WorldWideScience

Sample records for thermal-mechanical-hydrological-chemical tmhc processes

  1. The testing of thermal-mechanical-hydrological-chemical processes using a large block

    International Nuclear Information System (INIS)

    Lin, W.; Wilder, D.G.; Blink, J.A.; Blair, S.C.; Buscheck, T.A.; Chesnut, D.A.; Glassley, W.E.; Lee, K.; Roberts, J.J.

    1994-01-01

    The radioactive decay heat from nuclear waste packages may, depending on the thermal load, create coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near-field environment of a repository. A group of tests on a large block (LBT) are planned to provide a timely opportunity to test and calibrate some of the TMHC model concepts. The LBT is advantageous for testing and verifying model concepts because the boundary conditions are controlled, and the block can be characterized before and after the experiment. A block of Topopah Spring tuff of about 3 x 3 x 4.5 m will be sawed and isolated at Fran Ridge, Nevada Test Site. Small blocks of the rock adjacent to the large block will be collected for laboratory testing of some individual thermal-mechanical, hydrological, and chemical processes. A constant load of about 4 MPa will be applied to the top and sides of the large block. The sides will be sealed with moisture and thermal barriers. The large block will be heated with one heater in each borehole and guard heaters on the sides so that a dry-out zone and a condensate zone will exist simultaneously. Temperature, moisture content, pore pressure, chemical composition, stress and displacement will be measured throughout the block during the heating and cool-down phases. The results from the experiments on small blocks and the tests on the large block will provide a better understanding of some concepts of the coupled TMHC processes

  2. Thermal-mechanical-hydrological-chemical responses in the single heater test at the ESF

    International Nuclear Information System (INIS)

    Lin, W.; Blair, S.; Buettner, M

    1997-01-01

    The Single Heater Test (SHT) is conducted in the Exploratory Studies Facility (ESF) to study the thermal-mechanical responses of the rock mass. A set of boreholes were drilled in the test region for conducting a scoping test of the coupled thermal-mechanical- hydrological-chemical (TMHC) processes. The holes for the TMHC tests include electrical resistivity tomography (ERT), neutron logging/temperature, hydrological, and optical multiple point borehole extensometers. A 4-kW heater was installed in the heater hole, and was energized on August 26, 1996. Some observed movements of the water around the heater are associated with a possible dry-out region near the heater. The water that has been moved is more dilute than the in situ ground water, except for the concentration of Ca. This indicates that fractures are the major water pathways, and the displaced water may have reached an equilibrium with carbonate minerals on the fracture surfaces. No mechanical-hydrological coupling has been observed. The tests are on-going, and more data will be collected and analyzed

  3. A progress report for the large block test of the coupled thermal-mechanical-hydrological-chemical processes

    International Nuclear Information System (INIS)

    Lin, W.; Wilder, D.G.; Blink, J.

    1994-10-01

    This is a progress report on the Large Block Test (LBT) project. The purpose of the LBT is to study some of the coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near field of a nuclear waste repository under controlled boundary conditions. To do so, a large block of Topopah Spring tuff will be heated from within for about 4 to 6 months, then cooled down for about the same duration. Instruments to measure temperature, moisture content, stress, displacement, and chemical changes will be installed in three directions in the block. Meanwhile, laboratory tests will be conducted on small blocks to investigate individual thermal-mechanical, thermal-hydrological, and thermal-chemical processes. The fractures in the large block will be characterized from five exposed surfaces. The minerals on fracture surfaces will be studied before and after the test. The results from the LBT will be useful for testing and building confidence in models that will be used to predict TMHC processes in a repository. The boundary conditions to be controlled on the block include zero moisture flux and zero heat flux on the sides, constant temperature on the top, and constant stress on the outside surfaces of the block. To control these boundary conditions, a load-retaining frame is required. A 3 x 3 x 4.5 m block of Topopah Spring tuff has been isolated on the outcrop at Fran Ridge, Nevada Test Site. Pre-test model calculations indicate that a permeability of at least 10 -15 m 2 is required so that a dryout zone can be created within a practical time frame when the block is heated from within. Neutron logging was conducted in some of the vertical holes to estimate the initial moisture content of the block. It was found that about 60 to 80% of the pore volume of the block is saturated with water. Cores from the vertical holes have been used to map the fractures and to determine the properties of the rock. A current schedule is included in the report

  4. Technical basis and programmatic requirements for large block testing of coupled thermal-mechanical-hydrological-chemical processes

    International Nuclear Information System (INIS)

    Lin, Wunan.

    1993-09-01

    This document contains the technical basis and programmatic requirements for a scientific investigation plan that governs tests on a large block of tuff for understanding the coupled thermal- mechanical-hydrological-chemical processes. This study is part of the field testing described in Section 8.3.4.2.4.4.1 of the Site Characterization Plan (SCP) for the Yucca Mountain Project. The first, and most important objective is to understand the coupled TMHC processes in order to develop models that will predict the performance of a nuclear waste repository. The block and fracture properties (including hydrology and geochemistry) can be well characterized from at least five exposed surfaces, and the block can be dismantled for post-test examinations. The second objective is to provide preliminary data for development of models that will predict the quality and quantity of water in the near-field environment of a repository over the current 10,000 year regulatory period of radioactive decay. The third objective is to develop and evaluate the various measurement systems and techniques that will later be employed in the Engineered Barrier System Field Tests (EBSFT)

  5. A large block heater test for high level nuclear waste management

    International Nuclear Information System (INIS)

    Lin, W.; Wilder, D.G.; Blink, J.A.

    1994-07-01

    The radioactive decay heat from nuclear waste packages may, depending on the thermal load, create coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near-field environment of a repository. A group of tests on a large block (LBT) are planned to provide a timely opportunity to test and calibrate some of the TMHC model concepts. The LBT is advantageous for testing and verifying model concepts because the boundary conditions are controlled, and the block can be characterized before and after the experiment. A block of Topopah Spring tuff of about 3 x 3 x 4.5 m will be sawed and isolated at Fran Ridge, Nevada Test Site. Small blocks of the rock adjacent to the large block will be collected for laboratory testing of some individual thermal-mechanical hydrological and chemical processes. A constant load of about 4 MPa will be applied to the top and sides of the large block. The sides will be sealed with moisture and thermal barriers. The large block will be heated by heaters within and guard heaters on the sides so that a dry-out zone and a condensate zone will exist simultaneously. Temperature, moisture content, pore pressure, chemical composition, stress, and displacement will be throughout the block during the heating and cool-down phases. The results from the experiments on small blocks and the tests on the large block will provide a better understanding of some concepts of the coupled TMHC processes. The progress of the project is presented in this paper

  6. A heated large block test for high level nuclear waste management

    International Nuclear Information System (INIS)

    Lin, W.; Wilder, D.G.; Blink, J.A.; Blair, S.C.; Buscheck, T.A.; Glassley, W.E.; Lee, K.; Owens, M.W.; Roberts, J.J.

    1995-01-01

    The radioactive decay heat from high-level nuclear waste may, depending on the thermal load, create coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the host rock of a repository. A heated large block test (LBT) is designed to understand some of the TNMC processes. A block of Topopah Spring tuff of about 3 x 3 x 4.5 m was isolated at Fran Ridge, Nevada Test Site. Small blocks of the rock adjacent to the large block were collected for laboratory testing of some individual thermal-mechanical, thermal-hydrological, and thermal-chemical processes. The large block will be heated by heaters within so that a dryout zone and a condensate zone will exist simultaneously. Guard heaters on the block sides will be used to minimize horizontal heat losses. A constant load of about 4 MPa will be applied to the top and sides of the large block. The sides will be sealed with moisture and thermal barriers. Temperature, moisture content, pore pressure, chemical composition, stress, displacement, electrical resistivity, acoustic emissions, and acoustic velocities will be measured throughout the block during the heating and cool-down phases. The results from the experiments on small blocks and the tests on the large block will provide a better understanding of some concepts of the coupled TMHC processes. The progress of the project is presented in this paper

  7. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  8. Results From an International Simulation Study on Coupled Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    International Nuclear Information System (INIS)

    J. Rutqvist; D. Barr; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q. Liu; Y. Oda; W. Wang; C. Zhang

    2006-01-01

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near waste emplacement drifts of geological nuclear waste repositories. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower postclosure temperatures, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses is currently being resolved. In particular, good agreement in the basic thermal-mechanical responses was achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglected complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level

  9. Results from an International Simulation Study on Couples Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    International Nuclear Information System (INIS)

    J. Rutqvist; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q.S. Liu; Y. Oda; W. Wang; C.Y. Zhang

    2006-01-01

    As part of the ongoing international code comparison project DECOVALEX, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near underground waste emplacement drifts. The simulations were conducted for two generic repository types with open or back-filled repository drifts under higher and lower post-closure temperature, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses are currently being resolved. Good agreement in the basic thermal-mechanical responses was achieved for both repository types, even with some teams using relatively simplified thermal-elastic heat-conduction models that neglect complex near-field thermal-hydrological processes. The good agreement between the complex and simplified (and well-known) process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level. The research teams have now moved on to the second phase of the project, the analysis of THM-induced permanent (irreversible) changes and the impact of those changes on the fluid flow field near an emplacement drift

  10. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H.

    1993-07-01

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit''. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes

  11. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1993-07-01

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.

  12. Yellowstone as an Analog for Thermal-Hydrological-Chemical Processes at Yucca Mountain

    International Nuclear Information System (INIS)

    Dobson, P. F.; Kneafsey, T. J.; Simmons, A.; Hulen, J.

    2001-01-01

    Enhanced water-rock interaction resulting from the emplacement of heat-generating nuclear waste in the potential geologic repository at Yucca Mountain, Nevada, may result in changes to fluid flow (resulting from mineral dissolution and precipitation in condensation and boiling zones, respectively). Studies of water-rock interaction in active and fossil geothermal systems (natural analogs) provide evidence for changes in permeability and porosity resulting from thermal-hydrological-chemical (THC) processes. The objective of this research is to document the effects of coupled THC processes at Yellowstone and then examine how differences in scale could influence the impact that these processes may have on the Yucca Mountain system. Subsurface samples from Yellowstone National Park, one of the largest active geothermal systems in the world, contain some the best examples of hydrothermal self-sealing found in geothermal systems. We selected core samples from two USGS research drill holes from the transition zone between conductive and convective portions of the geothermal system (where sealing was reported to occur). We analyzed the core, measuring the permeability, porosity, and grain density of selected samples to evaluate how lithology, texture, and degree of hydrothermal alteration influence matrix and fracture permeability

  13. Conceptual modeling coupled thermal-hydrological-chemical processes in bentonite buffer for high-level nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoung Young; Park, Jin Young [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Ryu, Ji Hun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-03-15

    In this study, thermal-hydrological-chemical modeling for the alteration of a bentonite buffer is carried out using a simulation code TOUGHREACT. The modeling results show that the water saturation of bentonite steadily increases and finally the bentonite is fully saturated after 10 years. In addition, the temperature rapidly increases and stabilizes after 0.5 year, exhibiting a constant thermal gradient as a function of distance from the copper tube. The change of thermal-hydrological conditions mainly results in the alteration of anhydrite and calcite. Anhydrite and calcite are dissolved along with the inflow of groundwater. They then tend to precipitate in the vicinity of the copper tube due to its high temperature. This behavior induces a slight decrease in porosity and permeability of bentonite near the copper tube. Furthermore, this study finds that the diffusion coefficient can significantly affect the alteration of anhydrite and calcite, which causes changes in the hydrological properties of bentonite such as porosity and permeability. This study may facilitate the safety assessment of high-level radioactive waste repositories.

