presented an attractive option to help meet Canada's future energy needs, notably the vast and energetic Atlantic, Pacific and Arctic coastal waters which make ocean renewable energy, particularly tidal in-stream energy conversion (TISEC) and wave energy conversion (WEC). There is much uncertainty regarding the possible environmental impacts associated with their deployment and operation. In support of commercial development of the industry, a review of scientific knowledge was needed for the development of policy and regulations consistent with Canada's conservation and sustainability priorities. In April 2009, Fisheries and Oceans Canada (DFO) hosted a two-day national science advisory process meeting in order to determine the current state of knowledge on the environmental impacts of tidal and wave energy conversion technologies and their application in the Canadian context based on published reports. Potential mitigation measures were identified and the feasibility of developing a relevant Canadian statement of practice was determined. This report presented an assessment and analysis of wave power, including the impacts on physical processes; impacts on habitat characteristics; impacts on water quality; impacts of noise and vibrations; impacts of electromagnetic fields; impacts of physical encounters; cumulative impacts; and mitigation measures. It was concluded that there is a recognized need to develop and maintain national and regional georeferenced, interoperable, standards-based databases that enable access by governments, developers, academics, non-governmental organizations and the general public. 1 ref., 1 fig.

  19. The Status of Thermophotovoltaic Energy Conversion Technology at Lockheed Martin Corporation

    Energy Technology Data Exchange (ETDEWEB)

    EJ Brown; PF Baldasaro; SR Burger; LR Danielson; DM DePoy; JM Dolatowski; PM Fourspring; GJ Nichols; WF Topper; TD Rahmlow

    2004-07-29

    In a thermophotovoltaic (TPV) energy conversion system, a heated surface radiates in the mid-infrared range onto photocells which are sensitive at these energies. Part of the absorbed energy is converted into electric output. Conversion efficiency is maximized by reducing the absorption of non-convertible energy with some form of spectral control. In a TPV system, many technology options exist. Our development efforts have concentrated on flat-plate geometries with greybody radiators, front surface tandem filters and a multi-chip module (MCM) approach that allows selective fabrication processes to match cell performance. Recently, we discontinued development of GaInAsSb quaternary cell semiconductor material in favor of ternary GaInAs material. In our last publication (Ref. 1), the authors reported conversion efficiencies of about 20% (radiator 950 C, cells 22 C) for small modules (1-4 cm{sup 2}) tested in a prototypic cavity test environment. Recently, we have achieved measured conversion efficiencies of about 12.5% in larger ({approx}100 cm{sup 2}) test arrays. The efficiency reduction in the larger arrays was probably due to quality and variation of the cells as well as non-uniform illumination from the hot radiator to the cold plate. Modules in these tests used GaInAsSb cells with 0.52 eV bandgap and front surface filters for spectral control. This paper provides details of the individual system components and the rationale for our technical decisions. It also describes the measurement techniques used to record these efficiencies.

  20. Energy balance measurements for the determination of physical and technical operation parameters of thermionic converters

    International Nuclear Information System (INIS)

    Ritz, K.

    1975-01-01

    An introduction into the fundamental theoretical principles of the thermionic Cs converter is followed by the set-up of a special measuring converter as proposed by J. Bohdansky which permits the defined setting of the electrode distance under service conditions. Measurements thus carried out present quantitative data on efficiency, on energy transfer between the electrodes by means of radiation and heat transfer, and on the actual collector potential, the latter which surprisingly shows a distance dependency. (orig./GG) [de

  1. Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology

    International Nuclear Information System (INIS)

    Huang Qi-Zhang; Zhu Yan-Qing; Shi Ji-Fu; Wang Lei-Lei; Zhong Liu-Wen; Xu Gang

    2017-01-01

    Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%. Additionally, with the 3D-printed microfluidic device serving as water cooling, the temperature of the DSC can be effectively controlled, which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module. Moreover, the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%. The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition. (paper)

  2. Solid state frequency conversion technology for remote sensing

    International Nuclear Information System (INIS)

    Velsko, S.P.; Webb, M.S.; Cook, W.M.; Neuman, W.A.

    1994-07-01

    Long range remote sensing from airborne or other highly mobile platforms will require high average power tunable radiation from very compact and efficient laser systems. The solid state laser pumped optical parametric oscillator (OPO) has emerged as a leading candidate for such high average power, widely tunable sources. In contrast to laboratory systems, efficiency and simplicity can be the decisive issues which determine the practicality of a particular airborne remote sensing application. The recent advent of diode laser pumped solid state lasers has produced high average power OPO pump sources which are themselves both compact and efficient. However, parametric oscillator technology which can efficiently convert the average powers provided by these pump sources remains to be demonstrated. In addition to the average power requirement, many airborne long range sensing tasks will require a high degree of frequency multiplexing to disentangle data from multiple chemical species. A key advantage in system simplicity can be obtained, for example, if a single OPO can produce easily controlled multispectral output. In this paper the authors address several topics pertaining to the conversion efficiency, power handling, and multispectral capabilities of OPOs which they are currently investigating. In Section 2, single pulse conversion efficiency issues are addressed, while average power effects are treated in Section 3. Section 4 is concerned with multispectral performance of a single OPO. The last section contains a short summary and some concluding remarks

  3. Foresight Study on Advanced Conversion Technologies of Fossil Fuels

    International Nuclear Information System (INIS)

    Claver, A.; Cabrera, J. A.

    2000-01-01

    The Observatorio de Prospectiva Tecnologica Industrial (OPTI) is a Foundation supported by the Ministry of Industry and Energy, (MINER) and has as main objective to provide a basic information and knowledge on technology evolution. This information will be accessible to the Administration and to the Companies and can be taking into account in planning and decision making of technology policies. Ciemat is member of OPTI and is the organism in charge of the actions in the Energy sector. CIEMAT has the responsibility on the realisation of the sector studies to get in three years (1998 to 2001) a foresight vision of the critical technology topics. The OPTI integrated strategic plan undertake the analysis of other seven technology sectors, with the same criteria on methodological aspects. Delphi method was used for the realization of the studies. It consisted of a survey conducted in two rounds using a questionnaire to check the experts opinion. The time frame of the studies was defined from 1999 to 2015. The study presented in this document has been performed by CIEMAT in the second stage of the OPTI activities. The main goal behind this study is to identify the advanced clean and efficient technologies for the conversion of fossil fuels to promote in our country. The questionnaire was addressed to 250 experts and the response rate was about the 37%, ratifying the final results. The spanish position and the barriers for the development of each technology has been determined and also the recommended measures to facilitate their performance in the future. This basic information is consider of main interest, taking in account the actual energetic situation with a foreseeable demand increase and fossil fuels dependence. (Author) 17 refs

  4. Organizational Capability Deployment Analysis for Technology Conversion into Processes, Products and Services

    Directory of Open Access Journals (Sweden)

    Tomoe Daniela Hamanaka Gusberti

    2013-12-01

    Full Text Available This article discusses Organizational Capabilities as the basic components of business models that emerged under the New Product Development Process and Technological Management. In the context of the new Technology Based Companies Development, it adopts a qualitative research in order to identify, analyze and underpin the organizational capability deployment in a process of technology conversion into product and service. The analysis was carried out considering concepts from literature review, in a technology based enterprise started by an academic spin-off company. The analysis enabled the elicitation of a Business Model and the discussion of their components, and correspondent evolution hypothesis. The paper provides an example of capability deployment accordingly the established theory illustrated by a case study. The study not just enumerate the needed partners, resources, customer channels, it enabled the description of their connection, representing the logic behind the decision made to develop the conceptual model. This detailed representation of the model allows better addressed discussions.

  5. Responses and mechanisms of positive electron affinity molecules in the N2 mode of the thermionic ionization detector and the electron-capture detector

    International Nuclear Information System (INIS)

    Jones, C.S.

    1989-01-01

    Very little knowledge has been acquired in the past on the mechanistic pathway by which molecules respond in the N 2 mode of the thermionic ionization detector. An attempt is made here to elucidate the response mechanism of the detector. The basic response mechanisms are known for the electron capture detector, and an attempt is made to identify the certain mechanism by which selected molecules respond. The resonance electron capture rate constant has been believed to be temperature independent, and investigations of the temperature dependence of electron capture responses are presented. Mechanisms for the N 2 mode of the thermionic ionization detector have been proposed by examining the detector response to positive electron affinity molecules and by measurement of the ions produced by the detector. Electron capture mechanisms for selected molecules have been proposed by examining their temperature dependent responses in the electron capture detector and negative ion mass spectra of the samples. In studies of the resonance electron capture rate constant, the relative responses of selected positive electron affinity molecules and their temperature dependent responses were investigated. Positive electron affinity did not guarantee large responses in the N 2 mode thermionic ionization detector. High mass ions were measured following ionization of samples in the detector. Responses in the electron capture detector varied with temperature and electron affinity

  6. Comparative efficiency of technologies for conversion and transportation of energy resources of Russia's eastern regions to NEA countries

    Science.gov (United States)

    Kler, Aleksandr; Tyurina, Elina; Mednikov, Aleksandr

    2018-01-01

    The paper presents perspective technologies for combined conversion of fossil fuels into synthetic liquid fuels and electricity. The comparative efficiency of various process flows of conversion and transportation of energy resources of Russia's east that are aimed at supplying electricity to remote consumers is presented. These also include process flows based on production of synthetic liquid fuel.

  7. Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology

    Institute of Scientific and Technical Information of China (English)

    Qi-Zhang Huang; Yan-Qing Zhu; Ji-Fu Shi; Lei-Lei Wang; Liu-Wen Zhong; Gang Xu

    2017-01-01

    Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module.The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%.Additionally,with the 3D-printed microfluidic device serving as water cooling,the temperature of the DSC can be effectively controlled,which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module.Moreover,the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%.The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition.

  8. Development and fabrication of insulator seals for thermionic diodes

    Science.gov (United States)

    Poirier, V. L.

    1972-01-01

    Eight different types of cermet seals for thermionic diodes were investigated: (1) 1 micron Al2O3 with Nb spheres; (2) 200 A Al2O3 with Nb spheres; (3) 1 micron Al2O3 with Nb 1% Zr spheres; (4) 200 A Al2O3 with Nb 1% Zr spheres; (5) Pure Y2O3 with Nb 1% Zr spheres; (6) Y2O3 3% ZrO2 with Nb 1% Zr spheres; (7) Y2O3 10% ZrO2 with Nb 1% Zr spheres; and (8) ZrO2 12% Y2O3 with Nb 1% Zr spheres. Investigations were made to determine the most favorable fabrication techniques and the effect of the bonding cycle, (length of bonding time and shutdown sequences). The analysis of the seals included tensile test, vacuum test, electrical test and metallurgical examination. At the conclusion of the development phase, 36 seals were fabricated for delivery for evaluation.

  9. Combinatorial enzyme technology: Conversion of pectin to oligo species and its effect on microbial growth

    Science.gov (United States)

    Plant cell wall polysaccharides, which consist of polymeric backbones with various types of substitution, were studied using the concept of combinatorial enzyme technology for conversion of agricultural fibers to functional products. Using citrus pectin as the starting substrate, an active oligo spe...

  10. The conversational interface talking to smart devices

    CERN Document Server

    McTear, Michael; Griol, David

    2016-01-01

    This book provides a comprehensive introduction to the conversational interface, which is becoming the main mode of interaction with virtual personal assistants, smart devices, various types of wearables, and social robots. The book consists of four parts: Part I presents the background to conversational interfaces, examining past and present work on spoken language interaction with computers; Part II covers the various technologies that are required to build a conversational interface along with practical chapters and exercises using open source tools; Part III looks at interactions with smart devices, wearables, and robots, and then goes on to discusses the role of emotion and personality in the conversational interface; Part IV examines methods for evaluating conversational interfaces and discusses future directions. · Presents a comprehensive overview of the various technologies that underlie conversational user interfaces; · Combines descriptions of conversational user interface technologies with a gui...

  11. Proton conducting polymeric materials for hydrogen based electrochemical energy conversion technologies

    DEFF Research Database (Denmark)

    Aili, David

    on the development and characterization of polymer based proton conducting membranes for operation at temperatures above 100 °C. The most frequently recurring experimental methods and techniques are described in Chapter 2. For PEM steam and liquid water electrolysis at temperatures up to 130 °C (Chapter 3 and 4...... and water electrolyzers. This thesis gives an overview of the principles and the current state-of-the-art technology of the hydrogen based electrochemical energy conversion technologies, with special emphasis on the PEM based water electrolyzers and fuel cells (Chapter 1). The fundamental thermodynamics...... of the recast Nafion® membranes at elevated temperature could be slightly improved by annealing the membrane in order to increase its degree of crystallinity. Short side chain (SSC) PFSA membranes such as Aquivion™ (Solvey Solexis), on the other hand, are generally characterized by a considerably higher degree...

  12. Communication: Effects of thermionic-gun parameters on operating modes in ultrafast electron microscopy

    Directory of Open Access Journals (Sweden)

    Erik Kieft

    2015-09-01

    Full Text Available Ultrafast electron microscopes with thermionic guns and LaB6 sources can be operated in both the nanosecond, single-shot and femtosecond, single-electron modes. This has been demonstrated with conventional Wehnelt electrodes and absent any applied bias. Here, by conducting simulations using the General Particle Tracer code, we define the electron-gun parameter space within which various modes may be optimized. The properties of interest include electron collection efficiency, temporal and energy spreads, and effects of laser-pulse duration incident on the LaB6 source. We find that collection efficiencies can reach 100% for all modes, despite there being no bias applied to the electrode.

  13. Fiscal 1998 research report. Research on energy conversion technology using biomass resources; 1998 nendo chosa hokokusho. Biomass shigen wo genryo to suru energy henkan gijutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Feasibility study was made on construction of the new energy production system by thermochemical conversion or combination of thermochemical and biological conversions of agricultural, fishery and organic waste system biomass resources. This report first outlines types and characteristics of biomass over the world, proposes the classification method of biomass from the viewpoint of biomass energy use, and shows the introduction scenario of biomass energy. The energy potential is calculated of agricultural waste, forestry waste and animal waste as the most promising biomass energy resources, and the biomass energy potential of energy plantation is estimated. The present and future of biochemical energy conversion technologies are viewed. The present and future of thermochemical energy conversion technologies are also viewed. Through evaluation of every conversion technology, the difference in feature between each conversion technology was clarified, and the major issues for further R and D were showed. (NEDO)

  14. Comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element

    International Nuclear Information System (INIS)

    Wernsman, Bernard

    1997-01-01

    A comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element (TFE) is made. The single-cell TFE used in this study is the prototype for the 40 kW e space nuclear power system that is similar to the 6 kW e TOPAZ-II. The steady-state I-V measurements influence the emitter temperature due to electron cooling. Therefore, to eliminate the steady-state I-V measurement influence on the TFE and provide a better understanding of the behavior of the thermionic energy converter and TFE characteristics, dynamic I-V measurements are made. The dynamic I-V measurements are made at various input power levels, cesium pressures, collector temperatures, and steady-state current levels. From these measurements, it is shown that the dynamic I-V's do not change the TFE characteristics at a given operating point. Also, the evaluation of the collector work function from the dynamic I-V measurements shows that the collector optimization is not due to a minimum in the collector work function but due to an emission optimization. Since the dynamic I-V measurements do not influence the TFE characteristics, it is believed that these measurements can be done at a system level to understand the influence of TFE placement in the reactor as a function of the core thermal distribution

  15. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, G.L.

    2005-10-03

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  16. Comparison between arc drops in ignited thermionic converters with and without ion reflections at the emitter

    International Nuclear Information System (INIS)

    Lundgren, L.

    1985-01-01

    The output performance of two thermionic energy converters is compared. One converter has a normal emitter, working with zero field at the emitter which is close to the optimum working point, and the other has a low work function emitter and ion reflection at the emitter. A simple model of the plasma and the sheaths shows that a converter working with a low work function emitter and ion reflections gives a worse performance than a similar converter with a normal emitter

  17. The new technologies and infrastructure conversion of nuclear testing in Kazakhstan

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.

    1999-01-01

    It is known, that in August, 1991, in accordance with Decree by the Kazakhstan President, the Semipalatinsk test site (STS) was shut down, and practical works on its conversion were initiated. In 1991 the decision on creation of the Kazakhstan National Nuclear Center (KNNC) on a base of the test site scientific and industrial enterprises and Inst. of Nuclear Physics was taken. In 1993 within frame KNNC three new institutes (Inst. of Atomic Energy, Inst. of Geophysical Research, Inst. of Radiation Safety and Ecology) were created. Owing to this, at the condition of USSR disintegration and liquidation of military division in test site territory, high-qualified personnel was saved, the facilities that represent nuclear danger were left under operation and surveillance, and the full-scale program of STS conversion was developed and put into life. At present guidelines for the major research activities at KNNC on conversion program are as follows: liquidation of consequences of nuclear tests; liquidation of technological structure used before for preparation and implementation of nuclear weapons tests; creation of technology, equipment and locations for receipt and storage of radioactive wastes; working out the concept of nuclear power development in Kazakhstan; investigation of the behaviour of melted reactor core in view of potential heavy accidents at nuclear power plants; development of technique and means for detection of nuclear test in the world, continuous control for nuclear explosions; experimental works on investigation of behaviour of the materials-candidates for role of constructional materials for the thermonuclear reactor ITER; creation of high-technology industries. These and other activities undertaken in this respect allow to attract considerable foreign investments, to create in Kurchatov city hundreds of additional working places.The Government support rendered to KNNC in future will allow to expand substantially this area of activities as well as to

  18. A feasibility study of conceptual design for international clean energy network using hydrogen conversion technology

    International Nuclear Information System (INIS)

    Sato, Takashi; Hamada, Akiyoshi; Kitamura, Kazuhiro

    1998-01-01

    Clean energy is more and more required worldwide in proportion to actualization of global environmental issues including global warming. Therefore, it is an urgent task to realize promotion of worldwide introduction of clean energy which exists abundantly and is widely distributed in the world, such as hydropower and solar energy, while reducing the dependence on fossil fuel. However, since the renewable energy, differing from so called fossil fuel, is impossible to transport for long distance and store as it is, its utilization is subject to be limited. As one possible resolution of this kind of issues, 'International clean energy network using hydrogen conversion technology' which enables conversion of renewable energy from low cost hydropower into hydrogen energy and also into the transportable and storable form, is a meaningful concept. This system technology enables dealing of this hydrogen energy in international market as in the same manner as fossil fuel. It is considered to enable promotion of international and large scale introduction of such clean energy, along with the contribution to diversified and stabilized international energy supply. In this study, based upon the above-mentioned point of view and assumption of two sites, one on supply side and another on demand side of hydrogen energy, three systems are presumed. One of the systems consists of liquid hydrogen as transportation and storage medium of hydrogen, and the others intermediately convert hydrogen into methanol or ammonia as an energy carrier. A overall conceptual design of each system spanning from hydrogen production to its utilization, is conducted in practical way in order to review the general technical aspects and economical aspects through cost analysis. This study is administrated through the New Energy and Industrial Technology Development Organization (NEDO) as a part of the International Clean Energy Network Using Hydrogen Conversion (so-called WE-NET) Program with funding from

  19. Thermionic RF Gun and Linac Pre-Injector for SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.

    2003-08-11

    Preparations are underway to upgrade the Spear2 to the third generation light source. Installation of all the subsystems will start in April 2003. Although the Spear3 RF system is entirely different from the present form, the pre-injector gun/linac and booster synchrotron will remain the same even after the upgrade. The thermionic rf gun reliability and stability are to be improved to inject 500 mA of stored current in shortest possible time. When a top-up mode is enforced, where the stored beam decay is replenished to maintain the constant current and thus constant light intensity, the Spear3 will take injection every few minutes. In that case the gun, linac, and booster must stay on at all times. In this report we will describe some improvements made on the gun and linac in the recent past, as well as their present performance and future upgrade to be made.

  20. Generation of multi-branch beam with thermionic gun for the Japan linear collider

    International Nuclear Information System (INIS)

    Naito, T.; Akemoto, M.; Matsumonto, H.; Urakawa, J.; Yoshioka, M.; Akiyama, H.

    1992-01-01

    We report on the development of a thermionic gun that is capable of producing multi-bunch beam to be used at the KEK Accelerator Test Facility for the Japan Linear Collider project. Two types of grid pulse generators have been developed. One is an avalanche pulse generator. A Y-646E cathode was successfully operated to generate double-bunch beam with a pulse width shorter than 700 ps, bunch spacing 1.4 ns, and a peak current 4.3 A. The other grid pulse generator is a fast ECL circuit with an RF power amplifier. Generation of 20-pulse trains with 2.1 ns time spacing has been demonstrated. (Author) 4 refs., 6 figs

  1. Using information technology to support knowledge conversion processes

    Directory of Open Access Journals (Sweden)

    2001-01-01

    Full Text Available One of the main roles of Information Technology in Knowledge Management programs is to accelerate the speed of knowledge transfer and creation. The Knowledge Management tools intend to help the processes of collecting and organizing the knowledge of groups of individuals in order to make this knowledge available in a shared base. Due to the largeness of the concept of knowledge, the software market for Knowledge Management seems to be quite confusing. Technology vendors are developing different implementations of the Knowledge Management concepts in their software products. Because of the variety and quantity of Knowledge Management tools available on the market, a typology may be a valuable aid to organizations that are looking for answers to specific needs. The objective of this article is to present guidelines that help to design such a typology. Knowledge Management solutions such as intranet systems, Electronic Document Management (EDM, groupware, workflow, artificial intelligence-based systems, Business Intelligence (BI, knowledge map systems, innovation support, competitive intelligence tools and knowledge portals are discussed in terms of their potential contributions to the processes of creating, registering and sharing knowledge. A number of Knowledge Management tools (Lotus Notes, Microsoft Exchange, Business Objects, Aris Toolset, File Net, Gingo, Vigipro, Sopheon have been checked. The potential of each category of solutions to support the transfer of tacit and/or explicit knowledge and to facilitate the knowledge conversion spiral in the sense of Nonaka and Takeuchi (1995 is discussed.

  2. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project

    Science.gov (United States)

    Baresi, Larry

    1989-03-01

    The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.

  3. Observation of Repetition-Rate Dependent Emission From an Un-Gated Thermionic Cathode Rf Gun

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P.; Sun, Y.; Harris, J.R.; Lewellen, J.W.

    2017-06-02

    Recent work at Fermilab in collaboration with the Advanced Photon Source and members of other national labs, designed an experiment to study the relationship between the RF repetition rate and the average current per RF pulse. While existing models anticipate a direct relationship between these two parameters we observed an inverse relationship. We believe this is a result of damage to the barium coating on the cathode surface caused by a change in back-bombardment power that is unaccounted for in the existing theories. These observations shed new light on the challenges and fundamental limitations associated with scaling an ungated thermionic cathode RF gun to high average current.

  4. Contributions to the study of positive ion kinetics in gases

    International Nuclear Information System (INIS)

    Popescu, A.

    1978-01-01

    Extensive studies on cesium ion kinetics in cesium and cesium-noble gas mixtures were performed. The obtained data are correlated with the measured parameters of the thermionic diodes. The mobility of atomic and molecular cesium ions at low electric fields, including zero electric field, in cesium and cesium krypton mixtures were measured using the time of flight method and a special thermionic ion detector. The atomic ion conversion into molecular ions is theoretically considered in the diffusion equation of the charged particles and the obtained analytical relation is in good agreement with the experimental cesium measured data. The reaction rate of the ion conversion in cesium is considered from these measurements. Measurements on the diffused plasma through the anode (provided with holes) of the cesium thermionic diode supply data on the anode sheath, the ratio of electronic and ionic current, electron temperature and the nature of the cesium ions (atomic or molecular) for various modes of the low voltage arc discharge. The obtained data have been used for the optimization of the thermionic diode parameters, as well as for the development of a new type of device for the detection of impurities in the air. (author)

  5. The influences of noble gas on the volt-ampere characteristics of a thermionic Cs diode

    International Nuclear Information System (INIS)

    Tschersich, K.G.

    1975-10-01

    The influence of the distance between electrodes and of the partial pressure of added xenon on the voltage drop in the electrode gap is investigated by measuring current density-voltage curves on plane parallel thermionic test diodes. With unchanged diode parameters, an addition of xenon reduces the voltage drop when the product of Cs vapour pressure and electrode gap is smaller than an optimum value of about 5 x 10 -2 cm.Torr. The xenon influences the mobility and thus the duration of the Cs ions. These procedures are explained and discussed using a relatively simple mathematical model. (GG/LH) [de

  6. Review of liquid metal heat pipe work at Los Alamos

    International Nuclear Information System (INIS)

    Reid, R.S.; Merrigan, M.A.; Sena, J.T.

    1990-01-01

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found. 53 refs

  7. Surface reflectance and conversion efficiency dependence of technologies for mitigating global warming

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd., 12 Lentara St, Kenmore, Brisbane 4069 (Australia); Smith, Geoff [Physics and Advanced Materials, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007 (Australia)

    2011-05-15

    A means of assessing the relative impact of different renewable energy technologies on global warming has been developed. All power plants emit thermal energy to the atmosphere. Fossil fuel power plants also emit CO{sub 2} which accumulates in the atmosphere and provides an indirect increase in global warming via the greenhouse effect. A fossil fuel power plant may operate for some time before the global warming due to its CO{sub 2} emission exceeds the warming due to its direct heat emission. When a renewable energy power plant is deployed instead of a fossil fuel power plant there may be a significant time delay before the direct global warming effect is less than the combined direct and indirect global warming effect from an equivalent output coal fired plant - the ''business as usual'' case. Simple expressions are derived to calculate global temperature change as a function of ground reflectance and conversion efficiency for various types of fossil fuelled and renewable energy power plants. These expressions are used to assess the global warming mitigation potential of some proposed Australian renewable energy projects. The application of the expressions is extended to evaluate the deployment in Australia of current and new geo-engineering and carbon sequestration solutions to mitigate global warming. Principal findings are that warming mitigation depends strongly on the solar to electric conversion efficiency of renewable technologies, geo-engineering projects may offer more economic mitigation than renewable energy projects and the mitigation potential of reforestation projects depends strongly on the location of the projects. (author)

  8. Possible improvements of efficiency by the use of new coal conversion technologies

    International Nuclear Information System (INIS)

    Krieb, K.H.

    1976-01-01

    Following a comparison of the efficiencies of conventional steam power processes, the gas fuel cell and the combined gas steam turbine processes are introduced as new coal utilization technologies. Coal conversion processes which can be coupled to combined gas-steam turbine processes such as the fluidized-bed firing, the solid bed gasification, the dust part-gasification and the fluidized-bed gasification are more closely mentioned and their coupling efficiencies discussed. The decoupling of third energy, such as low-temperature heat, high-temperature heat and chemical energy are briefly dealt with as third possibility for the improvement of the efficiency. (GG/LH) [de

  9. Conversational Agents in E-Learning

    Science.gov (United States)

    Kerry, Alice; Ellis, Richard; Bull, Susan

    This paper discusses the use of natural language or 'conversational' agents in e-learning environments. We describe and contrast the various applications of conversational agent technology represented in the e-learning literature, including tutors, learning companions, language practice and systems to encourage reflection. We offer two more detailed examples of conversational agents, one which provides learning support, and the other support for self-assessment. Issues and challenges for developers of conversational agent systems for e-learning are identified and discussed.

  10. Zero Waste and Conversion Efficiencies of Various Technologies for Disposal of Municipal Solid Waste

    Institute of Scientific and Technical Information of China (English)

    Zhang Wenyang

    2005-01-01

    Zero waste is a philosophy and a design principle of dealing with our waste stream for the 21st century. After reviewing the available information, the goal of zero waste from landfill is considered to be unachievable by using known and proven methods and approaches. The comparison of various technologies shows that the conversion efficiencies depend upon the type of system chosen for processing residual waste, and the best overall diversion rate of waste management system that can be achieved is about 71%. The maximum achievable overall diversion rate can be increased to approximate 92% if current environmental regulations to permit the routine use of the bottom ash or char for advanced thermal technologies.

  11. Prospects of power conversion technology of direct-cycle helium gas turbine for MHTGR

    International Nuclear Information System (INIS)

    Li Yong; Zhang Zuoyi

    1999-01-01

    The modular high temperature gas cooled reactor (MHTGR) is a modern passively safe reactor. The reactor and helium gas turbine may be combined for high efficiency's power conversion, because MHTGR has high outlet temperature up to 950 degree C. Two different schemes are planed separately by USA and South Africa. the helium gas turbine methodologies adopted by them are mainly based on the developed heavy duty industrial and aviation gas turbine technology. The author introduces the differences of two technologies and some design issues in the design and manufacture. Moreover, the author conclude that directly coupling a closed Brayton cycle gas turbine concept to the passively safe MHTGR is the developing direction of MHTGR due to its efficiency which is much higher than that of using steam turbine

  12. Experimental investigation of high temperature high voltage thermionic diode for the space power nuclear reactor

    International Nuclear Information System (INIS)

    Onufriyev, Valery V.

