WorldWideScience

Sample records for thermally steady-state conditions

  1. LANSCE steady state unperturbed thermal neutron fluxes at 100 μA

    International Nuclear Information System (INIS)

    Russell, G.J.

    1989-01-01

    The ''maximum'' unperturbed, steady state thermal neutron flux for LANSCE is calculated to be 2 /times/ 10 13 n/cm 2 -s for 100 μA of 800-MeV protons. This LANSCE neutron flux is a comparable entity to a steady state reactor thermal neutron flux. LANSCE perturbed steady state thermal neutron fluxes have also been calculated. Because LANSCE is a pulsed neutron source, much higher ''peak'' (in time) neutron fluxes can be generated than at a steady state reactor source. 5 refs., 5 figs

  2. Thermal Conductivity of EB-PVD Thermal Barrier Coatings Evaluated by a Steady-State Laser Heat Flux Technique

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Nagaraj, Ben A.; Bruce, Robert W.

    2000-01-01

    The thermal conductivity of electron beam-physical vapor deposited (EB-PVD) Zr02-8wt%Y2O3 thermal barrier coatings was determined by a steady-state heat flux laser technique. Thermal conductivity change kinetics of the EB-PVD ceramic coatings were also obtained in real time, at high temperatures, under the laser high heat flux, long term test conditions. The thermal conductivity increase due to micro-pore sintering and the decrease due to coating micro-delaminations in the EB-PVD coatings were evaluated for grooved and non-grooved EB-PVD coating systems under isothermal and thermal cycling conditions. The coating failure modes under the high heat flux test conditions were also investigated. The test technique provides a viable means for obtaining coating thermal conductivity data for use in design, development, and life prediction for engine applications.

  3. A steady state thermal duct model derived by fin-theory approach and applied on an unglazed solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Stojanovic, B.; Hallberg, D.; Akander, J. [Building Materials Technology, KTH Research School, Centre for Built Environment, University of Gaevle, SE-801 76 Gaevle (Sweden)

    2010-10-15

    This paper presents the thermal modelling of an unglazed solar collector (USC) flat panel, with the aim of producing a detailed yet swift thermal steady-state model. The model is analytical, one-dimensional (1D) and derived by a fin-theory approach. It represents the thermal performance of an arbitrary duct with applied boundary conditions equal to those of a flat panel collector. The derived model is meant to be used for efficient optimisation and design of USC flat panels (or similar applications), as well as detailed thermal analysis of temperature fields and heat transfer distributions/variations at steady-state conditions; without requiring a large amount of computational power and time. Detailed surface temperatures are necessary features for durability studies of the surface coating, hence the effect of coating degradation on USC and system performance. The model accuracy and proficiency has been benchmarked against a detailed three-dimensional Finite Difference Model (3D FDM) and two simpler 1D analytical models. Results from the benchmarking test show that the fin-theory model has excellent capabilities of calculating energy performances and fluid temperature profiles, as well as detailed material temperature fields and heat transfer distributions/variations (at steady-state conditions), while still being suitable for component analysis in junction to system simulations as the model is analytical. The accuracy of the model is high in comparison to the 3D FDM (the prime benchmark), as long as the fin-theory assumption prevails (no 'or negligible' temperature gradient in the fin perpendicularly to the fin length). Comparison with the other models also shows that when the USC duct material has a high thermal conductivity, the cross-sectional material temperature adopts an isothermal state (for the assessed USC duct geometry), which makes the 1D isothermal model valid. When the USC duct material has a low thermal conductivity, the heat transfer

  4. Steady-state thermal hydraulic analysis and flow channel blockage accident analysis of JRR-3 silicide core

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1997-03-01

    JRR-3 is a light water moderated and cooled, beryllium and heavy water reflected pool type research reactor using low enriched uranium (LEU) plate-type fuels. Its thermal power is 20 MW. The core conversion program from uranium-aluminum (UAl x -Al) dispersion type fuel (aluminide fuel) to uranium-silicon-aluminum (U 3 Si 2 -Al) dispersion type fuel (silicide fuel) is currently conducted at the JRR-3. This report describes about the steady-state thermal hydraulic analysis results and the flow channel blockage accident analysis result. In JRR-3, there are two operation mode. One is high power operation mode up to 20 MW, under forced convection cooling using the primary and the secondary cooling systems. The other is low power operation mode up to 200 kW, under natural circulation cooling between the reactor core and the reactor pool without the primary and the secondary cooling systems. For the analysis of the flow channel blockage accident, COOLOD code was used. On the other hand, steady-state thermal hydraulic analysis for both of the high power operation mode under forced convection cooling and low power operation under natural convection cooling, COOLOD-N2 code was used. From steady-state thermal hydraulic analysis results of both forced and natural convection cooling, fuel temperature, minimum DNBR etc. meet the design criteria and JRR-3 LEU silicide core has enough safety margin under normal operation conditions. Furthermore, flow channel blockage accident analysis results show that one channel flow blockage accident meet the safety criteria for accident conditions which have been established for JRR-3 LEU silicide core. (author)

  5. The analysis of the annular fuel performance in steady state condition by using AFPAC code

    International Nuclear Information System (INIS)

    He Xiaojun; Ji Songtao; Zhang Yingchao

    2012-01-01

    The fuel performance code AFPAC v1.0 is used to analyze annular fuel's behavior under steady state conditions, including neutronics, thermal hydraulic, rod deformation, fission gas release and rod internal pressure. The calculation results show that: 1) Annular fuel has a good steady irradiation performance at 150% power level as current LWRs' with burnup up to 50 GWd/t, and all parameters, such as temperature, rod internal pressure and rod deformation, are meet the rod design criteria for current fuel of PWRs: 2) Compared to the solid fuel under the same irradiation condition. annular fuel has lower temperature, smaller deformation, lower fission gas release and lower pressure at EOL. From the point of view of steady irradiation performance, the safety of reactors can significantly improved by u sing the annular fuel. (authors)

  6. Steady-state entanglement and thermalization of coupled qubits in two common heat baths

    Science.gov (United States)

    Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie

    2018-03-01

    In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.

  7. Steady State Thermal Analyses of SCEPTOR X-57 Wingtip Propulsion

    Science.gov (United States)

    Schnulo, Sydney L.; Chin, Jeffrey C.; Smith, Andrew D.; Dubois, Arthur

    2017-01-01

    Electric aircraft concepts enable advanced propulsion airframe integration approaches that promise increased efficiency as well as reduced emissions and noise. NASA's fully electric Maxwell X-57, developed under the SCEPTOR program, features distributed propulsion across a high aspect ratio wing. There are 14 propulsors in all: 12 high lift motor that are only active during take off and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The power electronics involved in the wingtip propulsion are temperature sensitive and therefore require thermal management. This work focuses on the high and low fidelity heat transfer analysis methods performed to ensure that the wingtip motor inverters do not reach their temperature limits. It also explores different geometry configurations involved in the X-57 development and any thermal concerns. All analyses presented are performed at steady state under stressful operating conditions, therefore predicting temperatures which are considered the worst-case scenario to remain conservative.

  8. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.

  9. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries

  10. Nonequilibrium steady state of biochemical cycle kinetics under non-isothermal conditions

    Science.gov (United States)

    Jin, Xiao; Ge, Hao

    2018-04-01

    The nonequilibrium steady state of isothermal biochemical cycle kinetics has been extensively studied, but that under non-isothermal conditions has been much less extensively investigated. When the heat exchange between subsystems is slow, the isothermal assumption of the whole system breaks down, as is true for many types of living organisms. Here, starting with a four-state model of molecular transporter across the cell membrane, we generalize the nonequilibrium steady-state theory of isothermal biochemical cycle kinetics to the circumstances with non-uniform temperatures of subsystems in terms of general master equation models. We obtain a new thermodynamic relationship between the chemical reaction rates and thermodynamic potentials in non-isothermal circumstances, based on the overdamped dynamics along the continuous reaction coordinate. We show that the entropy production can vary up to 3% in real cells, even when the temperature difference across the cell membrane is only approximately 1 K. We then decompose the total thermodynamic driving force into its thermal and chemical components and predict that the net flux of molecules transported by the molecular transporter can potentially go against the temperature gradient in the absence of a chemical driving force. Furthermore, we demonstrate that the simple application of the isothermal transition-state rate formula for each chemical reaction in terms of only the reactant’ temperature is not thermodynamically consistent. Therefore, we mathematically derive several revised reaction rate formulas that are not only consistent with the new thermodynamic relationship but also approximate the exact reaction rate better than Kramers’ rate formula under isothermal conditions.

  11. Quasi-steady state thermal performances of a solar air heater with ...

    African Journals Online (AJOL)

    Quasi-steady state thermal performance of a solar air heater with a combined absorber is studied. The whole energy balance equations related to the system were articulated as a linear system of temperature equations. Solutions to this linear system were assessed from program based on an iterative process. The mean ...

  12. Chlorine decay under steady and unsteady-state hydraulic conditions

    DEFF Research Database (Denmark)

    Stoianov, Ivan; Aisopou, Angeliki

    2014-01-01

    This paper describes a simulation framework for the scale-adaptive hydraulic and chlorine decay modelling under steady and unsteady-state flows. Bulk flow and pipe wall reaction coefficients are replaced with steady and unsteady-state reaction coefficients. An unsteady decay coefficient is defined...... which depends upon the absolute value of shear stress and the rate of change of shear stress for quasi-unsteady and unsteady-state flows. A preliminary experimental and analytical investigation was carried out in a water transmission main. The results were used to model monochloramine decay...... and these demonstrate that the dynamic hydraulic conditions have a significant impact on water quality deterioration and the rapid loss of disinfectant residual. © 2013 The Authors....

  13. A method for statistical steady state thermal analysis of reactor cores

    International Nuclear Information System (INIS)

    Whetton, P.A.

    1981-01-01

    In a previous publication the author presented a method for undertaking statistical steady state thermal analyses of reactor cores. The present paper extends the technique to an assessment of confidence limits for the resulting probability functions which define the probability that a given thermal response value will be exceeded in a reactor core. Establishing such confidence limits is considered an integral part of any statistical thermal analysis and essential if such analysis are to be considered in any regulatory process. In certain applications the use of a best estimate probability function may be justifiable but it is recognised that a demonstrably conservative probability function is required for any regulatory considerations. (orig.)

  14. Dust remobilization in fusion plasmas under steady state conditions

    NARCIS (Netherlands)

    Tolias, P.; Ratynskaia, S.; de Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; I. Bykov,; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.

    2016-01-01

    The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic

  15. FARST: A computer code for the evaluation of FBR fuel rod behavior under steady-state/transient conditions

    International Nuclear Information System (INIS)

    Nakamura, M.; Sakagami, M.

    1984-01-01

    FARST, a computer code for the evaluation of fuel rod thermal and mechanical behavior under steady-state/transient conditions has been developed. The code characteristics are summarized as follows: (I) FARST evaluates the fuel rod behavior under the transient conditions. The code analyzes thermal and mechanical phenomena within a fuel rod, taking into account the temperature change in coolant surrounding the fuel rod. (II) Permanent strains such as plastic, creep and swelling strains as well as thermoelastic deformations can be analyzed by using the strain increment method. (III) Axial force and contact pressure which act on the fuel stack and cladding are analyzed based on the stick/slip conditions. (IV) FARST used a pellet swelling model which depends on the contact pressure between pellet and cladding, and an empirical pellet relocation model, designated as 'jump relocation model'. The code was successfully applied to analyses of the fuel rod irradiation data from pulse reactor for nuclear safety research in Cadarache (CABRI) and pulse reactor for nuclear safety research in Japan Atomic Energy Research Institute (NSRR). The code was further applied to stress analysis of a 1000 MW class large FBR plant fuel rod during transient conditions. The steady-state model which was used so far gave the conservative results for cladding stress during overpower transient, but underestimated the results for cladding stress during a rapid temperature decrease of coolant. (orig.)

  16. Numerical investigation of steady-state thermal behavior of an infrared detector cryo chamber

    Directory of Open Access Journals (Sweden)

    Singhal Mayank

    2017-01-01

    Full Text Available An infrared (IR detector is simply a transducer of radiant energy, converting radiant energy into a measurable form. Since radiation does not rely on visible light, it offers the possibility of seeing in the dark or through obscured conditions, by detecting the IR energy emitted by objects. One of the prime applications of IR detector systems for military use is in target acquisition and tracking of projectile systems. The IR detectors also have great potential in commercial market. Typically, IR detectors perform best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes makes the application of IR detectors extremely complex. Further, prior to proceeding on to a full blown transient thermal analysis it is worthwhile to perform a steady-state numerical analysis for ascertaining the effect of variation in viz., material, gas conduction coefficient, h, emissivity, ε, on the temperature profile along the cryo chamber length. This would enable understanding the interaction between the cryo chamber and its environment. Hence, the present work focuses on the development of steady-state numerical models for thermal analysis of IR cryo chamber using MATLAB. The numerical results show that gas conduction coefficient has marked influence on the temperature profile of the cryo chamber whereas the emissivity has a weak effect. The experimental validation of numerical results has also been presented.

  17. The steady-state tokamak program

    International Nuclear Information System (INIS)

    Politzer, D.A.; Nevins, W.M.

    1992-01-01

    This paper reports on a steady-state tokamak experiment (STE) needed to develop the technology and physics data base required for construction of a steady-state fusion power demonstration reactor in the early 21st century. The STE will provide an integrated facility for the development and demonstration of steady-state and particle handling, low-activation high-heat-flux components and materials, efficient current drive, and continuous plasma performance in steady-state, with reactor-like plasma conditions under severe conditions of heat and particle bombardment of the wall. The STE facility will also be used to develop operation and control scenarios for ITER

  18. Measurement of tissue-radiation dosage using a thermal steady-state elastic shear wave.

    Science.gov (United States)

    Chang, Sheng-Yi; Hsieh, Tung-Sheng; Chen, Wei-Ru; Chen, Jin-Chung; Chou, Chien

    2017-08-01

    A biodosimeter based on thermal-induced elastic shear wave (TIESW) in silicone acellular porcine dermis (SAPD) at thermal steady state has been proposed and demonstrated. A square slab SAPD treated with ionizing radiation was tested. The SAPD becomes a continuous homogeneous and isotropic viscoelastic medium due to the generation of randomly coiled collagen fibers formed from their bundle-like structure in the dermis. A harmonic TIESW then propagates on the surface of the SAPD as measured by a nanometer-scaled strain-stress response under thermal equilibrium conditions at room temperature. TIESW oscillation frequency was noninvasively measured in real time by monitoring the transverse displacement of the TIESW on the SAPD surface. Because the elastic shear modulus is highly sensitive to absorbed doses of ionizing radiation, this proposed biodosimeter can become a highly sensitive and noninvasive method for quantitatively determining tissue-absorbed dosage in terms of TIESW’s oscillation frequency. Detection sensitivity at 1 cGy and dynamic ranges covering 1 to 40 cGy and 80 to 500 cGy were demonstrated.

  19. Implications of steady-state operation on divertor design

    International Nuclear Information System (INIS)

    Sevier, D.L.; Reis, E.E.; Baxi, C.B.; Silke, G.W.; Wong, C.P.C.; Hill, D.N.

    1996-01-01

    As fusion experiments progress towards long pulse or steady state operation, plasma facing components are undergoing a significant change in their design. This change represents the transition from inertially cooled pulsed systems to steady state designs of significant power handling capacity. A limited number of Plasma Facing Component (PFC) systems are in operation or planning to address this steady state challenge at low heat flux. However in most divertor designs components are required to operate at heat fluxes at 5 MW/m 2 or above. The need for data in this area has resulted in a significant amount of thermal/hydraulic and thermal fatigue testing being done on prototypical elements. Short pulse design solutions are not adequate for longer pulse experiments and the areas of thermal design, structural design, material selection, maintainability, and lifetime prediction are undergoing significant changes. A prudent engineering approach will guide us through the transitional phase of divertor design to steady-state power plant components. This paper reviews the design implications in this transition to steady state machines and the status of the community efforts to meet evolving design requirements. 54 refs., 5 figs., 2 tabs

  20. Feasibility study for improved steady-state initialization algorithms for the RELAP5 computer code

    International Nuclear Information System (INIS)

    Paulsen, M.P.; Peterson, C.E.; Katsma, K.R.

    1993-04-01

    A design for a new steady-state initialization method is presented that represents an improvement over the current method used in RELAP5. Current initialization methods for RELAP5 solve the transient fluidflow balance equations simulating a transient to achieve steady-state conditions. Because the transient solution is used, the initial conditions may change from the desired values requiring the use of controllers and long transient running times to obtain steady-state conditions for system problems. The new initialization method allows the user to fix thermal-hydraulic values in volumes and junctions where the conditions are best known and have the code compute the initial conditions in other areas of the system. The steady-state balance equations and solution methods are presented. The constitutive, component, and specialpurpose models are reviewed with respect to modifications required for the new steady-state initialization method. The requirements for user input are defined and the feasibility of the method is demonstrated with a testbed code by initializing some simple channel problems. The initialization of the sample problems using, the old and the new methods are compared

  1. COOLOD, Steady-State Thermal Hydraulics of Research Reactors

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1997-01-01

    1 - Description of program or function: The COOLOD-N2 code provides a capability for the analyses of the steady-state thermal-hydraulics of research reactors. This code is a revised version of the COOLOD-N code, and is applicable not only for research reactors in which plate-type fuel is adopted, but also for research reactors in which rod-type fuel is adopted. In the code, subroutines to calculate temperature distribution in rod-type fuel have been newly added to the COOLOD-N code. The COOLOD-N2 code can calculate fuel temperatures under both forced convection cooling mode and natural convection cooling mode. A 'Heat Transfer package' is used for calculating heat transfer coefficient, DNB heat flux etc. The 'Heat Transfer package' is a subroutine program and is especially developed for research reactors in which plate-type fuel is adopted. In case of rod-type fuel, DNB heat flux is calculated by both the 'Heat Transfer package' and Lund DNB heat flux correlation which is popular for TRIGA reactor. The COOLOD-N2 code also has a capability of calculating ONB temperature, the heat flux at onset of flow instability as well as DNB heat flux. 2 - Method of solution: The 'Heat Transfer Package' is a subprogram for calculating heat transfer coefficients, ONB temperature, heat flux at onset of flow instability and DNB heat flux. The 'Heat transfer package' was especially developed for research reactors which are operated under low pressure and low temperature conditions using plate-type fuel, just like the JRR-3M. Heat transfer correlations adopted in the 'Heat Transfer Package' were obtained or estimated based on the heat transfer experiments in which thermal-hydraulic features of the upgraded JRR-3 core were properly reflected. The 'Heat Transfer Package' is applicable to upward and downward flow

  2. A method for statistical steady state thermal analysis of reactor cores

    International Nuclear Information System (INIS)

    Whetton, P.A.

    1980-01-01

    This paper presents a method for performing a statistical steady state thermal analysis of a reactor core. The technique is only outlined here since detailed thermal equations are dependent on the core geometry. The method has been applied to a pressurised water reactor core and the results are presented for illustration purposes. Random hypothetical cores are generated using the Monte-Carlo method. The technique shows that by splitting the parameters into two types, denoted core-wise and in-core, the Monte Carlo method may be used inexpensively. The idea of using extremal statistics to characterise the low probability events (i.e. the tails of a distribution) is introduced together with a method of forming the final probability distribution. After establishing an acceptable probability of exceeding a thermal design criterion, the final probability distribution may be used to determine the corresponding thermal response value. If statistical and deterministic (i.e. conservative) thermal response values are compared, information on the degree of pessimism in the deterministic method of analysis may be inferred and the restrictive performance limitations imposed by this method relieved. (orig.)

  3. MARS input data for steady-state calculation of ATLAS

    International Nuclear Information System (INIS)

    Park, Hyun Sik; Euh, D. J.; Choi, K. Y.; Kwon, T. S.; Jeong, J. J.; Baek, W. P.

    2004-12-01

    An integral effect test loop for Pressurized Water Reactors (PWRs), the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), is under construction by Thermal-Hydraulics Safety Research Division in Korea Atomic Energy Research Institute (KAERI). This report includes calculation sheets of the input for the best-estimate system analysis code, the MARS code, based on the ongoing design features of ATLAS. The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400. The contents of this report are divided into three parts: (1) core and reactor vessel, (2) steam generator and steam line, and (3) primary piping, pressurizer and reactor coolant pump. The steady-state analysis for the ATLAS facility will be performed based on these calculation sheets, and its results will be applied to the detailed design of ATLAS. Additionally, the calculation results will contribute to getting optimum test conditions and preliminary operational test conditions for the steady-state and transient experiments

  4. Performance of tungsten-based materials and components under ITER and DEMO relevant steady-state thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, Guillaume Henri

    2011-07-01

    In nuclear fusion devices the surfaces directly facing the plasma are irradiated with high energy fluxes. The most intense loads are deposited on the divertor located at the bottom of the plasma chamber, which has to withstand continuous heat loads with a power density of several MW . m{sup -2} as well as transient events. These are much shorter (in the millisecond and sub-millisecond regime) but deposit a higher power densities of a few GW . m{sup -2}. The search for materials that can survive to those severe loading conditions led to the choice of tungsten which possesses advantageous attributes such as a high melting point, high thermal conductivity, low thermal expansion and an acceptable activation rate. These properties made it an attractive and promising candidate as armor material for divertors of future fusion devices such as ITER and DEMO. For the DEMO divertor, conceptual studies on helium-cooled tungsten plasma-facing components were performed. The concept was realized and tested under DEMO specific cyclic thermal loads. The examination of the plasma-facing components by microstructural analyses before and after thermal loading enabled to determine the mechanisms for components failure. Among others, it clearly showed the impact of the tungsten grade and the thermal stress induced crack formation on the performance of the armor material and in general of the plasma-facing component under high heat loads. A tungsten qualification program was launched to study the behaviour of various tungsten grades, in particular the crack formation, under fusion relevant steady-state thermal loads. In total, seven commercially available materials from two industrial suppliers were investigated. As the material's thermal response is strongly related to its microstructure, this program comprised different material geometries and manufacturing technologies. It also included the utilization of an actively cooled specimen holder which has been designed to perform

  5. Performance of tungsten-based materials and components under ITER and DEMO relevant steady-state thermal loads

    International Nuclear Information System (INIS)

    Ritz, Guillaume Henri

    2011-01-01

    In nuclear fusion devices the surfaces directly facing the plasma are irradiated with high energy fluxes. The most intense loads are deposited on the divertor located at the bottom of the plasma chamber, which has to withstand continuous heat loads with a power density of several MW . m -2 as well as transient events. These are much shorter (in the millisecond and sub-millisecond regime) but deposit a higher power densities of a few GW . m -2 . The search for materials that can survive to those severe loading conditions led to the choice of tungsten which possesses advantageous attributes such as a high melting point, high thermal conductivity, low thermal expansion and an acceptable activation rate. These properties made it an attractive and promising candidate as armor material for divertors of future fusion devices such as ITER and DEMO. For the DEMO divertor, conceptual studies on helium-cooled tungsten plasma-facing components were performed. The concept was realized and tested under DEMO specific cyclic thermal loads. The examination of the plasma-facing components by microstructural analyses before and after thermal loading enabled to determine the mechanisms for components failure. Among others, it clearly showed the impact of the tungsten grade and the thermal stress induced crack formation on the performance of the armor material and in general of the plasma-facing component under high heat loads. A tungsten qualification program was launched to study the behaviour of various tungsten grades, in particular the crack formation, under fusion relevant steady-state thermal loads. In total, seven commercially available materials from two industrial suppliers were investigated. As the material's thermal response is strongly related to its microstructure, this program comprised different material geometries and manufacturing technologies. It also included the utilization of an actively cooled specimen holder which has been designed to perform sophisticated

  6. Steady state and transient thermal-hydraulic characterization of full-scale ITER divertor plasma facing components

    International Nuclear Information System (INIS)

    Tincani, A.; Malavasi, A.; Ricapito, I.; Riccardi, B.; Di Maio, P.A.; Vella, G.

    2007-01-01

    In the frame of the activities related to ITER divertor R and D, ENEA CR Brasimone was charged by EFDA (European Fusion Design Agreement) to investigate the thermal-hydraulic behaviour of the full-scale divertor plasma facing components, i.e. Inner Vertical Target, Dome Liner and Outer Vertical Target, both in steady state and during draining and drying transient. More in detail, for each PFC, the first phase of the work is the steady state hydraulic characterization which consists of: - measurements of pressure drops at different temperatures; - determination of the velocity distribution in the internal channels; - check the possible insurgence of cavitation. The subsequent phase of the thermal-hydraulic characterization foresees a testing campaign of draining and drying procedure by means of a suitable gas flow. The objective of this experimental procedure is to eliminate in the most efficient way the residual amount of water after gravity discharge. In order to accomplish this experimental campaign a significant modification of CEF1 loop has been designed and realized. This paper presents, first of all, the experimental set-up, the agreed test matrix and the achieved results for both steady state and transient tests. Moreover, the level of the implementation of a predictive hydraulic model, based on RELAP 5 code, as well as its results are described, discussed and compared with the experimental ones. (orig.)

  7. Steady thermal stress and strain rates in a rotating circular cylinder under steady state temperature

    Directory of Open Access Journals (Sweden)

    Pankaj Thakur

    2014-01-01

    Full Text Available Thermal stress and strain rates in a thick walled rotating cylinder under steady state temperature has been derived by using Seth’s transition theory. For elastic-plastic stage, it is seen that with the increase of temperature, the cylinder having smaller radii ratios requires lesser angular velocity to become fully plastic as compared to cylinder having higher radii ratios The circumferential stress becomes larger and larger with the increase in temperature. With increase in thickness ratio stresses must be decrease. For the creep stage, it is seen that circumferential stresses for incompressible materials maximum at the internal surface as compared to compressible material, which increase with the increase in temperature and measure n.

  8. A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy.

    Science.gov (United States)

    Kraemer, D; Chen, G

    2014-02-01

    Accurate measurements of thermal conductivity are of great importance for materials research and development. Steady-state methods determine thermal conductivity directly from the proportionality between heat flow and an applied temperature difference (Fourier Law). Although theoretically simple, in practice, achieving high accuracies with steady-state methods is challenging and requires rather complex experimental setups due to temperature sensor uncertainties and parasitic heat loss. We developed a simple differential steady-state method in which the sample is mounted between an electric heater and a temperature-controlled heat sink. Our method calibrates for parasitic heat losses from the electric heater during the measurement by maintaining a constant heater temperature close to the environmental temperature while varying the heat sink temperature. This enables a large signal-to-noise ratio which permits accurate measurements of samples with small thermal conductance values without an additional heater calibration measurement or sophisticated heater guards to eliminate parasitic heater losses. Additionally, the differential nature of the method largely eliminates the uncertainties of the temperature sensors, permitting measurements with small temperature differences, which is advantageous for samples with high thermal conductance values and/or with strongly temperature-dependent thermal conductivities. In order to accelerate measurements of more than one sample, the proposed method allows for measuring several samples consecutively at each temperature measurement point without adding significant error. We demonstrate the method by performing thermal conductivity measurements on commercial bulk thermoelectric Bi2Te3 samples in the temperature range of 30-150 °C with an error below 3%.

  9. Steady state thermal hydraulic analysis of LMR core using COBRA-K code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eui Kwang; Kim, Young Gyun; Kim Young In; Kim Young Cheol

    1997-02-01

    A thermal hydraulics analysis code COBRA-K is being developed by the KAERI LMR core design technology development team. COBRA-K is a part of the integrated computation system for LMR core design and analysis, the K-CORE system. COBRA-K is supposed to predict the flow and temperature distributions in LMR core. COBRA-K is an extension of the previously published COBRA-IV-I code with several functional improvements. Specially COBRA-K has been improved to analyze single and multi-assembly, and whole-core in the transient condition. This report describes the overall features of COBRA-K and gives general input descriptions. The 19 pin assembly experimental data of ORNL were used to verify the accuracy of this code for the steady state analysis. The comparative results show good agreements between the calculated and the measured data. And COBRA-K can be used to predict flow and temperature distributions for the LMR core design. (author). 7 refs., 6 tabs., 13 figs.

  10. A Data Filter for Identifying Steady-State Operating Points in Engine Flight Data for Condition Monitoring Applications

    Science.gov (United States)

    Simon, Donald L.; Litt, Jonathan S.

    2010-01-01

    This paper presents an algorithm that automatically identifies and extracts steady-state engine operating points from engine flight data. It calculates the mean and standard deviation of select parameters contained in the incoming flight data stream. If the standard deviation of the data falls below defined constraints, the engine is assumed to be at a steady-state operating point, and the mean measurement data at that point are archived for subsequent condition monitoring purposes. The fundamental design of the steady-state data filter is completely generic and applicable for any dynamic system. Additional domain-specific logic constraints are applied to reduce data outliers and variance within the collected steady-state data. The filter is designed for on-line real-time processing of streaming data as opposed to post-processing of the data in batch mode. Results of applying the steady-state data filter to recorded helicopter engine flight data are shown, demonstrating its utility for engine condition monitoring applications.

  11. Estimating steady-state evaporation rates from bare soils under conditions of high water table

    Science.gov (United States)

    Ripple, C.D.; Rubin, J.; Van Hylckama, T. E. A.

    1970-01-01

    A procedure that combines meteorological and soil equations of water transfer makes it possible to estimate approximately the steady-state evaporation from bare soils under conditions of high water table. Field data required include soil-water retention curves, water table depth and a record of air temperature, air humidity and wind velocity at one elevation. The procedure takes into account the relevant atmospheric factors and the soil's capability to conduct 'water in liquid and vapor forms. It neglects the effects of thermal transfer (except in the vapor case) and of salt accumulation. Homogeneous as well as layered soils can be treated. Results obtained with the method demonstrate how the soil evaporation rates·depend on potential evaporation, water table depth, vapor transfer and certain soil parameters.

  12. RAP-3A Computer code for thermal and hydraulic calculations in steady state conditions for fuel element clusters

    International Nuclear Information System (INIS)

    Popescu, C.; Biro, L.; Iftode, I.; Turcu, I.

    1975-10-01

    The RAP-3A computer code is designed for calculating the main steady state thermo-hydraulic parameters of multirod fuel clusters with liquid metal cooling. The programme provides a double accuracy computation of temperatures and axial enthalpy distributions of pressure losses and axial heat flux distributions in fuel clusters before boiling conditions occur. Physical and mathematical models as well as a sample problem are presented. The code is written in FORTRAN-4 language and is running on a IBM-370/135 computer

  13. The OECD/NEA/NSC PBMR400 MW coupled neutronics thermal hydraulics transient benchmark - Steady-state results and status

    International Nuclear Information System (INIS)

    Reitsma, F.; Han, J.; Ivanov, K.; Sartori, E.

    2008-01-01

    The PBMR is a High-Temperature Gas-cooled Reactor (HTGR) concept developed to be built in South Africa. The analysis tools used for core neutronic design and core safety analysis need to be verified and validated. Since only a few pebble-bed HTR experimental facilities or plant data are available the use of code-to-code comparisons are an essential part of the V and V plans. As part of this plan the PBMR 400 MW design and a representative set of transient cases is defined as an OECD benchmark. The scope of the benchmark is to establish a series of well-defined multi-dimensional computational benchmark problems with a common given set of cross-sections, to compare methods and tools in coupled neutronics and thermal hydraulics analysis with a specific focus on transient events. The OECD benchmark includes steady-state and transients cases. Although the focus of the benchmark is on the modelling of the transient behaviour of the PBMR core, it was also necessary to define some steady-state cases to ensure consistency between the different approaches before results of transient cases could be compared. This paper describes the status of the benchmark project and shows the results for the three steady state exercises defined as a standalone neutronics calculation, a standalone thermal-hydraulic core calculation, and a coupled neutronics/thermal-hydraulic simulation. (authors)

  14. Effect of non-condensable gas on steady-state operation of a loop thermosyphon

    International Nuclear Information System (INIS)

    He, Jiang; Lin, Guiping; Bai, Lizhan; Miao, Jianyin; Zhang, Hongxing; Wang, Lu

    2014-01-01

    Non-condensable gas (NCG) generated inside two-phase heat transfer devices can adversely affect the thermal performance and limit the lifetime of such devices. In this work, extensive experimental investigation of the effect of NCG on the steady-state operation of an ammonia-stainless steel loop thermosyphon was conducted. In the experiments, nitrogen was injected into the loop thermosyphon as NCG, and the thermal performance of the loop thermosyphon was tested at different NCG inventories, heat loads applied to the evaporator and condenser cooling conditions, i.e. natural air cooling or circulating ethanol cooling. Experimental results reveal that NCG elevates the steady-state operating temperature of the evaporator, especially when the loop thermosyphon is operating in the low temperature range; meanwhile, the more NCG exists in the loop thermosyphon, the higher the operating temperature of the evaporator, and the lower the reservoir temperature. In addition, the existence of NCG results in the decrease of the overall thermal conductance of the loop thermosyphon, and the overall thermal conductance under the ethanol cooling condition may be even lower than that under the air cooling condition when the heat load is smaller than a certain value. Finally, the experimental results are theoretically analysed and explained. (authors)

  15. Development of a method for calculating steady-state equipment sensible heat ratio of direct expansion air conditioning units

    International Nuclear Information System (INIS)

    Xia Liang; Chan, M.Y.; Deng Shiming

    2008-01-01

    A complete set of calculation method for steady-state equipment sensible heat ratio (SHR) for a direct expansion (DX) cooling coil has been developed and reported. The method was based on the fundamentals of energy conservation and heat and mass transfer taking place in the DX cooling coil, and was experimentally validated using an experimental DX A/C rig. With the method developed, the effect of refrigerant evaporating temperature at fixed inlet air conditions on equipment SHR has been theoretically analyzed. The validated method can be useful in further studying the inherent operating characteristics of a DX air conditioning (A/C) unit and in developing suitable control strategies for achieving higher energy efficiency and better indoor thermal environment

  16. Pseudo Steady-State Free Precession for MR-Fingerprinting.

    Science.gov (United States)

    Assländer, Jakob; Glaser, Steffen J; Hennig, Jürgen

    2017-03-01

    This article discusses the signal behavior in the case the flip angle in steady-state free precession sequences is continuously varied as suggested for MR-fingerprinting sequences. Flip angle variations prevent the establishment of a steady state and introduce instabilities regarding to magnetic field inhomogeneities and intravoxel dephasing. We show how a pseudo steady state can be achieved, which restores the spin echo nature of steady-state free precession. Based on geometrical considerations, relationships between the flip angle, repetition and echo time are derived that suffice to the establishment of a pseudo steady state. The theory is tested with Bloch simulations as well as phantom and in vivo experiments. A typical steady-state free precession passband can be restored with the proposed conditions. The stability of the pseudo steady state is demonstrated by comparing the evolution of the signal of a single isochromat to one resulting from a spin ensemble. As confirmed by experiments, magnetization in a pseudo steady state can be described with fewer degrees of freedom compared to the original fingerprinting and the pseudo steady state results in more reliable parameter maps. The proposed conditions restore the spin-echo-like signal behavior typical for steady-state free precession in fingerprinting sequences, making this approach more robust to B 0 variations. Magn Reson Med 77:1151-1161, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. SAFE: A computer code for the steady-state and transient thermal analysis of LMR fuel elements

    International Nuclear Information System (INIS)

    Hayes, S.L.

    1993-12-01

    SAFE is a computer code developed for both the steady-state and transient thermal analysis of single LMR fuel elements. The code employs a two-dimensional control-volume based finite difference methodology with fully implicit time marching to calculate the temperatures throughout a fuel element and its associated coolant channel for both the steady-state and transient events. The code makes no structural calculations or predictions whatsoever. It does, however, accept as input structural parameters within the fuel such as the distributions of porosity and fuel composition, as well as heat generation, to allow a thermal analysis to be performed on a user-specified fuel structure. The code was developed with ease of use in mind. An interactive input file generator and material property correlations internal to the code are available to expedite analyses using SAFE. This report serves as a complete design description of the code as well as a user's manual. A sample calculation made with SAFE is included to highlight some of the code's features. Complete input and output files for the sample problem are provided

  18. Efficient steady-state solver for hierarchical quantum master equations

    Science.gov (United States)

    Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing

    2017-07-01

    Steady states play pivotal roles in many equilibrium and non-equilibrium open system studies. Their accurate evaluations call for exact theories with rigorous treatment of system-bath interactions. Therein, the hierarchical equations-of-motion (HEOM) formalism is a nonperturbative and non-Markovian quantum dissipation theory, which can faithfully describe the dissipative dynamics and nonlinear response of open systems. Nevertheless, solving the steady states of open quantum systems via HEOM is often a challenging task, due to the vast number of dynamical quantities involved. In this work, we propose a self-consistent iteration approach that quickly solves the HEOM steady states. We demonstrate its high efficiency with accurate and fast evaluations of low-temperature thermal equilibrium of a model Fenna-Matthews-Olson pigment-protein complex. Numerically exact evaluation of thermal equilibrium Rényi entropies and stationary emission line shapes is presented with detailed discussion.

  19. Thermal-hydraulic analysis of PWR cores in transient condition

    International Nuclear Information System (INIS)

    Silva Galetti, M.R. da.

    1984-01-01

    A calculational methodology for thermal - hydraulic analysis of PWR cores under steady-state and transient condition was selected and made available to users. An evaluation of the COBRA-IIIP/MIT code, used for subchannel analysis, was done through comparison of the code results with experimental data on steady state and transient conditions. As a result, a comparison study allowing spatial and temporal localization of critical heat flux was obtained. A sensitivity study of the simulation model to variations in some empirically determined parameter is also presented. Two transient cases from Angra I FSAR were analysed, showing the evolution of minimum DNBR with time. (Author) [pt

  20. Influence of operating conditions upon the dynamic steady-state performance of a switched reluctance motor

    International Nuclear Information System (INIS)

    Faiz, J.; Shafagh, E.

    1999-01-01

    In order to obtain more accurate predicted dynamic steady-state performance with shorter computation time, an available mathematical model is modified and presented. Using this modified model, performance of a typical switched reluctance motor under a wide range of variations of operating conditions is obtained and discussed. These include variations of speed, voltage, load and switching angle. The static test characteristics of the motor are carefully measured and measured flux-linkage data are then used to predict the steady-state performance

  1. Experimental Observations of Natural Circulation Flow in the NSTF at Steady-State Conditions

    International Nuclear Information System (INIS)

    Lisowski, Darius D.; Farmer, Mitch T.

    2014-01-01

    A ½ scale test facility has been constructed at Argonne National Laboratory (ANL) to study the heat removal performance and natural circulation flow patterns in a Reactor Cavity Cooling System (RCCS). Our test facility, the Natural convection Shutdown heat removal Test Facility (NSTF), supports the broader goal of developing an inherently safe and fully passive ex-vessel decay heat removal for advanced reactor designs. The project, initiated in 2010 to support the Advanced Reactor Concepts (ARC), Small Modular Reactor (SMR), and Next Generation Nuclear Plant (NGNP) programs, has been conducting experimental operations since early 2014. The following paper provides a summary of some primary design features of the 26-m tall test facility along with a description of the data acquisition suite that guides our experimental practices. Specifics of the distributed fiber optic temperature measurements will be discussed, which introduces an unparalleled level of data density that has never before been implemented in a large scale natural circulation test facility. Results from our first test series will then be presented, which provide insight into the thermal hydraulic behavior at steady-state conditions for varying heat flux levels and exhaust chimney configuration states. (author)

  2. Thermal response of a pin-type fusion reactor blanket during steady and transient reactor operation

    International Nuclear Information System (INIS)

    Grotz, S.; Ghoniem, N.M.

    1986-02-01

    The thermal analysis of the blanket examines both the steady-state and transient reactor operations. The steady-state analysis covers full power and fractional power operation whereas the transient analysis examines the effects of power ramps and blanket preheat. The blanket configuration chosen for this study is a helium cooled solid breeder design. We first discuss the full power, steady-state temperature fields in the first wall, beryllium rods, and breeder rods. Next we examine the effects of fractional power on coolant flow and temperature field distributions. This includes power plateaus of 10%, 20%, 50%, 80%, and 100% of full power. Also examined are the restrictions on the rates of power ramping between plateaus. Finally we discuss the power and time requirements for pre-heating the primary from cold iron conditions up to startup temperature (250 0 C)

  3. Steady-state entanglement activation in optomechanical cavities

    Science.gov (United States)

    Farace, Alessandro; Ciccarello, Francesco; Fazio, Rosario; Giovannetti, Vittorio

    2014-02-01

    Quantum discord, and related indicators, are raising a relentless interest as a novel paradigm of nonclassical correlations beyond entanglement. Here, we discover a discord-activated mechanism yielding steady-state entanglement production in a realistic continuous-variable setup. This comprises two coupled optomechanical cavities, where the optical modes (OMs) communicate through a fiber. We first use a simplified model to highlight the creation of steady-state discord between the OMs. We show next that such discord improves the level of stationary optomechanical entanglement attainable in the system, making it more robust against temperature and thermal noise.

  4. New Tore Supra steady state operating scenario

    International Nuclear Information System (INIS)

    Martin, G.; Parlange, F.; van Houtte, D.; Wijnands, T.

    1995-01-01

    This document deals with plasma control in steady state conditions. A new plasma control systems enabling feedback control of global plasma equilibrium parameters has been developed. It also enables to operate plasma discharge in steady state regime. (TEC). 4 refs., 5 figs

  5. Steady-State Thermal Properties of Rectangular Straw-Bales (RSB for Building

    Directory of Open Access Journals (Sweden)

    Leonardo Conti

    2016-10-01

    Full Text Available Straw is an inevitable product of cereal production and is available in huge quantities in the world. In order to use straw-bales as a building material, the characteristic values of the thermal performances should be determined. To not lose the benefits of the cheapness and sustainability of the material, the characteristics must be determined with simple and inexpensive means and procedures. This research aims to implement tools and methods focused at the determination of the thermal properties of straw-bales. For this study, the guidelines dictated by ASTM and ISO were followed. A measurement system consisting of a Metering Chamber (MC was realized. The MC was placed inside a Climate Chamber (CC. During the test, a known quantity of energy is introduced inside MC. When the steady-state is reached, all the energy put into MC passes through its walls in CC, where it is absorbed by the air-conditioner. A series of thermopiles detect the temperature of the surfaces of the measurement system and of the specimen. Determining the amount of energy transmitted by the various parts of MC and by the specimen, it is possible to apply Fourier’s law to calculate the thermal conductivity of the specimen.

  6. Contribution of exogenous substrates to acetyl coenzyme A: Measurement by 13C NMR under non-steady-state conditions

    International Nuclear Information System (INIS)

    Malloy, C.R.; Jeffrey, F.M.H.; Thompson, J.R.; Sherry, A.D.

    1990-01-01

    A method is presented for the rapid determination of substrate selection in a manner that is not restricted to conditions of metabolic and isotopic steady state. Competition between several substrates can be assessed directly and continuously in a single experiment, allowing the effect of interventions to be studied. It is shown that a single proton-decoupled 13 C NMR spectrum of glutamate provides a direct measure of the contribution of exogenous 13 C-labeled substrates to acetyl-CoA without measurement of oxygen consumption and that steady-state conditions need not apply. Two sets of experiments were performed: one in which a metabolic steady state but a non-steady-state 13 C distribution was achieved and another in which both metabolism and labeling were not at steady state. In the first group, isolated rat hearts were supplied with [1,2- 13 C]acetate, [3- 13 C]lactate, and unlabeled glucose. 13 C NMR spectra of extracts from hearts perfused under identical conditions for 5 or 30 min were compared. In spite of significant differences in the spectra, the measured contributions of acetate, lactate, and unlabeled sources to acetyl-CoA were the same. In the second set of experiments, the same group of labeled substrates was used in a regional ischemia model in isolated rabbit hearts to show regional differences in substrate utilization under both metabolic and isotopic non steady state. The time resolution of these measurements may not be limited by technical contraints but by the rate of carbon flux in the citric acid cycle. Although this technique is demonstrated for the heart, it is applicable to all tissues

  7. Quantum thermodynamics of nanoscale steady states far from equilibrium

    Science.gov (United States)

    Taniguchi, Nobuhiko

    2018-04-01

    We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.

  8. Effects of governing parameters on steady-state inter-wrapper flow in an LMFBR

    International Nuclear Information System (INIS)

    Moriya, Shoichi

    2001-01-01

    Hydraulic experiments were performed using a 1/8th scale rectangular model, based on a Japanese demonstration fast breeder reactor design, in order to study fundamental characteristics of interwrapper flows occurring under steady state conditions in an LMFBR. The steady state interwrapper flow of which direction was downward in the center region and upward in the peripheral region of a core barrel was observed because of the radial static pressure gradient in the upper part of the core barrel, produced by a core blockage effect resulting from an above core structure with a perforated skirt. Thermal stratification phenomena were moreover observed in the interwrapper region, created by the hot steady state interwrapper flow from an upper plenum and the cold leakage flow through the separated plate of the core barrel. The thermal interface was generated in higher part of the core barrel when the core blockage effect was smaller and Richardson number and the leakage flow rate ratio were larger. Significant temperature fluctuations occurred in the peripheral region of the core barrel, when the difference between the interface elevations in the center and peripheral regions of the core barrel was enough large. (author)

  9. A simplified method for evaluating thermal performance of unglazed transpired solar collectors under steady state

    International Nuclear Information System (INIS)

    Wang, Xiaoliang; Lei, Bo; Bi, Haiquan; Yu, Tao

    2017-01-01

    Highlights: • A simplified method for evaluating thermal performance of UTC is developed. • Experiments, numerical simulations, dimensional analysis and data fitting are used. • The correlation of absorber plate temperature for UTC is established. • The empirical correlation of heat exchange effectiveness for UTC is proposed. - Abstract: Due to the advantages of low investment and high energy efficiency, unglazed transpired solar collectors (UTC) have been widely used for heating in buildings. However, it is difficult for designers to quickly evaluate the thermal performance of UTC based on the conventional methods such as experiments and numerical simulations. Therefore, a simple and fast method to determine the thermal performance of UTC is indispensable. The objective of this work is to provide a simplified calculation method to easily evaluate the thermal performance of UTC under steady state. Different parameters are considered in the simplified method, including pitch, perforation diameter, solar radiation, solar absorptivity, approach velocity, ambient air temperature, absorber plate temperature, and so on. Based on existing design parameters and operating conditions, correlations for the absorber plate temperature and the heat exchange effectiveness are developed using dimensional analysis and data fitting, respectively. Results show that the proposed simplified method has a high accuracy and can be employed to evaluate the collector efficiency, the heat exchange effectiveness and the air temperature rise. The proposed method in this paper is beneficial to directly determine design parameters and operating status for UTC.

  10. Numerical method for three dimensional steady-state two-phase flow calculations

    International Nuclear Information System (INIS)

    Raymond, P.; Toumi, I.

    1992-01-01

    This paper presents the numerical scheme which was developed for the FLICA-4 computer code to calculate three dimensional steady state two phase flows. This computer code is devoted to steady state and transient thermal hydraulics analysis of nuclear reactor cores 1,3 . The first section briefly describes the FLICA-4 flow modelling. Then in order to introduce the numerical method for steady state computations, some details are given about the implicit numerical scheme based upon an approximate Riemann solver which was developed for calculation of flow transients. The third section deals with the numerical method for steady state computations, which is derived from this previous general scheme and its optimization. We give some numerical results for steady state calculations and comparisons on required CPU time and memory for various meshing and linear system solvers

  11. Steady-State Creep of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Alibai Iskakbayev

    2017-02-01

    Full Text Available This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 °С and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.

  12. Steady state ensembles of thermal radiation in a layered media with a constant heat flux

    International Nuclear Information System (INIS)

    Budaev, Bair V.; Bogy, David B.

    2013-01-01

    This paper describes steady-state ensembles of thermally excited electromagnetic radiation in nano-scale layered media with a constant non-vanishing heat flux across the layers. It is shown that Planck's law of thermal radiation, the principle of equivalence, and the laws of wave propagation in layered media, imply that in order for the ensemble of thermally excited electromagnetic fields to exist in a medium consisting of a stack of layers between two half-space, the net heat flux across the layers must exceed a certain threshold that is determined by the temperatures of the half spaces and by the reflective properties of the entire structure. The obtained results provide a way for estimating the radiative heat transfer coefficient of nano-scale layered structures. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Tungsten dust remobilization under steady-state and transient plasma conditions

    Directory of Open Access Journals (Sweden)

    S. Ratynskaia

    2017-08-01

    Full Text Available Remobilization is one of the most prominent unresolved fusion dust-relevant issues, strongly related to the lifetime of dust in plasma-wetted regions, the survivability of dust on hot plasma-facing surfaces and the formation of dust accumulation sites. A systematic cross-machine study has been initiated to investigate the remobilization of tungsten micron-size dust from tungsten surfaces implementing a newly developed technique based on controlled pre-adhesion by gas dynamics methods. It has been utilized in a number of devices and has provided new insights on remobilization under steady-state and transient conditions. The experiments are interpreted with contact mechanics theory and heat conduction models.

  14. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    International Nuclear Information System (INIS)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-01-01

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more

  15. Lower bounds for ballistic current and noise in non-equilibrium quantum steady states

    Directory of Open Access Journals (Sweden)

    Benjamin Doyon

    2015-03-01

    Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.

  16. Steady-state Operational Characteristics of Ghana Research ...

    African Journals Online (AJOL)

    Steady state operational characteristics of the 30 kW tank-in-pool type reactor named Ghana Research Reactor-1 were investigated after a successful on-site zero power critical experiments. The steadystate operational character-istics determined were the thermal neutron fluxes, maximum period of operation at nominal ...

  17. STEADY-STATE HEAT REJECTION RATES FOR A COAXIAL BOREHOLE HEAT EXCHANGER DURING PASSIVE AND ACTIVE COOLING DETERMINED WITH THE NOVEL STEP THERMAL RESPONSE TEST METHOD

    Directory of Open Access Journals (Sweden)

    Marija Macenić

    2018-01-01

    Full Text Available At three locations in Zagreb, classical and extended thermal response test (TRT was conducted on installed coaxial heat exchangers. With classic TR test, thermogeological properties of the ground and thermal resistance of the borehole were determined at each location. It is seen that thermal conductivity of the ground varies, due to difference in geological profile of the sites. In addition, experimental research of steady-state thermal response step test (SSTRST was carried out to determine heat rejection rates for passive and active cooling in steady state regime. Results showed that heat rejection rate is only between 8-11 W/m, which indicates that coaxial system is not suitable for passive cooling demands. Furthermore, the heat pump in passive cooling mode uses additional plate heat exchanger where there is additional temperature drop of working fluid by approximately 1,5 °C. Therefore, steady-state rejection rate for passive cooling is even lower for a real case project. Coaxial heat exchanger should be always designed for an active cooling regime with an operation of a heat pump compressor in a classical vapour compression refrigeration cycle.

  18. Measurement of the Thermal Conductivity of Unfrozen and Frozen Food Materials by a Steady State Method with Coaxial Dual-cylinder Apparatus.

    Science.gov (United States)

    Pongsawatmanit, R; Miyawaki, O; Yano, T

    1993-01-01

    Coaxial dual-cylinder apparatus was used to measure the effective thermal conductivity of aqueous solutions of glucose, sucrose, gelatin and egg albumin over a temperature range from -20° to 20°C by the steady state method. The accuracy of the apparatus was confirmed by testing with water and ice. The effective thermal conductivity decreased with an increase in the total solid content in both the frozen and unfrozen states. In the unfrozen state, the effective thermal conductivity was slightly dependent on temperature. In the frozen state, however, the effective thermal conductivity was strongly dependent on temperature; lower temperatures gave higher effective thermal conductivity, reflecting the increase in the ice fration. For the unfrozen samples, the intrinsic thermal conductivity of each solid component was calculated by heat transfer models. All the models tested, series, parallel and Maxwell-Eucken, were equally applicable to describe the heat conduction in the unfrozen state. In the frozen state, however, the strong temperature dependency of the effective thermal conductivity suggests that the effect of the temperature dependency of the ice fraction should be incorporated into theoretical models.

  19. Solution of generalized control system equations at steady state

    International Nuclear Information System (INIS)

    Vilim, R.B.

    1987-01-01

    Although a number of reactor systems codes feature generalized control system models, none of the models offer a steady-state solution finder. Indeed, if a transient is to begin from steady-state conditions, the user must provide estimates for the control system initial conditions and run a null transient until the plant converges to steady state. Several such transients may have to be run before values for control system demand signals are found that produce the desired plant steady state. The intent of this paper is (a) to present the control system equations assumed in the SASSYS reactor systems code and to identify the appropriate set of initial conditions, (b) to describe the generalized block diagram approach used to represent these equations, and (c) to describe a solution method and algorithm for computing these initial conditions from the block diagram. The algorithm has been installed in the SASSYS code for use with the code's generalized control system model. The solution finder greatly enhances the effectiveness of the code and the efficiency of the user in running it

  20. Realizing steady-state tokamak operation for fusion energy

    International Nuclear Information System (INIS)

    Luce, T. C.

    2011-01-01

    Continuous operation of a tokamak for fusion energy has clear engineering advantages but requires conditions beyond those sufficient for a burning plasma. The fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually, and significant progress has been made in the past decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are operated routinely without disruptions near pressure limits, as needed for steady-state operation. Fully noninductive sustainment with more than half of the current from intrinsic currents has been obtained for a resistive time with normalized pressure and confinement approaching those needed for steady-state conditions. One remaining challenge is handling the heat and particle fluxes expected in a steady-state tokamak without compromising the core plasma performance.

  1. Steady- and transient-state analyses of fully ceramic microencapsulated fuel loaded reactor core via two-temperature homogenized thermal-conductivity model

    International Nuclear Information System (INIS)

    Lee, Yoonhee; Cho, Nam Zin

    2015-01-01

    Highlights: • Fully ceramic microencapsulated fuel-loaded core is analyzed via a two-temperature homogenized thermal-conductivity model. • The model is compared to harmonic- and volumetric-average thermal conductivity models. • The three thermal analysis models show ∼100 pcm differences in the k eff eigenvalue. • The three thermal analysis models show more than 70 K differences in the maximum temperature. • There occur more than 3 times differences in the maximum power for a control rod ejection accident. - Abstract: Fully ceramic microencapsulated (FCM) fuel, a type of accident-tolerant fuel (ATF), consists of TRISO particles randomly dispersed in a SiC matrix. In this study, for a thermal analysis of the FCM fuel with such a high heterogeneity, a two-temperature homogenized thermal-conductivity model was applied by the authors. This model provides separate temperatures for the fuel-kernels and the SiC matrix. It also provides more realistic temperature profiles than those of harmonic- and volumetric-average thermal conductivity models, which are used for thermal analysis of a fuel element in VHTRs having a composition similar to the FCM fuel, because such models are unable to provide the fuel-kernel and graphite matrix temperatures separately. In this study, coupled with a neutron diffusion model, a FCM fuel-loaded reactor core is analyzed via a two-temperature homogenized thermal-conductivity model at steady- and transient-states. The results are compared to those from harmonic- and volumetric-average thermal conductivity models, i.e., we compare k eff eigenvalues, power distributions, and temperature profiles in the hottest single-channel at steady-state. At transient-state, we compare total powers, reactivity, and maximum temperatures in the hottest single-channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized thermal

  2. Steady-state thermal-hydraulic analysis of the Moroccan TRIGA MARK II reactor by using PARET/ANL and COOLOD-N2 codes

    International Nuclear Information System (INIS)

    Boulaich, Y.; Nacir, B.; El Bardouni, T.; Zoubair, M.; El Bakkari, B.; Merroun, O.; El Younoussi, C.; Htet, A.; Boukhal, H.; Chakir, E.

    2011-01-01

    Research highlights: → The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. → The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). → The most important conclusion is that all obtained values of DNBR, fuel center and surface temperature, cladding surface temperature and coolant temperature across the hottest channel are largely far to compromise safety of the reactor. - Abstract: The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. In order to validate our PARET/ANL and COOLOD-N2 models, the fuel center temperature as function of core power was calculated and compared with the corresponding experimental values. The comparison indicates that the calculated values are in satisfactory agreement with the measurement. The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). Therefore, we have calculated the departure from nucleate boiling ratio (DNBR), fuel center and surface temperature, cladding surface temperature and coolant temperature profiles across the hottest channel. The most important conclusion is that all obtained values are largely far to compromise safety of the reactor.

  3. FRAPCON-2: A Computer Code for the Calculation of Steady State Thermal-Mechanical Behavior of Oxide Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Berna, G. A; Bohn, M. P.; Rausch, W. N.; Williford, R. E.; Lanning, D. D.

    1981-01-01

    FRAPCON-2 is a FORTRAN IV computer code that calculates the steady state response of light Mater reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, deformation, and tai lure histories of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include (a) heat conduction through the fuel and cladding, (b) cladding elastic and plastic deformation, (c) fuel-cladding mechanical interaction, (d) fission gas release, (e} fuel rod internal gas pressure, (f) heat transfer between fuel and cladding, (g) cladding oxidation, and (h) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat transfer correlations. FRAPCON-2 is programmed for use on the CDC Cyber 175 and 176 computers. The FRAPCON-2 code Is designed to generate initial conditions for transient fuel rod analysis by either the FRAP-T6 computer code or the thermal-hydraulic code, RELAP4/MOD7 Version 2.