  14. Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain

    International Nuclear Information System (INIS)

    Rutqvist, Jonny; Tsang, Chin-Fu

    2002-01-01

    A coupled thermal, hydrologic and mechanical (THM) analysis is conducted to evaluate the impact of coupled THM processes on the performance of a potential nuclear waste repository at Yucca Mountain, Nevada. The analysis considers changes in rock mass porosity, permeability, and capillary pressure caused by rock deformations during drift excavation, as well as those caused by thermo-mechanically induced rock deformations after emplacement of the heat-generating waste. The analysis consists of a detailed calibration of coupled hydraulic-mechanical rock mass properties against field experiments, followed by a prediction of the coupled thermal, hydrologic, and mechanical behavior around a potential repository drift. For the particular problem studied and parameters used, the analysis indicates that the stress-induced permeability changes will be within one order of magnitude and that these permeability changes do not significantly impact the overall flow pattern around the repository drift

  15. Computational thermal, chemical, fluid, and solid mechanics for geosystems management.

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu

    2011-09-01

    This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

  16. Numerical analysis of thermal-hydrological conditions in the single heater test at Yucca Mountain

    International Nuclear Information System (INIS)

    Birkholzer, Jens T.; Tsang, Yvonne W.

    1998-01-01

    The Single Heater Test (SHT) is one of two in-situ thermal tests included in the site characterization program for the potential underground nuclear waste repository at Yucca Mountain. The heating phase of the SHT started in August 1996, and was completed in May 1997 after 9 months of heating. The coupled processes in the unsaturated fractured rock mass around the heater were monitored by numerous sensors for thermal, hydrological, mechanical and chemical data. In addition to passive monitoring, active testing of the rock mass moisture content was performed using geophysical methods and air injection testing. The extensive data set available from this test gives a unique opportunity to improve the understanding of the thermal-hydrological situation in the natural setting of the repository rocks. The present paper focuses on the 3-D numerical simulation of the thermal-hydrological processes in the SHT using TOUGH2. In the comparative analysis, they are particularly interested in the accuracy of different fracture-matrix-interaction concepts such as the Effective Continuum (ECM), the Dual Continuum (DKM), and the Multiple Interacting Continua (MINC) method

  17. Engineered Barrier System Thermal-Hydraulic-Chemical Column Test Report

    International Nuclear Information System (INIS)

    W.E. Lowry

    2001-01-01

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M and O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01

  18. Final Report: Improving the understanding of the coupled thermal-mechanical-hydrologic behavior of consolidating granular salt

    Energy Technology Data Exchange (ETDEWEB)

    Stormont, John [Univ. of New Mexico, Albuquerque, NM (United States); Lampe, Brandon [Univ. of New Mexico, Albuquerque, NM (United States); Mills, Melissa [Univ. of New Mexico, Albuquerque, NM (United States); Paneru, Laxmi [Univ. of New Mexico, Albuquerque, NM (United States); Lynn, Timothy [Univ. of New Mexico, Albuquerque, NM (United States); Piya, Aayush [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-09-09

    The goal of this project is to improve the understanding of key aspects of the coupled thermal-mechanical-hydrologic response of granular (or crushed) salt used as a seal material for shafts, drifts, and boreholes in mined repositories in salt. The project is organized into three tasks to accomplish this goal: laboratory measurements of granular salt consolidation (Task 1), microstructural observations on consolidated samples (Task 2), and constitutive model development and evaluation (Task 3). Task 1 involves laboratory measurements of salt consolidation along with thermal properties and permeability measurements conducted under a range of temperatures and stresses expected for potential mined repositories in salt. Testing focused on the role of moisture, temperature and stress state on the hydrologic (permeability) and thermal properties of consolidating granular salt at high fractional densities. Task 2 consists of microstructural observations made on samples after they have been consolidated to interpret deformation mechanisms and evaluate the ability of the constitutive model to predict operative mechanisms under different conditions. Task 3 concerns the development of the coupled thermal-mechanical-hydrologic constitutive model for granular salt consolidation. The measurements and observations in Tasks 1 and 2 were used to develop a thermal-mechanical constitutive model. Accomplishments and status from each of these efforts is reported in subsequent sections of this report

  19. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    Science.gov (United States)

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  20. A Natural Analogue for Thermal-Hydrological-Chemical Coupled Processes at the Proposed Nuclear Waste Repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Bill Carey; Gordon Keating; Peter C. Lichtner

    1999-01-01

    Dike and sill complexes that intruded tuffaceous host rocks above the water table are suggested as natural analogues for thermal-hydrologic-chemical (THC) processes at the proposed nuclear waste repository at Yucca Mountain, Nevada. Scoping thermal-hydrologic calculations of temperature and saturation profiles surrounding a 30-50 m wide intrusion suggest that boiling conditions could be sustained at distances of tens of meters from the intrusion for several thousand years. This time scale for persistence of boiling is similar to that expected for the Yucca Mountain repository with moderate heat loading. By studying the hydrothermal alteration of the tuff host rocks surrounding the intrusions, insight and relevant data can be obtained that apply directly to the Yucca Mountain repository and can shed light on the extent and type of alteration that should be expected. Such data are needed to bound and constrain model parameters used in THC simulations of the effect of heat produced by the waste on the host rock and to provide a firm foundation for assessing overall repository performance. One example of a possible natural analogue for the repository is the Paiute Ridge intrusive complex located on the northeastern boundary of the Nevada Test Site, Nye County, Nevada. The complex consists of dikes and sills intruded into a partially saturated tuffaceous host rock that has stratigraphic sequences that correlate with those found at Yucca Mountain. The intrusions were emplaced at a depth of several hundred meters below the surface, similar to the depth of the proposed repository. The tuffaceous host rock surrounding the intrusions is hydrothermally altered to varying extents depending on the distance from the intrusions. The Paiute Ridge intrusive complex thus appears to be an ideal natural analogue of THC coupled processes associated with the Yucca Mountain repository. It could provide much needed physical and chemical data for understanding the influence of heat

  1. Forecast of thermal-hydrological conditions and air injection test results of the single heater test at Yucca Mountain

    International Nuclear Information System (INIS)

    Birkholzer, J.T.; Tsang, Y.W.

    1996-12-01

    The heater in the Single Heater Test (SHT) in alcove 5 of the Exploratory Studies Facility (ESF) was turned on August 26, 1996. A large number of sensors are installed in the various instrumented boreholes to monitor the coupled thermal-hydrological-mechanical-chemical responses of the rock mass to the heat generated in the single heater. In this report the authors present the results of the modeling of both the heating and cooling phases of the Single Heater Test (SHT), with focus on the thermal-hydrological aspect of the coupled processes. Also in this report, the authors present simulations of air injection tests will be performed at different stages of the heating and cooling phase of the SHT

  2. Uncertainties in coupled thermal-hydrological processes associated with the drift scale test at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sumitra; Tsang, Y.W.

    2002-01-01

    Understanding thermally driven coupled hydrological, mechanical, and chemical processes in unsaturated fractured tuff is essential for evaluating the performance of the potential radioactive waste repository at Yucca Mountain, Nevada. The Drift Scale Test (DST), intended for acquiring such an understanding of these processes, has generated a huge volume of temperature and moisture redistribution data. Sophisticated thermal hydrological (TH) conceptual models have yielded a good fit between simulation results and those measured data. However, some uncertainties in understanding the TH processes associated with the DST still exist. This paper evaluates these uncertainties and provides quantitative estimates of the range of these uncertainties. Of particular interest for the DST are the uncertainties resulting from the unmonitored loss of vapor through an open bulkhead of the test. There was concern that the outcome from the test might have been significantly altered by these losses. Using alternative conceptual models, we illustrate that predicted mean temperatures from the DST are within 1 degree C of the measured mean temperatures through the first two years of heating. The simulated spatial and temporal evolution of drying and condensation fronts is found to be qualitatively consistent with measured saturation data. Energy and mass balance computation shows that no more than 13 percent of the input energy is lost because of vapor leaving the test domain through the bulkhead. The change in average saturation in fractures is also relatively small. For a hypothetical situation in which no vapor is allowed to exit through the bulkhead, the simulated average fracture saturation is not qualitatively different enough to be discerned by measured moisture redistribution data. This leads us to conclude that the DST, despite the uncertainties associated with open field testing, has provided an excellent understanding of the TH processes

  3. Development of capability for microtopography-resolving simulations of hydrologic processes in permafrost affected regions

    Science.gov (United States)

    Painter, S.; Moulton, J. D.; Berndt, M.; Coon, E.; Garimella, R.; Lewis, K. C.; Manzini, G.; Mishra, P.; Travis, B. J.; Wilson, C. J.

    2012-12-01

    The frozen soils of the Arctic and subarctic regions contain vast amounts of stored organic carbon. This carbon is vulnerable to release to the atmosphere as temperatures warm and permafrost degrades. Understanding the response of the subsurface and surface hydrologic system to degrading permafrost is key to understanding the rate, timing, and chemical form of potential carbon releases to the atmosphere. Simulating the hydrologic system in degrading permafrost regions is challenging because of the potential for topographic evolution and associated drainage network reorganization as permafrost thaws and massive ground ice melts. The critical process models required for simulating hydrology include subsurface thermal hydrology of freezing/thawing soils, thermal processes within ice wedges, mechanical deformation processes, overland flow, and surface energy balances including snow dynamics. A new simulation tool, the Arctic Terrestrial Simulator (ATS), is being developed to simulate these coupled processes. The computational infrastructure must accommodate fully unstructured grids that track evolving topography, allow accurate solutions on distorted grids, provide robust and efficient solutions on highly parallel computer architectures, and enable flexibility in the strategies for coupling among the various processes. The ATS is based on Amanzi (Moulton et al. 2012), an object-oriented multi-process simulator written in C++ that provides much of the necessary computational infrastructure. Status and plans for the ATS including major hydrologic process models and validation strategies will be presented. Highly parallel simulations of overland flow using high-resolution digital elevation maps of polygonal patterned ground landscapes demonstrate the feasibility of the approach. Simulations coupling three-phase subsurface thermal hydrology with a simple thaw-induced subsidence model illustrate the strong feedbacks among the processes. D. Moulton, M. Berndt, M. Day, J

  4. Progress Toward a Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) Experiment in the Homestake Mine Deep Underground Science and Engineering Laboratory

    Science.gov (United States)

    Sonnenthal, E. L.; Maher, K.; Elsworth, D.; Lowell, R. P.; Uzunlar, N.; Mailloux, B. J.; Conrad, M. E.; Olsen, N. J.; Jones, T. L.; Cruz, M. F.; Torchinsky, A.