    2001-01-01

    It is well known that the rise of arc from the dense glow discharge is connected with the thermion and secondary processes on the cathode surface (Granovsky, 1971; Leob, 1953; Engel, 1935). First model of breakdown of the cathode layer is connected with the increase of the cathode temperature in consequence of the ion bombardment that leads to the grows its thermo-emissive current. Other model shows the main role of the secondary effects on the cathode surface-the increase of the secondary ion emission coefficient--γ i with the grows of glow discharge voltage. But the author of this investigation work of breakdown in Cs vapor (a transmission the glow discharge into self-maintaining arc discharge) discovered the next peculiarity: the value of breakdown voltage is constant when the values of vapor temperature (its pressure p cs ) and cathode temperature T k is constant too (U b =constant with T k =constant and p cs =constant) and it is not a statistical value (Onufryev, Grishin, 1996) (that was observed in gas glow discharges other authors (Granovsky, 1971; Leob, 1953; Engel, 1935)). The investigations of thermion high voltage high temperature diode (its breakdown characteristics in closed state and voltage-current characteristics in disclosed state) showed that the value of the breakdown voltage is depended on the vapor pressure in inter-electrode gap (IEG)-p cs and cathode temperature-T k and is independent on IEG length--Δ ieg . On this base it was settled that the main role in transition of glow discharge to self-maintaining arc discharge plays an ion cathode layer but more exactly--the region of excited atoms--''Aston glow.''

  13. Experimental investigation of high temperature high voltage thermionic diode for the space power nuclear reactor

    Science.gov (United States)

    Onufriyev, Valery. V.

    2001-02-01

    It is well known that the rise of arc from the dense glow discharge is connected with the thermion and secondary processes on the cathode surface (Granovsky, 1971; Leob, 1953; Engel, 1935). First model of breakdown of the cathode layer is connected with the increase of the cathode temperature in consequence of the ion bombardment that leads to the grows its thermo-emissive current. Other model shows the main role of the secondary effects on the cathode surface-the increase of the secondary ion emission coefficient-γi with the grows of glow discharge voltage. But the author of this investigation work of breakdown in Cs vapor (a transmission the glow discharge into self-maintaining arc discharge) discovered the next peculiarity: the value of breakdown voltage is constant when the values of vapor temperature (its pressure pcs) and cathode temperature Tk is constant too (Ub=constant with Tk=constant and pcs=constant) and it is not a statistical value (Onufryev, Grishin, 1996) (that was observed in gas glow discharges other authors (Granovsky, 1971; Leob, 1953; Engel, 1935)). The investigations of thermion high voltage high temperature diode (its breakdown characteristics in closed state and voltage-current characteristics in disclosed state) showed that the value of the breakdown voltage is depended on the vapor pressure in inter-electrode gap (IEG)-pcs and cathode temperature-Tk and is independent on IEG length-Δieg. On this base it was settled that the main role in transition of glow discharge to self-maintaining arc discharge plays an ion cathode layer but more exactly-the region of excited atoms-``Aston glow.'' .

  14. Photon-Enhanced Thermionic Emission in Cesiated p-Type and n-Type Silicon

    DEFF Research Database (Denmark)

    Reck, Kasper; Dionigi, Fabio; Hansen, Ole

    2014-01-01

    electrons. Efficiencies above 60% have been predicted theoretically for high solar concentration systems. Silicon is an interesting absorber material for high efficiency PETE solar cells, partly due to its mechanical and thermal properties and partly due to its electrical properties, including a close......Photon-enhanced thermionic emission (PETE) is a relatively new concept for high efficiency solar cells that utilize not only the energy of electrons excited across the band gap by photons, as in conventional photovoltaic solar cells, but also the energy usual lost to thermalization of the excited...... to ideal band gap. The work function of silicon is, however, too high for practical PETE implementations. A well-known method for lowering the work function of silicon (and other materials) is to apply approximately a monolayer of cesium to the silicon surface. We present the first measurements of PETE...

  15. Measuring current emission and work functions of large thermionic cathodes

    International Nuclear Information System (INIS)

    Fortgang, C.M.

    2001-01-01

    As one component of the nations Stockpile Stewardship program, Los Alamos National Laboratory is constructing a 20 MeV, 2 kA (with a 4 kA upgrade capability), 3ps induction linac for doing x-ray radiography of explosive devices. The linac is one leg of a facility called the Dual-Axis Radiography Hydrodynamic Test Facility (DARHT). The electron gun is designed to operate at 3.2 MV. The gun is a Pierce type design and uses a 6.5' cathode for 2 kA operation and an 8' cathode for 4 kA operation. We have constructed a small facility called the Cathode Test Stand (CTS) to investigate engineering and physics issues regarding large thermionic dispenser-cathodes. In particular, we have looked at the issues of temperature uniformity on the cathode surface and cathode quality as measured by its work function. We have done thermal imaging of both 8' and 6.5' cathodes. Here we report on measurements of the cathode work function, both the average value and how it vanes across the face of the cathode.

  16. Cogeneration Technology Alternatives Study (CTAS). Volume 6: Computer data. Part 1: Coal-fired nocogeneration process boiler, section B

    Science.gov (United States)

    Knightly, W. F.

    1980-01-01

    About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.

  17. The outlook for application of powerful nuclear thermionic reactor -powered space electric jet propulsion engines

    International Nuclear Information System (INIS)

    Semyonov, Y.P.; Bakanov, Y.A.; Synyavsky, V.V.; Yuditsky, V.D.

    1997-01-01

    This paper summarizes main study results for application of powerful space electric jet propulsion unit (EJPUs) which is powered by Nuclear Thermionic Power Unit (NTPU). They are combined in Nuclear Power/Propulsion Unit (NPPU) which serves as means of spacecraft equipment power supply and spacecraft movement. Problems the paper deals with are the following: information satellites delivery and their on-orbit power supply during 10-15 years, removal of especially hazardous nuclear wastes, mining of asteroid resources and others. Evaluations on power/time/mass relationship for this type of mission are given. EJPU parameters are compatible with Russian existent or being under development launch vehicle. (author)

  18. ANALYTICAL MODELING OF ELECTRON BACK-BOMBARDMENT INDUCED CURRENT INCREASE IN UN-GATED THERMIONIC CATHODE RF GUNS

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P. [Fermilab; Sun, Y. [Argonne; Harris, J. R. [AFRL, NM; Lewellen, J. W. [Los Alamos Natl. Lab.

    2016-09-28

    In this paper we derive analytical expressions for the output current of an un-gated thermionic cathode RF gun in the presence of back-bombardment heating. We provide a brief overview of back-bombardment theory and discuss comparisons between the analytical back-bombardment predictions and simulation models. We then derive an expression for the output current as a function of the RF repetition rate and discuss relationships between back-bombardment, fieldenhancement, and output current. We discuss in detail the relevant approximations and then provide predictions about how the output current should vary as a function of repetition rate for some given system configurations.

  19. Advanced technologies for decontamination and conversion of scrap metal

    International Nuclear Information System (INIS)

    Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

    1999-01-01

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ''Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a laser cutting

  20. NASA-OAST program in photovoltaic energy conversion

    Science.gov (United States)

    Mullin, J. P.; Flood, D. J.

    1982-01-01

    The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.

  1. Needs, resources and climate change: Clean and efficient conversion technologies

    KAUST Repository

    Ghoniem, Ahmed F.

    2011-02-01

    Energy "powers" our life, and energy consumption correlates strongly with our standards of living. The developed world has become accustomed to cheap and plentiful supplies. Recently, more of the developing world populations are striving for the same, and taking steps towards securing their future energy needs. Competition over limited supplies of conventional fossil fuel resources is intensifying, and more challenging environmental problems are springing up, especially related to carbon dioxide (CO 2) emissions. There is strong evidence that atmospheric CO 2 concentration is well correlated with the average global temperature. Moreover, model predictions indicate that the century-old observed trend of rising temperatures could accelerate as carbon dioxide concentration continues to rise. Given the potential danger of such a scenario, it is suggested that steps be taken to curb energy-related CO 2 emissions through a number of technological solutions, which are to be implemented in a timely fashion. These solutions include a substantial improvement in energy conversion and utilization efficiencies, carbon capture and sequestration, and expanding the use of nuclear energy and renewable sources. Some of these technologies already exist, but are not deployed at sufficiently large scale. Others are under development, and some are at or near the conceptual state. © 2010 Elsevier Ltd. All rights reserved.

  2. Technologies for all-optical wavelength conversion in DWDM networks

    DEFF Research Database (Denmark)

    Wolfson, David; Fjelde, Tina; Kloch, Allan

    2001-01-01

    Different techniques for all-optical wavelength conversion are reviewed and the advantages and disadvantages seen from a system perspective are highlighted. All-optical wavelength conversion will play a major role in making cost-effective network nodes in future high-speed WDM networks, where...

  3. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  4. Increasing conversion efficiency of two-step photon up-conversion solar cell with a voltage booster hetero-interface.

    Science.gov (United States)

    Asahi, Shigeo; Kusaki, Kazuki; Harada, Yukihiro; Kita, Takashi

    2018-01-17

    Development of high-efficiency solar cells is one of the attractive challenges in renewable energy technologies. Photon up-conversion can reduce the transmission loss and is one of the promising concepts which improve conversion efficiency. Here we present an analysis of the conversion efficiency, which can be increased by up-conversion in a single-junction solar cell with a hetero-interface that boosts the output voltage. We confirm that an increase in the quasi-Fermi gap and substantial photocurrent generation result in a high conversion efficiency.

  5. CRADA Final Report for CRADA Number NFE-10-02991 "Development and Commercialization of Alternative Carbon Precursors and Conversion Technologies"

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Rober [ORNL; Paulauskas, Felix [ORNL; Naskar, Amit [ORNL; Kaufman, Michael [ORNL; Yarborough, Ken [ORNL; Derstine, Chris [The Dow Chemical Company

    2013-10-01

    The overall objective of the collaborative research performed by the Oak Ridge National Laboratory (ORNL) and the Dow Chemical Company under this Cooperative Research And Development Agreement (CRADA NFE-10-02991) was to develop and establish pathways to commercialize new carbon fiber precursor and conversion technology. This technology is to produce alternative polymer fiber precursor formulations as well as scaled energy-efficient advanced conversion technology to enable continuous mode conversion to obtain carbonized fibers that are technically and economically viable in industrial markets such as transportation, wind energy, infrastructure and oil drilling applications. There have been efforts in the past to produce a low cost carbon fiber. These attempts have to be interpreted against the backdrop of the market needs at the time, which were strictly military aircraft and high-end aerospace components. In fact, manufacturing costs have been reduced from those days to current practice, where both process optimization and volume production have enabled carbon fiber to become available at prices below $20/lb. However, the requirements of the lucrative aerospace market limits further price reductions from current practice. This approach is different because specific industrial applications are targeted, most specifically wind turbine blade and light vehicle transportation, where aircraft grade carbon fiber is not required. As a result, researchers are free to adjust both manufacturing process and precursor chemistry to meet the relaxed physical specifications at a lower cost. This report documents the approach and findings of this cooperative research in alternative precursors and advanced conversion for production of cost-effective carbon fiber for energy missions. Due to export control, proprietary restrictions, and CRADA protected data considerations, specific design details and processing parameters are not included in this report.

  6. Life Testing and Diagnostics of a Planar Out-of-Core Thermionic Converter

    Science.gov (United States)

    Thayer, Kevin L.; Ramalingam, Mysore L.; Young, Timothy J.; Lamp, Thomas R.

    1994-07-01

    This paper details the design and performance of an automated computer data acquisition system for a planar, out-of-core thermionic converter with CVD rhenium electrodes. The output characteristics of this converter have been mapped for emitter temperatures ranging from approximately 1700K to 2000K, and life testing of the converter is presently being performed at the design point of operation. An automated data acquisition system has been constructed to facilitate the collection of current density versus output voltage (J-V) and temperature data from the converter throughout the life test. This system minimizes the amount of human interaction necessary during the lifetest to measure and archive the data and present it in a usable form. The task was accomplished using a Macintosh Ilcx computer, two multiple-purpose interface boards, a digital oscilloscope, a sweep generator, and National Instrument's LabVIEW application software package.

  7. Electric strength of metal-ceramic brazed units of thermionic energy converters in cesium vapours

    International Nuclear Information System (INIS)

    Belousenko, A.P.; Vasilchenko, A.V.; Nikolaev, Y.V.

    1989-01-01

    The investigation of electric strength characteristics of the hollow metal-ceramic brazed units of thermionic energy converters with the insulator 1 = 10-50 mm from polycrystal aluminum oxide at the temperature T = 450-750 degrees and the cesium vapour pressure P Cs = 10 - 1 -10 3 Pa has been carried out. The experimental dependencies of the break-down voltage of the brazed units on the temperature, parameter P Cs · 1 and the value of surface electric resistance of the insulators are given as well as the empiric equations obtained with the help of experimental data for calculating the break-down voltage. A mechanism of ceramic insulator influence on electric strength characteristics of the cesium gap is investigated. A breakdown model explaining this influence is proposed

  8. Biomass Thermochemical Conversion Program. 1984 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  9. Gas Turbine Energy Conversion Systems for Nuclear Power Plants Applicable to LiFTR Liquid Fluoride Thorium Reactor Technology

    Science.gov (United States)

    Juhasz, Albert J.

    2014-01-01

    This panel plans to cover thermal energy and electric power production issues facing our nation and the world over the next decades, with relevant technologies ranging from near term to mid-and far term.Although the main focus will be on ground based plants to provide baseload electric power, energy conversion systems (ECS) for space are also included, with solar- or nuclear energy sources for output power levels ranging tens of Watts to kilo-Watts for unmanned spacecraft, and eventual mega-Watts for lunar outposts and planetary surface colonies. Implications of these technologies on future terrestrial energy systems, combined with advanced fracking, are touched upon.Thorium based reactors, and nuclear fusion along with suitable gas turbine energy conversion systems (ECS) will also be considered by the panelists. The characteristics of the above mentioned ECS will be described, both in terms of their overall energy utilization effectiveness and also with regard to climactic effects due to exhaust emissions.

  10. Optical techniques for electron-beam characterizations on the APS SASE FEL project

    International Nuclear Information System (INIS)

    Lumpkin, A.H.; Yang, B.X.; Berg, W.J.; White, M.; Lewellen, J.W.; Milton, S.V.

    1998-01-01

    At the Advanced Photon Source (APS) the injector linac's DC thermionic gun is being supplemented by a low-emittance rf thermionic gun that will support the SASE FEL project. To address the anticipated smaller beam sizes, the standard Chromox beam-profiling screens are being complemented by optical transition radiation (OTR) and Ce-doped YAG single-crystal converters. Direct comparisons of the effective conversion efficiency, spatial resolution, and time response of the three converter screen types have been performed using the DC thermionic gun's beam accelerated to 400 to 650 MeV. An apparent blurring of observed beam size with increasing incident charge areal density in the YAG crystal was observed for the first time. Only the OTR was prompt enough for the few-ps domain micropulse bunch length measurements performed with a stream camera. Initial beam images of the rf-thermionic gun beam have also been obtained

  11. Current transmission and nonlinear effects in un-gated thermionic cathode RF guns

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P. [Fermilab; Harris, J. R. [Air Force Weapons Lab

    2017-05-03

    Un-gated thermionic cathode RF guns are well known as a robust source of electrons for many accelerator applications. These sources are in principle scalable to high currents without degradation of the transverse emittance due to control grids but they are also known for being limited by back-bombardment. While back-bombardment presents a significant limitation, there is still a lack of general understanding on how emission over the whole RF period will affect the nature of the beams produced from these guns. In order to improve our understanding of how these guns can be used in general we develop analytical models that predict the transmission efficiency as a function of the design parameters, study how bunch compression and emission enhancement caused by Schottky barrier lowering affect the output current profile in the gun, and study the onset of space-charge limited effects and the resultant virtual cathode formation leading to a modulation in the output current distribution.

  12. Adherence of diamond films on refractory metal substrates for thermionic applications

    International Nuclear Information System (INIS)

    Tsao, B.H.; Ramalingam, M.L.; Adams, S.F.; Cloyd, J.S.

    1991-01-01

    Diamond films are currently being considered as electrical insulation material for application in the thermionic fuel element of a power producing nuclear reactor system. The function of the diamond insulator in this application is to electrically isolate the collector of each cell in the TFE from the coolant and outer sheath. Deposition of diamond films on plane surfaces of Si/SiO 2 have already been demonstrated to be quite effective. However, the diamond films on refractory metal surfaces tend to spall off in the process of deposition revealing an inefficient adherence characteristic between the film and the substrate. This paper is geared towards explaining this deficiency by way of selected experimentation and the use of analytical tools to predict uncertainties such as the mismatch in coefficient of expansion, micrographic study of the interface between the film and the substrate and X-ray diffraction spectra. The investigation of the adherence characteristics of several diamond films on Mo and Nb substrates revealed that there was an allowable stress that resulted in the formation of the critical thickness for the diamond film

  13. Advanced technologies for decomtamination and conversion of scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

    1999-05-27

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ``Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a

  14. The conversion of military science and technology: Former Soviet Union case

    International Nuclear Information System (INIS)

    Martellini, M.

    1998-01-01

    The end of the Cold War which has brought deep changes in the very concept of defence, requires fundamental changes in the defence strategies of all nations, the new international situation is encouraging the conversion of the military sector for the benefit of the civilian economy. This process involves many companies that have previously worked mostly or exclusively on the basis of military orders. In particular, from the nuclear non-proliferation point of view and environmental safety standpoint, some urgent problems arise: civilian management of military nuclear technologies, management and storage of weapon-grade materials, namely plutonium and highly enriched uranium from dismantled nuclear warheads, cleaning and reusing large areas which have been taken up for the production of weapon-grade plutonium and uranium enrichment (in Soviet Union so called 'atomic sites'), retraining scientific personnel and engineers in the nuclear military industry

  15. Thermionic cooling devices based on resonant-tunneling AlGaAs/GaAs heterostructure

    Science.gov (United States)

    Bescond, M.; Logoteta, D.; Michelini, F.; Cavassilas, N.; Yan, T.; Yangui, A.; Lannoo, M.; Hirakawa, K.

    2018-02-01

    We study by means of full quantum simulations the operating principle and performance of a semiconductor heterostructure refrigerator combining resonant tunneling filtering and thermionic emission. Our model takes into account the coupling between the electric and thermal currents by self-consistently solving the transport equations within the non-equilibrium Green’s function framework and the heat equation. We show that the device can achieve relatively high cooling power values, while in the considered implementation, the maximum lattice temperature drop is severely limited by the thermal conductivity of the constituting materials. In such an out-of-equilibrium structure, we then emphasize the significant deviation of the phonon temperature from its electronic counterpart which can vary over several hundred Kelvin. The interplay between those two temperatures and the impact on the electrochemical potential is also discussed. Finally, viable options toward an optimization of the device are proposed.

  16. Determination of rare earth elements in high purity rare earth oxides by liquid chromatography, thermionic mass spectrometry and combined liquid chromatography/thermionic mass spectrometry

    International Nuclear Information System (INIS)

    Stijfhoorn, D.E.; Stray, H.; Hjelmseth, H.

    1993-01-01

    A high-performance liquid chromatographic (HPLC) method for the determination of rare earth elements in rocks has been modified and used for the determination of rare earth elements (REE) in high purity rare earth oxides. The detection limit was 1-1.5 ng or 2-3 mg/kg when a solution corresponding to 0.5 mg of the rare earth oxide was injected. The REE determination was also carried out by adding a mixture of selected REE isotopes to the sample and analysing the collected HPLC-fractions by mass spectrometry (MS) using a thermionic source. Since the matrix element was not collected, interference from this element during the mass spectrometric analysis was avoided. Detection limits as low as 0.5 mg/kg could then be obtained. Detection limits as low as 0.05 mg/kg were possible by MS without HPLC-pre-separation, but this approach could only be used for those elements that were not affected by the matrix. Commercial samples of high purity Nd 2 O 3 , Gd 2 O 3 and Dy 2 O 3 were analysed in this study, and a comparison of results obtained by HPLC, combined HPLC/MS and direct MS is presented. (Author)

  17. Biomass Thermochemical Conversion Program: 1986 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  18. Effect of the work function and emission of the collector on the parameters of thermionic converters (TC)

    International Nuclear Information System (INIS)

    Kaibyshev, V.Z.

    1986-01-01

    In the optimal, relative to the temperature of the collector, state of modern thermionic converters (TC) the emission of the electrons from it has a substantial effect on the voltage drop in the gap. This paper preents an analysis of the boundary conditions at the collector of the TC. Calculations are presented which show that with a constant current the plasma parameters at the boundary with the collector are virtually independent of the emission from the collector right up to vanishing of the potential jump. The optimal regime with respect to temperatuer and work function of the collector is examined. The collector with a nonuniform work function is discussed

  19. Frontiers of Energy Storage and Conversion

    Directory of Open Access Journals (Sweden)

    Jiajun Chen

    2014-09-01

    Full Text Available This special issue of Inorganics features a Forum for novel materials and approaches for electrochemical energy storage and conversion. Diminishing non-renewable fossil fuels and the resulting unattainability of environment have made us search new sustainable energy resources and develop technology for efficient utilization of such resources. Green energy sources, such as solar, hydroelectric, thermal and wind energy are partially replacing fossil fuels as means to generate power. Inorganic (solid state materials are key in the development of advanced devices for the efficient storage and conversion of energy. The grand challenge facing the inorganic chemist is to discover, design rationally and utilize advanced technological materials made from earth-abound elements for these energy storage and conversion processes. Recent spectacular progress in inorganic materials synthesis, characterization, and computational screening has greatly advanced this field, which drove us to edit this issue to provide a window to view the development of this field for the community. This special issue comprises research articles, which highlights some of the most recent advances in new materials for energy storage and conversion. [...

  20. Proceedings of the 25th intersociety energy conversion engineering conference

    International Nuclear Information System (INIS)

    Nelson, P.A.; Schertz, W.W.; Till, R.H.

    1990-01-01

    This book contains the proceedings of the 25th intersociety energy conversion engineering conference. Volume 1 is organized under the following headings: space power systems requirements and issues, space power systems; space power systems 2; space nuclear power reactors space nuclear reactor technology I; space nuclear reactor technology II; reactor technology; isotopic fueled power systems I, isotopic fueled power systems II, space power automation; space power automation II, space power automation III; space power automation IV; space power automation V; power systems hardware and design selection, power components, pulse power, power management and distribution, power management and distribution II, power management and distribution III; space energy conversion: solar dynamic, space energy conversion: static and dynamic, space solar array technology, advanced space solar cells

  1. Conversational flow promotes solidarity.

    Science.gov (United States)

    Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H

    2013-01-01

    Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.

  2. Conversational flow promotes solidarity.

    Directory of Open Access Journals (Sweden)

    Namkje Koudenburg

    Full Text Available Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here. The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay. Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.

  3. Mission operations for unmanned nuclear electric propulsion outer planet exploration with a thermionic reactor spacecraft.

    Science.gov (United States)

    Spera, R. J.; Prickett, W. Z.; Garate, J. A.; Firth, W. L.

    1971-01-01

    Mission operations are presented for comet rendezvous and outer planet exploration NEP spacecraft employing in-core thermionic reactors for electric power generation. The selected reference missions are the Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. The characteristics of the baseline multi-mission NEP spacecraft are presented and its performance in other outer planet missions, such as Saturn and Uranus orbiters and a Neptune flyby, are discussed. Candidate mission operations are defined from spacecraft assembly to mission completion. Pre-launch operations are identified. Shuttle launch and subsequent injection to earth escape by the Centaur D-1T are discussed, as well as power plant startup and the heliocentric mission phases. The sequence and type of operations are basically identical for all missions investigated.

  4. Some properties of low-vapor-pressure braze alloys for thermionic converters

    Science.gov (United States)

    Bair, V. L.

    1978-01-01

    Density, dc electrical resistivity, thermal conductivity, and linear thermal expansion are measured for arc-melted rod-shaped samples of binary eutectics of Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, and W selected as very-low-pressure braze fillers for thermionic converters. The first two properties are measured at 296 K for Zr-21.7 at% Ru, Zr-13 wt% W, Zr-19 wt% W, Zr-22.3 at% Nb, Nb-66.9 at% Ru, Hf-25.3 wt% Re, Zr-25.7 at% Ta, Hf-22.5 at% W, and Nb-35 wt% Mo. The last property is measured from 293 K to 2/3 melting point for specified alloys of different compositions. Resistivities of 0.000055 to 0.000181 ohm-cm are observed with the alloys having resistivities about ten times that of the less resistive constituent metal and about three times that of the more resistive constituent metal, except for Zr-19 wt% W and Nb-35 wt% Mo (greater resistivities). Thermal expansion coefficients vary from 0.000006 to 0.0000105/K. All brazes exhibit linear thermal expansion near that of their constituent metals.

  5. Thermochemical conversion of microalgal biomass into biofuels: a review.

    Science.gov (United States)

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. CVD refractory metals and alloys for space nuclear power application

    International Nuclear Information System (INIS)

    Yang, L.; Gulden, T.D.; Watson, J.F.

    1984-01-01

    CVD technology has made significant contributions to the development of space nuclear power systems during the period 1962 to 1972. For the in-core thermionic concept, CVD technology is essential to the fabrication of the tungsten electron emitter. For the liquid metal cooled fuel pin using uranium nitride as fuel and T-111 and Nb-1 Zr as cladding, a tungsten barrier possibly produced by CVD methods is essential to the fuel-cladding compatibility at the designed operating temperature. Space power reactors may use heat pipes to transfer heat from the reactor core to the conversion system. CVD technology has been used for fabricating the heat pipe used as cross-flow heat exchanger, including the built-in channels on the condenser wall for liquid lithium return. 28 references, 17 figures

  7. Development of nuclear technologies and conversion of nuclear weapon testing system infrastructure in Kazakhstan

    International Nuclear Information System (INIS)

    Cherepnin, Yu.; Takibaev, Zh.

    2000-01-01

    The article gives a brief description of the work done by the National Nuclear Center of the Republic of Kazakhstan in development of nuclear technology and conversion of nuclear weapon testing infrastructure in Kazakhstan. Content and trends of works are as follows: 1. Peaceful use of all physical facilities, created earlier for nuclear tests in Kazakhstan; 2. Development of methods and technologies for safe nuclear reactors use; 3. Examination of different materials in field of great neutron flow for thermonuclear reactor's first wall development; 4. Liquidation of all wells, which were formed in the results of underground nuclear explosions in Degelen mountain massif of former Semipalatinsk test site; 5. Study of consequences of nuclear tests in West Kazakhstan (territory of Azgir test site and Karachaganak oil field); 6. Study of radiological situation on the Semipalatinsk test site and surrounding territories; 7. Search of ways for high-level radioactive wastes disposal; 8. Construction of safe nuclear power plants in Kazakhstan

  8. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology

    International Nuclear Information System (INIS)

    Zhu, Xiangdong; Yang, Shijun; Wang, Liang; Liu, Yuchen; Qian, Feng; Yao, Wenqing; Zhang, Shicheng; Chen, Jianmin

    2016-01-01

    Antibiotic mycelial fermentation residues (AMFRs), which are emerging solid pollutants, have been recognized as hazardous waste in China since 2008. Nitrogen (N), which is an environmental sensitivity element, is largely retained in AMFR samples derived from fermentation substrates. Pyrolysis is a promising technology for the treatment of solid waste. However, the outcomes of N element during the pyrolysis of AMFRs are still unknown. In this study, the conversion of N element during the pyrolysis of AMFRs was tracked using XPS (X-ray photoelectron spectroscopy) and online TG-FTIR-MS (Thermogravimetry-Fourier transform infrared-Mass spectrometry) technology. In the AMFR sample, organic amine-N, pyrrolic-N, protein-N, pyridinic-N, was the main N-containing species. XPS results indicated that pyrrolic-N and pyridinic-N were retained in the AMFR-derived pyrolysis char. More stable species, such as N-oxide and quaternary-N, were also produced in the char. TG-FTIR-MS results indicated that NH_3 and HCN were the main gaseous species, and their contents were closely related to the contents of amine-N and protein-N, and pyrrolic-N and pyridinic-N of AMFRs, respectively. Increases in heating rate enhanced the amounts of NH_3 and HCN, but had less of an effect on the degradation degree of AMFRs. N-containing organic compounds, including amine-N, nitrile-N and heterocyclic-N, were discerned from the AMFR pyrolysis process. Their release range was extended with increasing of heating rate and carbon content of AMFR sample. This work will help to take appropriate measure to reduce secondary pollution from the treatment of AMFRs. - Highlights: • Hazardous AMFR material was treated by slow pyrolysis reaction. • TG-FTIR-MS were used to study the N conversion for pyrolysis gas and bio-oil. • NH_3 and HCN were observed as the main N-containing gas species. • XPS were used to study the N conversion for pyrolysis char. • Stable species, such as N-oxide and quaternary-N, were

  9. Conversion of Low Quality Waste Heat to Electric Power with Small-Scale Organic Rankine Cycle (ORC) Engine/Generator Technology

    Science.gov (United States)

    2016-08-01

    efficiency by reducing energy consumption associated with electrical generation and reduces greenhouse gas emissions by increasing electrical generating...integrated system fuel economy test conditions This computation requires prediction of fuel consumption over baseline and integrated system load...EW-201251) Conversion of Low Quality Waste Heat to Electric Power with Small-Scale Organic Rankine Cycle (ORC) Engine/Generator Technology

  10. Economics of natural gas conversion processes

    International Nuclear Information System (INIS)

    Gradassi, M.J.; Green, N.W.