  4. Development of steady-state scenarios compatible with ITER-like wall conditions

    Energy Technology Data Exchange (ETDEWEB)

    Litaudon, X [Association Euratom-CEA, CEA/DSM/DRFC-Cadarache 13108, St Paul Durance (France); Arnoux, G [Association Euratom-CEA, CEA/DSM/DRFC-Cadarache 13108, St Paul Durance (France); Beurskens, M [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)] (and others)

    2007-12-15

    A key issue for steady-state tokamak operation is to determine the edge conditions that are compatible both with good core confinement and with the power handling and plasma exhaust capabilities of the plasma facing components (PFCs) and divertor systems. A quantitative response to this open question will provide a robust scientific basis for reliable extrapolation of present regimes to an ITER compatible steady-state scenario. In this context, the JET programme addressing steady-state operation is focused on the development of non-inductive, high confinement plasmas with the constraints imposed by the PFCs. A new beryllium main chamber wall and tungsten divertor together with an upgrade of the heating/fuelling capability are currently in preparation at JET. Operation at higher power with this ITER-like wall will impose new constraints on non-inductive scenarios. Recent experiments have focused on the preparation for this new phase of JET operation. In this paper, progress in the development of advanced tokamak (AT) scenarios at JET is reviewed keeping this long-term objective in mind. The approach has consisted of addressing various critical issues separately during the 2006-2007 campaigns with a view to full scenario integration when the JET upgrades are complete. Regimes with internal transport barriers (ITBs) have been developed at q{sub 95} {approx} 5 and high triangularity, {delta} (relevant to the ITER steady-state demonstration) by applying more than 30 MW of additional heating power reaching {beta}{sub N} {approx} 2 at B{sub o} {approx} 3.1 T. Operating at higher {delta} has allowed the edge pedestal and core densities to be increased pushing the ion temperature closer to that of the electrons. Although not yet fully integrated into a performance enhancing ITB scenario, Neon seeding has been successfully explored to increase the radiated power fraction (up to 60%), providing significant reduction of target tile power fluxes (and hence temperatures) and

  5. Steady state thermal-hydraulic analyses of the MITICA cooling circuits

    Energy Technology Data Exchange (ETDEWEB)

    Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it [Università degli Studi di Padova, Via 8 Febbraio 2, Padova 35122 (Italy); Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy); Sartori, E.; Dalla Palma, M.; Fellin, F.; Marcuzzi, D.; Pavei, M.; Rizzolo, A. [Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy)

    2016-02-15

    Megavolt ITER Injector Concept Advancement is the full scale prototype of the heating and current drive neutral beam injectors for ITER, to be built at Consorzio RFX (Padova). The engineering design of its components is challenging: the total heat loads they will be subjected to (expected between 2 and 19 MW), the high heat fluxes (up to 20 MW/m{sup 2}), and the beam pulse duration up to 1 h, set demanding requirements for reliable active cooling circuits. In support of the design, the thermo-hydraulic behavior of each cooling circuit under steady state condition has been investigated by using one-dimensional models. The final results, obtained considering a number of optimizations for the cooling circuits, show that all the requirements in terms of flow rate, temperature, and pressure drop are properly fulfilled.

  6. Validation of a CATHENA fuel channel model for the post blowdown analysis of the high temperature thermal-chemical experiment CS28-1, I - Steady state

    International Nuclear Information System (INIS)

    Rhee, Bo Wook; Kim, Hyoung Tae; Park, Joo Hwan

    2008-01-01

    To form a licensing basis for the new methodology of the fuel channel safety analysis code system for CANDU-6, a CATHENA model for the post-blowdown fuel channel analysis for a Large Break LOCA has been developed, and tested for the steady state of a high temperature thermal-chemical experiment CS28-1. As the major concerns of the post-blowdown fuel channel analysis of the current CANDU-6 design are how much of the decay heat can be discharged to the moderator via a radiation and a convective heat transfer at the expected accident conditions, and how much zirconium sheath would be oxidized to generate H 2 at how high a fuel temperature, this study has focused on understanding these phenomena, their interrelations, and a way to maintain a good accuracy in the prediction of the fuel and the pressure tube temperatures without losing the important physics of the involved phenomena throughout the post-blowdown phase of a LBLOCA. For a better prediction, those factors that may significantly contribute to the prediction accuracy of the steady state of the test bundles were sought. The result shows that once the pressure tube temperature is predicted correctly by the CATHENA heat transfer model between the pressure tube and the calandria tube through a gap thermal resistance adjustment, all the remaining temperatures of the inner ring, middle ring and outer ring FES temperatures can be predicted quite satisfactorily, say to within an accuracy range of 20-25 deg. C, which is comparable to the reported accuracy of the temperature measurement, ±2%. Also the analysis shows the choice of the emissivity of the solid structures (typically, 0.80, 0.34, 0.34 for FES, PT, CT), and the thermal resistance across the CO 2 annulus are factors that significantly affect the steady state prediction accuracy. A question on the legitimacy of using 'transparent' assumption for the CO 2 gas annulus for the radiation heat transfer between the pressure tube and the calandria tube in CATHENA

  7. Development of synchronous generator saturation model from steady-state operating data

    Energy Technology Data Exchange (ETDEWEB)

    Jadric, Martin; Despalatovic, Marin; Terzic, Bozo [FESB University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split (Croatia)

    2010-11-15

    A new method to estimate and model the saturated synchronous reactances of hydroturbine generators from operating data is presented. For the estimation process, measurements of only the generator steady-state variables are required. First, using a specific procedure, the field to armature turns ratio is estimated from measured steady-state variables at constant power generation and various excitation conditions. Subsequently, for each set of steady-state operating data, saturated synchronous reactances are identified. Fitting surfaces, defined as polynomial functions in two variables, are later used to model these saturated reactances. It is shown that the simpler polynomial functions may be used to model saturation at the steady-state than at the dynamic conditions. The developed steady-state model is validated with measurements performed on the 34 MVA hydroturbine generator. (author)

  8. Transient and steady-state analyses of an electrically heated Topaz-II Thermionic Fuel Element

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Xue, H.

    1992-01-01

    Transient and steady-state analyses of electrically heated, Thermionic Fuel Elements (TFEs) for Topaz-II space power system are performed. The calculated emitter and collector temperatures, load electric power and conversion efficiency are in good agreement with reported data. In this paper the effects or Cs pressure, thermal power input, and load resistance on the steady-state performance of the TFE are also investigated. In addition, the thermal response of the ZrH moderator during a startup transient and following a change in the thermal power input is examined

  9. Steady and unsteady calculations on thermal striping phenomena in triple-parallel jet

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y.Q., E-mail: yyu@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Merzari, E.; Thomas, J.W. [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Obabko, A. [Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Aithal, S.M. [Computing, Environment and Life Sciences Directorate, Argonne National Laboratory, Lemont, IL 60439 (United States)

    2017-02-15

    Highlights: • Both steady (RANS) and unsteady (URANS, LES) methods were applied to study thermal striping. • The unsteady results exhibited reasonably good agreement with experimental results. • The parametric studies on the effects of mesh density and boundary conditions on the accuracy of the overall solutions were also conducted. - Abstract: The phenomenon of thermal striping is encountered in liquid metal cooled fast reactors (LMFR), in which temperature fluctuation due to convective mixing between hot and cold fluids can lead to a possibility of crack initiation and propagation in the structure due to high cycle thermal fatigue. Using sodium experiments of parallel triple jets configuration performed by Japan Atomic Energy Agency (JAEA) as benchmark, numerical simulations were carried out to evaluate the temperature fluctuation characteristics in fluid and the transfer characteristics of temperature fluctuation from fluid to structure, which is important to assess the potential thermal fatigue damage. In this study, both steady (RANS) and unsteady (URANS, LES) methods were applied to predict the temperature fluctuations of thermal striping. The parametric studies on the effects of mesh density and boundary conditions on the accuracy of the overall solutions were also conducted. The velocity, temperature and temperature fluctuation intensity distribution were compared with the experimental data. As expected, steady calculation has limited success in predicting the thermal–hydraulic characteristics of the thermal striping, highlighting the limitations of the RANS approach in unsteady heat transfer simulations. The unsteady results exhibited reasonably good agreement with experimental results for temperature fluctuation intensity, as well as the average temperature and velocity components at the measurement locations.

  10. Steady and unsteady calculations on thermal striping phenomena in triple-parallel jet

    International Nuclear Information System (INIS)

    Yu, Y.Q.; Merzari, E.; Thomas, J.W.; Obabko, A.; Aithal, S.M.

    2017-01-01

    Highlights: • Both steady (RANS) and unsteady (URANS, LES) methods were applied to study thermal striping. • The unsteady results exhibited reasonably good agreement with experimental results. • The parametric studies on the effects of mesh density and boundary conditions on the accuracy of the overall solutions were also conducted. - Abstract: The phenomenon of thermal striping is encountered in liquid metal cooled fast reactors (LMFR), in which temperature fluctuation due to convective mixing between hot and cold fluids can lead to a possibility of crack initiation and propagation in the structure due to high cycle thermal fatigue. Using sodium experiments of parallel triple jets configuration performed by Japan Atomic Energy Agency (JAEA) as benchmark, numerical simulations were carried out to evaluate the temperature fluctuation characteristics in fluid and the transfer characteristics of temperature fluctuation from fluid to structure, which is important to assess the potential thermal fatigue damage. In this study, both steady (RANS) and unsteady (URANS, LES) methods were applied to predict the temperature fluctuations of thermal striping. The parametric studies on the effects of mesh density and boundary conditions on the accuracy of the overall solutions were also conducted. The velocity, temperature and temperature fluctuation intensity distribution were compared with the experimental data. As expected, steady calculation has limited success in predicting the thermal–hydraulic characteristics of the thermal striping, highlighting the limitations of the RANS approach in unsteady heat transfer simulations. The unsteady results exhibited reasonably good agreement with experimental results for temperature fluctuation intensity, as well as the average temperature and velocity components at the measurement locations.

  11. Nonequilibrium Distribution of the Microscopic Thermal Current in Steady Thermal Transport Systems

    KAUST Repository

    Yukawa, Satoshi; Ogushi, Fumiko; Shimada, Takashi; Ito, Nobuyasu

    2010-01-01

    Nonequilibrium distribution of the microscopic thermal current is investigated by direct molecular dynamics simulations. The microscopic thermal current in this study is defined by a flow of kinetic energy carried by a single particle. Asymptotic parallel and antiparallel tails of the nonequilibrium distribution to an average thermal current are identical to ones of equilibrium distribution with different temperatures. These temperatures characterizing the tails are dependent on a characteristic length in which a memory of dynamics is completely erased by several particle collisions. This property of the tails of nonequilibrium distribution is confirmed in other thermal transport systems. In addition, statistical properties of a particle trapped by a harmonic potential in a steady thermal conducting state are also studied. This particle feels a finite force parallel to the average thermal current as a consequence of the skewness of the distribution of the current. This force is interpreted as the microscopic origin of thermophoresis.

  12. On the theoretical–numerical study of the ITER Upper Port Plug structure hydraulic behaviour under steady state and draining and drying transient conditions

    International Nuclear Information System (INIS)

    Di Maio, P.A.; Paradiso, D.; Dell’Orco, G.; Pitcher, C.S.; Kalish, M.

    2011-01-01

    Highlights: ► UPP TS hydraulic behaviour has been investigated under steady state and D and D transient conditions. ► A thermal–hydraulic system code has been adopted and a UPP TS model has been set-up and validated against results of steady state CFD analyses. ► The TS steady state hydraulic characteristic functions have been derived for two coolant flow paths showing that right plate inlet one is the most promising. ► Draining simulations indicate that the 4 MPa injection pressure is high enough to drain almost completely the circuit in a reasonable time (∼6 s). ► Results indicate that right plate inlet flow path allows the TS complete draining, eliminating the need for the drying procedure. - Abstract: The ITER diagnostic Upper Port Plug (UPP) is a water-cooled stainless steel structure aimed to integrate within vacuum vessel the plasma diagnostic systems, shielding them from neutron and photon irradiation. Due to the very intense heat loads expected, a proper cooling circuit has been designed to ensure an adequate UPP cooling with an acceptable thermal rise and an unduly high pumping power and to perform its draining and drying procedure by injection of pressurized nitrogen. A theoretical research activity has been launched at the Department of Nuclear Engineering of the University of Palermo aiming to investigate the hydraulic behaviour of the UPP Trapezoid Section cooling circuit under steady state conditions and during its draining and drying transient procedure. The research activity has been performed following a theoretical–computational approach and adopting the RELAP5 thermal–hydraulic system code. The Trapezoid Section cooling circuit characteristic functions have been derived under steady state conditions at various coolant temperatures for both the coolant flow paths at the present under consideration for this circuit. The distributions of coolant mass flow rates along the channels of the cooling circuit have been calculated too

  13. Development of steady thermal-hydraulic analysis code for China advanced research reactor

    International Nuclear Information System (INIS)

    Tian Wenxi; Qiu Suizheng; Guo Yun; Su Guanghui; Jia Dounan; Liu Tiancai; Zhang Jianwei

    2006-01-01

    A multi-channel model steady-state thermal-hydraulic analysis code was developed for China Advanced Research Reactor (CARR). By simulating the whole reactor core, the detailed flow distribution in the core was obtained. The result shows that the structure size plays the most important role in flow distribution and the influence of core power could be neglected under single-phase flow. The temperature field of fuel element under unsymmetrical cooling condition was also obtained, which is necessary for the further study such as stress analysis etc. of the fuel element. At the same time, considering the hot channel effect including engineering factor and nuclear factor, calculation of hot channel was carried out and it is proved that all thermal-hydraulic parameters accord with the Safety Regulation of CARR. (authors)

  14. Understanding void fraction in steady state and dynamic environments

    International Nuclear Information System (INIS)

    Chexal, B.; Maulbetsch, J.; Harrison, J.; Petersen, C.; Jensen, P.; Horowitz, J.

    1997-01-01

    Understanding void fraction behavior in steady-state and dynamic environments is important to accurately predict the thermal-hydraulic behavior of two-phase or two-component systems. The Chexal-Lellouche (C-L) void fraction mode described herein covers the full range of pressures, flows, void fractions, and fluid types (steam-water, air-water, and refrigerants). A drift flux model formulation is used which covers the complete range of concurrent and countercurrent flows. The (1996) model revises the earlier C-L void fraction correlation, improves the capability of the model in countercurrent flow based on the incorporation of additional data, and improves the characteristics of the correlation that are important in transient programs. The model has been qualified with data from a number of steady state two-phase and two-component tests, and has been incorporated into the transient analysis code RELAP5 and RETRAN-3D and evaluated with a variety of transient and steady state tests. A 'plug-in' module for the void fraction correlation has been developed and implemented in RELAP5 and RETRAN-3D. The module is available as source code for inclusion into other thermal-hydraulic programs and can be used in any program that utilizes the same interface variables

  15. Analysis of the steady state hydraulic behaviour of the ITER blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Dell’Orco, G.; Furmanek, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Garitta, S. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Spagnuolo, G.A.; Vallone, E. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2015-10-15

    Highlights: • Nominal steady state hydraulic behaviour of ITER blanket standard sector cooling system has been investigated. • Numerical simulations have been run adopting a qualified thermal-hydraulic system code. • Hydraulic characteristic functions and coolant mass flow rates, velocities and pressure drops have been assessed. • Most of the considered circuits are able to effectively cool blanket modules, meeting ITER requirements. - Abstract: The blanket system is the ITER reactor component devoted to providing a physical boundary for plasma transients and contributing to thermal and nuclear shielding of vacuum vessel, magnets and external components. It is expected to be subjected to significant heat loads under nominal conditions and its cooling system has to ensure an adequate cooling, preventing any risk of critical heat flux occurrence while complying with pressure drop limits. At the University of Palermo a study has been performed, in cooperation with the ITER Organization, to investigate the steady state hydraulic behaviour of the ITER blanket standard sector cooling system. A theoretical–computational approach based on the finite volume method has been followed, adopting the RELAP5 system code. Finite volume models of the most critical blanket cooling circuits have been set-up, realistically simulating the coolant flow domain. The steady state hydraulic behaviour of each cooling circuit has been investigated, determining its hydraulic characteristic function and assessing the spatial distribution of coolant mass flow rates, velocities and pressure drops under reference nominal conditions. Results obtained have indicated that the investigated cooling circuits are able to provide an effective cooling to blanket modules, generally meeting ITER requirements in term of pressure drop and velocity distribution, except for a couple of circuits that are being revised.

  16. Ignition phase and steady-state structures of a non-thermal air plasma

    CERN Document Server

    Lu Xin Pei

    2003-01-01

    An AC-driven, non-thermal, atmospheric pressure air plasma is generated within the gap separating a disc-shaped metal electrode and a water electrode. The ignition phase and the steady-state are studied by a high-speed CCD camera. It is found that the plasma always initiates at the surface of the water electrode. The plasma exhibits different structures depending on the polarity of the water electrode: when the water electrode plays the role of cathode, a relatively wide but visibly dim plasma column is generated. At the maximum driving voltage, the gas temperature is between 800 and 900 K, and the peak current is 67 mA; when the water electrode is anode, the plasma column narrows but increases its light emission. The gas temperature in this case is measured to be in the 1400-1500 K range, and the peak current is 81 mA.

  17. Heat transfer in turbocharger turbines under steady, pulsating and transient conditions

    International Nuclear Information System (INIS)

    Burke, R.D.; Vagg, C.R.M.; Chalet, D.; Chesse, P.

    2015-01-01

    Highlights: • Compare turbine heat transfer correlations from different studies. • Compare heat transfer for a same turbine on-engine and on gas-stand. • Analyse heat transfer under steady and transient operating conditions. • Gas stand heat transfer correlations are transferrable to engine conditions. • Heat flows can be reversed compared to steady conditions during transients. - Abstract: Heat transfer is significant in turbochargers and a number of mathematical models have been proposed to account for the heat transfer, however these have predominantly been validated under steady flow conditions. A variable geometry turbocharger from a 2.2 L Diesel engine was studied, both on gas stand and on-engine, under steady and transient conditions. The results showed that heat transfer accounts for at least 20% of total enthalpy change in the turbine and significantly more at lower mechanical powers. A convective heat transfer correlation was derived from experimental measurements to account for heat transfer between the gases and the turbine housing and proved consistent with those published from other researchers. This relationship was subsequently shown to be consistent between engine and gas stand operation: using this correlation in a 1D gas dynamics simulation reduced the turbine outlet temperature error from 33 °C to 3 °C. Using the model under transient conditions highlighted the effect of housing thermal inertia. The peak transient heat flow was strongly linked to the dynamics of the turbine inlet temperature: for all increases, the peak heat flow was higher than under thermally stable conditions due to colder housing. For all decreases in gas temperature, the peak heat flow was lower and for temperature drops of more than 100 °C the heat flow was reversed during the transient

  18. Selection of steady states in planar Darcy convection

    International Nuclear Information System (INIS)

    Tsybulin, V.G.; Karasoezen, B.; Ergenc, T.

    2006-01-01

    The planar natural convection of an incompressible fluid in a porous medium is considered. We study the selection of steady states under temperature perturbations on the boundary. A selection map is introduced in order to analyze the selection of a steady state from a continuous family of equilibria which exists under zero boundary conditions. The results of finite-difference modeling for a rectangular enclosure are presented

  19. Effects of pellet-to-cladding gap design parameters on the reliability of high burnup PWR fuel rods under steady state and transient conditions

    International Nuclear Information System (INIS)

    Tas, Fatma Burcu; Ergun, Sule

    2013-01-01

    Highlights: • Fuel performance of a typical Pressurized Water Reactor rod is analyzed. • Steady state fuel rod behavior is examined to see the effects of pellet to cladding gap thickness and gap gas pressure. • Transient fuel rod behavior is examined to see the effects of pellet to cladding gap thickness and gap gas pressure. • The optimum pellet to cladding gap thickness and gap gas pressure values of the simulated fuel are determined. • The effects of pellet to cladding gap design parameters on nuclear fuel reliability are examined. - Abstract: As an important improvement in the light water nuclear reactor operations, the nuclear fuel burnup rate is increased in recent decades and this increase causes heavier duty for the nuclear fuel. Since the high burnup fuel is exposed to very high thermal and mechanical stresses and since it operates in an environment with high radiation for about 18 month cycles, it carries the risk of losing its integrity. In this study; it is aimed to determine the effects of pellet–cladding gap thickness and gap pressure on reliability of high burnup nuclear fuel in Pressurized Water Reactors (PWRs) under steady state operation conditions and suggest optimum values for the examined parameters only and validate these suggestions for a transient condition. In the presented study, fuel performance was analyzed by examining the effects of pellet–cladding gap thickness and gap pressure on the integrity of high burnup fuels. This work is carried out for a typical Westinghouse type PWR fuel. The steady state conditions were modeled and simulated with FRAPCON-3.4a steady state fuel performance code and the FRAPTRAN-1.4 fuel transient code was used to calculate transient fuel behavior. The analysis included the changes in the important nuclear fuel design limitations such as the centerline temperature, cladding stress, strain and oxidation with the change in pellet–cladding gap thickness and initial pellet–cladding gap gas

  20. Performance simulation of the JPL solar-powered distiller. Part 1: Quasi-steady-state conditions. [for cooling microwave equipment

    Science.gov (United States)

    Yung, C. S.; Lansing, F. L.

    1983-01-01

    A 37.85 cu m (10,000 gallons) per year (nominal) passive solar powered water distillation system was installed and is operational in the Venus Deep Space Station. The system replaced an old, electrically powered water distiller. The distilled water produced with its high electrical resistivity is used to cool the sensitive microwave equipment. A detailed thermal model was developed to simulate the performance of the distiller and study its sensitivity under varying environment and load conditions. The quasi-steady state portion of the model is presented together with the formulas for heat and mass transfer coefficients used. Initial results indicated that a daily water evaporation efficiency of 30% can be achieved. A comparison made between a full day performance simulation and the actual field measurements gave good agreement between theory and experiment, which verified the model.

  1. Thermal hydraulic test of advanced fuel bundle with spectral shift rod (SSR) for BWR. Effect of thermal hydraulic parameters on steady state characteristics

    International Nuclear Information System (INIS)

    Kondo, Takao; Kitou, Kazuaki; Chaki, Masao; Ohga, Yukiharu; Makigami, Takeshi

    2011-01-01

    Japanese national project of next generation light water reactor (LWR) development started in 2008. Under this project, spectral shift rod (SSR) is being developed. SSR, which replaces conventional water rod (WR) of boiling water reactor (BWR) fuel bundle, was invented to enhance the BWR's merit, spectral shift effect for uranium saving. In SSR, water boils by neutron and gamma-ray direct heating and water level is formed as a boundary of the upper steam region and the lower water region. This SSR water level can be controlled by core flow rate, which amplifies the change of average core void fraction, resulting in the amplified spectral shift effect. This paper presents the steady state test results of the base geometry case in SSR thermal hydraulic test, which was conducted under the national project of next generation LWR. In the test, thermal hydraulic parameters, such as flow rate, pressure, inlet subcooling and heater rod power are changed to evaluate these effects on SSR water level and other SSR characteristics. In the test results, SSR water level rose as flow rate rose, which showed controllability of SSR water level by flow rate. The sensitivities of other thermal hydraulic parameters on SSR water level were also evaluated. The obtained data of parameter's sensitivities is various enough for the further analytical evaluation. The fluctuation of SSR water level was also measured to be small enough. As a result, it was confirmed that SSR's steady state performance was as planned and that SSR design concept is feasible. (author)

  2. Steady state and transient critical heat flux examinations

    International Nuclear Information System (INIS)

    Szabados, L.

    1978-02-01

    In steady state conditions within the P.W.R. parameter range the critical heat flux correlations based on local parameters reproduce the experimental data with less deviations than those based on system parameters. The transient experiments were restricted for the case of power transients. A data processing method for critical heat flux measurements has been developed and the applicability of quasi steady state calculation has been verified. (D.P.)

  3. Post-CHF heat transfer during steady-state and transient conditions

    International Nuclear Information System (INIS)

    Fung, K.K.

    1978-06-01

    This review extends previous reviews of steady-state post-CHF literature by Groeneveld, Gardiner, and Fung by including more recent data. A review of the literature on transient post-CHF data is also included by extending the work of Yadigaroglu

  4. Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1

    Directory of Open Access Journals (Sweden)

    Muhammad Atta

    2011-01-01

    Full Text Available The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease.

  5. Thermal conditions and functional requirements for molten fuel containment

    International Nuclear Information System (INIS)

    Kang, C.S.; Torri, A.

    1980-05-01

    This paper discusses the configuration and functional requirements for the molten fuel containment system (MFCS) in the GCFR demonstration plant design. Meltdown conditions following a loss of shutdown cooling (LOSC) accident were studied to define the core debris volume for a realistic meltdown case. Materials and thicknesses of the molten fuel container were defined. Stainless steel was chosen as the sacrificial material and magnesium oxide was chosen as the crucible material. Thermal conditions for an expected quasi-steady state were analyzed. Highlights of the functional requirements which directly affect the MFCS design are discussed

  6. NASA Lewis Steady-State Heat Pipe Code Architecture

    Science.gov (United States)

    Mi, Ye; Tower, Leonard K.

    2013-01-01

    NASA Glenn Research Center (GRC) has developed the LERCHP code. The PC-based LERCHP code can be used to predict the steady-state performance of heat pipes, including the determination of operating temperature and operating limits which might be encountered under specified conditions. The code contains a vapor flow algorithm which incorporates vapor compressibility and axially varying heat input. For the liquid flow in the wick, Darcy s formula is employed. Thermal boundary conditions and geometric structures can be defined through an interactive input interface. A variety of fluid and material options as well as user defined options can be chosen for the working fluid, wick, and pipe materials. This report documents the current effort at GRC to update the LERCHP code for operating in a Microsoft Windows (Microsoft Corporation) environment. A detailed analysis of the model is presented. The programming architecture for the numerical calculations is explained and flowcharts of the key subroutines are given

  7. ANTEO: An optimised PC computer code for the steady state thermal hydraulic analysis of rod bundles

    International Nuclear Information System (INIS)

    Cevolani, S.

    1996-07-01

    The paper deals with the description of a Personal Computer oriented subchannel code, devoted to the steady state thermal hydraulic analysis of nuclear reactor fuel bundles. The development of a such code was made possible by two facts: first, the increase the computing power of the desk machines; secondly, the fact several years of experience into operate subchannels codes have shown how to simplify many of the physical models without a sensible loss of accuracy. For sake of validation, the developed code was compared with a traditional subchannel code, the COBRA one. The results of the comparison show a very good agreement between the two codes

  8. The steady state solutions of radiatively driven stellar winds for a non-Sobolev, pure absorption model

    International Nuclear Information System (INIS)

    Poe, C.H.; Owocki, S.P.; Castor, J.I.

    1990-01-01

    The steady state solution topology for absorption line-driven flows is investigated for the condition that the Sobolev approximation is not used to compute the line force. The solution topology near the sonic point is of the nodal type with two positive slope solutions. The shallower of these slopes applies to reasonable lower boundary conditions and realistic ion thermal speed v(th) and to the Sobolev limit of zero of the usual Castor, Abbott, and Klein model. At finite v(th), this solution consists of a family of very similar solutions converging on the sonic point. It is concluded that a non-Sobolev, absorption line-driven flow with a realistic values of v(th) has no uniquely defined steady state. To the extent that a pure absorption model of the outflow of stellar winds is applicable, radiatively driven winds should be intrinsically variable. 34 refs

  9. HEATHYD, Steady-State Thermal Hydraulic Analysis of Low-Enriched U Fuel Reactor

    International Nuclear Information System (INIS)

    NABBI, R.

    1989-01-01

    1 - Description of program or function: HEATHYD is a code for the steady-state heat transfer calculation of research nuclear reactors with forced convection. It models heat transfer and coolant flow for assemblies of parallel fuel plates of MTR type with any axial power distribution. The thermodynamic model accounts for single phase cooling and sub- cooled boiling condition using the transition criterion of Bergeles-Rosenow. In addition to the calculation of the channel flow velocities and coolant pressure drops, HEATHYD calculates axial distribution of the coolant and clad-surface temperatures. Safety margins to the critical heat flux as a result of burnout condition or flow instability are determined. 2 - Method of solution: Applying the finite difference method, HEATHYD solves the equations of heat conduction and heat transfer to the coolant. For the physical properties of the coolant as a function of the coolant temperature polynomials of degree 6 are used. Depending on the coolant condition, different correlations for the heat transfer coefficient can be applied. The analysis of the critical cooling conditions resulting in burnout or flow instability, is performed according to the correlations developed by Mirshak/ Labuntsov and Forgan/Whittle

  10. A thermal model for photovoltaic panels under varying atmospheric conditions

    International Nuclear Information System (INIS)

    Armstrong, S.; Hurley, W.G.

    2010-01-01

    The response of the photovoltaic (PV) panel temperature is dynamic with respect to the changes in the incoming solar radiation. During periods of rapidly changing conditions, a steady state model of the operating temperature cannot be justified because the response time of the PV panel temperature becomes significant due to its large thermal mass. Therefore, it is of interest to determine the thermal response time of the PV panel. Previous attempts to determine the thermal response time have used indoor measurements, controlling the wind flow over the surface of the panel with fans or conducting the experiments in darkness to avoid radiative heat loss effects. In real operating conditions, the effective PV panel temperature is subjected to randomly varying ambient temperature and fluctuating wind speeds and directions; parameters that are not replicated in controlled, indoor experiments. A new thermal model is proposed that incorporates atmospheric conditions; effects of PV panel material composition and mounting structure. Experimental results are presented which verify the thermal behaviour of a photovoltaic panel for low to strong winds.

  11. Diagnosis of Heat Exchanger Tube Failure in Fossil Fuel Boilers Through Estimation of Steady State Operating Conditions

    International Nuclear Information System (INIS)

    Herszage, A.; Toren, M.

    1998-01-01

    Estimation of operating conditions for fossil fuel boiler heat exchangers is often required due to changes in working conditions, design modifications and especially for monitoring performance and failure diagnosis. Regular heat exchangers in fossil fuel boilers are composed of tube banks through which water or steam flow, while hot combustion (flue) gases flow outside the tubes. This work presents a top-down approach to operating conditions estimation based on field measurements. An example for a 350 MW unit superheater is thoroughly discussed. Integral calculations based on measurements for all unit heat exchangers (reheaters, superheaters) were performed first. Based on these calculations a scheme of integral conservation equations (lumped parameter) was then formulated at the single tube level. Steady state temperatures of superheater tube walls were obtained as a main output, and were compared to the maximum allowable operating temperatures of the tubes material. A combined lumped parameter - CFD (Computational Fluid Dynamics, FLUENT code) approach constitutes an efficient tool in certain cases. A brief report of such a case is given for another unit superheater. We conclude that steady state evaluations based on both integral and detailed simulations are a valuable monitoring and diagnosis tool for the power generation industry

  12. Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1

    International Nuclear Information System (INIS)

    Saxena, Y.C.

    2000-01-01

    SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)

  13. Steady-state heat transfer in an inverted U-tube steam generator

    International Nuclear Information System (INIS)

    Boucher, T.J.

    1986-01-01

    Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during steady-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K hot-leg fluid temperatures, 6.2 MPa secondary pressure). The MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations

  14. Method for controlling start-up and steady state performance of a closed split flow recompression brayton cycle

    Science.gov (United States)

    Pasch, James Jay

    2017-02-07

    A method of resolving a balanced condition that generates control parameters for start-up and steady state operating points and various component and cycle performances for a closed split flow recompression cycle system. The method provides for improved control of a Brayton cycle thermal to electrical power conversion system. The method may also be used for system design, operational simulation and/or parameter prediction.

  15. Time Reversibility, Correlation Decay and the Steady State Fluctuation Relation for Dissipation

    Directory of Open Access Journals (Sweden)

    Denis J. Evans

    2013-04-01

    Full Text Available Steady state fluctuation relations for nonequilibrium systems are under intense investigation because of their important practical implications in nanotechnology and biology. However the precise conditions under which they hold need clarification. Using the dissipation function, which is related to the entropy production of linear irreversible thermodynamics, we show time reversibility, ergodic consistency and a recently introduced form of correlation decay, called T-mixing, are sufficient conditions for steady state fluctuation relations to hold. Our results are not restricted to a particular model and show that the steady state fluctuation relation for the dissipation function holds near or far from equilibrium subject to these conditions. The dissipation function thus plays a comparable role in nonequilibrium systems to thermodynamic potentials in equilibrium systems.

  16. The behaviour of water-cooled reactor fuel rods in steady state and transient conditions

    International Nuclear Information System (INIS)

    Strupczewski, A.; Marks, P.

    1997-01-01

    In this report, the results of temperature field and filling gas pressure calculations by means of contemporary calculational models for a WWER-440 and WWER-1000 type fuel rod at low and high burnup operating under steady-state conditions are presented. A review of in-core temperature and pressure measurements for various types of LWR fuel is also included. Basing on calculational and collected measured data, the behaviour of fuel cladding during large and small break LOCA, is estimated with special emphasis on their oxidation and failure resistance. (author)

  17. Undergoing spherically symmetric steady-state accretion stability of white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Sienkiewicz, R [Polska Akademia Nauk, Warsaw. N. Copernicus Astronomical Center

    1980-01-01

    Thermal and vibrational stabilities of accreting white dwarfs with steady-state nuclear burning were considered, assuming spherically symmetric accretion of the hydrogen-rich matter and using linear stability analysis. Almost all models with masses 0.2 M(sun) - 1.39 M(sun) were found to be unstable in some way. The type of instability expected to dominate is given as a function of the accretion rate. For most accretion rates it is the thermal instability. Oscillation periods are given for the models in which the vibrational instability is the most violent one. These periods are of the order of seconds or minutes. We expect that our stability analysis may suggest the cause of the variabilities of the hot components of some symbiotic stars, for a wide range of the accretion rates. In this case our models may serve as the initial conditions for evolutionary computations. The results predict that short-period oscillations should be observed in some hot nuclei of planetary nebulae.

  18. Steady-state oxygen-solubility in niobium

    International Nuclear Information System (INIS)

    Schulze, K.; Jehn, H.

    1977-01-01

    During annealing of niobium in oxygen in certain temperature and pressure ranges steady states are established between the absorption of molecular oxygen and the evaporation of volatile oxides. The oxygen concentration in the niobium-oxygen α-solid solution is a function of oxygen pressure and temperature and has been redetermined in the ranges 10 -5 - 10 -2 Pa O 2 and 2,070 - 2,470 K. It follows differing from former results the equation csub(o) = 9.1 x 10 -6 x sub(po2) x exp (502000/RT) with csub(o) in at.-ppm, sub(po2) in Pa, T in K, R = 8.31 J x mol -1 x K -1 . The existence of steady states is limited to a temperature range from 1870 to 2470 K and to oxygen concentrations below the solubility limit given by solidus and solvus lines in the T-c diagram. In the experiments high-purity niobium wires with a specific electrical ratio rho (273 K)/rho(4.2 K) > 5,000 have been gassed under isothermal-isobaric conditions until the steady state has been reached. The oxygen concentration has been determined analytically by vacuum fusion extraction with platinum-flux technique as well as by electrical residual resistivity measurements at 4.2 K. (orig.) [de

  19. X-Ray Spectral Analysis of the Steady States of GRS1915+105

    Science.gov (United States)

    Peris, Charith S.; Remillard, Ronald A.; Steiner, James F.; Vrtilek, Saeqa D.; Varnière, Peggy; Rodriguez, Jerome; Pooley, Guy

    2016-05-01

    We report on the X-ray spectral behavior within the steady states of GRS1915+105. Our work is based on the full data set of the source obtained using the Proportional Counter Array (PCA) on the Rossi X-ray Timing Explorer (RXTE) and 15 GHz radio data obtained using the Ryle Telescope. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to these regions as steady-soft and steady-hard. GRS1915+105 displays significant curvature in the coronal component in both the soft and hard data within the RXTE/PCA bandpass. A majority of the steady-soft observations displays a roughly constant inner disk radius ({R}{{in}}), while the steady-hard observations display an evolving disk truncation which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations, we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes η ˜ 0.68+/- 0.35 and η ˜ 1.12+/- 0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of the model parameters to the state definitions shows that almost all of the steady-soft observations match the criteria of either a thermal or steep power-law state, while a large portion of the steady-hard observations match the hard-state criteria when the disk fraction constraint is neglected.

  20. Coupled MCNP - SAS-SFR calculations for sodium fast reactor core at steady-state - 15460

    International Nuclear Information System (INIS)

    Ponomarev, A.; Travleev, A.; Pfrang, W.; Sanchez, V.

    2015-01-01

    The prediction of core parameters at steady state is the first step when studying core accident transient behaviour. At this step thermal hydraulics (TH) and core geometry parameters are calculated corresponding to initial operating conditions. In this study we present the coupling of the SAS-SFR code to the Monte-Carlo neutron transport code MCNP at steady state together with application to the European Sodium Fast Reactor (ESFR). The SAS-SFR code employs a multi-channel core representation where each channel represents subassemblies with similar power, thermal-hydraulics and pin mechanics conditions. For every axial node of every channel the individual geometry and material compositions parameters are calculated in accord with power and cooling conditions. This requires supplying the SAS-SFR-code with nodal power values which should be calculated by neutron physics code with given realistic core parameters. In the conventional approach the neutron physics model employs some core averaged TH and geometry data (fuel temperature, coolant density, core axial and radial expansion). In this study we organize a new approach coupling the MCNP neutron physics models and the SAS-SFR models, so that calculations of power can be improved by using distributed core parameters (TH and geometry) taken from SAS-SFR. The MCNP code is capable to describe cores with distributed TH parameters and even to model non-uniform axial expansion of fuel subassemblies. In this way, core TH and geometrical data calculated by SAS-SFR are taken into account accurately in the neutronics model. The coupling implementation is done by data exchange between two codes with help of processing routines managed by driver routine. Currently it is model-specific and realized for the ESFR 'Reference Oxide' core. The Beginning-Of-Life core state is considered with 10 channel representation for fuel subassemblies. For this model several sets of coupled calculations are performed, in which different

  1. The effects of intrinsic noise on the behaviour of bistable cell regulatory systems under quasi-steady state conditions.

    Science.gov (United States)

    de la Cruz, Roberto; Guerrero, Pilar; Spill, Fabian; Alarcón, Tomás

    2015-08-21

    We analyse the effect of intrinsic fluctuations on the properties of bistable stochastic systems with time scale separation operating under quasi-steady state conditions. We first formulate a stochastic generalisation of the quasi-steady state approximation based on the semi-classical approximation of the partial differential equation for the generating function associated with the chemical master equation. Such approximation proceeds by optimising an action functional whose associated set of Euler-Lagrange (Hamilton) equations provides the most likely fluctuation path. We show that, under appropriate conditions granting time scale separation, the Hamiltonian can be re-scaled so that the set of Hamilton equations splits up into slow and fast variables, whereby the quasi-steady state approximation can be applied. We analyse two particular examples of systems whose mean-field limit has been shown to exhibit bi-stability: an enzyme-catalysed system of two mutually inhibitory proteins and a gene regulatory circuit with self-activation. Our theory establishes that the number of molecules of the conserved species is order parameters whose variation regulates bistable behaviour in the associated systems beyond the predictions of the mean-field theory. This prediction is fully confirmed by direct numerical simulations using the stochastic simulation algorithm. This result allows us to propose strategies whereby, by varying the number of molecules of the three conserved chemical species, cell properties associated to bistable behaviour (phenotype, cell-cycle status, etc.) can be controlled.

  2. The effects of intrinsic noise on the behaviour of bistable cell regulatory systems under quasi-steady state conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Roberto; Alarcón, Tomás de la [Centre de Recerca Matemàtica. Edifici C, Campus de Bellaterra, 08193 Bellaterra (Barcelona) (Spain); Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Guerrero, Pilar [Department of Mathematics, University College London, Gower Street, London WC1E 6BT (United Kingdom); Spill, Fabian [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 02215 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)

    2015-08-21

    We analyse the effect of intrinsic fluctuations on the properties of bistable stochastic systems with time scale separation operating under quasi-steady state conditions. We first formulate a stochastic generalisation of the quasi-steady state approximation based on the semi-classical approximation of the partial differential equation for the generating function associated with the chemical master equation. Such approximation proceeds by optimising an action functional whose associated set of Euler-Lagrange (Hamilton) equations provides the most likely fluctuation path. We show that, under appropriate conditions granting time scale separation, the Hamiltonian can be re-scaled so that the set of Hamilton equations splits up into slow and fast variables, whereby the quasi-steady state approximation can be applied. We analyse two particular examples of systems whose mean-field limit has been shown to exhibit bi-stability: an enzyme-catalysed system of two mutually inhibitory proteins and a gene regulatory circuit with self-activation. Our theory establishes that the number of molecules of the conserved species is order parameters whose variation regulates bistable behaviour in the associated systems beyond the predictions of the mean-field theory. This prediction is fully confirmed by direct numerical simulations using the stochastic simulation algorithm. This result allows us to propose strategies whereby, by varying the number of molecules of the three conserved chemical species, cell properties associated to bistable behaviour (phenotype, cell-cycle status, etc.) can be controlled.

  3. NCEL: two dimensional finite element code for steady-state temperature distribution in seven rod-bundle

    International Nuclear Information System (INIS)

    Hrehor, M.

    1979-01-01

    The paper deals with an application of the finite element method to the heat transfer study in seven-pin models of LMFBR fuel subassembly. The developed code NCEL solves two-dimensional steady state heat conduction equation in the whole subassembly model cross-section and enebles to perform the analysis of thermal behaviour in both normal and accidental operational conditions as eccentricity of the central rod or full or partial (porous) blockage of some part of the cross-flow area. The heat removal is simulated by heat sinks in coolant under conditions of subchannels slug flow approximation

  4. On the optimization of a steady-state bootstrap-reactor

    International Nuclear Information System (INIS)

    Polevoy, A.R.; Martynov, A.A.; Medvedev, S.Yu.

    1993-01-01

    A commercial fusion tokamak-reactor may be economically acceptable only for low recirculating power fraction r 0 ≡ P CD /P α BS ≡I BS /I > 0.9 to sustain the steady-state operation mode for high plasma densities > 1.5 10 20 m -3 , fulfilled the divertor conditions. This paper presents the approximate expressions for the optimal set of reactor parameters for r BS /I∼1, based on the self-consistent plasma simulations by 1.5D ASTRA code. The linear MHD stability analysis for ideal n=1 kink and ballooning modes has been carried out to determine the conditions of stabilization for bootstrap steady state tokamak reactor BSSTR configurations. (author) 10 refs., 1 tab

  5. Modeling of the WWER-1000 fuel-rod behavior in steady-state condition with FRAPCONE-3 computer code

    International Nuclear Information System (INIS)

    Andreeva, Marina; Totev, Totju; Stoyanov, Stoyan

    2008-01-01

    It is presented within the paper the results of the modeling and the assessment of the integral code predictions of the WWER fuel-rod behavior in steady-state condition. The assessments in this paper have used the MASSIH and ANS 5.4 subroutine in the code. The modeling and calculations have been performed with FRAPCONE-3 computer code in Argonne National Laboratory, USA

  6. An implicit steady-state initialization package for the RELAP5 computer code

    International Nuclear Information System (INIS)

    Paulsen, M.P.; Peterson, C.E.; Odar, F.

    1995-08-01

    A direct steady-state initialization (DSSI) method has been developed and implemented in the RELAP5 hydrodynamic analysis program. It provides a means for users to specify a small set of initial conditions which are then propagated through the remainder of the system. The DSSI scheme utilizes the steady-state form of the RELAP5 balance equations for nonequilibrium two-phase flow. It also employs the RELAP5 component models and constitutive model packages for wall-to-phase and interphase momentum and heat exchange. A fully implicit solution of the linearized hydrodynamic equations is implemented. An implicit coupling scheme is used to augment the standard steady-state heat conduction solution for steam generator use. It solves the primary-side tube region energy equations, heat conduction equations, wall heat flux boundary conditions, and overall energy balance equation as a coupled system of equations and improves convergence. The DSSI method for initializing RELAP5 problems to steady-state conditions has been compared with the transient solution scheme using a suite of test problems including; adiabatic single-phase liquid and vapor flow through channels with and without healing and area changes; a heated two-phase test bundle representative of BWR core conditions; and a single-loop PWR model

  7. steadystate performance of induction and transfer state

    African Journals Online (AJOL)

    eobe

    This paper presents paper presents paper presents the steady the steady the steady–state performance state performance state performance comparison comparison comparison between polyphase induction motor and polyphase between polyphase induction motor and polyphase. TF motor operating in. TF motor ...

  8. A Physics-Based Rock Friction Constitutive Law: Steady State Friction

    Science.gov (United States)

    Aharonov, Einat; Scholz, Christopher H.

    2018-02-01

    Experiments measuring friction over a wide range of sliding velocities find that the value of the friction coefficient varies widely: friction is high and behaves according to the rate and state constitutive law during slow sliding, yet markedly weakens as the sliding velocity approaches seismic slip speeds. We introduce a physics-based theory to explain this behavior. Using conventional microphysics of creep, we calculate the velocity and temperature dependence of contact stresses during sliding, including the thermal effects of shear heating. Contacts are assumed to reach a coupled thermal and mechanical steady state, and friction is calculated for steady sliding. Results from theory provide good quantitative agreement with reported experimental results for quartz and granite friction over 11 orders of magnitude in velocity. The new model elucidates the physics of friction and predicts the connection between friction laws to independently determined material parameters. It predicts four frictional regimes as function of slip rate: at slow velocity friction is either velocity strengthening or weakening, depending on material parameters, and follows the rate and state friction law. Differences between surface and volume activation energies are the main control on velocity dependence. At intermediate velocity, for some material parameters, a distinct velocity strengthening regime emerges. At fast sliding, shear heating produces thermal softening of friction. At the fastest sliding, melting causes further weakening. This theory, with its four frictional regimes, fits well previously published experimental results under low temperature and normal stress.

  9. SYNTH-C, Steady-State and Time-Dependent 3-D Neutron Diffusion with Thermohydraulic Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Brega, E [ENEL-CRTN, Bastioni di Porta Volta 10, Milan (Italy); Salina, E [A.R.S. Spa, Viale Maino 35, Milan (Italy)

    1980-04-01

    1 - Description of problem or function: SYNTH-C-STEADY and SYNTH-C- TRANS solve respectively the steady-state and time-dependent few- group neutron diffusion equations in three dimensions x,y,z in the presence of fuel temperature and thermal-hydraulic feedback. The neutron diffusion and delayed precursor equations are approximated by a space-time (z,t) synthesis method with axially discontinuous trial functions. Three thermal-hydraulic and fuel heat transfer models are available viz. COBRA-3C/MIT model, lumped parameter (WIGL) model and adiabatic fuel heat-up model. 2 - Method of solution: The steady-state and time-dependent synthesis equations are solved respectively by the Wielandt's power method and by the theta-difference method (in time), both coupled with a block factorization technique and double precision arithmetic. The thermal-hydraulic model equations are solved by fully implicit finite differences (WIGL) or explicit-implicit difference techniques with iterations (COBRA-EC/MIT). 3 - Restrictions on the complexity of the problem: Except for the few- group limitation, the programs have no other fixed limitation so the ability to run a problem depends only on the available computer storage.

  10. Parametric peak stress functions of 90o pipe bends with ovality under steady-state creep conditions

    International Nuclear Information System (INIS)

    Yaghi, A.H.; Hyde, T.H.; Becker, A.A.; Sun, W.

    2009-01-01

    Stress-based life prediction techniques are commonly used to estimate the failure life of pressurised pipe-related components, such as welds and bends, under creep conditions. Previous research has shown that reasonable life predictions can be obtained, based on the steady-state peak stresses, compared with the life predictions obtained from creep damage modelling. In this work, a series of parametric steady-state peak rupture stress functions of right-angled pipe bends with ovality are presented, which are based on the results obtained from finite element (FE) analyses, covering a number of material property and geometry parameters in practical ranges. Methods used to determine the stress functions are described. The FE analyses have been performed using axisymmetric models, subjected to internal pressure only, with a Norton creep law. Typical examples of parametric peak stress curve fitting are shown. In particular, the accuracy of the interpolation and extrapolation abilities of the stress functions is assessed. The results show that in most cases the interpolated and extrapolated peak stresses are accurate to within ±3% and ±5%, respectively.

  11. Evidence for forcing-dependent steady states in a turbulent swirling flow.

    Science.gov (United States)

    Saint-Michel, B; Dubrulle, B; Marié, L; Ravelet, F; Daviaud, F

    2013-12-06

    We study the influence on steady turbulent states of the forcing in a von Karman flow, at constant impeller speed, or at constant torque. We find that the different forcing conditions change the nature of the stability of the steady states and reveal dynamical regimes that bear similarities to low-dimensional systems. We suggest that this forcing dependence may be applicable to other turbulent systems.

  12. Two-Dimensional Steady-State Boundary Shape Inversion of CGM-SPSO Algorithm on Temperature Information

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2017-01-01

    Full Text Available Addressing the problem of two-dimensional steady-state thermal boundary recognition, a hybrid algorithm of conjugate gradient method and social particle swarm optimization (CGM-SPSO algorithm is proposed. The global search ability of particle swarm optimization algorithm and local search ability of gradient algorithm are effectively combined, which overcomes the shortcoming that the conjugate gradient method tends to converge to the local solution and relies heavily on the initial approximation of the iterative process. The hybrid algorithm also avoids the problem that the particle swarm optimization algorithm requires a large number of iterative steps and a lot of time. The experimental results show that the proposed algorithm is feasible and effective in solving the problem of two-dimensional steady-state thermal boundary shape.

  13. Steady-state and pre-steady-state kinetic analysis of halopropane conversion by a Rhodococcus haloalkane dehalogenase

    NARCIS (Netherlands)

    Bosma, T; Pikkemaat, MG; Kingma, Jacob; Dijk, J; Janssen, DB

    2003-01-01

    Haloalkane dehalogenase from Rhodococcus rhodochrous NCIMB 13064 (DhaA) catalyzes the hydrolysis of carbon-halogen bonds in a wide range of haloalkanes. We examined the steady-state and pre-steady-state kinetics of halopropane conversion by DhaA to illuminate mechanistic details of the

  14. Toroidal visco-resistive magnetohydrodynamic steady states contain vortices

    International Nuclear Information System (INIS)

    Bates, J.W.; Montgomery, D.C.

    1998-01-01

    Poloidal velocity fields seem to be a fundamental feature of resistive toroidal magnetohydrodynamic (MHD) steady states. They are a consequence of force balance in toroidal geometry, do not require any kind of instability, and disappear in the open-quotes straight cylinderclose quotes (infinite aspect ratio) limit. If a current density j results from an axisymmetric toroidal electric field that is irrotational inside a torus, it leads to a magnetic field B such that ∇x(jxB) is nonvanishing, so that the Lorentz force cannot be balanced by the gradient of any scalar pressure in the equation of motion. In a steady state, finite poloidal velocity fields and toroidal vorticity must exist. Their calculation is difficult, but explicit solutions can be found in the limit of low Reynolds number. Here, existing calculations are generalized to the more realistic case of no-slip boundary conditions on the velocity field and a circular toroidal cross section. The results of this paper strongly suggest that discussions of confined steady states in toroidal MHD must include flows from the outset. copyright 1998 American Institute of Physics

  15. Characterization of the TRIGA Mark II reactor full-power steady state

    Energy Technology Data Exchange (ETDEWEB)

    Cammi, Antonio, E-mail: antonio.cammi@polimi.it [Politecnico di Milano – Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via La Masa 34, 20156 Milano (Italy); Zanetti, Matteo [Politecnico di Milano – Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via La Masa 34, 20156 Milano (Italy); Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica [University of Milano-Bicocca, Physics Department “G. Occhialini” and INFN Section, Piazza dell’Ateneo Nuovo, 20126 Milan (Italy); Magrotti, Giovanni; Prata, Michele; Salvini, Andrea [University of Pavia, Applied Nuclear Energy Laboratory (L.E.N.A.), Via Gaspare Aselli 41, 27100 Pavia (Italy)

    2016-04-15

    Highlights: • Full-power steady state characterization of the TRIGA Mark II reactor. • Monte Carlo and Multiphysics simulation of the TRIGA Mark II reactor. • Sub-cooled boiling effects in the TRIGA Mark II reactor. • Thermal feedback effects in the TRIGA Mark II reactor. • Experimental data based validation. - Abstract: In this paper, the characterization of the full-power steady state of the TRIGA Mark II nuclear reactor at the University of Pavia is achieved by coupling the Monte Carlo (MC) simulation for neutronics with the “Multiphysics” model for thermal-hydraulics. Neutronic analyses have been carried out with a MCNP5 based MC model of the entire reactor system, already validated in fresh fuel and zero-power configurations (in which thermal effects are negligible) and using all available experimental data as a benchmark. In order to describe the full-power reactor configuration, the temperature distribution in the core must be established. To evaluate this, a thermal-hydraulic model has been developed, using the power distribution results from the MC simulation as input. The thermal-hydraulic model is focused on the core active region and takes into account sub-cooled boiling effects present at full reactor power. The obtained temperature distribution is then entered into the MC model and a benchmark analysis is carried out to validate the model in fresh fuel and full-power configurations. An acceptable correspondence between experimental data and simulation results concerning full-power reactor criticality proves the reliability of the adopted methodology of analysis, both from the perspective of neutronics and thermal-hydraulics.

  16. Multimode optical fibers: steady state mode exciter.

    Science.gov (United States)

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  17. Steady State Dynamic Operating Behavior of Universal Motor

    Directory of Open Access Journals (Sweden)

    Muhammad Khan Burdi

    2015-01-01

    Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known

  18. Steady-State and Transient Analysis for Design Validation of SMART-ITL Secondary System

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Eunkoo; Bae, Hwang; Ryu, Sung Uk; Jeon, Byong-Guk; Yang, Jin-Hwa; Yi, Sung-Jae; Park, Hyun-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    SMART can prevent large-break loss of coolant accident (LBLOCA) inherently. SMART-ITL is an experimental simulation facility designed to perform integral effect tests for the SMART plant. In terms of the secondary system of SMART-ITL, the design has been simplified from that of reference plant by replacing several components, such as expansion device and condenser, with an appropriate device to be functional as the alternatives. In this paper, in order to understand the operational characteristics as well as design concept, the secondary system of SMRAT-ITL is analyzed in steady-state and transient aspects, and the results are compared with relevant experimental results. This study focuses on the understanding of thermal-hydraulic behavior of SMART-ITL secondary system, which is simplified from that of reference plant. To identify the behaviors of the secondary system, the steady-state and transient analysis were conducted based on experimental results. In steady-state analysis, the results clearly showed that the system pressure is related to the temperature of condensation tank which varies depending on mixture enthalpy. In transient analysis, the dynamic behavior during heat-up process has been investigated. The results reveal that we can reasonably assume the fluid filled in TK-CD-01 be in a saturated condition. The results showed that the design of SMART-ITL secondary system is appropriate, and the system is being properly operated to match the design intent.

  19. steady and dynamic states analysis of induction motor: fea approach

    African Journals Online (AJOL)

    HOD

    The flux levels at these loading conditions were also monitored. Key words: Three phase Induction Motor, Steady state and Dynamic Response, Flux Levels, FEA, Loading conditions. 1. INTRODUCTION ..... Boston: Computational Mechanics Publications;. New York: ... for Electrical Engineers, Cambridge University. Press ...

  20. RELAP5 capabilities in thermal-hydraulic prediction of SBWR containment behaviour: PANDA steady state and transient tests evaluation

    International Nuclear Information System (INIS)

    Faluomi, V.; Aksan, S.N.

    2000-01-01

    This paper summarizes the results of the qualification activity of RELAP5/Mod3.2 code performed using PANDA steady state and integral test experimental data. The steady state tests evaluate the PCC performances in removing decay heat power in presence and in absence of non-condensable gases, while the considered integral test (M3) simulates the transient following a break in the main steam line of the SBWR, using, as nominal initial conditions, those calculated for the SBWR under SSAR assumptions at one hour into the LOCA. The results obtained simulating both types of tests show a rather good and robust overall code behavior both in the simulation of steady state test and in the representation of the integral test considered: most of the main experimental results (WW/DW pressures, PCC heat exchange) were well represented by the code. The different studies performed indicated that: Different models of PCC pool lead a different trend of system pressure, and sometimes to an opening of vacuum breaker valves, that does not occur in the transient; The code underestimate the heat exchanged between PCC pool and tubes: n the considered test the system pressure is slightly overestimated (maximum 2% more than the experimental value). This fact is also proved by the differences in the temperature of the condensing mixture in the PCC, quite large in all the performed studies; The treatment of the non condensable gases, as implemented in the code, lead some errors in the calculation of the heat transfer coefficient in the PCC components and generally slow down the overall calculation. In general terms, the RELAP5/Mod3.2 was found to be suitable to represent the SBWR containment behavior under the conditions specified in the experimental side. (author)

  1. Progress and prospect of true steady state operation with RF

    Directory of Open Access Journals (Sweden)

    Jacquinot Jean

    2017-01-01

    Full Text Available Operation of fusion confinement experiments in full steady state is a major challenge for the development towards fusion energy. Critical to achieving this goal is the availability of actively cooled plasma facing components and auxiliary systems withstanding the very harsh plasma environment. Equally challenging are physics issues related to achieving plasma conditions and current drive efficiency required by reactor plasmas. RF heating and current drive systems have been key instruments for obtaining the progress made until today towards steady state. They hold all the records of long pulse plasma operation both in tokamaks and in stellarators. Nevertheless much progress remains to be made in particular for integrating all the requirements necessary for maintaining in steady state the density and plasma pressure conditions of a reactor. This is an important stated aim of ITER and of devices equipped with superconducting magnets. After considering the present state of the art, this review will address the key issues which remain to be solved both in physics and technology for reaching this goal. They constitute very active subjects of research which will require much dedicated experimentation in the new generation of superconducting devices which are now in operation or becoming close to it.