    2011-12-01

    The purpose of performing a long-term hydrothermal experiment in a deep mine is to gain a scientific understanding of the coupled physical, chemical, and biological processes taking place in fractured rock under the influence of mechanical stress, thermal effects, and fluid flow. Only in a controlled experiment in a well-characterized rock mass, can a fractured rock be probed in 3-D through geophysical imaging, in situ measurements, geochemical/biological sampling, and numerical modeling. Our project is focused on the feasibility of a THMCB experiment in the Homestake Mine, South Dakota to study the long-term evolution (10+ years) of a perturbed heterogeneous rock mass. In addition to the experiment as a laboratory for studying crustal processes, it has direct application to Enhanced Geothermal Systems, carbon sequestration, and contaminant transport. Field activities have focused on fracture and feature mapping, flux measurements from flowing fractures, and collection of water and rock samples for geochemical, biological, and isotopic analyses. Fracture mapping and seepage measurements are being used to develop estimates of permeability and fluxes at different length scales and design the location and orientation of the heater array. Fluxes measured up to several liters/minute indicate localized regions of very high fracture permeability, likely in excess of 10-10 m2. Isotopic measurements indicate heterogeneity in the fracture network on the scale of tens of meters in addition to the large-scale geochemical heterogeneity observed in the mine. New methods for sampling and filtering water samples were developed and tested with the goal of performing radiocarbon analyses in DNA and phospholipid fatty acids. Analytical and numerical models of the thermal perturbation have been used to design the heater orientation and spacing. Reaction path and THC simulations were performed to assess geochemical and porosity/permeability changes as a function of the heat input

  5. Three-dimensional model of reference thermal/mechanical and hydrological stratigraphy at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Ortiz, T.S.; Williams, R.L.; Nimick, F.B.; Whittet, B.C.; South, D.L.

    1985-10-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project is currently examining the feasibility of constructing a nuclear waste repository in the tuffs beneath Yucca Mountain. A three-dimensional model of the thermal/mechanical and hydrological reference stratigraphy at Yucca Mountain has been developed for use in performance assessment and repository design studies involving material properties data. The reference stratigraphy defines units with distinct thermal, physical, mechanical, and hydrological properties. The model is a collection of surface representations, each surface representing the base of a particular unit. The reliability of the model was evaluated by comparing the generated surfaces, existing geologic maps and cross sections, drill hole data, and geologic interpolation. Interpolation of surfaces between drill holes by the model closely matches the existing information. The top of a zone containing prevalent zeolite is defined and superimposed on the reference stratigraphy. Interpretation of the geometric relations between the zeolitic and thermal/mechanical and hydrological surfaces indicates that the zeolitic zone was established before the major portion of local fault displacement took place; however, faulting and zeolitization may have been partly concurrent. The thickness of the proposed repository host rock, the devitrified, relatively lithophysal-poor, moderately to densely welded portion of the Topopah Spring Member of the Paintbrush Tuff, was evaluated and varies from 400 to 800 ft in the repository area. The distance from the repository to groundwater level was estimated to vary from 700 to 1400 ft. 13 figs., 1 tab

  6. Panel report on coupled thermo-mechanical-hydro-chemical processes associated with a nuclear waste repository

    International Nuclear Information System (INIS)

    Tsang, C.F.; Mangold, D.C.

    1984-07-01

    Four basic physical processes, thermal, hydrological, mechanical and chemical, are likely to occur in 11 different types of coupling during the service life of an underground nuclear waste repository. A great number of coupled processes with various degrees of importance for geological repositories were identified and arranged into these 11 types. A qualitative description of these processes and a tentative evaluation of their significance and the degree of uncertainty in prediction is given. Suggestions for methods of investigation generally include, besides theoretical work, laboratory and large scale field testing. Great efforts of a multidisciplinary nature are needed to elucidate details of several coupled processes under different temperature conditions in different geological formations. It was suggested that by limiting the maximum temperature to 100 0 C in the backfill and in the host rock during the whole service life of the repository the uncertainties in prediction of long-term repository behavior might be considerably reduced

  7. Panel report on coupled thermo-mechanical-hydro-chemical processes associated with a nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, C.F.; Mangold, D.C. (eds.)

    1984-07-01

    Four basic physical processes, thermal, hydrological, mechanical and chemical, are likely to occur in 11 different types of coupling during the service life of an underground nuclear waste repository. A great number of coupled processes with various degrees of importance for geological repositories were identified and arranged into these 11 types. A qualitative description of these processes and a tentative evaluation of their significance and the degree of uncertainty in prediction is given. Suggestions for methods of investigation generally include, besides theoretical work, laboratory and large scale field testing. Great efforts of a multidisciplinary nature are needed to elucidate details of several coupled processes under different temperature conditions in different geological formations. It was suggested that by limiting the maximum temperature to 100{sup 0}C in the backfill and in the host rock during the whole service life of the repository the uncertainties in prediction of long-term repository behavior might be considerably reduced.

  8. Thermal-hydrological models

    Energy Technology Data Exchange (ETDEWEB)

    Buscheck, T., LLNL

    1998-04-29

    This chapter describes the physical processes and natural and engineered system conditions that affect thermal-hydrological (T-H) behavior in the unsaturated zone (UZ) at Yucca Mountain and how these effects are represented in mathematical and numerical models that are used to predict T-H conditions in the near field, altered zone, and engineered barrier system (EBS), and on waste package (WP) surfaces.

  9. Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids

    International Nuclear Information System (INIS)

    Kroon, Maaike C.; Buijs, Wim; Peters, Cor J.; Witkamp, Geert-Jan

    2007-01-01

    The long-term thermal stability of ionic liquids is of utmost importance for their industrial application. Although the thermal decomposition temperatures of various ionic liquids have been measured previously, experimental data on the thermal decomposition mechanisms and kinetics are scarce. It is desirable to develop quantitative chemical tools that can predict thermal decomposition mechanisms and temperatures (kinetics) of ionic liquids. In this work ab initio quantum chemical calculations (DFT-B3LYP) have been used to predict thermal decomposition mechanisms, temperatures and the activation energies of the thermal breakdown reactions. These quantum chemical calculations proved to be an excellent method to predict the thermal stability of various ionic liquids

  10. Response of mechanical properties of glasses to their chemical, thermal and mechanical histories

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    , surface, thermal history or excess entropy of the final glass state. Here I review recent progresses in understanding of the responses of mechanical properties of oxide glasses to the compositional variation, thermal history and mechanical deformation. The tensile strength, elastic modulus and hardness...... of glass fibers are dependent on the thermal history (measured as fictive temperature), tension, chemical composition and redox state. However, the fictive temperature affects the hardness of bulk glass in a complicated manner, i.e., the effect does not exhibit a clear regularity in the range...... and micro-cracks occurring during indentation of a glass is discussed briefly. Finally I describe the future perspectives and challenges in understanding responses of mechanical properties of oxide glasses to compositional variation, thermal history and mechanical deformation....

  11. Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal

    Science.gov (United States)

    Zaghib, K.; Song, X.; Guerfi, A.; Rioux, R.; Kinoshita, K.

    The intercalation of Li ions in natural graphite that was purified by chemical and thermal processes was investigated. A new chemical process was developed that involved a mixed aqueous solution containing 30% H 2SO 4 and 30% NH xF y heated to 90 °C. The results of this process are compared to those obtained by heating the natural graphite from 1500 to 2400 °C in an inert environment (thermal process). The first-cycle coulombic efficiency of the purified natural graphite obtained by the chemical process is 91 and 84% after the thermal process at 2400 °C. Grinding the natural graphite before or after purification had no significant effect on electrochemical performance at low currents. However, grinding to a very small particle size before purification permitted optimization of the size distribution of the particles, which gives rise to a more homogenous electrode. The impurities in the graphite play a role as microabrasion agents during grinding which enhances its hardness and improves its mechanical properties. Grinding also modifies the particle morphology from a 2- to a 3-D structure (similar in shape to a potato). This potato-shaped natural graphite shows high reversible capacity at high current densities (about 90% at 1 C rate). Our analysis suggests that thermal processing is considerably more expensive than the chemical process to obtain purified natural graphite.

  12. Integrating Thermal Tools Into the Mechanical Design Process

    Science.gov (United States)

    Tsuyuki, Glenn T.; Siebes, Georg; Novak, Keith S.; Kinsella, Gary M.

    1999-01-01

    The intent of mechanical design is to deliver a hardware product that meets or exceeds customer expectations, while reducing cycle time and cost. To this end, an integrated mechanical design process enables the idea of parallel development (concurrent engineering). This represents a shift from the traditional mechanical design process. With such a concurrent process, there are significant issues that have to be identified and addressed before re-engineering the mechanical design process to facilitate concurrent engineering. These issues also assist in the integration and re-engineering of the thermal design sub-process since it resides within the entire mechanical design process. With these issues in mind, a thermal design sub-process can be re-defined in a manner that has a higher probability of acceptance, thus enabling an integrated mechanical design process. However, the actual implementation is not always problem-free. Experience in applying the thermal design sub-process to actual situations provides the evidence for improvement, but more importantly, for judging the viability and feasibility of the sub-process.

  13. Comparison of physico-chemical properties of various lignites treated by mechanical thermal expression

    Energy Technology Data Exchange (ETDEWEB)

    Janine Hulston; Alan L. Chaffee; Christian Bergins; Karl Strauss [Monash University, Vic. (Australia). School of Chemistry and CRC for Clean Power from Lignite

    2005-12-01

    This study investigates how the Mechanical Thermal Expression (MTE) process affects the physico-chemical properties of low rank lignites sourced from Australia, Greece, and Germany. The MTE process was effective in reducing the moisture content of all three coals and resulted in significant Na reductions in both the Australian and German coals. However, the organic composition of the coals investigated remained relatively unaffected. Upon oven drying, all wet MTE products underwent significant shrinkage, the degree of which was dependent upon the temperature and pressure used during the MTE process. Upon rehydration, the oven-dried MTE products underwent significant swelling, which is most likely related to the chemical composition of the coals.

  14. Chemical Changes in Carbohydrates Produced by Thermal Processing.

    Science.gov (United States)

    Hoseney, R. Carl

    1984-01-01

    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  15. Coupled Thermo-Hydro-Mechanical-Chemical Modeling of Water Leak-Off Process during Hydraulic Fracturing in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-11-01

    Full Text Available The water leak-off during hydraulic fracturing in shale gas reservoirs is a complicated transport behavior involving thermal (T, hydrodynamic (H, mechanical (M and chemical (C processes. Although many leak-off models have been published, none of the models fully coupled the transient fluid flow modeling with heat transfer, chemical-potential equilibrium and natural-fracture dilation phenomena. In this paper, a coupled thermo-hydro-mechanical-chemical (THMC model based on non-equilibrium thermodynamics, hydrodynamics, thermo-poroelastic rock mechanics, and non-isothermal chemical-potential equations is presented to simulate the water leak-off process in shale gas reservoirs. The THMC model takes into account a triple-porosity medium, which includes hydraulic fractures, natural fractures and shale matrix. The leak-off simulation with the THMC model involves all the important processes in this triple-porosity medium, including: (1 water transport driven by hydraulic, capillary, chemical and thermal osmotic convections; (2 gas transport induced by both hydraulic pressure driven convection and adsorption; (3 heat transport driven by thermal convection and conduction; and (4 natural-fracture dilation considered as a thermo-poroelastic rock deformation. The fluid and heat transport, coupled with rock deformation, are described by a set of partial differential equations resulting from the conservation of mass, momentum, and energy. The semi-implicit finite-difference algorithm is proposed to solve these equations. The evolution of pressure, temperature, saturation and salinity profiles of hydraulic fractures, natural fractures and matrix is calculated, revealing the multi-field coupled water leak-off process in shale gas reservoirs. The influences of hydraulic pressure, natural-fracture dilation, chemical osmosis and thermal osmosis on water leak-off are investigated. Results from this study are expected to provide a better understanding of the

  16. Hydrologic testing in wells near the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Johnson, G.S.; Olsen, J.H.; Ralston, D.R.