    1995-01-01

    This paper examines the potential profitability of a selected group of possible natural gas conversion processes from the perspective of a manufacturing entity that has access to substantial low cost natural gas reserves, capital to invest, and no allegiance to any particular product. The analysis uses the revenues and costs of conventional methanol technology as a framework to evaluate the economics of the alternative technologies. Capital requirements and the potential to enhance cash margins are the primary focus of the analysis. The basis of the analysis is a world-scale conventional methanol plant that converts 3.2 Mm 3 per day (120 MMSCFD) of natural gas into 3510 metric tonnes (3869 shorts tons) per day of methanol. Capital and operating costs are for an arbitrary remote location where natural gas is available at 0.47 US dollars per GJ (0.50 US dollars per MMBtu). Other costs include ocean freight to deliver the product to market at a US Gulf Coast location. Payout time, which is the ratio of the total capital investment to cash margin (revenue less total operating expenses), is the economic indicator for the analysis. Under these conditions, the payout time for the methanol plant is seven years. The payout time for the alternative natural gas conversion technologies is generally much higher, which indicates that they currently are not candidates for commercialization without consideration of special incentives. The analysis also includes an evaluation of the effects of process yields on the economics of two potential technologies, oxidative coupling to ethylene and direct conversion to methanol. This analysis suggests areas for research focus that might improve the profitability of natural gas conversion. 29 refs., 14 figs., 5 tabs

  11. EPR's energy conversion system. Alstom's solutions

    International Nuclear Information System (INIS)

    Ledermann, P.

    2009-01-01

    ARABELLE steam turbines have been developed by Alstom to be used as the energy conversion system of light water reactors with high output power like the N4 PWR and the EPR. ARABELLE turbines cumulate 200.000 hours of service with a reliability ratio of 99.97 per cent. This series of slides presents the main features of the turbine including: the use of the simple flux, the very large shape of low pressure blades, the technology of welded rotors. The other main equipment like the alternator, the condenser, the moisture separator-reheaters, the circulating pumps that Alstom integrates in the energy conversion system have benefited with technological improvements that are also presented. (A.C.)

  12. Efficient electrochemical CO2 conversion powered by renewable energy.

    Science.gov (United States)

    Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao

    2015-07-22

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient

  13. Performance evaluation and parametric optimum design of a vacuum thermionic solar cell

    International Nuclear Information System (INIS)

    Liao, Tianjun; Chen, Xiaohang; Chen, Jincan; Lin, Bihong

    2016-01-01

    A model of the vacuum thermionic solar cell (VTSC) consisting of a solar concentrator, an emitter, and a collector is proposed, in which the various heat losses including the far- and near-field thermal radiation are taken into account. Formula for the overall efficiency of the system is analytically derived. For given values of the ratio of the front surface area of the absorber to that of the emitter and the vacuum gap between the emitter and the collector, the operating temperatures of the emitter and collector are determined by solving the energy balance equations. The maximum efficiency of the VTSC are calculated for given values of the work functions of the emitter and collector materials, and some key parameters such as the net current density of the VTSC, operating temperatures of the emitter and collector, vacuum gap between the emitter and the collector, and area ratio of the absorber to the emitter are optimally determined. Furthermore, the effects of the work functions and the concentration ratio of the solar irradiation on the performance of the VTSC are discussed and several parametric selection criteria are obtained

  14. Hydrogen photoproduction by photoelectrochemical conversion

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The water-splitting reaction by photoelectrochemical processes has gained much more attention than any of many reactions proposed for solar generation of energy-rich molecules (fuels). The conversion efficiency of the photosystem is the key factor. The higher the efficiency, the more economically feasible will be the conversion scheme. The conversion efficiency is a function of the semiconductor properties, light intensity, spectral quality, properties of the electrolyte, counterelectrode, cell configuration, etc. The semiconductor parameters include band gap, absorption coefficient and diffusion length. The area and material used for a counterelectrode are important when considering polarization losses in a two-electrode system. Besides, the stability problem is also a very important one to meet the requirement for practical applications. This paper reviews some important issues on photoelectrochemical generation of hydrogen by water splitting. It includes energy conversion efficiency, market assessment and cost goal, state of the technology, and future directions for research

  15. Temperature dependence of photon-enhanced thermionic emission from GaAs surface with nonequilibrium Cs overlayers

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, A.G. [Rzhanov Institute of Semiconductor Physics, Pr. Lavrentieva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova, 2, 630090 Novosibirsk (Russian Federation); Alperovich, V.L., E-mail: alper@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Pr. Lavrentieva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova, 2, 630090 Novosibirsk (Russian Federation)

    2017-02-15

    Highlights: • Electronic properties of Cs/GaAs surface are studied at elevated temperatures. • Heating to ∼100 °C strongly affects photoemission current and surface band bending. • For θ < 0.4 ML photoemission current relaxation is due to band bending. • A spectral proof of the PETE process is obtained at Cs/GaAs thermal cycling. - Abstract: The temperature influence on the Cs/GaAs surface electronic properties, which determine the photon-enhanced thermionic emission (PETE), is studied. It was found that heating to moderate temperatures of about 100 °C leads to substantial changes in the magnitude and shape of Cs coverage dependences of photoemission current and surface band bending, along with the changes of relaxation kinetics after Cs deposition. A spectral proof of the PETE process is obtained under thermal cycling of the Cs/GaAs surface with 0.45 monolayer (ML) of Cs.

  16. Perspectives for the uranium conversion market

    International Nuclear Information System (INIS)

    Honaiser, Eduardo H.R.; Melo, Bruno

    2007-01-01

    Uranium conversion is the last step to be technologically dominated by Brazil in the nuclear fuel cycle. Hence, it has a strategic importance for the Brazilian nuclear project, which is confirmed by the recent investment of the Science and Technology Department on the Brazilian Navy conversion plant project. This paper is an attempt to justify the necessity of the conversion and the Brazilian nuclear fuel cycle projects, as well as identify future steps for the Brazilian nuclear fuel cycle project. The paper objective is achieved performing a qualitative supply-demand balance for the past and the future and analysing the market structure, using the Porter five forces used on industry analysis. Both surveys have shown a promising future for the nuclear fuel industry, including the conversion due to the expected demand increase and reduction of inventories. Furthermore current suppliers have several mechanisms that work as a barrier to new entrants. Under this context, the a fully integrated Brazilian nuclear fuel cycle project is necessary, given the prosperous economical future of the sector and the possible future shortage of nuclear fuel products. Reprocessing and MOX fuel fabrication capabilities are important future steps for the program, given that there is a trend of increase of their use. (author)

  17. Perspectives for the uranium conversion market

    Energy Technology Data Exchange (ETDEWEB)

    Honaiser, Eduardo H.R.; Melo, Bruno [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil)]. E-mail: 213@ctemsp.mar.mil.br

    2007-07-01

    Uranium conversion is the last step to be technologically dominated by Brazil in the nuclear fuel cycle. Hence, it has a strategic importance for the Brazilian nuclear project, which is confirmed by the recent investment of the Science and Technology Department on the Brazilian Navy conversion plant project. This paper is an attempt to justify the necessity of the conversion and the Brazilian nuclear fuel cycle projects, as well as identify future steps for the Brazilian nuclear fuel cycle project. The paper objective is achieved performing a qualitative supply-demand balance for the past and the future and analysing the market structure, using the Porter five forces used on industry analysis. Both surveys have shown a promising future for the nuclear fuel industry, including the conversion due to the expected demand increase and reduction of inventories. Furthermore current suppliers have several mechanisms that work as a barrier to new entrants. Under this context, the a fully integrated Brazilian nuclear fuel cycle project is necessary, given the prosperous economical future of the sector and the possible future shortage of nuclear fuel products. Reprocessing and MOX fuel fabrication capabilities are important future steps for the program, given that there is a trend of increase of their use. (author)

  18. Flicker noise comparison of direct conversion mixers using Schottky and HBT dioderings in SiGe:C BiCMOS technology

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld

    2015-01-01

    In this paper, we present flicker noise measurements of two X-band direct conversion mixers implemented in a SiGe:C BiCMOS technology. Both mixers use a ring structure with either Schottky diodes or diode-connected HBTs for double balanced operation. The mixers are packaged in a metal casing on a...... circuit demonstrates a 1/f noise corner frequency around 10 kHz....

  19. Advanced Reactor Technology/Energy Conversion Project FY17 Accomplishments.

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The purpose of the ART Energy Conversion (EC) Project is to provide solutions to convert the heat from an advanced reactor to useful products that support commercial application of the reactor designs.

  20. Development of a thermionic magnicon amplifier at 11.4 GHz

    International Nuclear Information System (INIS)

    Gold, S.H.; Hafizi, B.; Fliflet, A.W.; Kinkead, A.K.; True, R.

    1997-01-01

    The magnicon is a scanning-beam microwave amplifier tube that is being developed as an rf source for the proposed TeV Next Linear Collider. In it, a solid electron beam is spun up to high transverse momentum in a series of deflection cavities containing synchronously rotating TM modes, and then spun down again in an output cavity whose mode is synchronous with that of the deflection cavities. A recent magnicon experiment at NRL, using a ∼ 650 kV, 225 A, 5.5-mm-diam. electron beam produced from a cold cathode driven by a single-shot Marx generator, demonstrated 14 MW (±3 dB) at 11.12 GHz with 105 efficiency in the synchronous magnicon mode, but was limited by plasma loading in the deflection cavities to a regime in which the last cavity of the deflection system (the penultimate cavity) was unstable. A new 11.4 GHz rep-rated thermionic magnicon experiment is being assembled, using an advanced ultra-high-convergence electron gun driven by a 10 Hz, 1.5 microsecond modulator top produce a 500 kV, 210 A, 2-mm diameter electron beam. The magnicon circuit has been optimized for minimum surface rf fields and maximum efficiency, and will be engineered for high temperature bakeout and high vacuum operation. This experiment should begin operation in the Summer of 1997. The predicted power is 60 MW at ∼ 60% efficiency

  1. Frequency conversion of structured light.

    Science.gov (United States)

    Steinlechner, Fabian; Hermosa, Nathaniel; Pruneri, Valerio; Torres, Juan P

    2016-02-15

    Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging.

  2. Development of a coherent transition radiation-based bunch length monitor with application to the APS RF thermionic gun beam optimization

    CERN Document Server

    Lumpkin, Alex H; Berg, W J; Borland, M; Happek, U; Lewellen, J W; Sereno, N S

    2001-01-01

    We report further development of an EPICS-compatible bunch length monitor based on the autocorrelation of coherent transition radiation (CTR). In this case the monitor was used to optimize the beam from the S-band thermionic RF gun on the Advanced Photon Source (APS) linac. Bunch lengths of 400-500 fs (FWHM) were measured in the core of the beam, which corresponded to about 100-A peak current in each micropulse. The dependence of the CTR signal on the square of the beam charge for the beam core was demonstrated. We also report the first use of the beam accelerated to 217 MeV for successful visible wavelength SASE FEL experiments.

  3. Novel Nuclear Powered Photocatalytic Energy Conversion

    International Nuclear Information System (INIS)

    White, John R.; Kinsmen, Douglas; Regan, Thomas M.; Bobek, Leo M.

    2005-01-01

    The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and

  4. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  5. Ultra-capacitors in power conversion systems analysis, modeling and design in theory and practice

    CERN Document Server

    Grbovic, Petar J

    2014-01-01

    Divided into five parts, this book is focused on ultra-capacitors and their applications in power conversion systems. It discusses ultra-capacitor analysis, modelling and module design from a macroscopic (application) perspective. It also describes power conversion applications, interface dc-dc converter design and entire conversion system design. Part One covers the background of energy storage technologies, with particular attention on state-of-the-art ultra-capacitor energy storage technologies. In Chapter four of this part, power conversion systems with integrated energy storage is discus

  6. Conversational informatics a data-intensive approach with emphasis on nonverbal communication

    CERN Document Server

    Nishida, Toyoaki; Ohmoto, Yoshimasa; Mohammad, Yasser

    2014-01-01

    This book covers an approach to conversational informatics which encompasses science and technology for understanding and augmenting conversation in the network age. A major challenge in engineering is to develop a technology for conveying not just messages but also underlying wisdom. Relevant theories and practices in cognitive linguistics and communication science, as well as techniques developed in computational linguistics and artificial intelligence, are discussed.

  7. Natural gas conversion. Part VI

    International Nuclear Information System (INIS)

    Iglesia, E.; Spivey, J.J.; Fleisch, T.H.

    2001-01-01

    This volume contains peer-reviewed manuscripts describing the scientific and technological advances presented at the 6th Natural Gas Conversion Symposium held in Alaska in June 2001. This symposium continues the tradition of excellence and the status as the premier technical meeting in this area established by previous meetings. The 6th Natural Gas Conversion Symposium is conducted under the overall direction of the Organizing Committee. The Program Committee was responsible for the review, selection, editing of most of the manuscripts included in this volume. A standing International Advisory Board has ensured the effective long-term planning and the continuity and technical excellence of these meetings. The titles of the contributions are: Impact of syngas generation technology selection on a GTL FPSO; Methane conversion via microwave plasma initiated by a metal initiator; Mechanism of carbon deposit/removal in methane dry reforming on supported metal catalysts; Catalyst-assisted oxidative dehydrogenation of light paraffins in short contact time reactors; Catalytic dehydrogenation of propane over a PtSn/SiO 2 catalyst with oxygen addition: selective oxidation of H2 in the presence of hydrocarbons; Hydroconversion of a mixture of long chain n-paraffins to middle distillate: effect of the operating parameters and products properties; Decomposition/reformation processes and CH4 combustion activity of PdO over Al2O3 supported catalysts for gas turbine applications; Lurgi's mega-methanol technology opens the door for a new era in down-stream applications;Expanding markets for GTL fuels and specialty products; Some critical issues in the analysis of partial oxidation reactions in monolith reactors

  8. Military conversion: A view from Brussels

    International Nuclear Information System (INIS)

    Macioti, M.

    1994-01-01

    Cuts in defence spending and a process of economic adjustment have been in progress since the ending og the cold war and beginning of new relations between East and West. Conversion defined as process by which skills, research, technology and equipment on the defence area are shifted into alternative economic applications, is not an easy process to implement. Dual-use approaches-technologies, processes and products with both military and commercial applications can be developed in several areas of industry. Research can cover fields common to both areas. Examples range from composite materials to sensors, information sciences, modeling and simulation, robotics and artificial intelligence, telemedicine, fibre optics and photonics, laser systems, to acoustics and mathematics. Success of conversion policy is highly dependent on the general economic context and a sound legislative framework

  9. Evolution of energy conversion plants

    International Nuclear Information System (INIS)

    Osnaghi, C.

    2001-01-01

    The paper concerns the evolution and the future development of energy conversion plants and puts into evidence the great importance of the scientific and technological improvement in machines design, in order to optimize the use of energy resources and to improve ambient compatibility [it

  10. Characterization of sputter deposited thin film scandate cathodes for miniaturized thermionic converter applications

    Science.gov (United States)

    Zavadil, Kevin R.; Ruffner, Judith H.; King, Donald B.

    1999-01-01

    We have successfully developed a method for fabricating scandate-based thermionic emitters in thin film form. The primary goal of our effort is to develop thin film emitters that exhibit low work function, high intrinsic electron emissivity, minimum thermal activation properties and that can be readily incorporated into a microgap converter. Our approach has been to incorporate BaSrO into a Sc2O3 matrix using rf sputtering to produce thin films. Diode testing has shown the resulting films to be electron emissive at temperatures as low as 900 K with current densities of 0.1 mA.cm-2 at 1100 K and saturation voltages. We calculate an approximate maximum work function of 1.8 eV and an apparent emission constant (Richardson's constant, A*) of 36 mA.cm-2.K-2. Film compositional and structural analysis shows that a significant surface and subsurface alkaline earth hydroxide phase can form and probably explains the limited utilization and stability of Ba and its surface complexes. The flexibility inherent in sputter deposition suggests alternate strategies for eliminating undesirable phases and optimizing thin film emitter properties.

  11. A Conversation with Adam Heller

    OpenAIRE

    Heller, A; Cairns, EJ

    2015-01-01

    © 2015 by Annual Reviews. All rights reserved. Adam Heller, Ernest Cockrell Sr. Chair in Engineering Emeritus of the John J. McKetta Department of Chemical Engineering at The University of Texas at Austin, recalls his childhood in the Holocaust and his contributions to science and technology that earned him the US National Medal of Technology and Innovation in a conversation with Elton J. Cairns, Professor of Chemical and Biomolecular Engineering at the University of California, Berkeley. Dr....

  12. Condenser design for AMTEC power conversion

    Science.gov (United States)

    Crowley, Christopher J.

    1991-01-01

    The condenser and the electrodes are the two elements of an alkali metal thermal-to-electric conversion (AMTEC) cell which most greatly affect the energy conversion performance. A condenser is described which accomplishes two critical functions in an AMTEC cell: management of the fluid under microgravity conditions and optimization of conversion efficiency. The first function is achieved via the use of a controlled surface shape, along with drainage grooves and arteries to collect the fluid. Capillary forces manage the fluid in microgravity and dominate hydrostatic effects on the ground so the device is ground-testable. The second function is achieved via a smooth film of highly reflective liquid sodium on the condensing surface, resulting in minimization of parasitic heat losses due to radiation heat transfer. Power conversion efficiencies of 25 percent to 30 percent are estimated with this condenser using present technology for the electrodes.

  13. Process systems engineering issues and applications towards reducing carbon dioxide emissions through conversion technologies

    DEFF Research Database (Denmark)

    Roh, Kosan; Frauzem, Rebecca; Gani, Rafiqul

    2016-01-01

    This paper reviews issues and applications for design of sustainable carbon dioxide conversion processes, specifically through chemical conversion, and the integration of the conversion processes with other systems from a process systems engineering (PSE) view-point. Systematic and computer......-aided methods and tools for reaction network generation, processing route generation, process design/optimization, and sustainability analysis are reviewed with respect to carbon dioxide conversion. Also, the relevant gaps and opportunities are highlighted. In addition, the integration of carbon dioxide...

  14. Environmental effects of energy conversion

    International Nuclear Information System (INIS)

    Hansmeyer, K.H.; Fortak, H.; Knoepp, H.; Lindackers, K.H.; Schafhausen, F.; Schoedel, J.P.

    1984-01-01

    The article presents an analysis of energy conversion systems by the ''Council of Environmental Experts'' in order to correct the erroneous assumption that small energy conversion systems will also be small-scale and negligible emitters of pollutants. The additional pollution caused by Neurath power plant is considered to be low, at least in its immediate vicinity, owing to the implementation of the most recent technical developments. The environmental effects of energy conversion processes are discussed, including the waste heat problem and processes for water-cooling of power plants. General aspects of a new concept of energy taxation are discussed which is to reduce energy consumption. The problem of radioactive waste is discussed from spent fuel storage and reprocessing to the decommissioning of older power plants. The author points out that also new fossil-fuel technologies will pollute the environment. (orig.) [de

  15. Biomass thermo-conversion. Research trends

    International Nuclear Information System (INIS)

    Rodriguez Machin, Lizet; Perez Bermudez, Raul; Quintana Perez, Candido Enrique; Ocanna Guevara, Victor Samuel; Duffus Scott, Alejandro

    2011-01-01

    In this paper is studied the state of the art in order to identify the main trends of the processes of thermo conversion of biomass into fuels and other chemicals. In Cuba, from total supply of biomass, wood is the 19% and sugar cane bagasse and straw the 80%, is why research in the country, should be directed primarily toward these. The methods for energy production from biomass can be group into two classes: thermo-chemical and biological conversion routes. The technology of thermo-chemical conversion includes three subclasses: pyrolysis, gasification, and direct liquefaction. Although pyrolysis is still under development, in the current energy scenario, has received special attention, because can convert directly biomass into solid, liquid and gaseous by thermal decomposition in absence of oxygen. The gasification of biomass is a thermal treatment, where great quantities of gaseous products and small quantities of char and ash are produced. In Cuba, studies of biomass thermo-conversion studies are limited to slow pyrolysis and gasification; but gas fuels, by biomass, are mainly obtained by digestion (biogas). (author)

  16. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Neil; Yang, Peidong

    2013-01-23

    Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

  17. Leadership is a conversation.

    Science.gov (United States)

    Groysberg, Boris; Slind, Michael

    2012-06-01

    Globalization and new technologies have sharply reduced the efficacy of command-and-control management and its accompanying forms of corporate communication. In the course of a recent research project, the authors concluded that by talking with employees, rather than simply issuing orders, leaders can promote operational flexibility, employee engagement, and tight strategic alignment. Groysberg and Slind have identified four elements of organizational conversation that reflect the essential attributes of interpersonal conversation: intimacy, interactivity, inclusion, and intentionality. Intimacy shifts the focus from a top-down distribution of information to a bottom-up exchange of ideas. Organizational conversation is less corporate in tone and more casual. And it's less about issuing and taking orders than about asking and answering questions. Interactivity entails shunning the simplicity of monologue and embracing the unpredictable vitality of dialogue. Traditional one-way media-print and broadcast, in particular-give way to social media buttressed by social thinking. Inclusion turns employees into full-fledged conversation partners, entitling them to provide their own ideas, often on company channels. They can create content and act as brand ambassadors, thought leaders, and storytellers. Intentionality enables leaders and employees to derive strategically relevant action from the push and pull of discussion and debate.

  18. Recent Progress on Integrated Energy Conversion and Storage Systems.

    Science.gov (United States)

    Luo, Bin; Ye, Delai; Wang, Lianzhou

    2017-09-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.

  19. Quantitative feasibility study of magnetocaloric energy conversion utilizing industrial waste heat

    International Nuclear Information System (INIS)

    Vuarnoz, D.; Kitanovski, A.; Gonin, C.; Borgeaud, Y.; Delessert, M.; Meinen, M.; Egolf, P.W.

    2012-01-01

    Highlights: ► We model magnetic energy conversion machine for the use of industrial waste heat. ► Efficiencies and masses of the system are evaluated by a numerical model. ► Excellent potential of profitability is expected with large low-exergy heat sources. -- Abstract: The main objective of this theoretical study was to investigate under which conditions a magnetic energy conversion device (MECD) – utilizing industrial waste heat – is economically feasible. Furthermore, it was evaluated if magnetic energy conversion (MCE) has the potential of being a serious concurrent to already existing conventional energy conversion technologies. Up-today the availability of magnetocaloric materials with a high Curie temperature and a high magnetocaloric effect is rather limited. Therefore, this study was mainly focused on applications with heat sources of low to medium temperature levels. Magnetic energy conversion machines, containing permanent magnets, are numerically investigated for operation conditions with different temperature levels, defined by industrial waste heat sources and environmental heat sinks, different magnetic field intensities and different frequencies of operation (number of thermodynamic cycles per unit of time). Theoretical modeling and numerical simulations were performed in order to determine thermodynamic efficiencies and the exergy efficiencies as function of different operation conditions. From extracted data of our numerical results, approximate values of the total mass and total volume of magnetic energy conversion machines could be determined. These important results are presented dependent on the produced electric power. An economic feasibility study supplements the scientific study. It shows an excellent potential of profitability for certain machines. The most important result of this article is that the magnetic energy conversion technology can be economically and technically competitive to or even beat conventional energy

  20. Report on a survey in fiscal 1999. Part 2. Survey on the biomass-derived energy conversion technology; 1999 nendo biomass shigen wo genryo to suru energy henkan gijutsu ni kansuru chosa hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Biomass energy is positioned as a promising environment harmonizing energy in the 21st century because it does not break down the CO2 balance in the global scale. The present survey has investigated quantity of biomass resources utilizable as energy resources, investigated and analyzed the biomass-derived energy conversion technology, searched for a promising practically usable technology, and discussed the means to achieve the technological introduction. The foreword chapter describes that now is the good time to recognize importance of and introduce the biomass-derived technology. First and second chapters estimate energy potential and utilizable quantity of wastes-based biomass in Indonesia, Malaysia, the Philippines, and Brazil. Chapter 3 investigates feasibility of methane fermentation and ethanol fermentation as a promising bio-chemical conversion process. Chapter 4 has performed feasibility studies on biomass electric power generation, methanol synthesis by gasification, thermal decomposition and gasification as promising thermo-chemical conversion processes. Chapter 5 proposed a biomass electric power generation system, a biomass-gasified methanol synthesizing system, and a dimethyl ether production system. (NEDO)

  1. Predictability of Conversation Partners

    Science.gov (United States)

    Takaguchi, Taro; Nakamura, Mitsuhiro; Sato, Nobuo; Yano, Kazuo; Masuda, Naoki

    2011-08-01

    Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information-theoretic method to the spatiotemporal data of cell-phone locations, [C. Song , ScienceSCIEAS0036-8075 327, 1018 (2010)] found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one’s conversation partners is defined as the degree to which one’s next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between sensor nodes in close proximity. We find that the conversation events are predictable to a certain extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the contribution of their long-tailed nature. In addition, an individual’s predictability is correlated with the position of the individual in the static social network derived from the data. Individuals confined in a community—in the sense of an abundance of surrounding triangles—tend to have low predictability, and those bridging different communities tend to have high predictability.

  2. Predictability of Conversation Partners

    Directory of Open Access Journals (Sweden)

    Taro Takaguchi

    2011-09-01

    Full Text Available Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information-theoretic method to the spatiotemporal data of cell-phone locations, [C. Song et al., Science 327, 1018 (2010SCIEAS0036-8075] found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one’s conversation partners is defined as the degree to which one’s next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between sensor nodes in close proximity. We find that the conversation events are predictable to a certain extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the contribution of their long-tailed nature. In addition, an individual’s predictability is correlated with the position of the individual in the static social network derived from the data. Individuals confined in a community—in the sense of an abundance of surrounding triangles—tend to have low predictability, and those bridging different communities tend to have high predictability.

  3. Trends and Challenges in Catalytic Biomass Conversion

    DEFF Research Database (Denmark)

    Osmundsen, Christian Mårup; Egeblad, Kresten; Taarning, Esben

    2013-01-01

    The conversion of biomass to the plethora of chemicals used in modern society is one of the major challenges of the 21st century. Due to the significant differences between biomass resources and the current feedstock, crude oil, new technologies need to be developed encompassing all steps...... in the value chain, from pretreatment to purification. Heterogeneous catalysis is at the heart of the petrochemical refinery and will likely play an equally important role in the future biomass-based chemical industry. Three potentially important routes to chemicals from biomass are highlighted in this chapter....... The conversion of biomass-derived substrates, such as glycerol, by hydrogenolysis to the important chemicals ethylene glycol and propane diols. Secondly, the conversion of carbohydrates by Lewis acidic zeolites to yield alkyl lactates, and finally the conversion of lignin, an abundant low value source of biomass...

  4. Proceedings of the 30. intersociety energy conversion engineering conference. Volume 2

    International Nuclear Information System (INIS)

    Goswami, D.Y.; Kannberg, L.D.; Somasundaram, S.