  2. Design for thermal sensation and comfort states in vehicles cabins

    International Nuclear Information System (INIS)

    Alahmer, Ali; Abdelhamid, Mahmoud; Omar, Mohammed

    2012-01-01

    This manuscript investigates the analysis and modeling of vehicular thermal comfort parameters using a set of designed experiments aided by thermography measurements. The experiments are conducted using a full size climatic chamber to host the test vehicle, to accurately assess the transient and steady state temperature distributions of the test vehicle cabin. Further investigate the thermal sensation (overall and local) and the human comfort states under artificially created relative humidity scenarios. The thermal images are calibrated through a thermocouples network, while the outside temperature and relative humidity are manipulated through the climatic environmental chamber with controlled soaking periods to guarantee the steady state conditions for each test scenario. The relative humidity inside the passenger cabin is controlled using a Total Humidity Controller (THC). The simulation uses the experimentally extracted boundary conditions via a 3-D Berkeley model that is set to be fully transient to account for the interactions in the velocity and temperature fields in the passenger compartment, which included interactions from turbulent flow, thermal buoyancy and the three modes of heat transfer conduction, convection and radiation. The model investigates the human comfort by analyzing the effect of the in-cabin relative humidity from two specific perspectives; firstly its effect on the body temporal variation of temperature within the cabin. Secondly, the Local Sensation (LS) and Comfort (LC) are analyzed for the different body segments in addition to the Overall Sensation (OS) and the Overall Comfort (OC). Furthermore, the human sensation is computed using the Fanger model in terms of the Predicted Mean Value (PMV) and the Predicted Percentage Dissatisfied (PPD) indices. The experimental and simulation results show that controlling the RH levels during the heating and the cooling processes (winter and summer conditions respectively) aid the A/C system to

  3. Differences between young adults and elderly in thermal comfort, productivity, and thermal physiology in response to a moderate temperature drift and a steady-state condition

    NARCIS (Netherlands)

    Schellen, L.; Marken Lichtenbelt, van W.D.; Loomans, M.G.L.C.; Toftum, J.; Wit, de M.H.

    2010-01-01

    Results from naturally ventilated buildings show that allowing the indoor temperature to drift does not necessarily result in thermal discomfort and may allow for a reduction in energy use. However, for stationary conditions, several studies indicate that the thermal neutral temperature and optimum

  4. Fabrication and Characterization of Ultrathin-ring Electrodes for Pseudo-steady-state Amperometric Detection.

    Science.gov (United States)

    Kitazumi, Yuki; Hamamoto, Katsumi; Noda, Tatsuo; Shirai, Osamu; Kano, Kenji

    2015-01-01

    The fabrication of ultrathin-ring electrodes with a diameter of 2 mm and a thickness of 100 nm is established. The ultrathin-ring electrodes provide a large density of pseudo-steady-state currents, and realize pseudo-steady-state amperometry under quiescent conditions without a Faraday cage. Under the limiting current conditions, the current response at the ultrathin-ring electrode can be well explained by the theory of the microband electrode response. Cyclic voltammograms at the ultrathin-ring electrode show sigmoidal characteristics with some hysteresis. Numerical simulation reveals that the hysteresis can be ascribed to the time-dependence of pseudo-steady-state current. The performance of amperometry with the ultrathin-ring electrode has been verified in its application to redox enzyme kinetic measurements.

  5. Effects of design variables predicted by a steady - state thermal performance analysis model of a loop heat pipe

    International Nuclear Information System (INIS)

    Jung, Eui Guk; Boo, Joon Hong

    2008-01-01

    This study deals with a mathematical modeling for the steady-state temperature characteristics of an entire loop heat pipe. The lumped layer model was applied to each node for temperature analysis. The flat type evaporator and condenser in the model had planar dimensions of 40 mm (W) x 50 mm (L). The wick material was a sintered metal and the working fluid was methanol. The molecular kinetic theory was employed to model the phase change phenomena in the evaporator and the condenser. Liquid-vapor interface configuration was expressed by the thin film theories available in the literature. Effects of design factors of loop heat pipe on the thermal performance were investigated by the modeling proposed in this study

  6. Effect of stacking fault energy on steady-state creep rate of face ...

    African Journals Online (AJOL)

    Continuum elastic theory was used to establish the relationships between the force of interaction required to constrict dislocation partials, energy of constriction and climb velocity of the constricted thermal jogs, in order to examine the effect of stacking fault energy (SFE) on steady state creep rate of face centered cubic ...

  7. Steady-state heat transfer in an inverted U-tube steam generator

    International Nuclear Information System (INIS)

    Boucher, T.J.

    1987-01-01

    Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during stead-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K steam generator inlet plenum fluid temperatures, 6.2 MPa secondary pressure). The Semiscale (MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations

  8. Monitoring Thermal Performance of Hollow Bricks with Different Cavity Fillers in Difference Climate Conditions

    Science.gov (United States)

    Pavlík, Zbyšek; Jerman, Miloš; Fořt, Jan; Černý, Robert

    2015-03-01

    Hollow brick blocks have found widespread use in the building industry during the last decades. The increasing requirements to the thermal insulation properties of building envelopes given by the national standards in Europe led the brick producers to reduce the production of common solid bricks. Brick blocks with more or less complex systems of internal cavities replaced the traditional bricks and became dominant on the building ceramics market. However, contrary to the solid bricks where the thermal conductivity can easily be measured by standard methods, the complex geometry of hollow brick blocks makes the application of common techniques impossible. In this paper, a steady-state technique utilizing a system of two climatic chambers separated by a connecting tunnel for sample positioning is used for the determination of the thermal conductivity, thermal resistance, and thermal transmittance ( U value) of hollow bricks with the cavities filled by air, two different types of mineral wool, polystyrene balls, and foam polyurethane. The particular brick block is provided with the necessary temperature- and heat-flux sensors and thermally insulated in the tunnel. In the climatic chambers, different temperatures are set. After steady-state conditions are established in the measuring system, the effective thermal properties of the brick block are calculated using the measured data. Experimental results show that the best results are achieved with hydrophilic mineral wool as a cavity filler; the worst performance exhibits the brick block with air-filled cavities.

  9. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations.

    Science.gov (United States)

    Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M

    2007-09-01

    We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.

  10. Thermal-hydraulic Fortran program for steady-state calculations of plate-type fuel research reactors

    Directory of Open Access Journals (Sweden)

    Khedr Ahmed

    2008-01-01

    Full Text Available The safety assessment of research and power reactors is a continuous process covering their lifespan and requiring verified and validated codes. Power reactor codes all over the world are well established and qualified against real measuring data and qualified experimental facilities. These codes are usually sophisticated, require special skills and consume a lot of running time. On the other hand, most research reactor codes still require much more data for validation and qualification. It is, therefore, of benefit to any regulatory body to develop its own codes for the review and assessment of research reactors. The present paper introduces a simple, one-dimensional Fortran program called THDSN for steady-state thermal-hydraulic calculations of plate-type fuel research reactors. Besides calculating the fuel and coolant temperature distributions and pressure gradients in an average and hot channel, the program calculates the safety limits and margins against the critical phenomena encountered in research reactors, such as the onset of nucleate boiling, critical heat flux and flow instability. Well known thermal-hydraulic correlations for calculating the safety parameters and several formulas for the heat transfer coefficient have been used. The THDSN program was verified by comparing its results for 2 and 10 MW benchmark reactors with those published in IAEA publications and a good agreement was found. Also, the results of the program are compared with those published for other programs, such as the PARET and TERMIC.

  11. Study on Off-Design Steady State Performances of Helium Gas Turbo-compressor for HTGR-GT

    International Nuclear Information System (INIS)

    Qisen Ren; Xiaoyong Yang; Zhiyong Huang; Jie Wang

    2006-01-01

    The high temperature gas-cooled reactor (HTGR) coupled with direct gas turbine cycle is a promising concept in the future of nuclear power development. Both helium gas turbine and compressor are key components in the cycle. Under normal conditions, the mode of power adjustment is to control total helium mass in the primary loop using gas storage vessels. Meanwhile, thermal power of reactor core is regulated. This article analyzes off-design performances of helium gas turbine and compressors for high temperature gas-cooled reactor with gas turbine cycle (HTGR-GT) at steady state level of electric power adjustment. Moreover, performances of the cycle were simply discussed. Results show that the expansion ratio of turbine decreases as electric power reduces but the compression ratios of compressors increase, efficiencies of both turbine and compressors decrease to some extent. Thermal power does not vary consistently with electric power, the difference between these two powers increases as electric power reduces. As a result of much thermal energy dissipated in the temperature modulator set at core inlet, thermal efficiency of the cycle has a widely reduction under partial load conditions. (authors)

  12. Basin stability measure of different steady states in coupled oscillators

    Science.gov (United States)

    Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar

    2017-04-01

    In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.

  13. An accelerator based steady state neutron source

    International Nuclear Information System (INIS)

    Burke, R.J.; Johnson, D.L.

    1985-01-01

    Using high current, c.w. linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the Accelerator Based Neutron Research Facility (ABNR) would initially achieve the 10 16 n/cm 2 .s thermal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of $300-450M is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source in most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc. With the development of multi-beam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs

  14. Statistical steady states in turbulent droplet condensation

    Science.gov (United States)

    Bec, Jeremie; Krstulovic, Giorgio; Siewert, Christoph

    2017-11-01

    We investigate the general problem of turbulent condensation. Using direct numerical simulations we show that the fluctuations of the supersaturation field offer different conditions for the growth of droplets which evolve in time due to turbulent transport and mixing. This leads to propose a Lagrangian stochastic model consisting of a set of integro-differential equations for the joint evolution of the squared radius and the supersaturation along droplet trajectories. The model has two parameters fixed by the total amount of water and the thermodynamic properties, as well as the Lagrangian integral timescale of the turbulent supersaturation. The model reproduces very well the droplet size distributions obtained from direct numerical simulations and their time evolution. A noticeable result is that, after a stage where the squared radius simply diffuses, the system converges exponentially fast to a statistical steady state independent of the initial conditions. The main mechanism involved in this convergence is a loss of memory induced by a significant number of droplets undergoing a complete evaporation before growing again. The statistical steady state is characterised by an exponential tail in the droplet mass distribution.

  15. Steady State and Transient Analysis of Induction Motor Driving a ...

    African Journals Online (AJOL)

    The importance of using a digital computer in studying the performance of Induction machine under steady and transient states is presented with computer results which show the transient behaviour of 3-phase machine during balanced and unbalanced conditions. The computer simulation for these operating conditions is ...

  16. Steady-State Characterization of Bacteriorhodopsin-D85N Photocycle

    Science.gov (United States)

    Timucin, Dogan A.; Downie, John D.; Norvig, Peter (Technical Monitor)

    1999-01-01

    An operational characterization of the photocycle of the genetic mutant D85N of bacteriorhodopsin, BR-D85N, is presented. Steady-state bleach spectra and pump-probe absorbance data are obtained with thick hydrated films containing BR-D85N embedded in a gelatin host. Simple two- and three-state models are used to analyze the photocycle dynamics and extract relevant information such as pure-state absorption spectra, photochemical-transition quantum efficiencies, and thermal lifetimes of dominant states appearing in the photocycle, the knowledge of which should aid in the analysis of optical recording and retrieval of data in films incorporating this photochromic material. The remarkable characteristics of this material and their implications from the viewpoint of optical data storage and processing are discussed.

  17. Single-channel model for steady thermal-hydraulic analysis in nuclear reactor

    International Nuclear Information System (INIS)

    Zhang Xiaoying; Huang Yuanyuan

    2010-01-01

    This article established a single-channel model for steady analysis in the reactor and an example of thermal-hydraulic analysis was made by using this model, including the Maximum heat flux density of fuel element, enthalpy, Coolant flow, various kinds of pressure drop, enthalpy increase in average tube and thermal tube. I also got the Coolant temperature distribution and the fuel element temperature distribution and analysis of the final result. The results show that some relevant parameters which we got in this paper are well coincide with the actual operating parameters. It is also show that the single-channel model can be used to the steady thermal-hydraulic analysis. (authors)

  18. Comparing Non-Steady State Emissions under Start-Up and Shut-Down Operating Conditions with Steady State Emissions for Several Industrial Sectors: A Literature Review

    Directory of Open Access Journals (Sweden)

    Juwairia Obaid

    2017-02-01

    Full Text Available This study investigates the emissions of various industrial facilities under start-up, shut-down, and normal operations. The industries that have been investigated include power and/or heat generation, energy-from-waste generation, nuclear power generation, sulphuric acid production, ethylene production, petrochemical production, and waste incineration. The study investigated multiple facilities worldwide for each of these industrial categories. The different potential contaminants characteristic of each industry type have been investigated and the emissions of these contaminants under non-steady state have been compared to the steady state emissions. Where available, trends have been developed to identify the circumstances, i.e., the industrial sector and contaminant, under which the assessment and consideration of emissions from start-up and shut-down events is necessary for each industry. These trends differ by industrial sector and contaminant. For example, the study shows that sulphur dioxide (SO2 emissions should be assessed for the start-up operations of sulphuric acid production plants, but may not need to be assessed for the start-up operations of a conventional power generation facility. The trends developed as part of this research paper will help air permit applicants to effectively allocate their resources when assessing emissions related to non-steady state operations. Additionally, it will ensure that emissions are assessed for the worst-case scenario. This is especially important when emissions under start-up and shut-down operations have the potential to exceed enforceable emission limits. Thus, assessing emissions for the worst-case scenario can help in preventing the emissions from adversely impacting public health and the environment.

  19. Optimal control of transitions between nonequilibrium steady states.

    Directory of Open Access Journals (Sweden)

    Patrick R Zulkowski

    Full Text Available Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines.

  20. Analysis of steady state creep of southeastern New Mexico bedded salt

    International Nuclear Information System (INIS)

    Herrmann, W.; Wawersik, W.R.; Lauson, H.S.

    1980-03-01

    Steady state creep rates have been obtained from a large suite of existing experimental creep data relating to bedded rock salt from the Salado formation of S.E. New Mexico. Experimental conditions covered an intermediate temperature range from 22 0 C to 200 0 C, and shear stresses from 1000 psi (7 MPa) to 6000 psi (31 MPa). An expression, based on a single diffusion controlled dislocation climb mechanism, has been found to fit the observed dependence of steady state creep rate on shear stress and temperature, yielding an activation energy of 12 kcal/mole (50 kJ/mole) and a stress exponent of 4.9. Multiple regression analysis revealed a dependence on stratigraphy, but no statistically significant dependence on pressure of specimen size. No consistent dilatancy or compaction associated with steady state creep was found, although some individual specimens dilated or compacted during creep. The steady state creep data were found to agree very well with creep data for both bedded and dome salt from a variety of other locations

  1. Three-party quantum teleportation using thermal states in Heisenberg XX model with open boundary condition

    International Nuclear Information System (INIS)

    Bhan, Jaemi; Kwon, Younghun

    2007-01-01

    Recently Yeo showed that thermal states in Heisenberg XX model with periodic boundary condition could be used for three-party quantum teleportation. However it is hard to implement the periodic boundary condition in spin chain. So instead of imposing the periodic boundary condition, we consider open boundary condition in Heisenberg XX model and investigate the possibility of using thermal states in Heisenberg XX model with open boundary condition. Using this way, we find the best fidelity conditions to three known protocols in three-party quantum teleportation. It turns out that the best fidelity in every protocol would be 23

  2. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  3. Recalculating the steady state conditions of the V-1000 zero-power facility at Kurchatov Institute using Monte Carlo and nodal diffusion codes

    Energy Technology Data Exchange (ETDEWEB)

    Sahlberg, Ville [VTT Technical Research Centre of Finland Ltd, VTT (Finland)

    2017-09-15

    Continuous-energy Monte Carlo reactor physics code Serpent 2 was used to model the critical steady state conditions measured in V-1000 zero-power critical facility at Kurchatov Institute (KI), Moscow in 1990-1992. The Serpent 2 results were compared to measurements and Serpent 2 was used to generate group constants for reactor dynamics code HEXTRAN. The results of a HEXTRAN calculation of the steady state were compared to Serpent 2. The relative power density distribution of the SERPENT2 calculations compared with the measurements was within the statistical accuracy. The comparison of HEXTRAN and Serpent 2 node-wise relative power density distributions showed an accuracy of ±10%.

  4. The Steady State Calculation for SMART with MIDAS/SMR

    International Nuclear Information System (INIS)

    Park, Jong Hwa; Kim, Dong Ha; Chung, Young Jong; Park, Sun Hee; Cho, Seong Won

    2010-01-01

    KAERI is developing a new concept of reactor that all the main components such as the steam generator, the coolant pumps and the pressurizer are located inside the reactor vessel. Before the severe accident sequences are estimated, it is prerequisite that MIDAS code predicts the steady state conditions properly. But MIDAS code does not include the heat transfer model for the helical tube. Therefore, the heat transfer models for the helical tube from TASS/SMR-S were implemented into MIDAS code. To estimate the validity of the implemented heat transfer correlations for the helical tube and the input data, the steady state was recalculated with MIDAS/SMR based on design level 2 and compared with the design values

  5. Unsteady-state human-body exergy consumption rate and its relation to subjective assessment of dynamic thermal environments

    DEFF Research Database (Denmark)

    Schweiker, Marcel; Kolarik, Jakub; Dovjak, Mateja

    2016-01-01

    of the present study confirmed previously indicated trends that lowest human body exergy consumption rate is associated with thermal sensation close to neutrality. Moreover, higher acceptability was in general associated with lower human body exergy consumption rate. (C) 2016 Elsevier B.V. All rights reserved.......Few examples studied applicability of exergy analysis on human thermal comfort. These examples relate the human-body exergy consumption rate with subjectively obtained thermal sensation votes and had been based on steady-state calculation methods. However, humans are rarely exposed to steady...... between the human-body exergy consumption rate and subjective assessment of thermal environment represented by thermal sensation as well as to extend the investigation towards thermal acceptability votes. Comparison of steady-state and unsteady-state model showed that results from both models were...

  6. Steady-State Performance of Kalman Filter for DPLL

    Institute of Scientific and Technical Information of China (English)

    QIAN Yi; CUI Xiaowei; LU Mingquan; FENG Zhenming

    2009-01-01

    For certain system models, the structure of the Kalman filter is equivalent to a second-order vari-able gain digital phase-locked loop (DPLL). To apply the knowledge of DPLLs to the design of Kalman filters, this paper studies the steady-state performance of Kalman filters for these system models. The results show that the steady-state Kalman gain has the same form as the DPLL gain. An approximate simple form for the steady-state Kalman gain is used to derive an expression for the equivalent loop bandwidth of the Kalman filter as a function of the process and observation noise variances. These results can be used to analyze the steady-state performance of a Kalman filter with DPLL theory or to design a Kalman filter model with the same steady-state performance as a given DPLL.

  7. The non-local Fisher–KPP equation: travelling waves and steady states

    International Nuclear Information System (INIS)

    Berestycki, Henri; Nadin, Grégoire; Perthame, Benoit; Ryzhik, Lenya

    2009-01-01

    We consider the Fisher–KPP equation with a non-local saturation effect defined through an interaction kernel φ(x) and investigate the possible differences with the standard Fisher–KPP equation. Our first concern is the existence of steady states. We prove that if the Fourier transform φ-circumflex(ξ) is positive or if the length σ of the non-local interaction is short enough, then the only steady states are u ≡ 0 and u ≡ 1. Next, we study existence of the travelling waves. We prove that this equation admits travelling wave solutions that connect u = 0 to an unknown positive steady state u ∞ (x), for all speeds c ≥ c * . The travelling wave connects to the standard state u ∞ (x) ≡ 1 under the aforementioned conditions: φ-circumflex(ξ) > 0 or σ is sufficiently small. However, the wave is not monotonic for σ large

  8. Development of a steady thermal-hydraulic analysis code for the China Advanced Research Reactor

    Institute of Scientific and Technical Information of China (English)

    TIAN Wenxi; QIU Suizheng; GUO Yun; SU Guanghui; JIA Dounan; LIU Tiancai; ZHANG Jianwei

    2007-01-01

    A multi-channel model steady-state thermalhydraulic analysis code was developed for the China Advanced Research Reactor (CARR). By simulating the whole reactor core, the detailed mass flow distribution in the core was obtained. The result shows that structure size plays the most important role in mass flow distribution, and the influence of core power could be neglected under singlephase flow. The temperature field of the fuel element under unsymmetrical cooling condition was also obtained, which is necessary for further study such as stress analysis, etc. Of the fuel element. At the same time, considering the hot channel effect including engineering factor and nuclear factor, calculation of the mean and hot channel was carried out and it is proved that all thermal-hydraulic parameters satisfy the "Safety design regulation of CARR".

  9. Multiple solutions of steady-state Poisson–Nernst–Planck equations with steric effects

    International Nuclear Information System (INIS)

    Lin, Tai-Chia; Eisenberg, Bob

    2015-01-01

    Experiments measuring currents through single protein channels show unstable currents. Channels switch between ‘open’ or ‘closed’ states in a spontaneous stochastic process called gating. Currents are either (nearly) zero or at a definite level, characteristic of each type of protein, independent of time, once the channel is open. The steady state Poisson–Nernst–Planck equations with steric effects (PNP-steric equations) describe steady current through the open channel quite well, in a wide variety of conditions. Here we study the existence of multiple solutions of steady state PNP-steric equations to see if they themselves, without modification or augmentation, can describe two levels of current. We prove that there are two steady state solutions of PNP-steric equations for (a) three types of ion species (two types of cations and one type of anion) with a positive constant permanent charge, and (b) four types of ion species (two types of cations and their counter-ions) with a constant permanent charge but no sign condition. The excess currents (due to steric effects) associated with these two steady state solutions are derived and expressed as two distinct formulas. Our results indicate that PNP-steric equations may become a useful model to study spontaneous gating of ion channels. Spontaneous gating is thought to involve small structural changes in the channel protein that perhaps produce large changes in the profiles of free energy that determine ion flow. Gating is known to be modulated by external structures. Both can be included in future extensions of our present analysis. (paper)

  10. Transient and steady-state flows in shock tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, K. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany); Jacobs, P.A. [Queensland Univ., Brisbane (Australia). Dept. of Mechanical Engineering; Thomas, A.; McIntyre, T.J. [Queensland Univ., Brisbane, QLD. (Australia). Dept. of Physics

    1999-12-01

    Due to the difficulty of measuring all necessary flow quantities in the nozzle reservoir and the test section of high enthalpy shock tunnels, indirect computational methods are necessary to estimate the required flow parameters. In addition to steady state flow computations of the nozzle flow and the flow past wind tunnel models it is necessary to investigate the transient flow in the facility in order to achieve a better understanding of its performance. These transient effects include the nozzle starting flow, the interaction of the shock tube boundary layers and the reflected shock, thermal losses in the shock reflection region and the developing boundary layers in the expanding section of the nozzle. Additionally, the nonequilibrium chemical and thermal relaxation models which are used to compute high enthalpy flows have to be validated with appropriate experimental data. (orig.)

  11. Transient and steady-state flows in shock tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, K. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany)); Jacobs, P.A. (Queensland Univ., Brisbane (Australia). Dept. of Mechanical Engineering); Thomas, A.; McIntyre, T.J. (Queensland Univ., Brisbane, QLD. (Australia). Dept. of Physics)

    1999-01-01

    Due to the difficulty of measuring all necessary flow quantities in the nozzle reservoir and the test section of high enthalpy shock tunnels, indirect computational methods are necessary to estimate the required flow parameters. In addition to steady state flow computations of the nozzle flow and the flow past wind tunnel models it is necessary to investigate the transient flow in the facility in order to achieve a better understanding of its performance. These transient effects include the nozzle starting flow, the interaction of the shock tube boundary layers and the reflected shock, thermal losses in the shock reflection region and the developing boundary layers in the expanding section of the nozzle. Additionally, the nonequilibrium chemical and thermal relaxation models which are used to compute high enthalpy flows have to be validated with appropriate experimental data. (orig.)

  12. Numerical Simulation of Steady State Conduction Heat Transfer During the Solidification of Aluminum Casting in Green Sand Mould

    Directory of Open Access Journals (Sweden)

    Victor ANJO

    2012-08-01

    Full Text Available The solidification of molten metal during the casting process involves heat transfer from the molten metal to the mould, then to the atmosphere. The mechanical properties and grain size of metals are determined by the heat transfer process during solidification. The aim of this study is to numerically stimulate the steady conduction heat transfer during the solidification of aluminum in green sand mould using finite difference analysis 2D. The properties of materials used are industrial AI 50/60 AFS green sand mould, pure aluminum and MATLAB 7.0.1. for the numerical simulation. The method includes; the finite difference analysis of the heat conduction equation in steady (Laplace’s and transient states and using MATLAB to numerically stimulate the thermal flow and cooling curve. The results obtained are: the steady state thermal flow in 2D and transient state cooling curve of casting. The results obtain were consider relevant in the control of the grain size and mechanical properties of the casting.

  13. Steady state neutral beam injector

    International Nuclear Information System (INIS)

    Mattoo, S.K.; Bandyopadhyay, M.; Baruah, U.K.; Bisai, N.; Chakbraborty, A.K.; Chakrapani, Ch.; Jana, M.R.; Bajpai, M.; Jaykumar, P.K.; Patel, D.; Patel, G.; Patel, P.J.; Prahlad, V.; Rao, N.V.M.; Rotti, C.; Singh, N.P.; Sridhar, B.

    2000-01-01

    Learning from operational reliability of neutral beam injectors in particular and various heating schemes including RF in general on TFTR, JET, JT-60, it has become clear that neutral beam injectors may find a greater role assigned to them for maintaining the plasma in steady state devices under construction. Many technological solutions, integrated in the present day generation of injectors have given rise to capability of producing multimegawatt power at many tens of kV. They have already operated for integrated time >10 5 S without deterioration in the performance. However, a new generation of injectors for steady state devices have to address to some basic issues. They stem from material erosion under particle bombardment, heat transfer > 10 MW/m 2 , frequent regeneration of cryopanels, inertial power supplies, data acquisition and control of large volume of data. Some of these engineering issues have been addressed to in the proposed neutral beam injector for SST-1 at our institute; the remaining shall have to wait for the inputs of the database generated from the actual experience with steady state injectors. (author)

  14. Thermal Load Reduction System Development in a Hyundai Sonata PHEV

    Energy Technology Data Exchange (ETDEWEB)

    Kreutzer, Cory J.; Rugh, John; Tomerlin, Jeff

    2017-03-28

    Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles, including limited vehicle range and the elevated cost in comparison to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. To minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata plug-in hybrid electric vehicle. Technologies that impact vehicle cabin heating in cold weather conditions and cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning. Heated surfaces demonstrated significant reductions in energy use from steady-state heating, including a 29%-59% reduction from heated surfaces. Solar control glass packages demonstrated significant reductions in energy use for both transient and steady-state cooling, with up to a 42% reduction in transient and 12.8% reduction in steady-state energy use for the packages evaluated. Technologies that demonstrated significant climate control load reduction were selected for incorporation into a complete thermal load reduction package. The complete package is set to be evaluated in the second phase of the ongoing project.

  15. COOLOD-N: a computer code, for the analyses of steady-state thermal-hydraulics in plate-type research reactors

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1990-02-01

    The COOLOD-N code provides a capability for the analysis of the steady-state thermal-hydraulics of research reactors in which plate-type fuel is employed. This code is revised version of the COOLOD code, and is applicable not only to a forced convection cooling mode, but also to a natural convection cooling mode. In the code, a function to calculate flow rate under a natural convection, and a heat transfer package which was a subroutine program to calculate heat transfer coefficient, ONB temperature and DNB heat flux, and was especially developed for the upgraded JRR-3, have been newly added to the COOLOD code. The COOLOD-N code also has a capability of calculating the heat flux at onset of flow instability as well as DNB heat flux. (author)

  16. Simulations of KSTAR high performance steady state operation scenarios

    International Nuclear Information System (INIS)

    Na, Yong-Su; Kessel, C.E.; Park, J.M.; Yi, Sumin; Kim, J.Y.; Becoulet, A.; Sips, A.C.C.

    2009-01-01

    We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; β N above 3, H 98 (y, 2) up to 2.0, f BS up to 0.76 and f NI equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of q min is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work

  17. Measurement of non-steady-state free fatty acid turnover

    International Nuclear Information System (INIS)

    Jensen, M.D.; Heiling, V.; Miles, J.M.

    1990-01-01

    The accuracy of non-steady-state equations for measuring changes in free fatty acid rate of appearance (Ra) is unknown. In the present study, endogenous lipolysis (traced with [ 14 C]-linoleate) was pharmacologically suppressed in six conscious mongrel dogs. A computer-responsive infusion pump was then used to deliver an intravenous oleic acid emulsion in both constant and linear gradient infusion modes. Both non-steady-state equations with various effective volumes of distribution (V) and steady-state equations were used to measure oleate Ra [( 14 C]oleate). Endogenous lipolysis did not change during the experiment. When oleate Ra increased in a linear gradient fashion, only non-steady-state equations with a large (150 ml/kg) V resulted in erroneous values (9% overestimate, P less than 0.05). In contrast, when oleate Ra decreased in a similar fashion, steady-state and standard non-steady-state equations (V = plasma volume = 50 ml/kg) overestimated total oleate Ra (18 and 7%, P less than 0.001 and P less than 0.05, respectively). Overall, non-steady-state equations with an effective V of 90 ml/kg (1.8 x plasma volume) allowed the most accurate estimates of oleate Ra

  18. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    Science.gov (United States)

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.

  19. TRUMP, Steady-State and Transient 1-D, 2-D and 3-D Potential Flow, Temperature Distribution

    International Nuclear Information System (INIS)

    Elrod, D.C.; Turner, W.D.

    1981-01-01

    1 - Description of problem or function: TRUMP solves a general non- linear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady- state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables--temperature, pressure, or field strength. Initial conditions may vary with spatial position, and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state. 2 - Method of solution: Solutions may be obtained by use of explicit- or implicit-difference equations, or by an optimized combination of both. 3 - Restrictions on the complexity of the problem: The program currently provides for maxima of: 40 materials, 5 reactants, 105 surface conditions, 20 boundary nodes, 16 entries per tabulated function (table-length)

  20. Reactor kinetics - pulse and steady state

    Energy Technology Data Exchange (ETDEWEB)

    Estes, B F; Morris, F M [Sandia Laboratories (United States)

    1974-07-01

    An analytical model has been developed which couples the nuclear and thermal characteristics of the Annular Core Pulse Reactor (ACPR) into a solution which describes both the neutron kinetics of the reactor and the temperature behavior of a fuel-moderator element. The model describes both pulse and steady state operations. This paper describes the important aspects of the reactor, the fuel- moderator elements, the neutron kinetic equations of the reactor, and the time-temperature behavior of a fuel-moderator element that is being subjected to the maximum power density in the core. The parameters which are utilized in the equations are divided into two classes, those that can be measured directly and those that are assumed to be known (each is described briefly). Some of the solutions which demonstrate the versatility of the analytical model are described. (author)

  1. Vibration analysis of primary inlet pipe line during steady state and transient conditions of Pakistan research reactor-1

    International Nuclear Information System (INIS)

    Ayazuddin, S.K.; Qureshi, A.A.; Hayat, T.

    1997-11-01

    The Primary Water Inlet Pipeline (PW-IPL) is of stainless steel conveying demineralized water from hold-up tank to the reactor pool of Pakistan Research Reactor-1 (PARR-1). The section of the pipeline from heat exchangers to the valve pit is hanger supported in the pump room and the rest of the section from valve pit to the reactor pool is embedded. The PW-IPL is subjected to steady state and transient vibrations. The reactor pumps, which drive the coolant through various circuits mainly contribute the steady state vibrations, while transient vibrations arise due to instant closure of the check valve (water hammer). The ASME Boiler and Pressure Vessel code provides data about the acceptable limits of stresses related to the primary static stress due to steady state vibrations. However, due to complexity in the pipe structure, stresses related to the transient vibrations are neglected in the code. In this report attempt has been made to analyzed both steady state and transient vibrations of PW-IPL of PARR-1. Since, both the steady state and transient vibrations affect the hanger-supported section of the PW-IPL, therefore, it was selected for vibration test measurements. In the analysis vibration data was compared with the allowable limits and estimations of maximum pressure build-up, eflection, natural frequency, tensile and shear load on hanger support, and the ratio of maximum combine stress to the allowable load were made. (author)

  2. ORNL rod-bundle heat-transfer test data. Volume 7. Thermal-Hydraulic Test Facility experimental data report for test series 3.07.9 - steady-state film boiling in upflow

    International Nuclear Information System (INIS)

    Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.

    1982-05-01

    Thermal-Hydraulic Test Facility (THTF) test series 3.07.9 was conducted by members of the Oak Ridge National Laboratory Pressurized-Water Reactor (ORNL-PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on September 11, September 18, and October 1, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small- and large-break loss-of-coolant accidents. Test series 3.07.9 was designed to provide steady-state film boiling data in rod bundle geometry under reactor accident-type conditions. This report presents the reduced instrument responses for THTF test series 3.07.9. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers

  3. GAPCON-THERMAL-3

    International Nuclear Information System (INIS)

    Mohr, C.L.; Lanning, D.D.; Panisko, F.E.

    1979-01-01

    The fuel performance code GAPCON-THERMAL-3 has been expanded to include recent transient material deformation constitutive relations and the FLECHT heat transfer correlation. The modifications make it possible to compute the thermal and mechanical response of nuclear fuel to postulated Loss of Coolant Accidents (LOCA). The numerical formulation has the capability of predicting both steady state and transient behavior of a fuel rod using a single analytical procedure. GAPCON-THERMAL-3 (G-T-3) uses a specialized finite element procedure for mechanics predictions and the method of weighted residuals and finite difference techniques to compute temperature and thermal behavior. Fuel behavior, gas release models, gas conductance models, and stored energy calculations are applicable to both steady state and transient conditions. The code has been used to perform scoping analysis for in-reactor LOCA simulation testing. (orig.)

  4. Tailored parameter optimization methods for ordinary differential equation models with steady-state constraints.

    Science.gov (United States)

    Fiedler, Anna; Raeth, Sebastian; Theis, Fabian J; Hausser, Angelika; Hasenauer, Jan

    2016-08-22

    Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the parameters. However, implementing steady-state constraints in the optimization often results in convergence problems. In this manuscript, we propose two new methods for solving optimization problems with steady-state constraints. The first method exploits ideas from optimization algorithms on manifolds and introduces a retraction operator, essentially reducing the dimension of the optimization problem. The second method is based on the continuous analogue of the optimization problem. This continuous analogue is an ODE whose equilibrium points are the optima of the constrained optimization problem. This equivalence enables the use of adaptive numerical methods for solving optimization problems with steady-state constraints. Both methods are tailored to the problem structure and exploit the local geometry of the steady-state manifold and its stability properties. A parameterization of the steady-state manifold is not required. The efficiency and reliability of the proposed methods is evaluated using one toy example and two applications. The first application example uses published data while the second uses a novel dataset for Raf/MEK/ERK signaling. The proposed methods demonstrated better convergence properties than state-of-the-art methods employed in systems and computational biology. Furthermore, the average computation time per converged start is significantly lower. In addition to the theoretical results, the

  5. Synthesis of [Zn-Al-CO 3] layered double hydroxides by a coprecipitation method under steady-state conditions

    Science.gov (United States)

    Chang, Z.; Evans, D. G.; Duan, X.; Vial, C.; Ghanbaja, J.; Prevot, V.; de Roy, M.; Forano, C.

    2005-09-01

    A continuous co-precipitation method under steady-state conditions has been investigated for the preparation of nanometer-size layered double hydroxide (LDH) particles using Zn 2Al(OH) 6(CO 3) 0.5·2H 2O as a prototype. The objective was to shorten the preparation time by working without an aging step, using a short and controlled residence time in order to maintain a constant supersaturation level in the reactor and constant particle properties in the exit stream over time. The effects of varying the operating conditions on the structural and textural properties of the LDHs have been studied, including total cation concentration, solvent, residence time, pH and intercalation anion. The products have been characterized using ICP, XRD, FTIR, BET, SEM and TEM. The LDHs prepared by the continuous coprecipitation method have a poorer crystallinity and lower crystallite sizes than those synthesized by the conventional batch method. The results have shown that increasing either cation concentration or the fraction of monoethylene glycol (MEG) in MEG/H 2O mixtures up to 80% (v/v) affect salt solubility and supersaturation, which gives rise to smaller crystallites, larger surface areas and more amorphous compounds. This increase is however limited by the precipitation of zinc and aluminum hydroxides occurring around a total cation concentration of 3.0×10 -1 M in pure water and 3.0×10 -2 M in H 2O/EtOH mixtures. Crystallite size increases with residence time, suggesting a precipitation process controlled by growth. Finally, the continuous coprecipitation method under steady-state conditions has been shown to be a promising alternative to the traditional coprecipitation technique in either pure water or mixed H 2O/MEG solvents.

  6. KIM, Steady-State Transport for Fixed Source in 2-D Thermal Reactor by Monte-Carlo

    International Nuclear Information System (INIS)

    Cupini, E.; De Matteis, A.; Simonini, R.

    1980-01-01

    1 - Description of problem or function: KIM (K-infinite Monte Carlo) is a program which solves the steady-state linear transport equation for a fixed-source problem (or, by successive fixed-source runs, for the eigenvalue problem) in a two-dimensional infinite thermal reactor lattice. The main quantities computed in some broad energy groups are the following: - Fluxes and cross sections averaged over the region (i.e. a space portion that can be unconnected but contains everywhere the same homogeneous material), grouping of regions, the whole element. - Average absorption and fission rates per nuclide. - Average flux, absorption and production distributions versus energy. 2 - Method of solution: Monte Carlo simulation is used by tracing particle histories from fission birth down through the resonance region until absorption in the thermal range. The program is organised in three sections for fast, epithermal and thermal simulation, respectively; each section implements a particular model for both numerical techniques and cross section representation (energy groups in the fast section, groups or resonance parameters in the epithermal section, points in the thermal section). During slowing down (energy above 1 eV) nuclei are considered as stationary, with the exception of some resonance nuclei whose spacing between resonances is much greater than the resonance width. The Doppler broadening of s-wave resonances of these nuclides is taken into account by computing cross sections at the current neutron energy and at the temperature of the nucleus hit. During thermalization (energy below 1 eV) the thermal motion of some nuclides is also considered, by exploiting scattering kernels provided by the library for light water, heavy water and oxygen at several temperatures. KIM includes splitting and Russian roulette. A characteristic feature of the program is its approach to the lattice geometry. In fact, besides the usual continuous treatment of the geometry using the well

  7. The effect of time-dependent coupling on non-equilibrium steady states

    DEFF Research Database (Denmark)

    Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin

    Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define...... and compute the non equilibrium steady state (NESS) generated by this evolution. We show that when restricted to the subspace of absolute continuity of the fully coupled system, the state does not depend at all on the switching. Moreover, we show that the stationary charge current has the same invariant...

  8. The effect of time-dependent coupling on non-equilibrium steady states

    DEFF Research Database (Denmark)

    Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin A.

    2009-01-01

    Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define...... and compute the non equilibrium steady state (NESS) generated by this evolution. We show that when restricted to the subspace of absolute continuity of the fully coupled system, the state does not depend at all on the switching. Moreover, we show that the stationary charge current has the same invariant...

  9. Fission gas behaviour in UO2 under steady state and transient conditions

    International Nuclear Information System (INIS)

    Zimmermann, H.

    1980-01-01

    Fission gas behaviour in UO 2 is determined by the limited capacity of the fuel to retain fission gas. This capacity depends primarily on temperature, but also on fission rate, pressure loading, and fuel microstructure. Under steady state irradiation conditions fission gas behaviour can be described qualitatively as follows: At the beginning of the irradiation most of the fission gas remains in the grains in irradiation-induced solution. With increasing gas content in the grains the gas transport to the grain boundaries increases, too. The fission gas release from the grain boundaries occurs primarily by interlinkage of inter-granular bubbles. The fission gas release without noticeable fuel swelling during the short-term heating in the LOCA tests and the powdering of the high burnup UO 2 in the annealing tests can only be accounted for by formation of inter-granular separations, which are caused by the fission gas accumulated in the grain boundaries. Besides this short-term effect there are diffusion-controlled long-term effects, such as growth and coalescence of bubbles and formation of inter-connected porosity, which result in time-dependent fission gas release and fuel swelling

  10. Three-dimensional stellarator equilibrium as an ohmic steady state

    International Nuclear Information System (INIS)

    Park, W.; Monticello, D.A.; Strauss, H.; Manickam, J.

    1985-07-01

    A stable three-dimensional stellarator equilibrium can be obtained numerically by a time-dependent relaxation method using small values of dissipation. The final state is an ohmic steady state which approaches an ohmic equilibrium in the limit of small dissipation coefficients. We describe a method to speed up the relaxation process and a method to implement the B vector . del p = 0 condition. These methods are applied to obtain three-dimensional heliac equilibria using the reduced heliac equations

  11. On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow.

    Science.gov (United States)

    Zhu, Zhongfan; Wang, Hongrui; Yu, Jingshan; Dou, Jie

    2016-01-01

    The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size.

  12. Steady-state fission gas behavior in uranium-plutonium-zirconium metal fuel elements

    International Nuclear Information System (INIS)

    Steele, W.G.; Wazzan, A.R.; Okrent, D.

    1989-01-01

    An analysis of fission gas release and induced swelling in steady state irradiated U-Pu-Zr metal fuels is developed and computer coded. The code is used to simulate, with fair success, some gas release and induced swelling data obtained under the IFR program. It is determined that fuel microstructural changes resulting from zirconium migration, anisotropic swelling, and thermal variations are major factors affecting swelling and gas release behavior. (orig.)

  13. The primary results for the mixed carbon material used for high flux steady-state tokamak operation in China

    International Nuclear Information System (INIS)

    Guo, Q.G.; Li, J.G.; Zhai, G.T.; Liu, L.; Song, J.R.; Zhang, L.F.; He, Y.X.; Chen, J.L.

    2001-01-01

    Several types of carbon mixed materials have been developed in China to be used for high flux steady-state tokamak operation. Performance evaluation of these materials is necessary to determine their applicability as PFCs for high flux steady state. This paper describes the primary results of carbon mixed materials and the effects of dopants on properties are primarily discussed. Test results reveal that bulk boronized graphite has excellent physical and mechanical properties while their thermal conductivity is no more than 73 W/m K due to the formation of a uniform boron-carbon solid solution. In case of multi-element doped graphite, titanium dopant or a decreased boron content is favorable to enhance thermal conductivity. A kind of doped graphite has been developed with thermal conductivity as high as 278 W/m K by optimizing the compositions. Correlations among compositions, microstructure and properties of such doped graphite are discussed

  14. CALiPER Retail Lamps Study 3.2: Lumen and Chromaticity Maintenance of LED A Lamps Operated in Steady-State Conditions

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-12-31

    This CALiPER report examines lumen depreciation and color shift of 17 different A lamps in steady-state conditions (15 LED, 1 CFL, 1 halogen). The goal of this investigation was to examine the long-term performance of complete LED lamps relative to benchmark halogen and CFL lamps—in this case, A lamps emitting approximately 800 lumens operated continuously at a relatively high ambient temperature of 45°C.

  15. Modular first wall concept for steady state operation

    International Nuclear Information System (INIS)

    Kotzlowski, H.E.

    1981-01-01

    On the basis of the limiter design proposed for ZEPHYR a first wall concept has been developed which can also be used as a large area limiter, heat shield or beam pump. Its specific feature is the thermal contact of the wall armour elements with the water-cooled base plates. The combination of radiation and contact cooling, compared with radiation only, helps to lower the steady state temperatures of the first wall by approximately 50 % and to reduce the cooling-time between discharges. Particulary the lower wall temperature give a larger margin for additional heating of the wall by plasma disruption or neutral beams until excessive erosion or damage of the armour takes place

  16. Steady-State Process Modelling

    DEFF Research Database (Denmark)

    Cameron, Ian; Gani, Rafiqul

    2011-01-01

    illustrate the “equation oriented” approach as well as the “sequential modular” approach to solving complex flowsheets for steady state applications. The applications include the Williams-Otto plant, the hydrodealkylation (HDA) of toluene, conversion of ethylene to ethanol and a bio-ethanol process....

  17. Analysis on the steady-state coherent synchrotron radiation with strong shielding

    International Nuclear Information System (INIS)

    Li, R.; Bohn, C.L.; Bisognano, J.J.

    1997-01-01

    There are several papers concerning shielding of coherent synchrotron radiation (CSR) emitted by a Gaussian line charge on a circular orbit centered between two parallel conducting plates. Previous asymptotic analyses in the frequency domain show that shielded steady-state CSR mainly arises from harmonics in the bunch frequency exceeding the threshold harmonic for satisfying the boundary conditions at the plates. In this paper the authors extend the frequency-domain analysis into the regime of strong shielding, in which the threshold harmonic exceeds the characteristic frequency of the bunch. The result is then compared to the shielded steady-state CSR power obtained using image charges

  18. The total quasi-steady-state approximation for complex enzyme reactions

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Bersani, A. M.; Bersani, E.

    2008-01-01

    ) approximation (or standard quasi-steady-state approximation (sQSSA)), which is valid when the enzyme concentration is sufficiently small. This condition is usually fulfilled for in vitro experiments, but often breaks down in vivo. The total QSSA (tQSSA), which is valid for a broader range of parameters covering...

  19. Non-equilibrium steady state of a driven levitated particle with feedback cooling

    International Nuclear Information System (INIS)

    Gieseler, Jan; Novotny, Lukas; Moritz, Clemens; Dellago, Christoph

    2015-01-01

    Laser trapped nanoparticles have been recently used as model systems to study fundamental relations holding far from equilibrium. Here we study a nanoscale silica sphere levitated by a laser in a low density gas. The center of mass motion of the particle is subjected, at the same time, to feedback cooling and a parametric modulation driving the system into a non-equilibrium steady state. Based on the Langevin equation of motion of the particle, we derive an analytical expression for the energy distribution of this steady state showing that the average and variance of the energy distribution can be controlled separately by appropriate choice of the friction, cooling and modulation parameters. Energy distributions determined in computer simulations and measured in a laboratory experiment agree well with the analytical predictions. We analyze the particle motion also in terms of the quadratures and find thermal squeezing depending on the degree of detuning. (paper)

  20. Pellet injectors for steady state plasma fuelling

    International Nuclear Information System (INIS)

    Vinyar, I.; Geraud, A.; Yamada, H.; Lukin, A.; Sakamoto, R.; Skoblikov, S.; Umov, A.; Oda, Y.; Gros, G.; Krasilnikov, I.; Reznichenko, P.; Panchenko, V.

    2005-01-01

    Successful steady state operation of a fusion reactor should be supported by repetitive pellet injection of solidified hydrogen isotopes in order to produce high performance plasmas. This paper presents pneumatic pellet injectors and its implementation for long discharge on the LHD and TORE SUPRA, and a new centrifuge pellet injector test results. All injectors are fitted with screw extruders well suited for steady state operation

  1. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    International Nuclear Information System (INIS)

    Bers, A.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma

  2. Steady-state and accident analyses of PBMR with the computer code SPECTRA

    International Nuclear Information System (INIS)

    Stempniewicz, Marek M.

    2002-01-01

    The SPECTRA code is an accident analysis code developed at NRG. It is designed for thermal-hydraulic analyses of nuclear or conventional power plants. The code is capable of analysing the whole power plant, including reactor vessel, primary system, various control and safety systems, containment and reactor building. The aim of the work presented in this paper was to prepare a preliminary thermal-hydraulic model of PBMR for SPECTRA, and perform steady state and accident analyses. In order to assess SPECTRA capability to model the PBMR reactors, a model of the INCOGEN system has been prepared first. Steady state and accident scenarios were analyzed for INCOGEN configuration. Results were compared to the results obtained earlier with INAS and OCTOPUS/PANTHERMIX. A good agreement was obtained. Results of accident analyses with PBMR model showed qualitatively good results. It is concluded that SPECTRA is a suitable tool for analyzing High Temperature Reactors, such as INCOGEN or for example PBMR (Pebble Bed Modular Reactor). Analyses of INCOGEN and PBMR systems showed that in all analyzed cases the fuel temperatures remained within the acceptable limits. Consequently there is no danger of release of radioactivity to the environment. It may be concluded that those are promising designs for future safe industrial reactors. (author)

  3. Design and Implementation of a Thermal Load Reduction System in a Hyundai PHEV

    Energy Technology Data Exchange (ETDEWEB)

    Kreutzer, Cory J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-08

    Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles including limited vehicle range and the elevated cost of EDVs as compared to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. In order to minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata PHEV. Technologies that impact vehicle cabin heating in cold weather conditions and cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning. Heated surfaces and increased insulation demonstrated significant reductions in energy use from steady-state heating, including a 29% - 59% reduction from heated surfaces. Solar control glass packages demonstrated significant reductions in energy use for both transient and steady-state cooling, with up to a 42% reduction in transient and 12.8% reduction in steady-state energy use for the packages evaluated. Technologies that demonstrated significant climate control load reduction were selected for incorporation into a complete thermal load reduction package. The complete package is set to be evaluated in the second phase of the ongoing project.

  4. Experiments on steady state particle control in Tore Supra and DIII-D

    International Nuclear Information System (INIS)

    Mioduszewski, P.K.; Hogan, J.T.; Owen, L.W.; Maingi, R.; Lee, D.K.; Hillis, D.L.; Klepper, C.C.; Menon, M.M.; Thomas, C.E.; Uckan, T.; Wade, M.R.; Chatelier, M.; Grisolia, C.; Ghendrih, P.; Grosman, A.; Hutter, T.; Loarer, T.; Pegourie, B.; Mahdavi, M.A.; Schaffer, M.

    1995-01-01

    Particle control is playing an increasingly important role in tokamak plasma performance. The present paper discusses particle control of hydogen/deuterium by wall pumping on graphite or carbonized surfaces, as well as by external exhaust with pumped limiters and pumped divertors. Wall pumping is ultimately a transient effect and by itself not suitable for steady state particle exhaust. Therefore, external exhaust techniques with pumped divertors and limiters are being developed. How wall pumping phenomena interact and correlate with these inherently steady state, external exhaust techniques, is not well known to date. In the present paper, the processes involved in wall pumping and in external pumping are investigated in an attempt to evaluate the effect of external exhaust on wall pumping. Some of the key elements of this analysis are: (1) charge-exchange fluxes to the wall play a crucial role in the core-wall particle dynamics, (2) the recycling fluxes of thermal molecules have a high probability of ionization in the scrape-off layer, (3) thermal particles originating from the wall, which are ionized within the scrape-off layer, can be directly exhausted, thus providing a direct path between wall and exhaust which can be used to control the wall inventory. This way, the wall can be kept in a continuous pumping state in the sense that it continuously absorbs energetic particles and releases thermal molecules which are then removed by the external exhaust mechanism. While most of the ingredients of this analysis have been observed individually before, the present evaluation is an attempt to correlate effects of wall recycling and external exhaust. ((orig.))

  5. The Non-Equilibrium Statistical Distribution Function for Electrons and Holes in Semiconductor Heterostructures in Steady-State Conditions

    Directory of Open Access Journals (Sweden)

    Krzysztof Jόzwikowska

    2015-06-01

    Full Text Available The main goal of this work is to determine a statistical non-equilibrium distribution function for the electron and holes in semiconductor heterostructures in steady-state conditions. Based on the postulates of local equilibrium, as well as on the integral form of the weighted Gyarmati’s variational principle in the force representation, using an alternative method, we have derived general expressions, which have the form of the Fermi–Dirac distribution function with four additional components. The physical interpretation of these components has been carried out in this paper. Some numerical results of a non-equilibrium distribution function for an electron in HgCdTe structures are also presented.

  6. Dissipative dark matter halos: The steady state solution. II.

    Science.gov (United States)

    Foot, R.

    2018-05-01

    Within the mirror dark matter model and dissipative dark matter models in general, halos around galaxies with active star formation (including spirals and gas-rich dwarfs) are dynamical: they expand and contract in response to heating and cooling processes. Ordinary type II supernovae (SNe) can provide the dominant heat source, which is possible if kinetic mixing interaction exists with strength ɛ ˜10-9- 10-10 . Dissipative dark matter halos can be modeled as a fluid governed by Euler's equations. Around sufficiently isolated and unperturbed galaxies the halo can relax to a steady state configuration, where heating and cooling rates locally balance and hydrostatic equilibrium prevails. These steady state conditions can be solved to derive the physical properties, including the halo density and temperature profiles, for model galaxies. Here, we consider idealized spherically symmetric galaxies within the mirror dark particle model, as in our earlier paper [Phys. Rev. D 97, 043012 (2018), 10.1103/PhysRevD.97.043012], but we assume that the local halo heating in the SN vicinity dominates over radiative sources. With this assumption, physically interesting steady state solutions arise which we compute for a representative range of model galaxies. The end result is a rather simple description of the dark matter halo around idealized spherically symmetric systems, characterized in principle by only one parameter, with physical properties that closely resemble the empirical properties of disk galaxies.

  7. Steady state compact toroidal plasma production

    Science.gov (United States)

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  8. 40 CFR 1039.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Science.gov (United States)

    2010-07-01

    ...-state duty cycles, including ramped-modal testing? 1039.505 Section 1039.505 Protection of Environment... duty cycles, including ramped-modal testing? This section describes how to test engines under steady-state conditions. In some cases, we allow you to choose the appropriate steady-state duty cycle for an...

  9. Steady-state solidification of aqueous ammonium chloride

    Science.gov (United States)

    Peppin, S. S. L.; Huppert, Herbert E.; Worster, M. Grae

    We report on a series of experiments in which a Hele-Shaw cell containing aqueous solutions of NH4Cl was translated at prescribed rates through a steady temperature gradient. The salt formed the primary solid phase of a mushy layer as the solution solidified, with the salt-depleted residual fluid driving buoyancy-driven convection and the development of chimneys in the mushy layer. Depending on the operating conditions, several morphological transitions occurred. A regime diagram is presented quantifying these transitions as a function of freezing rate and the initial concentration of the solution. In general, for a given concentration, increasing the freezing rate caused the steady-state system to change from a convecting mushy layer with chimneys to a non-convecting mushy layer below a relatively quiescent liquid, and then to a much thinner mushy layer separated from the liquid by a region of active secondary nucleation. At higher initial concentrations the second of these states did not occur. At lower concentrations, but still above the eutectic, the mushy layer disappeared. A simple mathematical model of the system is developed which compares well with the experimental measurements of the intermediate, non-convecting state and serves as a benchmark against which to understand some of the effects of convection. Movies are available with the online version of the paper.

  10. Steady state operation of a copper-water LHP with a flat-oval evaporator

    International Nuclear Information System (INIS)

    Becker, S.; Vershinin, S.; Sartre, V.; Laurien, E.; Bonjour, J.; Maydanik, Yu.F.

    2011-01-01

    In order to dissipate the heat generated by electronic boxes in avionic systems, a copper-water LHP with a flat-oval evaporator was fabricated and tested at steady state. The LHP consists of a flat shaped evaporator, 7 mm thick, including compensation chamber with attached heat exchanger. The condenser is cooled by forced convection of liquid. The variable parameters are the heat sink and ambient temperatures (20 and 55 o C), the orientation (-90 o to +90 o in two perpendicular planes) and the power input (0-100 W). Evaporator wall temperatures are higher when the evaporator is placed above the condenser. For heat sink and ambient temperature of 20 o C the evaporator wall temperature does not vary much with heat load for all measured elevations. But it fluctuates at heat sink and ambient temperature equal to 55 o C when the evaporator is placed below the condenser. The LHP total thermal resistance is governed by the condenser resistance. It decreases with increasing heat load, whatever the operating conditions, because the part of the condenser internal surface area used for condensation increases too. A minimum thermal resistance of 0.2 K/W was obtained. The maximum thermal resistance was 2.7 K/W.

  11. Modelling of PEM Fuel Cell Performance: Steady-State and Dynamic Experimental Validation

    Directory of Open Access Journals (Sweden)

    Idoia San Martín

    2014-02-01

    Full Text Available This paper reports on the modelling of a commercial 1.2 kW proton exchange membrane fuel cell (PEMFC, based on interrelated electrical and thermal models. The electrical model proposed is based on the integration of the thermodynamic and electrochemical phenomena taking place in the FC whilst the thermal model is established from the FC thermal energy balance. The combination of both models makes it possible to predict the FC voltage, based on the current demanded and the ambient temperature. Furthermore, an experimental characterization is conducted and the parameters for the models associated with the FC electrical and thermal performance are obtained. The models are implemented in Matlab Simulink and validated in a number of operating environments, for steady-state and dynamic modes alike. In turn, the FC models are validated in an actual microgrid operating environment, through the series connection of 4 PEMFC. The simulations of the models precisely and accurately reproduce the FC electrical and thermal performance.