    1994-01-01

    The Snake River Plain aquifer beneath the INEL is often viewed as a 2-dimensional system, but may actually possess 3-dimensional properties of concern. A straddle-packer system is being used by the State's INEL Oversight Program to isolate specific aquifer intervals and define the 3-dimensional chemical and hydrologic characteristics of the aquifer. The hydrologic test results from wells USGS 44, 45, and 46 near the Idaho Chemical Processing Plant indicate that: (1) Vertical variation in static head is less than 0.3 feed, (2) barometric efficiencies are between 25 and 55 percent, and (3) the system responds to distant pumping as a multi-layered, but interconnected system. 3 refs., 7 figs., 3 tabs

  17. DECOVALEX III PROJECT. Mathematical Models of Coupled Thermal-Hydro-Mechanical Processes for Nuclear Waste Repositories. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Jing, L.; Stephansson, O. [Royal Inst. of Technology, Stockholm (Sweden). Engineering Geology; Tsang, C.F. [Lawrence Berkely National Laboratory, Berkeley, CA (United States). Earth Science Div.; Mayor, J.C. [ENRESA, Madrid (Spain); Kautzky, F. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)] (eds.)

    2005-02-15

    DECOVALEX is an international consortium of governmental agencies associated with the disposal of high-level nuclear waste in a number of countries. The consortium's mission is the DEvelopment of COupled models and their VALidation against EXperiments. Hence the acronym/name DECOVALEX. Currently, agencies from Canada, Finland, France, Germany, Japan, Spain, Switzerland, Sweden, United Kingdom, and the United States are in DECOVALEX. Emplacement of nuclear waste in a repository in geologic media causes a number of physical processes to be intensified in the surrounding rock mass due to the decay heat from the waste. The four main processes of concern are thermal, hydrological, mechanical and chemical. Interactions or coupling between these heat-driven processes must be taken into account in modeling the performance of the repository for such modeling to be meaningful and reliable. DECOVALEX III is organized around four tasks. The FEBEX (Full-scale Engineered Barriers EXperiment) in situ experiment being conducted at the Grimsel site in Switzerland is to be simulated and analyzed in Task 1. Task 2, centered around the Drift Scale Test (DST) at Yucca Mountain in Nevada, USA, has several sub-tasks (Task 2A, Task 2B, Task 2C and Task 2D) to investigate a number of the coupled processes in the DST. Task 3 studies three benchmark problems: a) the effects of thermal-hydrologic-mechanical (THM) coupling on the performance of the near-field of a nuclear waste repository (BMT1); b) the effect of upscaling THM processes on the results of performance assessment (BMT2); and c) the effect of glaciation on rock mass behavior (BMT3). Task 4 is on the direct application of THM coupled process modeling in the performance assessment of nuclear waste repositories in geologic media. This executive summary presents the motivation, structure, objectives, approaches, and the highlights of the main achievements and outstanding issues of the tasks studied in the DECOVALEX III project

  18. DECOVALEX III PROJECT. Mathematical Models of Coupled Thermal-Hydro-Mechanical Processes for Nuclear Waste Repositories. Executive Summary

    International Nuclear Information System (INIS)

    Jing, L.; Stephansson, O.; Kautzky, F.

    2005-02-01

    DECOVALEX is an international consortium of governmental agencies associated with the disposal of high-level nuclear waste in a number of countries. The consortium's mission is the DEvelopment of COupled models and their VALidation against EXperiments. Hence the acronym/name DECOVALEX. Currently, agencies from Canada, Finland, France, Germany, Japan, Spain, Switzerland, Sweden, United Kingdom, and the United States are in DECOVALEX. Emplacement of nuclear waste in a repository in geologic media causes a number of physical processes to be intensified in the surrounding rock mass due to the decay heat from the waste. The four main processes of concern are thermal, hydrological, mechanical and chemical. Interactions or coupling between these heat-driven processes must be taken into account in modeling the performance of the repository for such modeling to be meaningful and reliable. DECOVALEX III is organized around four tasks. The FEBEX (Full-scale Engineered Barriers EXperiment) in situ experiment being conducted at the Grimsel site in Switzerland is to be simulated and analyzed in Task 1. Task 2, centered around the Drift Scale Test (DST) at Yucca Mountain in Nevada, USA, has several sub-tasks (Task 2A, Task 2B, Task 2C and Task 2D) to investigate a number of the coupled processes in the DST. Task 3 studies three benchmark problems: a) the effects of thermal-hydrologic-mechanical (THM) coupling on the performance of the near-field of a nuclear waste repository (BMT1); b) the effect of upscaling THM processes on the results of performance assessment (BMT2); and c) the effect of glaciation on rock mass behavior (BMT3). Task 4 is on the direct application of THM coupled process modeling in the performance assessment of nuclear waste repositories in geologic media. This executive summary presents the motivation, structure, objectives, approaches, and the highlights of the main achievements and outstanding issues of the tasks studied in the DECOVALEX III project. The

  19. Mountain-Scale Coupled Processes (TH/THC/THM)

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides the necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal disturbances in

  20. Review on effect of chemical, thermal, additive treatment on mechanical properties of basalt fiber and their composites

    Science.gov (United States)

    Jain, Naman; Singh, Vinay Kumar; Chauhan, Sakshi

    2017-12-01

    Basalt fiber is emerging out the new reinforcing material for composites. To overcome some of the disadvantages of fibers such as poor bonding to polymers, low thermal stability and high moisture absorption fiber characteristics are modified with chemical, thermal and additive treatments. Chemical treatment corrosive resistance to alkali and acid were investigated which were used to clean and modify the surface of fiber for higher bonding with resins. To improve the thermal stability and reduce moisture uptake thermal treatment such as plasma and non thermal plasma were used which increased the surface roughness and change the chemical composition of surface of basalt fiber. Additive treatment is used to improve the mechanical properties of fibers, in basalt fiber additive treatment was done with SiO2 additive because of its chemical composition which contains major content of SiO2. In present investigation review on the effect of different treatment such as chemical, thermal and additive were studied. Effect of these treatment on chemical composition of the surface of basalt fiber and corrosion to acidic and alkali solution were studied with their effect on mechanical properties of basalt fiber and their composite.

  1. Coupled Monitoring and Inverse Modeling to Investigate Surface - Subsurface Hydrological and Thermal Dynamics in the Arctic Tundra

    Science.gov (United States)

    Tran, A. P.; Dafflon, B.; Hubbard, S. S.; Bisht, G.; Peterson, J.; Ulrich, C.; Romanovsky, V. E.; Kneafsey, T. J.; Wu, Y.

    2015-12-01

    Quantitative characterization of the soil surface-subsurface hydrological and thermal processes is essential as they are primary factors that control the biogeochemical processes, ecological landscapes and greenhouse gas fluxes. In the Artic region, the surface-subsurface hydrological and thermal regimes co-interact and are both largely influenced by soil texture and soil organic content. In this study, we present a coupled inversion scheme that jointly inverts hydrological, thermal and geophysical data to estimate the vertical profiles of clay, sand and organic contents. Within this inversion scheme, the Community Land Model (CLM4.5) serves as a forward model to simulate the land-surface energy balance and subsurface hydrological-thermal processes. Soil electrical conductivity (from electrical resistivity tomography), temperature and water content are linked together via petrophysical and geophysical models. Particularly, the inversion scheme accounts for the influences of the soil organic and mineral content on both of the hydrological-thermal dynamics and the petrophysical relationship. We applied the inversion scheme to the Next Generation Ecosystem Experiments (NGEE) intensive site in Barrow, AK, which is characterized by polygonal-shaped arctic tundra. The monitoring system autonomously provides a suite of above-ground measurements (e.g., precipitation, air temperature, wind speed, short-long wave radiation, canopy greenness and eddy covariance) as well as below-ground measurements (soil moisture, soil temperature, thaw layer thickness, snow thickness and soil electrical conductivity), which complement other periodic, manually collected measurements. The preliminary results indicate that the model can well reproduce the spatiotemporal dynamics of the soil temperature, and therefore, accurately predict the active layer thickness. The hydrological and thermal dynamics are closely linked to the polygon types and polygon features. The results also enable the

  2. [Advance in researches on the effect of forest on hydrological process].

    Science.gov (United States)

    Zhang, Zhiqiang; Yu, Xinxiao; Zhao, Yutao; Qin, Yongsheng

    2003-01-01

    According to the effects of forest on hydrological process, forest hydrology can be divided into three related aspects: experimental research on the effects of forest changing on hydrological process quantity and water quality; mechanism study on the effects of forest changing on hydrological cycle, and establishing and exploitating physical-based distributed forest hydrological model for resource management and engineering construction. Orientation experiment research can not only support the first-hand data for forest hydrological model, but also make clear the precipitation-runoff mechanisms. Research on runoff mechanisms can be valuable for the exploitation and improvement of physical based hydrological models. Moreover, the model can also improve the experimental and runoff mechanism researches. A review of above three aspects are summarized in this paper.