    1995-01-01

    This conference provides a forum to present and discuss the engineering aspects of energy conversion, advanced and unconventional energy systems and devices, energy conversion and utilization, environmental issues and policy implications on research, development, and implementation of technologies. The solution for a sustainable future will lie in a mix of all of the available energy resources (renewable and non-renewable) and diverse energy conversion technologies that will maintain quality of life in a sustainable manner. The 100 papers in Volume 2 are divided into the following topical sections: (1) Environmental impact--Impacts and technologies; (2) Energy systems--Electric/hybrid vehicle technology; Transportation system assessments; Simulation and modeling of systems; Cogeneration and other energy systems; Thermal energy storage applications; Fluids and heat transfer topics; Demand-side management in buildings; and Energy management; (3) Policy impacts on energy--Developing countries and Global; (4) Renewable energy sources--Solar and geothermal power; Solar thermal power; Photovoltaics; Biomass power; Solar thermal; and Renewable energy--status and future. All papers have been processed separately for inclusion on the data base

  5. Biochemical Conversion: Using Enzymes, Microbes, and Catalysis to Make Fuels and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-26

    This fact sheet describes the Bioenergy Technologies Office's biochemical conversion work and processes. BETO conducts collaborative research, development, and demonstration projects to improve several processing routes for the conversion of cellulosic biomass.

  6. Reactor technology: power conversion systems and reactor operation and maintenance

    International Nuclear Information System (INIS)

    Powell, J.R.

    1977-01-01

    The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He 3 reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored

  7. Energy conversion & storage program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  8. Opportunities and Barriers to Bioenergy Conversion Techniques and Their Potential Implementation on Swine Manure

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Sharara

    2018-04-01

    Full Text Available The objectives of this article are to offer a comprehensive evaluation of the opportunities and barriers for swine manure conversion technologies and to shed light on the gaps that might require further investigation to improve the applicability of these technologies. The challenges of manure management have been propagated alongside the global growth of swine production. Various technologies that target the production of energy, fuels, and bioproducts from swine manure have been reported. These technologies include pretreatments, i.e., drying, and solid separation; biological techniques, i.e., composting, anaerobic digestion, and biodrying; and thermochemical techniques, i.e., combustion, gasification, pyrolysis, liquefaction, and carbonization. The review highlights the yields and qualities of products, i.e., energy, gaseous fuel, liquid fuel, and solid fuel, of each technology. It exhibits that the choice of a conversion technology predominantly depends on the feedstock properties, the specifics of the conversion technique, the market values of the end products as well as the local regulations. The challenges associated with the presented techniques are discussed to ameliorate research and development in these areas. The notable finding of this paper is that there is a need for full-scale research in the area of thermochemical conversion of solid-separated swine manure.

  9. Survey report for fiscal 1998. Survey of creation of highly efficient renewable resources and bioconversion technologies; 1998 nendo chosa hokokusho. Kokoritsu saisei kano shigen no sosei narabini bio conversion gijutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A survey is conducted concerning environmentally friendly industrial technologies that utilize renewable resources, which are technologies of creating highly renewable resources and converting renewable resources by breeding industrial vegetation. In relation with the creation technologies, the state of research and development of basic technologies is surveyed, which involves the fabrication of environmental stress resisting vegetation, studies for the application of the gene expression control mechanism, introduction of multigenes and site-directed genes, etc. Concerning the respective target products expected to be produced by industrial vegetation, as much information as possible relative to genes is collected on the current state of production, metabolism in vegetation and microbials, and biosynthesis. Surveyed in relation with the bioconversion technology are the conversion of vegetation-derived polymers, construction of environmentally friendly ligno-bioprocess, conversion of sugar, production of biofuels, etc. Furthermore, the technology of treating ligneous wastes with supercritical water is surveyed, this to determine the practicality of the technology at the current stage. (NEDO)

  10. Methods for Mining and Summarizing Text Conversations

    CERN Document Server

    Carenini, Giuseppe; Murray, Gabriel

    2011-01-01

    Due to the Internet Revolution, human conversational data -- in written forms -- are accumulating at a phenomenal rate. At the same time, improvements in speech technology enable many spoken conversations to be transcribed. Individuals and organizations engage in email exchanges, face-to-face meetings, blogging, texting and other social media activities. The advances in natural language processing provide ample opportunities for these "informal documents" to be analyzed and mined, thus creating numerous new and valuable applications. This book presents a set of computational methods

  11. Coal liquefaction and gas conversion contractors review conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This volume contains 55 papers presented at the conference. They are divided into the following topical sections: Direct liquefaction; Indirect liquefaction; Gas conversion (methane conversion); and Advanced research liquefaction. Papers in this last section deal mostly with coprocessing of coal with petroleum, plastics, and waste tires, and catalyst studies. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  12. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  13. Development of a thermionic magnicon amplifier at 11.4 GHz. Final report for period May 16, 1995 - May 15, 2001

    International Nuclear Information System (INIS)

    Gold, Steven H.; Fliflet, Arne W.

    2001-01-01

    This is the final report on the research program ''Development of a Thermionic Magnicon Amplifier at 11.4 GHz,'' which was carried out by the Plasma Physics Division of the Naval Research Laboratory. Its goal was to develop a high-power, frequency-doubling X-band magnicon amplifier, an advanced scanning-beam amplifier, for use in future linear colliders. The final design parameters were 61 MW at 11.424 GHz, 59 dB gain, 59% efficiency, 1 microsecond pulselength and 10 Hz repetition rate. At the conclusion of this program, the magnicon was undergoing high-power conditioning, having already demonstrated high-power operation, phase stability, a linear drive curve, a small operational frequency bandwidth and a spectrally pure, single-mode output

  14. The Finmeccania experience in military conversion

    International Nuclear Information System (INIS)

    Airaghi, A.; Corsi, C.

    1994-01-01

    Experience of the Italian aerospace, defense, energy, transportation and automation group Finmeccanica in military conversion is presented. The defence activities represent about 30% of the total turnover. The group involves 100 laboratories, 7000 fully dedicated employees and several centers of excellence. Since defense market is declining, production volumes are smaller, there is a decline in research and development public expenditures and there are less programs. The industry's challenge is how to survive since conversion in principle is not viable and diversification does not defend the high technology content. Some examples are described which show the possibility of convergence from military to commercial requirements

  15. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. (Advanced Fuel Research, Inc., East Hartford, CT (United States) Brigham Young Univ., Provo, UT (United States))

    1991-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  16. High-flux/high-temperature solar thermal conversion: technology development and advanced applications

    Directory of Open Access Journals (Sweden)

    Romero Manuel

    2016-01-01

    Full Text Available Solar Thermal Power Plants have generated in the last 10 years a dynamic market for renewable energy industry and a pro-active networking within R&D community worldwide. By end 2015, there are about 5 GW installed in the world, most of them still concentrated in only two countries, Spain and the US, though a rapid process of globalization is taking place in the last few years and now ambitious market deployment is starting in countries like South Africa, Chile, Saudi Arabia, India, United Arab Emirates or Morocco. Prices for electricity produced by today's plants fill the range from 12 to 16 c€/kWh and they are capital intensive with investments above 4000 €/kW, depending on the number of hours of thermal storage. The urgent need to speed up the learning curve, by moving forward to LCOE below 10 c€/kWh and the promotion of sun-to-fuel applications, is driving the R&D programmes. Both, industry and R&D community are accelerating the transformation by approaching high-flux/high-temperature technologies and promoting the integration with high-efficiency conversion systems.

  17. Use of nuclear space technology of direct energy conversion for terrestrial application

    International Nuclear Information System (INIS)

    Chitaykin, V.I.; Meleta, Ye.A.; Yarygin, V.I.; Mikheyev, A.S.; Tulin, S.M.

    2000-01-01

    In due time the SSC RF-IPPE exercised the scientific supervision and directly participated in the development, fabrication, space flight test and maintenance of the direct energy conversion nuclear power plants (NPP) for space application under the 'BUK' and 'TOPAZ' programs. We have used the acquired experience and the high technologies developed for the 'BUK' NPP with a thermoelectric conversion of thermal (nuclear) energy into electrical one in the development under the order of RAO 'GAZPROM' of the natural gas fired self contained thermoelectric current sources (AIT-500) and heat and electricity sources (TEP-500). These are intended for electrochemical rust protection of gas pipelines and for the electricity and heat supply to the telemetric and microwave-link systems located along the gas pipelines. Of special interest at the moment are the new developments of self contained current sources with the electrical output of ∼500 Wel for new gas pipelines being constructed under the projects such as the 'Yamal-Europe' project. The electrochemical rust protection of gas pipelines laying on unsettled and non-electrified territory of arctic regions of Russia is performed by means of the so-called Cathodic Protection Stations (CPS). Accounting for a complex of rather rigid requirements imposed by arctic operating conditions, the most attractive sources of electricity supply to the CPS are the thermoelectric heat-into-electricity converters and the generators (TEG). This paper deals with the essential results of the development, investigation and testing of unconventional TEGs using the low-temperature bismuth-tellurium thermoelectric batteries assembled together as tubular thermoelectric batteries with a radial ring geometry built into the gas-heated thermoelectric modules, which are collected to make up either the thermoelectric plants for heat and electricity supply or the self contained power sources. One of the peculiarities of these plants is the combination of

  18. Potassium Rankine cycle power conversion systems for lunar-Mars surface power

    International Nuclear Information System (INIS)

    Holcomb, R.S.

    1992-01-01

    The potassium Rankine cycle has good potential for application to nuclear power systems for surface power on the moon and Mars. A substantial effort on the development of the power conversion system was carried out in the 1960's which demonstrated successful operation of components made of stainless steel at moderate temperatures. This technology could be applied in the near term to produce a 360 kW(e) power system by coupling a stainless steel power conversion system to the SP-100 reactor. Improved performance could be realized in later systems by utilizing niobium or tantalum refractory metal alloys in the reactor and power conversion system. The design characteristics and estimated mass of power systems for each of three technology levels are presented in the paper

  19. Design of batch audio/video conversion platform based on JavaEE

    Science.gov (United States)

    Cui, Yansong; Jiang, Lianpin

    2018-03-01

    With the rapid development of digital publishing industry, the direction of audio / video publishing shows the diversity of coding standards for audio and video files, massive data and other significant features. Faced with massive and diverse data, how to quickly and efficiently convert to a unified code format has brought great difficulties to the digital publishing organization. In view of this demand and present situation in this paper, basing on the development architecture of Sptring+SpringMVC+Mybatis, and combined with the open source FFMPEG format conversion tool, a distributed online audio and video format conversion platform with a B/S structure is proposed. Based on the Java language, the key technologies and strategies designed in the design of platform architecture are analyzed emphatically in this paper, designing and developing a efficient audio and video format conversion system, which is composed of “Front display system”, "core scheduling server " and " conversion server ". The test results show that, compared with the ordinary audio and video conversion scheme, the use of batch audio and video format conversion platform can effectively improve the conversion efficiency of audio and video files, and reduce the complexity of the work. Practice has proved that the key technology discussed in this paper can be applied in the field of large batch file processing, and has certain practical application value.

  20. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers.......Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers....

  1. Investigation of the available technologies and their feasibility for the conversion of food waste into fish feed in Hong Kong.

    Science.gov (United States)

    Cheng, Jack Y K; Lo, Irene M C

    2016-04-01

    Food waste is the largest constituent of municipal solid waste in Hong Kong, but food waste recycling is still in its infancy. With the imminent saturation of all landfill sites by 2020, multiple technologies are needed to boost up the food waste recycling rate in Hong Kong. Conversion of food waste into animal feeds is prevalent in Japan, South Korea, and Taiwan, treating over 40 % of their recycled food waste. This direction is worth exploring in Hong Kong once concerns over food safety are resolved. Fortunately, while feeding food waste to pigs and chickens poses threats to public health, feeding it to fish is considered low risk. In order to examine the feasibility of converting food waste into fish feed in Hong Kong, this paper investigates the market demand, technical viability, feed quality, regulatory hurdles, and potential contribution. The results show that a significant amount of food waste can be recycled by converting it into fish feed due to the enormous demand from feed factories in mainland China. Two conversion technologies, heat drying and black soldier fly bioconversion, are studied extensively. Black soldier fly bioconversion is preferable because the end-product, insect powder, is anticipated to gain import approval from mainland China. The authors suggest further research efforts to speed up its application for food waste recycling in urban cities.

  2. Solar spectrum conversion for photovoltaics using nanoparticles

    NARCIS (Netherlands)

    Sark, W.G.J.H.M. van; Meijerink, A.; Schropp, R.E.I.

    2012-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Conventional single-junction

  3. Technology strategy for gas technologies; Technology Target Areas; TTA8 Gas Technology

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    TTA8 - Gas technologies points out the various routes Norway can follow to capitalise on the vast resources of natural gas that will be produced in the years to come by developing a strong technology and competence platform. A broad view is taken for the value creation having as basis the continued gas export from NCS to Europe, but also a strong focus on development of gas resources in other parts of the world. The latter can also be seen as part of international positioning for upstream resources and does also include involvements in projects, and export of technology and products. The TTA has structured the analysis into 3 main areas: Gas transport and processing (pipeline, LNG, other); Gas conversion to fuels, chemicals and materials; CO{sub 2} management. In this report, for each of these areas, scenarios based on a gap analysis are presented. One of the key goals has been to identify pacing and emerging technologies for the next 20 years. Based on this, technologies have been mapped according to importance for future competitiveness and technology ambitions. This also includes primary funding responsibilities (public and/or industry). The road map below reflects the key issues in the proposed strategy. The base level of the figure explains areas that will have to be pursued to maintain Norway's role as a key gas and gas technology provider. The second layer represents near term options and possibilities with a reasonable risk profile that could further enhance the Norwegian position given the resources and drive to further develop this industry. As the top layer we have selected some of our 'dreams', what we may achieve if a progressive approach is followed with a strongly innovation based policy. It is acknowledged by the TTA that Norway cannot be a leading technology player in all aspects of the gas value chain. For some technologies we should be an active player and developer, whilst for other technologies we should become a competent buyer and user. This

  4. Technology strategy for gas technologies; Technology Target Areas; TTA8 Gas Technology

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    TTA8 - Gas technologies points out the various routes Norway can follow to capitalise on the vast resources of natural gas that will be produced in the years to come by developing a strong technology and competence platform. A broad view is taken for the value creation having as basis the continued gas export from NCS to Europe, but also a strong focus on development of gas resources in other parts of the world. The latter can also be seen as part of international positioning for upstream resources and does also include involvements in projects, and export of technology and products. The TTA has structured the analysis into 3 main areas: Gas transport and processing (pipeline, LNG, other); Gas conversion to fuels, chemicals and materials; CO{sub 2} management. In this report, for each of these areas, scenarios based on a gap analysis are presented. One of the key goals has been to identify pacing and emerging technologies for the next 20 years. Based on this, technologies have been mapped according to importance for future competitiveness and technology ambitions. This also includes primary funding responsibilities (public and/or industry). The road map below reflects the key issues in the proposed strategy. The base level of the figure explains areas that will have to be pursued to maintain Norway's role as a key gas and gas technology provider. The second layer represents near term options and possibilities with a reasonable risk profile that could further enhance the Norwegian position given the resources and drive to further develop this industry. As the top layer we have selected some of our 'dreams', what we may achieve if a progressive approach is followed with a strongly innovation based policy. It is acknowledged by the TTA that Norway cannot be a leading technology player in all aspects of the gas value chain. For some technologies we should be an active player and developer, whilst for other technologies we should become a competent buyer

  5. Image Format Conversion to DICOM and Lookup Table Conversion to Presentation Value of the Japanese Society of Radiological Technology (JSRT) Standard Digital Image Database.

    Science.gov (United States)

    Yanagita, Satoshi; Imahana, Masato; Suwa, Kazuaki; Sugimura, Hitomi; Nishiki, Masayuki

    2016-01-01

    Japanese Society of Radiological Technology (JSRT) standard digital image database contains many useful cases of chest X-ray images, and has been used in many state-of-the-art researches. However, the pixel values of all the images are simply digitized as relative density values by utilizing a scanned film digitizer. As a result, the pixel values are completely different from the standardized display system input value of digital imaging and communications in medicine (DICOM), called presentation value (P-value), which can maintain a visual consistency when observing images using different display luminance. Therefore, we converted all the images from JSRT standard digital image database to DICOM format followed by the conversion of the pixel values to P-value using an original program developed by ourselves. Consequently, JSRT standard digital image database has been modified so that the visual consistency of images is maintained among different luminance displays.

  6. Couples, contentious conversations, mobile telephone use and driving.

    Science.gov (United States)

    Lansdown, Terry C; Stephens, Amanda N

    2013-01-01

    Studies have shown that the inappropriate use of in-vehicle technology may lead to hazardous disruption of driver performance. This paper reports an investigation into the socio-technical implications of maintaining a difficult conversation while driving. Twenty romantically involved couples participated in a driving-simulator experiment. The participants engaged in emotionally difficult conversations while one partner drove. The contentious conversation topics were identified using a revealed differences protocol, requiring partners to discuss sources of ongoing disagreement in their relationship. The conversations were conducted either using handsfree telephone or with both parties present in the simulator. Results indicate that the revealed differences tasks were subjectively viewed as emotionally more difficult than a control. Driver performance was found to be adversely effected for both longitudinal and lateral vehicle control. Performance was worst during contentious conversations with the partner present, suggesting the drivers may be better able to regulate driving task demands with the partner not in the vehicle during difficult discussions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Military conversion and Science from a global perspective

    International Nuclear Information System (INIS)

    Proctor, J.

    1994-01-01

    The changes that begun in late 1980s in Europe and former Soviet Union have great impact upon political, economic and social conditions of most people in the world, meaning present state and future development of science. This paper deals with the problems of defense conversion and brain drain which provide a uniting global issue for learned societies, academies of science and organizations advancing technology around the world to maintain pressure on decision makers to raise science and technology in their scheme of priorities. Learned societies and academies both non-governmental and government supported have clear roles in defense conversion and related issues of brain drain. The challenge remains: to design and implement structures and processes for the modern world to deal with high technology, basic and applied science with the attendant great concentration of power and resources. Revised procedures for funding transitional structures and processes for sciences are expected to be recommended

  8. Transition to chaos in periodically driven thermionic diodes at low pressure

    International Nuclear Information System (INIS)

    Klinger, T.; Timm, R.; Piel, A.

    1992-01-01

    The static I(U) characteristic of thermionic diodes at mbar pressures shows a large hysteresis, which describes the transition from the 'anode-glow-mode' (AGM), with essentially negative plasma potential, to the 'temperature-limited-mode' (TLM), with positive plasma potential. Many features of these modes are also found in magnetic-box discharges with filament cathodes at pressures of 10 -2 -10 -1 Pa. Although these two pressure regimes are basically different concerning the transport properties (diffusion vs. free streaming), the elementary processes that establish the AGM in the low pressure regime are very similar to the high pressure regime. Ions are produced in that part of the anode sheath where the potential exceeds the ionization energy. The production rate is enhanced by multiple reflections of electrons between the magnetic fields of the permanent magnet array at the anode and the repulsive potential of the cathode plasma. Although the mean free path for charge exchange or elastic collisions substantially exceeds the anode-cathode distance, some few ions are stopped and trapped within the potential well of the virtual cathode. This accumulation of ions forms a cathodic plasma, which is essentially at cathode potential. Plasma formation in the anode sheath is suppressed as long as the ion production time is larger than the ion transit time through the sheath. These model ideas are supported by 1d-Particle-in-cell simulations using a modified PDP1-code. The AGM is attractive for studies of nonlinear dynamics because of its feedback processes and oscillations, which occur close to the hysteresis point. (author) 7 refs., 3 figs

  9. Evaluating Quality of Chatbots and Intelligent Conversational Agents

    OpenAIRE

    Radziwill, Nicole M.; Benton, Morgan C.

    2017-01-01

    Chatbots are one class of intelligent, conversational software agents activated by natural language input (which can be in the form of text, voice, or both). They provide conversational output in response, and if commanded, can sometimes also execute tasks. Although chatbot technologies have existed since the 1960s and have influenced user interface development in games since the early 1980s, chatbots are now easier to train and implement. This is due to plentiful open source code, widely ava...

  10. Silicon nanowires for photovoltaic solar energy conversion.

    Science.gov (United States)

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  11. Review of the direct thermochemical conversion of lignocellulosic biomass for liquid fuels

    Directory of Open Access Journals (Sweden)

    Jianchun JIANG,Junming XU,Zhanqian SONG

    2015-03-01

    Full Text Available Increased demand for liquid transportation fuels, environmental concerns and depletion of petroleum resources requires the development of efficient conversion technologies for production of second-generation biofuels from non-food resources. Thermochemical approaches hold great potential for conversion of lignocellulosic biomass into liquid fuels. Direct thermochemical processes convert biomass into liquid fuels in one step using heat and catalysts and have many advantages over indirect and biological processes, such as greater feedstock flexibility, integrated conversion of whole biomass, and lower operation costs. Several direct thermochemical processes are employed in the production of liquid biofuels depending on the nature of the feedstock properties: such as fast pyrolysis/liquefaction of lignocellulosic biomass for bio-oil, including upgrading methods, such as catalytic cracking and hydrogenation. Owing to the substantial amount of liquid fuels consumed by vehicular transport, converting biomass into drop-in liquid fuels may reduce the dependence of the fuel market on petroleum-based fuel products. In this review, we also summarize recent progress in technologies for large-scale equipment for direct thermochemical conversion. We focus on the technical aspects critical to commercialization of the technologies for production of liquid fuels from biomass, including feedstock type, cracking catalysts, catalytic cracking mechanisms, catalytic reactors, and biofuel properties. We also discuss future prospects for direct thermochemical conversion in biorefineries for the production of high grade biofuels.

  12. Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications

    Energy Technology Data Exchange (ETDEWEB)

    Atcitty, S.; Gray-Fenner, A.; Ranade, S.

    1998-09-01

    The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

  13. Experiments on quantum frequency conversion of photons

    International Nuclear Information System (INIS)

    Ramelow, S.

    2011-01-01

    Coherently converting photons between different states offers intriguing new possibilities and applications in quantum optical experiments. In this thesis three experiments on this theme are presented. The first experiment demonstrates the quantum frequency conversion of polarization entangled photons. Coherent frequency conversion of single photons offers an elegant solution for the often difficult trade-off of choosing the optimal photon wavelength, e.g. regarding optimal transmission and storage of photons in quantum memory based quantum networks. In our experiments, we verify the successful entanglement conversion by violating a Clauser-Horne-Shimony-Holt (CHSH) Bell inequality and fully characterised our close to unity fidelity entanglement transfer using quantum state- and process tomography. Our implementation is robust and flexible, making it a practical building block for future quantum technologies.The second part of the thesis introduces a deterministic scheme for photonic quantum information processing. While single photons offer many advantages for quantum information technologies, key unresolved challenges are scalable on-demand single photon sources; deterministic two-photon interactions; and near 100%-efficient detection. All these can be solved with a single versatile process - a novel four-wave mixing process that we introduce here as a special case of the more general scheme of coherent photon conversion (CPC). It can provide valuable photonic quantum processing tools, from scalably creating single- and multi-photon states to implementing deterministic entangling gates and high-efficiency detection. Notably, this would enable scalable photonic quantum computing. Using photonic crystal fibres, we experimentally demonstrate a nonlinear process suited for coherent photon conversion. We observe correlated photon-pair production at the predicted wavelengths and experimentally characterise the enhancement of the interaction strength by varying the pump

  14. A search for space energy alternatives

    Science.gov (United States)

    Gilbreath, W. P.; Billman, K. W.

    1978-01-01

    This paper takes a look at a number of schemes for converting radiant energy in space to useful energy for man. These schemes are possible alternatives to the currently most studied solar power satellite concept. Possible primary collection and conversion devices discussed include the space particle flux devices, solar windmills, photovoltaic devices, photochemical cells, photoemissive converters, heat engines, dielectric energy conversion, electrostatic generators, plasma solar collectors, and thermionic schemes. Transmission devices reviewed include lasers and masers.

  15. Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…

  16. Solar Energy: Its Technologies and Applications

    Science.gov (United States)

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  17. TFE Verification Program: Semiannual report for the period ending March 31, 1987

    International Nuclear Information System (INIS)

    1987-04-01

    The objective of the TFE program is to demonstrate the technological readiness of a thermionic fuel element suitable for use as the basic element in a thermionic reactor with electric power output in the .5 to 5.0 MWe range, with a full-power life of 7 years. This report summarizes the technical results obtained in this program. Information presented here contains evaluated test data, designs, and experimental results

  18. Electrochemistry of Nanocomposite Materials for Energy Conversion

    OpenAIRE

    Boni, Alessandro

    2016-01-01

    Energy is the most relevant technological issue that the world experiences today, and the development of efficient technologies able to store and convert energy in different forms is urgently needed. The storage of electrical energy is of major importance and electrochemical processes are particularly suited for the demanding task of an efficient inter-conversion. A potential strategy is to store electricity into the chemical bonds of electrogenerated fuels, like hydrogen and/or energy-den...

  19. Task 3.3: Warm Syngas Cleanup and Catalytic Processes for Syngas Conversion to Fuels Subtask 3: Advanced Syngas Conversion to Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lebarbier Dagel, Vanessa M.; Li, J.; Taylor, Charles E.; Wang, Yong; Dagle, Robert A.; Deshmane, Chinmay A.; Bao, Xinhe

    2014-03-31

    This collaborative joint research project is in the area of advanced gasification and conversion, within the Chinese Academy of Sciences (CAS)-National Energy Technology Laboratory (NETL)-Pacific Northwest National Laboratory (PNNL) Memorandum of Understanding. The goal for this subtask is the development of advanced syngas conversion technologies. Two areas of investigation were evaluated: Sorption-Enhanced Synthetic Natural Gas Production from Syngas The conversion of synthetic gas (syngas) to synthetic natural gas (SNG) is typically catalyzed by nickel catalysts performed at moderate temperatures (275 to 325°C). The reaction is highly exothermic and substantial heat is liberated, which can lead to process thermal imbalance and destruction of the catalyst. As a result, conversion per pass is typically limited, and substantial syngas recycle is employed. Commercial methanation catalysts and processes have been developed by Haldor Topsoe, and in some reports, they have indicated that there is a need and opportunity for thermally more robust methanation catalysts to allow for higher per-pass conversion in methanation units. SNG process requires the syngas feed with a higher H2/CO ratio than typically produced from gasification processes. Therefore, the water-gas shift reaction (WGS) will be required to tailor the H2/CO ratio. Integration with CO2 separation could potentially eliminate the need for a separate WGS unit, thereby integrating WGS, methanation, and CO2 capture into one single unit operation and, consequently, leading to improved process efficiency. The SNG process also has the benefit of producing a product stream with high CO2 concentrations, which makes CO2 separation more readily achievable. The use of either adsorbents or membranes that selectively separate the CO2 from the H2 and CO would shift the methanation reaction (by driving WGS for hydrogen production) and greatly improve the overall efficiency and economics of the process. The scope of this

  20. Environmental Development Plan: uranium mining, milling, and conversion

    International Nuclear Information System (INIS)

    1979-08-01

    This Environmental Development Plan (EDP) identifies the planning and management requirements and schedules needed to evaluate and assess the environmental, health, and safety (EH and S) aspects of the uranium mining, milling, and conversion technologies. The plan represents the collective perceptions of EH and S concerns and requirements and knowledge of ongoing research programs of most of the Federal agencies involved in significant EH and S R and D program management, standards setting, or regulatory activities associated with uranium mining, milling, and conversion

  1. FY 2000 report on the results of the survey on the biomass-derived energy conversion technology. III; 2000 nendo biomass shigen wo genryo to suru energy henkan gijutsu ni kansuru chosa. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In relation to the biomass-derived energy conversion technology which was regarded as promising from the results of the survey already made, the survey was made on the present situation and subjects of the technical development, social needs, energy efficiency, economical efficiency and the future. Studies were conducted on the development of technology for effective biomass utilization and the conceptual design and evaluation of a system for effective biomass utilization. As to the effective biomass utilization technology, the survey was made on the biomass combustion power generation technology/gasification power generation technology, gasification methanol synthesis of biomass, biomass gasification dimethyl ether synthesis, technology of ethanol production by alcohol fermentation via saccharification of biomass, methy-esterification of grease biomass, especially palm oil, and diesel oil production via reformation of by-product glycerin, and energy production from biomass using super- (sub- ) critical reaction. As to the system for effective biomass utilization, the survey was carried out of the regional outline, resource amount and sampling amount, selection of the conversion technology, and economical efficiency of Takatsuki city, Osaka, Shimokawa town, Hokkaido, Yufutsu/Hidaka region, Hokkaido, and Aogaki town, Hyogo. (NEDO)

  2. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    International Nuclear Information System (INIS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-01-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012 © . RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance

  3. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Science.gov (United States)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  4. Modeling transient thermal hydraulic behavior of a thermionic fuel element for nuclear space reactors

    International Nuclear Information System (INIS)

    Al-Kheliewi, A.S.; Klein, A.C.