  12. Steady State Shift Damage Localization

    DEFF Research Database (Denmark)

    Sekjær, Claus; Bull, Thomas; Markvart, Morten Kusk

    2017-01-01

    The steady state shift damage localization (S3DL) method localizes structural deterioration, manifested as either a mass or stiffness perturbation, by interrogating the damage-induced change in the steady state vibration response with damage patterns cast from a theoretical model. Damage is, thus...... the required accuracy when examining complex structures, an extensive amount of degrees of freedom (DOF) must often be utilized. Since the interrogation matrix for each damage pattern depends on the size of the system matrices constituting the FE-model, the computational time quickly becomes of first......-order importance. The present paper investigates two sub-structuring approaches, in which the idea is to employ Craig-Bampton super-elements to reduce the amount of interrogation distributions while still providing an acceptable localization resolution. The first approach operates on a strict super-element level...

  13. METHODOLOGICAL APPROACHES TO FORMATION OF CONDITIONS OF TRANSITION TO STEADY DEVELOPMENT OF THE CREDIT ORGANIZATIONS OF REGION

    Directory of Open Access Journals (Sweden)

    O.I. Pechonik

    2006-03-01

    Full Text Available Formation of conditions of transition to steady development of the credit organizations assumes presence of scientific toolkit which should have methodological character and represent a set of scientific receptions, methods and principles of research to which definition given clause is devoted. The executed research has shown, that the logic and the scheme of the scientific analysis of processes of maintenance with bank service of economic system of region and formation of conditions of steady development of regional bank system should: to be based on statistical methods with use of system of national accounts in addition with the SWOT-analysis of bank system; formation of conditions of transition to steady development to be spent in a complex and comprehensively; management of process of transition to steady development of bank system should be carried out at active state participation within the limits of creation socially focused according to plan-market economy. At the given approach formation of conditions of transition of regional bank system on steady development, in our opinion, becomes possible.

  14. Steady state and transient power handling in JET

    International Nuclear Information System (INIS)

    Matthews, G.F.

    2003-01-01

    Steady state and transient power deposition profiles have been measured in the JET MIIGB divertor using improved diagnostics techniques involving the use of fast infra-red, thermocouples and Langmuir probe arrays. In unfuelled type I ELMy H-modes a very narrow power profile is observed at the outer target which we associate with the ion channel. Systematic parameter scans have been carried out and our analysis shows that the average power width scaling is consistent with a classical dependence of perpendicular transport in the SOL. Using the fast IR capability the factors such as rise time, broadening, variability and in/out asymmetry have been studied and lead to the conclusion that type I ELMs in ITER may fall just below the material ablation limits. JET disruptions are very different from type I ELMs in that only a small fraction of the thermal energy reaches the divertor and what does arrive is distributed uniformly over the divertor area. This is very different from the current ITER assumption which puts most of the energy from the thermal quench onto the divertor strike points. (author)

  15. Steady states in conformal theories

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    A novel conjecture regarding the steady state behavior of conformal field theories placed between two heat baths will be presented. Some verification of the conjecture will be provided in the context of fluid dynamics and holography.

  16. Design criteria of the bolometer diagnostic for steady-state operation of the W7-X stellaratora

    NARCIS (Netherlands)

    Zhang, D.; Burhenn, R.; König, R.; Giannone, L.; Grodzki, P.A.; Klein, B.; Grosser, K.; Baldzuhn, J.; Ewert, K.; Erckmann, V.; Hirsch, M.; Laqua, H.P.; Oosterbeek, J.W.

    2010-01-01

    A bolometric diagnostic system with features necessary for steady-state operation in the superconducting stellarator W7-X was designed. During a pulse length of 1800 s with an ECRH (electron cyclotron resonance heating) power of 10 MW, the components suffer not only from a large thermal load but

  17. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma

  18. Analysis of the thermo-mechanical behaviour of the DEMO Water-Cooled Lithium Lead breeding blanket module under normal operation steady state conditions

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A.; Arena, P. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Aubert, J. [CEA Saclay, DEN/DANS/DM2S/SEMT, 91191 Gif sur Yvette Cedex (France); Bongiovì, G. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Chiovaro, P., E-mail: pierluigi.chiovaro@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Giammusso, R. [ENEA – C.R. Brasimone, 40032 Camugnano (Italy); Li Puma, A. [CEA Saclay, DEN/DANS/DM2S/SEMT, 91191 Gif sur Yvette Cedex (France); Tincani, A. [ENEA – C.R. Brasimone, 40032 Camugnano (Italy)

    2015-10-15

    Highlights: • A DEMO WCLL blanket module thermo-mechanical behaviour has been investigated. • Two models of the WCLL blanket module have been set-up adopting a code based on FEM. • The water flow domain in the module has been considered. • A set of uncoupled steady state thermo-mechanical analyses has been carried out. • Critical temperature is not overcome. Safety verifications are generally satisfied. - Abstract: Within the framework of DEMO R&D activities, a research cooperation has been launched between ENEA, the University of Palermo and CEA to investigate the thermo-mechanical behaviour of the outboard equatorial module of the DEMO1 Water-Cooled Lithium Lead (WCLL) blanket under normal operation steady state scenario. The research campaign has been carried out following a theoretical–computational approach based on the Finite Element Method (FEM) and adopting a qualified commercial FEM code. In particular, two different 3D FEM models (Model 1 and Model 2), reproducing respectively the central and the lateral poloidal–radial slices of the WCLL blanket module, have been set up. A particular attention has been paid to the modelling of water flow domain, within both the segment box channels and the breeder zone tubes, to simulate realistically the coolant-box thermal coupling. Results obtained are herewith reported and critically discussed.

  19. Differences between automatically detected and steady-state fractional flow reserve.

    Science.gov (United States)

    Härle, Tobias; Meyer, Sven; Vahldiek, Felix; Elsässer, Albrecht

    2016-02-01

    Measurement of fractional flow reserve (FFR) has become a standard diagnostic tool in the catheterization laboratory. FFR evaluation studies were based on pressure recordings during steady-state maximum hyperemia. Commercially available computer systems detect the lowest Pd/Pa ratio automatically, which might not always be measured during steady-state hyperemia. We sought to compare the automatically detected FFR and true steady-state FFR. Pressure measurement traces of 105 coronary lesions from 77 patients with intermediate coronary lesions or multivessel disease were reviewed. In all patients, hyperemia had been achieved by intravenous adenosine administration using a dosage of 140 µg/kg/min. In 42 lesions (40%) automatically detected FFR was lower than true steady-state FFR. Mean bias was 0.009 (standard deviation 0.015, limits of agreement -0.02, 0.037). In 4 lesions (3.8%) both methods lead to different treatment recommendations, in all 4 cases instantaneous wave-free ratio confirmed steady-state FFR. Automatically detected FFR was slightly lower than steady-state FFR in more than one-third of cases. Consequently, interpretation of automatically detected FFR values closely below the cutoff value requires special attention.

  20. Direct expansion solar assisted heat pumps – A clean steady state approach for overall performance analysis

    International Nuclear Information System (INIS)

    Tagliafico, Luca A.; Scarpa, Federico; Valsuani, Federico

    2014-01-01

    Traditional thermal solar panel technologies have limited efficiency and the required economic investments make them noncompetitive in the space heating market. The greatest limit to the diffusion of thermal solar systems is the characteristic temperatures they can reach: the strong connection between the user temperature and the collector temperature makes it possible to achieve high thermal (collector) efficiency only at low, often useless, user temperatures. By using solar collectors as thermal exchange units (evaporators) in a heat pump system (direct expansion solar assisted heat pump, DX-SAHP), the overall efficiency greatly increases with a significative cut of the associated investment in terms of pay-back time. In this study, an approach is proposed to the steady state analysis of DX-SAHP, which is based on the simplified inverse Carnot cycle and on the second law efficiency concept. This method, without the need of calculating the refrigerant fluid properties and the detailed processes occurring in the refrigeration device, allows us to link the main features of the plant to its relevant interactions with the surroundings. The very nature of the proposed method makes the relationship explicit and meaningful among all the involved variables. The paper, after the description of the method, presents an explanatory application of this technique by reviewing various aspects of the performance of a typical DX-SAHP in which the savings on primary energy consumption is regarded as the main feature of the plant and highlighted in a monthly averaged analysis. Results agree to those coming from a common standard steady state thermodynamic analysis. The application to a typical DX-SAHP system demonstrates that a mean saved primary energy of about 50% with respect to standard gas burner can be achieved for the same user needs. Such a result is almost independent from the type of flat plate solar panel used (double or single glazed, or even bare panels) as a result of

  1. Thermal sensations and comfort investigations in transient conditions in tropical office.

    Science.gov (United States)

    Dahlan, Nur Dalilah; Gital, Yakubu Yau

    2016-05-01

    The study was done to identify affective and sensory responses observed as a result of hysteresis effects in transient thermal conditions consisting of warm-neutral and neutral - warm performed in a quasi-experiment setting. Air-conditioned building interiors in hot-humid areas have resulted in thermal discomfort and health risks for people moving into and out of buildings. Reports have shown that the instantaneous change in air temperature can cause abrupt thermoregulation responses. Thermal sensation vote (TSV) and thermal comfort vote (TCV) assessments as a consequence of moving through spaces with distinct thermal conditions were conducted in an existing single-story office in a hot-humid microclimate, maintained at an air temperature 24 °C (± 0.5), relative humidity 51% (± 7), air velocity 0.5 m/s (± 0.5), and mean radiant temperature (MRT) 26.6 °C (± 1.2). The measured office is connected to a veranda that showed the following semi-outdoor temperatures: air temperature 35 °C (± 2.1), relative humidity 43% (± 7), air velocity 0.4 m/s (± 0.4), and MRT 36.4 °C (± 2.9). Subjective assessments from 36 college-aged participants consisting of thermal sensations, preferences and comfort votes were correlated against a steady state predicted mean vote (PMV) model. Local skin temperatures on the forehead and dorsal left hand were included to observe physiological responses due to thermal transition. TSV for veranda-office transition showed that no significant means difference with TSV office-veranda transition were found. However, TCV collected from warm-neutral (-0.24, ± 1.2) and neutral-warm (-0.72, ± 1.3) conditions revealed statistically significant mean differences (p thermal transition after travel from warm-neutral-warm conditions did not replicate the hysteresis effects of brief, slightly cool, thermal sensations found in previous laboratory experiments. These findings also indicate that PMV is an acceptable alternative to predict thermal

  2. Erratum to: Study on Chloride Ion Penetration Resistance of Rubberized Concrete Under Steady State Condition

    Directory of Open Access Journals (Sweden)

    Md Noor Nurazuwa

    2016-01-01

    In this paper, the effect of crumb rubber, CR as fine aggregate in the concrete to enhance concrete durability against chloride ion diffusion was studied. Chloride ion diffusion in rubberized concrete was tested by migration test under steady state condition. Concrete specimen with water-to-cement ratio of 0.50 was prepared to study the CR effectiveness in comparison with lower water-to-cement ratio. In addition, 10% silica fume, SF was added to provide denser concrete and to understand its effectiveness against chloride ion diffusion. Results showed that chloride transport characteristics were improved by the increasing amount of CR in all mixed due to the fact that CR has the ability to repel water. Meanwhile, rubberized concrete with w/c = 0.35 gave better resistance against chloride ion penetration compared to w/c = 0.50. This was much improved with combination of CR and SF.

  3. An equation oriented approach to steady state flowsheeting of methanol synthesis loop

    International Nuclear Information System (INIS)

    Fathikalajahi, J.; Baniadam, M.; Rahimpour, M.R.

    2008-01-01

    An equation-oriented approach was developed for steady state flowsheeting of a commercial methanol plant. The loop consists of fixed bed reactor, flash separator, preheater, coolers, and compressor. For steady sate flowsheeting of the plant mathematical model of reactor and other units are needed. Reactor used in loop is a Lurgi type and its configuration is rather complex. Previously reactor and flash separator are modeled as two important units of plant. The model is based on mass and energy balances in each equipment and utilizing some auxiliary equations such as rate of reaction and thermodynamics model for activity coefficients of liquid. In order to validate the mathematical model for the synthesis loop, some simulation data were performed using operating conditions and characteristics of the commercial plant. The good agreement between the steady state simulation results and the plant data shows the validity of the model

  4. Dynamics and non-equilibrium steady state in a system of coupled harmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Ghesquière, Anne, E-mail: Anne.Ghesquiere@nithep.ac.za; Sinayskiy, Ilya, E-mail: sinayskiy@ukzn.ac.za; Petruccione, Francesco, E-mail: petruccione@ukzn.ac.za

    2013-10-15

    A system of two coupled oscillators, each of them coupled to an independent reservoir, is analysed. The analytical solution of the non-rotating wave master equation is obtained in the high-temperature and weak coupling limits. No thermal entanglement is found in the high-temperature limit. In the weak coupling limit the system converges to an entangled non-equilibrium steady state. A critical temperature for the appearance of quantum correlations is found.

  5. Quantum entanglement at high temperatures? Bosonic systems in nonequilibrium steady state

    International Nuclear Information System (INIS)

    Hsiang, Jen-Tsung; Hu, B.L.

    2015-01-01

    This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state (NESS) conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures T_1>T_2. For constant bilinear inter-oscillator coupling studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting http://arxiv.org/abs/1405.7642. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal baths has a temperature higher than the critical temperature T_c, defined as the temperature above which quantum entanglement vanishes. With the Langevin equations derived we give a full display of how entanglement dynamics in this system depends on T_1, T_2, the inter-oscillator coupling and the system-bath coupling strengths. For weak oscillator-bath coupling the critical temperature T_c is about the order of the inverse oscillator frequency, but for strong oscillator-bath coupling it will depend on the bath cutoff frequency. We conclude that in most realistic circumstances, for bosonic systems in NESS with constant bilinear coupling, ‘hot entanglement’ is largely a fiction.

  6. Thermal Hydraulic Fortran Program for Steady State Calculations of Plate Type Fuel Research Reactors

    International Nuclear Information System (INIS)

    Khedr, H.

    2008-01-01

    The safety assessment of Research and Power Reactors is a continuous process over their life and that requires verified and validated codes. Power Reactor codes all over the world are well established and qualified against a real measuring data and qualified experimental facilities. These codes are usually sophisticated, require special skills and consume much more running time. On the other hand, most of the Research Reactor codes still requiring more data for validation and qualification. Therefore it is benefit for a regulatory body and the companies working in the area of Research Reactor assessment and design to have their own program that give them a quick judgment. The present paper introduces a simple one dimensional Fortran program called THDSN for steady state best estimate Thermal Hydraulic (TH) calculations of plate type fuel RRs. Beside calculating the fuel and coolant temperature distribution and pressure gradient in an average and hot channel the program calculates the safety limits and margins against the critical phenomena encountered in RR such as the burnout heat flux and the onset of flow instability. Well known TH correlations for calculating the safety parameters are used. THDSN program is verified by comparing its results for 2 and 10 MW benchmark reactors with that published in IAEA publications and good agreement is found. Also the program results are compared with those published for other programs such as PARET and TERMIC. An extension for this program is underway to cover the transient TH calculations

  7. Steady State versus Pulsed Tokamak DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Orsitto, F.P., E-mail: francesco.orsitto@enea.it [Associazione EURATOM-ENEA Unita Tecnica Fusione, Frascati (Italy); Todd, T. [CCFE/Fusion Association, Culham Science Centre, Abingdon (United Kingdom)

    2012-09-15

    Full text: The present report deals with a Review of problems for a Steady state(SS) DEMO, related argument is treated about the models and the present status of comparison between the characteristics of DEMO pulsed versus a Steady state device.The studied SS DEMO Models (SLIM CS, PPCS model C EU-DEMO, ARIES-RS) are analyzed from the point of view of the similarity scaling laws and critical issues for a steady state DEMO. A comparison between steady state and pulsed DEMO is therefore carried out: in this context a new set of parameters for a pulsed (6 - 8 hours pulse) DEMO is determined working below the density limit, peak temperature of 20 keV, and requiring a modest improvement in the confinement factor(H{sub IPBy2} = 1.1) with respect to the H-mode. Both parameters density and confinement parameter are lower than the DEMO models presently considered. The concept of partially non-inductive pulsed DEMO is introduced since a pulsed DEMO needs heating and current drive tools for plasma stability and burn control. The change of the main parameter design for a DEMO working at high plasma peak temperatures T{sub e} {approx} 35 keV is analyzed: in this range the reactivity increases linearly with temperature, and a device with smaller major radius (R = 7.5 m) is compatible with high temperature. Increasing temperature is beneficial for current drive efficiency and heat load on divertor, being the synchrotron radiation one of the relevant components of the plasma emission at high temperatures and current drive efficiency increases with temperature. Technology and engineering problems are examined including efficiency and availability R&D issues for a high temperature DEMO. Fatigue and creep-fatigue effects of pulsed operations on pulsed DEMO components are considered in outline to define the R&D needed for DEMO development. (author)

  8. Identification of alterations in the Jacobian of biochemical reaction networks from steady state covariance data at two conditions.

    Science.gov (United States)

    Kügler, Philipp; Yang, Wei

    2014-06-01

    Model building of biochemical reaction networks typically involves experiments in which changes in the behavior due to natural or experimental perturbations are observed. Computational models of reaction networks are also used in a systems biology approach to study how transitions from a healthy to a diseased state result from changes in genetic or environmental conditions. In this paper we consider the nonlinear inverse problem of inferring information about the Jacobian of a Langevin type network model from covariance data of steady state concentrations associated to two different experimental conditions. Under idealized assumptions on the Langevin fluctuation matrices we prove that relative alterations in the network Jacobian can be uniquely identified when comparing the two data sets. Based on this result and the premise that alteration is locally confined to separable parts due to network modularity we suggest a computational approach using hybrid stochastic-deterministic optimization for the detection of perturbations in the network Jacobian using the sparsity promoting effect of [Formula: see text]-penalization. Our approach is illustrated by means of published metabolomic and signaling reaction networks.

  9. Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods.

    Science.gov (United States)

    Maity, Somsubhra; Wu, Wei-Chen; Tracy, Joseph B; Clarke, Laura I; Bochinski, Jason R

    2017-08-17

    Anisotropically-shaped metal nanoparticles act as nanoscale heaters via excitation of a localized surface plasmon resonance, utilizing a photothermal effect which converts the optical energy into local heat. Steady-state temperatures within a polymer matrix embedded with gold nanorods undergoing photothermal heating using continuous-wave excitation are measured in the immediate spatial vicinity of the nanoparticle (referred to as the local temperature) from observing the rate of physical rotation of the asymmetric nanoparticles within the locally created polymer melt. Average temperatures across the entire (mostly solid) sample (referred to as the global temperature) are simultaneously observed using a fluorescence method from randomly dispersed molecular emitters. Comparing these two independent measurements in films having varying concentrations of nanorods reveals the interplay between the local and global temperatures, clearly demonstrating the capability of these material samples to sustain large steady-state spatial temperature gradients when experiencing continuous-wave excitation photothermal heating. These results are discussed quantitatively. Illustrative imaging studies of nanofibers under photothermal heating also support the presence of a large temperature gradient. Photothermal heating in this manner has potential utility in creating unique thermal processing conditions for outcomes such as driving chemical reactions, inducing crystallinity changes, or enhancing degradation processes in a manner unachievable by conventional heating methods.

  10. Calculation analysis on steady state natural circulation characteristics

    International Nuclear Information System (INIS)

    Wang Fei; Nie Changhua; Huang Yanping

    2005-01-01

    The calculation results of single-phase steady state natural circulation characteristics by using Retran02 code have been presented, good agreement is achieved between the verified calculation result and the experimental data which were conducted at a test facility. Based on the calculation model, some sensibility analyses were made and much deeper understanding for single-phase steady state natural circulation characteristics was obtained. (author)

  11. Diffusion-driven steady states of the Z-pinch

    International Nuclear Information System (INIS)

    Lehnert, B.

    1988-01-01

    Steady states of a Z-pinch where no electric field is imposed along the pinch axis by external means are investigated. In this case, diffusion-driven states become possible when imposed volume sources of particles and heat drive a radial diffusion velocity that, in its turn, generates the electric plasma current. The particle sources can be from pellet injection or a neutral gas blanket, and the heat sources provided by thermonuclear reactions or auxiliary heating. The present analysis and associated kinetic considerations indicate that steady diffusion-driven operation should become possible for certain classes of plasma profiles, without running into singularity problems at the pinch axis. Such operation leads to higher axial currents in a Z-pinch without an axial magnetic field than in a tokamaklike case under similar plasma conditions. The technical difficulty in realizing a volume distribution of particle sinks introduces certain constraints on the plasma and current profiles. This fact has to be taken into account in a stability analysis. Neoclassical or anomalous diffusion will increase the diffusion velocity of the plasma but is not expected to affect the main physical features of the present results

  12. Theoretical analysis of steady state operating forces in control valves

    Directory of Open Access Journals (Sweden)

    Basavaraj Hubballi

    2018-01-01

    Full Text Available The controlling components, such as valves are used to regulate controlled fluid power. It is not always possible to calculate valve forces accurately, and with some types of valves even the existence of certain types of forces cannot be predicted with certainty. In many cases, however, the analysis can be made fairly completely and accurately. The assumption of steady state conditions is valid for the valve alone, but transient effects in the rest of the system may be large. These effects are particularly important with regard to the instability of valves, where the system may react on the valve in such a way as to make it squeal or oscillate, sometimes with large amplitude. The origin of the steady state flow force understood from a brief qualitative explanation. The following paper will summarize much of what is known about valve forces in the spool type controlling element.

  13. Infinite slope stability under steady unsaturated seepage conditions

    Science.gov (United States)

    Lu, Ning; Godt, Jonathan W.

    2008-01-01

    We present a generalized framework for the stability of infinite slopes under steady unsaturated seepage conditions. The analytical framework allows the water table to be located at any depth below the ground surface and variation of soil suction and moisture content above the water table under steady infiltration conditions. The framework also explicitly considers the effect of weathering and porosity increase near the ground surface on changes in the friction angle of the soil. The factor of safety is conceptualized as a function of the depth within the vadose zone and can be reduced to the classical analytical solution for subaerial infinite slopes in the saturated zone. Slope stability analyses with hypothetical sandy and silty soils are conducted to illustrate the effectiveness of the framework. These analyses indicate that for hillslopes of both sandy and silty soils, failure can occur above the water table under steady infiltration conditions, which is consistent with some field observations that cannot be predicted by the classical infinite slope theory. A case study of shallow slope failures of sandy colluvium on steep coastal hillslopes near Seattle, Washington, is presented to examine the predictive utility of the proposed framework.

  14. The technology and science of steady-state operation in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Becoulet, A; Hoang, G T

    2008-01-01

    The steady-state operation of magnetically confined fusion plasmas is considered as one of the 'grand challenges' of future decades, if not the ultimate goal of the research and development activities towards a new source of energy. Reaching such a goal requires the high-level integration of both science and technology aspects of magnetic fusion into self-consistent plasma regimes in fusion-grade devices. On the physics side, the first constraint addresses the magnetic confinement itself which must be made persistent. This means to either rely on intrinsically steady-state configurations, like the stellarator one, or turn the inductively driven tokamak configuration into a fully non-inductive one, through a mix of additional current sources. The low efficiency of the external current drive methods and the necessity to minimize the re-circulating power claim for a current mix strongly weighted by the internal 'pressure driven' bootstrap current, itself strongly sensitive to the heat and particle transport properties of the plasma. A virtuous circle may form as the heat and particle transport properties are themselves sensitive to the current profile conditions. Note that several other factors, e.g. plasma rotation profile, magneto-hydro-dynamics activity, also influence the equilibrium state. In the present tokamak devices, several examples of such 'advanced tokamak' physics research demonstrate the feasibility of steady-state regimes, though with a number of open questions still under investigation. The modelling activity also progresses quite fast in this domain and supports understanding and extrapolation. This high level of physics sophistication of the plasma scenario however needs to be combined with steady-state technological constraints. The technology constraints for steady-state operation are basically twofold: the specific technologies required to reach the steady-state plasma conditions and the generic technologies linked to the long pulse operation of a

  15. Dynamic fluid connectivity during steady-state multiphase flow in a sandstone.

    Science.gov (United States)

    Reynolds, Catriona A; Menke, Hannah; Andrew, Matthew; Blunt, Martin J; Krevor, Samuel

    2017-08-01

    The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term "dynamic connectivity," using fast pore-scale X-ray imaging. We image the flow of N 2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.

  16. Comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element

    International Nuclear Information System (INIS)

    Wernsman, Bernard

    1997-01-01

    A comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element (TFE) is made. The single-cell TFE used in this study is the prototype for the 40 kW e space nuclear power system that is similar to the 6 kW e TOPAZ-II. The steady-state I-V measurements influence the emitter temperature due to electron cooling. Therefore, to eliminate the steady-state I-V measurement influence on the TFE and provide a better understanding of the behavior of the thermionic energy converter and TFE characteristics, dynamic I-V measurements are made. The dynamic I-V measurements are made at various input power levels, cesium pressures, collector temperatures, and steady-state current levels. From these measurements, it is shown that the dynamic I-V's do not change the TFE characteristics at a given operating point. Also, the evaluation of the collector work function from the dynamic I-V measurements shows that the collector optimization is not due to a minimum in the collector work function but due to an emission optimization. Since the dynamic I-V measurements do not influence the TFE characteristics, it is believed that these measurements can be done at a system level to understand the influence of TFE placement in the reactor as a function of the core thermal distribution

  17. Steady state and LOCA analysis of Kartini reactor using RELAP5/SCDAP code: The role of passive system

    Science.gov (United States)

    Antariksawan, Anhar R.; Wahyono, Puradwi I.; Taxwim

    2018-02-01

    Safety is the priority for nuclear installations, including research reactors. On the other hand, many studies have been done to validate the applicability of nuclear power plant based best estimate computer codes to the research reactor. This study aims to assess the applicability of the RELAP5/SCDAP code to Kartini research reactor. The model development, steady state and transient due to LOCA calculations have been conducted by using RELAP5/SCDAP. The calculation results are compared with available measurements data from Kartini research reactor. The results show that the RELAP5/SCDAP model steady state calculation agrees quite well with the available measurement data. While, in the case of LOCA transient simulations, the model could result in reasonable physical phenomena during the transient showing the characteristics and performances of the reactor against the LOCA transient. The role of siphon breaker hole and natural circulation in the reactor tank as passive system was important to keep reactor in safe condition. It concludes that the RELAP/SCDAP could be use as one of the tool to analyse the thermal-hydraulic safety of Kartini reactor. However, further assessment to improve the model is still needed.

  18. Steady State Stokes Flow Interpolation for Fluid Control

    DEFF Research Database (Denmark)

    Bhatacharya, Haimasree; Nielsen, Michael Bang; Bridson, Robert

    2012-01-01

    — suffer from a common problem. They fail to capture the rotational components of the velocity field, although extrapolation in the normal direction does consider the tangential component. We address this problem by casting the interpolation as a steady state Stokes flow. This type of flow captures......Fluid control methods often require surface velocities interpolated throughout the interior of a shape to use the velocity as a feedback force or as a boundary condition. Prior methods for interpolation in computer graphics — velocity extrapolation in the normal direction and potential flow...

  19. The Markov process admits a consistent steady-state thermodynamic formalism

    Science.gov (United States)

    Peng, Liangrong; Zhu, Yi; Hong, Liu

    2018-01-01

    The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.

  20. Some Considerations on the Fundamentals of Chemical Kinetics: Steady State, Quasi-Equilibrium, and Transition State Theory

    Science.gov (United States)

    Perez-Benito, Joaquin F.

    2017-01-01

    The elementary reaction sequence A ? I ? Products is the simplest mechanism for which the steady-state and quasi-equilibrium kinetic approximations can be applied. The exact integrated solutions for this chemical system allow inferring the conditions that must fulfill the rate constants for the different approximations to hold. A graphical…

  1. Finite-element analysis of elastic sound-proof coupling thermal state

    Science.gov (United States)

    Tsyss, V. G.; Strokov, I. M.; Sergaeva, M. Yu

    2018-01-01

    The aim is in calculated determining of the elastic rubber-metal element thermal state of soundproof coupling ship shafting under variable influence during loads in time. Thermal coupling calculation is performed with finite element method using NX Simens software with Nastran solver. As a result of studies, the following results were obtained: - a volumetric picture of the temperature distribution over the array of the deformed coupling body is obtained; - time to reach steady-state thermal coupling mode has been determined; - dependences of maximum temperature and time to reach state on the established operation mode on rotation frequency and ambient temperature are determined. The findings prove the conclusion that usage of finite element analysis modern software can significantly speed up problem solving.

  2. Steady state quantum discord for circularly accelerated atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jiawei, E-mail: hujiawei@nbu.edu.cn [Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn [Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China)

    2015-12-15

    We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptotic value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.

  3. Contour analysis of steady state tokamak reactor performance

    International Nuclear Information System (INIS)

    Devoto, R.S.; Fenstermacher, M.E.

    1990-01-01

    A new method of analysis for presenting the possible operating space for steady state, non-ignited tokamak reactors is proposed. The method uses contours of reactor performance and plasma characteristics, fusion power gain, wall neutron flux, current drive power, etc., plotted on a two-dimensional grid, the axes of which are the plasma current I p and the normalized beta, β n = β/(I p /aB 0 ), to show possible operating points. These steady state operating contour plots are called SOPCONS. This technique is illustrated in an application to a design for the International Thermonuclear Experimental Reactor (ITER) with neutral beam, lower hybrid and bootstrap current drive. The utility of the SOPCON plots for pointing out some of the non-intuitive considerations in steady state reactor design is shown. (author). Letter-to-the-editor. 16 refs, 3 figs, 1 tab

  4. Minimal gain marching schemes: searching for unstable steady-states with unsteady solvers

    Science.gov (United States)

    de S. Teixeira, Renan; S. de B. Alves, Leonardo

    2017-12-01

    Reference solutions are important in several applications. They are used as base states in linear stability analyses as well as initial conditions and reference states for sponge zones in numerical simulations, just to name a few examples. Their accuracy is also paramount in both fields, leading to more reliable analyses and efficient simulations, respectively. Hence, steady-states usually make the best reference solutions. Unfortunately, standard marching schemes utilized for accurate unsteady simulations almost never reach steady-states of unstable flows. Steady governing equations could be solved instead, by employing Newton-type methods often coupled with continuation techniques. However, such iterative approaches do require large computational resources and very good initial guesses to converge. These difficulties motivated the development of a technique known as selective frequency damping (SFD) (Åkervik et al. in Phys Fluids 18(6):068102, 2006). It adds a source term to the unsteady governing equations that filters out the unstable frequencies, allowing a steady-state to be reached. This approach does not require a good initial condition and works well for self-excited flows, where a single nonzero excitation frequency is selected by either absolute or global instability mechanisms. On the other hand, it seems unable to damp stationary disturbances. Furthermore, flows with a broad unstable frequency spectrum might require the use of multiple filters, which delays convergence significantly. Both scenarios appear in convectively, absolutely or globally unstable flows. An alternative approach is proposed in the present paper. It modifies the coefficients of a marching scheme in such a way that makes the absolute value of its linear gain smaller than one within the required unstable frequency spectra, allowing the respective disturbance amplitudes to decay given enough time. These ideas are applied here to implicit multi-step schemes. A few chosen test cases

  5. VALIDITY OF EXCESS ENTROPY PRODUCTION CRITERION OF THERMODYNAMIC STABILITY FOR NONEQUILIBRIUM STEADY STATES

    Institute of Scientific and Technical Information of China (English)

    吴金平

    1991-01-01

    The relation between the excess entropy production criterion of thermodynamic stabilityfor nonequilibrium states and kinetic linear stability principle is discussed. It is shown thatthe condition required by the excess entropy production criterion generally is sufficient, butnot necessary to judge the system stability. The condition required by the excess entropyproduction criterion is stronger than that of the linear stability principle. Only when theproduct matrix between the linearized matrix of kinetic equations and matrix of quadraticform of second-order excess entropy is symmetric, is the condition required by the excessentropy production criterion that the steady steate is asymptotically stable (δ_xP>0) necessaryand sufficient. The counterexample given by Fox to prove that the excess entropy, (δ~2S)ss,is not a Liapunov function is incorrect. Contradictory to his conclusion, the counterexampleis just a positive one that proves that the excess entropy is a Liapunov function. Moreover,the excess entropy production criterion is not limited by symmetric conditions of the linear-ized matrix of kinetic equations. The excess entropy around nonequilibrium steady states,(δ~2S)ss, is a Liapunov function of thermodynamic system.

  6. Modeling of the blood rheology in steady-state shear flows

    International Nuclear Information System (INIS)

    Apostolidis, Alex J.; Beris, Antony N.

    2014-01-01

    We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress that acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling

  7. Steady-state spheromak reactor studies

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Hagenson, R.L.

    1985-01-01

    After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design points is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported

  8. Steady-state pulses and superradiance in short-wavelength, swept-gain amplifiers

    International Nuclear Information System (INIS)

    Bonifacio, R.; Hopf, F.A.; Meystre, P.; Scully, M.O.

    1975-01-01

    The steady-state behavior of amplifiers in which the excitation is swept at the speed of light is discussed in the semiclassical approximation. In the present work the case where the decay time of the population is comparable to that of the polarization is examined. Pulse propagation is shown to obey a generalized sine-Gordon equation which contains the effects of atomic relaxations. The analytical expression of the steady-state pulses (SSP) gives two threshold conditions. In the region of limited gain the SSP is a broad pulse with small area which can be obtained by small signal theory. In the second region of high gain the SSP is the superradiant π pulse. Its pulse power is not limited as in usual superradiant theory because, as is shown, for a swept excitation the cooperation-length limit does not exist

  9. High pulse number thermal shock tests on tungsten with steady state particle background

    Science.gov (United States)

    Wirtz, M.; Kreter, A.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Sergienko, G.; Steudel, I.; Unterberg, B.; Wessel, E.

    2017-12-01

    Thermal fatigue of metallic materials, which will be exposed to severe environmental conditions e.g. plasma facing materials in future fusion reactors, is an important issue in order to predict the life time of complete wall components. Therefore experiments in the linear plasma device PSI-2 were performed to investigate the synergistic effects of high pulse number thermal shock events (L = 0.38 GW m-2, Δt = 0.5 ms) and stationary D/He (6%) plasma particle background on the thermal fatigue behavior of tungsten. Similar to experiments with pure thermal loads, the induced microstructural and surface modifications such as recrystallization and roughening as well as crack formation become more pronounced with increasing number of thermal shock events. However, the amount of damage significantly increases for synergistic loads showing severe surface roughening, plastic deformation and erosion resulting from the degradation of the mechanical properties caused by bombardment and diffusion of D/He to the surface and the bulk of the material. Additionally, D/He induced blistering and bubble formation were observed for all tested samples, which could change the thermal and mechanical properties of near surface regions.

  10. Steady state of tapped granular polygons

    International Nuclear Information System (INIS)

    Carlevaro, Carlos M; Pugnaloni, Luis A

    2011-01-01

    The steady state packing fraction of a tapped granular bed is studied for different grain shapes via a discrete element method. Grains are monosized regular polygons, from triangles to icosagons. Comparisons with disc packings show that the steady state packing fraction as a function of the tapping intensity presents the same general trends in polygon packings. However, better packing fractions are obtained, as expected, for shapes that can tessellate the plane (triangles, squares and hexagons). In addition, we find a sharp transition for packings of polygons with more than 13 vertices signaled by a discontinuity in the packing fraction at a particular tapping intensity. Density fluctuations for most shapes are consistent with recent experimental findings in disc packing; however, a peculiar behavior is found for triangles and squares

  11. Design criteria of the bolometer diagnostic for steady-state operation of the W7-X stellarator

    International Nuclear Information System (INIS)

    Zhang, D.; Burhenn, R.; Koenig, R.; Giannone, L.; Grodzki, P. A.; Klein, B.; Grosser, K.; Baldzuhn, J.; Ewert, K.; Erckmann, V.; Hirsch, M.; Laqua, H. P.; Oosterbeek, J. W.

    2010-01-01

    A bolometric diagnostic system with features necessary for steady-state operation in the superconducting stellarator W7-X was designed. During a pulse length of 1800 s with an ECRH (electron cyclotron resonance heating) power of 10 MW, the components suffer not only from a large thermal load but also from stray radiation of the nonabsorbed isotropic microwaves. This paper gives an overview of the technical problems encountered during the design work and the solutions to individual problems to meet the special requirements in W7-X, e.g., component thermal protection, detector offset thermal drift suppression, as well as a microwave shielding technique.

  12. Design criteria of the bolometer diagnostic for steady-state operation of the W7-X stellaratora)

    Science.gov (United States)

    Zhang, D.; Burhenn, R.; Koenig, R.; Giannone, L.; Grodzki, P. A.; Klein, B.; Grosser, K.; Baldzuhn, J.; Ewert, K.; Erckmann, V.; Hirsch, M.; Laqua, H. P.; Oosterbeek, J. W.

    2010-10-01

    A bolometric diagnostic system with features necessary for steady-state operation in the superconducting stellarator W7-X was designed. During a pulse length of 1800 s with an ECRH (electron cyclotron resonance heating) power of 10 MW, the components suffer not only from a large thermal load but also from stray radiation of the nonabsorbed isotropic microwaves. This paper gives an overview of the technical problems encountered during the design work and the solutions to individual problems to meet the special requirements in W7-X, e.g., component thermal protection, detector offset thermal drift suppression, as well as a microwave shielding technique.

  13. Steady-state propagation of interface corner crack

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Jensen, Henrik Myhre

    2013-01-01

    Steady-state propagation of interface cracks close to three-dimensional corners has been analyzed. Attention was focused on modeling the shape of the interface crack front and calculating the critical stress for steady-state propagation of the crack. The crack propagation was investigated...... on the finite element method with iterative adjustment of the crack front to estimate the critical delamination stresses as a function of the fracture criterion and corner angles. The implication of the results on the delamination is discussed in terms of crack front profiles and the critical stresses...... for propagation and the angle of intersection of the crack front with the free edge....

  14. Modelling of a stirling cryocooler regenerator under steady and steady - periodic flow conditions using a correlation based method

    Science.gov (United States)

    Kishor Kumar, V. V.; Kuzhiveli, B. T.

    2017-12-01

    The performance of a Stirling cryocooler depends on the thermal and hydrodynamic properties of the regenerator in the system. CFD modelling is the best technique to design and predict the performance of a Stirling cooler. The accuracy of the simulation results depend on the hydrodynamic and thermal transport parameters used as the closure relations for the volume averaged governing equations. A methodology has been developed to quantify the viscous and inertial resistance terms required for modelling the regenerator as a porous medium in Fluent. Using these terms, the steady and steady - periodic flow of helium through regenerator was modelled and simulated. Comparison of the predicted and experimental pressure drop reveals the good predictive power of the correlation based method. For oscillatory flow, the simulation could predict the exit pressure amplitude and the phase difference accurately. Therefore the method was extended to obtain the Darcy permeability and Forchheimer’s inertial coefficient of other wire mesh matrices applicable to Stirling coolers. Simulation of regenerator using these parameters will help to better understand the thermal and hydrodynamic interactions between working fluid and the regenerator material, and pave the way to contrive high performance, ultra-compact free displacers used in miniature Stirling cryocoolers in the future.

  15. Steady-state leaching of tritiated water from silica gel

    DEFF Research Database (Denmark)

    Das, H.A.; Hou, Xiaolin

    2009-01-01

    Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion.......Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion....

  16. Quasi steady-state aerodynamic model development for race vehicle simulations

    Science.gov (United States)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-01-01

    Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.

  17. Steady-state capabilities for hydroturbines with OpenFOAM

    Science.gov (United States)

    Page, M.; Beaudoin, M.; Giroux, A. M.

    2010-08-01

    The availability of a high quality Open Source CFD simulation platform like OpenFOAM offers new R&D opportunities by providing direct access to models and solver implementation details. Efforts have been made by Hydro-Québec to adapt OpenFOAM to hydroturbines for the development of steady-state capabilities. The paper describes the developments that have been made to implement new turbomachinery related capabilities: Multiple Frame of Reference solver, domain coupling interfaces (GGI, cyclicGGI and mixing plane) and specialized boundary conditions. Practical use of the new turbomachinery capabilities are demonstrated for the analysis of a 195-MW Francis hydroturbine.

  18. Steady-state capabilities for hydroturbines with OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Page, M; Beaudoin, M; Giroux, A M, E-mail: page.maryse@ireq.c [Hydro-Quebec, Institut de recherche 1800 Lionel-Boulet, Varennes, Quebec J3X 1S1 (Canada)

    2010-08-15

    The availability of a high quality Open Source CFD simulation platform like OpenFOAM offers new R and D opportunities by providing direct access to models and solver implementation details. Efforts have been made by Hydro-Quebec to adapt OpenFOAM to hydroturbines for the development of steady-state capabilities. The paper describes the developments that have been made to implement new turbomachinery related capabilities: Multiple Frame of Reference solver, domain coupling interfaces (GGI, cyclicGGI and mixing plane) and specialized boundary conditions. Practical use of the new turbomachinery capabilities are demonstrated for the analysis of a 195-MW Francis hydroturbine.

  19. Steady-state capabilities for hydroturbines with OpenFOAM

    International Nuclear Information System (INIS)

    Page, M; Beaudoin, M; Giroux, A M

    2010-01-01

    The availability of a high quality Open Source CFD simulation platform like OpenFOAM offers new R and D opportunities by providing direct access to models and solver implementation details. Efforts have been made by Hydro-Quebec to adapt OpenFOAM to hydroturbines for the development of steady-state capabilities. The paper describes the developments that have been made to implement new turbomachinery related capabilities: Multiple Frame of Reference solver, domain coupling interfaces (GGI, cyclicGGI and mixing plane) and specialized boundary conditions. Practical use of the new turbomachinery capabilities are demonstrated for the analysis of a 195-MW Francis hydroturbine.

  20. Steady State Advanced Tokamak (SSAT): The mission and the machine

    International Nuclear Information System (INIS)

    Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.

    1992-03-01

    Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the US National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new ''Steady State Advanced Tokamak'' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO

  1. BR2 reactor core steady state transient modeling

    International Nuclear Information System (INIS)

    Makarenko, A.; Petrova, T.

    2000-01-01

    A coupled neutronics/hydraulics/heat-conduction model of the BR2 reactor core is under development at SCK-CEN. The neutron transport phenomenon has been implemented as steady state and time dependent nodal diffusion. The non-linear heat conduction equation in-side fuel elements is solved with a time dependent finite element method. To allow coupling between functional modules and to simulate subcooled regimes, a simple single-phase hydraulics has been introduced, while the two-phase hydraulics is under development. Multiple tests, general benchmark cases as well as calculation/experiment comparisons demonstrated a good accuracy of both neutronic and thermal hydraulic models, numerical reliability and full code portability. A refinement methodology has been developed and tested for better neutronic representation in hexagonal geometry. Much effort is still needed to complete the development of an extended cross section library with kinetic data and two-phase flow representation. (author)

  2. Assessing Quasi-Steady State in Evaporation of Sessile Drops by Diffusion Models

    Science.gov (United States)

    Martin, Cameron; Nguyen, Hoa; Kelly-Zion, Peter; Pursell, Chris

    2017-11-01

    The vapor distributions surrounding sessile drops of methanol are modeled as the solutions of the steady-state and transient diffusion equations using Matlab's PDE Toolbox. The goal is to determine how quickly the transient diffusive transport reaches its quasi-steady state as the droplet geometry is varied between a Weber's disc, a real droplet shape, and a spherical cap with matching thickness or contact angle. We assume that the only transport mechanism at work is diffusion. Quasi-steady state is defined using several metrics, such as differences between the transient and steady-state solutions, and change in the transient solution over time. Knowing the vapor distribution, the gradient is computed to evaluate the diffusive flux. The flux is integrated along the surface of a control volume surrounding the drop to obtain the net rate of diffusion out of the volume. Based on the differences between the transient and steady-state diffusive fluxes at the discrete points along the control-volume surface, the time to reach quasi-steady state evaporation is determined and is consistent with other proposed measurements. By varying the dimensions of the control volume, we can also assess what regimes have equivalent or different quasi-steady states for different droplet geometries. Petroleum Research Fund.

  3. Development of LIFE4-CN: a combined code for steady-state and transient analyses of advanced LMFBR fuels

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Zawadzki, S.; Billone, M.C.; Nayak, U.P.; Roth, T.

    1979-01-01

    The methodology used to develop the LMFBR carbide/nitride fuels code, LIFE4-CN, is described in detail along with some subtleties encountered in code development. Fuel primary and steady-state thermal creep have been used as an example to illustrate the need for physical modeling and the need to recognize the importance of the materials characteristics. A self-consistent strategy for LIFE4-CN verification against irradiation data has been outlined with emphasis on the establishment of the gross uncertainty bands. These gross uncertainty bands can be used as an objective measure to gauge the overall success of the code predictions. Preliminary code predictions for sample steady-state and transient cases are given

  4. Methods of computing steady-state voltage stability margins of power systems

    Science.gov (United States)

    Chow, Joe Hong; Ghiocel, Scott Gordon

    2018-03-20

    In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.

  5. Comparison between temperature distributions of an annular fuel rod of circular cross-section and of a hemoglobin shaped cross-section rod for PWR reactors in steady state conditions

    International Nuclear Information System (INIS)

    Oliveira, Maria Vitória A. de; Alvim, Antônio Carlos Marques

    2017-01-01

    The objective of this work is to make a comparison between the temperature distributions of an annular fuel rod of circular cross-section and a hemoglobin shaped cross-section for PWR reactors in steady state conditions. The motivation for this article is due to the fact that the symmetric form of the red globules particles allows the O 2 gases to penetrate the center of the cell homogeneously and quickly. The diffusion equation of gases in any environment is very similar to the heat diffusion equation: Diffusion - Fick's Law; Heat Flow - Fourier; where, the temperature (T) replaces the concentration (c). In previous works the comparison between the shape of solid fuel rods with circular section, and a with hemoglobin-shaped cross-section has proved that this new format optimizes the heat transfer, decreasing the thermal resistance between the center of the UO 2 pellets and the clad. With this, a significant increase in the specific power of the reactor was made possible (more precisely a 23% increase). Currently, the advantages of annular fuel rods are being studied and recent works have shown that 12 x 12 arrays of annular fuel rods perform better, increasing the specific power of the reactor by at least 20% in relation to solid fuel rods, without affecting the safety of the reactor. Our proposal is analyzing the temperature distribution in annular fuel rods with cross sections with red blood cell shape and compare with the theoretical results of the annular fuel rods of circular cross section, initially in steady state. (author)

  6. Comparison between temperature distributions of an annular fuel rod of circular cross-section and of a hemoglobin shaped cross-section rod for PWR reactors in steady state conditions

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Maria Vitória A. de; Alvim, Antônio Carlos Marques, E-mail: moliveira@con.ufrj.br, E-mail: alvim@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    The objective of this work is to make a comparison between the temperature distributions of an annular fuel rod of circular cross-section and a hemoglobin shaped cross-section for PWR reactors in steady state conditions. The motivation for this article is due to the fact that the symmetric form of the red globules particles allows the O{sub 2} gases to penetrate the center of the cell homogeneously and quickly. The diffusion equation of gases in any environment is very similar to the heat diffusion equation: Diffusion - Fick's Law; Heat Flow - Fourier; where, the temperature (T) replaces the concentration (c). In previous works the comparison between the shape of solid fuel rods with circular section, and a with hemoglobin-shaped cross-section has proved that this new format optimizes the heat transfer, decreasing the thermal resistance between the center of the UO{sub 2} pellets and the clad. With this, a significant increase in the specific power of the reactor was made possible (more precisely a 23% increase). Currently, the advantages of annular fuel rods are being studied and recent works have shown that 12 x 12 arrays of annular fuel rods perform better, increasing the specific power of the reactor by at least 20% in relation to solid fuel rods, without affecting the safety of the reactor. Our proposal is analyzing the temperature distribution in annular fuel rods with cross sections with red blood cell shape and compare with the theoretical results of the annular fuel rods of circular cross section, initially in steady state. (author)

  7. Steady state and linear stability analysis of a supercritical water natural circulation loop

    International Nuclear Information System (INIS)

    Sharma, Manish; Pilkhwal, D.S.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2010-01-01

    Supercritical water (SCW) has excellent heat transfer characteristics as a coolant for nuclear reactors. Besides it results in high thermal efficiency of the plant. However, the flow can experience instabilities in supercritical water reactors, as the density change is very large for the supercritical fluids. A computer code SUCLIN using supercritical water properties has been developed to carry out the steady state and linear stability analysis of a SCW natural circulation loop. The conservation equations of mass, momentum and energy have been linearized by imposing small perturbation in flow rate, enthalpy, pressure and specific volume. The equations have been solved analytically to generate the characteristic equation. The roots of the equation determine the stability of the system. The code has been qualitatively assessed with published results and has been extensively used for studying the effect of diameter, height, heater inlet temperature, pressure and local loss coefficients on steady state and stability behavior of a Supercritical Water Natural Circulation Loop (SCWNCL). The present paper describes the linear stability analysis model and the results obtained in detail.

  8. Evaluating steady-state soil thickness by coupling uranium series and 10Be cosmogenic radionuclides

    Science.gov (United States)

    Vanacker, Veerle; Schoonejans, Jerome; Opfergelt, Sophie; Granet, Matthieu; Christl, Marcus; Chabaux, Francois

    2017-04-01

    Within the Critical Zone, the development of the regolith mantle is controlled by the downwards propagation of the weathering front into the bedrock and denudation at the surface of the regolith by mass movements, water and wind erosion. When the removal of surface material is approximately balanced by the soil production, the soil system is assumed to be in steady-state. The steady state soil thickness (or so-called SSST) can be considered as a dynamic equilibrium of the system, where the thickness of the soil mantle stays relatively constant over time. In this study, we present and compare analytical data from two independent isotopic techniques: in-situ produced cosmogenic nuclides and U-series disequilibria to constrain soil development under semi-arid climatic conditions. The Spanish Betic Cordillera (Southeast Spain) was selected for this study, as it offers us a unique opportunity to analyze soil thickness steady-state conditions for thin soils of semiarid environments. Three soil profiles were sampled across the Betic Ranges, at the ridge crest of zero-order catchments with distinct topographic relief, hillslope gradient and 10Be-derived denudation rate. The magnitude of soil production rates determined based on U-series isotopes (238U, 234U, 230Th and 226Ra) is in the same order of magnitude as the 10Be-derived denudation rates, suggesting steady state soil thickness in two out of three sampling sites. The results suggest that coupling U-series isotopes with in-situ produced radionuclides can provide new insights in the rates of soil development; and also illustrate the potential frontiers in applying U-series disequilibria to track soil production in rapidly eroding landscapes characterized by thin weathering depths.

  9. Steady-State Clozapine and Norclozapine Pharmacokinetics in Maori and European Patients.

    Science.gov (United States)

    Menkes, David B; Glue, Paul; Gale, Christopher; Lam, Frederic; Hung, Cheung-Tak; Hung, Noelyn

    2018-01-01

    Clozapine is the most effective drug for treatment-resistant schizophrenia, but its use is limited by toxicity. Because ethnicity has been reported to affect clozapine metabolism, we compared its steady state pharmacokinetics in New Zealand Maori and European patients. Clozapine and norclozapine steady state bioavailability was assessed over 24h under fasting and fed conditions in 12 Maori and 16 European patients treated for chronic psychotic illnesses with stable once-daily clozapine doses. Plasma clozapine and norclozapine concentrations were assessed using liquid chromatography with tandem mass spectrometry; pharmacokinetic parameters were calculated using standard non-compartmental methods, and compared using unpaired t-tests. Mean pharmacokinetic parameters (AUC, C max and C min ) for clozapine and norclozapine were virtually identical in Maori and European subjects, under both fed and fasted conditions. Clozapine bioavailability does not vary between Maori and European patients, and thus does not need to be considered in prescribing decisions. Additional studies are needed to identify if there are differences between Maori and European populations for drugs metabolized by other enzyme pathways. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Radial lip seals, thermal aspects

    NARCIS (Netherlands)

    Stakenborg, M.J.L.; van Ostaijen, R.A.J.; Dowson, D.

    1989-01-01

    In this paper the influence of temperature on tne seal-snarc contact is studied, using coupled temperature-stress FEH analysis. A thermal network model is used to calculate the seal-shaft contact temperature for steady-state and transient conditions. Contact temperatures were measured under the seal

  11. Effects of non-steady irradiation conditions on fusion materials performance

    International Nuclear Information System (INIS)

    Matsui, H.; Fukumoto, K.; Nagumo, T.; Nita, N.

    2001-01-01

    During startup of fusion reactors, materials are exposed to neutron irradiation under non-steady temperature condition. Since the temperature of irradiation has decisive effects on the microstructural evolution, the non-steady temperature will have important consequences in the performance of fusion reactor materials. In the present study, a series of vanadium based alloys have been irradiated with neutrons in a temperature cycling condition. It has been found from this study that cavity number density is much greater in temperature cycled specimens than in steady temperature irradiation. Keeping the upper temperature constant, cavity number density is greater for smaller difference between the upper and the lower temperature. It follows that relatively small temperature excursions may have rather significant effects on the fusion material performance in service. (author)

  12. Thermal shock behaviour of different tungsten grades under varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, Oliver Marius

    2012-07-19

    Thermonuclear fusion power plants are a promising option to ensure the energy supply for future generations, but in many fields of research enormous challenges have to be faced. A major step on the way to the prototype fusion reactor DEMO will be ITER which is build in Cadarache, southern France. One of the most critical issues is the field of in-vessel materials and components, in particular the plasma facing materials (PFM). PFMs that will be used in a device like ITER have to withstand severe environmental conditions in terms of steady state and transient thermal loads as well as high particle fluxes such as hydrogen, helium and neutrons. Candidate wall materials are beryllium, tungsten and carbon based materials like CFC (carbon fibre composite). Tungsten is the most promising material for an application in the divertor region with very severe loading conditions and it will most probably also be used as PFM for DEMO. Hence, this work focuses on the investigation of the thermal shock response of different tungsten grades in order to understand the damage mechanisms and to identify material parameters which influence this behaviour under ITER and DEMO relevant operation conditions. Therefore the microstructure and the mechanical and thermal properties of five industrially manufactured tungsten grades were characterised. All five tungsten grades were exposed to transient thermal events with very high power densities of up to 1.27 GWm{sup -2} at varying base temperatures between RT and 600 C in the electron beam device JUDITH 1. The pulse numbers were limited to a maximum of 1000 in order to avoid immoderate workload on the test facility and to have enough time to cover a wide range of loading conditions. The results of this damage mapping enable to define different damage and cracking thresholds for the investigated tungsten grades and to identify certain material parameters which influence the location of these thresholds and the distinction of the induced

  13. Thermal shock behaviour of different tungsten grades under varying conditions

    International Nuclear Information System (INIS)

    Wirtz, Oliver Marius

    2012-01-01

    Thermonuclear fusion power plants are a promising option to ensure the energy supply for future generations, but in many fields of research enormous challenges have to be faced. A major step on the way to the prototype fusion reactor DEMO will be ITER which is build in Cadarache, southern France. One of the most critical issues is the field of in-vessel materials and components, in particular the plasma facing materials (PFM). PFMs that will be used in a device like ITER have to withstand severe environmental conditions in terms of steady state and transient thermal loads as well as high particle fluxes such as hydrogen, helium and neutrons. Candidate wall materials are beryllium, tungsten and carbon based materials like CFC (carbon fibre composite). Tungsten is the most promising material for an application in the divertor region with very severe loading conditions and it will most probably also be used as PFM for DEMO. Hence, this work focuses on the investigation of the thermal shock response of different tungsten grades in order to understand the damage mechanisms and to identify material parameters which influence this behaviour under ITER and DEMO relevant operation conditions. Therefore the microstructure and the mechanical and thermal properties of five industrially manufactured tungsten grades were characterised. All five tungsten grades were exposed to transient thermal events with very high power densities of up to 1.27 GWm -2 at varying base temperatures between RT and 600 C in the electron beam device JUDITH 1. The pulse numbers were limited to a maximum of 1000 in order to avoid immoderate workload on the test facility and to have enough time to cover a wide range of loading conditions. The results of this damage mapping enable to define different damage and cracking thresholds for the investigated tungsten grades and to identify certain material parameters which influence the location of these thresholds and the distinction of the induced damages

  14. Why a steady state void size distribution in irradiated UO{sub 2}? A modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Maillard, S., E-mail: serge.maillard@cea.fr [CEA, DEN, SESC, LLCC, F-13108 St Paul lez Durance (France); Martin, G. [CEA, DEN, SESC, LLCC, F-13108 St Paul lez Durance (France); CEA, DEN, SPRC, LECy, F-13108 St Paul lez Durance (France); Sabathier, C. [CEA, DEN, SESC, LLCC, F-13108 St Paul lez Durance (France)

    2016-05-01

    In UO{sub 2} pellets irradiated in standard water reactor, Xe nano-bubbles nucleate, grow, coarsen and finally reach a quasi steady state size distribution: transmission electron microscope (TEM) observations typically report a concentration around 10{sup −4} nm{sup −3} and a radius around 0.5 nm. This phenomenon is often considered as a consequence of radiation enhanced diffusion, precipitation of gas atoms and ballistic mixing. However, in UO{sub 2} thin foils irradiated with energetic ions at room temperature, a nano-void population whose size distribution reaches a similar steady state can be observed, although quasi no foreign atoms are implanted nor significant cation vacancy diffusion expected in conditions. Atomistic simulations performed at low temperature only address the first stage of the process, supporting the assumption of void heterogeneous nucleation: 25 keV sub-cascades directly produce defect aggregates (loops and voids) even in the absence of gas atoms and thermal diffusion. In this work a semi-empirical stochastic model is proposed to enlarge the time scale covered by simulation up to damage levels where every point in the material undergoes the superposition of a large number of sub-cascade impacts. To account for the accumulation of these impacts, simple rules inferred from the atomistic simulation results are used. The model satisfactorily reproduces the TEM observations of nano-voids size and concentration, which paves the way for the introduction of a more realistic damage term in rate theory models.