  3. Neutralization of Aerosolized Bio-Agents by Filled Nanocomposite Materials through Thermal and Chemical Inactivation Mechanisms

    Science.gov (United States)

    2016-06-01

    Bio -agents by Filled Nanocomposite Materials through Thermal and Chemical Inactivation Mechanisms Distribution Statement A. Approved for public...of Cincinnati Project Title: Neutralization of Aerosolized Bio -agents by Filled Nanocomposite Materials through Thermal and Chemical Inactivation...fire ball, where they will not effectively interact with any viable bio -aerosol. 1.1.4. Conclusions Cryo-milling is necessary to achieve a

  4. Mechanistic, kinetic, and processing aspects of tungsten chemical mechanical polishing

    Science.gov (United States)

    Stein, David

    This dissertation presents an investigation into tungsten chemical mechanical polishing (CMP). CMP is the industrially predominant unit operation that removes excess tungsten after non-selective chemical vapor deposition (CVD) during sub-micron integrated circuit (IC) manufacture. This work explores the CMP process from process engineering and fundamental mechanistic perspectives. The process engineering study optimized an existing CMP process to address issues of polish pad and wafer carrier life. Polish rates, post-CMP metrology of patterned wafers, electrical test data, and synergy with a thermal endpoint technique were used to determine the optimal process. The oxidation rate of tungsten during CMP is significantly lower than the removal rate under identical conditions. Tungsten polished without inhibition during cathodic potentiostatic control. Hertzian indenter model calculations preclude colloids of the size used in tungsten CMP slurries from indenting the tungsten surface. AFM surface topography maps and TEM images of post-CMP tungsten do not show evidence of plow marks or intergranular fracture. Polish rate is dependent on potassium iodate concentration; process temperature is not. The colloid species significantly affects the polish rate and process temperature. Process temperature is not a predictor of polish rate. A process energy balance indicates that the process temperature is predominantly due to shaft work, and that any heat of reaction evolved during the CMP process is negligible. Friction and adhesion between alumina and tungsten were studied using modified AFM techniques. Friction was constant with potassium iodate concentration, but varied with applied pressure. This corroborates the results from the energy balance. Adhesion between the alumina and the tungsten was proportional to the potassium iodate concentration. A heuristic mechanism, which captures the relationship between polish rate, pressure, velocity, and slurry chemistry, is presented

  5. Hydrological response and thermal effect of karst springs linked to aquifer geometry and recharge processes

    Science.gov (United States)

    Luo, Mingming; Chen, Zhihua; Zhou, Hong; Zhang, Liang; Han, Zhaofeng

    2018-03-01

    To be better understand the hydrological and thermal behavior of karst systems in South China, seasonal variations in flow, hydrochemistry and stable isotope ratios of five karst springs were used to delineate flow paths and recharge processes, and to interpret their thermal response. Isotopic data suggest that mean recharge elevations are 200-820 m above spring outlets. Springs that originate from high elevations have lower NO3 - concentrations than those originating from lower areas that have more agricultural activity. Measured Sr2+ concentrations reflect the strontium contents of the host carbonate aquifer and help delineate the spring catchment's saturated zone. Seasonal variations of NO3 - and Sr2+ concentrations are inversely correlated, because the former correlates with event water and the latter with baseflow. The mean annual water temperatures of springs were only slightly lower than the local mean annual surface temperature at the outlet elevations. These mean spring temperatures suggest a vertical gradient of 6 °C/vertical km, which resembles the adiabatic lapse rate of the Earth's stable atmosphere. Seasonal temperature variations in the springs are in phase with surface air temperatures, except for Heilongquan (HLQ) spring. Event-scale variations of thermal response are dramatically controlled by the circulation depth of karst systems, which determines the effectiveness of heat exchange. HLQ spring undergoes the deepest circulation depth of 820 m, and its thermal responses are determined by the thermally effective regulation processes at higher elevations and the mixing processes associated with thermally ineffective responses at lower elevations.

  6. Thermal/chemical degradation of ceramic cross-flow filter materials

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  7. Thermal chemical-mechanical reactive flow model of shock initiation in solid explosives

    International Nuclear Information System (INIS)

    Nicholls, A.L. III; Tarver, C.M.

    1998-01-01

    The three dimensional Arbitrary Lagrange Eulerian hydrodynamic computer code ALE3D with fully coupled thermal-chemical-mechanical material models provides the framework for the development of a physically realistic model of shock initiation and detonation of solid explosives. The processes of hot spot formation during shock compression, subsequent ignition of reaction or failure to react, growth of reaction in individual hot spots, and coalescence of reacting hot spots during the transition to detonation can now be modeled using Arrhenius chemical kinetic rate laws and heat transfer to propagate the reactive flow. This paper discusses the growth rates of reacting hot spots in HMX and TATB and their coalescence during shock to detonation transition. Hot spot deflagration rates are found to be fast enough to consume explosive particles less than 10 mm in diameter during typical shock duration times, but larger particles must fragment and create more reactive surface area in order to be rapidly consumed

  8. Thermal depolymerization mechanisms of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)

    Institute of Scientific and Technical Information of China (English)

    Hengxue Xiang; Xiaoshuang Wen; Xiaohui Miu; Yan Li; Zhe Zhou; Meifang Zhu

    2016-01-01

    Thermal degradation processes and decomposition mechanisms of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were investigated by using thermal gravity analysis(TGA), Gel permeation chromatography (GPC), elemental analyzer, pyrolysis-gas chromatography-mass spectrometry (PyGC-MS) and 1H nuclear magnetic resonance (1H NMR). The degradation activation energy was calculated via the dependence of residual mass on isothermal temperature. 1H NMR and PyGC-MS were used to investigate the chemical structure and component proportion of volatile gases and degradation residues which were produced by thermal decomposition, and to infer the process of macromolecular chain scission. Besides, the influence of the factors, such as outfield atmosphere, residual metal ions, on the degradation behaviors of PHBV was also studied. Finally, the PHBV thermal decomposition mechanisms were speculated on the basis of the degradation behaviors of molecular and chemical structure.

  9. Significance of fundamental processes of radiation chemistry in hot atom chemical processes: electron thermalization

    International Nuclear Information System (INIS)

    Nishikawa, M.

    1984-01-01

    The author briefly reviews the current understanding of the course of electron thermalization. An outline is given of the physical picture without going into mathematical details. The analogy of electron thermalization with hot atom processes is taken as guiding principle in this paper. Content: secondary electrons (generation, track structure, yields); thermalization (mechanism, time, spatial distribution); behaviour of hot electrons. (Auth.)

  10. Modeling of Coupled Thermo-Hydro-Mechanical-Chemical Processes for Bentonite in a Clay-rock Repository for Heat-generating Nuclear Waste

    Science.gov (United States)

    Xu, H.; Rutqvist, J.; Zheng, L.; Birkholzer, J. T.

    2016-12-01

    Engineered Barrier Systems (EBS) that include a bentonite-based buffer are designed to isolate the high-level radioactive waste emplaced in tunnels in deep geological formations. The heat emanated from the waste can drive the moisture flow transport and induce strongly coupled Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) processes within the bentonite buffer and may also impact the evolution of the excavation disturbed zone and the sealing between the buffer and walls of an emplacement tunnel The flow and contaminant transport potential along the disturbed zone can be minimized by backfilling the tunnels with bentonite, if it provides enough swelling stress when hydrated by the host rock. The swelling capability of clay minerals within the bentonite is important for sealing gaps between bentonite block, and between the EBS and the surrounding host rock. However, a high temperature could result in chemical alteration of bentonite-based buffer and backfill materials through illitization, which may compromise the function of these EBS components by reducing their plasticity and capability to swell under wetting. Therefore, an adequate THMC coupling scheme is required to understand and to predict the changes of bentonite for identifying whether EBS bentonite can sustain higher temperatures. More comprehensive links between chemistry and mechanics, taking advantage of the framework provided by a dual-structure model, named Barcelona Expansive Model (BExM), was implemented in TOUGHREACT-FLAC3D and is used to simulate the response of EBS bentonite in in clay formation for a generic case. The current work is to evaluate the chemical changes in EBS bentonite and the effects on the bentonite swelling stress under high temperature. This work sheds light on the interaction between THMC processes, evaluates the potential deterioration of EBS bentonite and supports the decision making in the design of a nuclear waste repository in light of the maximum allowance

  11. Thermal properties of graphite oxide, thermally reduced graphene and chemically reduced graphene

    Science.gov (United States)

    Jankovský, Ondřej; Sedmidubský, David; Lojka, Michal; Sofer, Zdeněk

    2017-07-01

    We compared thermal behavior and other properties of graphite oxide, thermally reduced graphene and chemically reduced graphene. Graphite was oxidized according to the Hofmann method using potassium chlorate as oxidizing agent in strongly acidic environment. In the next step, the formed graphite oxide was chemically or thermally reduced yielding graphene. The mechanism of thermal reduction was studied using STA-MS. Graphite oxide and both thermally and chemically reduced graphenes were analysed by SEM, EDS, elemental combustion analysis, XPS, Raman spectroscopy, XRD and BET. These findings will help for the large scale production of graphene with appropriate chemical composition.

  12. High-pressure treatment of wood - combination of mechanical and thermal drying in the ''I/D process''

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, M. [Bundesforschungsanstalt fuer Ernaehrung, Institut fuer Verfahrenstechnik, Haid-und-Neu-Str. 9, D-76131 Karlsruhe (Germany); Bentz, M. [Institut fuer Mechanische Verfahrenstechnik und Mechanik, Universitaet Karlsruhe (T.H.), D-76128 Karlsruhe (Germany)

    2004-11-01

    Thermal drying of materials with internal pores is always a time-consuming and energy-intensive step within a production process. For chemical and pharmaceutical mass products and, in particular, for wood as an important raw material it is desirable to reduce the water content before thermal treatment by mechanical operations. The wood-processing industry, facing a rising stress of competition, is forced more than ever to offer high-quality products at lowest prices. Today, drying of timber is mostly done by air drying or by technical drying in kiln dryers. In any case, drying is necessary to prevent deterioration in quality by shrinkage, formation of cracks, discoloration or infestation. A new process of dewatering wood by combining mechanical and thermal means has been developed at the University of Karlsruhe. Compared to conventional drying processes, short drying times and a low residual moisture content can be achieved and, thus, energy consumption and costs can be reduced. In industrial wood drying only thermal processes (e.g., convective kiln drying, vacuum drying, etc.) have been established because so far no method has been known for removing liquid by mechanical force without significant change in wood structure. With the new I/D process chances for alternatives to conventional thermal drying or for mechanothermal applications are offered. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  13. Scoping analysis of in situ thermal-hydrological testing at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1996-01-01

    In situ thermal tests, which are to be conducted in the Exploratory Studies Facility (ESF) in the unsaturated zone (UZ) at Yucca Mountain, are required to test coupled thermal-hydrological-geomechanical-geochemical (T-H-M-C) process models that support total system performance assessment. The ESF thermal tests must provide an understanding of coupled T-H-M-C processes that are relevant to expected repository conditions. Current planning includes the possibility of two large-scale tests: (1) the first ESF (drift-scale) thermal test, which will be conducted under an accelerated heatup and cooldown schedule, and (2) a second ESF (multi-drift) test, which will be larger-scale, longer-duration test, conducted under a less accelerated heatup and cooldown schedule. With the V-TOUGH (vectorized transport of unsaturated groundwater and heat) code, the authors modeled and evaluated a range of heater test sizes, heating rates, and heating durations under a range of plausible hydrological conditions to develop a test design that provides sufficient (and timely) information to determine the following: the dominant mode(s) of heat flow; the major T-H regime(s) and the T-H-M-C processes that determine the magnitude and direction of vapor and condensate flow; and the influence of heterogeneous conditions on the flow of heat, vapor, and condensate. A major purpose of the ESF thermal tests is to determine which major decay-heat-driven T-H flow regime(s) will govern the magnitude and direction of vapor and condensate flow in the UZ. Another major purpose of the thermal tests is to determine the degree of vapor diffusion enhancement

  14. Reactive chemicals and process hazards

    International Nuclear Information System (INIS)

    Surianarayanan, M.