    1994-01-01

    A transient code (TFETC) for determining the temperature distribution throughout the radial and axial positions of a thermionic fuel element (TFE) during changes in operating conditions has been successfully developed and tested. A fully implicit method is used to solve the system of equations for temperatures at each time step. Presently, TFETC has the ability to handle the following transients: startup, loss of flow accidents, and shutdown. The code has been applied to the startup of the ATI single cell configuration which appears to start up and shut down in an orderly and reasonable fashion. No unexpected transient features were observed. The TFE also appears to function robustly under loss of flow accident conditions. It appears hat sufficient time is available to shut the reactor down safely without melting point the fuel. The model shows that during a complete loss of flow accident (without shutdown) the coolant reaches its boiling point in approximately 35 seconds. The fuel may exceed its melting point after this time as the NaK coolant will boil if the reactor is not shut down. For 1/2, 1/3, and 1/4 pump failures, the fuel temperatures never exceed the fuel melting point even if the reactor is not shut down

  5. Solid State Microchp Based On Thermophotovoltaic And Thermoelectric Conversion

    OpenAIRE

    Worek, William M.; Brown, Christopher; Trojanowski, Rebecca; Butcher, Thomas; Horne, Edward

    2012-01-01

    MicroCHP involves the coproduction of both heat and electric power in (typically) residential heating systems. A range of different energy conversion technologies are currently receiving attention for this application including Stirling engines, internal combustion engines, fuel cells, and Rankine cycles with steam or organic compounds as working fluids. In this work the use of ThermoPhotoVoltaic (TPV) and ThermoElectric (TE) conversion devices either alone or in combination for power product...

  6. GT-MHR power conversion system: Design status and technical issues

    International Nuclear Information System (INIS)

    Etzel, K.; Baccaglini, G.; Schwartz, A.; Hillman, S.; Mathis, D.

    1994-12-01

    The Modular Helium Reactor (MHR) builds on 30 years of international gas-cooled reactor experience utilizing the unique properties of helium gas coolant, graphite moderator and coated particle fuel. To efficiently utilize the high temperature potential of the MHR, an innovative power conversion system has been developed featuring an intercooled and recuperated gas turbine. The gas turbine replaces a conventional steam turbine and its many auxiliary components. The Power Conversion System converts the thermal energy of the helium directly into electrical energy utilizing a closed Brayton cycle. The Power Conversion System draws on even more years of experience than the MHR: the world's first closed-cycle plant, fossil fired and utilizing air as working fluid, started operation in Switzerland in 1939. Shortly thereafter, in 1945, the coupling of a closed-cycle plant to a nuclear heat generation system was conceived. Directly coupling the closed-cycle gas turbine concept to a modern, passively safe nuclear reactor opens a new chapter in power generation technology and brings with it various design challenges. Some of these challenges are associated with the direct coupling of the Power Conversion System to a nuclear reactor. Since the primary coolant is also the working fluid, the Power Conversion System has to be designed for reactor radionuclide plateout. As a result, issues like component maintainability and replaceability, and fission product effects on materials must be addressed. Other issues concern the integration of the Power Conversion System components into a single vessel. These issues include the selection of key technologies for the power conversion components such as submerged generator, magnetic bearings, seals, compact heat exchangers, and the overall system layout

  7. Metal plutonium conversion to components of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Subbotin, V.G.; Panov, A.V.; Mashirev, V.P.

    2000-01-01

    Capabilities of different technologies for plutonium conversion to the fuel components of nuclear reactors are studied. Advantages and shortcomings of aqueous and nonaqueous methods of plutonium treatment are shown. Proposals to combine and coordinate efforts of world scientific and technological community in solving problems concerning plutonium of energetic and weapon origin treatment were put forward. (authors)

  8. Metal plutonium conversion to components of nuclear reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, V.G.; Panov, A.V. [Russian Federal Nuclear Center, ALL-Russian Science and Research, Institute of Technical Physics, Snezhinsk (Russian Federation); Mashirev, V.P. [ALL-Russian Science and Research Institute of Chemical Technology, Moscow (Russian Federation)

    2000-07-01

    Capabilities of different technologies for plutonium conversion to the fuel components of nuclear reactors are studied. Advantages and shortcomings of aqueous and nonaqueous methods of plutonium treatment are shown. Proposals to combine and coordinate efforts of world scientific and technological community in solving problems concerning plutonium of energetic and weapon origin treatment were put forward. (authors)

  9. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Catalytic Conversion of Sugars to Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tao, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scarlata, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, E. C. D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ross, J. [Harris Group Inc., New York, NY (United States); Lukas, J. [Harris Group Inc., New York, NY (United States); Sexton, D. [Harris Group Inc., New York, NY (United States)

    2015-03-01

    This report describes one potential conversion process to hydrocarbon products by way of catalytic conversion of lignocellulosic-derived hydrolysate. This model leverages expertise established over time in biomass deconstruction and process integration research at NREL, while adding in new technology areas for sugar purification and catalysis. The overarching process design converts biomass to die die diesel- and naphtha-range fuels using dilute-acid pretreatment, enzymatic saccharification, purifications, and catalytic conversion focused on deoxygenating and oligomerizing biomass hydrolysates.

  10. Environmental requirements in thermochemical and biochemical conversion of biomass

    International Nuclear Information System (INIS)

    Frings, R.M.; Mackie, K.L.; Hunter, I.R.

    1992-01-01

    Many biological and thermochemical processing options exist for the conversion of biomass to fuels. Commercially, these options are assessed in terms of fuel product yield and quality. However, attention must also be paid to the environmental aspects of each technology so that any commercial plant can meet the increasingly stringent environmental legislation in the world today. The environmental aspects of biological conversion (biogasification and bioliquefaction) and thermal conversion (high pressure liquefaction, flash pyrolysis, and gasification) are reviewed. Biological conversion processes are likely to generate waste streams which are more treatable than those from thermal conversion processes but the available data for thermal liquefaction are very limited. Close attention to waste minimisation is recommended and processing options that greatly reduce or eliminate waste streams have been identified. Product upgrading and its effect on wastewater quality also requires attention. Emphasis in further research studies needs to be placed on providing authentic waste streams for environmental assessment. (author)

  11. Irradiation behaviour of UO2/Mo porous cermets for thermionic converters

    International Nuclear Information System (INIS)

    Stora, J.P.; Kauffmann, Y.

    1975-01-01

    Two types of UO 2 Mo porous cernets have been fabricated and irradiated in a Cythere irradiation device. The first cermet is constituted by little bits of dense fuel in which the two constituants are finely dispersed. The whole open porosity is located between the granules. This type of cermet is called breche (33.4vol%UO 2 , 51vol%Mo, 14.8vol%porosity). At the end of the irradiation the burn up was 19000MWd/t(U) and neither swelling of the cermet nor deformation of the can were noted. On the contrary, a shrinkage of the emitter was observed attributed to a fuel densification under irradiation. The second type of cermet is called macrogranule (36vol%UO 2 , 49vol%Mo 15vol%porosity). UO 2 granules of 0.07cm mean diameter are dispersed in the molybdenum matrix. The porosity is regularly distributed all around the UO 2 kernels. The post irradiation metrology shows that the emitter is fairly stable. Only a slight ovalisation of about 0.5% was noted, but the granules of UO 2 were redistributed inside the molybdenum matrix, overlapping the metallic cavity by a condensation-evaporation process. The matrix has crept into the central void and consequently the volume has grown and the whole porosity has increased from about 15% to about 23%. This creeping is due to the fission gas pressure in the molybdenum cavities after 3000 hours of irradiation. In conclusion two types of cermets have shown good behaviour under irradiation and should allow lifetimes of several thousand hours of operation for thermionic fuel elements [fr

  12. IMAGE CONVERSION FOR LASER PYROGRAPHY

    Directory of Open Access Journals (Sweden)

    Adrian PETRU

    2015-12-01

    Full Text Available All previous studies of pyrography have been focussed on colour obtained through modifying the work parameters. This paper analyses colour nuances obtained by laser woodworking by measuring colour changes digitally. The investigated parameter is colour reproduction by laser technology, using different image conversion methods (Halftone Round, Jarvis, and so on. The changes of image reproduction are analysed globally and colour by colour. The results show that the colour nuances are represented to a more and less degree, according to the conversion method selected. To evaluate the aesthetic changes, CIEL*a*b* colour measurements were applied. The results show that laser burning on wood surfaces has a great influence on wood colour. These findings will be useful to develop innovative design possibilities for wood surfaces for furniture and other products.

  13. Progress in understanding conversion disorder

    Science.gov (United States)

    Allin, Matthew; Streeruwitz, Anna; Curtis, Vivienne

    2005-01-01

    Conversion disorder has a history that may reach back into antiquity, and it continues to present a clinical challenge to both psychiatrists and neurologists. This article reviews the current state of knowledge surrounding the prevalence, etiology, and neurobiology of conversion disorder. There have been improvements in the accuracy of diagnosis that are possibly related to improved technologies such as neuroimaging. Once the diagnosis is made, it is important to develop a therapeutic alliance between the patient and the medical team, and where comorbid psychiatric diagnoses have been made, these need to be adequately treated. While there have been no formal trials of medication or psychoanalytic treatments in this disorder, case reports suggest that a combination of antidepressants, psychotherapy, and a multidisciplinary approach to rehabilitation may be beneficial. PMID:18568070

  14. Hydrogen technologies and the technology learning curve

    International Nuclear Information System (INIS)

    Rogner, H.-H.

    1998-01-01

    On their bumpy road to commercialization, hydrogen production, delivery and conversion technologies not only require dedicated research, development and demonstration efforts, but also protected niche markets and early adopters. While niche markets utilize the unique technological properties of hydrogen, adopters exhibit a willingness to pay a premium for hydrogen fueled energy services. The concept of the technology learning curve is applied to estimate the capital requirements associated with the commercialization process of several hydrogen technologies. (author)

  15. Conversion of Semipalatinsk test site

    International Nuclear Information System (INIS)

    Cherepnin, Yu. S.

    1997-01-01

    The conversion of the former defense enterprises of STS (Semipalatinsk Test Sate) started under very difficult conditions, when not only research and production activity, but all social life of Kurchatov city were conversed which was caused by a fast curtailment and restationing of Russian military units from the test site. A real risk of a complete destruction of the whole research and production structure of the city existed. From this point of view, the decision of the Republic of Kazakhstan Government to create the National Nuclear Center on the base of the test site research enterprises was actual and timely. During 1993, three research institutes of NNC RK - Institute of Atomic Energy, Institute of Geophysics Research and Institute of Radiation Safety and Environment were established. This decision, under conditions of the Ussr disintegration and liquidation of the test site military divisions, allowed to preserve the qualified personnel, to provide and follow-up the operation of nuclear dangerous facilities, to develop and start the realization of the full scale conversion program.At present time, directions and structure of basic research work in NNC RK are as follows: - liquidation of nuclear explosions consequences; - liquidation of technological infrastructure used for preparation and conduction of nuclear weapon testing; - creation of technology, equipment and places for acceptance and storage of radioactive wastes; - working out of atomic energy development conception in Kazakhstan; - study of reactor core melt behavior under severe accidents in NPP; - development of methods and means of nuclear testing detection, continuous monitoring of nuclear explosions; - experimental work on a study of structure materials behavior of ITER thermonuclear reactor; - creation of industries requiring a lage implementation of science

  16. Preliminary Accident Analyses for Conversion of the Massachusetts Institute of Technology Reactor (MITR) from Highly Enriched to Low Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Floyd E. [Argonne National Lab. (ANL), Argonne, IL (United States); Olson, Arne P. [Argonne National Lab. (ANL), Argonne, IL (United States); Wilson, Erik H. [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Kaichao S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Newton, Jr., Thomas H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-09-30

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MITR. This report presents the preliminary accident analyses for MITR cores fueled with LEU monolithic U-Mo alloy fuel with 10 wt% Mo. Preliminary results demonstrate adequate performance, including thermal margin to expected safety limits, for the LEU accident scenarios analyzed.

  17. Kinetics of Scheelite Conversion in Sulfuric Acid

    Science.gov (United States)

    Shen, Leiting; Li, Xiaobin; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui; Taskinen, Pekka

    2018-02-01

    Complete conversion of scheelite in H2SO4 solution plays a key role in exploration of cleaner technology for producing ammonium paratungstate. In this work, the factors influencing scheelite conversion were investigated experimentally to model its kinetics. The results indicated that the conversion rate increases with increasing temperature and reducing particle size, but is almost independent of stirring speed. Moreover, although the conversion rate increases with increasing initial H2SO4 concentration (≤ 1.25 mol/L), it decreases rapidly at 1.5 mol/L H2SO4 after 10 min due to formation of a H2WO4 layer. The experimental data agree quite well with the shrinking core model under chemical reaction control in ≤ 1.25 mol/L H2SO4 solution, and the kinetic equation was established as: 1- ( 1- α )^{ 1 / 3} = 2 2 2 5 4 6. 6\\cdot C_{{{H}_{ 2} {SO}_{ 4} }}^{ 1. 2 2 6} \\cdot r_{ 0}^{ - 1} \\cdot e^{{ - 3 9 2 6 0/RT}} \\cdot t (t, min). This work could contribute to better understanding of scheelite conversion in H2SO4 solution and development of a new route for ammonium paratungstate production.

  18. Alternative model of space-charge-limited thermionic current flow through a plasma

    Science.gov (United States)

    Campanell, M. D.

    2018-04-01

    It is widely assumed that thermionic current flow through a plasma is limited by a "space-charge-limited" (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. Here, we formulate a fundamentally different current-limited mode. In the "inverse" mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting the circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. The inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.

  19. Investigation of barium-calcium aluminate process to manufacture and characterize impregnated thermionic cathode for power microwave devices

    International Nuclear Information System (INIS)

    Higashi, Cristiane

    2006-01-01

    In the present work it is described the barium calcium aluminate manufacture processes employed to produce impregnated cathodes to be used in a traveling-wave tube (TWT). The cathodes were developed using a tungsten body impregnated with barium and calcium aluminate with a 5:3:2 proportion (molar). Three different processes were investigated to obtain this material: solid-state reaction, precipitation and crystallization. Thermal analysis, thermogravimetry specifically, supported to determine an adequate preparation procedure (taking into account temperature, time and pyrolysis atmosphere). It was verified that the crystallization showed a better result when compared to those investigated (solid-state reaction and precipitation techniques - formation temperature is about 1000 deg C in hydrogen atmosphere), whereas it presented the lower formation temperature (800 deg C) in oxidizing atmosphere (O 2 ). It was used the practical work function distribution theory (PWFD) of Miram to characterize thermionic impregnated cathode. The PWFD curves were used to characterize the barium-calcium aluminate cathode. PWFD curves shown that the aluminate cathode work function is about 2,00 eV. (author)

  20. Analog-to-digital conversion

    CERN Document Server

    Pelgrom, Marcel

    2017-01-01

    This textbook is appropriate for use in graduate-level curricula in analog-to-digital conversion, as well as for practicing engineers in need of a state-of-the-art reference on data converters. It discusses various analog-to-digital conversion principles, including sampling, quantization, reference generation, nyquist architectures and sigma-delta modulation. This book presents an overview of the state of the art in this field and focuses on issues of optimizing accuracy and speed, while reducing the power level. This new, third edition emphasizes novel calibration concepts, the specific requirements of new systems, the consequences of 22-nm technology and the need for a more statistical approach to accuracy. Pedagogical enhancements to this edition include additional, new exercises, solved examples to introduce all key, new concepts and warnings, remarks and hints, from a practitioner’s perspective, wherever appropriate. Considerable background information and practical tips, from designing a PCB, to lay-o...

  1. Analog-to-digital conversion

    CERN Document Server

    Pelgrom, Marcel J. M

    2013-01-01

    This textbook is appropriate for use in graduate-level curricula in analog to digital conversion, as well as for practicing engineers in need of a state-of-the-art reference on data converters.  It discusses various analog-to-digital conversion principles, including sampling, quantization, reference generation, nyquist architectures and sigma-delta modulation.  This book presents an overview of the state-of-the-art in this field and focuses on issues of optimizing accuracy and speed, while reducing the power level. This new, second edition emphasizes novel calibration concepts, the specific requirements of new systems, the consequences of 45-nm technology and the need for a more statistical approach to accuracy.  Pedagogical enhancements to this edition include more than twice the exercises available in the first edition, solved examples to introduce all key, new concepts and warnings, remarks and hints, from a practitioner’s perspective, wherever appropriate.  Considerable background information and pr...

  2. Communal biomass conversion plants

    International Nuclear Information System (INIS)

    1991-06-01

    The Coordinating Committee set up by the Danish government in 1986 were given the responsibility of investigating the potentials for biomass conversion plants in Denmark, especially in relation to agricultural, environmental and energy aspects. The results of the Committee's plan of management for this project are presented. This main report covers 13 background reports which deal with special aspects in detail. The report describes the overall plan of management, the demonstration and follow-up programme and the individual biogas demonstration plants. Information gained from these investigations is presented. The current general status, (with emphasis on the technical and economical aspects) and the prospects for the future are discussed. The interest other countries have shown in Danish activities within the field of biogas production is described, and the possibilities for Danish export of technology and know-how in this relation are discussed. It is claimed that Denmark is the first country that has instigated a coordinated development programme for biomass conversion plants. (AB) 24 refs

  3. Conversation Analysis in Computer-Assisted Language Learning

    Science.gov (United States)

    González-Lloret, Marta

    2015-01-01

    The use of Conversation Analysis (CA) in the study of technology-mediated interactions is a recent methodological addition to qualitative research in the field of Computer-assisted Language Learning (CALL). The expansion of CA in Second Language Acquisition research, coupled with the need for qualitative techniques to explore how people interact…

  4. Nano-scale investigations of electric-dipole-layer enhanced field and thermionic emission from high current density cathodes

    Science.gov (United States)

    Vlahos, Vasilios

    Cesium iodide coated graphitic fibers and scandate cathodes are two important electron emission technologies. The coated fibers are utilized as field emitters for high power microwave sources. The scandate cathodes are promising thermionic cathode materials for pulsed power vacuum electron devices. This work attempts to understand the fundamental physical and chemical relationships between the atomic structure of the emitting cathode surfaces and the superior emission characteristics of these cathodes. Ab initio computational modeling in conjunction with experimental investigations was performed on coated fiber cathodes to understand the origin of their very low turn on electric field, which can be reduced by as much as ten-fold compared to uncoated fibers. Copious amounts of cesium and oxygen were found co-localized on the fiber, but no iodine was detected on the surface. Additional ab initio studies confirmed that cesium oxide dimers could lower the work function significantly. Surface cesium oxide dipoles are therefore proposed as the source of the observed reduction in the turn on electric field. It is also proposed that emission may be further enhanced by secondary electrons from cesium oxide during operation. Thermal conditioning of the coated cathode may be a mechanism by which surface cesium iodide is converted into cesium oxide, promoting the depletion of iodine by formation of volatile gas. Ab initio modeling was also utilized to investigate the stability and work functions of scandate structures. The work demonstrated that monolayer barium-scandium-oxygen surface structures on tungsten can dramatically lower the work function of the underlying tungsten substrate from 4.6 eV down to 1.16 eV, by the formation of multiple surface dipoles. On the basis of this work, we conclude that high temperature kinetics force conventional dispenser cathodes (barium-oxygen monolayers on tungsten) to operate in a non-equilibrium compositional steady state with higher than

  5. Physical Limits of Solar Energy Conversion in the Earth System.

    Science.gov (United States)

    Kleidon, Axel; Miller, Lee; Gans, Fabian

    2016-01-01

    Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar

  6. Organic electronics on fibers for energy conversion applications

    Science.gov (United States)

    O'Connor, Brendan T.

    Currently, there is great demand for pollution-free and renewable sources of electricity. Solar cells are particularly attractive from the standpoint of sunlight abundance. However, truly widespread adoption of solar cells is impeded by the high cost and poor scalability of existing technologies. For example, while 53,000 mi2 of 10% efficient solar cell modules would be required to supply the current U.S. energy demand, only about 50 mi2 have been installed worldwide. Organic semiconductors potentially offer a route to realizing low-cost solar cell modules, but currently suffer from low conversion efficiency. For organic-based solar cells to become commercially viable, further research is required to improve device performance, develop scalable manufacturing methods, and reduce installation costs via, for example, novel device form factors. This thesis makes several contributions to the field of organic solar cells, including the replacement of costly and brittle indium tin oxide (ITO) electrodes by inexpensive and malleable, thin metal films, and the application of external dielectric coatings to improve power conversion efficiency. Furthermore, we show that devices with non-planar geometries (e.g. organic solar cells deposited onto long fibers) can have higher efficiencies than conventional planar devices. Building on these results, we demonstrate novel fiber-based organic light emitting devices (OLEDs) that offer substantially improved color quality and manufacturability as a next-generation solid-state lighting technology. An intriguing possibility afforded by the fiber-based device architectures is the ability to integrate energy conversion and lighting functionalities with textiles, a mature, commodity-scale technology.

  7. Air Turbines for Wave Energy Conversion

    Directory of Open Access Journals (Sweden)

    Manabu Takao

    2012-01-01

    Full Text Available This paper describes the present status of the art on air turbines, which could be used for wave energy conversion. The air turbines included in the paper are as follows: Wells type turbines, impulse turbines, radial turbines, cross-flow turbine, and Savonius turbine. The overall performances of the turbines under irregular wave conditions, which typically occur in the sea, have been compared by numerical simulation and sea trial. As a result, under irregular wave conditions it is found that the running and starting characteristics of the impulse type turbines could be superior to those of the Wells turbine. Moreover, as the current challenge on turbine technology, the authors explain a twin-impulse turbine topology for wave energy conversion.

  8. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Energy Technology Data Exchange (ETDEWEB)

    Rimjaem, S., E-mail: sakhorn.rimjaem@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Kusoljariyakul, K.; Thongbai, C. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand)

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012{sup ©}. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  9. 浮法玻璃品种改换的工艺技术研究%Technology study on Conversion to the Production of Other Float Glass

    Institute of Scientific and Technical Information of China (English)

    李晓青; 王自强; 陈江

    2011-01-01

    运用质量守恒定律和浮法玻璃成形理论,对影响浮法玻璃改换品种的工艺条件进行研究,提出在改换品种时拉引量、主传动、拉边机等关键参数的设计操作原则,通过科学设计改品种程序,实现不同品种间的平稳快速过渡。%Investigation on effect of technology parameters on product-conversion of float glass was carried out by means of the mass conservation law and float glass forming theory.Some design operating rules of daily output,main transmission and edge roller parameters during product conversion were presented.The smooth and rapid transition of production can be realized by scientifically programmed schedule of species conversion.

  10. Proceedings of the 27th intersociety energy conversion engineering conference

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book contains the proceedings of the 27th Intersociety Energy Conversion Engineering Conference. Topics included: Stirling Cycle Analysis; Stirling Cycle Models; Stirling Refrigerators/Heat Pumps and Cryocoolers; Domestic Policy; Efficiency/Conservation; Stirling Solar Terrestrial; Stirling Component Technology; Environmental Impacts; Renewable Resource Systems; Stirling Power Generation; Stirling Heat Transport System Technology; and Stirling Cycle Loss Understanding

  11. Static and dynamic high power, space nuclear electric generating systems

    International Nuclear Information System (INIS)

    Wetch, J.R.; Begg, L.L.; Koester, J.K.

    1985-01-01

    Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed. 10 references

  12. Zeolites and Zeotypes for Oil and Gas Conversion

    NARCIS (Netherlands)

    Vogt, Eelco T C; Whiting, Gareth T.; Dutta Chowdhury, Abhishek; Weckhuysen, Bert M.

    2015-01-01

    Zeolite-based catalyst materials are widely used in chemical industry. In this chapter, the applications of zeolites and zeotypes in the catalytic conversion of oil and gas are reviewed. After a general introduction to zeolite science and technology, we discuss refinery applications, such as fluid

  13. Proceedings of the 30. intersociety energy conversion engineering conference. Volume 1

    International Nuclear Information System (INIS)

    Goswami, D.Y.; Kannberg, L.D.; Somasundaram, S.

    1995-01-01

    This conference provides a forum to present and discuss the engineering aspects of energy conversion, advanced and unconventional energy systems and devices, energy conversion and utilization, environmental issues and policy implications on research, development, and implementation of technologies. The solution for a sustainable future will lie in a mix of all of the available energy resources (renewable and non-renewable) and diverse energy conversion technologies that will maintain quality of life in a sustainable manner. The 129 papers in Volume 1 deal with aerospace power and are divided into the following topical sections: Aircraft power; Aerospace power systems; Batteries for aerospace power; Computer simulation; Power electronics; Power management; Space solar power; Space power systems; Space energy statics/dynamics; Space power--requirements and issues; Space Station power; Terrestrial applications of space power; Thermal management; Wireless transmission; Space nuclear power; Bimodal propulsion; Electric propulsion; Solar thermal; and Solar bimodal. All papers have been processed separately for inclusion on the data base

  14. Review of Biojet Fuel Conversion Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei-Cheng [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tao, Ling [National Renewable Energy Lab. (NREL), Golden, CO (United States); Markham, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Yanan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Batan, Liaw [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, Ethan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Biomass-derived jet (biojet) fuel has become a key element in the aviation industry’s strategy to reduce operating costs and environmental impacts. Researchers from the oil-refining industry, the aviation industry, government, biofuel companies, agricultural organizations, and academia are working toward developing commercially viable and sustainable processes that produce long-lasting renewable jet fuels with low production costs and low greenhouse gas emissions. Additionally, jet fuels must meet ASTM International specifications and potentially be a 100% drop-in replacement for the current petroleum jet fuel. The combustion characteristics and engine tests demonstrate the benefits of running the aviation gas turbine with biojet fuels. In this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways, are reviewed. The main challenges for each technology pathway, including feedstock availability, conceptual process design, process economics, life-cycle assessment of greenhouse gas emissions, and commercial readiness, are discussed. Although the feedstock price and availability and energy intensity of the process are significant barriers, biomass-derived jet fuel has the potential to replace a significant portion of conventional jet fuel required to meet commercial and military demand.

  15. Quantum frequency conversion with ultra-broadband tuning in a Raman memory

    Science.gov (United States)

    Bustard, Philip J.; England, Duncan G.; Heshami, Khabat; Kupchak, Connor; Sussman, Benjamin J.

    2017-05-01

    Quantum frequency conversion is a powerful tool for the construction of hybrid quantum photonic technologies. Raman quantum memories are a promising method of conversion due to their broad bandwidths. Here we demonstrate frequency conversion of THz-bandwidth, fs-duration photons at the single-photon level using a Raman quantum memory based on the rotational levels of hydrogen molecules. We shift photons from 765 nm to wavelengths spanning from 673 to 590 nm—an absolute shift of up to 116 THz. We measure total conversion efficiencies of up to 10% and a maximum signal-to-noise ratio of 4.0(1):1, giving an expected conditional fidelity of 0.75, which exceeds the classical threshold of 2/3. Thermal noise could be eliminated by cooling with liquid nitrogen, giving noiseless conversion with wide tunability in the visible and infrared.

  16. A review on photo-thermal catalytic conversion of carbon dioxide

    Directory of Open Access Journals (Sweden)

    Ee Teng Kho

    2017-07-01

    Full Text Available The conversion of carbon dioxide into value-added products is of great industrial and environmental interest. However, as carbon dioxide is relatively stable, the input energy required for this conversion is a significant limiting factor in the system's performance. By utilising energy from the sun, through a range of key routes, this limitation can be overcome. In this review, we present a comprehensive and critical overview of the potential routes to harvest the sun's energy, primarily through solar-thermal technologies and plasmonic resonance effects. Focusing on the localised heating approach, this review shortlists and compares viable catalysts for the photo-thermal catalytic conversion of carbon dioxide. Further, the pathways and potential products of different carbon dioxide conversion routes are outlined with the reverse water gas shift, methanation, and methanol synthesis being of key interest. Finally, the challenges in implementing such systems and the outlook to the future are detailed. Keywords: Carbon dioxide conversion, Photo-thermal, Plasmonic catalysis, Solar thermal

  17. GaN transistors for efficient power conversion

    CERN Document Server

    Lidow, Alex; de Rooij, Michael; Reusch, David

    2014-01-01

    The first edition of GaN Transistors for Efficient Power Conversion was self-published by EPC in 2012, and is currently the only other book to discuss GaN transistor technology and specific applications for the technology. More than 1,200 copies of the first edition have been sold through Amazon or distributed to selected university professors, students and potential customers, and a simplified Chinese translation is also available. The second edition has expanded emphasis on applications for GaN transistors and design considerations. This textbook provides technical and application-focused i

  18. The National Conversion Pilot Project

    International Nuclear Information System (INIS)

    Roberts, A.V.