  15. A highly efficient autothermal microchannel reactor for ammonia decomposition: Analysis of hydrogen production in transient and steady-state regimes

    Science.gov (United States)

    Engelbrecht, Nicolaas; Chiuta, Steven; Bessarabov, Dmitri G.

    2018-05-01

    The experimental evaluation of an autothermal microchannel reactor for H2 production from NH3 decomposition is described. The reactor design incorporates an autothermal approach, with added NH3 oxidation, for coupled heat supply to the endothermic decomposition reaction. An alternating catalytic plate arrangement is used to accomplish this thermal coupling in a cocurrent flow strategy. Detailed analysis of the transient operating regime associated with reactor start-up and steady-state results is presented. The effects of operating parameters on reactor performance are investigated, specifically, the NH3 decomposition flow rate, NH3 oxidation flow rate, and fuel-oxygen equivalence ratio. Overall, the reactor exhibits rapid response time during start-up; within 60 min, H2 production is approximately 95% of steady-state values. The recommended operating point for steady-state H2 production corresponds to an NH3 decomposition flow rate of 6 NL min-1, NH3 oxidation flow rate of 4 NL min-1, and fuel-oxygen equivalence ratio of 1.4. Under these flows, NH3 conversion of 99.8% and H2 equivalent fuel cell power output of 0.71 kWe is achieved. The reactor shows good heat utilization with a thermal efficiency of 75.9%. An efficient autothermal reactor design is therefore demonstrated, which may be upscaled to a multi-kW H2 production system for commercial implementation.

  16. Analysis of steady state and transient two-phase flows in downwardly inclined lines

    International Nuclear Information System (INIS)

    Crawford, T.J.

    1983-01-01

    A study of steady-state and transient two-phase flows in downwardly inclined lines is described. Steady-state flow patterns maps are presented using Freon-113 as the working fluid to provide new high density vapors. These flow maps with high density vapor serve to significantly extend the investigations of steady-state downward two-phase flow patterns. Physical models developed which successfully predicted the onset or location of various flow pattern transitions. A new simplified criterion that would be useful to designers and experimenters is offered for the onset of dispersed flow. A new empirical holdup correlation and a new bubble diameter/flow rate correlation are also proposed. Flow transients in vertical downward lines were studied to investigate the possible formation of intermediate or spurious flow patterns that would not be seen at steady-state conditions. Void fraction behavior during the transients was modeled by using the dynamic slip equation from the transient analysis code RETRAN. Physical models of interfacial area were developed and compared with models and data from literature. There was satisfactory agreement between the models of the present study and the literature models and data. The concentration parameter of the drift flux model was evaluated for vertical downward flow. These new values of the flow dependent parameter were different from those previously proposed in the literature for use in upward flows, and made the drift flux model suitable for use in upward or downward flow lines

  17. Investigation of component failure rates for pulsed versus steady state tokamak operation

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1992-07-01

    This report presents component failure rate data sources applicable to magnetic fusion systems, and defines multiplicative factors to adjust these data for specific use on magnetic fusion experiment designs. The multipliers address both long pulse and steady state tokamak operation. Thermal fatigue and radiation damage are among the leading reasons for large multiplier values in pulsed operation applications. Field failure rate values for graphite protective tiles are presented, and beryllium tile failure rates in laboratory testing are also given. All of these data can be used for reliability studies, safety analyses, design tradeoff studies, and risk assessments

  18. Exploration of one-dimensional plasma current density profile for K-DEMO steady-state operation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J.S. [Seoul National University, Seoul 151-742 (Korea, Republic of); Jung, L. [National Fusion Research Institute, Daejeon (Korea, Republic of); Byun, C.-S.; Na, D.H.; Na, Y.-S. [Seoul National University, Seoul 151-742 (Korea, Republic of); Hwang, Y.S., E-mail: yhwang@snu.ac.kr [Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-11-01

    Highlights: • One-dimensional current density and its optimization for the K-DEMO are explored. • Plasma current density profile is calculated with an integrated simulation code. • The impact of self and external heating profiles is considered self-consistently. • Current density is identified as a reference profile by minimizing heating power. - Abstract: Concept study for Korean demonstration fusion reactor (K-DEMO) is in progress, and basic design parameters are proposed by targeting high magnetic field operation with ITER-sized machine. High magnetic field operation is a favorable approach to enlarge relative plasma performance without increasing normalized beta or plasma current. Exploration of one-dimensional current density profile and its optimization process for the K-DEMO steady-state operation are reported in this paper. Numerical analysis is conducted with an integrated plasma simulation code package incorporating a transport code with equilibrium and current drive modules. Operation regimes are addressed with zero-dimensional system analysis. One-dimensional plasma current density profile is calculated based on equilibrium, bootstrap current analysis, and thermal transport analysis. The impact of self and external heating profiles on those parameters is considered self-consistently, where thermal power balance and 100% non-inductive current drive are the main constraints during the whole exploration procedure. Current and pressure profiles are identified as a reference steady-state profile by minimizing the external heating power with desired fusion power.

  19. Direct approach for the fluctuation-dissipation theorem under nonequilibrium steady-state conditions

    Science.gov (United States)

    Komori, Kentaro; Enomoto, Yutaro; Takeda, Hiroki; Michimura, Yuta; Somiya, Kentaro; Ando, Masaki; Ballmer, Stefan W.

    2018-05-01

    The test mass suspensions of cryogenic gravitational-wave detectors such as the KAGRA project are tasked with extracting the heat deposited on the optics. These suspensions have a nonuniform temperature, requiring the calculation of thermal noise in nonequilibrium conditions. While it is not possible to describe the whole suspension system with one temperature, the local temperature at every point in the system is still well defined. We therefore generalize the application of the fluctuation-dissipation theorem to mechanical systems, pioneered by Saulson and Levin, to nonequilibrium conditions in which a temperature can only be defined locally. The result is intuitive in the sense that the thermal noise in the observed degree of freedom is given by averaging the temperature field, weighted by the dissipation density associated with that particular degree of freedom. After proving this theorem, we apply the result to examples of increasing complexity: a simple spring, the bending of a pendulum suspension fiber, and a model of the KAGRA cryogenic suspension. We conclude by outlining the application to nonequilibrium thermoelastic noise.

  20. Steady state theta pinch concept for slow formation of FRC

    International Nuclear Information System (INIS)

    Hirano, K.

    1987-05-01

    A steady state high beta plasma flow through a channel along the magnetic field increasing downstream can be regarded as a ''steady state theta pinch'', because if we see the plasma riding on the flow we should observe very similar process taking place in a theta pinch. Anticipating to produce an FRC without using very high voltage technics such as the ones required in a conventional theta pinch, we have studied after the analogy a ''steady state reversed field theta pinch'' which is brought about by steady head-on collision of counter plasma streams along the channel as ejected from two identical co-axial plasma sources mounted at the both ends of the apparatus. The ideal Poisson and shock adiabatic flow models are employed for the analysis of the steady colliding process. It is demonstrated that an FRC involving large numbers of particles is produced only by the weak shock mode which is achieved in case energetic plasma flow is decelerated almost to be stagnated through Poisson adiabatic process before the streams are collided. (author)

  1. A new perspective on steady-state cosmology: from Einstein to Hoyle

    OpenAIRE

    O'Raifeartaigh, Cormac; Mitton, Simon

    2015-01-01

    We recently reported the discovery of an unpublished manuscript by Albert Einstein in which he attempted a 'steady-state' model of the universe, i.e., a cosmic model in which the expanding universe remains essentially unchanged due to a continuous formation of matter from empty space. The manuscript was apparently written in early 1931, many years before the steady-state models of Fred Hoyle, Hermann Bondi and Thomas Gold. We compare Einstein’s steady-state cosmology with that of Hoyle, Bondi...

  2. Maximum Entropy Production Is Not a Steady State Attractor for 2D Fluid Convection

    Directory of Open Access Journals (Sweden)

    Stuart Bartlett

    2016-12-01

    Full Text Available Multiple authors have claimed that the natural convection of a fluid is a process that exhibits maximum entropy production (MEP. However, almost all such investigations were limited to fixed temperature boundary conditions (BCs. It was found that under those conditions, the system tends to maximize its heat flux, and hence it was concluded that the MEP state is a dynamical attractor. However, since entropy production varies with heat flux and difference of inverse temperature, it is essential that any complete investigation of entropy production allows for variations in heat flux and temperature difference. Only then can we legitimately assess whether the MEP state is the most attractive. Our previous work made use of negative feedback BCs to explore this possibility. We found that the steady state of the system was far from the MEP state. For any system, entropy production can only be maximized subject to a finite set of physical and material constraints. In the case of our previous work, it was possible that the adopted set of fluid parameters were constraining the system in such a way that it was entirely prevented from reaching the MEP state. Hence, in the present work, we used a different set of boundary parameters, such that the steady states of the system were in the local vicinity of the MEP state. If MEP was indeed an attractor, relaxing those constraints of our previous work should have caused a discrete perturbation to the surface of steady state heat flux values near the value corresponding to MEP. We found no such perturbation, and hence no discernible attraction to the MEP state. Furthermore, systems with fixed flux BCs actually minimize their entropy production (relative to the alternative stable state, that of pure diffusive heat transport. This leads us to conclude that the principle of MEP is not an accurate indicator of which stable steady state a convective system will adopt. However, for all BCs considered, the quotient of

  3. COOLOD-N2: a computer code, for the analyses of steady-state thermal-hydraulics in research reactors

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1994-03-01

    The COOLOD-N2 code provides a capability for the analyses of the steady-state thermal-hydraulics of research reactors. This code is revised version of the COOLOD-N code, and is applicable not only for research reactors in which plate-type fuel is adopted, but also for research reactors in which rod-type fuel is adopted. In the code, subroutines to calculate temperature distribution in rod-type fuel have been newly added to the COOLOD-N code. The COOLOD-N2 code can calculate fuel temperatures under both forced convection cooling mode and natural convection cooling mode as well as COOLOD-N code. In the COOLOD-N2 code, a 'Heat Transfer package' is used for calculating heat transfer coefficient, DNB heat flux etc. The 'Heat Transfer package' is subroutine program and is especially developed for research reactors in which plate-type fuel is adopted. In case of rod-type fuel, DNB heat flux is calculated by both the 'Heat Transfer package' and Lund DNB heat flux correlation which is popular for TRIGA reactor. The COOLOD-N2 code also has a capability of calculating ONB temperature, the heat flux at onset of flow instability as well as DNB heat flux. (author)

  4. The quasi-steady state of all-vanadium redox flow batteries: A scale analysis

    International Nuclear Information System (INIS)

    Sharma, A.K.; Vynnycky, M.; Ling, C.Y.; Birgersson, E.; Han, M.

    2014-01-01

    Highlights: • We present a transient 2D model for a VRFB (conservation of species and charge); • Carry out scale analysis of the species conservation equation; • Derive the condition characterizing the quasi-steadiness of VRFB operation; • Verify it by comparing charge-discharge curve with transient simulations. - Abstract: In general, mathematical models for all-vanadium redox flow batteries (VRFB) that seek to capture the transport phenomena are transient in nature. In this paper, we carry out scale analysis of VRFB operation and derive the conditions when it can be assumed to be quasi-steady state in nature, i.e., time-dependence only through a boundary condition. We find that it is true for typical tank volume and flow rate employed for VRFBs. The proposed analysis is generic and can also be employed for other types of redox flow batteries

  5. Elastic-plastic stresses in a thin rotating disk with shafthaving density variation parameter under steady-state temperature

    Directory of Open Access Journals (Sweden)

    Pankaj Thakur

    2014-01-01

    Full Text Available Steady thermal stresses in a rotating disc with shaft having density variation parameter subjected to thermal load have been derived by using Seth's transition theory. Neither the yields criterion nor the associated flow rule is assumed here. Results are depicted graphically. It has been seen that compressible material required higher percentage increased angular speed to become fully-plastic as compare to rotating disc made of incompressible material. Circumferential stresses are maximal at the outer surface of the rotating disc. With the introduction of thermal effect it decreases the value of radial and circumferential stresses at inner and outer surface for fully-plastic state.

  6. Transient and steady-state currents in epoxy resin

    International Nuclear Information System (INIS)

    Guillermin, Christophe; Rain, Pascal; Rowe, Stephen W

    2006-01-01

    Charging and discharging currents have been measured in a diglycidyl ether of bisphenol-A epoxy resin with and without silica fillers, below and above its glass transition temperature T g = 65 deg. C. Both transient and steady-state current densities have been analysed. The average applied fields ranged from 3 to 35 kV mm -1 with a sample thickness of 0.5 mm. Above T g , transient currents suggested a phenomenon of charge injection forming trapped space charges even at low fields. Steady-state currents confirmed that the behaviour was not Ohmic and suggested Schottky-type injection. Below T g , the current is not controlled by the metal-dielectric interface but by the conduction in the volume: the current is Ohmic at low fields and both transient and steady-state currents suggest a phenomenon of space-charge limited currents at high fields. The field threshold is similar in the filler-free and the filled resin. Values in the range 12-17 kV mm -1 have been measured

  7. Transient and steady-state currents in epoxy resin

    Energy Technology Data Exchange (ETDEWEB)

    Guillermin, Christophe [Schneider Electric Industries S.A.S., 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France); Rain, Pascal [Laboratoire d' Electrostatique et de Materiaux Dielectriques (LEMD), CNRS, 25 avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Rowe, Stephen W [Schneider Electric Industries S.A.S., 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France)

    2006-02-07

    Charging and discharging currents have been measured in a diglycidyl ether of bisphenol-A epoxy resin with and without silica fillers, below and above its glass transition temperature T{sub g} = 65 deg. C. Both transient and steady-state current densities have been analysed. The average applied fields ranged from 3 to 35 kV mm{sup -1} with a sample thickness of 0.5 mm. Above T{sub g}, transient currents suggested a phenomenon of charge injection forming trapped space charges even at low fields. Steady-state currents confirmed that the behaviour was not Ohmic and suggested Schottky-type injection. Below T{sub g}, the current is not controlled by the metal-dielectric interface but by the conduction in the volume: the current is Ohmic at low fields and both transient and steady-state currents suggest a phenomenon of space-charge limited currents at high fields. The field threshold is similar in the filler-free and the filled resin. Values in the range 12-17 kV mm{sup -1} have been measured.

  8. Steady-state optimization of ore-dressing plants

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1989-01-01

    The ore-dressing plant consists of the steps of grinding and flotation. Its optimization is based on steady state simulation of the mass balances with a plant model. The model data are obtained by tracer tests and analysis. An evaluation of performance of the plant has to observe the recovery of the valuable mineral, the throughput of the system and the grade of the concentrate which are outputs of the flotation plant. Simulation with the flotation plant model yields that combination of values of controllable inputs to flotation which corresponds to an optimal operation of the conditioning an flotation system, for a specified feed and its fractional composition. Simulations for other feeds and compositions advise how they should be chosen, for a better overall performance. (author)

  9. Rheological behavior of semi-solid 7075 aluminum alloy at steady state

    Directory of Open Access Journals (Sweden)

    Li Yageng

    2014-03-01

    Full Text Available The further application of semi-solid processing lies in the in-depth fundamental study like rheological behavior. In this research, the apparent viscosity of the semi-solid slurry of 7075 alloy was measured using a Couette type viscometer. The effects of solid fraction and shearing rate on the apparent viscosity of this alloy were investigated under different processing conditions. It can be seen that the apparent viscosity increases with an increase in the solid fraction from 10% to 50% (temperature 620 篊 to 630 篊 at steady state. When the solid fraction was fixed, the apparent viscosity can be decreased by altering the shearing rate from 61.235 s-1 to 489.88 s-1 at steady state. An empirical equation that shows the effects of solid fraction and shearing rate on the apparent viscosity is fitted. The microstructure of quenched samples was examined to understand the alloy抯 rheological behavior.

  10. An Adsorption Equilibria Model for Steady State Analysis

    KAUST Repository

    Ismail, Azhar Bin

    2016-02-29

    The investigation of adsorption isotherms is a prime factor in the ongoing development of adsorption cycles for a spectrum of advanced, thermally-driven engineering applications, including refrigeration, natural gas storage, and desalination processes. In this work, a novel semi-empirical mathematical model has been derived that significantly enhances the prediction of the steady state uptake in adsorbent surfaces. This model, a combination of classical Langmuir and a novel modern adsorption isotherm equation, allows for a higher degree of regression of both energetically homogenous and heterogeneous adsorbent surfaces compared to several isolated classical and modern isotherm models, and has the ability to regress isotherms for all six types under the IUPAC classification. Using a unified thermodynamic framework, a single asymmetrical energy distribution function (EDF) has also been proposed that directly relates the mathematical model to the adsorption isotherm types. This fits well with the statistical rate theory approach and offers mechanistic insights into adsorption isotherms.

  11. Steady state flow evaluations for passive auxiliary feedwater system of APR

    International Nuclear Information System (INIS)

    Park, Jongha; Kim, Jaeyul; Seong, Hoje; Kang, Kyoungho

    2012-01-01

    This paper briefly introduces a methodology to evaluate steady state flow of APR+ Passive Auxiliary Feedwater System (PAFS). The PAFS is being developed as a safety grade passive system to completely replace the existing active Auxiliary Feedwater System (AFWS). Natural circulation cooling can be generally classified into the single-phase, two-phase, and boiling-condensation modes. The PAF is designed to be operated in a boiling-condensation natural circulation mode. The steady-state flow rate should be equal to the steady-state boiling/condensation rate determined by the steady-state energy and momentum balances in the PAFS. The determined steady-state flow rate can be used in the design optimization for the natural circulation loop of the PAFS through the steady-state momentum balance. Since the retarding force, which is to be balanced by the driving force in the natural circulation system design depends on the reliable evaluation of the success of a natural circulation system design depends on the reliable evaluation of the pressure loss coefficients. In PAFS, the core decay heat is released by natural circulation flow between the S G secondary side and the Passive Condensation Heat Exchanger (PCHX) that is immersed in the Passive Condensation Cooling Tank (PCCT). The PCCT is located on the top of Auxiliary building The driving force is determined by the difference between the S/G (heat Source) secondary water level and condensation liquid (heat sink) level. It will overcome retarding force at flowrate in the system, which is determined by vaporization and condensation of the steam which is generated at the S/G by the latent heat in system. In this study, the theoretical method to estimate the steady state flow rate in boiling-condensation natural circulation system is developed and compared with test results

  12. Modeling the UO2 ex-AUC pellet process and predicting the fuel rod temperature distribution under steady-state operating condition

    Science.gov (United States)

    Hung, Nguyen Trong; Thuan, Le Ba; Thanh, Tran Chi; Nhuan, Hoang; Khoai, Do Van; Tung, Nguyen Van; Lee, Jin-Young; Jyothi, Rajesh Kumar

    2018-06-01

    Modeling uranium dioxide pellet process from ammonium uranyl carbonate - derived uranium dioxide powder (UO2 ex-AUC powder) and predicting fuel rod temperature distribution were reported in the paper. Response surface methodology (RSM) and FRAPCON-4.0 code were used to model the process and to predict the fuel rod temperature under steady-state operating condition. Fuel rod design of AP-1000 designed by Westinghouse Electric Corporation, in these the pellet fabrication parameters are from the study, were input data for the code. The predictive data were suggested the relationship between the fabrication parameters of UO2 pellets and their temperature image in nuclear reactor.

  13. Einstein's steady-state theory: an abandoned model of the cosmos

    Science.gov (United States)

    O'Raifeartaigh, Cormac; McCann, Brendan; Nahm, Werner; Mitton, Simon

    2014-09-01

    We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a `steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.

  14. Characterization of the Inlet Port Flow under Steady-State Conditions Using PIV and POD

    Directory of Open Access Journals (Sweden)

    Mohammed El-Adawy

    2017-11-01

    Full Text Available The current study demonstrates an experimental investigation of the tumble flow structures using Particle Image Velocimetry (PIV under steady-state conditions considering the central vertical tumble plane. The experiments were carried out on a four-valve, pent-roof Gasoline Direct Injection (GDI engine head at different valve lifts and with a pressure difference of 150 mmH2O across the intake valves. Furthermore, the Proper Orthogonal Decomposition (POD analytical technique was applied to PIV-measured velocity vector maps to characterize the flow structures at various valve lifts, and hence the different rig tumble values. The results show that at low valve lifts (1 to 5 mm, 48.9 to 46.6% of the flow energy is concentrated in the large (mode 1 eddies with only 8.4 to 11.46% in mode 2 and 7.2 to 7.5 in mode 3. At high valve lifts, it can be clearly seen that some of the energy in the large eddies of mode 1 is transferred to the smaller flow structures of modes 2 and 3. This can be clearly seen at valve lift 10 mm where the values of the flow energy were 40.6%, 17.3%, and 8.0% for modes 1, 2, and 3, respectively.

  15. History independence of steady state in simultaneous two-phase flow through two-dimensional porous media.

    Science.gov (United States)

    Erpelding, Marion; Sinha, Santanu; Tallakstad, Ken Tore; Hansen, Alex; Flekkøy, Eirik Grude; Måløy, Knut Jørgen

    2013-11-01

    It is well known that the transient behavior during drainage or imbibition in multiphase flow in porous media strongly depends on the history and initial condition of the system. However, when the steady-state regime is reached and both drainage and imbibition take place at the pore level, the influence of the evolution history and initial preparation is an open question. Here, we present an extensive experimental and numerical work investigating the history dependence of simultaneous steady-state two-phase flow through porous media. Our experimental system consists of a Hele-Shaw cell filled with glass beads which we model numerically by a network of disordered pores transporting two immiscible fluids. From measurements of global pressure evolution, histograms of saturation, and cluster-size distributions, we find that when both phases are flowing through the porous medium, the steady state does not depend on the initial preparation of the system or on the way it has been reached.

  16. Modelling 3H and 14C transfer to farm animals and their products under steady state conditions

    International Nuclear Information System (INIS)

    Galeriu, D.; Melintescu, A.; Beresford, N.A.; Crout, N.M.J.; Peterson, R.; Takeda, H.

    2007-01-01

    The radionuclides 14 C and 3 H may both be released from nuclear facilities. These radionuclides are unusual, in that they are isotopes of macro-elements which form the basis of animal tissues, feed and, in the case of 3 H, water. There are few published values describing the transfer of 3 H and 14 C from feed to animal derived food products under steady state conditions. Approaches are described which enable the prediction of 14 C and 3 H transfer parameter values from readily available information on the stable H or C concentration of animal feeds, tissues and milk, water turnover rates, and feed intakes and digestibilities. We recommend that the concentration ratio between feed and animal product activity concentrations be used as it is less variable than the transfer coefficient (ratio between radionuclide activity concentration in animal milk or tissue to the daily intake of a radionuclide)

  17. Structural evaluation of FHX for PGSFR at steady state condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nak-Hyun; Lee, S. Y.; Kim, S. K. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Liquid sodium flows inside the heat transfer tubes and atmospheric air flows over the finned tubes. The configuration and overall shape of the unit are shown in Figure 1. The unit is placed in the upper region of the reactor building and has function of dumping the system heat load into the final heat sink, i.e., the atmosphere. Heat is transmitted from the primary cold sodium pool into the ADHRS sodium loop via DHX (Decay Heat Exchanger), and a direct heat exchange occurs between the tube-side sodium and the shell-side air through the FHX tube wall. Cold atmospheric air is introduced into the air inlet duct at the lower part of the unit by using an electrically operated air blower or by the natural circulation force. Air flows across the finned tube bank rising upward direction to make uniform air flow with perfect mixing across the tubes. The finned tube bundle is placed inside a well-insulated casing. The air heated at the tube bank region is collected at the top of the unit and then is discharged through the air stack above the unit. Although a blower supplies atmospheric cooling air into the FHX unit, a tall air stack of 30 m in height is also provided to secure natural draft head of natural circulation air flow against a loss of power supply. The structural analysis of a FHX are carried out and its structural integrity under the given service levels is evaluated per ASME Code rule. The design loads according to design condition and normal operating steady condition are classified and stresses calculated from stress analyses are linearized and summarized in their stress components.

  18. Computer simulation of the steam--graphite reaction under isothermal and steady-state conditions

    International Nuclear Information System (INIS)

    Joy, D.S.; Stem, S.C.

    1975-05-01

    A mathematical model was formulated to describe the isothermal, steady-state diffusion and reaction of steam in a graphite matrix. A generalized Langmuir-Hinshelwood equation is used to represent the steam-graphite reaction rate. The model also includes diffusion in the gas phase adjacent to the graphite matrix. A computer program, written to numerically integrate the resulting differential equations, is described. The coupled nonlinear differential equations in the graphite phase are solved using the IBM Continuous System Modeling Program. Classical finite difference techniques are used for the gas-phase calculations. An iterative procedure is required to couple the two sets of calculations. Several sample problems are presented to demonstrate the utility of the model. (U.S.)

  19. Steady-state heat transfer in He II through porous superconducting cable insulation

    International Nuclear Information System (INIS)

    Baudouy, B.J.P.; Juster, F.P.; Meuris, C.; Vieillard, L.

    1996-01-01

    The LHC program includes the study of thermal behavior of the superconducting cables wound in the dipole magnet cooled by superfluid helium (He II). Insulation of these superconducting cables forms the major thermal shield hindering the He II cooling. This is particularly a problem in magnets which are subjected to thermal loads. To investigate He II heat transfer processes an experimental model has been realized which creates a one-dimensional heat transfer in such media. Insulation is generally realized by wrapping around the superconducting cable a combination of different kind of Kapton reg-sign tapes, fiber-glass impregnated by epoxy resin or Kevlar reg-sign fiber tapes. Steady-state heat transfer in He II through these multi-layer porous slabs has been analyzed. Experimental results for a range of heat flux show the existence of different thermal regimes related to He II. It is shown that the parameters of importance are a global geometrical factor which could be considered as an equivalent open-quotes permeabilityclose quotes related to He II heat transfer, the transfer function f(T) of He II and the thermal conductivity of the slab. The authors present and analyze results for different insulations as a function of the temperature

  20. Steady state investigation on neutronics of a molten salt reactor considering the flow effect of fuel salt

    Institute of Scientific and Technical Information of China (English)

    ZHANG Da-Lin; QIU Sui-Zheng; LIU Chang-Liang; SU Guang-Hui

    2008-01-01

    The Molten Salt Reactor (MSR),one of the‘Generation Ⅳ'concepts,is a liquid-fuel reactor,which is different from the conventional reactors using solid fissile materials due to the flow effect of fuel salt.The study on its neutronice considering the fuel salt flow,which is the base of the thermal-hydraulic calculation and safety analysis,must be done.In this paper,the theoretical model on neutronics under steady condition for a single-liquid-fueled MSR is conducted and calculated by numerical method.The neutronics model consists of two group neutron diffusion equations for fast and thermal neutron fluxes,and balance equations for six-group delayed neutron precursors considering the flow effect of fuel salt. The spatial discretization of the above models is based on the finite volume method,and the discretization equations are computed by the source iteration method.The distributions of neutron fluxes and the distributions of the delayed neutron precursors in the core are obtained.The numerical calculated results show that,the fuel salt flow has little effect on the distribution of fast and thermal neutron fluxes and the effective multiplication factor;however,it affects the distribution of the delayed neutron precursors significantly,especially the long-lived one.In addition,it could be found that the delayed neutron precursors influence the nentronics slightly under the steady condition.

  1. Steady state investigation on neutronics of a molten salt reactor considering the flow effect of fuel salt

    International Nuclear Information System (INIS)

    Zhang Dalin; Qiu Suizheng; Su Guanghui; Liu Changliang

    2008-01-01

    The Molten Salt Reactor (MSR), one of the 'Generation IV' concepts, is a liquid-fuel reactor, which is different from the conventional reactors using solid fissile materials due to the flow effect of fuel salt. The study on its neutronics considering the fuel salt flow, which is the base of the thermal-hydraulic calculation and safety analysis, must be done. In this paper, the theoretical model on neutronics under steady condition for a single-liquid-fueled MSR is conducted and calculated by numerical method. The neutronics model consists of two group neutron diffusion equations for fast and thermal neutron fluxes, and balance equations for six-group delayed neutron precursors considering the flow effect of fuel salt. The spatial discretization of the above models is based on the finite volume method, and the discretization equations are computed by the source iteration method. The distributions of neutron fluxes and the distributions of the delayed neutron precursors in the core are obtained. The numerical calculated results show that, the fuel salt flow has little effect on the distribution of fast and thermal neutron fluxes and the effective multiplication factor; however, it affects the distribution of the delayed neutron precursors significantly, especially the long-lived one. In addition, it could be found that the delayed neutron precursors influence the neutronics slightly under the steady condition. (authors)

  2. Steady-state models in electrophoresis: from isotachophoresis to capillary zone electrophoresis

    NARCIS (Netherlands)

    Beckers, J.L.

    1995-01-01

    Although all electrophoretic techniques are closely allied and controlled by the same rules, we often distinguish between steady-state and dynamic models in the modeling of electrophoretic processes, whereby steady-state models are applied for isotachophoresis (ITP) and dynamic models are applied

  3. Summary report of NEPTUN investigations into the steady state thermal hydraulics of the passive decay heat removal

    International Nuclear Information System (INIS)

    Rust, K.; Weinberg, D.; Hoffmann, H.; Frey, H.H.; Baumann, W.; Hain, K.; Leiling, W.; Hayafune, H.; Ohira, H.

    1995-12-01

    During the course of steady state NEPTUN investigations, the effects of different design and operating parameters were studied; in particular: The shell design of the above core sturcture, the core power, the number of decay heat exchangers put in operation, the complete flow path blockage at the primary side of the intermediate heat exchangers, and the fluid level in the primary vessel. The findings of the NEPTUN experiments indicate that the decay heat can be safely removed by natural convection. The interwrapper flow makes an essential contribution to that behavior. The decay heat exchangers installed in the upper plenum cause a thermal stratification associated with a pronounced gradient. The vertical extent of the stratification and the quantity of the gradient are depending on the fact whether a permeable or an impermeable shell covers the above core structure. An increase of the core power or a reduction of the number of decay heat exchangers being in operation leads to a higher temperature level in the primary system but does not alter the global temperature distribution. In the case that no coolant enters the inlet windows at the primary side of the intermediate and decay heat exchangers, the core remains coolable as far as the primary vessel is filled with fluid up to a minimum level. Cold water penetrates from the upper plenum into the core and removes the decay heat. The thermal hydraulic computer code FLUTAN was applied for the three-dimensional numerical simulation of the majority of NEPTUN tests reported here. The comparison of computed against experimental data indicates a qualitatively and quantitatively satisfying agreement of the findings with respect to the field of isotherms as well as the temperature profiles in the upper plenum and within the core region of very complex geometry. (orig./HP) [de

  4. Theoretical research of helium pulsating heat pipe under steady state conditions

    International Nuclear Information System (INIS)

    Xu, D; Liu, H M; Li, L F; Huang, R J; Wang, W

    2015-01-01

    As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied. (paper)

  5. Theoretical research of helium pulsating heat pipe under steady state conditions

    Science.gov (United States)

    Xu, D.; Liu, H. M.; Li, L. F.; Huang, R. J.; Wang, W.

    2015-12-01

    As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied.

  6. Analytical solutions of steady-state conjugate heat transfer in ducts with turbulent flow

    International Nuclear Information System (INIS)

    Cerqueira, Djane R.; Jian Su

    2007-01-01

    In this work, we present an approximate analytical solution of the steady-state conjugate heat transfer of turbulent forced convection in a circular pipe with wall axial heat conduction and external convective boundary conditions. Improved lumped differential approach based on two points Hermite approximation for integrals was applied to reduce the heat conduction equation in the solid into a second-order ordinary differential equation for the radially averaged solid temperature. The energy equation in the fluid was solved by applying the generalized integral transform technique (GITT). The Sturm-Lioville eigenproblem for fluid energy equation in the cylindrical coordinate system was solved by the sign-count method. The truncated system of N ordinary differential equations for transformed potentials of the fluid temperature and the second-order ordinary differential equation for radially averaged solid temperature formed a homogeneous system of N+2 ordinary differential equations, which was solved analytically. The effects of the fluid-solid thermal conductivity ratio on the Nusselt number, the average fluid and solid temperatures, and the fluid-solid interface temperature were investigated. (author)

  7. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Van den Branden, G. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Kalcheva, S [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Sikik, E [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Koonen, E [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium)

    2016-09-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water. The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident. A feasibility study for the conversion of the BR2 reactor from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel was previously performed to verify it can operate safely at the same maximum nominal steady-state heat flux. An assessment was also performed to quantify the heat fluxes at which the onset of flow instability and critical heat flux occur for each fuel type. This document updates and expands these results for the current representative core configuration (assuming a fresh beryllium matrix) by evaluating the onset of nucleate boiling (ONB), onset of fully developed nucleate boiling (FDNB), onset of flow instability (OFI) and critical heat flux (CHF).

  8. Quantum-classical correspondence in steady states of nonadiabatic systems

    International Nuclear Information System (INIS)

    Fujii, Mikiya; Yamashita, Koichi

    2015-01-01

    We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels

  9. Steady state heat transfer of helium cooled cable bundles

    International Nuclear Information System (INIS)

    Khalil, A.

    1982-01-01

    In the present study nucleate and film boiling heat transfer characteristics of horizontal conductor bundles are investigated at steady state conditions. The effect of gaps between wires, number of wires, wire position, wire size and bundle orientation on the departure from nucleate boiling and transition to film boiling is studied. For gaps close to the bubble departure diameter, the critical heat flux can approach up to 90% of the single wire value. Consequently, the maximum stable current for a given bundle can be significantly increased above the single conductor value for the same cross-sectional area. (author)

  10. Restitution slope is principally determined by steady-state action potential duration.

    Science.gov (United States)

    Shattock, Michael J; Park, Kyung Chan; Yang, Hsiang-Yu; Lee, Angela W C; Niederer, Steven; MacLeod, Kenneth T; Winter, James

    2017-06-01

    The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF. Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM - to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope. Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on

  11. The Temperature Condition of the Plate with Temperature-Dependent Thermal Conductivity and Energy Release

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available The temperature state of a solid body, in addition to the conditions of its heat exchange with the environment, can greatly depend on the heat release (or heat absorption processes within the body volume. Among the possible causes of these processes should be noted such as a power release in the fuel elements of nuclear reactors, exothermic or endothermic chemical reactions in the solid body material, which respectively involve heat release or absorbtion, heat transfer of a part of the electric power in the current-carrying conductors (so-called Joule’s heat or the energy radiation penetrating into the body of a semitransparent material, etc. The volume power release characterizes an intensity of these processes.The extensive list of references to the theory of heat conductivity of solids offers solutions to problems to determine a stationary (steady over time and non-stationary temperature state of the solids (as a rule, of the canonical form, which act as the sources of volume power release. Thus, in general case, a possibility for changing power release according to the body volume and in solving the nonstationary problems also a possible dependence of this value on the time are taken into consideration.However, in real conditions the volume power release often also depends on the local temperature, and such dependence can be nonlinear. For example, with chemical reactions the intensity of heat release or absorption is in proportion to their rate, which, in turn, is sensitive to the temperature value, and a dependence on the temperature is exponential. A further factor that in such cases makes the analysis of the solid temperature state complicated, is dependence on the temperature and the thermal conductivity of this body material, especially when temperature distribution therein  is significantly non-uniform. Taking into account the influence of these factors requires the mathematical modeling methods, which allow us to build an adequate

  12. Physical design of MW-class steady-state spherical tokamak, QUEST

    International Nuclear Information System (INIS)

    Hanada, K.; Sato, K.N.; Zushi, H.; Nakamura, K.; Sakamoto, M.; Idei, H.; Hasegawa, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Higashizono, Y.; Yoshida, N.; Takase, Y.; Ejiri, A.; Ogawa, Y.; Ono, Y.; Yoshida, Z.; Mitarai, O.; Maekawa, T.; Kishimoto, Y.; Ishiguro, M.; Yoshinaga, T.; Igami, H.; Hirooka, Y.; Komori, A.; Motojima, O.; Sudo, S.; Yamada, H.; Ando, A.; Asakura, Nobuyuki; Matsukawa, Makoto; Ishida, A.; Ohno, N.; Peng, M.

    2008-10-01

    QUEST (R=0.68 m, a=0.4 m) focuses on the steady state operation of the spherical tokamak (ST) by controlled PWI and electron Bernstain wave (EBW) current drive (CD). The QUEST project will be developed along two phases, phase I: steady state operation with plasma current, I p =20-30 kA on open divertor configuration and phase II: steady state operation with I p = 100 kA and β of 10% in short pulse on closed divertor configuration. Feasibility of the missions on QUEST was investigated and the suitable machine size of QUEST was decided based on the physical view of plasma parameters. Electron Bernstein wave (EBW) current drive are planned to establish the maintenance of plasma current in steady state. Mode conversion efficiency to EBW was calculated and the conversion of 95% will be expected. A new type antenna for QUEST has been fabricated to excite EBW effectively. The situation of heat and particle handling is challenging, and W and high temperature wall is adopted. The start-up scenario of plasma current was investigated based on the driven current by energetic electron and the most favorable magnetic configuration for start-up is proposed. (author)

  13. STEADY-SHIP: a computer code for three-dimensional nuclear and thermal-hydraulic analyses of marine reactors

    International Nuclear Information System (INIS)

    Itagaki, Masafumi; Naito, Yoshitaka; Tokuno, Yukio; Matsui, Yasushi.

    1988-01-01

    A code STEADY-SHIP has been developed to calculate three-dimensional distributions of neutron flux, power and coolant temperature in the reactor core of the nuclear ship MUTSU. The code consists of two parts, that is, a few-group three-dimensional neutron diffusion module DIFFUSION-SHIP and a thermal-hydraulic module HYDRO-SHIP: In the DIFFUSION-SHIP the leakage iteration method is used for solving the three-dimensional neutron diffusion equation with small computer core memory and short computing time; The HYDRO-SHIP performs the general thermal-hydraulic calculation for evaluating feedbacks required in the neutronic calculation by the DIFFUSION-SHIP. The macroscopic nuclear constants are generated by a module CROSS-SHIP as functions of xenon poison, fuel temperature, moderator temperature and moderator density. A module LOCAL-FINE has the capability of computing a detailed rod power distribution for each local node in the core, using the boundary conditions on the surface of the node which were supplied by the STEADY-SHIP whole-core calculation. The applicability of this code to marine reactors has been demonstrated by comparing the computed results with the data measured during the MUTSU land-loaded core critical experiments and with the data obtained during the hot-zero-power tests performed for the actual MUTSU plant. (author)

  14. Seeing the talker's face supports executive processing of speech in steady state noise.

    Science.gov (United States)

    Mishra, Sushmit; Lunner, Thomas; Stenfelt, Stefan; Rönnberg, Jerker; Rudner, Mary

    2013-01-01

    Listening to speech in noise depletes cognitive resources, affecting speech processing. The present study investigated how remaining resources or cognitive spare capacity (CSC) can be deployed by young adults with normal hearing. We administered a test of CSC (CSCT; Mishra et al., 2013) along with a battery of established cognitive tests to 20 participants with normal hearing. In the CSCT, lists of two-digit numbers were presented with and without visual cues in quiet, as well as in steady-state and speech-like noise at a high intelligibility level. In low load conditions, two numbers were recalled according to instructions inducing executive processing (updating, inhibition) and in high load conditions the participants were additionally instructed to recall one extra number, which was the always the first item in the list. In line with previous findings, results showed that CSC was sensitive to memory load and executive function but generally not related to working memory capacity (WMC). Furthermore, CSCT scores in quiet were lowered by visual cues, probably due to distraction. In steady-state noise, the presence of visual cues improved CSCT scores, probably by enabling better encoding. Contrary to our expectation, CSCT performance was disrupted more in steady-state than speech-like noise, although only without visual cues, possibly because selective attention could be used to ignore the speech-like background and provide an enriched representation of target items in working memory similar to that obtained in quiet. This interpretation is supported by a consistent association between CSCT scores and updating skills.

  15. Active ideal sedimentation: exact two-dimensional steady states.

    Science.gov (United States)

    Hermann, Sophie; Schmidt, Matthias

    2018-02-28

    We consider an ideal gas of active Brownian particles that undergo self-propelled motion and both translational and rotational diffusion under the influence of gravity. We solve analytically the corresponding Smoluchowski equation in two space dimensions for steady states. The resulting one-body density is given as a series, where each term is a product of an orientation-dependent Mathieu function and a height-dependent exponential. A lower hard wall is implemented as a no-flux boundary condition. Numerical evaluation of the suitably truncated analytical solution shows the formation of two different spatial regimes upon increasing Peclet number. These regimes differ in their mean particle orientation and in their variation of the orientation-averaged density with height.

  16. Molecular control of steady-state dendritic cell maturation and immune homeostasis.

    Science.gov (United States)

    Hammer, Gianna Elena; Ma, Averil

    2013-01-01

    Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.

  17. Steady-state analysis of a conceptual offshore wind turbine driven electricity and thermocline energy extraction plant

    OpenAIRE

    Buhagiar, Daniel; Sant, Tonio

    2014-01-01

    A system for using offshore wind energy to generate electricity and simultaneously extract thermal energy is proposed. This concept is based on an offshore wind turbine driven hydraulic pump supplying deep seawater under high pressure to a land based plant consisting of a hydroelectric power generation unit and heat exchanger. A steady-state system model is developed using empirical formulae. The mathematical model comprises the fundamental system sub-models that are categoris...

  18. TRANSIENT AND STEADY STATE STUDY OF PURE AND MIXED REFRIGERANTS IN A RESIDENTIAL HEAT PUMP

    Science.gov (United States)

    The report gives results of an experimental and theoretical investigation of the transient and steady state performance of a residential air-conditioning/heat pump (AC/HP) operating with different refrigerants. (NOTE: The project was motivated by environmental concerns related to...

  19. Dark Entangled Steady States of Interacting Rydberg Atoms

    DEFF Research Database (Denmark)

    Dasari, Durga; Mølmer, Klaus

    2013-01-01

    their short-lived excited states lead to rapid, dissipative formation of an entangled steady state. We show that for a wide range of physical parameters, this entangled state is formed on a time scale given by the strengths of coherent Raman and Rabi fields applied to the atoms, while it is only weakly...

  20. Tokamak burn cycle study: a data base for comparing long pulse and steady-state power reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K. Jr.; Hassanein, A.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.

    1983-11-01

    Several distinct operating modes (conventional ohmic, noninductive steady state, internal transformer, etc.) have been proposed for tokamaks. Our study focuses on capital costs and lifetime limitations of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas considered include: thermal fatigue on first wall, limiter/divertor; thermal energy storage; fatigue and eddy current heating in toroidal field coils; electric power supply costs; and noninductive driver costs. We assume a high availability and low cost of energy will be mandatory for a commercial fusion reactor, and we characterize improvements in physics (current drive efficiency) and engineering (superior materials) which will help achieve these goals for different burn cycles

  1. Coupled neutronic/thermal-hydraulic analysis of the HPLWR three pass core

    International Nuclear Information System (INIS)

    Monti, Lanfranco; Starflinger, Joerg; Schulenberg, Thomas

    2008-01-01

    The High Performance Light Water Reactor is an innovative Gen-IV reactor cooled and moderated with water at supercritical pressure. The three pass core concept has been proposed to reduce peaking factors, i.e. hot-channel effects, and it further increases the core heterogeneity, which is mainly due to pronounced water density reduction. For this kind of nuclear reactor, the significant feedbacks - which exist between the properties of the components and the power generation rate - can not be neglected and require a coupled Neutronic/Thermal-Hydraulic analysis even for steady state conditions. The main goal of this paper is to present the developed tool for coupled analyses of the HPLWR. Two state-of-the-art codes have been chosen for Thermal-Hydraulic and Neutronic core analyses, namely TRACE and ERANOS, and they have been coupled with in an iterative procedure in which they are run in series until a steady state condition has been reached. In the simplifying assumptions of uniform enrichment distribution, zero burn-up and ignoring the effect of the control rods, the obtained steady state condition will be discussed and a core power map, flow rate redistribution as well as water and fuel temperature variations will be presented. (author)

  2. Lipid mobilization from human abdominal, subcutaneous adipose tissue is independent of sex during steady-state exercise

    DEFF Research Database (Denmark)

    Bülow, Jens; Gjeraa, Kirsten; Enevoldsen, Lotte Hahn

    2006-01-01

    The aim of the study was to elucidate whether there are sex differences of significant biological importance in the human abdominal, subcutaneous adipose tissue lipid metabolism when studied by Fick's Principle during rest and exercise in steady-state conditions. The net mobilization of fatty acids...... intensity, and for another 60 min during post-exercise recovery. The results show that there are not significant sex differences with respect to the steady-state fatty acid and glycerol mobilizations neither during resting condition nor during exercise....... and glycerol from the abdominal, subcutaneous adipose tissue was measured by arterio-venous catheterizations and simultaneous measurements of adipose tissue blood flow with the local Xe-clearance technique in 16 healthy, young normal weight men and women during rest, during 1 h of exercise at moderate...

  3. Modeling steady state and transient fission gas behaviour with the Karlsruhe code LAKU

    International Nuclear Information System (INIS)

    Vaeth, L.

    1984-08-01

    The programme LAKU models the behaviour of gaseous fission products in reactor fuel under steady state and transient conditions, including molten fuel. A presentation of the full model is given, starting with gas behaviour in the grains and on grain faces and including the treatment of release from porosity. The results of some recent calculations are presented. (orig.) [de

  4. Evaluating local and overall thermal comfort in buildings using thermal manikins

    Energy Technology Data Exchange (ETDEWEB)

    Foda, E.

    2012-07-01

    Evaluation methods of human thermal comfort that are based on whole-body heat balance with its surroundings may not be adequate for evaluations in non-uniform thermal conditions. Under these conditions, the human body's segments may experience a wide range of room physical parameters and the evaluation of the local (segmental) thermal comfort becomes necessary. In this work, subjective measurements of skin temperature were carried out to investigate the human body's local responses due to a step change in the room temperature; and the variability in the body's local temperatures under different indoor conditions and exposures as well as the physiological steady state local temperatures. Then, a multi-segmental model of human thermoregulation was developed based on these findings to predict the local skin temperatures of individuals' body segments with a good accuracy. The model predictability of skin temperature was verified for steady state and dynamic conditions using measured data at uniform neutral, cold and warm as well as different asymmetric thermal conditions. The model showed very good predictability with average absolute deviation ranged from 0.3-0.8 K. The model was then implemented onto the control system of the thermal manikin 'THERMINATOR' to adjust the segmental skin temperature set-points based on the indoor conditions. This new control for the manikin was experimentally validated for the prediction of local and overall thermal comfort using the equivalent temperature measure. THERMINATOR with the new control mode was then employed in the evaluation of localized floor-heating system variants towards maximum energy efficiency. This aimed at illustrating a design strategy using the thermal manikin to find the optimum geometry and surface area of a floor-heater for a single seated person. Furthermore, a psychological comfort model that is based on local skin temperature was adapted for the use with the model of human

  5. A design of steady state fusion burner

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Hatori, Tadatsugu; Itoh, Kimitaka; Ikuta, Takashi; Kodama, Yuji.

    1975-01-01

    We present a brief design of a steady state fusion burner in which a continuous burning of nuclear fuel may be achieved with output power of a gigawatt. The laser fusion is proposed to ignite the fuel. (auth.)

  6. Thermal resistivity of tungsten grades under fusion relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, M.; Linke, J.; Pintsuk, G. [Forschungszentrum Juelich (Germany). EURATOM Association

    2010-05-15

    Controlled nuclear fusion on earth is a very promising but also a very challenging task. Fusion devices like ITER and DEMO are major steps on the way of solving the energy problems of the future. However, the realisation of such thermonuclear fusion reactors still needs high efforts in many areas of research. One of the most critical issues is the field of in - vessel materials and components and in particular the plasma facing material (PFM). This not only has to be compatible to the heat sink material being able to withstand thermal fatigue loading conditions during steady state heat loading (up to 20 MW/m{sup 2}) but also has to withstand extreme thermal loads during transient events. The latter are divided into normal and off normal events, such as plasma disruptions or vertical displacement events (VDEs), resulting in irreversible damage of the material. Therefore they have to be avoided in future fusion devices by an improved plasma control. In contrast, edge localized modes (ELMs) occur during normal operation and are the result of complex plasma configuration. In the next step experiment ITER they are generated with a frequency of {>=} 1 Hz and a duration of 200 - 500 {mu}s depositing energies of {<=} 1 MJ/m{sup 2}. One of the most promising materials for the application as PFM in particular in the divertor region is tungsten. Its main advantages are a high thermal conductivity, a high melting temperature, a low tritium inventory and a low erosion rate. However there are some drawbacks like a high ductile to brittle transitions temperature (DBTT), its high atomic number Z and the remarkable neutron irradiation induced activation and degradation of its mechanical properties. The main aim of future R and D will be to understand the mechanisms of thermal induced damages and subsequently to minimize these types of damages. Therefore various tungsten grades have to be tested under fusion relevant conditions, e.g. by electron, ion or plasma beam exposure; the

  7. Steady State Analysis of LCLC Resonant Converter with Capacitive Output Filter

    Directory of Open Access Journals (Sweden)

    Navid Shafiyi

    2010-01-01

    Full Text Available This paper presents the mathematical analysis and modeling of a 4th order LCLC resonant converter with capacitive output filter in steady-state condition. Due to the nonlinearity of the LCLC resonant circuit with capacitive output filter, the conventional modeling procedure cannot thoroughly describe the behavior of the converter. In this paper, a mathematical model is proposed that can accommodate the absence of the output inductor and predict the converter performance for a wide range of operating conditions. A 2.25KW prototype converter is provided to evaluate the accuracy of the proposed model. Experimental results show that the proposed model can precisely predict the behavior of the converter for a wide range of operating conditions.

  8. Study of nonequilibrium steady state of Fe(II) complex salt by means of synchrotron-radiation x-ray

    CERN Document Server

    Moritomo, Y

    2003-01-01

    In this article, we introduce our recent investigation at SPring-8/BL02B2 on the nonequilibrium steady state of photoexcited spin-crossover salts, which consists of Fe sup 2 sup + complexes and counter cations. The Fe sup 2 sup + complex takes two states; one is the low-spin state (S=0) and the other is the high-spin state (S=2). The photoexcitation can convert the low-spin site into the high-spin state, and hence, a finite the high-spin site is excited balancing with the thermal relaxation process. When the excitation power exceeds a critical value, we observe a dynamical phase transition into the high-spin condensed state.

  9. A simulation study on burning profile tailoring of steady state, high bootstrap current tokamaks

    International Nuclear Information System (INIS)

    Nakamura, Y.; Takei, N.; Tobita, K.; Sakamoto, Y.; Fujita, T.; Fukuyama, A.; Jardin, S.C.

    2007-01-01

    From the aspect of fusion burn control in steady state DEMO plant, the significant challenges are to maintain its high power burning state of ∝3-5 GW without burning instability, hitherto well-known as ''thermal stability'', and also to keep its desired burning profile relevant with internal transport barrier (ITB) that generates high bootstrap current. The paper presents a simulation modeling of the burning stability coupled with the self-ignited fusion burn and the structure-formation of the ITB. A self-consistent simulation, including a model for improved core energy confinement, has pointed out that in the high power fusion DEMO plant there is a close, nonlinear interplay between the fusion burnup and the current source of non-inductive, ITB-generated bootstrap current. Consequently, as much distinct from usual plasma controls under simulated burning conditions with lower power (<<1 GW), the selfignited fusion burn at a high power burning state of ∝3-5 GW becomes so strongly selforganized that any of external means except fuelling can not provide the effective control of the stable fusion burn.It is also demonstrated that externally applied, inductive current perturbations can be used to control both the location and strength of ITB in a fully noninductive tokamak discharge. We find that ITB structures formed with broad noninductive current sources such as LHCD are more readily controlled than those formed by localized sources such as ECCD. The physics of the inductive current is well known. Consequently, we believe that the controllability of the ITB is generic, and does not depend on the details of the transport model (as long as they can form an ITB for sufficiently reversed magnetic shear q-profile). Through this external control of the magnetic shear profile, we can maintain the ITB strength that is otherwise prone to deteriorate when the bootstrap current increases. These distinguishing capabilities of inductive current perturbation provide steady

  10. Quasi-steady state natural convection in a tilted porous layer

    Energy Technology Data Exchange (ETDEWEB)

    Robillard, L.; Vasseur, P. (Ecole Polytechnique, Montreal, PQ (Canada))

    1992-12-01

    Natural convection in an inclined porous layer heated or cooled on one side, when its other walls are insulated, has several important engineering applications. These include solar power collection, regenerative heat exchangers, and high performance insulation for buildings and cold storage. Although the problem is basically an unsteady state one, it is known that if the heating (or cooling) process is maintained for a sufficiently long time, a quasi-steady state is approached. Quasi-steady state laminar natural convection in an inclined porous layer is studied analytically and numerically. On the basis of the Darcy-Oberbeck-Boussinesq equations, the problem is solved analytically in the limit of a thin porous layer heated on one side by a heat flux while the other boundaries are maintained adiabatic. For quasi-steady state, the flow and temperature fields overall heat transfer rates are obtained in terms of the controlling parameters and the onset of convection in a bottom heated horizantal system is predicted. It is also demonstrated for the case of a bottom-heated layer that for sufficiently small inclinations, multiple unicellular quasi-steady states exist, some of which are unstable. A numerical study of the same phenomenon, obtained by solving the complete set of governing equations, is conducted. Good agreement is found between the analytical predictions and the numerical simulation. 22 refs., 6 figs.

  11. Quasi-steady State Reduction of Molecular Motor-Based Models of Directed Intermittent Search

    KAUST Repository

    Newby, Jay M.

    2010-02-19

    We present a quasi-steady state reduction of a linear reaction-hyperbolic master equation describing the directed intermittent search for a hidden target by a motor-driven particle moving on a one-dimensional filament track. The particle is injected at one end of the track and randomly switches between stationary search phases and mobile nonsearch phases that are biased in the anterograde direction. There is a finite possibility that the particle fails to find the target due to an absorbing boundary at the other end of the track. Such a scenario is exemplified by the motor-driven transport of vesicular cargo to synaptic targets located on the axon or dendrites of a neuron. The reduced model is described by a scalar Fokker-Planck (FP) equation, which has an additional inhomogeneous decay term that takes into account absorption by the target. The FP equation is used to compute the probability of finding the hidden target (hitting probability) and the corresponding conditional mean first passage time (MFPT) in terms of the effective drift velocity V, diffusivity D, and target absorption rate λ of the random search. The quasi-steady state reduction determines V, D, and λ in terms of the various biophysical parameters of the underlying motor transport model. We first apply our analysis to a simple 3-state model and show that our quasi-steady state reduction yields results that are in excellent agreement with Monte Carlo simulations of the full system under physiologically reasonable conditions. We then consider a more complex multiple motor model of bidirectional transport, in which opposing motors compete in a "tug-of-war", and use this to explore how ATP concentration might regulate the delivery of cargo to synaptic targets. © 2010 Society for Mathematical Biology.