    2016-01-01

    Exothermic chemical reactions are often accompanied by significant heat release, and therefore, need a thorough investigation before they are taken to a plant scale. Sudden thermal energy releases from exothermic decompositions and runaway reactions have contributed to serious fire and explosions in several chemical process plants. Similarly, thermal runaway had also occurred in storage and transportation of reactive chemicals. The secondary events of thermal runaway reactions can be rupture of process vessel, toxic spills and release of explosive vapor clouds or combination of these also. The explosion hazards are governed by the system thermodynamics and kinetics of the thermal process. Theoretical prediction of limiting temperature is difficult due to process complexities. Further, the kinetic data obtained through classical techniques, at conditions far away from runaway situation, is often not valid for assessing the runaway behavior of exothermic processes. The main focus of this lecture is to discuss the causes and several contributing factors for thermal runaway and instability and present analyses of the methodologies of the new instrumental techniques for assessing the thermal hazards of reactive chemicals during processing, storage and transportation. (author)

  15. Chemical transitions of Areca semen during the thermal processing revealed by temperature-resolved ATR-FTIR spectroscopy and two-dimensional correlation analysis

    Science.gov (United States)

    Wang, Zhibiao; Wang, Xu; Pei, Wenxuan; Li, Sen; Sun, Suqin; Zhou, Qun; Chen, Jianbo

    2018-03-01

    Areca semen is a common herb used in traditional Chinese medicine, but alkaloids in this herb are categorized as Group I carcinogens by IARC. It has been proven that the stir-baking process can reduce alkaloids in Areca semen while keep the activity for promoting digestion. However, the changes of compositions other than alkaloids during the thermal processing are unclear. Understanding the thermal chemical transitions of Areca semen is necessary to explore the processing mechanisms and optimize the procedures. In this research, FTIR spectroscopy with a temperature-controlled ATR accessory is employed to study the heating process of Areca semen. Principal component analysis and two-dimensional correlation spectroscopy are used to interpret the spectra to reveal the chemical transitions of Areca semen in different temperature ranges. The loss of a few volatile compounds in the testa and sperm happens below 105 °C, while some esters in the sperm decreases above 105 °C. As the heating temperature is close to 210 °C, Areca semen begins to be scorched and the decomposition of many compounds can be observed. This research shows the potential of the temperature-resolved ATR-FTIR spectroscopy in exploring the chemical transitions of the thermal processing of herbal materials.

  16. Microstructures, Mechanical Properties and Thermal Conductivities of W-0.5 wt.%TiC Alloys Prepared via Ball Milling and Wet Chemical Method

    Science.gov (United States)

    Lang, Shaoting; Yan, Qingzhi; Sun, Ningbo; Zhang, Xiaoxin; Ge, Changchun

    2017-10-01

    Two kinds of W-0.5 wt.%TiC alloys were prepared, one by ball milling and the other by the wet chemical method. For comparison, pure tungsten powders were chemically prepared and sintered by the same process. The microstructures, mechanical properties and thermal conductivities of the prepared samples were characterized. It has been found that the wet chemical method resulted in finer sizes and more uniform distribution of TiC particles in the sintered tungsten matrix than the ball milling method. The W-TiC alloy prepared by the wet chemical method achieved the highest bending strength (1065.72 MPa) among the samples. Further, it also exhibited obviously higher thermal conductivities in the temperature range of room temperature to 600°C than did the W-TiC alloy prepared by ball milling, but the differences in their thermal conductivities could be ignored in the range of 600-800°C.

  17. Relationships between chemical structure, mechanical properties and materials processing in nanopatterned organosilicate fins

    Directory of Open Access Journals (Sweden)

    Gheorghe Stan

    2017-04-01

    Full Text Available The exploitation of nanoscale size effects to create new nanostructured materials necessitates the development of an understanding of relationships between molecular structure, physical properties and material processing at the nanoscale. Numerous metrologies capable of thermal, mechanical, and electrical characterization at the nanoscale have been demonstrated over the past two decades. However, the ability to perform nanoscale molecular/chemical structure characterization has only been recently demonstrated with the advent of atomic-force-microscopy-based infrared spectroscopy (AFM-IR and related techniques. Therefore, we have combined measurements of chemical structures with AFM-IR and of mechanical properties with contact resonance AFM (CR-AFM to investigate the fabrication of 20–500 nm wide fin structures in a nanoporous organosilicate material. We show that by combining these two techniques, one can clearly observe variations of chemical structure and mechanical properties that correlate with the fabrication process and the feature size of the organosilicate fins. Specifically, we have observed an inverse correlation between the concentration of terminal organic groups and the stiffness of nanopatterned organosilicate fins. The selective removal of the organic component during etching results in a stiffness increase and reinsertion via chemical silylation results in a stiffness decrease. Examination of this effect as a function of fin width indicates that the loss of terminal organic groups and stiffness increase occur primarily at the exposed surfaces of the fins over a length scale of 10–20 nm. While the observed structure–property relationships are specific to organosilicates, we believe the combined demonstration of AFM-IR with CR-AFM should pave the way for a similar nanoscale characterization of other materials where the understanding of such relationships is essential.

  18. Impacts of Environmental Nanoparticles on Chemical, Biological and Hydrological Processes in Terrestrial Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2012-01-01

    This chapter provides insights on nanoparticle (NP) influence or control on the extent and timescales of single or coupled physical, chemical, biological and hydrological reactions and processes that occur in terrestrial ecosystems. Examples taken from the literature that show how terrestrial NPs may determine the fate of the aqueous and sorbed (adsorbed or precipitated) chemical species of nutrients and contaminants, are also included in this chapter. Specifically, in the first section, chapter objectives, term definitions and discussions on size-dependent properties, the origin and occurrence of NP in terrestrial ecosystems and NP toxicity, are included. In the second section, the topic of the binary interactions of NPs of different sizes, shapes, concentrations and ages with the soil solution chemical species is covered, focusing on NP formation, stability, aggregation, ability to serve as sorbents, or surface-mediated precipitation catalysts, or electron donors and acceptors. In the third section, aspects of the interactions in the ternary systems composed of environmental NP, nutrient/contaminant chemical species, and the soil/sediment matrix are discussed, focusing on the inhibitory and catalytic effects of environmental NP on nutrient/contaminant advective mobility and mass transfer, adsorption and desorption, dissolution and precipitation and redox reactions that occur in terrestrial ecosystems. These three review sections are followed by a short summary of future research needs and directions, the acknowledgements, the list of the references, and the figures.

  19. Thermo-hydrological and chemical (THC) modeling to support Field Test Design

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harp, Dylan Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zyvoloski, George Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Terry Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-30

    This report summarizes ongoing efforts to simulate coupled thermal-hydrological-chemical (THC) processes occurring within a hypothetical high-level waste (HLW) repository in bedded salt. The report includes work completed since the last project deliverable, “Coupled model for heat and water transport in a high level waste repository in salt”, a Level 2 milestone submitted to DOE in September 2013 (Stauffer et al., 2013). Since the last deliverable, there have been code updates to improve the integration of the salt module with the pre-existing code and development of quality assurance (QA) tests of constitutive functions and precipitation/dissolution reactions. Simulations of bench-scale experiments, both historical and currently in the planning stages have been performed. Additional simulations have also been performed on the drift-scale model that incorporate new processes, such as an evaporation function to estimate water vapor removal from the crushed salt backfill and isotopic fractionation of water isotopes. Finally, a draft of a journal paper on the importance of clay dehydration on water availability is included as Appendix I.

  20. Mechanical properties of moso bamboo treated with chemical agents

    Science.gov (United States)

    Benhua Fei; Zhijia Liu; Zehui Jiang; Zhiyong Cai

    2013-01-01

    Bamboo is a type of biomass material and has great potential as a bioenergy resource for the future in China. Surface chemical and thermal–mechanical behavior play an important role in the manufacturing process of bamboo composites and pellets. In this study, moso bamboo was treated by sodium hydrate solution and acetic acid solution. Surface chemical and dynamic...

  1. Hydrological Process Simulation of Inland River Watershed: A Case Study of the Heihe River Basin with Multiple Hydrological Models

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2018-04-01

    Full Text Available Simulating the hydrological processes of an inland river basin can help provide the scientific guidance to the policies of water allocation among different subbasins and water resource management groups within the subbasins. However, it is difficult to simulate the hydrological processes of an inland river basin with hydrological models due to the non-consistent hydrological characteristics of the entire basin. This study presents a solution to this problem with a case study about the hydrological process simulation in an inland river basin in China, Heihe River basin. It is divided into the upper, middle, and lower reaches based on the distinctive hydrological characteristics in the Heihe River basin, and three hydrological models are selected, applied, and tested to simulate the hydrological cycling processes for each reach. The upper reach is the contributing area with the complex runoff generation processes, therefore, the hydrological informatic modeling system (HIMS is utilized due to its combined runoff generation mechanisms. The middle reach has strong impacts of intensive human activities on the interactions of surface and subsurface flows, so a conceptual water balance model is applied to simulate the water balance process. For the lower reach, as the dissipative area with groundwater dominating the hydrological process, a groundwater modeling system with the embedment of MODFLOW model is applied to simulate the groundwater dynamics. Statistical parameters and water balance analysis prove that the three models have excellent performances in simulating the hydrological process of the three reaches. Therefore, it is an effective way to simulate the hydrological process of inland river basin with multiple hydrological models according to the characteristics of each subbasin.

  2. Effective Thermal Conductivity For Drift-Scale Models Used In TSPA-SR

    Energy Technology Data Exchange (ETDEWEB)

    N.D. Francis

    2001-01-25

    The objective of this calculation is to develop a time dependent in-drift effective thermal conductivity parameter that will approximate heat conduction, thermal radiation, and natural convection heat transfer using a single mode of heat transfer (heat conduction). In order to reduce the physical and numerical complexity of the heat transfer processes that occur (and must be modeled) as a result of the emplacement of heat generating wastes, a single parameter will be developed that approximates all forms of heat transfer from the waste package surface to the drift wall (or from one surface exchanging heat with another). Subsequently, with this single parameter, one heat transfer mechanism (e.g., conduction heat transfer) can be used in the models. The resulting parameter is to be used as input in the drift-scale process-level models applied in total system performance assessments for the site recommendation (TSPA-SR). The format of this parameter will be a time-dependent table for direct input into the thermal-hydrologic (TH) and the thermal-hydrologic-chemical (THC) models.

  3. Effective Thermal Conductivity For Drift-Scale Models Used In TSPA-SR

    International Nuclear Information System (INIS)

    N.D. Francis

    2001-01-01

    The objective of this calculation is to develop a time dependent in-drift effective thermal conductivity parameter that will approximate heat conduction, thermal radiation, and natural convection heat transfer using a single mode of heat transfer (heat conduction). In order to reduce the physical and numerical complexity of the heat transfer processes that occur (and must be modeled) as a result of the emplacement of heat generating wastes, a single parameter will be developed that approximates all forms of heat transfer from the waste package surface to the drift wall (or from one surface exchanging heat with another). Subsequently, with this single parameter, one heat transfer mechanism (e.g., conduction heat transfer) can be used in the models. The resulting parameter is to be used as input in the drift-scale process-level models applied in total system performance assessments for the site recommendation (TSPA-SR). The format of this parameter will be a time-dependent table for direct input into the thermal-hydrologic (TH) and the thermal-hydrologic-chemical (THC) models

  4. Effect of Chemical Treatment on Physical, Mechanical and Thermal Properties of Ladies Finger Natural Fiber

    Directory of Open Access Journals (Sweden)

    S. I. Hossain

    2013-01-01

    Full Text Available In present research, natural fiber obtained from ladies finger plant was chemically treated separately using alkali (2% NaOH, chromium sulfate (4% , and chromium sulfate and sodium bicarbonate (4% . Both raw and chemically treated fibers were subsequently characterized using mechanical (tensile, structural (Fourier transform infrared spectroscopy and scanning electron microscopy, and thermal (thermogravimetric analysis. Fourier analysis showed the presence of (−OH group in the ladies plant fiber. Scanning electron micrographs revealed rougher surface in case of alkali treated fiber, while thin coating layer was formed on the fiber surface during other two treatments. Tensile test on ladies finger single fiber was carried out by varying span length. The tensile strength and Young's modulus values were found to be increased after chemical treatment. For both raw and chemically treated fibers, Young's modulus increased and tensile strength decreased with increase in span length. Thermogravimetric analysis indicated the same level of thermal stability for both raw and treated ladies finger fibers.