    1995-01-01

    The National Conversion Pilot Project (NCPP) is a recycling project under way at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) in Colorado. The recycling aim of the project is threefold: to reuse existing nuclear weapon component production facilities for the production of commercially marketable products, to reuse existing material (uranium, beryllium, and radioactively contaminated scrap metals) for the production of these products, and to reemploy former Rocky Flats workers in this process

  19. Highly efficient power system based on direct fission fragment energy conversion utilizing magnetic collimation

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Hart, Ron R.; Parish, Theodore A.

    2003-01-01

    The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Consistent analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. The calculated energy conversion efficiencies for the presented designs without a thermodynamic cycle and with the heavy water cycle are 52% and 62%, respectively. The analysis indicates that efficiencies up to 90% are potentially achievable. (author)

  20. A review of electrohydrodynamic casting energy conversion polymer composites

    Directory of Open Access Journals (Sweden)

    Yong X. Gan

    2018-03-01

    Full Text Available This paper provides a brief review on manufacturing polymer composite materials through the nontraditional electrohydrodynamic (EHD casting approach. First, the EHD technology will be introduced. Then, typical functional polymer composite materials including thermoelectric and photoelectric energy conversion polymers and their composites will be presented. Specifically, how to make composite materials containing functional nanoparticles will be discussed. Converting polymeric fibers into partially carbonized fiber composites will also be shown. The latest research results of polymeric composite materials with energy conversion and sensing functions will be given.

  1. Embodied Conversational Agents in Clinical Psychology

    DEFF Research Database (Denmark)

    Provoost, Simon; Lau, Ho Ming; Ruwaard, Jeroen

    2017-01-01

    BACKGROUND: Embodied conversational agents (ECAs) are computer-generated characters that simulate key properties of human face-to-face conversation, such as verbal and nonverbal behavior. In Internet-based eHealth interventions, ECAs may be used for the delivery of automated human support factors....... OBJECTIVE: We aim to provide an overview of the technological and clinical possibilities, as well as the evidence base for ECA applications in clinical psychology, to inform health professionals about the activity in this field of research. METHODS: Given the large variety of applied methodologies, types...... applications in the treatment of mood, anxiety, psychotic, autism spectrum, and substance use disorders were conducted in databases in the fields of psychology and computer science, as well as in interdisciplinary databases. Studies were included if they conveyed primary research findings on an ECA application...

  2. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  3. Feasibility survey on international cooperation for high efficiency energy conversion technology in fiscal 1993

    Science.gov (United States)

    1994-03-01

    Following cooperative researches on fuel cell jointly conducted by NEDO and EGAT (Electricity Generating Authority of Thailand), the survey on international cooperation relating to high efficiency energy conversion technology was carried out for the ASEAN countries. The paper summed up the results of the survey. The study of the international cooperation is made for the following three items: a program for periodical exchange of information with EGAT, a project for cooperative research on phosphoric acid fuel cell in Indonesia, and a project for cooperative research with EGAT on electric power storage by advanced battery. In Malaysia, which is small in scale of state, part of the Ministry of Energy, Telecommunication and Posts is only in charge of the energy issue. Therefore, the situation is that they cannot answer well to many items of research/development cooperation brought in from Japan. The item of medium- and long-term developmental research in the Philippines is about the problems which are seen subsequently in the Manila metropolitan area where the problem of outage is being settled. Accordingly, it is essential to promote the cooperative research, well confirming policies and systems of the Ministry of Energy and the national electricity corporation.

  4. Conversation therapy with people with aphasia and conversation partners using video feedback: a group and case series investigation of changes in interaction.

    Directory of Open Access Journals (Sweden)

    Wendy Best

    2016-11-01

    can occur after eight therapy sessions and have implications for clinical practice. A reduction in barrier behaviors may be easier to obtain, although the controlled case series results demonstrate a significant increase in conversation facilitators is also possible. The rehabilitation tool is available online and video technology was central to delivering intervention and evaluating change.

  5. Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction

    Science.gov (United States)

    Wu, Haiyan; Ma, Ziguang; Jiang, Yang; Wang, Lu; Yang, Haojun; Li, Yangfeng; Zuo, Peng; Jia, Haiqiang; Wang, Wenxin; Zhou, Junming; Liu, Wuming; Chen, Hong

    2016-11-01

    A new mechanism of light-to-electricity conversion that uses InGaN/GaN QWs with a p-n junction is reported. According to the well established light-to-electricity conversion theory, quantum wells (QWs) cannot be used in solar cells and photodetectors because the photogenerated carriers in QWs usually relax to ground energy levels, owing to quantum confinement, and cannot form a photocurrent. We observe directly that more than 95% of the photoexcited carriers escape from InGaN/GaN QWs to generate a photocurrent, indicating that the thermionic emission and tunneling processes proposed previously cannot explain carriers escaping from QWs. We show that photoexcited carriers can escape directly from the QWs when the device is under working conditions. Our finding challenges the current theory and demonstrates a new prospect for developing highly efficient solar cells and photodetectors. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574362, 61210014, and 11374340) and the Innovative Clean-energy Research and Application Program of Beijing Municipal Science and Technology Commission, China (Grant No. Z151100003515001).

  6. Role of Bioreactors in Microbial Biomass and Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang [Chongqing University, Chongqing, China; Zhang, Biao [Chongqing University, Chongqing, China; Zhu, Xun [Chongqing University, Chongqing, China; Chang, Haixing [Chongqing University of Technology; Ou, Shawn [ORNL; Wang, HONG [Chongqing University, Chongqing, China

    2018-04-01

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems are described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.

  7. Secondary reactions of tar during thermochemical biomass conversion[Dissertation 14341

    Energy Technology Data Exchange (ETDEWEB)

    Morf, P.O.

    2001-07-01

    This dissertation submitted to the Swiss Federal Institute of Technology in Zurich presents and discusses the results obtained during the examination of the processes involved in the formation and conversion of tar in biomass gasification plant. Details are given on the laboratory reactor system used to provide separated tar production and conversion for the purposes of the experiments carried out. The results of analyses made of the tar and the gaseous products obtained after its conversion at various temperatures are presented. The development of kinetic models using the results of the experiments that were carried out is described. The results of the experiments and modelling are compared with the corresponding results obtained using a full-scale down-draft, fixed-bed gasifier. The author is of the opinion that the reaction conditions found in full-scale gasifiers can be well simulated using heterogeneous tar conversion experiments using the lab reactor system.

  8. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  9. Sexy gene conversions: locating gene conversions on the X-chromosome.

    Science.gov (United States)

    Lawson, Mark J; Zhang, Liqing

    2009-08-01

    Gene conversion can have a profound impact on both the short- and long-term evolution of genes and genomes. Here, we examined the gene families that are located on the X-chromosomes of human (Homo sapiens), chimpanzee (Pan troglodytes), mouse (Mus musculus) and rat (Rattus norvegicus) for evidence of gene conversion. We identified seven gene families (WD repeat protein family, Ferritin Heavy Chain family, RAS-related Protein RAB-40 family, Diphosphoinositol polyphosphate phosphohydrolase family, Transcription Elongation Factor A family, LDOC1-related family, Zinc Finger Protein ZIC, and GLI family) that show evidence of gene conversion. Through phylogenetic analyses and synteny evidence, we show that gene conversion has played an important role in the evolution of these gene families and that gene conversion has occurred independently in both primates and rodents. Comparing the results with those of two gene conversion prediction programs (GENECONV and Partimatrix), we found that both GENECONV and Partimatrix have very high false negative rates (i.e. failed to predict gene conversions), which leads to many undetected gene conversions. The combination of phylogenetic analyses with physical synteny evidence exhibits high resolution in the detection of gene conversions.

  10. Thermoelectric Energy Conversion: Materials, Devices, and Systems

    International Nuclear Information System (INIS)

    Chen, Gang

    2015-01-01

    This paper will present a discussion of challenges, progresses, and opportunities in thermoelectric energy conversion technology. We will start with an introduction to thermoelectric technology, followed by discussing advances in thermoelectric materials, devices, and systems. Thermoelectric energy conversion exploits the Seebeck effect to convert thermal energy into electricity, or the Peltier effect for heat pumping applications. Thermoelectric devices are scalable, capable of generating power from nano Watts to mega Watts. One key issue is to improve materials thermoelectric figure- of-merit that is linearly proportional to the Seebeck coefficient, the square of the electrical conductivity, and inversely proportional to the thermal conductivity. Improving the figure-of-merit requires good understanding of electron and phonon transport as their properties are often contradictory in trends. Over the past decade, excellent progresses have been made in the understanding of electron and phonon transport in thermoelectric materials, and in improving existing and identify new materials, especially by exploring nanoscale size effects. Taking materials to real world applications, however, faces more challenges in terms of materials stability, device fabrication, thermal management and system design. Progresses and lessons learnt from our effort in fabricating thermoelectric devices will be discussed. We have demonstrated device thermal-to-electrical energy conversion efficiency ∼10% and solar-thermoelectric generator efficiency at 4.6% without optical concentration of sunlight (Figure 1) and ∼8-9% efficiency with optical concentration. Great opportunities exist in advancing materials as well as in using existing materials for energy efficiency improvements and renewable energy utilization, as well as mobile applications. (paper)

  11. Calibration method for direct conversion receiver front-ends

    Directory of Open Access Journals (Sweden)

    R. Müller

    2008-05-01

    Full Text Available Technology induced process tolerances in analog circuits cause device characteristics different from specification. For direct conversion receiver front-ends a system level calibration method is presented. The malfunctions of the devices are compensated by tuning dominant circuit parameters. Thereto optimization techniques are applied which use measurement values and special evaluation functions.

  12. Review of direct energy conversion for fusion reactors

    International Nuclear Information System (INIS)

    Barr, W.L.; Moir, R.W.

    1976-01-01

    The direct conversion to electrical energy of the energy carried by the leakage plasma from a fusion reactor and by the ions that are not converted to neutrals in a neutral-beam injector is discussed. The conversion process is electrostatic deceleration and direct particle collection as distinct from plasma expansion against a time-varying magnetic field or conversion in an EXB duct (both MHD). Relatively simple 1-stage plasma direct converters are discussed which can have efficiencies of about 50 percent. More complex and costly (measured in $/kW) 2-, 3-, 4-, and 22-stage concepts have been tested at efficiencies approaching 90 percent. Beam direct converters have been tested at 15 keV and 2 kW of power at 70 +- 2 percent efficiency, and a test of a 120-keV, 1-MW version is being prepared. Designs for a 120-keV, 4-MW unit are presented. The beam direct converter, besides saving on power supplies and on beam dumps, should raise the efficiency of creating a neutral beam from 40 percent without direct conversion to 70 percent with direct conversion for a 120-keV deuterium beam. The technological limits determining power handling and lifetime such as space-charge effects, heat removal, electrode material, sputtering, blistering, voltage holding, and insulation design, are discussed. The application of plasma direct converters to toroidal plasma confinement concepts is also discussed

  13. Environmental assessment for the National Conversion Pilot Project, Stage 3

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of the National Conversion Pilot Project (NCPP) is to explore and demonstrate, at the Rocky Flats Environmental Technology Site (RFETS), the feasibility of economic conversion at Department of Energy facilities. Economic conversion is the conversion of facilities and equipment owned by the Federal government to production of goods by private firms for profit. The NCPP mission is consistent with the RFETS current mission: to conduct site remediation, decontaminate and decommission site buildings and close the site in a manner that is safe, environmentally and socially responsible, physically secure, and cost effective. The NCPP is divided into three stages, with decision points at the ends of Stages 1 and 2 and periodically during Stage 3, to help ensure careful consideration of project effectiveness and to create an opportunity for regulators and stakeholders to provide comments to the DOE. At the end of each stage, the project can be reversed, authorized to proceed, or terminated

  14. Exploring the role of content knowledge in teacher design conversations

    NARCIS (Netherlands)

    Boschman, F.B.; McKenney, Susan; Pieters, Julius Marie; Voogt, Joke

    2016-01-01

    This study investigated the role of content knowledge in conversations of kindergarten teachers during collaborative curriculum design of learning material for technology-enhanced learning. Two teams of teachers received support from an early literacy expert during these design activities. Resulting

  15. The Role of Conversation Policy in Carrying Out Agent Conversations

    International Nuclear Information System (INIS)

    Link, Hamilton E.; Phillips, Laurence R.

    1999-01-01

    Structured conversation diagrams, or conversation specifications, allow agents to have predictable interactions and achieve predefined information-based goals, but they lack the flexibility needed to function robustly in an unpredictable environment. We propose a mechanism that combines a typical conversation structure with a separately established policy to generate an actual conversation. The word ''policy'' connotes a high-level direction external to a specific planned interaction with the environment. Policies, which describe acceptable procedures and influence decisions, can be applied to broad sets of activity. Based on their observation of issues related to a policy, agents may dynamically adjust their communication patterns. The policy object describes limitations, constraints, and requirements that may affect the conversation in certain circumstances. Using this new mechanism of interaction simplifies the description of individual conversations and allows domain-specific issues to be brought to bear more easily during agent communication. By following the behavior of the conversation specification when possible and deferring to the policy to derive behavior in exceptional circumstances, an agent is able to function predictably under normal situations and still act rationally in abnormal situations. Different conversation policies applied to a given conversation specification can change the nature of the interaction without changing the specification

  16. Complex thermal energy conversion systems for efficient use of locally available biomass

    International Nuclear Information System (INIS)

    Kalina, Jacek

    2016-01-01

    This paper is focused on a theoretical study in search for new technological solutions in the field of electricity generation from biomass in small-scale distributed cogeneration systems. The purpose of this work is to draw readers' attention to possibilities of design complex multi-component hybrid and combined technological structures of energy conversion plants for effective use of locally available biomass resources. As an example, there is presented analysis of cogeneration system that consists of micro-turbine, high temperature fuel cell, inverted Bryton cycle module and biomass gasification island. The project assumes supporting use of natural gas and cooperation of the plant with a low-temperature district heating network. Thermodynamic parameters, energy conversion effectiveness and economic performance are examined. Results show relatively high energy conversion performance and on the other hand weak financial indices of investment projects at the current level of energy prices. It is however possible under certain conditions to define an optimistic business model that leads to a feasible project. - Highlights: • Concept of biomass energy conversion plant is proposed and theoretically analysed. • MCFC type fuel cell is fuelled with biomass gasification gas. • Natural gas fired microturbine is considered as a source of continuous power. • Inverted Bryton Cycle is considered for utilisation of high temperature exhaust gas.

  17. Process Design and Economics for the Conversion of Lignocellulosic Biomass to High Octane Gasoline: Thermochemical Research Pathway with Indirect Gasification and Methanol Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hensley, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schaidle, Josh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States); Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Jeff [Harris Group, Inc., Seattle, WA (United States); Sexton, Danielle [Harris Group, Inc., Seattle, WA (United States); Yap, Raymond [Harris Group, Inc., Seattle, WA (United States); Lukas, John [Harris Group, Inc., Seattle, WA (United States)

    2015-03-01

    The U.S. Department of Energy (DOE) promotes research for enabling cost-competitive liquid fuels production from lignocellulosic biomass feedstocks. The research is geared to advance the state of technology (SOT) of biomass feedstock supply and logistics, conversion, and overall system sustainability. As part of their involvement in this program, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) investigate the economics of conversion pathways through the development of conceptual biorefinery process models. This report describes in detail one potential conversion process for the production of high octane gasoline blendstock via indirect liquefaction (IDL). The steps involve the conversion of biomass to syngas via indirect gasification followed by gas cleanup and catalytic syngas conversion to a methanol intermediate; methanol is then further catalytically converted to high octane hydrocarbons. The conversion process model leverages technologies previously advanced by research funded by the Bioenergy Technologies Office (BETO) and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via tar and hydrocarbons reforming was one of the key technology advancements as part of that research. The process described in this report evaluates a new technology area with downstream utilization of clean biomass-syngas for the production of high octane hydrocarbon products through a methanol intermediate, i.e., dehydration of methanol to dimethyl ether (DME) which subsequently undergoes homologation to high octane hydrocarbon products.

  18. Communal biomass conversion plants. From idea to reality

    International Nuclear Information System (INIS)

    1995-11-01

    The first Danish biomass conversion plant for the production of methane was built in the nineteen seventies. It was just a little plant based on manure slurries from a local herd of farm animals. It was not until the nineteen eighties that larger plants were established so that enough methane could be produced as part fuels for decentral district heating and/or cogeneration plants. By November 1995 there were 15 communal biomass conversion plants producing methane in Denmark, three more plants were in the course of establishment and a number of similar projects were on the drawing board. The history of this development is narrated and plans for the future are indicated. The document also deals with the technological aspects, operational economics, environmental impacts, resources and re-use, wastes used as fertilizers, household organic wastes and sewage slam, standards of hygiene and reduction of infection risks, exports and commercial development and socio-economic evaluations in addition to areas within this field which need special attention in the very near future. It is concluded that the economics of Danish biomass conversion plants have improved significantly since 1987, and many older plants have been brought right up to date. Improvements in technology and an increase in the supply of industrial wastes have increased production. Details of the basis of many other betterments that have taken place in recent years are also given. (AB) 27 refs

  19. Technologies, Multitasking, and Driving: Attending to and Preparing for a Mobile Phone Conversation in a Car

    Science.gov (United States)

    Haddington, Pentti; Rauniomaa, Mirka

    2011-01-01

    This article investigates mobile phone calls initiated or received by drivers and passengers in cars and focuses on the participants' actions before the telephone conversation proper. Drawing on video-recorded data of real driving situations, and building on conversation analysis and multimodal interaction analysis, this article discusses how…

  20. ECUT: Energy Conversion and Utilization Technologies program. Industry, university and research interest in the US Department of Energy ECUT biocatalysis research activity

    Science.gov (United States)

    Wilcox, R. E.

    1983-01-01

    The results of a Research Opportunity Notice (RON) disseminated by the Jet Propulsion Laboratory for the U.S. Department of Energy Conversion and Utilization Technologies (ECUT) Program's Biocatalysis Research Activity are presented. The RON was issued in late April of 1983 and solicited expressions of interest from petrochemical and chemical companies, bioengineering firms, biochemical engineering consultants, private research laboratories, and universities for participating in a federal research program to investigate potential applications of biotechnology in producing chemicals. The RON results indicate that broad interest exists within the nation's industry, universities, and research institutes for the Activity and its planned research and development program.

  1. Analog-to-digital conversion

    CERN Document Server

    Pelgrom, Marcel J M

    2010-01-01

    The design of an analog-to-digital converter or digital-to-analog converter is one of the most fascinating tasks in micro-electronics. In a converter the analog world with all its intricacies meets the realm of the formal digital abstraction. Both disciplines must be understood for an optimum conversion solution. In a converter also system challenges meet technology opportunities. Modern systems rely on analog-to-digital converters as an essential part of the complex chain to access the physical world. And processors need the ultimate performance of digital-to-analog converters to present the results of their complex algorithms. The same progress in CMOS technology that enables these VLSI digital systems creates new challenges for analog-to-digital converters: lower signal swings, less power and variability issues. Last but not least, the analog-to-digital converter must follow the cost reduction trend. These changing boundary conditions require micro-electronics engineers to consider their design choices for...

  2. Conversion of research and test reactors to low enriched uranium fuel: technical overview and program status

    International Nuclear Information System (INIS)

    Roglans-Ribas, J.

    2008-01-01

    Many of the nuclear research and test reactors worldwide operate with high enriched uranium fuel. In response to worries over the potential use of HEU from research reactors in nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel by converting research reactors to low enriched uranium (LEU) fuel. The Reactor Conversion program is currently under the DOE's National Nuclear Security Administration's Global Threat Reduction Initiative (GTRI). 55 of the 129 reactors included in the scope have been already converted to LEU fuel or have shutdown prior to conversion. The major technical activities of the Conversion Program include: (1) the development of advanced LEU fuels; (2) conversion analysis and conversion support; and (3) technology development for the production of Molybdenum-99 (Mo 99 ) with LEU targets. The paper provides an overview of the status of the program, the technical challenges and accomplishments, and the role of international collaborations in the accomplishment of the Conversion Program objectives. Nuclear research and test reactors worldwide have been in operation for over 60 years. Many of these facilities operate with high enriched uranium fuel. In response to increased worries over the potential use of HEU from research reactors in the manufacturing of nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel in research reactors by converting them to low enriched uranium (LEU) fuel. The reactor conversion program was initially focused on U.S.-supplied reactors, but in the early 1990s it expanded and began to collaborate with Russian institutes with the objective of converting Russian supplied reactors to the use of LEU fuel.

  3. Power Technologies Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.

    2002-09-01

    This report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts and comparisons, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, conversion factors, and selected congressional questions and answers.

  4. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.

    Science.gov (United States)

    Yu, Seung-Ho; Feng, Xinran; Zhang, Na; Seok, Jeesoo; Abruña, Héctor D

    2018-02-20

    The need/desire to lower the consumption of fossil fuels and its environmental consequences has reached unprecedented levels in recent years. A global effort has been undertaken to develop advanced renewable energy generation and especially energy storage technologies, as they would enable a dramatic increase in the effective and efficient use of renewable (and often intermittent) energy sources. The development of electrical energy storage (EES) technologies with high energy and power densities, long life, low cost, and safe use represents a challenge from both the fundamental science and technological application points of view. While the advent and broad deployment of lithium-ion batteries (LIBs) has dramatically changed the EES landscape, their performance metrics need to be greatly enhanced to keep pace with the ever-increasing demands imposed by modern consumer electronics and especially the emerging automotive markets. Current battery technologies are mostly based on the use of a transition metal oxide cathode (e.g., LiCoO 2 , LiFePO 4 , or LiNiMnCoO 2 ) and a graphite anode, both of which depend on intercalation/insertion of lithium ions for operation. While the cathode material currently limits the battery capacity and overall energy density, there is a great deal of interest in the development of high-capacity cathode materials as well as anode materials. Conversion reaction materials have been identified/proposed as potentially high-energy-density alternatives to intercalation-based materials. However, conversion reaction materials react during lithiation to form entirely new products, often with dramatically changed structure and chemistry, by reaction mechanisms that are still not completely understood. This makes it difficult to clearly distinguish the limitations imposed by the mechanism and practical losses from initial particle morphology, synthetic approaches, and electrode preparations. Transition metal compounds such as transition metal oxides

  5. Heat pipe nuclear reactor for space power

    Science.gov (United States)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  6. A simplified 2D to 3D video conversion technology——taking virtual campus video production as an example

    Directory of Open Access Journals (Sweden)

    ZHUANG Huiyang

    2012-10-01

    Full Text Available This paper describes a simplified 2D to 3D Video Conversion Technology, taking virtual campus 3D video production as an example. First, it clarifies the meaning of the 2D to 3D Video Conversion Technology, and points out the disadvantages of traditional methods. Second, it forms an innovative and convenient method. A flow diagram, software and hardware configurations are presented. Finally, detailed description of the conversion steps and precautions are given in turn to the three processes, namely, preparing materials, modeling objects and baking landscapes, recording screen and converting videos .

  7. Corn Stover Availability for Biomass Conversion: Situation Analysis

    International Nuclear Information System (INIS)

    Hess, J. Richard; Kenney, Kevin L.; Wright, Christopher T.; Perlack, Robert; Turhollow, Anthony

    2009-01-01

    As biorefining conversion technologies become commercial, feedstock availability, supply system logistics, and biomass material attributes are emerging as major barriers to the availability of corn stover for biorefining. While systems do exist to supply corn stover as feedstock to biorefining facilities, stover material attributes affecting physical deconstruction, such as densification and post-harvest material stability, challenge the cost-effectiveness of present-day feedstock logistics systems. In addition, the material characteristics of corn stover create barriers with any supply system design in terms of equipment capacity/efficiency, dry matter loss, and capital use efficiency. However, this study of a large, square-bale corn stover feedstock supply system concludes that (1) where other agronomic factors are not limiting, corn stover can be accessed and supplied to a biorefinery using existing bale-based technologies, (2) technologies and new supply system designs are necessary to overcome biomass bulk density and moisture material property challenges, and (3) major opportunities to improve conventional-bale biomass feedstock supply systems include improvements in equipment efficiency and capacity and reducing biomass losses in harvesting and collection and storage. Finally, the backbone of an effective stover supply system design is the optimization of intended and minimization of unintended material property changes as the corn stover passes through the individual supply system processes from the field to the biorefinery conversion processes

  8. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc.. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks have been identified.

  9. Betavoltaic Battery Conversion Efficiency Improvement Based on Interlayer Structures

    International Nuclear Information System (INIS)

    Li Da-Rang; Jiang Lan; Yin Jian-Hua; Lin Nai; Tan Yuan-Yuan

    2012-01-01

    Significant differences among the doping densities of PN junctions in semiconductors cause lattice mismatch and lattice defects that increase the recombination current of betavoltaic batteries. This extensively decreases the open circuit voltage and the short current, which results in low conversion efficiency. This study proposes P + PINN + -structure based betavoltaic batteries by adding an interlayer to typical PIN structures to improve conversion efficiency. Numerical simulations are conducted for the energy deposition of beta particles along the thickness direction in semiconductors. Based on this, 63 Ni-radiation GaAs batteries with PIN and P + PINN + structures are designed and fabricated to experimentally verify the proposed design. It turns out that the conversion efficiency of the betavoltaic battery with the proposed P + PINN + structure is about 1.45 times higher than that with the traditional PIN structure. (cross-disciplinary physics and related areas of science and technology)

  10. Span Restoration in Optical Networks with Limited Wavelength Conversion

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Buron, Jakob Due; Andriolli, N

    2007-01-01

    Next generation optical networks provide functionalities to dynamically provision and recover connections, while emerging technologies allow for the conversion between wavelengths. These devices are however expensive and hence it is likely that only few are deployed throughout the network...... converter-saving wavelength assignment in GMPLS networks. The converter saving property of the Suggested Vector is particularly desirable in span restoration, where the pre-failure path stubs have to be merged to the restoration path at the failure-adjacent nodes. In order to avoid wavelength conversion....... Furthermore, we describe different scenarios to extend the suggested vector wavelength assignment scheme to multi-domain networks with focus on span restoration....

  11. Solar spectrum conversion for photovoltaics using nanoparticles

    OpenAIRE

    Sark, W.G.J.H.M. van; Meijerink, A.; Schropp, R.E.I.

    2012-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Conventional single-junction semiconductor solar cells only effectively convert photons of energy close to the semiconductor band gap (Eg) as a result of the mismatch between the incident solar spectrum and the spectral absorption properties...

  12. Review and analysis of the 1980-1989 biomass thermochemical conversion program

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.J.

    1994-09-01

    In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

  13. Improvement of skeleton conversion in ICRP reference phantom conversion project

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Kim, Seong Hoon [Dept. of Radiation Oncology, College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2014-11-15

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future.

  14. Improvement of skeleton conversion in ICRP reference phantom conversion project

    International Nuclear Information System (INIS)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong; Kim, Seong Hoon

    2014-01-01

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future

  15. Conversion in the framework of international collaboration. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Akhmetov, T; Vagin, S; Urezchenko, V [eds.

    1997-12-31

    22-26 October 1996 the Republic of Kazakhstan Ministry of Science - Academy of Science, International Science and Technology Center with collaboration of National Nuclear Center of the Republic of Kazakhstan conducted an international workshop {sup C}onversion in the framework of international collaboration{sup .} In the workshop scientists and specialists from different countries participated. 84 reports were presented in this workshop

  16. Renewable energy from corn residues by thermochemical conversion

    Science.gov (United States)

    Yu, Fei

    Declining fossil oil reserve, skyrocket price, unsecured supplies, and environment pollution are among the many energy problems we are facing today. It is our conviction that renewable energy is a solution to these problems. The long term goal of the proposed research is to develop commercially practical technologies to produce energy from renewable resources. The overall objective of my research is to study and develop thermochemical processes for converting bulky and low-energy-density biomass materials into bio-fuels and value-added bio-products. The rationale for the proposed research is that, once such processes are developed, processing facility can be set up on or near biomass product sites, reducing the costs associated with transport of bulky biomass which is a key technical barrier to biomass conversion. In my preliminary research, several conversion technologies including atmospheric pressure liquefaction, high pressure liquefaction, and microwave pyrolysis have been evaluated. Our data indicated that microwave pyrolysis had the potential to become a simple and economically viable biomass conversion technology. Microwave pyrolysis is an innovative process that provides efficient and uniform heating, and are robust to type, size and uniformity of feedstock and therefore suitable for almost any waste materials without needing to reduce the particle size. The proposed thesis focused on in-depth investigations of microwave pyrolysis of corn residues. My first specific aim was to examine the effects of processing parameters on product yields. The second specific research aim was to characterize the products (gases, bio-oils, and solid residues), which was critical to process optimization and product developments. Other research tasks included conducting kinetic modeling and preliminary mass and energy balance. This study demonstrated that microwave pyrolysis could be optimized to produce high value syngas, liquid fuels and pyrolytic carbons, and had a great

  17. Bioenergy Research Programme. Yearbook 1994. Utilization of bioenergy and biomass conversion

    International Nuclear Information System (INIS)

    Alakangas, E.