  12. Numerical analysis of steady state and transient analysis of high temperature ceramic plate-fin heat exchanger

    International Nuclear Information System (INIS)

    Nagarajan, Vijaisri; Chen, Yitung; Wang, Qiuwang; Ma, Ting

    2014-01-01

    Highlights: • Rip saw fin design is considered to be the best because it has thin fins and has higher heat transfer coefficient. • Minimum principal stress and maximum safety factor are obtained for the inverted bolt fin design. • Maximum principal stress and minimum safety factor are obtained for triangular fin design. • Thermal stress has significant impact than mechanical stress. • High principal stress is found at the startup and shutdown stage. - Abstract: In this study three-dimensional model of ceramic plate-fin high temperature heat exchanger with different fin designs and arrangements is analyzed numerically using ANSYS FLUENT and ANSYS structural module. The ability of ceramics to withstand high temperature and corrosion makes silicon carbide (SiC) suitable candidate material to be used in high temperature heat exchanger. The operating temperature of heat exchanger is 950 °C and the operating pressure is 1.5 MPa. The working fluids are helium, sulfur trioxide, sulfur dioxide, oxygen and the water vapor. Fluid flow and heat transfer analysis are carried out for steady and transient state in FLUENT. The obtained thermal and pressure load for the steady and transient state from ANSYS FLUENT are imported to ANSYS structural module to obtain the principal stress and the factor of safety. Different arrangements of rectangular fins, triangular fins, inverted bolt fins and ripsaw fins are studied. From the results it is found that the minimum stress and the maximum safety factor are obtained for inverted bolt fins. The triangular fins have the maximum principal stress and minimum factor of safety. However, the fluid flow and heat transfer analysis show inverted bolt fins and triangular fins produce higher pressure drop and friction factor. The steady state maximum principal stress is 10.08 MPa, 9.90 MPa and 11.43 MPa for straight, staggered and top and bottom ripsaw fin arrangement. The corresponding safety factors are 21.80, 21.95 and 19

  13. Improved Dyson series expansion for steady-state quantum transport beyond the weak coupling limit: Divergences and resolution

    International Nuclear Information System (INIS)

    Thingna, Juzar; Zhou, Hangbo; Wang, Jian-Sheng

    2014-01-01

    We present a general theory to calculate the steady-state heat and electronic currents for nonlinear systems using a perturbative expansion in the system-bath coupling. We explicitly demonstrate that using the truncated Dyson-series leads to divergences in the steady-state limit, thus making it impossible to be used for actual applications. In order to resolve the divergences, we propose a unique choice of initial condition for the reduced density matrix, which removes the divergences at each order. Our approach not only allows us to use the truncated Dyson-series, with a reasonable choice of initial condition, but also gives the expected result that the steady-state solutions should be independent of initial preparations. Using our improved Dyson series we evaluate the heat and electronic currents up to fourth-order in system-bath coupling, a considerable improvement over the standard quantum master equation techniques. We then numerically corroborate our theory for archetypal settings of linear systems using the exact nonequilibrium Green's function approach. Finally, to demonstrate the advantage of our approach, we deal with the nonlinear spin-boson model to evaluate heat current up to fourth-order and find signatures of cotunnelling process

  14. On Steady-State Tropical Cyclones

    Science.gov (United States)

    2014-01-01

    Press: London. Marks FD, Black PG, Montgomery MT, Burpee RW. 2008. Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Weather Rev. 136: 1237... hurricanes ; tropical cyclones; typhoons; steady-state Received 18 April 2013; Revised 25 November 2013; Accepted 29 December 2013; Published online in Wiley...the concept of the ‘mature stage’ of a hurricane vortex. The definition of the ‘mature stage’ is commonly based on the time period in which the maximum

  15. STEADY-STATE RELATIVISTIC STELLAR DYNAMICS AROUND A MASSIVE BLACK HOLE

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Or, Ben; Alexander, Tal [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100 (Israel)

    2016-04-01

    A massive black hole (MBH) consumes stars whose orbits evolve into the small phase-space volume of unstable orbits, the “loss cone,” which take them into the MBH, or close enough to interact strongly with it. The resulting phenomena, e.g., tidal heating and disruption, binary capture and hyper-velocity star ejection, gravitational wave (GW) emission by inspiraling compact remnants, or hydrodynamical interactions with an accretion disk, can produce observable signatures and thereby reveal the MBH, affect its mass and spin evolution, test strong gravity, and probe stars and gas near the MBH. These continuous stellar loss and resupply processes shape the central stellar distribution. We investigate relativistic stellar dynamics near the loss cone of a non-spinning MBH in steady state, analytically and by Monte Carlo simulations of the diffusion of the orbital parameters. These take into account Newtonian mass precession due to enclosed stellar mass, in-plane precession due to general relativity, dissipation by GW, uncorrelated two-body relaxation, correlated resonant relaxation (RR), and adiabatic invariance due to secular precession, using a rigorously derived description of correlated post-Newtonian dynamics in the diffusion limit. We argue that general maximal entropy considerations strongly constrain the orbital diffusion in steady state, irrespective of the relaxation mechanism. We identify the exact phase-space separatrix between plunges and inspirals, and predict their steady-state rates. We derive the dependence of the rates on the mass of the MBH, show that the contribution of RR in steady state is small, and discuss special cases where unquenched RR in restricted volumes of phase-space may affect the steady state substantially.

  16. Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions

    International Nuclear Information System (INIS)

    Carlon, Elisa; Verma, Vijay Kumar; Schwarz, Markus; Golicza, Laszlo; Prada, Alessandro; Baratieri, Marco; Haslinger, Walter; Schmidl, Christoph

    2015-01-01

    Highlights: • Laboratory tests on two commercially available pellet boilers. • Steady state and a dynamic load cycle tests. • Pellet boiler model calibration based on data registered in stationary operation. • Boiler model validation with reference to both stationary and dynamic operation. • Validated model suitable for coupled simulation of building and heating system. - Abstract: Nowadays dynamic building simulation is an essential tool for the design of heating systems for residential buildings. The simulation of buildings heated by biomass systems, first of all needs detailed boiler models, capable of simulating the boiler both as a stand-alone appliance and as a system component. This paper presents the calibration and validation of a boiler model by means of laboratory tests. The chosen model, i.e. TRNSYS “Type 869”, has been validated for two commercially available pellet boilers of 6 and 12 kW nominal capacities. Two test methods have been applied: the first is a steady state test at nominal load and the second is a load cycle test including stationary operation at different loads as well as transient operation. The load cycle test is representative of the boiler operation in the field and characterises the boiler’s stationary and dynamic behaviour. The model had been calibrated based on laboratory data registered during stationary operation at different loads and afterwards it was validated by simulating both the stationary and the dynamic tests. Selected parameters for the validation were the heat transfer rates to water and the water temperature profiles inside the boiler and at the boiler outlet. Modelling results showed better agreement with experimental data during stationary operation rather than during dynamic operation. Heat transfer rates to water were predicted with a maximum deviation of 10% during the stationary operation, and a maximum deviation of 30% during the dynamic load cycle. However, for both operational regimes the

  17. Hybrid photovoltaic–thermal solar collectors dynamic modeling

    International Nuclear Information System (INIS)

    Amrizal, N.; Chemisana, D.; Rosell, J.I.

    2013-01-01

    Highlights: ► A hybrid photovoltaic/thermal dynamic model is presented. ► The model, once calibrated, can predict the power output for any set of climate data. ► The physical electrical model includes explicitly thermal and irradiance dependences. ► The results agree with those obtained through steady-state characterization. ► The model approaches the junction cell temperature through the system energy balance. -- Abstract: A hybrid photovoltaic/thermal transient model has been developed and validated experimentally. The methodology extends the quasi-dynamic thermal model stated in the EN 12975 in order to involve the electrical performance and consider the dynamic behavior minimizing constraints when characterizing the collector. A backward moving average filtering procedure has been applied to improve the model response for variable working conditions. Concerning the electrical part, the model includes the thermal and radiation dependences in its variables. The results revealed that the characteristic parameters included in the model agree reasonably well with the experimental values obtained from the standard steady-state and IV characteristic curve measurements. After a calibration process, the model is a suitable tool to predict the thermal and electrical performance of a hybrid solar collector, for a specific weather data set.

  18. 40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed engines: (1) The following duty cycle applies for discrete-mode testing: D2 mode number Engine speed...

  19. Steady State Turbulent Transport in Magnetic Fusion Plasmas

    International Nuclear Information System (INIS)

    Lee, W.W.; Ethier, S.; Kolesnikov, R.; Wang, W.X.; Tang, W.M.

    2007-01-01

    For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers

  20. Transient and steady-state selection in the striatal microcircuit

    Directory of Open Access Journals (Sweden)

    Adam eTomkins

    2014-01-01

    Full Text Available Although the basal ganglia have been widely studied and implicated in signal processing and action selection, little information is known about the active role the striatal microcircuit plays in action selection in the basal ganglia-thalamo-cortical loops. To address this knowledge gap we use a large scale three dimensional spiking model of the striatum, combined with a rate coded model of the basal ganglia-thalamo-cortical loop, to asses the computational role the striatum plays in action selection. We identify a robust transient phenomena generated by the striatal microcircuit, which temporarily enhances the difference between two competing cortical inputs. We show that this transient is sufficient to modulate decision making in the basal ganglia-thalamo-cortical circuit. We also find that the transient selection originates from a novel adaptation effect in single striatal projection neurons, which is amenable to experimental testing. Finally, we compared transient selection with models implementing classical steady-state selection. We challenged both forms of model to account for recent reports of paradoxically enhanced response selection in Huntington's Disease patients. We found that steady-state selection was uniformly impaired under all simulated Huntington's conditions, but transient selection was enhanced given a sufficient Huntington's-like increase in NMDA receptor sensitivity. Thus our models provide an intriguing hypothesis for the mechanisms underlying the paradoxical cognitive improvements in manifest Huntington's patients.

  1. A dynamic switching strategy for air-conditioning systems operated in light-thermal-load conditions

    International Nuclear Information System (INIS)

    Lin, Jin-Long; Yeh, T.-J.; Hwang, Wei-Yang

    2009-01-01

    Recently, modern air-conditioners have begun to incorporate variable-speed compressors and variable-opening expansion valves, together with feedback control to improve the performance and energy efficiency. However, for the compressor there usually exists a low-speed limit below which its speed can not be continuously modulated unless it is completely turned off. When the air-conditioning system is operated in light-thermal-load conditions, the low-speed limit causes the compressor to run in an on-off manner which can significantly degrade the performance and efficiency. In this paper, a dynamic switching strategy is proposed for such scenarios. The strategy is basically an integration of a cascading control structure, an intuitive switching strategy, and a dynamic compensator. While the control structure provides the nominal performance, the intuitive switching strategy and the dynamic compensator together can account for the compressor's low-speed limitation. Theoretical analysis reveals that when the output matrix of the dynamic compensator is chosen properly, the proposed strategy can effectively reduce the output error caused by the on-off operation of the compressor. Experiments also demonstrate that the proposed strategy can simultaneously provide better regulation for the indoor temperature and improve the energy efficiency at steady state.

  2. 40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix..., App. II Appendix II to Part 1042—Steady-State Duty Cycles (a) The following duty cycles apply as specified in § 1042.505(b)(1): (1) The following duty cycle applies for discrete-mode testing: E3 mode No...

  3. A steady-state axisymmetric toroidal system

    International Nuclear Information System (INIS)

    Hirano, K.

    1984-01-01

    Conditions for achieving a steady state in an axisymmetric toroidal system are studied with emphasis on a very-high-beta field-reversed configuration. The analysis is carried out for the electromotive force produced by the Ohkawa current that is induced by neutral-beam injection. It turns out that, since the perpendicular component of the current j-vectorsub(perpendicular) to the magnetic field can be generated automatically by the diamagnetic effect, only the parallel component j-vectorsub(parallel) must be driven by the electromotive force. The drive of j-vectorsub(parallel) generates shear in the field line so that the pure toroidal field on the magnetic axis is rotated towards the plasma boundary and matched to the external field lines. This matching condition determines the necessary amount of injection beam current and power. It is demonstrated that a very-high-beta field-reversed configuration requires only a small amount of current-driving beam power because almost all the toroidal current except that close to the magnetic axis is carried by the diamagnetic current due to high beta. A low-beta tokamak, on the other hand, needs very high current-driving power since most of the toroidal current is composed of j-vectorsub(parallel) which must be driven by the beam. (author)

  4. Emergence of advance waves in a steady-state universe

    Energy Technology Data Exchange (ETDEWEB)

    Hobart, R.H.

    1979-10-01

    In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state.

  5. Emergence of advance waves in a steady-state universe

    International Nuclear Information System (INIS)

    Hobart, R.H.

    1979-01-01

    In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state

  6. BRIEF COMMUNICATIONS: Strong reflection of a series of pulses from a four-wave mirror with thermal nonlinearity under parametric feedback conditions

    Science.gov (United States)

    Barashkov, M. S.; Bel'dyugin, Igor'M.; Zolotarev, M. V.; Kruzhilin, Yu I.; Krymskiĭ, M. I.; Oshkin, S. P.; Starkov, G. S.; Umnov, A. F.; Kharchenko, M. A.

    1989-04-01

    A four-wave mirror exhibiting a thermal nonlinearity was used in a study of the interaction of concurrent waves under parametric feedback conditions in the presence of a nonreciprocal element. Strong reflection of a series of pulses of ~ 300 ns duration from a neodymium glass laser was demonstrated: the maximum reflection coefficient was in excess of 30. An analysis was made of the quality of the radiation reflected from this four-mirror parametric feedback system. A considerable reduction was observed in the steady-state threshold for the operation of this mirror with a thermal nonlinearity when the angles of convergence of the interacting beams were small compared with the case of head-on collision of the waves.

  7. Transient forced convection with viscous dissipation to power-law fluids in thermal entrance region of circular ducts with constant wall heat flux

    International Nuclear Information System (INIS)

    Dehkordi, Asghar Molaei; Mohammadi, Ali Asghar

    2009-01-01

    A numerical investigation was conducted on the transient behavior of a hydrodynamically, fully developed, laminar flow of power-law fluids in the thermally developing entrance region of circular ducts taking into account the effect of viscous dissipation but neglecting the effect of axial conduction. In this regard, the unsteady state thermal energy equation was solved by using a finite difference method, whereas the steady state thermal energy equation without wall heat flux was solved analytically as the initial condition of the former. The effects of the power-law index and wall heat flux on the local Nusselt number and thermal entrance length were investigated. Moreover, the local Nusselt number of steady state conditions was correlated in terms of the power-law index and wall heat flux and compared with literature data, which were obtained by an analytic solution for Newtonian fluids. Furthermore, a relationship was proposed for the thermal entrance length

  8. Seeing the talker’s face supports executive processing of speech in steady state noise

    Directory of Open Access Journals (Sweden)

    Sushmit eMishra

    2013-11-01

    Full Text Available Listening to speech in noise depletes cognitive resources, affecting speech processing. The present study investigated how remaining resources or cognitive spare capacity (CSC can be deployed by young adults with normal hearing. We administered a test of CSC (CSCT, Mishra et al., 2013 along with a battery of established cognitive tests to 20 participants with normal hearing. In the CSCT, lists of two-digit numbers were presented with and without visual cues in quiet, as well as in steady-state and speech-like noise at a high intelligibility level. In low load conditions, two numbers were recalled according to instructions inducing executive processing (updating, inhibition and in high load conditions the participants were additionally instructed to recall one extra number, which was the always the first item in the list. In line with previous findings, results showed that CSC was sensitive to memory load and executive function but generally not related to working memory capacity. Furthermore, CSCT scores in quiet were lowered by visual cues, probably due to distraction. In steady-state noise, the presence of visual cues improved CSCT scores, probably by enabling better encoding. Contrary to our expectation, CSCT performance was disrupted more in steady-state than speech-like noise, although only without visual cues, possibly because selective attention could be used to ignore the speech-like background and provide an enriched representation of target items in working memory similar to that obtained in quiet. This interpretation is supported by a consistent association between CSCT scores and updating skills.

  9. Seeing the talker’s face supports executive processing of speech in steady state noise

    Science.gov (United States)

    Mishra, Sushmit; Lunner, Thomas; Stenfelt, Stefan; Rönnberg, Jerker; Rudner, Mary

    2013-01-01

    Listening to speech in noise depletes cognitive resources, affecting speech processing. The present study investigated how remaining resources or cognitive spare capacity (CSC) can be deployed by young adults with normal hearing. We administered a test of CSC (CSCT; Mishra et al., 2013) along with a battery of established cognitive tests to 20 participants with normal hearing. In the CSCT, lists of two-digit numbers were presented with and without visual cues in quiet, as well as in steady-state and speech-like noise at a high intelligibility level. In low load conditions, two numbers were recalled according to instructions inducing executive processing (updating, inhibition) and in high load conditions the participants were additionally instructed to recall one extra number, which was the always the first item in the list. In line with previous findings, results showed that CSC was sensitive to memory load and executive function but generally not related to working memory capacity (WMC). Furthermore, CSCT scores in quiet were lowered by visual cues, probably due to distraction. In steady-state noise, the presence of visual cues improved CSCT scores, probably by enabling better encoding. Contrary to our expectation, CSCT performance was disrupted more in steady-state than speech-like noise, although only without visual cues, possibly because selective attention could be used to ignore the speech-like background and provide an enriched representation of target items in working memory similar to that obtained in quiet. This interpretation is supported by a consistent association between CSCT scores and updating skills. PMID:24324411

  10. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    Science.gov (United States)

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  11. STEADY-STATE HADRONIC GAMMA-RAY EMISSION FROM 100-MYR-OLD FERMI BUBBLES

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Roland M.; Bicknell, Geoffrey V.; Sutherland, Ralph S. [Research School of Astronomy and Astrophysics, Australian National University, Canberra (Australia); Carretti, Ettore; Hill, Alex S. [CSIRO Astronomy and Space Science, Marsfield, N.S.W. (Australia)

    2014-08-20

    Fermi Bubbles are enigmatic γ-ray features of the Galactic bulge. Both putative activity (within few × Myr) connected to the Galactic center super-massive black hole and, alternatively, nuclear star formation have been claimed as the energizing source of the Bubbles. Likewise, both inverse-Compton emission by non-thermal electrons (''leptonic'' models) and collisions between non-thermal protons and gas (''hadronic'' models) have been advanced as the process supplying the Bubbles' γ-ray emission. An issue for any steady state hadronic model is that the very low density of the Bubbles' plasma seems to require that they accumulate protons over a multi-gigayear timescale, much longer than other natural timescales occurring in the problem. Here we present a mechanism wherein the timescale for generating the Bubbles' γ-ray emission via hadronic processes is ∼few × 10{sup 8} yr. Our model invokes the collapse of the Bubbles' thermally unstable plasma, leading to an accumulation of cosmic rays and magnetic field into localized, warm (∼10{sup 4} K), and likely filamentary condensations of higher-density gas. Under the condition that these filaments are supported by non-thermal pressure, the hadronic emission from the Bubbles is L {sub γ} ≅ 2 × 10{sup 37} erg s{sup –1} M-dot {sub in}/(0.1 M{sub ⊙} yr{sup –1} ) T{sub FB}{sup 2}/(3.5×10{sup 7} K){sup 2} M {sub fil}/M {sub pls}, equal to their observed luminosity (normalizing to the star-formation-driven mass flux into the Bubbles and their measured plasma temperature and adopting the further result that the mass in the filaments, M {sub fil} is approximately equal to the that of the Bubbles' plasma, M {sub pls})

  12. Do's and don'ts in Fourier analysis of steady-state potentials.

    Science.gov (United States)

    Bach, M; Meigen, T

    1999-01-01

    Fourier analysis is a powerful tool in signal analysis that can be very fruitfully applied to steady-state evoked potentials (flicker ERG, pattern ERG, VEP, etc.). However, there are some inherent assumptions in the underlying discrete Fourier transform (DFT) that are not necessarily fulfilled in typical electrophysiological recording and analysis conditions. Furthermore, engineering software-packages may be ill-suited and/or may not fully exploit the information of steady-state recordings. Specifically: * In the case of steady-state stimulation we know more about the stimulus than in standard textbook situations (exact frequency, phase stability), so 'windowing' and calculation of the 'periodogram' are not necessary. * It is mandatory to choose an integer relationship between sampling rate and frame rate when employing a raster-based CRT stimulator. * The analysis interval must comprise an exact integer number (e.g., 10) of stimulus periods. * The choice of the number of stimulus periods per analysis interval needs a wise compromise: A high number increases the frequency resolution, but makes artifact removal difficult; a low number 'spills' noise into the response frequency. * There is no need to feel tied to a power-of-two number of data points as required by standard FFT, 'resampling' is an easy and efficient alternative. * Proper estimates of noise-corrected Fourier magnitude and statistical significance can be calculated that take into account the non-linear superposition of signal and noise. These aspects are developed in an intuitive approach with examples using both simulations and recordings. Proper use of Fourier analysis of our electrophysiological records will reduce recording time and/or increase the reliability of physiologic or pathologic interpretations.

  13. Fouling behavior and performance of microfiltration membranes for whey treatment in steady and unsteady-state conditions

    Directory of Open Access Journals (Sweden)

    H. Rezaei

    2014-06-01

    Full Text Available Whey pretreatment for protein purification is one of the main applications of cross-flow microfiltration before an ultrafiltration process. In this paper, the effects of the operating pressure and crossflow velocity on the membrane performance and the individual resistances in microfiltration of whey for both unsteady and steady-state conditions were investigated for two 0.45 µm mean pore size polymeric membranes, Polyethersulfone (PES and Polyvinylidene fluoride (PVDF. A laboratory-scale microfiltration setup with a flat rectangular module was used. The Reynolds number and operating pressure showed positive and negative effects on the amount of all resistances, respectively. The dominant effect of the concentration polarization and cake resistances was demonstrated by using a "Resistance-in-Series" model for unsteadystate investigations, which could vary during the filtration time. An empirical model revealed a linear relationship between the Reynolds number and permeate flux and a second-order polynomial relationship between the transmembrane pressure and the permeate flux. This empirical correlation, implemented for the limited range of MF operating parameters tested in this article for whey protein, was validated with experimental data and showed good agreement between calculated and experimental data.

  14. Design of Infusion Schemes for Neuroreceptor Imaging: Application to [11C]Flumazenil-PET Steady-State Study

    Directory of Open Access Journals (Sweden)

    Ling Feng

    2016-01-01

    Full Text Available This study aims at developing a simulation system that predicts the optimal study design for attaining tracer steady-state conditions in brain and blood rapidly. Tracer kinetics was determined from bolus studies and used to construct the system. Subsequently, the system was used to design inputs for bolus infusion (BI or programmed infusion (PI experiments. Steady-state quantitative measurements can be made with one short scan and venous blood samples. The GABAA receptor ligand [C11]Flumazenil (FMZ was chosen for this purpose, as it lacks a suitable reference region. Methods. Five bolus [C11]FMZ-PET scans were conducted, based on which population-based PI and BI schemes were designed and tested in five additional healthy subjects. The design of a PI was assisted by an offline feedback controller. Results. The system could reproduce the measurements in blood and brain. With PI, [C11]FMZ steady state was attained within 40 min, which was 8 min earlier than the optimal BI (B/I ratio = 55 min. Conclusions. The system can design both BI and PI schemes to attain steady state rapidly. For example, subjects can be [C11]FMZ-PET scanned after 40 min of tracer infusion for 40 min with venous sampling and a straight-forward quantification. This simulation toolbox is available for other PET-tracers.

  15. Calculation of the thermal and hydraulic states in rod cluster cores of light-water reactors

    International Nuclear Information System (INIS)

    Teichel, H.

    1977-01-01

    For calculating the three-dimensional steady distribution of the thermal and hydraulic states in rod cluster cores of light-water reactors, the subchannel analysis programs COLA 1 and COLA 2 have been developed. Both programs contain a multitude of competing empirical correlations which may be used by choice. The programs COLA 1 and COLA 2 differ in the calculation method and in the treatment of the boundary condition 'equal pressure at the end of all cooling channels' governing the problem. All parts of the programs are identical. By means of recomputed experiments statements on the accuracy of the results to be expected can be made. In addition, the different suitability of both programs for different experimental conditions are shown. (orig.) [de

  16. Simple Technique for Tracking Chloride Penetration in Concrete Based on the Crack Shape and Width under Steady-State Conditions

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2017-02-01

    Full Text Available Chloride attack is considered one of the most threatening deterioration mechanisms in concrete. Any cracks or other imperfections on the surface open up additional routes for chloride intrusion. This paper develops existing anisotropic (1-D and isotropic (2-D models for chloride diffusion in concrete with cracks by considering the crack shape and roughness. In order to verify the proposed model, concrete samples with crack widths from 0.0 to 0.4 mm were prepared and the chloride diffusion coefficients under steady-state conditions evaluated. The proposed model for a wedge-shaped model with roughness reduced chloride diffusion and provided more reasonable results than previous models based on rectangular shaped cracks with no roughness, which have tended to overestimate the effect. Our results revealed that including roughness in the model produced a 10%–20% reduction in chloride diffusion.

  17. Limitations of steady state solutions to a two-state model of population oscillations and hole burning

    International Nuclear Information System (INIS)

    Payne, M. G.; Deng, L.; Jiang, K. J.

    2006-01-01

    We consider a two-state system driven by an on-resonance, continuous wave pump laser and a much weaker pulsed probe laser that is slightly detuned from the pump laser frequency (usually this detuning is about ω p -ω P =Δ≅1 kHz). The upper state population is assumed to be slowly decaying, but the off-diagonal element of the density matrix decays rapidly due to homogeneous broadening. This model has been solved by others in rare-earth-element-doped fibers and crystals in a usual steady state approximation for slow optical wave propagation. We show that in general the usual steady state approximation does not apply unless either Δτ>>1 or (2S+1)γ 2 τ>>1 where γ 2 is the decay rate of the excited state population, τ is the pulse length of the probe field, and 2S is the saturation parameter. Both conditions, however, are not satisfied in many population-oscillation- and corresponding group-velocity-reduction-related studies. Our theory and corresponding numerical simulations have indicated that for probe pulses that are much shorter than the lifetime of the upper state, there is no analytical theory for the amplitude, pulse shape, and group velocity of the probe field. In addition, there is no reason to assume that the group velocity remains small when γ 2 τ<<1 and there is no reason to believe that many pulse length decays can be obtained for such short pulses

  18. Theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor

    International Nuclear Information System (INIS)

    Gou Junli; Qiu Suizheng; Su Guanghui; Jia Dounan

    2006-01-01

    This article presents a theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor. Through numerically solving the one-dimensional steady-state single-phase conservative equations for the primary circuit and the steady-state two-phase drift-flux conservative equations for the secondary side of the steam generator, the natural circulation characteristics were studied. On the basis of the preliminary calculation analysis, it was found that natural circulation mass flow rate was proportional to the exponential function of the power and that the value of the exponent is related to the operating conditions of the secondary side of the steam generator. The higher the outlet pressure of the secondary side of the steam generator, the higher the primary natural circulation mass flow rate. The larger height difference between the core center and the steam generator center is favorable for the heat removal capacity of the natural circulation. (authors)

  19. The Preliminary GAMMA Code Thermal hydraulic Analysis for the Steady State of HTR-10 Initial Core

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Ji Su; Lim, Hong Sik; Lee, Won Jae

    2006-07-15

    This report describes the preliminary thermalhydraulic analysis of HTR-10 steady state full power initial core to provide a benchmark calculation of VHTGR(Very High-Temperature Gas-Cooled Reactors) safety analysis code of GAMMA(GAs Multicomponent Mixture Analysis). The input data of GAMMA code are produced for the models of fluid block, wall block, radiation heat transfer and each component material properties in HTR-10 reactor. The temperature and flow distributions of HTR-10 steady state 10 MW{sub th} full power initial core are calculated by GAMMA code with boundary conditions of total reactor inlet flow rate of 4.32 kg/s, inlet temperature of 250 .deg. C, inlet pressure of 3 MPa, outlet pressure of 2.992 MPa and the fixed temperature at RCCS water cooling tube of 50 .deg C. The calculation results are compared with the measured solid material temperatures at 22 fixed instrumentation positions in HTR-10. The wall temperature distribution in pebble bed core shows that the minimum temperature of 358 .deg. C is located at upper core, a higher temperature zone than 829 .deg. C is located at the inner region of 0.45 m radius at the bottom of core centre, and the maximum wall temperature is 897 .deg. C. The wall temperatures linearly decreases at radially and axially farther side from the bottom of core centre. The maximum temperature of RPV is 230 .deg. C, and the maximum values of fuel average temperature and TRISO centreline temperature are 907 .deg. C and 929 .deg. C, respectively and they are much lower than the fuel temperature limitation of 1230 .deg. C. The comparsion between the GAMMA code predictions and the measured temperature data shows that the calculation results are very close to the measured values in top and side reflector region, but a great difference is appeared in bottom reflector region. Some measured data are abnormally high in bottom reflector region, and so the confirmation of data is necessary in future. Fifteen of twenty two data have a

  20. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HU TA

    2009-10-26

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  1. Constructive interference in steady-state/FIESTA-C clinical applications in neuroimaging

    International Nuclear Information System (INIS)

    Kulkami, Makarand

    2011-01-01

    Full text: High spatial resolution is one of the major problems in neuroimaging, par ticularly in cranial and spinal nerve imaging. Constructive interference in steady-state/fast imaging employing steady-state acquisition with phase cycling is a robust sequence in imaging the cranial and spinal nerve patholo gies. This pictorial review is a concise article about the applications of this sequence in neuroimaging with clinical examples.

  2. Experimental Study and steady state stability analysis of CLL-T Series Parallel Resonant Converter with Fuzzy controller using State Space Analysis

    Directory of Open Access Journals (Sweden)

    C. Nagarajan

    2012-09-01

    Full Text Available This paper presents a Closed Loop CLL-T (capacitor inductor inductor Series Parallel Resonant Converter (SPRC has been simulated and the performance is analysised. A three element CLL-T SPRC working under load independent operation (voltage type and current type load is presented in this paper. The Steady state Stability Analysis of CLL-T SPRC has been developed using State Space technique and the regulation of output voltage is done by using Fuzzy controller. The simulation study indicates the superiority of fuzzy control over the conventional control methods. The proposed approach is expected to provide better voltage regulation for dynamic load conditions. A prototype 300 W, 100 kHz converter is designed and built to experimentally demonstrate, dynamic and steady state performance for the CLL-T SPRC are compared from the simulation studies.

  3. The STAT7 Code for Statistical Propagation of Uncertainties In Steady-State Thermal Hydraulics Analysis of Plate-Fueled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Floyd E. [Argonne National Lab. (ANL), Argonne, IL (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Nuclear Reactor Lab.; Wilson, Erik [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The STAT code was written to automate many of the steady-state thermal hydraulic safety calculations for the MIT research reactor, both for conversion of the reactor from high enrichment uranium fuel to low enrichment uranium fuel and for future fuel re-loads after the conversion. A Monte-Carlo statistical propagation approach is used to treat uncertainties in important parameters in the analysis. These safety calculations are ultimately intended to protect against high fuel plate temperatures due to critical heat flux or departure from nucleate boiling or onset of flow instability; but additional margin is obtained by basing the limiting safety settings on avoiding onset of nucleate boiling. STAT7 can simultaneously analyze all of the axial nodes of all of the fuel plates and all of the coolant channels for one stripe of a fuel element. The stripes run the length of the fuel, from the bottom to the top. Power splits are calculated for each axial node of each plate to determine how much of the power goes out each face of the plate. By running STAT7 multiple times, full core analysis has been performed by analyzing the margin to ONB for each axial node of each stripe of each plate of each element in the core.

  4. Current drive efficiency requirements for an attractive steady-state reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tonon, G

    1994-12-31

    The expected values of the figure of merit and the electrical efficiency of various non-inductive current drive methods are considered. The main experimental results achieved today with neutral beams and radiofrequency systems are summarized. Taking into account the simplified energy flow diagram of a steady state reactor, the figure of merit and the electrical efficiency values which are necessary in order to envisage an attractive steady-state reactor are determined. These values are compared to the theoretical predictions. (author). 16 refs., 11 figs., 2 tabs.

  5. Current drive efficiency requirements for an attractive steady-state reactor

    International Nuclear Information System (INIS)

    Tonon, G.

    1994-01-01

    The expected values of the figure of merit and the electrical efficiency of various non-inductive current drive methods are considered. The main experimental results achieved today with neutral beams and radiofrequency systems are summarized. Taking into account the simplified energy flow diagram of a steady state reactor, the figure of merit and the electrical efficiency values which are necessary in order to envisage an attractive steady-state reactor are determined. These values are compared to the theoretical predictions. (author). 16 refs., 11 figs., 2 tabs

  6. Diffusion in coronas around clinopyroxene: modelling with local equilibrium and steady state, and a non-steady-state modification to account for zoned actinolite-hornblende

    Science.gov (United States)

    Ashworth, J. R.; Birdi, J. J.; Emmett, T. F.

    1992-01-01

    evolution of actinolite to more stable aluminous compositions. This is modelled by a non-steady-state modification of the theory, retaining local equilibrium in grain boundaries while relatively steep zoning profiles develop in grain interiors through slow intracrystalline diffusion. Replacement of actinolite by hornblende does not require a change in P- T conditions if actinolite is a kinetically determined, non-equilibrium product. The common preservation of a sharp contact between hornblende and actionolite layers may be explained by ineffectiveness of intracrystalline diffusion: according to the theory, given sufficient grain-boundary Al flux, a metastable actinolite + quartz layer in contact with hornblende may be diffusionally stable and may continue to grow in a steady state.

  7. Diagnostics development for steady state operation of the stellarator wendelstein 7-x

    Energy Technology Data Exchange (ETDEWEB)

    Burhenn, R.; Baldzuhn, J.; Dreier, H.; Endler, M.; Jimenez-Gomez, R.; Grosser, K.; Hartfuss, H.J.; Hildebrandt, D.; Hirsch, M.; Koenig, R.; Kornejew, P.; Krychowiak, M.; Laqua, H.P.; Laux, M.; Oosterbeek, J.W.; Pasch, E.; Schneider, W.; Thomsen, H.; Weller, A.; Werner, A.; Wolf, R.; Zhang, D. [Max-Planck-Institute fuer Plasmaphysik, EURATOM Association, D-17491, Greifswald (Germany); Biel, W. [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany)

    2011-03-15

    The gain in experience with long-pulse operation under fusion relevant plasma conditions is an important step towards successful sustainment of future steady state reactor plasmas. The stellarator Wendelstein 7-X (W7-X) [1], presently being under construction, is already equipped with a superconducting coil system and principally capable of quasi-continuous operation. Like other long pulse devices, W7-X is faced with new enhanced technical requirements which have to be met by plasma facing components as well as the diagnostic systems in general. Water-cooled windows were qualified up to 60 kW/m{sup 2} thermal load, and shutters against evaporation of sensitive elements outside the attended time of the diagnostic as well as for baseline control had been developed. Shielding of in-vessel components against damage by absorption of microwave stray radiation originating from the heating systems appears to be one of the most challenging tasks. Experiments using a microwave test chamber identify critical materials and approved the necessity for careful shielding of both, sensitive diagnostics and cables. Spectroscopic systems for monitoring the impurity content and divertor load as well as for robust density measurement are presented (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Burn cycle requirements comparison of pulsed and steady-state tokamak reactors

    International Nuclear Information System (INIS)

    Brooks, J.N.; Ehst, D.A.

    1983-12-01

    Burn cycle parameters and energy transfer system requirements were analyzed for an 8-m commercial tokamak reactor using four types of cycles: conventional, hybrid, internal transformer, and steady state. Not surprisingly, steady state is the best burn mode if it can be achieved. The hybrid cycle is a promising alternative to the conventional. In contrast, the internal transformer cycle does not appear attractive for the size tokamak in question

  9. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  10. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    International Nuclear Information System (INIS)

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems

  11. 40 CFR 1033.515 - Discrete-mode steady-state emission tests of locomotives and locomotive engines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Discrete-mode steady-state emission... Procedures § 1033.515 Discrete-mode steady-state emission tests of locomotives and locomotive engines. This... a warm-up followed by a sequence of nominally steady-state discrete test modes, as described in...

  12. Influence of longitudinal position on the evolution of steady-state signal in cardiac cine balanced steady-state free precession imaging.

    Science.gov (United States)

    Spear, Tyler J; Stromp, Tori A; Leung, Steve W; Vandsburger, Moriel H

    2017-11-01

    Emerging quantitative cardiac magnetic resonance imaging (CMRI) techniques use cine balanced steady-state free precession (bSSFP) to measure myocardial signal intensity and probe underlying physiological parameters. This correlation assumes that steady-state is maintained uniformly throughout the heart in space and time. To determine the effects of longitudinal cardiac motion and initial slice position on signal deviation in cine bSSFP imaging by comparing two-dimensional (2D) and three-dimensional (3D) acquisitions. Nine healthy volunteers completed cardiac MRI on a 1.5-T scanner. Short axis images were taken at six slice locations using both 2D and 3D cine bSSFP. 3D acquisitions spanned two slices above and below selected slice locations. Changes in myocardial signal intensity were measured across the cardiac cycle and compared to longitudinal shortening. For 2D cine bSSFP, 46% ± 9% of all frames and 84% ± 13% of end-diastolic frames remained within 10% of initial signal intensity. For 3D cine bSSFP the proportions increased to 87% ± 8% and 97% ± 5%. There was no correlation between longitudinal shortening and peak changes in myocardial signal. The initial slice position significantly impacted peak changes in signal intensity for 2D sequences ( P  cine bSSFP that is only restored at the center of a 3D excitation volume. During diastole, a transient steady-state is established similar to that achieved with 3D cine bSSFP regardless of slice location.

  13. Steady-state spheromak

    International Nuclear Information System (INIS)

    Jarboe, T.R.

    1982-01-01

    A major effort is being made in the national program to make the operation of axisymmetric, toroidal confinement systems steady state by the application of expensive rf current drive. Described here is a method by which such a confinement system, the spheromak, can be refluxed indefinitely through the application of dc power. As a step towards dc sustainment we have operated the present CTX source in the slow source mode with a longer power application time (approx. 0.1 ms) and successfully generated long-lived spheromaks. If the erosion of the electrodes can be controlled as well as it is with MPD arcs then dc operation should be very clean. If only a small fraction (approx. 10% for an experiment) of the poloidal flux of the spheromak connects to the source then the dc sustainment can be very efficient. The amount of connecting flux that is necessary for sustainment needs to be determined experimentally

  14. Steady-state deformation of some lithium ceramics

    International Nuclear Information System (INIS)

    Poeppel, R.B.; Routbort, J.L.; Billone, M.C.; Applegate, D.S.; Buchmann, E.; Londschien, B.

    1987-05-01

    The stress-strain behavior of Li 2 O, LiAlO 2 and Li 2 ZrO 3 polycrystals, with densities varying from 0.70 to 0.95 of the theoretical, has been measured in constant-crosshead-speed compression tests at temperatures of 700 to 1000 0 C with strain rates ranging from about 10 -6 to 10 -4 s -1 . A steady-state stress, σ/sub s/, for which the work-hardening rate becomes zero, was achieved. These results, therefore, yield information equivalent to that obtained from creep experiments. Limited data on LiAlO 2 and Li 2 ZrO 3 were obtained. Nevertheless, under comparable conditions the lithium aluminate and zirconate were considerably stronger than the Li 2 O. This finding may be related to differences in crystal structure. It is, however, likely that in operation as a function breeder blanket material, the oxide will swell whereas the aluminate and the zirconate will crack. 5 refs., 6 figs., 1 tab

  15. Replacement of unsteady heat transfer coefficient by equivalent steady-state one when calculating temperature oscillations in a thermal layer

    Science.gov (United States)

    Supel'nyak, M. I.

    2017-11-01

    Features of calculation of temperature oscillations which are damped in a surface layer of a solid and which are having a small range in comparison with range of temperature of the fluid medium surrounding the solid at heat transfer coefficient changing in time under the periodic law are considered. For the specified case the equations for approximate definition of constant and oscillating components of temperature field of a solid are received. The possibility of use of appropriately chosen steady-state coefficient when calculating the temperature oscillations instead of unsteady heat-transfer coefficient is investigated. Dependence for definition of such equivalent constant heat-transfer coefficient is determined. With its help the research of temperature oscillations of solids with canonical form for some specific conditions of heat transfer is undertaken. Comparison of the obtained data with results of exact solutions of a problem of heat conductivity by which the limits to applicability of the offered approach are defined is carried out.

  16. Borehole modelling: a comparison between a steady-state model and a novel dynamic model in a real ON/OFF GSHP operation

    International Nuclear Information System (INIS)

    De Rosa, M; Tagliafico, L A; Ruiz-Calvo, F; Corberán, J M; Montagud, C

    2014-01-01

    The correct design and optimization of complex energy systems requires the ability to reproduce the dynamic thermal behavior of each system component. In ground source heat pump (GSHP) systems, modelling the borehole heat exchangers (BHE) dynamic response is especially relevant in the development of control strategies for energy optimization purposes. Over the last years, several models have been developed but most of them are based on steady- state approaches, which makes them unsuitable for short-term simulation purposes. In fact, in order to accurately predict the evolution of the fluid temperatures due to the ON/OFF cycles of the heat pump, it is essential to correctly characterize the dynamic response of BHE for very short time periods. The aim of the present paper is to compare the performance of an analytical steady-state model, available in TRNSYS environment (Type 557), with a novel short-term dynamic model. The new dynamic model is based on the thermal-network approach coupled with a vertical discretization of the borehole which takes into account both the advection due to the fluid circulating along the U-tube, and the heat transfer in the borehole and in the ground. These two approaches were compared against experimental data collected from a real GSHP system installed at the Universitat Politecnica de Valencia. The analysis was performed comparing the outlet temperature profiles predicted by both models during daily standard ON/OFF operating conditions, both in heating and cooling mode, and the between both approaches were highlighted. Finally, the obtained results have been discussed focusing on the potential impact that the differences found in the prediction of the temperature evolution could have in design and optimization of GSHP systems

  17. Transient and steady-state auditory gamma-band responses in first-degree relatives of people with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Rojas Donald C

    2011-07-01

    Full Text Available Abstract Background Stimulus-related γ-band oscillations, which may be related to perceptual binding, are reduced in people with autism spectrum disorders (ASD. The purpose of this study was to examine auditory transient and steady-state γ-band findings in first-degree relatives of people with ASD to assess the potential familiality of these findings in ASD. Methods Magnetoencephalography (MEG recordings in 21 parents who had a child with an autism spectrum disorder (pASD and 20 healthy adult control subjects (HC were obtained. Gamma-band phase locking factor (PLF, and evoked and induced power to 32, 40 and 48 Hz amplitude-modulated sounds were measured for transient and steady-state responses. Participants were also tested on a number of behavioral and cognitive assessments related to the broad autism phenotype (BAP. Results Reliable group differences were seen primarily for steady-state responses. In the left hemisphere, pASD subjects exhibited lower phase-locked steady-state power in all three conditions. Total γ-band power, including the non-phase-locked component, was also reduced in the pASD group. In addition, pASD subjects had significantly lower PLF than the HC group. Correlations were seen between MEG measures and BAP measures. Conclusions The reduction in steady-state γ-band responses in the pASD group is consistent with previous results for children with ASD. Steady-state responses may be more sensitive than transient responses to phase-locking errors in ASD. Together with the lower PLF and phase-locked power in first-degree relatives, correlations between γ-band measures and behavioral measures relevant to the BAP highlight the potential of γ-band deficits as a potential new autism endophenotype.

  18. Numerical Model and Experimental Analysis of the Thermal Behavior of Electric Radiant Heating Panels

    Directory of Open Access Journals (Sweden)

    Giovanni Ferrarini

    2018-01-01

    Full Text Available Electric radiant heating panels are frequently selected during the design phase of residential and industrial heating systems, especially for retrofit of existing buildings, as an alternative to other common heating systems, such as radiators or air conditioners. The possibility of saving living and working space and the ease of installation are the main advantages of electric radiant solutions. This paper investigates the thermal performance of a typical electric radiant panel. A climatic room was equipped with temperature sensors and heat flow meters to perform a steady state experimental analysis. For the dynamic behavior, a mathematical model was created and compared to a thermographic measurement procedure. The results showed for the steady state an efficiency of energy transformation close to one, while in a transient thermal regime the time constant to reach the steady state condition was slightly faster than the typical ones of hydronic systems.

  19. A principle for the noninvasive measurement of steady-state heat transfer parameters in living tissues

    Directory of Open Access Journals (Sweden)

    S. Yu. Makarov

    2014-01-01

    Full Text Available Measuring the parameters of biological tissues (include in vivo is of great importance for medical diagnostics. For example, the value of the blood perfusion parameter is associated with the state of the blood microcirculation system and its functioning affects the state of the tissues of almost all organs. This work describes a previously proposed principle [1] in generalized terms. The principle is intended for noninvasive measuring the parameters of stationary heat transfer in biological tissues. The results of some experiments (natural and numeric are also presented in the research.For noninvasive measurement of thermophysical parameters a number of techniques have been developed using non-stationary thermal process in biological tissue [2][3]. But these techniques require the collecting a lot of data to represent the time-dependent thermal signal. In addition, subsequent processing with specialized algorithms is required for optimal selecting the parameters. The goal of this research is to develop an alternative approach using stationary thermal process for non-invasive measuring the parameters of stationary heat transfer in living tissues.A general principle can be formulated for the measurement methods based on this approach. Namely, the variations (changes of two physical values are measured in the experiment at the transition from one thermal stationary state to another. One of these two physical values unambiguously determines the stationary thermal field into the biological tissue under specified experimental conditions while the other one is unambiguously determined through the thermal field. Then, the parameters can be found from the numerical (or analytical functional dependencies linking the measured variations because the dependencies contain unknown parameters.The dependencies are expressed in terms of the formula:dqi = fi({pj},Ui dUi,Here dqi is a variation of a physical value q which is unambiguously determined from the

  20. Synergistic effects of ELMs and steady state H and H/He irradiation on tungsten

    International Nuclear Information System (INIS)

    Lemahieu, Nathan; Greuner, Henri; Linke, Jochen; Maier, Hans; Pintsuk, Gerald; Van Oost, Guido; Wirtz, Marius

    2015-01-01

    Highlights: • Tungsten was first exposed to H or H/He fluxes and then to ELM-like transients. • The influence of particle exposure on the thermal shock behaviour was studied. • There was no deterioration of thermal shock behaviour compared to reference material. • Some combinations of loading conditions resulted in an improved material behaviour. - Abstract: To investigate synergistic effects of high heat flux loading on H and H/He loaded tungsten surfaces, specimens were exposed to a 30 keV steady-state H or H/He beam and subsequently loaded with an electron beam to simulate ELMs. The heat flux during the H and H/He loading was 10.5 MW m"−"2, while a 2 × 10"2"5 m"−"2 fluence was reached. After exposure, all specimens exhibited an altered surface morphology. The H/He samples with a surface temperature of 1000 °C and 1500 °C had a multitude of surface extrusions. Afterwards the particle loaded samples were exposed to 100 ELM-like pulses around the material's damage threshold. Transient heat fluxes of 190 MW m"−"2 and 380 MW m"−"2 were applied at room temperature and 400 °C for a duration of 1 ms. Post-mortem analysis showed no deterioration of thermal shock resistance in comparison with polished material. For some tests the reference specimens roughened or cracked while the H or H/He exposed material had no damage. The H-content and the H/He-induced cavities and/or extrusions are suggested as two potential causes for this change in material behaviour.

  1. Synergistic effects of ELMs and steady state H and H/He irradiation on tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Lemahieu, Nathan, E-mail: n.lemahieu@fz-juelich.de [Institute for Energy and Climate Research, Forschungszentrum Jülich, 52425 Jülich (Germany); Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Gent (Belgium); Institute of Interfacial Process Engineering and Plasma Technology IGVP, Universität Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Greuner, Henri [Max Planck Institute for Plasma Physics, Boltzmannstraße 2, 85748 Garching (Germany); Linke, Jochen [Institute for Energy and Climate Research, Forschungszentrum Jülich, 52425 Jülich (Germany); Maier, Hans [Max Planck Institute for Plasma Physics, Boltzmannstraße 2, 85748 Garching (Germany); Pintsuk, Gerald [Institute for Energy and Climate Research, Forschungszentrum Jülich, 52425 Jülich (Germany); Van Oost, Guido [Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Gent (Belgium); Wirtz, Marius [Institute for Energy and Climate Research, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2015-10-15

    Highlights: • Tungsten was first exposed to H or H/He fluxes and then to ELM-like transients. • The influence of particle exposure on the thermal shock behaviour was studied. • There was no deterioration of thermal shock behaviour compared to reference material. • Some combinations of loading conditions resulted in an improved material behaviour. - Abstract: To investigate synergistic effects of high heat flux loading on H and H/He loaded tungsten surfaces, specimens were exposed to a 30 keV steady-state H or H/He beam and subsequently loaded with an electron beam to simulate ELMs. The heat flux during the H and H/He loading was 10.5 MW m{sup −2}, while a 2 × 10{sup 25} m{sup −2} fluence was reached. After exposure, all specimens exhibited an altered surface morphology. The H/He samples with a surface temperature of 1000 °C and 1500 °C had a multitude of surface extrusions. Afterwards the particle loaded samples were exposed to 100 ELM-like pulses around the material's damage threshold. Transient heat fluxes of 190 MW m{sup −2} and 380 MW m{sup −2} were applied at room temperature and 400 °C for a duration of 1 ms. Post-mortem analysis showed no deterioration of thermal shock resistance in comparison with polished material. For some tests the reference specimens roughened or cracked while the H or H/He exposed material had no damage. The H-content and the H/He-induced cavities and/or extrusions are suggested as two potential causes for this change in material behaviour.

  2. Steady-state creep of discontinuous fibre composites

    International Nuclear Information System (INIS)

    Boecker Pedersen, O.

    1975-07-01

    A review is given of the relevant literature on creep of composites, including a presentation of existing models for the steady-state creep of composites containing aligned discontinuous fibres where creep of the matrix and fibres is assumed to follow a power law. A model is suggested for predicting the composite creep law from a matrix creep law given in a general form, in the case where the fibres do not creep. The composite creep law predicted by this model is compared with those predicted by previous models, when these are extended to comprise a general matrix creep law. Experimentally, pure copper and composites consisting of aligned discontinuous tungsten fibres in a copper matrix were creep tested at a temperature of 500 deg C. The results indicate a relatively low stress sensitivity of the steady-state creep-rate for pure copper and relatively high stress sensitivity for the composites. This may be explained by the creep models based upon a general matrix creep law. A quantitative prediction shows promising agreement with the present experimental results. (author)

  3. Steady state statistical correlations predict bistability in reaction motifs.

    Science.gov (United States)

    Chakravarty, Suchana; Barik, Debashis

    2017-03-28

    Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.

  4. Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions

    Science.gov (United States)

    Rubinato, Matteo; Martins, Ricardo; Kesserwani, Georges; Leandro, Jorge; Djordjević, Slobodan; Shucksmith, James

    2017-09-01

    The linkage between sewer pipe flow and floodplain flow is recognised to induce an important source of uncertainty within two-dimensional (2D) urban flood models. This uncertainty is often attributed to the use of empirical hydraulic formulae (the one-dimensional (1D) weir and orifice steady flow equations) to achieve data-connectivity at the linking interface, which require the determination of discharge coefficients. Because of the paucity of high resolution localised data for this type of flows, the current understanding and quantification of a suitable range for those discharge coefficients is somewhat lacking. To fulfil this gap, this work presents the results acquired from an instrumented physical model designed to study the interaction between a pipe network flow and a floodplain flow. The full range of sewer-to-surface and surface-to-sewer flow conditions at the exchange zone are experimentally analysed in both steady and unsteady flow regimes. Steady state measured discharges are first analysed considering the relationship between the energy heads from the sewer flow and the floodplain flow; these results show that existing weir and orifice formulae are valid for describing the flow exchange for the present physical model, and yield new calibrated discharge coefficients for each of the flow conditions. The measured exchange discharges are also integrated (as a source term) within a 2D numerical flood model (a finite volume solver to the 2D Shallow Water Equations (SWE)), which is shown to reproduce the observed coefficients. This calibrated numerical model is then used to simulate a series of unsteady flow tests reproduced within the experimental facility. Results show that the numerical model overestimated the values of mean surcharge flow rate. This suggests the occurrence of additional head losses in unsteady conditions which are not currently accounted for within flood models calibrated in steady flow conditions.

  5. Temperature and Thermal Expansion Analysis of the Cooling Roller Based on the Variable Heat Flux Boundary Condition

    Science.gov (United States)

    Li, Yongkang; Yang, Yang; He, Changyan

    2018-06-01

    Planar flow casting (PFC) is a primary method for preparing an amorphous ribbon. The qualities of the amorphous ribbon are significantly influenced by the temperature and thermal expansion of the cooling roller. This study proposes a new approach to analyze the three-dimensional temperature and thermal expansion of the cooling roller using variable heat flux that acted on the cooling roller as a boundary condition. First, a simplified two-dimensional model of the PFC is developed to simulate the distribution of the heat flux in the circumferential direction with the software FLUENT. The resulting heat flux is extended to be three-dimensional in the ribbon's width direction. Then, the extended heat flux is imported as the boundary condition by the CFX Expression Language, and the transient temperature of the cooling roller is analyzed in the CFX software. Next, the transient thermal expansion of the cooling roller is simulated through the thermal-structural coupling method. Simulation results show that the roller's temperature and expansion are unevenly distributed, reach the peak value in the middle width direction, and the quasi-steady state of the maximum temperature and thermal expansion are achieved after approximately 50 s and 150 s of casting, respectively. The minimum values of the temperature and expansion are achieved when the roller has a thickness of 45 mm. Finally, the reliability of the approach proposed is verified by measuring the roller's thermal expansion on the spot. This study provides theoretical guidance for the roller's thermal expansion prediction and the gap adjustment in the PFC.

  6. Extracting Steady State Components from Synchrophasor Data Using Kalman Filters

    Directory of Open Access Journals (Sweden)

    Farhan Mahmood

    2016-04-01

    Full Text Available Data from phasor measurement units (PMUs may be exploited to provide steady state information to the applications which require it. As PMU measurements may contain errors and missing data, the paper presents the application of a Kalman Filter technique for real-time data processing. PMU data captures the power system’s response at different time-scales, which are generated by different types of power system events; the presented Kalman Filter methods have been applied to extract the steady state components of PMU measurements that can be fed to steady state applications. Two KF-based methods have been proposed, i.e., a windowing-based KF method and “the modified KF”. Both methods are capable of reducing noise, compensating for missing data and filtering outliers from input PMU signals. A comparison of proposed methods has been carried out using the PMU data generated from a hardware-in-the-loop (HIL experimental setup. In addition, a performance analysis of the proposed methods is performed using an evaluation metric.

  7. First wall thermal hydraulic models for fusion blankets

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1980-01-01

    Subject to normal and off-normal reactor conditions, thermal hydraulic models of first walls, e.g., a thermal mass barrier, a tubular shield, and a radiating liner are reviewed. Under normal operation the plasma behaves as expected in a predicted way for transient and steady-state conditions. The most severe thermal loading on the first wall occurs when the plasma becomes unstable and dumps its energy on the wall in a very short period of time (milliseconds). Depending on the plasma dump time and area over which the energy is deposited may result in melting of the first wall surface, and if the temperature is high enough, vaporization

  8. Steady-state and time-dependent modelling of parallel transport in the scrape-off layer

    DEFF Research Database (Denmark)

    Havlickova, E.; Fundamenski, W.; Naulin, Volker

    2011-01-01

    The one-dimensional fluid code SOLF1D has been used for modelling of plasma transport in the scrape-off layer (SOL) along magnetic field lines, both in steady state and under transient conditions that arise due to plasma turbulence. The presented work summarizes results of SOLF1D with attention...... given to transient parallel transport which reveals two distinct time scales due to the transport mechanisms of convection and diffusion. Time-dependent modelling combined with the effect of ballooning shows propagation of particles along the magnetic field line with Mach number up to M ≈ 1...... temperature calculated in SOLF1D is compared with the approximative model used in the turbulence code ESEL both for steady-state and turbulent SOL. Dynamics of the parallel transport are investigated for a simple transient event simulating the propagation of particles and energy to the targets from a blob...

  9. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.

    Science.gov (United States)

    Fleming, R M T; Thiele, I; Provan, G; Nasheuer, H P

    2010-06-07

    The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Recent progresses on high performance steady-state plasmas in the superconducting tokamak TRIAM-1M

    International Nuclear Information System (INIS)

    Itoh, Satoshi; Sato, Kohnosuke; Nakamura, Kazuo

    1999-01-01

    The overview of TRIAM-1M experiments is described. The up-to-date issues for steady-state operation are presented through the experience of the achievement of super ultra long tokamak discharges (SULD) sustained by lower hybrid current drive (LHCD) over 2 hours. The importance of the control of an initial phase of plasma, the avoidance of the concentration of huge heat load, the wall conditioning, and abrupt stop of the long discharges are proposed as the indispensable issues for the achievement of the steady-state operation of tokamak. A high ion temperature (HIT) discharge fully sustained by 2.45 GHz LHCD with both high ion temperature and steep temperature gradient is successfully demonstrated for longer than 1 min in the limiter configuration. The HIT discharges can be obtained in the narrow window of density and position. Moreover, the avoidance of the concentration of heat load on a limiter is the key point for the achievement and its long sustainment. As the effective thermal insulation between the wall and the plasma is improved on the single null configuration, HIT discharges with peak ion temperature > 5keV and steeper gradient up to 85 keV/m can be achieved by the exquisite control of density and position. The plasmas with high κ ∼1.5 can be also demonstrated for longer than 1 min. The current profile is also well-controlled for about 2 orders in magnitude longer than the current diffusion time using combined LHCD. The serious damage to the material of the first wall caused by energetic neutral particles produced via charge exchange process is also described. As the neutral particles cannot be affected by magnetic field, this damage by neutral particles must be avoided by the new technique. (author)

  11. Steady state characteristics of acclimated hydrogenotrophic methanogens on inorganic substrate in continuous chemostat reactors.

    Science.gov (United States)

    Ako, Olga Y; Kitamura, Y; Intabon, K; Satake, T

    2008-09-01

    A Monod model has been used to describe the steady state characteristics of the acclimated mesophilic hydrogenotrophic methanogens in experimental chemostat reactors. The bacteria were fed with mineral salts and specific trace metals and a H(2)/CO(2) supply was used as a single limited substrate. Under steady state conditions, the growth yield (Y(CH4)) reached 11.66 g cells per mmol of H(2)/CO(2) consumed. The daily cells generation average was 5.67 x 10(11), 5.25 x 10(11), 4.2 x 10(11) and 2.1 x 10(11) cells/l-culture for the dilutions 0.071/d, 0.083/d, 0.1/d and 0.125/d, respectively. The maximum specific growth rate (mu(max)) and the Monod half-saturation coefficient (K(S)) were 0.15/d and 0.82 g/L, respectively. Using these results, the reactor performance was simulated. During the steady state, the simulation predicts the dependence of the H(2)/CO(2) concentration (S) and the cell concentration (X) on the dilution rate. The model fitted the experimental data well and was able to yield a maximum methanogenic activity of 0.24 L CH(4)/g VSS.d. The dilution rate was estimated to be 0.1/d. At the dilution rate of 0.14/d, the exponential cells washout was achieved.