  5. Effect of acoustic softening on the thermal-mechanical process of ultrasonic welding.

    Science.gov (United States)

    Chen, Kunkun; Zhang, Yansong; Wang, Hongze

    2017-03-01

    Application of ultrasonic energy can reduce the static stress necessary for plastic deformation of metallic materials to reduce forming load and energy, namely acoustic softening effect (ASE). Ultrasonic welding (USW) is a rapid joining process utilizing ultrasonic energy to form a solid state joint between two or more pieces of metals. Quantitative characterization of ASE and its influence on specimen deformation and heat generation is essential to clarify the thermal-mechanical process of ultrasonic welding. In the present work, experiments were set up to found out mechanical behavior of copper and aluminum under combined effect of compression force and ultrasonic energy. Constitutive model was proposed and numerical implemented in finite element model of ultrasonic welding. Thermal-mechanical analysis was put forward to explore the effect of ultrasonic energy on the welding process quantitatively. Conclusions can be drawn that ASE increases structural deformation significantly, which is beneficial for joint formation. Meanwhile, heat generation from both frictional work and plastic deformation is slightly influenced by ASE. Based on the proposed model, relationship between ultrasonic energy and thermal-mechanical behavior of structure during ultrasonic welding was constructed. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Thermal-mechanical deformation modelling of soft tissues for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Jazar, Reza; Subic, Aleksandar

    2014-01-01

    Modeling of thermal-induced mechanical behaviors of soft tissues is of great importance for thermal ablation. This paper presents a method by integrating the heating process with thermal-induced mechanical deformations of soft tissues for simulation and analysis of the thermal ablation process. This method combines bio-heat transfer theories, constitutive elastic material law under thermal loads as well as non-rigid motion dynamics to predict and analyze thermal-mechanical deformations of soft tissues. The 3D governing equations of thermal-mechanical soft tissue deformation are discretized by using the finite difference scheme and are subsequently solved by numerical algorithms. Experimental results show that the proposed method can effectively predict the thermal-induced mechanical behaviors of soft tissues, and can be used for the thermal ablation therapy to effectively control the delivered heat energy for cancer treatment.

  7. Chemical Changes in Proteins Produced by Thermal Processing.

    Science.gov (United States)

    Dutson, T. R.; Orcutt, M. W.

    1984-01-01

    Discusses effects of thermal processing on proteins, focusing on (1) the Maillard reaction; (2) heat denaturation of proteins; (3) aggregation, precipitation, gelation, and degradation; and (4) other thermally induced protein reactions. Also discusses effects of thermal processing on muscle foods, egg proteins, fruits and vegetables, and cereal…

  8. Application of a thermally assisted mechanical dewatering process to biomass

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, A.; Arlabosse, P. [Universite de Toulouse, Mines Albi, CNRS, Campus Jarlard, F-81013 Albi cedex 09 (France); Ecole des Mines Albi, Centre RAPSODEE, Campus Jarlard, F-81013 Albi (France); Fernandez, A. [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31400 Toulouse (France); INRA, UMR792 Ingenierie des Systemes Biologiques et des Procedes, CNRS, UMR5504, F-31400 Toulouse (France)

    2011-01-15

    Thermally assisted mechanical dewatering (TAMD) is a new process for energy-efficient liquid/solids separation which enhances conventional-device efficiency. The main idea of this process is to supply a flow of heat in mechanical dewatering processes to favour the reduction of the liquid content. This is not a new idea but the proposed combination, especially the chosen operating conditions (T < 100 C and P < 3000 kPa) constitutes an original approach and a significant energy saving since the liquid is kept in liquid state. Response surface methodology was used to evaluate the effects of the processing parameters of TAMD on the final dry solids content, which is a fundamental dewatering parameter and an excellent indicator of the extent of TAMD. In this study, a two-factor central composite design was used to establish the optimum conditions for the TAMD of alfalfa biomass. Experiments were carried out on a laboratory compression cell. Experiments showed that the dewatering enhancement results only from thermal effects. With a moderate heat supply (T{sub piston} = 80 C), the dry solid content of the press cake can reach 66%, compared to 36% at ambient temperature. A significant regression model, describing changes on final dry solids content with respect to independent variables, was established with determination coefficient, R{sup 2}, greater than 88%. With an energy consumption of less than 150 kWh/m{sup 3}, the use of the TAMD process before a thermal drying process leads to an energy saving of at least 30% on the overall separation chain. (author)

  9. Predicting Formation Damage in Aquifer Thermal Energy Storage Systems Utilizing a Coupled Hydraulic-Thermal-Chemical Reservoir Model

    Science.gov (United States)

    Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali

    2014-05-01

    In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to

  10. Impact of physical permafrost processes on hydrological change

    Science.gov (United States)

    Hagemann, Stefan; Blome, Tanja; Beer, Christian; Ekici, Altug

    2015-04-01

    Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. As it is a thermal phenomenon, its characteristics are highly dependent on climatic factors. The impact of the currently observed warming, which is projected to persist during the coming decades due to anthropogenic CO2 input, certainly has effects for the vast permafrost areas of the high northern latitudes. The quantification of these effects, however, is scientifically still an open question. This is partly due to the complexity of the system, where several feedbacks are interacting between land and atmosphere, sometimes counterbalancing each other. Moreover, until recently, many global circulation models (GCMs) and Earth system models (ESMs) lacked the sufficient representation of permafrost physics in their land surface schemes. Within the European Union FP7 project PAGE21, the land surface scheme JSBACH of the Max-Planck-Institute for Meteorology ESM (MPI-ESM) has been equipped with the representation of relevant physical processes for permafrost studies. These processes include the effects of freezing and thawing of soil water for both energy and water cycles, thermal properties depending on soil water and ice contents, and soil moisture movement being influenced by the presence of soil ice. In the present study, it will be analysed how these permafrost relevant processes impact projected hydrological changes over northern hemisphere high latitude land areas. For this analysis, the atmosphere-land part of MPI-ESM, ECHAM6-JSBACH, is driven by prescribed SST and sea ice in an AMIP2-type setup with and without the newly implemented permafrost processes. Observed SST and sea ice for 1979-1999 are used to consider induced changes in the simulated hydrological cycle. In addition, simulated SST and sea ice are taken from a MPI-ESM simulation conducted for CMIP5 following the RCP8.5 scenario. The

  11. Mechanical properties and chemical stability of pivalolactone-based poly(ether ester)s

    NARCIS (Netherlands)

    Tijsma, E.J.; Tijsma, E.J.; van der Does, L.; Bantjes, A.; Bantjes, A.; Vulic, I.

    1994-01-01

    The processing, mechanical and chemical properties of poly(ether ester)s, prepared from pivalolactone (PVL), 1,4-butanediol (4G) and dimethyl terephthalate (DMT), were studied. The poly(ether ester)s could easily be processed by injection moulding, owing to their favourable rheological and thermal

  12. Geologic, stratigraphic, thermal, and mechanical factors which influence repository design in the bedded salt environment

    International Nuclear Information System (INIS)

    Ashby, J.P.; Nair, O.; Ortman, D.; Rowe, J.

    1979-12-01

    This report describes the geologic, stratigraphic, thermal, and mechanical considerations applicable to repository design. The topics discussed in the report include: tectonic activity; geologic structure; stratigraphy; rock mechanical properties; and hydrologic properties

  13. Assessment of variability in the hydrological cycle of the Loess Plateau, China: examining dependence structures of hydrological processes

    Science.gov (United States)

    Guo, A.; Wang, Y.

    2017-12-01

    Investigating variability in dependence structures of hydrological processes is of critical importance for developing an understanding of mechanisms of hydrological cycles in changing environments. In focusing on this topic, present work involves the following: (1) identifying and eliminating serial correlation and conditional heteroscedasticity in monthly streamflow (Q), precipitation (P) and potential evapotranspiration (PE) series using the ARMA-GARCH model (ARMA: autoregressive moving average; GARCH: generalized autoregressive conditional heteroscedasticity); (2) describing dependence structures of hydrological processes using partial copula coupled with the ARMA-GARCH model and identifying their variability via copula-based likelihood-ratio test method; and (3) determining conditional probability of annual Q under different climate scenarios on account of above results. This framework enables us to depict hydrological variables in the presence of conditional heteroscedasticity and to examine dependence structures of hydrological processes while excluding the influence of covariates by using partial copula-based ARMA-GARCH model. Eight major catchments across the Loess Plateau (LP) are used as study regions. Results indicate that (1) The occurrence of change points in dependence structures of Q and P (PE) varies across the LP. Change points of P-PE dependence structures in all regions almost fully correspond to the initiation of global warming, i.e., the early 1980s. (3) Conditional probabilities of annual Q under various P and PE scenarios are estimated from the 3-dimensional joint distribution of (Q, P and PE) based on the above change points. These findings shed light on mechanisms of the hydrological cycle and can guide water supply planning and management, particularly in changing environments.

  14. Thermally-driven Coupled THM Processes in Shales

    Science.gov (United States)

    Rutqvist, J.

    2017-12-01

    Temperature changes can trigger strongly coupled thermal-hydrological-mechanical (THM) processes in shales that are important to a number of subsurface energy applications, including geologic nuclear waste disposal and hydrocarbon extraction. These coupled processes include (1) direct pore-volume couplings, by thermal expansion of trapped pore-fluid that triggers instantaneous two-way couplings between pore fluid pressure and mechanical deformation, and (2) indirect couplings in terms of property changes, such as changes in mechanical stiffness, strength, and permeability. Direct pore-volume couplings have been studied in situ during borehole heating experiments in shale (or clay stone) formations at Mont Terri and Bure underground research laboratories in Switzerland and France. Typically, the temperature changes are accompanied with a rapid increase in pore pressure followed by a slower decrease towards initial (pre-heating) pore pressure. Coupled THM modeling of these heater tests shows that the pore pressure increases because the thermal expansion coefficient of the fluid is much higher than that of the porous clay stone. Such thermal pressurization induces fluid flow away from the pressurized area towards areas of lower pressure. The rate of pressure increase and magnitude of peak pressure depends on the rate of heating, pore-compressibility, and permeability of the shale. Modeling as well as laboratory experiments have shown that if the pore pressure increase is sufficiently large it could lead to fracturing of the shale or shear slip along pre-existing bedding planes. Another set of data and observations have been collected associated with studies related to concentrated heating and cooling of oil-shales and shale-gas formations. Heating may be used to enhance production from tight oil-shale, whereas thermal stimulation has been attempted for enhanced shale-gas extraction. Laboratory experiments on shale have shown that strength and elastic deformation

  15. Changes in mechanical, chemical, and thermal sensitivity of the cornea after topical application of nonsteroidal anti-inflammatory drugs.