    1995-01-01

    BIOENERGIA Research Programme is one of energy technology programmes of the Finnish Ministry of Trade and Industry (in 1995 TEKES, Technology Development Center). The aim of Bioenergy Research Programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels and new equipment and methods for production, handling and using of biofuels. The funding for 1994 was nearly 50 million FIM and project numbered 60. The research area of biomass conversion consisted of 8 projects in 1994, and the research area of bioenergy utilization of 13 projects. The results of these projects carried out in 1994 are presented in this publication. The aim of the biomass conversion research is to produce more bio-oils and electric power as well at wood processing industry as at power plants. The conversion research was pointed at refining of the waste liquors of pulping industry and the extracts of them into fuel oil and liquid engine fuels, on production of wood oil via flash pyrolysis, and on combustion tests. Other conversion studies dealt with production of fuel-grade ethanol. For utilization of agrobiomass in various forms of energy, a system study is introduced where special attention is how to use rapeseed oil unprocessed in heating boilers and diesel engines. Possibilities to produce agrofibre in investigated at a laboratory study

  18. ABC Technology Development Program

    International Nuclear Information System (INIS)

    1994-01-01

    The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: 'Provide a weapon's grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon's grade plutonium to be disposed on in [20] years.' This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments

  19. Development of a novel thermionic RF electron gun applied on a compact THz-FEL facility

    Science.gov (United States)

    Hu, T. N.; Pei, Y. J.; Qin, B.; Liu, K. F.; Feng, G. Y.

    2018-04-01

    The current requirements from civil and commercial applications lead to the development of compact free-electron laser (FEL)-based terahertz (THz) radiation sources. A picosecond electron gun plays an important role in an FEL-THz facility and attracts significant attention, as machine performance is very sensitive to initial conditions. A novel thermionic gun with an external cathode (EC) and two independently tunable cavities (ITCs) has been found to be a promising alternative to conventional electron sources due to its remarkable characteristics, and correspondingly an FEL injector can achieve a balance between a compact layout and high brightness benefitting from the velocity bunching properties and RF focusing effects in the EC-ITC gun. Nevertheless, the EC-ITC gun has not been extensively examined as part of the FEL injector in the past years. In this regard, to fill this gap, a development focusing on the experimental setup of an FEL injector based on an EC-ITC gun is described in detail. Before assembly, dynamic beam simulations were performed to investigate the optimal mounting position for the Linac associated with the focusing coils, and a suitable radio-frequency (RF) system was established based on a power coupling design and allocation. The testing bench proved to be fully functional through basic experiments using typical diagnostic approaches for estimating primary parameters. Associated with dynamic beam calculations, a performance evaluation for an EC-ITC gun was established while providing indirect testing results for an FEL injector.

  20. Development of high-current-density LAB6 thermionic emitters for a space-charge-limited electron gun

    International Nuclear Information System (INIS)

    Herniter, M.E.; Getty, W.D.

    1987-01-01

    An electron gun has been developed for investigation of high current density, space charge limited operation of a lenthanum hexaboride (LaB 6 ) thermionic cathode. The 2.8 cm 2 cathode disk is heated by electron bombardment from a tungsten filament. For LaB 6 cathode temperatures greater than 1600 0 C it has been found that evaporation from the LaB 6 causes an increase in the tungsten filament emission, leading to an instability in the bombardment heating system. This instability has been investigated and eliminated by using a graphite disk in place of the LaB 6 cathode or by shielding the filament from the LaB 6 cathode by placing the LaB 6 in a graphite cup and bombarding the cup. The graphite disk has been heated to 1755 0 C with 755 W of heating power, and the shielded LaB 6 cathode has been heated to 1695 0 C. This temperature range is required for emission current densities in the 30 Acm 2 range. It is believed that the evaporation of lanthanum lowers the tungsten work function. In electron-gun use, the LaB 6 cathode has been operated up to 6.7 Acm 2 at 36 kV. A 120 kV Marx generator has been built to allow operation up to 40 Acm 2

  1. Structural and Mechanical Properties of Nanostructured C-Ag Thin Films Synthesized by Thermionic Vacuum Arc Method

    Directory of Open Access Journals (Sweden)

    Rodica Vladoiu

    2018-01-01

    Full Text Available Nanostructured C-Ag thin films of 200 nm thickness were successfully synthesized by the Thermionic Vacuum Arc (TVA method. The influence of different substrates (glass, silicon wafers, and stainless steel on the microstructure, morphology, and mechanical properties of nanostructured C-Ag thin films was characterized by High-Resolution Transmission Electron Microscopy (HRTEM, Scanning Electron Microscopy (SEM, Atomic Force Microscopy (AFM, and TI 950 (Hysitron nanoindenter equipped with Berkovich indenter, respectively. The film’s hardness deposited on glass (HC-Ag/Gl = 1.8 GPa was slightly lower than in the case of the C-Ag film deposited on a silicon substrate (HC-Ag/Si = 2.2 GPa. Also the apparent elastic modulus Eeff was lower for C-Ag/Gl sample (Eeff = 100 GPa than for C-Ag/Si (Eeff = 170 GPa, while the values for average roughness are Ra=2.9 nm (C-Ag/Si and Ra=10.6 (C-Ag/Gl. Using the modulus mapping mode, spontaneous and indentation-induced aggregation of the silver nanoparticles was observed for both C-Ag/Gl and C-Ag/Si samples. The nanocomposite C-Ag film exhibited not only higher hardness and effective elastic modulus, but also a higher fracture resistance toughness to the silicon substrate compared to the glass substrate.

  2. Discourse analysis: Conversational analysis of the internal conversation in Oracle Corporation Malaysia

    Directory of Open Access Journals (Sweden)

    Marwa Marwa

    2017-07-01

    Full Text Available This study highlights the internal conversation which takes place in Oracle CorporationMalaysia. Through the study, it will be shown how conversational analysis is used toanalyze the transcription of a telephone conversation between Oracle staffs. The analysisof the transcriptions will apply a few basic concepts of conversational analysis; turntakingorganization, and the adjacency pair. The objective of the study is to find out howthe internal conversations takes place by focusing on the conversation itself, that is, theconversational structures spontaneously produced by people during talk ranging fromturn-taking strategies, how topics are introduced, conversation closings and so on. Bylooking in detail at such talk, we can gain a detailed understanding of how the staffs seethemselves in relation to the company that influence their daily lives.Keywords: conversational analysis, turn-taking, adjacency pairs

  3. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    Science.gov (United States)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle

  4. Sustainable resource recovery and energy conversion processes using microbial electrochemical technologies

    Science.gov (United States)

    Yates, Matthew D.

    Microbial Electrochemical Technologies (METs) are emerging technological platforms for the conversion of waste into usable products. METs utilize naturally occurring bacteria, called exoelectrogens, capable of transferring electrons to insoluble terminal electron acceptors. Electron transfer processes in the exoelectrogen Geobacter sulfurreducens were exploited here to develop sustainable processes for synthesis of industrially and socially relevant end products. The first process examined was the removal of soluble metals from solution to form catalytic nanoparticles and nanoporous structures. The second process examined was the biocatalytic conversion of electrons into hydrogen gas using electrons supplied directly to an electrode. Nanoparticle formation is desirable because materials on the nanoscale possess different physical, optical, electronic, and mechanical properties compared to bulk materials. In the first process, soluble palladium was used to form catalytic palladium nanoparticles using extracellular electron transfer (EET) processes of G. sulfurreducens, typically the dominant member of mixedculture METs. Geobacter cells reduced the palladium extracellularly using naturally produced pili, which provided extracellular adsorption and reduction sites to help delay the diffusion of soluble metals into the cell. The extracellular reduction prevented cell inactivation due to formation of intracellular particles, and therefore the cells could be reused in multiple palladium reduction cycles. A G. sulfurreducens biofilm was next investigated as a biotemplate for the formation of a nanoporous catalytic palladium structure. G. sulfurreducens biofilms have a dense network of pili and extracellular cytochromes capable of high rates of electron transfer directly to an electrode surface. These pili and cytochromes provide a dense number of reduction sites for nanoparticle formation without the need for any synthetic components. The cells within the biofilm also can

  5. Fiscal 1996 achievement report. Development of liquid fuel conversion technology (Development for practical application of a new production process); 1996 nendo ekitai nenryo tenkan gijutsu kaihatsu seika hokokusho. Shinseizo process jitsuyoka kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The research and development aims to establish, through verification tests, practical application technologies for two methods, namely, a 'low-temperature liquid phase method' by which cost will be reduced thanks to simplified plant facilities and a 'vapor phase fluidized bed method' in which a composite reforming process may be combined for better economics of scale with a vapor phase fluidized methanol synthesizing method whose facilities may be built to be very large. For the former method, development efforts are made to enable catalyst performance characterization and low-temperature liquid phase methanol production using a small pyrolysis reactor. In the research on pyrolysis reaction, a Raney copper/KOMe/MeOH-based catalyst is used, and this attains a raw material gas conversion efficiency of 92.7%. In the construction of a low temperature liquid phase process, it is found that a single spun conversion efficiency of not less than 90% may be achieved using a heterogeneous catalyst. For the latter method, studies are conducted for the development of, and for the establishment of technologies for designing, synthetic gas production technologies in the development of a heat exchanger type composite reforming furnace and a fluidized bed methanol production process, the development of a catalyst manufacturing technology for fluidized bed practical application, the development of a fluidized bed methanol production technology, and the optimization of the process and its economic efficiency. (NEDO)

  6. Utilization of excess weapon plutonium: scientific and technological aspects of the conversion of military capacities for civilian use and sustainable development

    International Nuclear Information System (INIS)

    Winkelmann, H.-P.

    1996-01-01

    The scientific and technological aspects of the conversion of military capacities for civilian use and sustainable development concerning the utilisation of excess weapon plutonium consist of the following main issues: The new understanding of 'security'; industrial restructuring for sustainable development; human resources issues; cleaning up of the world legacy; developing timely alternate use plans for military facilities. The issues and problems of nuclear disarmament management are linked to sustainable development and are related to safe and environmentally sound management of radioactive wastes, meaning also safe transport, storage and disposal with a view to protect human health and the environment. Special emphasis is laid on the international and regional cooperation as the main basis for action

  7. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    Natural gas conversion remains one of the essential technologies for current energy needs. This review focuses on the mechanistic aspects of the development of efficient and durable catalysts for two reactions, carbon dioxide reforming and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would support the design of industrial catalysts. CO 2 reforming of methane utilizes CO 2, which is often stored in large quantities, to convert as a reactant. Strategies to eliminate carbon deposition, which is the major problem associated with this reaction, are discussed. The oxidative coupling of methane directly produces ethylene in one reactor through a slightly exothermic reaction, potentially minimizing the capital cost of the natural gas conversion process. The focus of discussion in this review will be on the attainable yield of C 2 products by rigorous kinetic analyses.

  8. Mirror hybrid reactor blanket and power conversion system conceptual design

    International Nuclear Information System (INIS)

    Schultz, K.R.; Backus, G.A.; Baxi, C.B.; Dee, J.B.; Estrine, E.A.; Rao, R.; Veca, A.R.

    1976-01-01

    The conceptual design of the blanket and power conversion system for a gas-cooled mirror hybrid fusion-fission reactor is presented. The designs of the fuel, blanket module and power conversion system are based on existing gas-cooled fission reactor technology that has been developed at General Atomic Company. The uranium silicide fuel is contained in Inconel-clad rods and is cooled by helium gas. The fuel is contained in 16 spherical segment modules which surround the fusion plasma. The hot helium is used to raise steam for a conventional steam cycle turbine generator. The details of the method of support for the massive blanket modules and helium ducts remain to be determined. Nevertheless, the conceptual design appears to be technically feasible with existing gas-cooled technology. A preliminary safety analysis shows that with the development of a satisfactory method of primary coolant circuit containment and support, the hybrid reactor could be licensed under existing Nuclear Regulatory Commission regulations

  9. Evaluation of environmental-control technologies for commercial nuclear fuel-conversion (UF6) facilities

    International Nuclear Information System (INIS)

    Perkins, B.L.

    1982-10-01

    At present in the United States, there are two commercial conversion facilities. These facilities process uranium concentrate into UF 6 for shipment to the enrichment facilities. One conversion facility uses a dry hydrofluor process, whereas the other facility uses a process known as the wet solvent extraction-fluorination process. Because of the different processes used in the two plants, waste characteristics, quantities, and treatment practices differ at each facility. Wastes and effluent streams contain impurities found in the concentrate (such as uranium daughters, vanadium, molybdenum, selenium, arsenic, and ammonia) and process chemicals used in the circuit (including fluorine, nitrogen, and hydrogen), as well as small quantities of uranium. Studies of suitable disposal options for the solid wastes and sludges generated at the facilities and the long-term effects of emissions to the ambient environment are needed. 30 figures, 34 tables

  10. Reflector drums as control mechanism for craft thermionic reactors with constant emitter heating containing U-233 as fuel and beryllium as moderator

    International Nuclear Information System (INIS)

    Sahin, S.; Selvi, S.

    1980-01-01

    The suitability of borated reflector drums has been investigated and shown as a control mechanism for space craft thermionic reactors with constant emitter heating using U-233 as fuel and beryllium to be moderator, mainly due to their extremce compactness and their very soft neutron sepctrum. The achievable change in ksub(eff) allows long-term control operation with success. The use of reflector drums keeps the cone diameter and the mass of the radiation shield on minimum. The distortion of the emitter heating field remains under acceptable tolerances, mainly due to the enhanced neutron production at the outer core region and the remaining reflector part between the boron layer and the core. All neutron physics calculations have been carried out using the multigroup Ssub(N) methods. Three data groups for r-theta-calculations in S 4 -P 1 approximation (16 space angles) have been evaluated from a 123-energy-groups data library using transport theoretical methods. (orig.) [de

  11. Economic aspects of advanced energy technologies

    International Nuclear Information System (INIS)

    Ramakumar, R.; Rodriguez, A.P.; Venkata, S.S.

    1993-01-01

    Advanced energy technologies span a wide variety of resources, techniques, and end-user requirements. Economic considerations are major factors that shape their harnessing and utilization. A discussion of the basic factors in the economic arena is presented, with particular emphasis on renewable energy technologies--photovoltaics, solar-thermal, wind-electric conversion, biomass utilization, hydro, and tidal and wave energy systems. The following are essential to determine appropriate energy system topologies: proper resource-need matching with an eye on the quality of energy requirements, integrated use of several resources and technologies, and a comprehensive consideration which includes prospecting, collection, conversion, transportation, distribution, storage and reconversion, end use, and subsequent waste management aspects. A few case studies are included to apprise the reader of the status of some of the key technologies and systems

  12. Gas turbine power conversion systems for modular HTGRs. Report of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-08-01

    The Technical Committee Meeting (TCM) on Gas Turbine Power Conversion Systems for Modular HTGRs held in Palo Alto, California, USA was convened by the IAEA on the recommendation of its International Working Group on Gas Cooled Reactors (IWGGCR). The meeting was attended by 27 participants from 9 Member States (Argentina, China, France, Japan, Netherlands, Russian Federation, South Africa, United Kingdom and the United States of America). In addition to presentations on relevant technology development activities in participating Member States, 16 technical papers were presented covering the areas of: Power conversion system design; Power conversion system analysis; and Power conversion system component design. A panel discussion was held on technology issues associated with gas turbine modular HTGR power conversion systems and the potential for international collaboration to address these issues. The purpose of this Technical Committee Meeting was to foster the international exchange of information and perspectives on gas turbine power conversion systems and components for modular HTGRs. The overall objectives were to provide: a current overview of designs under consideration; information on the commercial availability or development status of key components; exchange of information on the issues involved and potential solutions; identification of further development needs for both initial deployment and longer term performance enhancement, and the potential for addressing needs through international collaboration. The following conclusions and recommendations were identified as a result of the discussions at the meeting. International review and collaboration is of interest for China and Japan in the planning and conduct of their test programs: both the HTTR and HTR-10 reactor projects are exploring scale model testing of a gas turbine, with the HTTR project considering a 7 MWt gas heated loop, and HTR-10 a direct or indirect cycle connected to the reactor; the HTR

  13. Efficient quantum computing using coherent photon conversion.

    Science.gov (United States)

    Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-10-12

    Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting

  14. THERMO-MECHANICAL PULPING AS A PRETREATMENT FOR AGRICULTURAL BIOMASS FOR BIOCHEMICAL CONVERSION

    Directory of Open Access Journals (Sweden)

    Ronalds W. Gonzalez

    2011-03-01

    Full Text Available The use of thermo-mechanical pulping (TMP, an existing and well known technology in the pulp and paper industry, is proposed as a potential pretreatment pathway of agriculture biomass for monomeric sugar production in preparation for further fermentation into alcohol species. Three agricultural biomass types, corn stover, wheat straw, and sweet sorghum bagasse, were pretreated in a TMP unit under two temperature conditions, 160 ºC and 170 ºC, and hydrolyzed using cellulase at 5, 10, and 20 FPU/g OD biomass. Wheat straw biomass was further pretreated at different conditions including: i soaking with acetic acid, ii longer steaming residence time (15 and 30 min, and iii refined at lower disk gap (0.0508 and 0.1524 mm. Preliminary results showed that carbohydrate conversion increased from 25% to 40% when the TMP temperature was increased from 160 to 170 ºC. Carbohydrate conversion was relatively similar for the three biomasses under the same pretreatment conditions and enzyme loading. Acetic acid soaking and refining at a reduce disk gap increases carbohydrate conversion. Further studies within this technological field to identify optimum process and TMP conditions for pretreatment are suggested.

  15. Study of beam transverse properties of a thermionic electron gun for application to a compact THz free electron laser

    International Nuclear Information System (INIS)

    Hu, Tongning; Qin, Bin; Tan, Ping; Chen, Qushan; Yang, Lei; Pei, Yuanji; Li, Ji

    2014-01-01

    A novel thermionic electron gun adopted for use in a high power THz free electron laser (FEL) is proposed in this paper. By optimization of the structural and radiofrequency (RF) parameters, the physical design of the gun is performed using dynamic calculations. Velocity bunching is used to minimize the bunch's energy spread, and the dynamic calculation results indicate that high quality beams can be provided. The transverse properties of the beams generated by the gun are also analyzed. The novel RF focusing effects of the resonance cavity are investigated precisely and are used to establish emittance compensation, which enables the injector length to be reduced. In addition, the causes of the extrema of the beam radius and the normalized transverse emittance are analyzed and interpreted, respectively, and slice simulations are performed to illustrate how the RF focusing varies along the bunch length and to determine the effects of that variation on the emittance compensation. Finally, by observation of the variations of the beam properties in the drift tube behind the electron gun, prospective assembly scenarios for the complete THz-FEL injector are discussed, and a joint-debugging process for the injector is implemented

  16. Overview of fuel conversion

    International Nuclear Information System (INIS)

    Green, A.E.S.

    1991-01-01

    The conversion of solid fuels to cleaner-burning and more user-friendly solid liquid or gaseous fuels spans many technologies. In this paper, the authors consider coal, residual oil, oil shale, tar sends tires, municipal oil waste and biomass as feedstocks and examine the processes which can be used in the production of synthetic fuels for the transportation sector. The products of mechanical processing to potentially usable fuels include coal slurries, micronized coal, solvent refined coal, vegetable oil and powdered biomall. The thermochemical and biochemical processes considered include high temperature carbide production, liquefaction, gasification, pyrolysis, hydrolysis-fermentation and anaerobic digestion. The products include syngas, synthetic natural gas, methanol, ethanol and other hydrocarbon oxygenates synthetic gasoline and diesel and jet engine oils. The authors discuss technical and economic aspects of synthetic fuel production giving particular attention and literature references to technologies not discussed in the five chapters which follow. Finally the authors discuss economic energy, and environmental aspects of synthetic fuels and their relationship to the price of imported oil

  17. Online Scholarly Conversations in General Education Astronomy Courses

    Science.gov (United States)

    Cai, Qijie; Wong, Ka-Wah

    2018-01-01

    In general education astronomy courses, many students are struggling with understanding the foundational concepts and theories in astronomy. One of the possible reasons is that, due the large class size, many of the courses are taught using a lecture mode, where human interactions and active learning are limited (Freeman et al., 2014). To address this challenge, we have applied the knowledge building framework (Scardamalia & Bereiter, 2006) to design an online collaborative learning component, called Scholarly Conversations, to be integrated into a general education astronomy course at a public, comprehensive university.During Scholarly Conversations, students are treated as scholars to advance knowledge frontiers (Scardamalia & Bereiter, 2006). The whole process involves the creation of new ideas and requires discourse and collective work for the advancement and creation of artifacts, such as theories and models (van Aalst, 2009). Based on the knowledge building principles (Scardamalia, 2002; Zhang, Scardamalia, Reeve, & Messina, 2009), several features have been built into Scholarly Conversations so that students are guided to deepen understanding of the astronomy concepts through three phases: knowledge sharing, knowledge construction and knowledge building, and reflections on learning growth (van Aalst, 2009; Cai, 2017). The online Scholarly Conversation is an extension of the lecture component of the general education astronomy course. It promotes student interactions and collaborative learning, and provides scaffolds for students to construct meanings of the essential concepts in astronomy through social learning and online technology. In this presentation, we will explain the specific design principles of the online Scholarly Conversation, and share the artifacts created to facilitate the online conversations in an general education astronomy course.Note: This project has been supported by the College of Education Research Grant Program at Minnesota State

  18. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  19. A Review of Previous Research in Direct Energy Conversion Fission Reactors

    International Nuclear Information System (INIS)

    DUONG, HENRY; POLANSKY, GARY F.; SANDERS, THOMAS L.; SIEGEL, MALCOLM D.

    1999-01-01

    From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this

  20. A review of conversion processes for bioethanol production with a focus on syngas fermentation

    Directory of Open Access Journals (Sweden)

    Mamatha Devarapalli

    2015-09-01

    Full Text Available Bioethanol production from corn is a well-established technology. However, emphasis on exploring non-food based feedstocks is intensified due to dispute over utilization of food based feedstocks to generate bioethanol. Chemical and biological conversion technologies for non-food based biomass feedstocks to biofuels have been developed. First generation bioethanol was produced from sugar based feedstocks such as corn and sugar cane. Availability of alternative feedstocks such as lignocellulosic and algal biomass and technology advancement led to the development of complex biological conversion processes, such as separate hydrolysis and fermentation (SHF, simultaneous saccharification and fermentation (SSF, simultaneous saccharification and co-fermentation (SSCF, consolidated bioprocessing (CBP, and syngas fermentation. SHF, SSF, SSCF, and CBP are direct fermentation processes in which biomass feedstocks are pretreated, hydrolyzed and then fermented into ethanol. Conversely, ethanol from syngas fermentation is an indirect fermentation that utilizes gaseous substrates (mixture of CO, CO2 and H2 made from industrial flue gases or gasification of biomass, coal or municipal solid waste. This review article provides an overview of the various biological processes for ethanol production from sugar, lignocellulosic, and algal biomass. This paper also provides a detailed insight on process development, bioreactor design, and advances and future directions in syngas fermentation.

  1. Application of radiation technology to biomass conversion processes

    International Nuclear Information System (INIS)

    Castagnet, A.C.G.

    1984-01-01

    The work carried out at the Instituto de Pesquisas Energeticas e Nucleares (IPEN) is reported for the following research projects: wood powdering of pre-irradiated chips; effect of combining electron beam processing (EBP) with other pretreatments on the saccharification of lignocellulosic materials; radiation immobilization of enzymes. The EBP of eucalyptus chips at an average dose of 1.5 x 10 5 Gy allowed a reduction of the energy required to produce a given weight of wood particles smaller than 300 μm by a factor of five. Wood powder of this particle size proved to be an excellent fuel for suspension firing system and could be used as raw material to feed continuous hydrolytic processes. Conversion efficiencies of 25.8% and 53.4%, respectively, were obtained in the production of reducing sugar by enzymatic hydrolysis of eucalyptus wood and sugarcane bagasse when materials were previously irradiated at 10 5 Gy, pulverized at 50 mesh and impregnated with 2% NaOH solution. Immobilization of cellulase by radiation induced polymerization of hydroxy-ethyl-methacrylate(HEMA) was effective when made at - 78 0 C in the presence of silica gel adsorbents or polyethylene glycol. (Author) [pt

  2. A proposal to manage multi-task dialogs in conversational interfaces

    Directory of Open Access Journals (Sweden)

    David GRIOL

    2016-11-01

    Full Text Available The emergence of smart devices and recent advances in spoken language technology are currently extending the use of conversational interfaces and spoken interaction to perform many tasks. The dialog management task of a conversational interface consists of selecting the next system response considering the user's actions, the dialog history, and the results of accessing the data repositories. In this paper we describe a dialog management technique adapted to multi-task conversational systems. In our proposal, specialized dialog models are used to deal with each specific subtask of dialog objective for which the dialog system has been designed. The practical application of the proposed technique to develop a dialog system acting as a customer support service shows that the use of these specialized dialog models increases the quality and number of successful interactions with the system in comparison with developing a single dialog model.

  3. Sustainable energy conversion for electricity and coproducts principles, technologies, and equipment

    CERN Document Server

    Rao, Ashok

    2015-01-01

    Provides an introduction to energy systems going on to describe various forms of energy sources Provides a comprehensive and a fundamental approach to the study of sustainable fuel conversion for the generation of electricity and for coproducing synthetic fuels and chemicals Covers the underlying principles of physics and their application to engineering including thermodynamics of combustion and power cycles, fluid flow, heat transfer, and mass transfer Details the coproduction of fuels and chemicals including key equipment used in synthesis and specific examples of coproduction in integrated

  4. Environmental and institutional considerations in the development and implementation of biomass energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, C.

    1979-09-01

    The photosynthetic energy stored in plant and organic waste materials in the United States amounts to approximately 40% of the nation's total energy consumption. Conversion of this energy to usable power sources is a complex process, involving many possible materials, conversion technologies, and energy products. Near-term biomass technologies are predominantly based on traditional fuel use and have the advantage over other solar technologies of fitting into existing tax and business practices. However, no other solar technology has the potential for such large environmental impacts. Unlike the conversion of sun, wind, and ocean thermal energy, the conversion of the biomass energy source, in the form of biomass residues and wastes, can create problems. Environmental impacts may be significant, and legal responses to these impacts are a key determinant to the widespread adoption of biomass technologies. This paper focuses on the major legal areas which will impact on biomass energy conversion. These include (1) the effect of existing state and federal legislation, (2) the role of regulatory agencies in the development of biomass energy, (3) governmental incentives to biomass development, and (4) legal issues surrounding the functioning of the technologies themselves. Emphasis is placed on the near-term technologies whose environmental impacts and institutional limitations are more readily identified. If biomass energy is to begin to achieve its apparently great potential, these questions must receive immediate attention.

  5. Biomass Supply Chain and Conversion Economics of Cellulosic Ethanol

    Science.gov (United States)

    Gonzalez, Ronalds W.