  12. Analysis of physical properties controlling steady-state infiltration rates on tropical savannah soils

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.

    1993-10-01

    A knowledge of physical properties influencing the steady-state infiltration rates (ic) of soils is needed for the hydrologic modelling of the infiltration process. In this study evidence is provided to show that effective porosity (Pe) (i.e. the proportion of macro pore spaces with equivalent radius of > 15 μm) and dry bulk density are the most important soil physical properties controlling the steady-state infiltration rates on a tropical savannah with varying land use histories. At a macro porosity value of ≤ 5.0% the steady-state infiltration rate is zero. Total porosity and the proportion of water-retaining pores explained only a small fraction of the variation in this property. Steady-state infiltration rates can also be estimated from either the saturated hydraulic conductivity (Ks) by the equation, i c = 31.1 + 1.06 (Ks), (R 2 = 0.8104, p ≤ 0.001) or the soil water transmissivity (A) by the equation, i c = 30.0 + 29.9(A), (R 2 = 0.8228, ρ ≤ 0.001). The Philip two-parameter model under predicted steady-state infiltration rates generally. Considering the ease of determination and reliability it is suggested that effective porosity be used to estimate the steady-state infiltration rates of these other soils with similar characteristics. The model is, i c 388.7(Pe) - 10.8(R 2 = 0.7265, p ≤ 0.001) where i c is in (cm/hr) and Pe in (cm 3 /cm 3 ). (author). 20 refs, 3 figs, 4 tabs

  13. Full transmission modes and steady states in defect gratings,

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.; de Ridder, R.M; Altena, G; Geuzebroek, D.H.; Dekker, R

    2003-01-01

    For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the

  14. Bioaccumulation factors and the steady state assumption for cesium isotopes in aquatic foodwebs near nuclear facilities.

    Science.gov (United States)

    Rowan, D J

    2013-07-01

    Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of (137)Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable (133)Cs) from geologic sources and the other released in pulses ((137)Cs) from reactor operations. I also compare (137)Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test (137)Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher (137)Cs BAFs than expected from (133)Cs BAFs for the same fish or (137)Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any

  15. Regimes of radiative and nonradiative transitions in transport through an electronic system in a photon cavity reaching a steady state

    Science.gov (United States)

    Gudmundsson, Vidar; Jonsson, Thorsteinn H.; Bernodusson, Maria Laura; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2017-01-01

    We analyze how a multilevel many-electron system in a photon cavity approaches the steady state when coupled to external leads. When a plunger gate is used to lower cavity photon dressed one- and two-electron states below the bias window defined by the external leads, we can identify one regime with nonradiative transitions dominating the electron transport, and another regime with radiative transitions. Both transitions trap the electrons in the states below the bias bringing the system into a steady state. The order of the two regimes and their relative strength depends on the location of the bias window in the energy spectrum of the system and the initial conditions.

  16. Steady states of a diode with counterstreaming electron and positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ender, A. Ya.; Kuznetsov, V. I., E-mail: victor.kuznetsov@mail.ioffe.ru; Gruzdev, A. A. [Russian Academy of Sciences, Ioffe Institute (Russian Federation)

    2016-10-15

    Steady states of a plasma layer with counterstreaming beams of oppositely charged particles moving without collisions in a self-consistent electric field are analyzed. The study is aimed at clarifying the mechanism of generation and reconstruction of pulsar radiation. Such a layer also models the processes occurring in Knudsen plasma diodes with counterstreaming electron and ion beams. The steady-state solutions are exhaustively classified. The existence of several solutions at the same external parameters is established.

  17. Design of vessel baking system and thermal radiation shields for SST-1

    International Nuclear Information System (INIS)

    Kumar, E.R.; Nagabhushana, S.; Pathak, H.A.; Panigrahi, S.; Nath, T.R.; Babu, A.V.S; Gangradey, R.; Patel, R.J.; Saxena, Y.C.

    1998-01-01

    SST-1 is a Steady State Tokamak with a major radius of 1.1 m, minor radius of 0.2 m and toroidal field of 3.0 T. The toroidal and poloidal field coils of SST-1 are superconducting. One of the main objectives of SST-1 is to demonstrate steady state particle removal and active plasma density control which states the necessity of wall conditioning. The vacuum vessel will be baked up to 525 K by passing hot nitrogen gas through the U - channels welded on the inner surface of vacuum vessel. The required mass flow rate at 5 bar is 0.712 Kg/s to maintain 525 K wall temperature in steady state. Superconducting coils operating at 4.5 K will be protected against thermal radiation from hot surfaces using liquid nitrogen cooled panels operating at 87 K. Maximum 1200 litres/hour liquid nitrogen is required during vessel baking. The design of vacuum vessel baking system and thermal radiation shields and related flow analysis are presented here. (authors)

  18. Design of vessel baking system and thermal radiation shields for SST-1

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, E.R.; Nagabhushana, S.; Pathak, H.A.; Panigrahi, S.; Nath, T.R.; Babu, A.V.S; Gangradey, R.; Patel, R.J.; Saxena, Y.C. [Institute for Plasma Research, Gandhinagar (India)

    1998-07-01

    SST-1 is a Steady State Tokamak with a major radius of 1.1 m, minor radius of 0.2 m and toroidal field of 3.0 T. The toroidal and poloidal field coils of SST-1 are superconducting. One of the main objectives of SST-1 is to demonstrate steady state particle removal and active plasma density control which states the necessity of wall conditioning. The vacuum vessel will be baked up to 525 K by passing hot nitrogen gas through the U - channels welded on the inner surface of vacuum vessel. The required mass flow rate at 5 bar is 0.712 Kg/s to maintain 525 K wall temperature in steady state. Superconducting coils operating at 4.5 K will be protected against thermal radiation from hot surfaces using liquid nitrogen cooled panels operating at 87 K. Maximum 1200 litres/hour liquid nitrogen is required during vessel baking. The design of vacuum vessel baking system and thermal radiation shields and related flow analysis are presented here. (authors)

  19. Efficient decoding with steady-state Kalman filter in neural interface systems.

    Science.gov (United States)

    Malik, Wasim Q; Truccolo, Wilson; Brown, Emery N; Hochberg, Leigh R

    2011-02-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5±0.5 s (mean ±s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25±3 single units by a factor of 7.0±0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems.

  20. The quasi-steady state of the valley wind system

    Directory of Open Access Journals (Sweden)

    Juerg eSchmidli

    2015-12-01

    Full Text Available The quasi-steady-state limit of the diurnal valley wind system is investigated overidealized three-dimensional topography. Although this limit is rarely attained inreality due to ever-changing forcings, the investigation of this limit canprovide valuable insight, in particular on the mass and heat fluxes associatedwith the along-valley wind. We derive a scaling relation for the quasi-steady-state along-valleymass flux as a function of valley geometry, valley size, atmospheric stratification,and surface sensible heat flux forcing. The scaling relation is tested by comparisonwith the mass flux diagnosed from numerical simulations of the valleywind system. Good agreement is found. The results also provide insight into the relationbetween surface friction and the strength of the along-valley pressure gradient.

  1. The Completion of Non-Steady-State Queue Model on The Queue System in Dr. Yap Eye Hospital Yogyakarta

    Science.gov (United States)

    Helmi Manggala Putri, Arum; Subekti, Retno; Binatari, Nikenasih

    2017-06-01

    Dr Yap Eye Hospital Yogyakarta is one of the most popular reference eye hospitals in Yogyakarta. There are so many patients coming from other cities and many of them are BPJS (Badan Penyelenggara Jaminan Sosial, Social Security Administrative Bodies) patients. Therefore, it causes numerous BPJS patients were in long queue at counter C of the registration section so that it needs to be analysed using queue system. Queue system analysis aims to give queue model overview and determine its effectiveness measure. The data collecting technique used in this research are by interview and observation. After getting the arrival data and the service data of BPJS patients per 5 minutes, the next steps are investigating steady-state condition, examining the Poisson distribution, determining queue models, and counting the effectiveness measure. Based on the result of data observation on Tuesday, February 16th, 2016, it shows that the queue system at counter C has (M/M/1):(GD/∞/∞) queue model. The analysis result in counter C shows that the queue system is a non-steady-state condition. Three ways to cope a non-steady-state problem on queue system are proposed in this research such as bounding the capacity of queue system, adding the servers, and doing Monte Carlo simulation. The queue system in counter C will reach steady-state if the capacity of patients is not more than 52 BPJS patients or adding one more server. By using Monte Carlo simulation, it shows that the effectiveness measure of the average waiting time for BPJS patients in counter C is 36 minutes 65 seconds. In addition, the average queue length of BPJS patients is 11 patients.

  2. Theoretical studying the stability of steady-state regime of a channel with a coolant condensation

    International Nuclear Information System (INIS)

    Savikhin, O.G.

    1987-01-01

    Based on the boiling channel stability theory, the channel steady-state stability with the coolant condensation is studied. Condensable coolants are used in the NPP steam-separator superheaters as well as in cryogenic technique. Under certain conditions the coolant flow rate and temperature fluctuations may be excited in the parallel channel system with coolant condensation, which produce a sufficient effect on the heat exchange equipment operation reliability. To describe unsteady processes of heat and mass transfer in the channel, a homogeneous two-phase flow one dimensional model is used. The results obtained allow one to make a conclusion concerning the effect of some parameters on condensing channel steady-state regime stability: reduction of inlet and outlet unheated communication length, pressure drop increase at the outlet plate and its reduction at the inlet one lead to the increase of stability margin

  3. A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution

    Directory of Open Access Journals (Sweden)

    Mitsuru Kikuchi

    2010-11-01

    Full Text Available Providing a historical overview of 50 years of fusion research, a review of the fundamentals and concepts of fusion and research efforts towards the implementation of a steady state tokamak reactor is presented. In 1990, a steady-state tokamak reactor (SSTR best utilizing the bootstrap current was developed. Since then, significant efforts have been made in major tokamaks, including JT-60U, exploring advanced regimes relevant to the steady state operation of tokamaks. In this paper, the fundamentals of fusion and plasma confinement, and the concepts and research on current drive and MHD stability of advanced tokamaks towards realization of a steady-state tokamak reactor are reviewed, with an emphasis on the contributions of the JAEA. Finally, a view of fusion energy utilization in the 21st century is introduced.

  4. Finite element modelling of creep process - steady state stresses and strains

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar S.

    2014-01-01

    Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.

  5. Impact of typical steady-state conditions and transient conditions on flow ripple and its test accuracy for axial piston pump

    Science.gov (United States)

    Xu, Bing; Hu, Min; Zhang, Junhui

    2015-09-01

    The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test

  6. Steady- and transient-state analysis of fully ceramic microencapsulated fuel with randomly dispersed tristructural isotropic particles via two-temperature homogenized model-II: Applications by coupling with COREDAX

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Bum Hee; Cho, Nam Zin

    2016-01-01

    In Part I of this paper, the two-temperature homogenized model for the fully ceramic microencapsulated fuel, in which tristructural isotropic particles are randomly dispersed in a fine lattice stochastic structure, was discussed. In this model, the fuel-kernel and silicon carbide matrix temperatures are distinguished. Moreover, the obtained temperature profiles are more realistic than those obtained using other models. Using the temperature-dependent thermal conductivities of uranium nitride and the silicon carbide matrix, temperature-dependent homogenized parameters were obtained. In Part II of the paper, coupled with the COREDAX code, a reactor core loaded by fully ceramic microencapsulated fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure is analyzed via a two-temperature homogenized model at steady and transient states. The results are compared with those from harmonic- and volumetric-average thermal conductivity models; i.e., we compare keff eigenvalues, power distributions, and temperature profiles in the hottest single channel at a steady state. At transient states, we compare total power, average energy deposition, and maximum temperatures in the hottest single channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized model for Doppler temperature feedback lead to significant differences

  7. Investigation of coolant thermal mixing within 28-element CANDU fuel bundles using the ASSERT-PV thermal hydraulics code

    International Nuclear Information System (INIS)

    Lightston, M.F.; Rock, R.

    1996-01-01

    This paper presents the results of a study of the thermal mixing of single-phase coolant in 28-element CANDU fuel bundles under steady-state conditions. The study, which is based on simulations performed using the ASSERT-PV thermal hydraulic code, consists of two main parts. In the first part the various physical mechanisms that contribute to coolant mixing are identified and their impact is isolated via ASSERT-PV simulations. The second part is concerned with development of a preliminary model suitable for use in the fuel and fuel channel code FACTAR to predict the thermal mixing that occurs between flow annuli. (author)

  8. Thermally induced delamination of multilayers

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Sarraute, S.; Jørgensen, O.

    1998-01-01

    Steady-state delamination of multilayered structures, caused by stresses arising during processing due to thermal expansion mismatch, is analyzed by a fracture mechanics model based on laminate theory. It is found that inserting just a few interlayers with intermediate thermal expansion coefficie...... coefficients may be an effective way of reducing the delamination energy release rate. Uneven layer thickness and increasing elastic mismatch are shown to raise the energy release rate. Experimental work confirms important trends of the model.......Steady-state delamination of multilayered structures, caused by stresses arising during processing due to thermal expansion mismatch, is analyzed by a fracture mechanics model based on laminate theory. It is found that inserting just a few interlayers with intermediate thermal expansion...

  9. Comparison of radon diffusion coefficients measured by transient-diffusion and steady-state laboratory methods

    International Nuclear Information System (INIS)

    Kalwarf, D.R.; Nielson, K.K.; Rich, D.C.; Rogers, V.C.

    1982-11-01

    A method was developed and used to determine radon diffusion coefficients in compacted soils by transient-diffusion measurements. A relative standard deviation of 12% was observed in repeated measurements with a dry soil by the transient-diffusion method, and a 40% uncertainty was determined for moistures exceeding 50% of saturation. Excellent agreement was also obtained between values of the diffusion coefficient for radon in air, as measured by the transient-diffusion method, and those in the published literature. Good agreement was also obtained with diffusion coefficients measured by a steady-state method on the same soils. The agreement was best at low moistures, averaging less than ten percent difference, but differences of up to a factor of two were observed at high moistures. The comparison of the transient-diffusion and steady-state methods at low moistures provides an excellent verification of the theoretical validity and technical accuracy of these approaches, which are based on completely independent experimental conditions, measurement methods and mathematical interpretations

  10. 40 CFR 86.1363-2007 - Steady-state testing with a discrete-mode cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Steady-state testing with a discrete-mode cycle. 86.1363-2007 Section 86.1363-2007 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Exhaust Test Procedures § 86.1363-2007 Steady-state testing with a discrete-mode cycle. This section...

  11. Parametric study of the primary and secondary systems of the CAREM-25 reactor on steady state

    International Nuclear Information System (INIS)

    Halpert, Silvia; Vazquez, Luis

    2000-01-01

    In the CAREM-25 reactor the primary coolant flows by natural convection that's why the flow is established when the balance between the buoyancy force and friction pressure drop through circuit is obtained. This paper presents a parametric study on primary and secondary systems of the reactor on steady state, for different values of some thermohydraulics parameters: safety factor on friction loss pressure calculations (f), steam generator heat transfer area (A T ) and primary pressure (P P ). The ESCAREM 2.08 thermohydraulic code, which calculates the primary system behavior for steady state conditions, was used for this study. The conclusions of this study are: -) There was a variation of the 15% on the primary coolant flow when the safety factor was changed a 50 %; -) The primary and secondary systems conditions do not change when the power is less than 100 MW; -) Between 100 and 110 MW the decrease of the heat transfer area produces an important change on the secondary systems conditions: the outlet steam generator temperature decrease and there is an important rice in the flow; -) The primary pressure could decrease up to 11.4 MPa without violating turbine requirements. (author)

  12. Simulation of Steady Laser Hardening by an Arbitrary Lagrangian Eulerian Method

    NARCIS (Netherlands)

    Geijselaers, Hubertus J.M.; Huetink, Han

    2004-01-01

    One of the most practical methods for simulation of steady state thermal processing is the Arbitrary Lagrangian- Eulerian method. Each calculation step is split into two phases. In the first phase, the Lagrangian phase, the element mesh remains attached to the material. The evolution of the state

  13. Feedback control of thermal instability by compression and decompression

    International Nuclear Information System (INIS)

    Okamoto, M.; Hirano, K.; Amano, T.; Ohnishi, M.

    1983-01-01

    Active feedback control of the fusion output power by means of plasma compression-decompression is considered with the purpose of achieving steady-state plasma ignition in a tokamak. A simple but realistic feedback control system is modelled and zero-dimensional energy balance equations are solved numerically by taking into account the errors in the measurements, a procedure that is necessary for the feedback control. It is shown that the control can stabilize the thermal runaway completely and maintain steady-state operation without any significant change in major radius or thermal output power. Linear stability is analysed for a general type of scaling law, and the dependence of the stability conditions on the scaling law is studied. The possibility of load-following operation is considered. Finally, a one-dimensional analysis is applied to the large-aspect-ratio case. (author)

  14. Herd-Level Modeling and Steady-State Livestock Productivity ...

    African Journals Online (AJOL)

    ... an outline of the scope for applications and addresses the prospects for refinement and model extensions. The algorithms for use in development of steady state derivations include transition of matrices in a Markov Chain approach, continuous differential equations and actuarial approach built on life and fecundity tables.

  15. Principle of Entropy Maximization for Nonequilibrium Steady States

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    2002-01-01

    The goal of this contribution is to find out to what extent the principle of entropy maximization, which serves as a basis for the equilibrium thermodynamics, may be generalized onto non-equilibrium steady states. We prove a theorem that, in the system of thermodynamic coordinates, where entropy...

  16. Thermal entanglement and teleportation of a thermally mixed entangled state of a Heisenberg chain through a Werner state

    Institute of Scientific and Technical Information of China (English)

    Huang Li-Yuan; Fang Mao-Fa

    2008-01-01

    The thermal entanglement and teleportation of a thermally mixed entangled state of a two-qubit Heisenberg XXX chain under the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction through a noisy quantum channel given by a Werner state is investigated. The dependences of the thermal entanglement of the teleported state on the DM coupling constant, the temperature and the entanglement of the noisy quantum channel are studied in detail for both the ferromagnetic and the antiferromagnetic cases. The result shows that a minimum entanglement of the noisy quantum channel must be provided in order to realize the entanglement teleportation. The values of fidelity of the teleported state are also studied for these two cases. It is found that under certain conditions, we can transfer an initial state with a better fidelity than that for any classical communication protocol.

  17. Steady-state operation of spheromaks by inductive techniques

    International Nuclear Information System (INIS)

    Janos, A.

    1984-04-01

    A method to maintain a steady-state spheromak configuration inductively using the S-1 Spheromak device is described. The S-1 Spheromak formation apparatus can be utilized to inject magnetic helicity continuously (C.W., not pulsed or D.C.) into the spheromak configuration after equilibrium is achieved in the linked mode of operation. Oscillation of both poloidal- and toroidal-field currents in the flux core (psi-phi Pumping), with proper phasing, injects a net time-averaged helicity into the plasma. Steady-state maintenance relies on flux conversion, which has been earlier identified. Relevant experimental data from the operation of S-1 are described. Helicity flow has been measured and the proposed injection scheme simulated. In a reasonable time practical voltages and frequencies can inject an amount of helicity comparable to that in the initial plasma. Plasma currents can be maintained or increased. This pumping technique is similar to F-THETA Pumping of a Reversed-Field-Pinch but is applied to this inverse-pinch formation

  18. ATC calculation with steady-state security constraints using Benders decomposition

    International Nuclear Information System (INIS)

    Shaaban, M.; Yan, Z.; Ni, Y.; Wu, F.; Li, W.; Liu, H.

    2003-01-01

    Available transfer capability (ATC) is an important indicator of the usable amount of transmission capacity accessible by assorted parties for commercial trading, ATC calculation is nontrivial when steady-state security constraints are included. In hie paper, Benders decomposition method is proposed to partition the AC problem with steady-state security constraints into a base case master problem and a series of subproblems relevant to various contingencies to include their impacts on ATC. The mathematical model is formulated and the two solution schemes are presented. Computer testing on the 4-bus system and IEEE 30-bus system shows the effectiveness of the proposed method and the solution schemes. (Author)

  19. Entanglement properties of boundary state and thermalization

    Science.gov (United States)

    Guo, Wu-zhong

    2018-06-01

    We discuss the regularized boundary state {e}^{-{τ}_0H}\\Big|{.B>}_a on two aspects in both 2D CFT and higher dimensional free field theory. One is its entanglement and correlation properties, which exhibit exponential decay in 2D CFT, the parameter 1 /τ 0 works as a mass scale. The other concerns with its time evolution, i.e., {e}^{-itH}{e}^{-{τ}_0H}\\Big|{.B>}_a . We investigate the Kubo-Martin-Schwinger (KMS) condition on correlation function of local operators to detect the thermal properties. Interestingly we find the correlation functions in the initial state {e}^{-{τ}_0H}\\Big|{.B>}_a also partially satisfy the KMS condition. In the limit t → ∞, the correlators will exactly satisfy the KMS condition. We generally analyse quantum quench by a pure state and obtain some constraints on the possible form of 2-point correlation function in the initial state if assuming they satisfies KMS condition in the final state. As a byproduct we find in an large τ 0 limit the thermal property of 2-point function in {e}^{-{τ}_0H}\\Big|{.B>}_a also appears.

  20. Molecular simulation of steady-state evaporation and condensation in the presence of a non-condensable gas

    Science.gov (United States)

    Liang, Zhi; Keblinski, Pawel

    2018-02-01

    Using molecular dynamics simulations, we study evaporation and condensation of fluid Ar in the presence of a non-condensable Ne gas in a nanochannel. The evaporation and condensation are driven by the temperature difference, ΔTL, between the evaporating and condensing liquid surfaces. The steady-state evaporation and condensation fluxes (JMD) are also affected by the Ne concentration, ρNe, and the nanochannel length. We find that across a wide range of ΔTL and ρNe, JMD is in good agreement with the prediction from Stefan's law and from Schrage relationships. Furthermore, for ΔTL less than ˜20% of the absolute average temperature, we find that both steady-state heat and mass fluxes are proportional to ΔTL. This allows us to determine the interfacial resistance to the heat and mass transfer and compare it with the corresponding resistances in the gas phase. In this context, we derive an analytical expression for the effective thermal conductivity of the gas region in the nanochannel and the mass transport interfacial resistance equivalent length, i.e., the length of the nanochannel for which the resistance to the mass flow is the same as the interfacial resistance to the mass flow.

  1. Model-based derivation, analysis and control of unstable microaerobic steady-states--considering Rhodospirillum rubrum as an example.

    Science.gov (United States)

    Carius, Lisa; Rumschinski, Philipp; Faulwasser, Timm; Flockerzi, Dietrich; Grammel, Hartmut; Findeisen, Rolf

    2014-04-01

    Microaerobic (oxygen-limited) conditions are critical for inducing many important microbial processes in industrial or environmental applications. At very low oxygen concentrations, however, the process performance often suffers from technical limitations. Available dissolved oxygen measurement techniques are not sensitive enough and thus control techniques, that can reliable handle these conditions, are lacking. Recently, we proposed a microaerobic process control strategy, which overcomes these restrictions and allows to assess different degrees of oxygen limitation in bioreactor batch cultivations. Here, we focus on the design of a control strategy for the automation of oxygen-limited continuous cultures using the microaerobic formation of photosynthetic membranes (PM) in Rhodospirillum rubrum as model phenomenon. We draw upon R. rubrum since the considered phenomenon depends on the optimal availability of mixed-carbon sources, hence on boundary conditions which make the process performance challenging. Empirically assessing these specific microaerobic conditions is scarcely practicable as such a process reacts highly sensitive to changes in the substrate composition and the oxygen availability in the culture broth. Therefore, we propose a model-based process control strategy which allows to stabilize steady-states of cultures grown under these conditions. As designing the appropriate strategy requires a detailed knowledge of the system behavior, we begin by deriving and validating an unstructured process model. This model is used to optimize the experimental conditions, and identify properties of the system which are critical for process performance. The derived model facilitates the good process performance via the proposed optimal control strategy. In summary the presented model-based control strategy allows to access and maintain microaerobic steady-states of interest and to precisely and efficiently transfer the culture from one stable microaerobic steady-state

  2. How should we understand non-equilibrium many-body steady states?

    Science.gov (United States)

    Maghrebi, Mohammad; Gorshkov, Alexey

    : Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under non-equilibrium dynamics. In this talk, I use a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in such models. I show that an effective temperature generically emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is described by a thermodynamic universality class. In the end, I will also discuss possibilities that go beyond the paradigm of an effective thermodynamic behavior.

  3. Steady state minority carrier lifetime and defect level occupation in thin film CdTe solar cells

    International Nuclear Information System (INIS)

    Cheng, Zimeng; Delahoy, Alan E.; Su, Zhaoqian; Chin, Ken K.

    2014-01-01

    A model consisting of Shockley Read Hall (SRH) recombination under steady state conditions of constant photon injection is proposed in this work to study the steady state minority carrier lifetime in CdS/CdTe thin film solar cells. The SRH recombination rate versus optical injection level is analytically approximated in the junction and neutral regions. In the neutral region, it is found that the recombination rate through certain defect levels has one constant value under lower optical injection conditions and another constant value under higher optical injection conditions with the transition occurring at a critical optical injection level. By simultaneously solving the equations of charge neutrality, charge conservation and SRH recombination in the neutral region, it is found that the compensation of doping and the reduction of minority carrier lifetime by donors in the p-type semiconductor can each be remedied by optical injection. It is also demonstrated that this optical-dependent SRH recombination is significant in large bandgap thin films. The measured minority carrier diffusion length in a CdS/CdTe solar cells, as determined from the steady-state photo-generated carrier collection efficiency, shows the predicted transition of minority carrier lifetime versus optical injection level. A numerical fitting of the indirectly-measured minority carrier lifetime by assuming the minority carrier mobility gives a non-intuitive picture of the p–n junction with a low free hole concentration but a narrow depletion region width. - Highlights: • Minority carrier lifetimes under different optical injections are solved. • Simplifications of Shockley–Read–Hall recombination equation are discussed. • The compensation of donor can be remedied with optical injection. • The recombination efficiency of donor can be remedied with optical injection. • The minority carrier lifetime transition under illumination was experimentally observed

  4. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Van den Branden, G. [SCK CEN (Belgium); Kalcheva, S. [SCK CEN (Belgium); Sikik, E. [SCK CEN (Belgium); Koonen, E. [SCK CEN (Belgium)

    2015-12-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.

  5. A transient model to the thermal detonation

    International Nuclear Information System (INIS)

    Karachalios, K.

    1987-04-01

    The model calculates the escalation dynamics and the long time behavior of thermal detonation waves depending on the initial and boundary conditions (data of the premixture, ignition at a solid wall or at an open end, etc.). Especially, for a given mixture and a certain fragmentation behavior more than one stable steady-state cases resulted, depending on the applied ignition energy. Investigations showed a very good consistency between the transient model and a steady-state model which is based on the same physical description and includes an additional stability criterion. Also the influence of effects such as e.g. non-homogeneous coolant heating, spherical instead of plane wave propagation and inhomogeneities of the premixture on the development of the wave were investigated. Comparison calculations with large scale experiments showed that they can be well explained by means of the thermal detonation theory, especially considering the transient phase of the wave development. (orig./HP) [de

  6. Spent fuel transport cask thermal evaluation under normal and accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Lo Frano, R., E-mail: rosa.lofrano@ing.unipi.i [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Forasassi, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy)

    2010-06-15

    The casks used for transport of nuclear materials, especially the spent fuel element (SPE), must be designed according to rigorous acceptance criteria and standards requirements, e.g. the International Atomic Energy Agency ones, in order to provide protection to people and environment against radiation exposure particularly in a severe accident scenario. The aim of this work was the evaluation of the integrity of a spent fuel cask under both normal and accident scenarios transport conditions, such as impact and rigorous fire events, in according to the IAEA accident test requirements. The thermal behaviour and the temperatures distribution of a Light Water Reactor (LWR) spent fuel transport cask are presented in this paper, especially with reference to the Italian cask designed by AGN, which was characterized by a cylindrical body, with water or air inside the internal cavity, and two lateral shock absorbers. Using the finite element code ANSYS a series of thermal analyses (steady-state and transient thermal analyses) were carried out in order to obtain the maximum fuel temperature and the temperatures field in the body of the cask, both in normal and in accidents scenario, considering all the heat transfer modes between the cask and the external environment (fire in the test or air in the normal conditions) as well as inside the cask itself. In order to follow the standards requirements, the thermal analyses in accidents scenarios were also performed adopting a deformed shape of the shock absorbers to simulate the mechanical effects of a previous IAEA 9 m drop test event. Impact tests on scale models of the shock absorbers have already been conducted in the past at the Department of Mechanical, Nuclear and Production Engineering, University of Pisa, in the '80s. The obtained results, used for possible new licensing approval purposes by the Italian competent Authority of the cask for PWR spent fuel cask transport by the Italian competent Authority, are

  7. Transient thermal hydraulic modeling and analysis of ITER divertor plate system

    International Nuclear Information System (INIS)

    El-Morshedy, Salah El-Din; Hassanein, Ahmed

    2009-01-01

    A mathematical model has been developed/updated to simulate the steady state and transient thermal-hydraulics of the International Thermonuclear Experimental Reactor (ITER) divertor module. The model predicts the thermal response of the armour coating, divertor plate structural materials and coolant channels. The selected heat transfer correlations cover all operating conditions of ITER under both normal and off-normal situations. The model also accounts for the melting, vaporization, and solidification of the armour material. The developed model is to provide a quick benchmark of the HEIGHTS multidimensional comprehensive simulation package. The present model divides the coolant channels into a specified axial regions and the divertor plate into a specified radial zones, then a two-dimensional heat conduction calculation is created to predict the temperature distribution for both steady and transient states. The model is benchmarked against experimental data performed at Sandia National Laboratory for both bare and swirl tape coolant channel mockups. The results show very good agreements with the data for steady and transient states. The model is then used to predict the thermal behavior of the ITER plasma facing and structural materials due to plasma instability event where 60 MJ/m 2 plasma energy is deposited over 500 ms. The results for ITER divertor response is analyzed and compared with HEIGHTS results.

  8. Transient thermal hydraulic modeling and analysis of ITER divertor plate system

    Energy Technology Data Exchange (ETDEWEB)

    El-Morshedy, Salah El-Din [Argonne National Laboratory, Argonne, IL (United States); Atomic Energy Authority, Cairo (Egypt)], E-mail: selmorshedy@etrr2-aea.org.eg; Hassanein, Ahmed [Purdue University, West Lafayette, IN (United States)], E-mail: hassanein@purdue.edu

    2009-12-15

    A mathematical model has been developed/updated to simulate the steady state and transient thermal-hydraulics of the International Thermonuclear Experimental Reactor (ITER) divertor module. The model predicts the thermal response of the armour coating, divertor plate structural materials and coolant channels. The selected heat transfer correlations cover all operating conditions of ITER under both normal and off-normal situations. The model also accounts for the melting, vaporization, and solidification of the armour material. The developed model is to provide a quick benchmark of the HEIGHTS multidimensional comprehensive simulation package. The present model divides the coolant channels into a specified axial regions and the divertor plate into a specified radial zones, then a two-dimensional heat conduction calculation is created to predict the temperature distribution for both steady and transient states. The model is benchmarked against experimental data performed at Sandia National Laboratory for both bare and swirl tape coolant channel mockups. The results show very good agreements with the data for steady and transient states. The model is then used to predict the thermal behavior of the ITER plasma facing and structural materials due to plasma instability event where 60 MJ/m{sup 2} plasma energy is deposited over 500 ms. The results for ITER divertor response is analyzed and compared with HEIGHTS results.

  9. Thermal crosstalk in heated microcantilever arrays

    International Nuclear Information System (INIS)

    Kim, Hoe Joon; Dai, Zhenting; King, William P

    2013-01-01

    We report on a detailed characterization and analysis of thermal crosstalk in a heated microcantilever array. The fabricated heated cantilever array consists of five identical independently controlled heated cantilevers. The temperature of each cantilever can be controlled over a large temperature range, up to 900 °C, by means of an integrated solid-state resistive heater. We analyze thermal crosstalk in steady and transient operating conditions when the heated cantilever array is either in contact with a substrate or freely suspended in air. The thermal conductance between neighboring cantilevers is as high as 0.61 µW °C −1 , resulting in non-negligible temperature increases in neighboring cantilevers, depending upon the operating conditions. By understanding and accounting for thermal crosstalk, it is possible to improve temperature control and temperature measurements with heated microcantilever arrays. (paper)

  10. Cerebral vasomotor reactivity: steady-state versus transient changes in carbon dioxide tension.

    Science.gov (United States)

    Brothers, R Matthew; Lucas, Rebekah A I; Zhu, Yong-Sheng; Crandall, Craig G; Zhang, Rong

    2014-11-01

    Cerebral vasomotor reactivity (CVMR) to changes in arterial carbon dioxide tension (P aCO 2) is assessed during steady-state or transient changes in P aCO 2. This study tested the following two hypotheses: (i) that CVMR during steady-state changes differs from that during transient changes in P aCO 2; and (ii) that CVMR during rebreathing-induced hypercapnia would be blunted when preceded by a period of hyperventilation. For each hypothesis, end-tidal carbon dioxide tension (P ET , CO 2) middle cerebral artery blood velocity (CBFV), cerebrovascular conductance index (CVCI; CBFV/mean arterial pressure) and CVMR (slope of the linear regression between changes in CBFV and CVCI versus P ET , CO 2) were assessed in eight individuals. To address the first hypothesis, measurements were made during the following two conditions (randomized): (i) steady-state increases in P ET , CO 2 of 5 and 10 Torr above baseline; and (ii) rebreathing-induced transient breath-by-breath increases in P ET , CO 2. The linear regression for CBFV versus P ET , CO 2 (P = 0.65) and CVCI versus P ET , CO 2 (P = 0.44) was similar between methods; however, individual variability in CBFV or CVCI responses existed among subjects. To address the second hypothesis, the same measurements were made during the following two conditions (randomized): (i) immediately following a brief period of hypocapnia induced by hyperventilation for 1 min followed by rebreathing; and (ii) during rebreathing only. The slope of the linear regression for CBFV versus P ET , CO 2 (P < 0.01) and CVCI versus P ET , CO 2 (P < 0.01) was reduced during hyperventilation plus rebreathing relative to rebreathing only. These results indicate that cerebral vasomotor reactivity to changes in P aCO 2 is similar regardless of the employed methodology to induce changes in P aCO 2 and that hyperventilation-induced hypocapnia attenuates the cerebral vasodilatory responses during a subsequent period of rebreathing

  11. Computational multiple steady states for enzymatic esterification of ethanol and oleic acid in an isothermal CSTR.

    Science.gov (United States)

    Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya

    2005-05-01

    The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.

  12. A quaternionic map for the steady states of the Heisenberg spin-chain

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Mitaxi P., E-mail: mitaxi.mehta@ahduni.edu.in [IICT, Ahmedabad University, Opp. IIM, Navrangpura, Ahmedabad (India); Dutta, Souvik; Tiwari, Shubhanshu [BITS-Pilani, K.K. Birla Goa campus, Goa (India)

    2014-01-17

    We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.

  13. A quaternionic map for the steady states of the Heisenberg spin-chain

    International Nuclear Information System (INIS)

    Mehta, Mitaxi P.; Dutta, Souvik; Tiwari, Shubhanshu

    2014-01-01

    We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.

  14. Role of conformational dynamics in kinetics of an enzymatic cycle in a nonequilibrium steady state

    Science.gov (United States)

    Min, Wei; Xie, X. Sunney; Bagchi, Biman

    2009-08-01

    Enzyme is a dynamic entity with diverse time scales, ranging from picoseconds to seconds or even longer. Here we develop a rate theory for enzyme catalysis that includes conformational dynamics as cycling on a two-dimensional (2D) reaction free energy surface involving an intrinsic reaction coordinate (X) and an enzyme conformational coordinate (Q). The validity of Michaelis-Menten (MM) equation, i.e., substrate concentration dependence of enzymatic velocity, is examined under a nonequilibrium steady state. Under certain conditions, the classic MM equation holds but with generalized microscopic interpretations of kinetic parameters. However, under other conditions, our rate theory predicts either positive (sigmoidal-like) or negative (biphasic-like) kinetic cooperativity due to the modified effective 2D reaction pathway on X-Q surface, which can explain non-MM dependence previously observed on many monomeric enzymes that involve slow or hysteretic conformational transitions. Furthermore, we find that a slow conformational relaxation during product release could retain the enzyme in a favorable configuration, such that enzymatic turnover is dynamically accelerated at high substrate concentrations. The effect of such conformation retainment in a nonequilibrium steady state is evaluated.

  15. Steady state analysis of Boolean molecular network models via model reduction and computational algebra.

    Science.gov (United States)

    Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard

    2014-06-26

    A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for

  16. NESTLE: Few-group neutron diffusion equation solver utilizing the nodal expansion method for eigenvalue, adjoint, fixed-source steady-state and transient problems

    International Nuclear Information System (INIS)

    Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.

    1994-06-01

    NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source steady-state; or external fixed-source. or eigenvalue initiated transient problems. The code name NESTLE originates from the multi-problem solution capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two or four energy groups can be utilized, with all energy groups being thermal groups (i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, two and one dimensional models can be utilized with various symmetries. The non-linear iterative strategy associated with the NEM method is employed. An advantage of the non-linear iterative strategy is that NSTLE can be utilized to solve either the nodal or Finite Difference Method representation of the few-group neutron diffusion equation

  17. A simple heat transfer model for a heat flux plate under transient conditions

    International Nuclear Information System (INIS)

    Ryan, L.; Dale, J.D.

    1985-01-01

    Heat flux plates are used for measuring rates of heat transfer through surfaces under steady state and transient conditions. Their usual construction is to have a resistive layer bounded by thermopiles and an exterior layer for protection. If properly designed and constructed a linear relationship between the thermopile generated voltage and heat flux results and calibration under steady state conditions is straight forward. Under transient conditions however the voltage output from a heat flux plate cannot instantaneously follow the heat flux because of the thermal capacitance of the plate and the resulting time lag. In order to properly interpret the output of a heat flux plate used under transient conditions a simple heat transfer model was constructed and tested. (author)

  18. The behaviour of water-cooled reactor fuel rods in steady state and transient conditions; Zachowanie sie pretow paliwowych reaktorow chlodzonych woda w stanach ustalonych i nieustalonych

    Energy Technology Data Exchange (ETDEWEB)

    Strupczewski, A.; Marks, P. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1997-12-31

    In this report, the results of temperature field and filling gas pressure calculations by means of contemporary calculational models for a WWER-440 and WWER-1000 type fuel rod at low and high burnup operating under steady-state conditions are presented. A review of in-core temperature and pressure measurements for various types of LWR fuel is also included. Basing on calculational and collected measured data, the behaviour of fuel cladding during large and small break LOCA, is estimated with special emphasis on their oxidation and failure resistance. (author) 38 refs, 40 figs, 15 tabs

  19. Very high flux steady state reactor and accelerator based sources

    International Nuclear Information System (INIS)

    Ludewig, H.; Todosow, M.; Simos, N.; Shapiro, S.; Hastings, J.

    2004-01-01

    With the number of steady state neutron sources in the US declining (including the demise of the Bnl HFBR) the remaining intense sources are now in Europe (i.e. reactors - ILL and FMR, accelerator - PSI). The intensity of the undisturbed thermal flux for sources currently in operation ranges from 10 14 n/cm 2 *s to 10 15 n/cm 2 *s. The proposed Advanced Neutron Source (ANS) was to be a high power reactor (about 350 MW) with a projected undisturbed thermal flux of 7*10 15 n/cm 2 *s but never materialized. The objective of the current study is to explore the requirements and implications of two source concepts with an undisturbed flux of 10 16 n/cm 2 *s. The first is a reactor based concept operating at high power density (10 MW/l - 15 MW/l) and a total power of 100 MW - 250 MW, depending on fissile enrichment. The second is an accelerator based concept relying on a 1 GeV - 1.5 GeV proton Linac with a total beam power of 40 MW and a liquid lead-bismuth eutectic target. In the reactor source study, the effects of fissile material enrichment, coolant temperature and pressure drop, and estimates of pressure vessel stress levels will be investigated. The fuel form for the reactor will be different from all other operating source reactors in that it is proposed to use an infiltrated graphitic structure, which has been developed for nuclear thermal propulsion reactor applications. In the accelerator based source the generation of spallation products and their activation levels, and the material damage sustained by the beam window will be investigated. (authors)

  20. Steady state ion acceleration by a circularly polarized laser pulse

    International Nuclear Information System (INIS)

    Zhang Xiaomei; Shen Baifei; Cang Yu; Li Xuemei; Jin Zhangying; Wang Fengchao

    2007-01-01

    The steady state ion acceleration at the front of a cold solid target by a circularly polarized flat-top laser pulse is studied with one-dimensional particle-in-cell (PIC) simulation. A model that ions are reflected by a steady laser-driven piston is used by comparing with the electrostatic shock acceleration. A stable profile with a double-flat-top structure in phase space forms after ions enter the undisturbed region of the target with a constant velocity

  1. A Novel Chronic Opioid Monitoring Tool to Assess Prescription Drug Steady State Levels in Oral Fluid.

    Science.gov (United States)

    Shaparin, Naum; Mehta, Neel; Kunkel, Frank; Stripp, Richard; Borg, Damon; Kolb, Elizabeth

    2017-11-01

    Interpretation limitations of urine drug testing and the invasiveness of blood toxicology have motivated the desire for the development of simpler methods to assess biologically active drug levels on an individualized patient basis. Oral fluid is a matrix well-suited for the challenge because collections are based on simple noninvasive procedures and drug concentrations better correlate to blood drug levels as oral fluid is a filtrate of the blood. Well-established pharmacokinetic models were utilized to generate oral fluid steady state concentration ranges to assess the interpretive value of the alternative matrix to monitor steady state plasma oxycodone levels. Paired oral fluid and plasma samples were collected from patients chronically prescribed oxycodone and quantitatively analyzed by liquid chromatography tandem mass spectrometry. Steady state plasma concentration ranges were calculated for each donor and converted to an equivalent range in oral fluid. Measured plasma and oral fluid oxycodone concentrations were compared with respective matrix-matched steady state ranges, using each plasma steady state classification as the control. A high degree of correlation was observed between matrices when classifying donors according to expected steady state oxycodone concentration. Agreement between plasma and oral fluid steady state classifications was observed in 75.6% of paired samples. This study supports novel application of basic pharmacokinetic knowledge to the pain management industry, simplifying and improving individualized drug monitoring and risk assessment through the use of oral fluid drug testing. Many benefits of established therapeutic drug monitoring in plasma can be realized in oral fluid for patients chronically prescribed oxycodone at steady state. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  2. Poiseuille flow of soft glasses in narrow channels: from quiescence to steady state.

    Science.gov (United States)

    Chaudhuri, Pinaki; Horbach, Jürgen

    2014-10-01

    Using numerical simulations, the onset of Poiseuille flow in a confined soft glass is investigated. Starting from the quiescent state, steady flow sets in at a time scale which increases with a decrease in applied forcing. At this onset time scale, a rapid transition occurs via the simultaneous fluidization of regions having different local stresses. In the absence of steady flow at long times, creep is observed even in regions where the local stress is larger than the bulk yielding threshold. Finally, we show that the time scale to attain steady flow depends strongly on the history of the initial state.

  3. Strontium and caesium transport in unsaturated soil from Chernobyl Pilot Site under steady flow conditions

    International Nuclear Information System (INIS)

    Szenknect, St.

    2003-10-01

    This work is devoted to the quantification and the identification of the predominant processes involved in strontium and caesium transport in unsaturated soil from Chernobyl Pilot Site under steady flow conditions. The transport and fate of radionuclides in the subsurface is affected by various physical and chemical processes including advective and diffusive transport as well as chemical and biological transformations. Laboratory experiments and the use of a multiple tracer approach allow to isolate the contributions of each elementary process and to control the physico-chemical conditions in the system. To be more representative of the field conditions, we decided to perform column miscible displacement experiments. We perform batch and flow-through reactor experiments to characterize the radionuclides sorption mechanisms. Miscible displacement experiments within homogeneous columns and modeling allow to characterize the hydrodynamic properties of the soil and to describe the radionuclides behaviour under dynamic conditions at different water contents. We show that the water content of porous media affect the transport behaviour of inert and strongly sorbing radionuclides. Our results demonstrate that a parametrized transport model that was calibrated under completely saturated conditions was not able to describe the advective-dispersive transport of reactive solutes under unsaturated steady state conditions. Under our experimental conditions, there is no effect of a decrease of the mean water content on the sorption model parameters, but the transport parameters are modified. We established for the studied soil the relation between hydrodynamic dispersion and water content and the relation between pore water velocity and water content. (author)

  4. Artificial neural network modelling for organic and total nitrogen removal of aerobic granulation under steady-state condition.

    Science.gov (United States)

    Gong, H; Pishgar, R; Tay, J H

    2018-04-27

    Aerobic granulation is a recent technology with high level of complexity and sensitivity to environmental and operational conditions. Artificial neural networks (ANNs), computational tools capable of describing complex non-linear systems, are the best fit to simulate aerobic granular bioreactors. In this study, two feedforward backpropagation ANN models were developed to predict chemical oxygen demand (Model I) and total nitrogen removal efficiencies (Model II) of aerobic granulation technology under steady-state condition. Fundamentals of ANN models and the steps to create them were briefly reviewed. The models were respectively fed with 205 and 136 data points collected from laboratory-, pilot-, and full-scale studies on aerobic granulation technology reported in the literature. Initially, 60%, 20%, and 20%, and 80%, 10%, and 10% of the points in the corresponding datasets were randomly chosen and used for training, testing, and validation of Model I, and Model II, respectively. Overall coefficient of determination (R 2 ) value and mean squared error (MSE) of the two models were initially 0.49 and 15.5, and 0.37 and 408, respectively. To improve the model performance, two data division methods were used. While one method is generic and potentially applicable to other fields, the other can only be applied to modelling the performance of aerobic granular reactors. R 2 value and MSE were improved to 0.90 and 2.54, and 0.81 and 121.56, respectively, after applying the new data division methods. The results demonstrated that ANN-based models were capable simulation approach to predict a complicated process like aerobic granulation.

  5. Computational analysis of the behaviour of nuclear fuel under steady state, transient and accident conditions

    International Nuclear Information System (INIS)

    2007-12-01

    Accident analysis is an important tool for ensuring the adequacy and efficiency of the provision in the defence in depth concept to cope with challenges to plant safety. Accident analysis is the milestone of the demonstration that the plant is capable of meeting any prescribed limits for radioactive releases and any other acceptable limits for the safe operation of the plant. It is used, by designers, utilities and regulators, in a number of applications such as: (a) licensing of new plants, (b) modification of existing plants, (c) analysis of operational events, (d) development, improvement or justification of the plant operational limits and conditions, and (e) safety cases. According to the defence in depth concept, the fuel rod cladding constitutes the first containment barrier of the fission products. Therefore, related safety objectives and associated criteria are defined, in order to ensure, at least for normal operation and anticipated transients, the integrity of the cladding, and for accident conditions, acceptable radiological consequences with regard to the postulated frequency of the accident, as usually identified in the safety analysis reports. Therefore, computational analysis of fuel behaviour under steady state, transient and accident conditions constitutes a major link of the safety case in order to justify the design and the safety of the fuel assemblies, as far as all relevant phenomena are correctly addressed and modelled. This publication complements the IAEA Safety Report on Accident Analysis for Nuclear Power Plants (Safety Report Series No. 23) that provides practical guidance for establishing a set of conceptual and formal methods and practices for performing accident analysis. Computational analysis of the behaviour of nuclear fuel under transient and accident conditions, including normal operation (e.g. power ramp rates) is developed in this publication. For design basis accidents, depending on the type of influence on a fuel element

  6. Steady-state bifurcations of the three-dimensional Kolmogorov problem

    Directory of Open Access Journals (Sweden)

    Zhi-Min Chen

    2000-08-01

    Full Text Available This paper studies the spatially periodic incompressible fluid motion in $mathbb R^3$ excited by the external force $k^2(sin kz, 0,0$ with $kgeq 2$ an integer. This driving force gives rise to the existence of the unidirectional basic steady flow $u_0=(sin kz,0, 0$ for any Reynolds number. It is shown in Theorem 1.1 that there exist a number of critical Reynolds numbers such that $u_0$ bifurcates into either 4 or 8 or 16 different steady states, when the Reynolds number increases across each of such numbers.

  7. Existence and instability of steady states for a triangular cross-diffusion system: A computer-assisted proof

    Science.gov (United States)

    Breden, Maxime; Castelli, Roberto

    2018-05-01

    In this paper, we present and apply a computer-assisted method to study steady states of a triangular cross-diffusion system. Our approach consist in an a posteriori validation procedure, that is based on using a fixed point argument around a numerically computed solution, in the spirit of the Newton-Kantorovich theorem. It allows to prove the existence of various non homogeneous steady states for different parameter values. In some situations, we obtain as many as 13 coexisting steady states. We also apply the a posteriori validation procedure to study the linear stability of the obtained steady states, proving that many of them are in fact unstable.

  8. An empirically based steady state friction law and implications for fault stability.

    Science.gov (United States)

    Spagnuolo, E; Nielsen, S; Violay, M; Di Toro, G

    2016-04-16

    Empirically based rate-and-state friction laws (RSFLs) have been proposed to model the dependence of friction forces with slip and time. The relevance of the RSFL for earthquake mechanics is that few constitutive parameters define critical conditions for fault stability (i.e., critical stiffness and frictional fault behavior). However, the RSFLs were determined from experiments conducted at subseismic slip rates ( V   0.1 m/s) remains questionable on the basis of the experimental evidence of (1) large dynamic weakening and (2) activation of particular fault lubrication processes at seismic slip rates. Here we propose a modified RSFL (MFL) based on the review of a large published and unpublished data set of rock friction experiments performed with different testing machines. The MFL, valid at steady state conditions from subseismic to seismic slip rates (0.1 µm/s fault frictional stability with implications for slip event styles and relevance for models of seismic rupture nucleation, propagation, and arrest.

  9. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    International Nuclear Information System (INIS)

    Zhou, Jianjun; Zhang, Daling; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei

    2015-01-01

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor

  10. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianjun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); College of Mechanical and Power Engineering, China Three Gorges University, No 8, Daxue road, Yichang, Hubei 443002 (China); Zhang, Daling, E-mail: dlzhang@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China)

    2015-02-15

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor.

  11. BLIMP1 Is Required for Postnatal Epidermal Homeostasis but Does Not Define a Sebaceous Gland Progenitor under Steady-State Conditions

    Directory of Open Access Journals (Sweden)

    Kai Kretzschmar

    2014-10-01

    Full Text Available B-lymphocyte-induced nuclear maturation protein 1 (BLIMP1 was previously reported to define a sebaceous gland (SG progenitor population in the epidermis. However, the recent identification of multiple stem cell populations in the hair follicle junctional zone has led us to re-evaluate its function. We show, in agreement with previous studies, that BLIMP1 is expressed by postmitotic, terminally differentiated epidermal cells within the SG, interfollicular epidermis, and hair follicle. Epidermal overexpression of c-Myc results in loss of BLIMP1+ cells, an effect modulated by androgen signaling. Epidermal-specific deletion of Blimp1 causes multiple differentiation defects in the epidermis in addition to SG enlargement. In culture, BLIMP1+ sebocytes have no greater clonogenic potential than BLIMP1− sebocytes. Finally, lineage-tracing experiments reveal that, under steady-state conditions, BLIMP1-expressing cells do not divide. Thus, rather than defining a sebocyte progenitor population, BLIMP1 functions in terminally differentiated cells to maintain homeostasis in multiple epidermal compartments.

  12. Reliable and Efficient Procedure for Steady-State Analysis of Nonautonomous and Autonomous Systems

    Directory of Open Access Journals (Sweden)

    J. Dobes

    2012-04-01

    Full Text Available The majority of contemporary design tools do not still contain steady-state algorithms, especially for the autonomous systems. This is mainly caused by insufficient accuracy of the algorithm for numerical integration, but also by unreliable steady-state algorithms themselves. Therefore, in the paper, a very stable and efficient procedure for the numerical integration of nonlinear differential-algebraic systems is defined first. Afterwards, two improved methods are defined for finding the steady state, which use this integration algorithm in their iteration loops. The first is based on the idea of extrapolation, and the second utilizes nonstandard time-domain sensitivity analysis. The two steady-state algorithms are compared by analyses of a rectifier and a C-class amplifier, and the extrapolation algorithm is primarily selected as a more reliable alternative. Finally, the method based on the extrapolation naturally cooperating with the algorithm for solving the differential-algebraic systems is thoroughly tested on various electronic circuits: Van der Pol and Colpitts oscillators, fragment of a large bipolar logical circuit, feedback and distributed microwave oscillators, and power amplifier. The results confirm that the extrapolation method is faster than a classical plain numerical integration, especially for larger circuits with complicated transients.

  13. Modelling non-steady-state isotope enrichment of leaf water in a gas-exchange cuvette environment.

    Science.gov (United States)

    Song, Xin; Simonin, Kevin A; Loucos, Karen E; Barbour, Margaret M

    2015-12-01

    The combined use of a gas-exchange system and laser-based isotope measurement is a tool of growing interest in plant ecophysiological studies, owing to its relevance for assessing isotopic variability in leaf water and/or transpiration under non-steady-state (NSS) conditions. However, the current Farquhar & Cernusak (F&C) NSS leaf water model, originally developed for open-field scenarios, is unsuited for use in a gas-exchange cuvette environment where isotope composition of water vapour (δv ) is intrinsically linked to that of transpiration (δE ). Here, we modified the F&C model to make it directly compatible with the δv -δE dynamic characteristic of a typical cuvette setting. The resultant new model suggests a role of 'net-flux' (rather than 'gross-flux' as suggested by the original F&C model)-based leaf water turnover rate in controlling the time constant (τ) for the approach to steady sate. The validity of the new model was subsequently confirmed in a cuvette experiment involving cotton leaves, for which we demonstrated close agreement between τ values predicted from the model and those measured from NSS variations in isotope enrichment of transpiration. Hence, we recommend that our new model be incorporated into future isotope studies involving a cuvette condition where the transpiration flux directly influences δv . There is an increasing popularity among plant ecophysiologists to use a gas-exchange system coupled to laser-based isotope measurement for investigating non-steady state (NSS) isotopic variability in leaf water (and/or transpiration); however, the current Farquhar & Cernusak (F&C) NSS leaf water model is unsuited for use in a gas-exchange cuvette environment due to its implicit assumption of isotope composition of water vapor (δv ) being constant and independent of that of transpiration (δE ). In the present study, we modified the F&C model to make it compatible with the dynamic relationship between δv and δE as is typically associated

  14. Selection of Steady-State Process Simulation Software to Optimize Treatment of Radioactive and Hazardous Waste

    International Nuclear Information System (INIS)

    Nichols, T. T.; Barnes, C. M.; Lauerhass, L.; Taylor, D. D.

    2001-01-01

    The process used for selecting a steady-state process simulator under conditions of high uncertainty and limited time is described. Multiple waste forms, treatment ambiguity, and the uniqueness of both the waste chemistries and alternative treatment technologies result in a large set of potential technical requirements that no commercial simulator can totally satisfy. The aim of the selection process was two-fold. First, determine the steady-state simulation software that best, albeit not completely, satisfies the requirements envelope. And second, determine if the best is good enough to justify the cost. Twelve simulators were investigated with varying degrees of scrutiny. The candidate list was narrowed to three final contenders: ASPEN Plus 10.2, PRO/II 5.11, and CHEMCAD 5.1.0. It was concluded from ''road tests'' that ASPEN Plus appears to satisfy the project's technical requirements the best and is worth acquiring. The final software decisions provide flexibility: they involve annual rather than multi-year licensing, and they include periodic re-assessment

  15. Selection of Steady-State Process Simulation Software to Optimize Treatment of Radioactive and Hazardous Waste

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Todd Travis; Barnes, Charles Marshall; Lauerhass, Lance; Taylor, Dean Dalton

    2001-06-01

    The process used for selecting a steady-state process simulator under conditions of high uncertainty and limited time is described. Multiple waste forms, treatment ambiguity, and the uniqueness of both the waste chemistries and alternative treatment technologies result in a large set of potential technical requirements that no commercial simulator can totally satisfy. The aim of the selection process was two-fold. First, determine the steady-state simulation software that best, albeit not completely, satisfies the requirements envelope. And second, determine if the best is good enough to justify the cost. Twelve simulators were investigated with varying degrees of scrutiny. The candidate list was narrowed to three final contenders: ASPEN Plus 10.2, PRO/II 5.11, and CHEMCAD 5.1.0. It was concluded from "road tests" that ASPEN Plus appears to satisfy the project's technical requirements the best and is worth acquiring. The final software decisions provide flexibility: they involve annual rather than multi-year licensing, and they include periodic re-assessment.