    2011-12-01

    Cellulosic biomass is a potential and competitive source for bioenergy production, reasons for such acclamation include: biomass is one the few energy sources that can actually be utilized to produce several types of energy (motor fuel, electricity, heat) and cellulosic biomass is renewable and relatively found everywhere. Despite these positive advantages, issues regarding cellulosic biomass availability, supply chain, conversion process and economics need a more comprehensive understanding in order to identify the near short term routes in biomass to bioenergy production. Cellulosic biomass accounts for around 35% to 45% of cost share in cellulosic ethanol production, in addition, different feedstock have very different production rate, (dry ton/acre/year), availability across the year, and chemical composition that affect process yield and conversion costs as well. In the other hand, existing and brand new conversion technologies for cellulosic ethanol production offer different advantages, risks and financial returns. Ethanol yield, financial returns, delivered cost and supply chain logistic for combinations of feedstock and conversion technology are investigated in six studies. In the first study, biomass productivity, supply chain and delivered cost of fast growing Eucalyptus is simulated in economic and supply chain models to supply a hypothetic ethanol biorefinery. Finding suggests that Eucalyptus can be a potential hardwood grown specifically for energy. Delivered cost is highly sensitive to biomass productivity, percentage of covered area. Evaluated at different financial expectations, delivered cost can be competitive compared to current forest feedstock supply. In the second study, Eucalyptus biomass conversion into cellulosic ethanol is simulated in the dilute acid pretreatment, analysis of conversion costs, cost share, CAPEX and ethanol yield are examined. In the third study, biomass supply and delivered cost of loblolly pine is simulated in economic

  6. Dense ceramic membranes for methane conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bouwmeester, Henny J.M. [Laboratory for Inorganic Materials Science, Department of Science and Technology and MESA Research Institute, University of Twente, 7500 AE Enschede (Netherlands)

    2003-07-30

    Dense ceramic membranes made from mixed oxygen-ionic and electronic conducting perovskite-related oxides allow separation of oxygen from an air supply at elevated temperatures (>700C). By combining air separation and catalytic partial oxidation of methane to syngas into a ceramic membrane reactor, this technology is expected to significantly reduce the capital costs of conversion of natural gas to liquid added-value products. The present survey is mainly concerned with the material properties that govern the performance of the mixed-conducting membranes in real operating conditions and highlights significant developments in the field.

  7. Assessment of photovoltaic conversion technology for electricity producing in Bulgaria

    International Nuclear Information System (INIS)

    Vitanov, P.; Tyutyundzhiev, N.; Peneva, M.; Delibasheva, M.

    1996-01-01

    Characteristics of a 36W/12V solar photovoltaic converter developed in the Bulgarian Academy of Sciences have been studied. Technical description of the module containing 4 monocrystal Si solar elements is given. Each element is with conversion efficiency more than 12% and has multilayer metallization. The power generated by the module is directly proportional to solar radiation. The electric energy generated in a sunny day is more than 240 Wh and more than 7 kWh in a spring month (April). The system can work without a battery for 8 - 18 hours. The results show that the utilization of such type of economically efficient stand-alone systems is advisable for Bulgaria. 4 figs., 3 refs

  8. Status of CEA reactor studies for a 200 kWe turbo electric space power system

    International Nuclear Information System (INIS)

    Carre, F.; Gervaise, F.; Proust, E.; Schwartz, J.P.; Tilliette, Z.; Vrillon, B.

    1986-01-01

    The present European ARIANE space program will expand after 1995 in the development of the large ARIANE 5 launch vehicle. Considering, that the range of power needs (50 to 400 kWe) and operation times required for the space missions planned after the year 2000, are relevant to a nuclear power system, the French Centre National d'Etudes Spatiales (CNES) invited in 1983 the Commissariat a l'Energie Atomique (CEA) to undertake preliminary studies on space power systems. The purpose of the present two year phase (mid 1984-mid 1986) is to identify key technologies for a space generator within the power range of interest and to estimate the development cost of such a project to be examined for commitment in 1986. This work mainly consists in the feasibility and cost assessment of a reference 200 kWe turboelectric space generator, selected for the maturity and availability of the conversion system and for its attractive specific mass compared to thermionics and thermoelectricity, considering the available radiator area afforded by the specific ARIANE 5 geometrical features. The system is basically composed of a fast neutron spectrum lithium cooled reactor, of a Brayton conversion loop and of a heat pipe radiator

  9. Bioenergy Research Programme. Yearbook 1997. Utilization of bioenergy and biomass conversion

    International Nuclear Information System (INIS)

    Nikku, P.

    1998-01-01

    The aim of the research programme is to increase the use of economically profitable and environmentally sound bioenergy, by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels, new equipment and methods for production, handling and using of biofuels. The total funding for 1997 was 33.5 million FIM, and the number of projects 62. The number of projects concerning bioenergy use was 17 and biomass conversion 4. Results from the projects that were going on in 1997 are presented in this publication. The aim of the bioenergy use is to develop and demonstrate at least 3-4 new equipment or methods for handling and use of biofuels. The equipment and/or methods should provide economically competitive and environmentally sound energy production. The second aim is to demonstrate at least 2-3 large-scale biofuel end-use technologies. Each of these should have a potential of 0.2-0.3 million toe per year till the year 2000. The aims have been achieved in the field of fuel handling technologies and small scale combustion concepts, but the large scale demonstration projects before the year 2000 seem to be a very challenging goal. The aim of the biomass conversion is to produce basic information on biomass conversion, to evaluate the quality of products, their usability, environmental effects of the use as well as the total economy of the production. The objective of the biomass conversion is to develop 2-3 new methods, which could be demonstrated, for the production and utilization of liquefied, gasified and other converted biofuels. The production target is 0.2-0.3 million toe per year by 2005 at a competitive price level. The studies focused on the development of flash pyrolysis technology for biomass, and on the study of the storage stability of imported wood oils and their suitability for use in oil-fired boilers and diesel power plants

  10. National Conversion Pilot Project Waste Management Program

    International Nuclear Information System (INIS)

    Engelmann, G.G.; Simmons, M.S.

    1995-01-01

    The U.S. Department of Energy facilities are in the process of downsizing. Most plans for downsizing focus on the decontamination and decommissioning of excess production facilities. A different approach for downsizing is taken at Rocky Flats Environmental Technology Site (RFETS), which has four production buildings. These buildings were used for the production of weapons components from uranium and beryllium and contain unique and valuable equipment, such as rolling mills, furnaces, and high-capacity presses, which could be utilized for stage-III metal recycling. The mission of this National Conversion Pilot Project (NCPP) open-quotes is to explore and demonstrate, at the Rocky Flats Environmental Technology Site (RFETS), the feasibility of economic conversion at Department of Energy facilities.close quotes The NCPP has been divided into three stages: 1. Stage I-planning and feasibility determination 2. Stage II-facility cleanup for reuse and operational assessment 3. Stage III-metals recycling. The NCPP has recently been approved to begin stage II. The objective of the NCPP stage II is to prepare the four NCPP buildings for stage III, to remove unwanted equipment, and to decontaminate buildings and essential equipment to levels consistent with those that commercial industrial operations must meet pursuant to applicable Occupational Safety and Health Administration, U.S. Environmental Protection Agency, U.S. Nuclear Regulatory Commission, and state workplace regulations

  11. Wastes to Resources: Appropriate Technologies for Sewage Treatment and Conversion.

    Science.gov (United States)

    Anderson, Stephen P.

    Appropriate technology options for sewage management systems are explained in this four-chapter report. The use of appropriate technologies is advocated for its health, environmental, and economic benefits. Chapter 1 presents background information on sewage treatment in the United States and the key issues facing municipal sewage managers.…

  12. Survey of heat-pipe application under nuclear environment

    International Nuclear Information System (INIS)

    Tsuyuzaki, Noriyoshi; Saito, Takashi; Okamoto, Yoshizo; Hishida, Makoto; Negishi, Kanji.

    1986-11-01

    Heat pipes today are employed in a wide variety of special heat transfer applications including nuclear reactor. In this nuclear technology area in Japan, A headway speed of the heat pipe application technique is not so high because of safety confirmation and investigation under each developing step. Especially, the outline of space craft is a tendency to increase the size. Therefore, the power supply is also tendency to increase the outlet power and keep the long life. Under SP-100 project, the development of nuclear power supply system which power is 1400 - 1600 KW thermal and 100 KW electric power is steadily in progress. Many heat pipes are adopted for thermionic conversion and coolant system in order to construct more safety and light weight system for the project. This paper describes the survey of the heat pipe applications under the present and future condition for nuclear environment. (author)

  13. Measurement and modeling of advanced coal conversion processes. Annual report, October 1990--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. [Advanced Fuel Research, Inc., East Hartford, CT (United States)]|[Brigham Young Univ., Provo, UT (United States)

    1991-12-31

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  14. Energy conversion of animal manures: Feasibility analysis for thirteen western states

    Energy Technology Data Exchange (ETDEWEB)

    Whittier, J.; Haase, S.; Milward, R.; Churchill, G.; Searles, M.B. [NEOS Corp., Lakewood, CO (United States); Moser, M. [Resource Conservation Management, Inc., Berkeley, CA (United States); Swanson, D.; Morgan, G. [Western Regional Biomass Energy Program, Golden, CO (United States)

    1993-12-31

    The growth and concentration of the livestock industry has led to environmental disposal problems for large quantities of manure at feedlots, dairies, poultry production plants, animal holding areas and pasturelands. Consequently, waste management systems that facilitate energy recovery are becoming increasingly attractive since they address pollution problems and allow for energy generation from manure resources. This paper presents a manure resource assessment for the 13 US Department of Energy, Western Regional Biomass Energy Program states, describes and evaluates available energy conversion technologies, identifies environmental and regulatory factors associated with manure collection, storage and disposal, and identifies common disposal practices specific to animal types and areas within the WRBEP region. The paper also presents a pro forma economic analysis for selected manure-to-energy conversion technologies. The annual energy potential of various manures within the WRBEP region is equivalent to approximately 111 {times} 10{sup 13} Btu. Anaerobic digestion systems, both lagoon and plug flow, offer positive economic returns in a broad range of utility service territories.

  15. Independent Assessment of Technology Characterizations to Support the Biomass Program Annual State-of-Technology Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, B.

    2011-03-01

    This report discusses an investigation that addressed two thermochemical conversion pathways for the production of liquid fuels and addressed the steps to the process, the technology providers, a method for determining the state of technology and a tool to continuously assess the state of technology. This report summarizes the findings of the investigation as well as recommendations for improvements for future studies.

  16. Alternate fuel cycle technologies, nitrate-to-oxide conversion project. Progress report, January--June 1977

    International Nuclear Information System (INIS)

    Lehmkuhl, G.D.

    1977-01-01

    Work is being done at the Rocky Flats Plant (RFP) under contract from the Savannah River Operations Office (SROO) of the U.S. Energy Research and Development Administration (ERDA) to critically analyze and evaluate existing technology for converting plutonium nitrate to plutonium oxide, and to recommend flow sheets and equipment for this process. Seven such processes were compared using an expanded process-comparison scheme. The results of the comparison differed somewhat from the initial comparison made in September, 1976. The direct calcination methods, headed by the screw calciner process, received the highest ratings when operating experience was considered with a small weighting factor. These methods are much simpler than the others. The oxalate precipitation methods, headed by the plutonium(IV) oxalate precipitation and calcination process, received highest ratings when operating experience was strongly considered. Thus, in the long term, the screw calciner or other direct-conversion methods should be developed. For a plant to be built in the short term, however, an oxalate precipitation method should be used since a larger amount of experience exists with these processes. The block flow diagrams, material balances, and equipment flow sheets for each of the seven processes compared are included in this report. A process-design criterion is being prepared for a mechanical (screw calciner) direct-denitration process, and includes process flow sheets, a material balance, a process description, equipment performance specifications, the control philosophy and specifications, the operating philosophy, and a general process layout

  17. Solar energy conversion by photocatalytic overall water splitting

    KAUST Repository

    Takanabe, Kazuhiro

    2015-07-04

    Summary: Solar energy is abundant and renewable energy: however, extensive conversion of the solar energy can only be achieved by large-scale collection of solar flux. The technology that satisfies this requirement must be as simple as possible to reduce capital cost. Overall water splitting (OWS) by powder-form photocatalysts directly produces H2 as a chemical energy in a single reactor, which does not require any complicated parabolic mirrors and electronic devices. Because of its simplicity and low capital cost, it has tremendous potential to become the major technology of solar energy conversion. To achieve the OWS efficiently, the development of efficient photocatalysts is mandatory. The OWS hotocatalysis involves the electrocatalys is for both water reduction and oxidation on the surafce of photocatalysts, which is driven by particular semiconductors that absorb photons to generate excited carriers. Such photocatalysts must be designed to maximize the charge separation efficiency at the catalyst-semiconductor and semiconductor-electrolyte interface. In addition the low-overpotential electrocatalyts towards water redox reactions should be insensitive to the back-reaction of the produced H2 and O2 that produces H2O. In this presentation, some recent progress on the topic of the OWS in our group will be discussed.

  18. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  19. Indigenous knowledges driving technological innovation

    Science.gov (United States)

    Lilian Alessa; Carlos Andrade; Phil Cash Cash; Christian P. Giardina; Matt Hamabata; Craig Hammer; Kai Henifin; Lee Joachim; Jay T. Johnson; Kekuhi Kealiikanakaoleohaililani; Deanna Kingston; Andrew Kliskey; Renee Pualani Louis; Amanda Lynch; Daryn McKenny; Chels Marshall; Mere Roberts; Taupouri Tangaro; Jyl Wheaton-Abraham; Everett. Wingert

    2011-01-01

    This policy brief explores the use and expands the conversation on the ability of geospatial technologies to represent Indigenous cultural knowledge. Indigenous peoples' use of geospatial technologies has already proven to be a critical step for protecting tribal self-determination. However, the ontological frameworks and techniques of Western geospatial...

  20. Biomass CHP Catalog of Technologies

    Science.gov (United States)

    This report reviews the technical and economic characterization of biomass resources, biomass preparation, energy conversion technologies, power production systems, and complete integrated CHP systems.

  1. Preconceptual design studies and cost data of depleted uranium hexafluoride conversion plants

    International Nuclear Information System (INIS)

    Jones, E

    1999-01-01

    One of the more important legacies left with the Department of Energy (DOE) after the privatization of the United States Enrichment Corporation is the large inventory of depleted uranium hexafluoride (DUF6). The DOE Office of Nuclear Energy, Science and Technology (NE) is responsible for the long-term management of some 700,000 metric tons of DUF6 stored at the sites of the two gaseous diffusion plants located at Paducah, Kentucky and Portsmouth, Ohio, and at the East Tennessee Technology Park in Oak Ridge, Tennessee. The DUF6 management program resides in NE's Office of Depleted Uranium Hexafluoride Management. The current DUF6 program has largely focused on the ongoing maintenance of the cylinders containing DUF6. However, the long-term management and eventual disposition of DUF6 is the subject of a Programmatic Environmental Impact Statement (PEIS) and Public Law 105-204. The first step for future use or disposition is to convert the material, which requires construction and long-term operation of one or more conversion plants. To help inform the DUF6 program's planning activities, it was necessary to perform design and cost studies of likely DUF6 conversion plants at the preconceptual level, beyond the PEIS considerations but not as detailed as required for conceptual designs of actual plants. This report contains the final results from such a preconceptual design study project. In this fast track, three month effort, Lawrence Livermore National Laboratory and Bechtel National Incorporated developed and evaluated seven different preconceptual design cases for a single plant. The preconceptual design, schedules, costs, and issues associated with specific DUF6 conversion approaches, operating periods, and ownership options were evaluated based on criteria established by DOE. The single-plant conversion options studied were similar to the dry-conversion process alternatives from the PEIS. For each of the seven cases considered, this report contains information on

  2. Technical and economic assessment of energy conversion technologies for MSW

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, W.R.

    2002-07-01

    Thermal processes for municipal solid wastes (MSW) based on pyrolysis and/or gasification that have relevance to the emerging UK market are described in this report, and the results of the technical and economical assessment of these processes are presented. The Mitsui R21 Technology, the Thermoselect Process, the Nippon Steel Waste Melting Process, the Pyropleq Process, and the Compact Power Process are selected for detailed comparison on the basis of the overall technical concept, the energy balance and the requirements for consumables, environmental performance, and the technical and commercial status of the technology. Details are also given of a comparison of the novel thermal technologies with conventional mass burn incineration for MSW.

  3. Technical and economic assessment of energy conversion technologies for MSW

    International Nuclear Information System (INIS)

    Livingston, W.R.

    2002-01-01

    Thermal processes for municipal solid wastes (MSW) based on pyrolysis and/or gasification that have relevance to the emerging UK market are described in this report, and the results of the technical and economical assessment of these processes are presented. The Mitsui R21 Technology, the Thermoselect Process, the Nippon Steel Waste Melting Process, the Pyropleq Process, and the Compact Power Process are selected for detailed comparison on the basis of the overall technical concept, the energy balance and the requirements for consumables, environmental performance, and the technical and commercial status of the technology. Details are also given of a comparison of the novel thermal technologies with conventional mass burn incineration for MSW

  4. Brayton-Cycle Power-Conversion Unit Tested With Ion Thruster

    Science.gov (United States)

    Hervol, David S.

    2005-01-01

    Nuclear electric propulsion has been identified as an enabling technology for future NASA space science missions, such as the Jupiter Icy Moons Orbiter (JIMO) now under study. An important element of the nuclear electric propulsion spacecraft is the power conversion system, which converts the reactor heat to electrical power for use by the ion propulsion system and other spacecraft loads. The electrical integration of the power converter and ion thruster represents a key technical challenge in making nuclear electric propulsion technology possible. This technical hurdle was addressed extensively on December 1, 2003, when a closed- Brayton-cycle power-conversion unit was tested with a gridded ion thruster at the NASA Glenn Research Center. The test demonstrated end-to-end power throughput and marked the first-ever coupling of a Brayton turbo alternator and a gridded ion thruster, both of which are candidates for use on JIMO-type missions. The testing was conducted at Glenn's Vacuum Facility 6, where the Brayton unit was installed in the 3-m-diameter vacuum test port and the ion thruster was installed in the 7.6-m-diameter main chamber.

  5. Low severity conversion of activated coal

    Energy Technology Data Exchange (ETDEWEB)

    Hirschon, A.S.; Ross, D.S.

    1990-01-01

    The results suggest that coal contains regions with structural components significantly reactive under the hydrothermal environment. Although the specific mechanism for this process remains to be developed, this activity is reminiscent of findings in studies of accelerated maturation of oil shale, where hydrothermal treatment (hydrous pyrolysis) leads to the production of petroleum hydrocarbons. In line with what has been seen in the oil shale work, the pretreatment-generated hydrocarbons and phenols appear to represent a further or more complete maturation of some fraction of the organic material within the coal. These observations could have an impact in two areas. The first is in the area of coal structure, where immature, reactive regions have not been included in the structures considered at present. The second area of interest is the more practical one of conversions to coal liquids and pyrolytic tars. It seems clear that the hydrothermal pretreatment changes the coal in some manner that favorably affects the product quality substantially and, as in the CO/water liquefaction case, favorably affects the yields. The conversions of coals of lower rank, i.e., less mature coals, could particularly benefit in terms of both product quality and product quantity. The second portion of this project also shows important benefits to coal conversion technology. It deals with synthesizing catalysts designed to cleave the weak links in the coal structure and then linking these catalysts with the pretreatment methods in Task 2. The results show that highly dispersed catalysts can effectively be used to increase the yields of soluble material. An important aspect of highly dispersed catalysts are that they can effectively catalyze coal conversion even in poor liquefaction solvents, thus making them very attractive in processes such as coprocessing where inexpensive liquefaction media such as resids are used.

  6. Computers and conversation

    CERN Document Server

    Luff, Paul; Gilbert, Nigel G

    1986-01-01

    In the past few years a branch of sociology, conversation analysis, has begun to have a significant impact on the design of human*b1computer interaction (HCI). The investigation of human*b1human dialogue has emerged as a fruitful foundation for interactive system design.****This book includes eleven original chapters by leading researchers who are applying conversation analysis to HCI. The fundamentals of conversation analysis are outlined, a number of systems are described, and a critical view of their value for HCI is offered.****Computers and Conversation will be of interest to all concerne

  7. Electrochemical energy conversion: methanol fuel cell as example

    Directory of Open Access Journals (Sweden)

    Vielstich Wolf

    2003-01-01

    Full Text Available Thermodynamic and kinetic limitations of the electrochemical energy conversion are presented for the case of a methanol/oxygen fuel cell. The detection of intermediates and products is demonstrated using insitu FTIR spectroscopy and online mass spectrometry. The bifunctional catalysis of methanol oxydation by PtRu model surfaces is explained. The formation of HCOOH and HCHO via parallel reaction pathways is discussed. An example of DMFC system technology is presented.

  8. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    International Nuclear Information System (INIS)

    1991-06-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE

  9. Cost update technology, safety, and costs of decommissioning a reference uranium hexafluoride conversion plant

    International Nuclear Information System (INIS)

    Miles, T.L.; Liu, Y.

    1995-08-01

    The purpose of this study is to update the cost estimates developed in a previous report, NUREG/CR-1757 (Elder 1980) for decommissioning a reference uranium hexafluoride conversion plant from the original mid-1981 dollars to values representative of January 1993. The cost updates were performed by using escalation factors derived from cost index trends over the past 11.5 years. Contemporary price quotes wee used for costs that have increased drastically or for which is is difficult to find a cost trend. No changes were made in the decommissioning procedures or cost element requirements assumed in NUREG/CR-1757. This report includes only information that was changed from NUREG/CR-1757. Thus, for those interested in detailed descriptions and associated information for the reference uranium hexafluoride conversion plant, a copy of NUREG/CR-1757 will be needed

  10. A design study of reactor core optimization for direct nuclear heat-to-electricity conversion in a space power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hidekazu; Takahashi, Makoto; Shimoda, Hiroshi; Takeoka, Satoshi [Kyoto Univ. (Japan); Nakagawa, Masayuki; Kugo, Teruhiko

    1998-01-01

    To propose a new design concept of a nuclear reactor used in the space, research has been conducted on the conceptual design of a new nuclear reactor on the basis of the following three main concepts: (1) Thermionic generation by thermionic fuel elements (TFE), (2) reactivity control by rotary reflector, and (3) reactor cooling by liquid metal. The outcomes of the research are: (1) A calculation algorithm was derived for obtaining convergent conditions by repeating nuclear characteristic calculation and thermal flow characteristic calculation for the space nuclear reactor. (2) Use of this algorithm and the parametric study established that a space nuclear reactor using 97% enriched uranium nitride as the fuel and lithium as the coolant and having a core with a radius of about 25 cm, a height of about 50 cm and a generation efficiency of about 7% can probably be operated continuously for at least more than ten years at 100 kW only by reactivity control by rotary reflector. (3) A new CAD/CAE system was developed to assist design work to optimize the core characteristics of the space nuclear reactor comprehensively. It is composed of the integrated design support system VINDS using virtual reality and the distributed system WINDS to collaboratively support design work using Internet. (N.H.)

  11. Elements of energy conversion

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Elements of Energy Conversion brings together scattered information on the subject of energy conversion and presents it in terms of the fundamental thermodynamics that apply to energy conversion by any process. Emphasis is given to the development of the theory of heat engines because these are and will remain most important power sources. Descriptive material is then presented to provide elementary information on all important energy conversion devices. The book contains 10 chapters and opens with a discussion of forms of energy, energy sources and storage, and energy conversion. This is foll

  12. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2012-01-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity

  13. Athabasca University: Conversion from Traditional Distance Education to Online Courses, Programs and Services

    Directory of Open Access Journals (Sweden)

    Alan Davis

    2001-01-01

    Full Text Available In its 30 years of operation, Athabasca University has witnessed the full impact of the growth of online distance education. Its conversion from mixed media course production and telephone/ mail tutoring to a variety of electronic information and communication technologies has been heterogeneous across disciplines and programs. Undergraduate programs in business, computing, and some social science programs have largely led the conversion, and all graduate programs have, since their inception, employed various features of online delivery. The parallel conversion of student services has been equally important to the effectiveness of these processes. The implications of this approach for the quality of offerings, support systems, costing, and the primary mandate of the University (which is to remove barriers, not create them are discussed.

  14. Molecular Breeding Algae For Improved Traits For The Conversion Of Waste To Fuels And Commodities.

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-14

    This Exploratory LDRD aimed to develop molecular breeding methodology for biofuel algal strain improvement for applications in waste to energy / commodity conversion technologies. Genome shuffling technologies, specifically protoplast fusion, are readily available for the rapid production of genetic hybrids for trait improvement and have been used successfully in bacteria, yeast, plants and animals. However, genome fusion has not been developed for exploiting the remarkable untapped potential of eukaryotic microalgae for large scale integrated bio-conversion and upgrading of waste components to valued commodities, fuel and energy. The proposed molecular breeding technology is effectively sexual reproduction in algae; though compared to traditional breeding, the molecular route is rapid, high-throughput and permits selection / improvement of complex traits which cannot be accomplished by traditional genetics. Genome fusion technologies are the cutting edge of applied biotechnology. The goals of this Exploratory LDRD were to 1) establish reliable methodology for protoplast production among diverse microalgal strains, and 2) demonstrate genome fusion for hybrid strain production using a single gene encoded trait as a proof of the concept.

  15. Power Technologies Energy Data Book - Fourth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2006-08-01

    This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  16. Power Technologies Energy Data Book - Third Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2005-04-01

    This report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  17. Electrohydrodynamics: a high-voltage direct energy conversion process; L'electrohydrodynamique: Un procede de conversion directe d'energie a haute tension

    Energy Technology Data Exchange (ETDEWEB)

    Brun, S [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-04-15

    This analysis consists of a theoretical and practical study of a high-tension electrical power generator based on the Van de Graaff generator principle, the main difference being that the charges produced are transported by a gas in motion and not by a belt. The electrical and thermal properties of such a generator are studied, as well as the difficult problem of the production of the ionised particles used in the conversion. A certain number of results already published on this process for converting kinetic energy into electrical energy is given, as well as some possible applications in the field of space technology. (author) [French] Cette analyse est une etude theorique et pratique d'un generateur de puissance electrique a haute tension, base sur le principe du generateur Van de Graaff, la difference principale etant que les charges produites sont transportees pur un gaz en mouvement et non par une courroie. Les proprietes electriques et thermiques d'un tel generateur sont etudiees ainsi que le probleme delicat de la production des particules ionisees utilisees dans la conversion. Un certain nombre de resultats publies sur ce procede de conversion d'energie cinetique en energie electrique sont reproduits, ainsi que les applications possibles aux problemes spatiaux. (auteur)

  18. Electrobiorefineries: Unlocking the Synergy of Electrochemical and Microbial Conversions.

    Science.gov (United States)

    Harnisch, Falk; Urban, Carolin

    2017-12-13

    An integrated biobased economy urges an alliance of the two realms of "chemical production" and "electric power". The concept of electrobiorefineries provides a blueprint for such an alliance. Joining the forces of microbial and electrochemical conversions in electrobiorefineries allows interfacing the production, storage, and exploitation of electricity as well as biobased chemicals. Electrobiorefineries are a technological evolution of biorefineries by the addition of (bio)electrochemical transformations. This interfacing of microbial and electrochemical conversions will result in synergies affecting the entire process line, like enlarging the product portfolio, increasing the productivity, or exploiting new feedstock. A special emphasis is given to the utilization of oxidative and reductive electroorganic reactions of microbially produced intermediates that may serve as privileged building blocks. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sustainable technological development in chemistry. Improving the quality of life through chemistry and agriculture

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The importance of agricultural products, their potential conversion to energy sources and their applications for fibre-reinforced construction materials is emphasized. Another potentially important technology is the conversion of sunlight into electricity such as occurs in the leaves of plants. Parallels with nature exist, even though conversions with inorganic materials have, until now, been promising. The ability to control chemical reactions is the subject throughout all the following chapters. The goal is to achieve high reaction efficiencies and to use fewer basic materials, both of which will lead to a reduction in environmental stress. Sustainable developments in chemistry can be described by two approaches: (1) Improvements in society, with challenges for chemistry; and (2) Improvement in the chemical sector itself. Both approaches are dealt with in this report. Five areas for development have been chosen in the discussions for `DTO-Chemie`: Integrated plant conversion (IPC), in particular Valorisation of plant parts for raw materials and energy; Biomass conversion (C1 Chemistry), in particular Technologies for (among others) C1-based chemicals and energy carriers; Photovoltaic cells (PSC), in particular Technologies for the conversion of solar light into electricity; Process Technology in Fine chemistry (PFC), in particular Methodology of manufacturing processes for Fine chemicals; and Sustainable Construction Materials (FRC); in particular Techniques for using fibre-reinforced composites in construction applications. These areas can be viewed as clusters of technologies, with a strong chemistry and agricultural component, which are necessary for achieving a sustainable future. Furthermore, it is important to recognise that technology requires a progressive development (technology lifecycle). The five areas of technology development are tested against a number of criteria: (1) Sustainability / leap / volume; (2) Horizon 2050; (3) Commitment from industry

  20. Iterated multidimensional wave conversion

    International Nuclear Information System (INIS)

    Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.

    2011-01-01

    Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.