  16. Pre-steady-state Kinetics for Hydrolysis of Insoluble Cellulose by Cellobiohydrolase Cel7A

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil

    2012-01-01

    The transient kinetic behavior of enzyme reactions prior to the establishment of steady state is a major source of mechanistic information, yet this approach has not been utilized for cellulases acting on their natural substrate, insoluble cellulose. Here, we elucidate the pre-steady-state regime...... for the exo-acting cellulase Cel7A using amperometric biosensors and an explicit model for processive hydrolysis of cellulose. This analysis allows the identification of a pseudo-steady-state period and quantification of a processivity number as well as rate constants for the formation of a threaded enzyme...... to unveil fundamental reasons for the distinctive variability in hydrolytic activity found in different cellulase-substrate systems....

  17. Influence of the thermal boundary conditions on the flow and the isotope separation of a gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.

    1981-11-01

    The axisymmetric steady gas flow in a so called thermally driven ultracentrifuge at total reflux and its /sup 235/UF/sub 6/-/sup 238/UF/sub 6/- separating characteristics are treated numerically. The top and the bottom end-caps are thermally conducting and kept at temperatures generally depending on radius. Regarding the side-wall temperature conditions, three cases will be considered: (1) insulated side-wall; (2) side-wall at constant temperature; (3) linear temperature profile continuously joining the end-plate temperatures. 20 figures, 2 tables.

  18. Combined Steady-State and Dynamic Heat Exchanger Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  19. Steady-state equations of even flux and scattering

    International Nuclear Information System (INIS)

    Verwaerde, D.

    1985-11-01

    Some mathematical properties of steady-state equation of even flux are shown in variational formalism. This theoretical frame allows to study the existence of a solution and its asymptotical behavior in opaque media (i.e. the relation with scattering equation). At last it allows to qualify the convergence velocity of resolution iterative processes used practically [fr

  20. Analysis of Technical State of Thermal and Mechanical Equipment of Thermal Power Stations in the Republic of Belarus under Conditions of Investment Deficit

    Directory of Open Access Journals (Sweden)

    S. N. Shichko

    2004-01-01

    Full Text Available The paper contains an analysis of the equipment state at a number of thermal power stations. This analysis is made on the basis of indifferent curves. Relationship of two factors is taken as a criterion for estimation of the equipment state. These factors are faultiness (parameter of failure fi"equency and operating time from the moment when the equipment was put into operation. It is noted that operation of the equipment in excess of specified life without replacement of so-called «weab> elements and estimation of metal state will lead to conditions of high risk in opieration of such equipment.

  1. Hydrodynamics of stratified epithelium: Steady state and linearized dynamics

    Science.gov (United States)

    Yeh, Wei-Ting; Chen, Hsuan-Yi

    2016-05-01

    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.

  2. Theory of minimum dissipation of energy for the steady state

    International Nuclear Information System (INIS)

    Chu, T.K.

    1992-02-01

    The magnetic configuration of an inductively driven steady-state plasma bounded by a surface (or two adjacent surfaces) on which B·n = 0 is force-free: ∇xB = 2αB, where α is a constant, in time and in space. α is the ratio of the Poynting flux to the magnetic helicity flux at the boundary. It is also the ratio of the dissipative rates of the magnetic energy to the magnetic helicity in the plasma. The spatial extent of the configuration is noninfinitesimal. This global constraint is a result of the requirement that, for a steady-state plasma, the rate of change of the vector potential, ∂A/∂t, is constant in time and uniform in space

  3. On the relationship of steady states of continuous and discrete models arising from biology.

    Science.gov (United States)

    Veliz-Cuba, Alan; Arthur, Joseph; Hochstetler, Laura; Klomps, Victoria; Korpi, Erikka

    2012-12-01

    For many biological systems that have been modeled using continuous and discrete models, it has been shown that such models have similar dynamical properties. In this paper, we prove that this happens in more general cases. We show that under some conditions there is a bijection between the steady states of continuous and discrete models arising from biological systems. Our results also provide a novel method to analyze certain classes of nonlinear models using discrete mathematics.

  4. A semiconductor device thermal model taking into account non-linearity and multhipathing of the cooling system

    International Nuclear Information System (INIS)

    Górecki, K; Zarȩbski, J

    2014-01-01

    The paper is devoted to modelling thermal properties of semiconductor devices at the steady state. The dc thermal model of a semiconductor device taking into account the multipath heat flow is proposed. Some results of calculations and measurements of thermal resistance of a power MOSFET operating at different cooling conditions are presented. The obtained results of calculations fit the results of measurements, which proves the correctness of the proposed model.

  5. Thermal Casimir-Polder forces on a V-type three-level atom

    Science.gov (United States)

    Xu, Chen-Ran; Xu, Jing-Ping; Al-amri, M.; Zhu, Cheng-Jie; Xie, Shuang-Yuan; Yang, Ya-Ping

    2017-09-01

    We study the thermal Casimir-Polder (CP) forces on a V-type three-level atom. The competition between the thermal effect and the quantum interference of the two transition dipoles on the force is investigated. To shed light onto the role of the quantum interference, we analyze two kinds of initial states of the atom, i.e., the superradiant state and the subradiant state. Considering the atom being in the thermal reservoir, the resonant CP force arising from the real photon emission dominates in the evolution of the CP force. Under the zero-temperature condition, the quantum interference can effectively modify the amplitude and the evolution of the force, leading to a long-time force or even the cancellation of the force. Our results reveal that in the finite-temperature case, the thermal photons can enhance the amplitude of all force elements, but have no influence on the net resonant CP force in the steady state, which means that the second law of thermodynamics still works. For the ideal degenerate V-type atom with parallel dipoles under the initial subradiant state, the robust destructive quantum interference overrides the thermal fluctuations, leading to the trapping of the atom in the subradiant state and the disappearance of the CP force. However, in terms of a realistic Zeeman atom, the thermal photons play a significant role during the evolution of the CP force. The thermal fluctuations can enhance the amplitude of the initial CP force by increasing the temperature, and weaken the influence of the quantum interference on the evolution of the CP force from the initial superradiant (subradiant) state to the steady state.

  6. Exact steady state manifold of a boundary driven spin-1 Lai–Sutherland chain

    International Nuclear Information System (INIS)

    Ilievski, Enej; Prosen, Tomaž

    2014-01-01

    We present an explicit construction of a family of steady state density matrices for an open integrable spin-1 chain with bilinear and biquadratic interactions, also known as the Lai–Sutherland model, driven far from equilibrium by means of two oppositely polarizing Markovian dissipation channels localized at the boundary. The steady state solution exhibits n+1 fold degeneracy, for a chain of length n, due to existence of (strong) Liouvillian U(1) symmetry. The latter can be exploited to introduce a chemical potential and define a grand canonical nonequilibrium steady state ensemble. The matrix product form of the solution entails an infinitely-dimensional representation of a non-trivial Lie algebra (semidirect product of sl 2 and a non-nilpotent radical) and hints to a novel Yang–Baxter integrability structure

  7. Exact steady state manifold of a boundary driven spin-1 Lai–Sutherland chain

    Energy Technology Data Exchange (ETDEWEB)

    Ilievski, Enej; Prosen, Tomaž

    2014-05-15

    We present an explicit construction of a family of steady state density matrices for an open integrable spin-1 chain with bilinear and biquadratic interactions, also known as the Lai–Sutherland model, driven far from equilibrium by means of two oppositely polarizing Markovian dissipation channels localized at the boundary. The steady state solution exhibits n+1 fold degeneracy, for a chain of length n, due to existence of (strong) Liouvillian U(1) symmetry. The latter can be exploited to introduce a chemical potential and define a grand canonical nonequilibrium steady state ensemble. The matrix product form of the solution entails an infinitely-dimensional representation of a non-trivial Lie algebra (semidirect product of sl{sub 2} and a non-nilpotent radical) and hints to a novel Yang–Baxter integrability structure.

  8. Integration of steady-state and temporal gene expression data for the inference of gene regulatory networks.

    Science.gov (United States)

    Wang, Yi Kan; Hurley, Daniel G; Schnell, Santiago; Print, Cristin G; Crampin, Edmund J

    2013-01-01

    We develop a new regression algorithm, cMIKANA, for inference of gene regulatory networks from combinations of steady-state and time-series gene expression data. Using simulated gene expression datasets to assess the accuracy of reconstructing gene regulatory networks, we show that steady-state and time-series data sets can successfully be combined to identify gene regulatory interactions using the new algorithm. Inferring gene networks from combined data sets was found to be advantageous when using noisy measurements collected with either lower sampling rates or a limited number of experimental replicates. We illustrate our method by applying it to a microarray gene expression dataset from human umbilical vein endothelial cells (HUVECs) which combines time series data from treatment with growth factor TNF and steady state data from siRNA knockdown treatments. Our results suggest that the combination of steady-state and time-series datasets may provide better prediction of RNA-to-RNA interactions, and may also reveal biological features that cannot be identified from dynamic or steady state information alone. Finally, we consider the experimental design of genomics experiments for gene regulatory network inference and show that network inference can be improved by incorporating steady-state measurements with time-series data.

  9. Parameter identification technique for uncertain chaotic systems using state feedback and steady-state analysis.

    Science.gov (United States)

    Zaher, Ashraf A

    2008-03-01

    A technique is introduced for identifying uncertain and/or unknown parameters of chaotic dynamical systems via using simple state feedback. The proposed technique is based on bringing the system into a stable steady state and then solving for the unknown parameters using a simple algebraic method that requires access to the complete or partial states of the system depending on the dynamical model of the chaotic system. The choice of the state feedback is optimized in terms of practicality and causality via employing a single feedback signal and tuning the feedback gain to ensure both stability and identifiability. The case when only a single scalar time series of one of the states is available is also considered and it is demonstrated that a synchronization-based state observer can be augmented to the state feedback to address this problem. A detailed case study using the Lorenz system is used to exemplify the suggested technique. In addition, both the Rössler and Chua systems are examined as possible candidates for utilizing the proposed methodology when partial identification of the unknown parameters is considered. Finally, the dependence of the proposed technique on the structure of the chaotic dynamical model and the operating conditions is discussed and its advantages and limitations are highlighted via comparing it with other methods reported in the literature.

  10. A 3-D Thermal Analysis of the HANARO Cold Neutron Moderator Cell

    International Nuclear Information System (INIS)

    Han, Gee Y.; Kim, Heo Nil

    2007-01-01

    Fundamental studies on a thermal analysis of a cryogenic system such as a cold neutron source (CNS) have increased significantly for a successful CNS design in cold neutron research during recent years. A three-dimensional (3-D) thermal analysis model for the HANARO CNS was developed and used to accurately predict a temperature distribution between the hydrogen inside and the entire inner and outer surfaces of a moderator cell, whose moderator and cell walls are heated differently, under a steady-state operating condition by using the HEATING 7 code. The objective of this study is primarily to predict a temperature distribution through a heat flow in a cold neutron moderator cell heated from a nuclear heating and cooled by a cryogenic coolant. This paper presents satisfactory results of a steady-state temperature distribution in a cryogenic moderator cell. They are used to support the thermal stress analysis of the moderator cell walls and to provide a safe operation for the HANARO CNS facility

  11. The amplitude and phase precision of 40 Hz auditory steady-state response depend on the level of arousal

    DEFF Research Database (Denmark)

    Griskova, Inga; Mørup, Morten; Parnas, Josef

    2007-01-01

    The aim of this study was to investigate, in healthy subjects, the modulation of amplitude and phase precision of the auditory steady-state response (ASSR) to 40 Hz stimulation in two resting conditions varying in the level of arousal. Previously, ASSR measures have shown to be affected......-negative multi-way factorization (NMWF) (Morup et al. in J Neurosci Methods 161:361-368, 2007). The estimates of these measures were subjected to statistical analysis. The amplitude and phase precision of the ASSR were significantly larger during the low arousal state compared to the high arousal condition...

  12. Thermal Aspects Related to Power Assemblies

    Directory of Open Access Journals (Sweden)

    PLESCA, A.

    2010-02-01

    Full Text Available In many cases when a power assembly based on power semiconductors is used, catastrophic failure is the result of steep temperature gradient in the localized temperature distribution. Hence, an optimal heatsink design for certain industrial applications has become a real necessity. In this paper, the Pro/ENGINEER software with the thermal simulation integrated tool, Pro/MECHANICA, has been used for thermal study of a specific power semiconductor assembly. A series of steady-state and transient thermal simulations have been performed. The experimental tests have confirmed the simulation results. Therefore, the use of specific 3D modeling and simulation software allows to design special power semiconductor assemblies with a better thermal transfer between its heatsink and power electronic components at given operating conditions.

  13. Providing thermal-hydraulic boundary conditions to the reactor code TINTE through a Flownex-TINTE coupling - HTR2008-58110

    International Nuclear Information System (INIS)

    Marais, D.; Greyvenstein, G. P.

    2008-01-01

    TINTE is a well established reactor analysis code which models the transient behaviour of pebble bed reactor cores but it does not include the capabilities to model a power conversion unit (PCU). This raises the issue that TINTE cannot model full system transients. One way to overcome this problem is to supply TINTE with time-dependant thermal-hydraulic boundary conditions which are obtained from PCU simulations. This study investigates a method to provide boundary conditions for the nuclear code TINTE during full system transients. This was accomplished by creating a high level interface between the systems CFD code Flownex and TINTE. An indirect coupling method is explored whereby characteristics of the PCU are matched to characteristics of the nuclear core. This method eliminates the need to iterate between the two codes. A number of transients are simulated using the coupled code and then compared against stand-alone Flownex simulations. The coupling method introduces relatively small errors when reproducing mass flow, temperature and pressure in steady state analysis, but become more pronounced when dealing with fast thermal-hydraulic transients. Decreasing the maximum time step length of TINTE reduces this problem, but increases the computational time. Copyright ASME 2008. (authors)

  14. Thermalization without eigenstate thermalization hypothesis after a quantum quench.

    Science.gov (United States)

    Mori, Takashi; Shiraishi, Naoto

    2017-08-01

    Nonequilibrium dynamics of a nonintegrable system without the eigenstate thermalization hypothesis is studied. It is shown that, in the thermodynamic limit, this model thermalizes after an arbitrary quantum quench at finite temperature, although it does not satisfy the eigenstate thermalization hypothesis. In contrast, when the system size is finite and the temperature is low enough, the system may not thermalize. In this case, the steady state is well described by the generalized Gibbs ensemble constructed by using highly nonlocal conserved quantities. We also show that this model exhibits prethermalization, in which the prethermalized state is characterized by nonthermal energy eigenstates.

  15. Thermal, thermo-hydraulic and thermo-mechanic analysis for fuel elements of IEA-R1 reactor at 5MW

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Silva Macedo, L.V. da

    1989-01-01

    In connection with the on going conversion of IEA-R1 Research Reactor, operated by IPEN-CNEN/SP, from the use of highly enriched uranium (HEU) fuel to the use of low enriched uranium (LEU) fuel, steady-state thermal and thermo-hydraulic analysis of both existing HEU and proposed LEU cores under 2 MW operating conditions have been carried out. Keeping in mind the possibility of power upgrading, steady-state thermal, thermo-hydraulic and thermomechanical analysis of proposed LEU core under 5 MW operating conditions have also been carried out. The thermal and thermo-hydraulic analysis at 2 MW show that the conversion of the existing HEU core to be proposed LEU core will not change the reactor safety margins. Although the upgrading of the reactor power to 5 MW will result in safety margins lower than in case of 2MW, these will be still sufficient for optimum operation and safe behaviour. The thermomechanical analysis at 5 MW show that the thermal stresses induced in the fuel element will satisfy the design limits for mechanical strenght and elastic stability. (author) [pt

  16. Experimental and theoretical comparison of fuel temperature and bulk coolant characteristics in the Oregon State TRIGA reactor during steady state operation

    Energy Technology Data Exchange (ETDEWEB)

    Marcum, W.R., E-mail: marcumw@engr.orst.ed [Oregon State University, Department of Nuclear Engineering and Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97330 (United States); Woods, B.G.; Reese, S.R. [Oregon State University, Department of Nuclear Engineering and Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97330 (United States)

    2010-01-15

    In September of 2008 Oregon State University (OSU) completed its core conversion analysis as part of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Experimental bulk coolant temperatures were collected in various locations throughout the Oregon State TRIGA Reactor (OSTR) core in order to supplement the validity of the numerical thermal hydraulic results produced in RELAP5-3D Version 2.4.2. Axial bulk coolant temperature distributions were collected by acquiring discrete thermocouple measurements in individual subchannel locations during steady state operation at 1.0 MW{sub th}. The experimental axial temperature distribution collected was compared to one-channel, two-channel, and eight-channel RELAP5-3D models and found to match within 11.94%, 11.69%, and 8.78%, respectively, on average. Comparisons to similar studies were made based on a dimensional analysis of fluid body forces in the discrete core locations, indicating that the chosen approach produces conservative results for use in the OSTR safety analysis.

  17. Thermalization of squeezed states

    International Nuclear Information System (INIS)

    Solomon, Allan I

    2005-01-01

    Starting with a thermal squeezed state defined as a conventional thermal state based on an appropriate Hamiltonian, we show how an important physical property, the signal-to-noise ratio, is degraded, and propose a simple model of thermalization (Kraus thermalization)

  18. Algorithm for determining two-periodic steady-states in AC machines directly in time domain

    Directory of Open Access Journals (Sweden)

    Sobczyk Tadeusz J.

    2016-09-01

    Full Text Available This paper describes an algorithm for finding steady states in AC machines for the cases of their two-periodic nature. The algorithm enables to specify the steady-state solution identified directly in time domain despite of the fact that two-periodic waveforms are not repeated in any finite time interval. The basis for such an algorithm is a discrete differential operator that specifies the temporary values of the derivative of the two-periodic function in the selected set of points on the basis of the values of that function in the same set of points. It allows to develop algebraic equations defining the steady state solution reached in a chosen point set for the nonlinear differential equations describing the AC machines when electrical and mechanical equations should be solved together. That set of those values allows determining the steady state solution at any time instant up to infinity. The algorithm described in this paper is competitive with respect to the one known in literature an approach based on the harmonic balance method operated in frequency domain.

  19. Some problems in steady-state thermal conductivity with variable heat transfer rate

    International Nuclear Information System (INIS)

    Malov, Yu.I.; Martinson, L.K.; Pavlov, K.B.

    1975-01-01

    Some boundary-value problems of steady heat conductivity with an alternating heat exchange coefficient have been solved for a cylindrical region. The solutions have been performed as expansion in series with respect to eigenfunctions with the coefficients consistent with infinite systems of linear algebraic equations. A reduction method has been substantiated for those systems. The paper presents results of calculation of the temperature distribution inside the infinite cylinder with concrete tasks of heat exchange coefficient variations on the cylinder surface

  20. LOFT shield tank steady state temperatures with addition of gamma and neutron shielding

    International Nuclear Information System (INIS)

    Kyllingstad, G.

    1977-01-01

    The effect of introducing a neutron and gamma shield into the annulus between the reactor vessel and the shield tank is analyzed. This addition has been proposed in order to intercept neutron streaming up the annulus during nuclear operations. Its installation will require removal of approximately 20- 1 / 2 inches of stainless steel foil insulation at the top of the annulus. The resulting conduction path is believed to result in increased water temperatures within the shield tank, possibly beyond the 150 0 F limit, and/or cooling of the reactor vessel nozzles such that adverse thermal stresses would be generated. A two dimensional thermal analysis using the finite element code COUPLE/MOD2 was done for the shield tank system illustrated in the figure (1). The reactor was assumed to be at full power, 55 MW (th), with a loop flow rate of 2.15 x 10 6 lbm/hr (268.4 kg/s) at 2250 psi (15.51 MPa). Calculations indicate a steady state shield tank water temperature of 140 0 F (60 0 C). This is below the 150 0 F (65.56 0 C) limit. Also, no significant changes in thermal gradients within the nozzle or reactor vessel wall are generated. A spacer between the gamma shield and the shield tank is recommended, however, in order to ensure free air circulation through the annulus

  1. The steady-state modeling and optimization of a refrigeration system for high heat flux removal

    International Nuclear Information System (INIS)

    Zhou Rongliang; Zhang Tiejun; Catano, Juan; Wen, John T.; Michna, Gregory J.; Peles, Yoav; Jensen, Michael K.

    2010-01-01

    Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat transfer and higher critical heat flux (CHF), the evaporators operate with two-phase flow only. This unique operating condition necessitates the inclusion of a liquid accumulator with integrated heater for the safe operation of the compressor. Due to the projected incorporation of microchannels into the system to enhance the heat transfer in heat sinks, the momentum balance equation, rarely seen in previous vapor compression cycle heat exchangers modeling efforts, is utilized in addition to the mass and energy balance equations to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Using the steady-state model developed, a parametric study is performed to study the effect of various external inputs on the system performance. The Pareto optimization is applied to find the optimal system operating conditions for given heat loads such that the system coefficient of performance (COP) is optimized while satisfying the CHF and other system operation constraints. Initial validation efforts show the good agreement between the experimental data and model predictions.

  2. Slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with chronic heart failure: from modeling to clinical application.

    Science.gov (United States)

    Harada, Daisuke; Asanoi, Hidetsugu; Takagawa, Junya; Ishise, Hisanari; Ueno, Hiroshi; Oda, Yoshitaka; Goso, Yukiko; Joho, Shuji; Inoue, Hiroshi

    2014-10-15

    Influences of slow and deep respiration on steady-state sympathetic nerve activity remain controversial in humans and could vary depending on disease conditions and basal sympathetic nerve activity. To elucidate the respiratory modulation of steady-state sympathetic nerve activity, we modeled the dynamic nature of the relationship between lung inflation and muscle sympathetic nerve activity (MSNA) in 11 heart failure patients with exaggerated sympathetic outflow at rest. An autoregressive exogenous input model was utilized to simulate entire responses of MSNA to variable respiratory patterns. In another 18 patients, we determined the influence of increasing tidal volume and slowing respiratory frequency on MSNA; 10 patients underwent a 15-min device-guided slow respiration and the remaining 8 had no respiratory modification. The model predicted that a 1-liter, step increase of lung volume decreased MSNA dynamically; its nadir (-33 ± 22%) occurred at 2.4 s; and steady-state decrease (-15 ± 5%), at 6 s. Actually, in patients with the device-guided slow and deep respiration, respiratory frequency effectively fell from 16.4 ± 3.9 to 6.7 ± 2.8/min (P state MSNA was decreased by 31% (P state MSNA. Thus slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with high levels of resting sympathetic tone as in heart failure. Copyright © 2014 the American Physiological Society.

  3. A displacement based FE formulation for steady state problems

    NARCIS (Netherlands)

    Yu, Y.

    2005-01-01

    In this thesis a new displacement based formulation is developed for elasto-plastic deformations in steady state problems. In this formulation the displacements are the primary variables, which is in contrast to the more common formulations in terms of the velocities as the primary variables. In a

  4. Importance sampling large deviations in nonequilibrium steady states. I

    Science.gov (United States)

    Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T.

    2018-03-01

    Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.

  5. Importance sampling large deviations in nonequilibrium steady states. I.

    Science.gov (United States)

    Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T

    2018-03-28

    Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.

  6. Steady-state analytical model of suspended p-type 3C-SiC bridges under consideration of Joule heating

    Science.gov (United States)

    Balakrishnan, Vivekananthan; Dinh, Toan; Phan, Hoang-Phuong; Kozeki, Takahiro; Namazu, Takahiro; Viet Dao, Dzung; Nguyen, Nam-Trung

    2017-07-01

    This paper reports an analytical model and its validation for a released microscale heater made of 3C-SiC thin films. A model for the equivalent electrical and thermal parameters was developed for the two-layer multi-segment heat and electric conduction. The model is based on a 1D energy equation, which considers the temperature-dependent resistivity and allows for the prediction of voltage-current and power-current characteristics of the microheater. The steady-state analytical model was validated by experimental characterization. The results, in particular the nonlinearity caused by temperature dependency, are in good agreement. The low power consumption of the order of 0.18 mW at approximately 310 K indicates the potential use of the structure as thermal sensors in portable applications.

  7. Dynamic modeling of a solar ORC with compound parabolic collectors: Annual production and comparison with steady-state simulation

    International Nuclear Information System (INIS)

    Baccioli, A.; Antonelli, M.; Desideri, U.

    2017-01-01

    Highlights: • A small scale solar ORC was investigated during a year-long simulation. • The system was operated without a thermal storage. • High flexibility thanks to a sliding-velocity control and volumetric expander. • Influence of ORC and solar field parameters considered. • Strong influence of concentration factor and system inertia. - Abstract: In this paper the dynamic behavior of a small low-concentration solar plant with static Compound Parabolic Collectors (CPC) and an ORC power unit with rotary volumetric expander has been analyzed. The plant has been simulated in transient conditions for a year-long operation and for three different sites respectively located in northern, central and southern Italy, in order to evaluate the influence of the latitude on the production. Hourly discretized data for solar radiation and for ambient temperature have been used. The adoption of a sliding-velocity control strategy, has allowed to operate without any storage system with a solar multiple (S.M.) of 1, reducing the amplitude of the solar field and simplifying the control system. Different collectors tilt angles and concentration factors, as well as thermodynamic parameters of the cycle have been tested, to evaluate the optimal working conditions for each locality. Results highlighted that specific production increased with the concentration ratio, and with the decrease of latitude. The comparison with the steady-state analysis showed that this type of control strategy is suited for those configurations having a smaller number of collectors, since the thermal inertia of the solar field is not recovered at all during the plant shut-down phase.

  8. NASA Glenn Steady-State Heat Pipe Code GLENHP: Compilation for 64- and 32-Bit Windows Platforms

    Science.gov (United States)

    Tower, Leonard K.; Geng, Steven M.

    2016-01-01

    A new version of the NASA Glenn Steady State Heat Pipe Code, designated "GLENHP," is introduced here. This represents an update to the disk operating system (DOS) version LERCHP reported in NASA/TM-2000-209807. The new code operates on 32- and 64-bit Windows-based platforms from within the 32-bit command prompt window. An additional evaporator boundary condition and other features are provided.

  9. A novel multivariate STeady-state index during general ANesthesia (STAN).

    Science.gov (United States)

    Castro, Ana; de Almeida, Fernando Gomes; Amorim, Pedro; Nunes, Catarina S

    2017-08-01

    The assessment of the adequacy of general anesthesia for surgery, namely the nociception/anti-nociception balance, has received wide attention from the scientific community. Monitoring systems based on the frontal EEG/EMG, or autonomic state reactions (e.g. heart rate and blood pressure) have been developed aiming to objectively assess this balance. In this study a new multivariate indicator of patients' steady-state during anesthesia (STAN) is proposed, based on wavelet analysis of signals linked to noxious activation. A clinical protocol was designed to analyze precise noxious stimuli (laryngoscopy/intubation, tetanic, and incision), under three different analgesic doses; patients were randomized to receive either remifentanil 2.0, 3.0 or 4.0 ng/ml. ECG, PPG, BP, BIS, EMG and [Formula: see text] were continuously recorded. ECG, PPG and BP were processed to extract beat-to-beat information, and [Formula: see text] curve used to estimate the respiration rate. A combined steady-state index based on wavelet analysis of these variables, was applied and compared between the three study groups and stimuli (Wilcoxon signed ranks, Kruskal-Wallis and Mann-Whitney tests). Following institutional approval and signing the informed consent thirty four patients were enrolled in this study (3 excluded due to signal loss during data collection). The BIS index of the EEG, frontal EMG, heart rate, BP, and PPG wave amplitude changed in response to different noxious stimuli. Laryngoscopy/intubation was the stimulus with the more pronounced response [Formula: see text]. These variables were used in the construction of the combined index STAN; STAN responded adequately to noxious stimuli, with a more pronounced response to laryngoscopy/intubation (18.5-43.1 %, [Formula: see text]), and the attenuation provided by the analgesic, detecting steady-state periods in the different physiological signals analyzed (approximately 50 % of the total study time). A new multivariate approach for

  10. Adaptive solution of some steady-state fluid-structure interaction problems

    International Nuclear Information System (INIS)

    Etienne, S.; Pelletier, D.

    2003-01-01

    This paper presents a general integrated and coupled formulation for modeling the steady-state interaction of a viscous incompressible flow with an elastic structure undergoing large displacements (geometric non-linearities). This constitutes an initial step towards developing a sensitivity analysis formulation for this class of problems. The formulation uses velocity and pressures as unknowns in a flow domain and displacements in the structural components. An interface formulation is presented that leads to clear and simple finite element implementation of the equilibrium conditions at the fluid-solid interface. Issues of error estimation and mesh adaptation are discussed. The adaptive formulation is verified on a problem with a closed form solution. It is then applied to a sample case for which the structure undergoes large displacements induced by the flow. (author)

  11. Chaotic and steady state behaviour of a nonlinear controlled gyro subjected to harmonic disturbances

    International Nuclear Information System (INIS)

    Perez Polo, Manuel F.; Perez Molina, Manuel

    2007-01-01

    Chaotic and steady state motions of a nonlinear controlled gimbals suspension gyro used to stabilize an external body are studied in this paper. The equations of the gyro without nonlinear control are deduced from the Euler-Lagrange equations by using the nutation theory. The equations of the system show that a cyclic variable appears. Its elimination allows us to find an auxiliary nonlinear system from which it is possible to deduce a nonlinear control law in order to obtain a desired equilibrium point. From the analysis of the nonlinear control law it is possible to show that due to both harmonic disturbances in the platform of the gyro and in the body to stabilize, regular and chaotic motions can appear. The chaotic motion is researched by means of chaos maps, bifurcation diagrams, sensitivity to initial conditions, Lyapunov exponents and Fourier spectrum density. The transition from chaotic to steady state motion by eliminating the harmonic disturbances from the modification of the initial nonlinear control law is also researched. Next, the paper shows how to use the chaotic motion in order to obtain small input signals so that the desired equilibrium state of the gyro can be reached. The developed methodology and its compared performance are evaluated through analytical methods and numerical simulations

  12. Chaotic and steady state behaviour of a nonlinear controlled gyro subjected to harmonic disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Perez Polo, Manuel F. [Department of Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Escuela Politecnica Superior, Campus de San Vicente, 03071 Alicante (Spain)]. E-mail: manolo@dfists.ua.es; Perez Molina, Manuel [Facultad de Ciencias Matematicas, Universidad Nacional de Educacion a Distancia, UNED, C/Boyero 12-1A, Alicante 03007 (Spain)]. E-mail: ma_perez_m@hotmail.com

    2007-07-15

    Chaotic and steady state motions of a nonlinear controlled gimbals suspension gyro used to stabilize an external body are studied in this paper. The equations of the gyro without nonlinear control are deduced from the Euler-Lagrange equations by using the nutation theory. The equations of the system show that a cyclic variable appears. Its elimination allows us to find an auxiliary nonlinear system from which it is possible to deduce a nonlinear control law in order to obtain a desired equilibrium point. From the analysis of the nonlinear control law it is possible to show that due to both harmonic disturbances in the platform of the gyro and in the body to stabilize, regular and chaotic motions can appear. The chaotic motion is researched by means of chaos maps, bifurcation diagrams, sensitivity to initial conditions, Lyapunov exponents and Fourier spectrum density. The transition from chaotic to steady state motion by eliminating the harmonic disturbances from the modification of the initial nonlinear control law is also researched. Next, the paper shows how to use the chaotic motion in order to obtain small input signals so that the desired equilibrium state of the gyro can be reached. The developed methodology and its compared performance are evaluated through analytical methods and numerical simulations.

  13. Thermal Margin Calculation of the CAREM-25 Core

    International Nuclear Information System (INIS)

    Mazufri, C.M

    2000-01-01

    During the operation in steady state and anticipated operational transient of a nuclear reactor it is necessary to avoid the damage in the fuel elements induced by thermal or hydraulic effects.To satisfy that design bases safety limits are established and calculation methodologies are defined to verify them.In the particular case of the reactor CAREM-25 reactor where the core is cooled by natural circulation, it is not adequate to use directly the same calculation methodologies from typical PWR and BWR.The low cooling flow rate and not having channels in the fuel elements (open-channel fuels) produce that most of the models and computer programs typically used must be carefully validated.As result of that process, an adequate calculation procedure for this reactor type was developed.In the present work, the thermal-hydraulic design criteria of the core and the design bases, the uncertainties factors, and the thermal margin results of the core are described.Despite that the methodology of DNBR calculation is under a validation process and considering the available calculation tools, it is possible to assure that the core fulfills the safety regulations in steady state conditions

  14. Steady-state operation requirements of tokamak fusion reactor concepts

    International Nuclear Information System (INIS)

    Knobloch, A.F.

    1991-06-01

    In the last two decades tokamak conceptual reactor design studies have been deriving benefit from progressing plasma physics experiments, more depth in theory and increasing detail in technology and engineering. Recent full-scale reactor extrapolations such as the US ARIES-I and the EC Reference Reactor study provide information on rather advanced concepts that are called for when economic boundary conditions are imposed. The ITER international reactor design activity concentrated on defining the next step after the JET generation of experiments. For steady-state operation as required for any future commercial tokamak fusion power plants it is essential to have non-inductive current drive. The current drive power and other internal power requirements specific to magnetic confinement fusion have to be kept as low as possible in order to attain a competitive overall power conversion efficiency. A high plasma Q is primarily dependent on a high current drive efficiency. Since such conditions have not yet been attained in practice, the present situation and the degree of further development required are characterized. Such development and an appropriately designed next-step tokamak reactor make the gradual realization of high-Q operation appear feasible. (orig.)

  15. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, B. (ENEA, Frascati (Italy). Centro Ricerche Energia); Marcus, F.B.; Conroy, S.; Jarvis, O.N.; Loughlin, M.J.; Sadler, G.; Belle, P. van (Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking); Adams, J.M.; Watkins, N. (AEA Industrial Technology, Harwell (United Kingdom))

    1993-10-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T[sub i], and ion thermal diffusivity, [chi][sub i], are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author).

  16. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    International Nuclear Information System (INIS)

    Esposito, B.

    1993-01-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T i , and ion thermal diffusivity, χ i , are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author)

  17. Thermal-Acoustic Fatigue of a Multilayer Thermal Protection System in Combined Extreme Environments

    Directory of Open Access Journals (Sweden)

    Liu Liu

    2014-06-01

    Full Text Available In order to ensure integrity of thermal protection system (TPS structure for hypersonic vehicles exposed to severe operating environments, a study is undertaken to investigate the response and thermal-acoustic fatigue damage of a representative multilayer TPS structure under combined thermal and acoustic loads. An unsteady-state flight of a hypersonic vehicle is composed of a series of steady-state snapshots, and for each snapshot an acoustic load is imposed to a static steady-state TPS structure. A multistep thermal-acoustic fatigue damage intensity analysis procedure is given and consists of a heat transfer analysis, a nonlinear thermoelastic analysis, and a random response analysis under a combined loading environment and the fatigue damage intensity has been evaluated with two fatigue analysis techniques. The effects of thermally induced deterministic stress and nondeterministic dynamic stress due to the acoustic loading have been considered in the damage intensity estimation with a maximum stress fatigue model. The results show that the given thermal-acoustic fatigue intensity estimation procedure is a viable approach for life prediction of TPS structures under a typical mission cycle with combined loadings characterized by largely different time-scales. A discussion of the effects of the thermal load, the acoustic load, and fatigue analysis methodology on the fatigue damage intensity has been provided.

  18. Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load.

    Directory of Open Access Journals (Sweden)

    Naama Tepper

    Full Text Available Steady-state metabolite concentrations in a microorganism typically span several orders of magnitude. The underlying principles governing these concentrations remain poorly understood. Here, we hypothesize that observed variation can be explained in terms of a compromise between factors that favor minimizing metabolite pool sizes (e.g. limited solvent capacity and the need to effectively utilize existing enzymes. The latter requires adequate thermodynamic driving force in metabolic reactions so that forward flux substantially exceeds reverse flux. To test this hypothesis, we developed a method, metabolic tug-of-war (mTOW, which computes steady-state metabolite concentrations in microorganisms on a genome-scale. mTOW is shown to explain up to 55% of the observed variation in measured metabolite concentrations in E. coli and C. acetobutylicum across various growth media. Our approach, based strictly on first thermodynamic principles, is the first method that successfully predicts high-throughput metabolite concentration data in bacteria across conditions.

  19. Steady-state thermal analysis of an innovative receiver for linear Fresnel reflectors

    International Nuclear Information System (INIS)

    Abbas, R.; Muñoz, J.; Martínez-Val, J.M.

    2012-01-01

    Highlights: ► An innovative multitube receiver for linear Fresnel reflectors is presented. ► Higher performance is achieved thanks to better heat transfer conditions. ► A wide range of designs that maximize efficiency for different conditions is found. ► Heat transfer fluid inlet temperature must be lower for low radiation intensities. ► Fresnel performance may be close to trough collectors, with lower costs. -- Abstract: The study of the performance of an innovative receiver for linear Fresnel reflectors is carried out in this paper, and the results are analyzed with a physics perspective of the process. The receiver consists of a bundle of tubes parallel to the mirror arrays, resulting on a smaller cross section for the same receiver width as the number of tubes increases, due to the diminution of their diameter. This implies higher heat carrier fluid speeds, and thus, a more effective heat transfer process, although it conveys higher pumping power as well. Mass flow is optimized for different tubes diameters, different impinging radiation intensities and different fluid inlet temperatures. It is found that the best receiver design, namely the tubes diameter that maximizes the exergetic efficiency for given working conditions, is similar for the cases studied. There is a range of tubes diameters that imply similar efficiencies, which can drive to capital cost reduction thanks to the flexibility of design. In addition, the length of the receiver is also optimized, and it is observed that the optimal length is similar for the working conditions considered. As a result of this study, it is found that this innovative receiver provides an optimum design for the whole day, even though impinging radiation intensity varies notably. Thermal features of this type of receiver could be the base of a new generation of concentrated solar power plants with a great potential for cost reduction, because of the simplicity of the system and the lower weigh of the

  20. Comparison of pulsed three-dimensional CEST acquisition schemes at 7 tesla : steady state versus pseudosteady state

    NARCIS (Netherlands)

    Khlebnikov, Vitaly; Geades, Nicolas; Klomp, DWJ; Hoogduin, Hans; Gowland, Penny; Mougin, Olivier

    PURPOSE: To compare two pulsed, volumetric chemical exchange saturation transfer (CEST) acquisition schemes: steady state (SS) and pseudosteady state (PS) for the same brain coverage, spatial/spectral resolution and scan time. METHODS: Both schemes were optimized for maximum sensitivity to amide

  1. Steady-state and dynamic models for particle engulfment during solidification

    Science.gov (United States)

    Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.

    2016-06-01

    Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.

  2. Tore-Supra infrared thermography system, a real steady-state diagnostic

    International Nuclear Information System (INIS)

    Guilhem, D.; Bondil, J.L.; Bertrand, B.; Desgranges, C.; Lipa, M.; Messina, P.; Missirlian, M.; Portafaix, C.; Reichle, R.; Roche, H.; Saille, A.

    2005-01-01

    Tore-Supra Tokamak (I p = 1.5 MA, B t = 4 T) has been constructed with a steady-state magnetic field using super-conducting magnets and water-cooled plasma facing components (PFCs) for high-performance long pulse plasma discharges. When not actively cooled, plasma facing components can only accumulate a limited amount of energy since the temperature increases continuously during the discharge until radiation cooling equals the incoming heat flux. Such an environment is found in the JET Tokamak [JET Team, IAEA-CN-60/A1-3, Seville, 1994] and on TRIAM [M. Sakamoto, H. Nakashima, S. Kawasaki, A. Iyomasa, S.V. Kulkarni, M. Hasegawa, E. Jotaki, H. Zushi, K. Nakamura, K. Hanada, S. Itoh, Static and dynamic properties of wall recycling in TRIAM-1M, J. Nucl. Mater. 313-316 (2003) 519-523] [Y. Kamada, et al., Nucl. Fusion 3 (1999) 1845]. In Tore-Supra, the surface temperature of the actively cooled plasma facing components reach steady state within a second. We present here the Tore-Supra thermographic system, made of seven endoscope bodies equipped so far with eight infrared (IR) cameras. It has to be noted that this diagnostic is the first diagnostic to be actively cooled, as required for steady state. The main purpose of such a diagnostic is to prevent the plasma to damage the actively cooled plasma facing components (ACPFCs), which consist of the toroidal pumped limiter (TPL), 7 m 2 , and of five radio-frequency antennae, 1.5 m 2 each

  3. Steady electric fields and currents elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    2013-01-01

    Steady Electric Fields and Currents, Volume 1 is an introductory text to electromagnetism and potential theory. This book starts with the fields associated with stationary charges and unravels the stationary condition to allow consideration of the flow of steady currents in closed circuits. The opening chapter discusses the experimental results that require mathematical explanation and discussion, particularly those referring to phenomena that question the validity of the simple Newtonian concepts of space and time. The subsequent chapters consider steady-state fields, electrostatics, dielectr

  4. Study of transient burnout characteristics under flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Kuroyanagi, Toshiyuki

    1984-03-01

    As part of a study of the thermal behavior of fuel rods during Power-Cooling-Mismatch (PCM) accidents in light water reactors, burnout characteristics in a uniformly heated, vertically oriented tube or annulus, under flow reduction condition, were experimentally studied. Test pressures ranged 0.1--3.9 MPa and flow reduction rates 0.44--1100%/s. An analytical method is developed to obtain the local mass velocity during a transient condition. The major results are as follows: With increasing flow reduction rate beyond a threshold, transient burnout mass velocity at the inlet was lower than that in steady state tests under the experimental pressures. The higher system pressure resulted in the less transient effects. At pressures higher than 2.0 MPa and flow reduction rates lower than 20%/s, the local burnout mass velocity agreed with the steady state burnout mass velocity, whereas the local burnout mass velocity became higher than the steady state burnout mass velocity at flow reduction rates higher than 20%/s. At pressures lower than 1 MPa, with increasing flow reduction rate beyond the threshold value of 2%/s, the local burnout mass velocity was lower than the steady state burnout mass velocity. An empirical correlation is presented to give the ratio of the transient to the steady state burnout mass velocities at the burnout location as a function of the steam-water density ratio and the flow reduction rate. The experimental results by Cumo et al. agree with the correlation. The correlation, however, cannot predict the experimental results at higher flow reduction rates beyond 40%/s. (author)

  5. Comparison of Steady-State SVC Models in Load Flow Calculations

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Chen, Zhe; Bak-Jensen, Birgitte

    2008-01-01

    This paper compares in a load flow calculation three existing steady-state models of static var compensator (SVC), i.e. the generator-fixed susceptance model, the total susceptance model and the firing angle model. The comparison is made in terms of the voltage at the SVC regulated bus, equivalent...... SVC susceptance at the fundamental frequency and the load flow convergence rate both when SVC is operating within and on the limits. The latter two models give inaccurate results of the equivalent SVC susceptance as compared to the generator model due to the assumption of constant voltage when the SVC...... is operating within the limits. This may underestimate or overestimate the SVC regulating capability. Two modified models are proposed to improve the SVC regulated voltage according to its steady-state characteristic. The simulation results of the two modified models show the improved accuracy...

  6. Rapid mixing and short storage timescale in the magma dynamics of a steady-state volcano

    Science.gov (United States)

    Petrone, Chiara Maria; Braschi, Eleonora; Francalanci, Lorella; Casalini, Martina; Tommasini, Simone

    2018-06-01

    Steady-state volcanic activity implies equilibrium between the rate of magma replenishment and eruption of compositionally homogeneous magmas, lasting for tens to thousands of years in an open conduit system. The Present-day activity of Stromboli volcano (Aeolian Islands, Southern Italy) has long been recognised as typical of a steady-state volcano, with a shallow magmatic reservoir (highly porphyritic or hp-magma) continuously refilled by more mafic magma (with low phenocryst content or lp-magma) at a constant rate and accompanied by mixing, crystallisation and eruption. Our aim is to clarify the timescale and dynamics of the plumbing system at the establishment of the Present-day steady-state activity (volcanoes.

  7. The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape.

    Science.gov (United States)

    Chambers, Jeffrey Q; Negron-Juarez, Robinson I; Marra, Daniel Magnabosco; Di Vittorio, Alan; Tews, Joerg; Roberts, Dar; Ribeiro, Gabriel H P M; Trumbore, Susan E; Higuchi, Niro

    2013-03-05

    Old-growth forest ecosystems comprise a mosaic of patches in different successional stages, with the fraction of the landscape in any particular state relatively constant over large temporal and spatial scales. The size distribution and return frequency of disturbance events, and subsequent recovery processes, determine to a large extent the spatial scale over which this old-growth steady state develops. Here, we characterize this mosaic for a Central Amazon forest by integrating field plot data, remote sensing disturbance probability distribution functions, and individual-based simulation modeling. Results demonstrate that a steady state of patches of varying successional age occurs over a relatively large spatial scale, with important implications for detecting temporal trends on plots that sample a small fraction of the landscape. Long highly significant stochastic runs averaging 1.0 Mg biomass⋅ha(-1)⋅y(-1) were often punctuated by episodic disturbance events, resulting in a sawtooth time series of hectare-scale tree biomass. To maximize the detection of temporal trends for this Central Amazon site (e.g., driven by CO2 fertilization), plots larger than 10 ha would provide the greatest sensitivity. A model-based analysis of fractional mortality across all gap sizes demonstrated that 9.1-16.9% of tree mortality was missing from plot-based approaches, underscoring the need to combine plot and remote-sensing methods for estimating net landscape carbon balance. Old-growth tropical forests can exhibit complex large-scale structure driven by disturbance and recovery cycles, with ecosystem and community attributes of hectare-scale plots exhibiting continuous dynamic departures from a steady-state condition.

  8. Integration of human physiology. Individual Thermal comfort in thermal comfort models; Integratie van de menselijke fysiologie. Individueel thermisch comfort in thermische comfortmodellen

    Energy Technology Data Exchange (ETDEWEB)

    Frijns, A. [Faculteit Werktuigbouwkunde, Technische Universiteit Eindhoven, Eindhoven (Netherlands); Van Marken Lichtenbelt, W.; Kingsma, B. [Department of Human Biology, Nutrim School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht (Netherlands)

    2011-09-15

    When designing climate installations, the PMV (Predicted Mean Vote) and PPD (Predicted Percentage Dissatisfied index) values are used as guidelines. Installations are designed in such a way that the 'average' user in a 'steady-state' condition experiences thermal comfort. Studies show that individual physiological processes might be suitable for integration in the design models. [Dutch] Bij het ontwerp van klimaatinstallaties worden de PMV/PPD-waarden van Fanger (PMV staat voor de Predicted Mean Vote index en PPD is de Predicted Percentage Dissatisfied index) als richtlijn gebruikt. Installaties worden zodanig ontworpen dat een 'gemiddelde' persoon in een 'steady-state' conditie deze als thermisch comfortabel ervaart. Studies wijzen uit dat individuele fysiologische processen mogelijk ook in ontwerpmodellen inpasbaar zijn.

  9. Prokaryotic diversity and dynamics in a full-scale municipal solid waste anaerobic reactor from start-up to steady-state conditions.

    Science.gov (United States)

    Cardinali-Rezende, Juliana; Colturato, Luís F D B; Colturato, Thiago D B; Chartone-Souza, Edmar; Nascimento, Andréa M A; Sanz, José L

    2012-09-01

    The prokaryotic diversity of an anaerobic reactor for the treatment of municipal solid waste was investigated over the course of 2 years with the use of 16S rDNA-targeted molecular approaches. The fermentative Bacteroidetes and Firmicutes predominated, and Proteobacteria, Actinobacteria, Tenericutes and the candidate division WWE1 were also identified. Methane production was dominated by the hydrogenotrophic Methanomicrobiales (Methanoculleus sp.) and their syntrophic association with acetate-utilizing and propionate-oxidizing bacteria. qPCR demonstrated the predominance of the hydrogenotrophic over aceticlastic Methanosarcinaceae (Methanosarcina sp. and Methanimicrococcus sp.), and Methanosaetaceae (Methanosaeta sp.) were measured in low numbers in the reactor. According to the FISH and CARD-FISH analyses, Bacteria and Archaea accounted for 85% and 15% of the cells, respectively. Different cell counts for these domains were obtained by qPCR versus FISH analyses. The use of several molecular tools increases our knowledge of the prokaryotic community dynamics from start-up to steady-state conditions in a full-scale MSW reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. A steady-state fluid model of the coaxial plasma gun

    International Nuclear Information System (INIS)

    Herziger, G.; Krompholz, H.; Schneider, W.; Schoenbach, K.

    1979-01-01

    The plasma layer in a coaxial plasma gun is considered as a shock front driven by expanding magnetic fields. Analytical steady-state solutions of the fluid equations yield the plasma properties, allowing the scaling of plasma focus devices. (Auth.)

  11. Selection of Steady-State Process Simulation Software to Optimize Treatment of Radioactive and Hazardous Waste

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, T. T.; Barnes, C. M.; Lauerhass, L.; Taylor, D. D.

    2001-06-01

    The process used for selecting a steady-state process simulator under conditions of high uncertainty and limited time is described. Multiple waste forms, treatment ambiguity, and the uniqueness of both the waste chemistries and alternative treatment technologies result in a large set of potential technical requirements that no commercial simulator can totally satisfy. The aim of the selection process was two-fold. First, determine the steady-state simulation software that best, albeit not completely, satisfies the requirements envelope. And second, determine if the best is good enough to justify the cost. Twelve simulators were investigated with varying degrees of scrutiny. The candidate list was narrowed to three final contenders: ASPEN Plus 10.2, PRO/II 5.11, and CHEMCAD 5.1.0. It was concluded from ''road tests'' that ASPEN Plus appears to satisfy the project's technical requirements the best and is worth acquiring. The final software decisions provide flexibility: they involve annual rather than multi-year licensing, and they include periodic re-assessment.

  12. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction

    Science.gov (United States)

    Ma, Yonggang; Mouton, Alan J.; Lindsey, Merry L.

    2018-01-01

    Macrophages play critical roles in homeostatic maintenance of the myocardium under normal conditions and in tissue repair after injury. In the steady-state heart, resident cardiac macrophages remove senescent and dying cells and facilitate electrical conduction. In the aging heart, the shift in macrophage phenotype to a proinflammatory subtype leads to inflammaging. Following myocardial infarction (MI), macrophages recruited to the infarct produce both proinflammatory and anti-inflammatory mediators (cytokines, chemokines, matrix metalloproteinases, and growth factors), phagocytize dead cells, and promote angiogenesis and scar formation. These diverse properties are attributed to distinct macrophage subtypes and polarization status. Infarct macrophages exhibit a proinflammatory M1 phenotype early and become polarized toward an anti-inflammatory M2 phenotype later post- MI. Although this classification system is oversimplified and needs to be refined to accommodate the multiple different macrophage subtypes that have been recently identified, general concepts on macrophage roles are independent of subtype classification. This review summarizes current knowledge about cardiac macrophage origins, roles, and phenotypes in the steady state, with aging, and after MI, as well as highlights outstanding areas of investigation. PMID:29106912

  13. Development of repetitive railgun pellet accelerator and steady-state pellet supply system

    International Nuclear Information System (INIS)

    Oda, Y.; Onozuka, M.; Azuma, K.; Kasai, S.; Hasegawa, K.

    1995-01-01

    A railgun system for repetitive high-speed pellet acceleration and steady-state pellet supply system has been developed and investigated. Using a 2m-long railgun system, the hydrogen pellet was accelerated to 2.6km/sec by the supplied energy of 1.7kJ. It is expected that the hydrogen pellet can be accelerated to 3km/sec using the present pneumatic pellet accelerator and a 2m-long augment railgun. Screw-driven hydrogen-isotope filament extruding system has been fabricated and will be tested to examine its applicability to the steady-state extrusion of the solid hydrogen-isotope filament

  14. Development of repetitive railgun pellet accelerator and steady-state pellet supply system

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Y.; Onozuka, M.; Azuma, K. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Kasai, S.; Hasegawa, K. [Japan Atomic Energy Research Inst., Naka (Japan)

    1995-12-31

    A railgun system for repetitive high-speed pellet acceleration and steady-state pellet supply system has been developed and investigated. Using a 2m-long railgun system, the hydrogen pellet was accelerated to 2.6km/sec by the supplied energy of 1.7kJ. It is expected that the hydrogen pellet can be accelerated to 3km/sec using the present pneumatic pellet accelerator and a 2m-long augment railgun. Screw-driven hydrogen-isotope filament extruding system has been fabricated and will be tested to examine its applicability to the steady-state extrusion of the solid hydrogen-isotope filament.

  15. Local wettability reversal during steady-state two-phase flow in porous media.

    Science.gov (United States)

    Sinha, Santanu; Grøva, Morten; Ødegården, Torgeir Bryge; Skjetne, Erik; Hansen, Alex

    2011-09-01

    We study the effect of local wettability reversal on remobilizing immobile fluid clusters in steady-state two-phase flow in porous media. We consider a two-dimensional network model for a porous medium and introduce a wettability alteration mechanism. A qualitative change in the steady-state flow patterns, destabilizing the percolating and trapped clusters, is observed as the system wettability is varied. When capillary forces are strong, a finite wettability alteration is necessary to move the system from a single-phase to a two-phase flow regime. When both phases are mobile, we find a linear relationship between fractional flow and wettability alteration.

  16. Coagulation profile of children with sickle cell anemia in steady state ...

    African Journals Online (AJOL)

    Background: Sickle cell anemia is associated with a hypercoagulable state that may lead to alterations in a coagulation profile. Measurements of coagulation factors are known to have some predictive value for clinical outcome. Objectives: To determine the coagulation profile of children with SCA in steady state and crisis ...

  17. Cycle kinetics, steady state thermodynamics and motors-a paradigm for living matter physics

    International Nuclear Information System (INIS)

    Qian, Hong

    2005-01-01

    An integration of the stochastic mathematical models for motor proteins with Hill's steady state thermodynamics yields a rather comprehensive theory for molecular motors as open systems in the nonequilibrium steady state. This theory, a natural extension of Gibbs' approach to isothermal molecular systems in equilibrium, is compared with other existing theories with dissipative structures and dynamics. The theory of molecular motors might be considered as an archetype for studying more complex open biological systems such as biochemical reaction networks inside living cells

  18. Determination of the Steady State Leakage Current in Structures with Ferroelectric Ceramic Films

    Science.gov (United States)

    Podgornyi, Yu. V.; Vorotilov, K. A.; Sigov, A. S.

    2018-03-01

    Steady state leakage currents have been investigated in capacitor structures with ferroelectric solgel films of lead zirconate titanate (PZT) formed on silicon substrates with a lower Pt electrode. It is established that Pt/PZT/Hg structures, regardless of the PZT film thickness, are characterized by the presence of a rectifying contact similar to p-n junction. The steady state leakage current in the forward direction increases with a decrease in the film thickness and is determined by the ferroelectric bulk conductivity.

  19. Long-term ammonia removal in a coconut fiber-packed biofilter: analysis of N fractionation and reactor performance under steady-state and transient conditions.

    Science.gov (United States)

    Baquerizo, Guillermo; Maestre, Juan P; Machado, Vinicius C; Gamisans, Xavier; Gabriel, David

    2009-05-01

    A comprehensive study of long-term ammonia removal in a biofilter packed with coconut fiber is presented under both steady-state and transient conditions. Low and high ammonia loads were applied to the reactor by varying the inlet ammonia concentration from 90 to 260 ppm(v) and gas contact times ranging from 20 to 36 s. Gas samples and leachate measurements were periodically analyzed and used for characterizing biofilter performance in terms of removal efficiency (RE) and elimination capacity (EC). Also, N fractions in the leachate were quantified to both identify the experimental rates of nitritation and nitratation and to determine the N leachate distribution. Results showed stratification in the biofilter activity and, thus, most of the NH(3) removal was performed in the lower part of the reactor. An average EC of 0.5 kg N-NH(3)m(-3)d(-1) was obtained for the whole reactor with a maximum local average EC of 1.7 kg N-NH(3)m(-3)d(-1). Leachate analyses showed that a ratio of 1:1 of ammonium and nitrate ions in the leachate was obtained throughout steady-state operation at low ammonia loads with similar values for nitritation and nitratation rates. Low nitratation rates during high ammonia load periods occurred because large amounts of ammonium and nitrite accumulated in the packed bed, thus causing inhibition episodes on nitrite-oxidizing bacteria due to free ammonia accumulation. Mass balances showed that 50% of the ammonia fed to the reactor was oxidized to either nitrite or nitrate and the rest was recovered as ammonium indicating that sorption processes play a fundamental role in the treatment of ammonia by biofiltration.

  20. Transient thermal stresses and stress intensity factors induced by thermal stratification in feedwater lines

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.; Pardo, E.

    1985-01-01

    General analytical solutions for the thermal stresses and circumferential crack propagation in piping branches of nuclear power plants, that connect two circuits of the same fluid at different temperatures, are presented in this paper. Under certain conditions, two regions of the fluid possessing both temperatures with a separating layer of small thickness are formed ('flow stratification'). Dimensionless analytical expressions for the steady state temperature distribution in the pipe wall and the corresponding thermal stress are here derived, in terms of the basic geometrical and physical parameters. The position and thickness of the separating layer are considered as data of the model. Stress intensity ranges at any point of the tube wall are then determined. Finally, thermally induced stress intensity factors are calculated for hipothetically inside surface cracks. (orig.)