    Science.gov (United States)

    Acosta, M Carmen; Berenguer-Ruiz, Leticia; García-Gálvez, Alberto; Perea-Tortosa, David; Gallar, Juana; Belmonte, Carlos

    2005-01-01

    In addition to their well-known anti-inflammatory actions, some of the nonsteroidal anti-inflammatory drugs (NSAIDs) appear to have an analgesic effect. In human subjects, the changes in threshold and intensity of sensations evoked by mechanical, chemical, and thermal stimulation of the cornea induced by topical administration of two commercial NSAIDs, diclofenac sodium (Voltaren; Novartis, Basel, Switzerland) and flurbiprofen (Ocuflur; Allergan, Irvine, CA), were studied. Corneal sensitivity was measured in 10 young, healthy subjects with a gas esthesiometer. Chemical (10%-70% CO2 in air), mechanical (0-264 mL/min), and thermal (corneal temperature changes between -4.5 degrees C and +3 degrees C around the normal value) stimuli were applied to the center of the cornea. The intensity and perceived magnitude of the psychophysical attributes of the evoked sensation were scored at the end of the pulse in a 10-cm, continuous visual analog scale (VAS). The threshold was expressed as the stimulus intensity that evoked a VAS score >0.5. Sensitivity was measured in both eyes of each subject on two separate days, one without treatment and the other 30 minutes after topical application of 0.03% flurbiprofen (seven subjects) or 0.1% diclofenac sodium (six subjects). Diclofenac attenuated significantly all the sensation parameters evoked by high-intensity mechanical, chemical, and thermal stimuli. Flurbiprofen produced a slight reduction of the sensations evoked by mechanical and chemical stimulation that became significant only for the irritation caused by chemical stimuli of maximum intensity (70% CO2). None of the drugs modified significantly the detection threshold of the different stimuli. Flurbiprofen had a very limited effect on sensations evoked by corneal stimulation, whereas diclofenac reduced the intensity of sensations evoked by stimuli of different modality, suggesting a mild local anesthetic effect of this drug on all types of corneal sensory fibers. Such

  16. Chemical and mechanical efficiencies of molecular motors and implications for motor mechanisms

    International Nuclear Information System (INIS)

    Wang Hongyun

    2005-01-01

    Molecular motors operate in an environment dominated by viscous friction and thermal fluctuations. The chemical reaction in a motor may produce an active force at the reaction site to directly move the motor forward. Alternatively a molecular motor may generate a unidirectional motion by rectifying thermal fluctuations using free energy barriers established in the chemical reaction. The reaction cycle has many occupancy states, each having a different effect on the motor motion. The average effect of the chemical reaction on the motor motion can be characterized by the motor potential profile. The biggest advantage of studying the motor potential profile is that it can be reconstructed from the time series of motor positions measured in single-molecule experiments. In this paper, we use the motor potential profile to express the Stokes efficiency as the product of the chemical efficiency and the mechanical efficiency. We show that both the chemical and mechanical efficiencies are bounded by 100% and, thus, are properly defined efficiencies. We discuss implications of high efficiencies for motor mechanisms: a mechanical efficiency close to 100% implies that the motor potential profile is close to a constant slope; a chemical efficiency close to 100% implies that (i) the chemical transitions are not slower than the mechanical motion and (ii) the equilibrium constant of each chemical transition is close to one

  17. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries

    Science.gov (United States)

    Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming

    2018-02-01

    Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.

  18. Improving Permafrost Hydrology Prediction Through Data-Model Integration

    Science.gov (United States)

    Wilson, C. J.; Andresen, C. G.; Atchley, A. L.; Bolton, W. R.; Busey, R.; Coon, E.; Charsley-Groffman, L.

    2017-12-01

    The CMIP5 Earth System Models were unable to adequately predict the fate of the 16GT of permafrost carbon in a warming climate due to poor representation of Arctic ecosystem processes. The DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic project aims to reduce uncertainty in the Arctic carbon cycle and its impact on the Earth's climate system by improved representation of the coupled physical, chemical and biological processes that drive how much buried carbon will be converted to CO2 and CH4, how fast this will happen, which form will dominate, and the degree to which increased plant productivity will offset increased soil carbon emissions. These processes fundamentally depend on permafrost thaw rate and its influence on surface and subsurface hydrology through thermal erosion, land subsidence and changes to groundwater flow pathways as soil, bedrock and alluvial pore ice and massive ground ice melts. LANL and its NGEE colleagues are co-developing data and models to better understand controls on permafrost degradation and improve prediction of the evolution of permafrost and its impact on Arctic hydrology. The LANL Advanced Terrestrial Simulator was built using a state of the art HPC software framework to enable the first fully coupled 3-dimensional surface-subsurface thermal-hydrology and land surface deformation simulations to simulate the evolution of the physical Arctic environment. Here we show how field data including hydrology, snow, vegetation, geochemistry and soil properties, are informing the development and application of the ATS to improve understanding of controls on permafrost stability and permafrost hydrology. The ATS is being used to inform parameterizations of complex coupled physical, ecological and biogeochemical processes for implementation in the DOE ACME land model, to better predict the role of changing Arctic hydrology on the global climate system. LA-UR-17-26566.

  19. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE THERMAL DESORPTION UNIT - APPLICATIONS ANALYSIS REPORT

    Science.gov (United States)

    ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...

  20. Thermal theory of autowave processes in low-temperature solid-phase radiochemical reactions

    International Nuclear Information System (INIS)

    Barelko, V.V.; Barkalov, I.M.; Vaganov, D.A.; Zanin, A.M.; Kiryukhin, D.P.

    1982-01-01

    A new phenomenon in radiation cryochemistry concerning the class of autowave processes was previously discovered. It was observed in halogenation and hydrohalogenation of hydrocarbons and consisted of spontaneous, laminar propagation of a chemical transformation wave based on a frozen mixture of reagents previously irradiated with 60 Co γ-rays. The effect of the positive inverse correlation between the chemical conversion and brittle fracture of a solid sample of reagents is the phenomenological basis of the phenomenon; formation of fractures triggers a reactive process which takes place on their active surface (or in the layer adjacent to it), and the chemical reaction, in turn, stimulates the subsequent development of the process of decomposition. As a result, a single brittle fracture and chemical conversion wave which moves along the solid sample arises. Different mechanisms of generation of fracture surfaces under the effect of the reaction are possible. A difference in the densities of the initial reagents and the products of the reaction could be one of the causes of brittle fracture, and the thermal stresses induced by the exothermicity of the chemical processes could be another cause. The present work concerns the analysis of the features of the wave process which occurs based on the second, thermal mechanism. The analysis was conducted within the framework of a phenomenological approach which does not require specific definition of the nature of the chemical activation of the system during its brittle fracture

  1. A coupled mechanical-chemical model for reflecting the influence of stress on oxidation reactions in thermal barrier coating

    Science.gov (United States)

    Chen, Lin; Yueming, Li

    2018-06-01

    In this paper, a coupled mechanical-chemical model is established based on the thermodynamic framework, in which the contribution of chemical expansion to free energy is introduced. The stress-dependent chemical potential equilibrium at the gas-solid interface and the stress gradient-dependent diffusion equation as well as a so-called generalized force which is conjugate to the oxidation rate are derived from the proposed model, which could reflect the influence of stresses on the oxidation reaction. Based on the proposed coupled mechanical-chemical model, a user element subroutine is developed in ABAQUS. The numerical simulation of the high temperature oxidation in the thermal barrier coating is carried out to verify the accuracy of the proposed model, and then the influence of stresses on the oxidation reaction is investigated. In thermally grown oxide, the considerable stresses would be induced by permanent volumetric swelling during the oxidation. The stresses play an important role in the chemical potential equilibrium at the gas-solid interface and strongly affect the oxidation reaction. The gradient of the stresses, however, only occurs in the extremely thin oxidation front layer, which plays a very limited role in the oxidation reaction. The generalized force could be divided into the stress-dependent and the stress-independent parts. Comparing with the stress-independent part, the stress-dependent part is smaller, which has little influence on oxidation reaction.

  2. Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils.

    Science.gov (United States)

    Li, Wei; Wu, Qiong; Zhao, Xin; Huang, Zhanhua; Cao, Jun; Li, Jian; Liu, Shouxin

    2014-11-26

    Long filamentous nanocellulose fibrils (NCFs) were prepared from chemical-thermomechanical pulps (CTMP) using ultrasonication. Their contribution to enhancements in thermal stability and mechanical properties of poly(vinyl alcohol) films were investigated. The unique chemical pretreatment and mechanical effects of CTMP loosen and unfold fibers during the pulping process, which enables further chemical purification and subsequent ultrasound treatment for formation of NCFs. The NCFs exhibited higher crystallinity (72.9%) compared with that of CTMP (61.5%), and had diameters ranging from 50 to 120 nm. A NCF content of 6 wt% was found to yield the best thermal stability, light transmittance, and mechanical properties in the PVA/NCF composites. The composites also exhibited a visible light transmittance of 73.7%, and the tensile strength and Young's modulus were significantly improved, with values 2.8 and 2.4 times larger, respectively, than that of neat PVA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM) MODELS

    International Nuclear Information System (INIS)

    Y.S. Wu

    2005-01-01

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas

  4. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Y.S. Wu

    2005-08-24

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on

  5. Thermal-mechanical-chemical responses of polymer-bonded explosives using a mesoscopic reactive model under impact loading.

    Science.gov (United States)

    Wang, XinJie; Wu, YanQing; Huang, FengLei

    2017-01-05

    A mesoscopic framework is developed to quantify the thermal-mechanical-chemical responses of polymer-bonded explosive (PBX) samples under impact loading. A mesoscopic reactive model is developed for the cyclotetramethylenetetranitramine (HMX) crystal, which incorporates nonlinear elasticity, crystal plasticity, and temperature-dependent chemical reaction. The proposed model was implemented in the finite element code ABAQUS by the user subroutine VUMAT. A series of three-dimensional mesoscale models were constructed and calculated under low-strength impact loading scenarios from 100m/s to 600m/s where only the first wave transit is studied. Crystal anisotropy and microstructural heterogeneity are responsible for the nonuniform stress field and fluctuations of the stress wave front. At a critical impact velocity (≥300m/s), a chemical reaction is triggered because the temperature contributed by the volumetric and plastic works is sufficiently high. Physical quantities, including stress, temperature, and extent of reaction, are homogenized from those across the microstructure at the mesoscale to compare with macroscale measurements, which will advance the continuum-level models. The framework presented in this study has important implications in understanding hot spot ignition processes and improving predictive capabilities in energetic materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Thermal-chemical-mechanical feedback during fluid-rock interactions: Implications for chemical transport and scales of equilibria in the crust

    International Nuclear Information System (INIS)

    Dutrow, Barbara

    2008-01-01

    Our research evaluates the hypothesis that feedback amongst thermal-chemical-mechanical processes operative in fluid-rock systems alters the fluid flow dynamics of the system which, in turn, affects chemical transport and temporal and spatial scales of equilibria, thus impacting the resultant mineral textural development of rocks. Our methods include computational experimentation and detailed analyses of fluid-infiltrated rocks from well-characterized terranes. This work focuses on metamorphic rocks and hydrothermal systems where minerals and their textures are utilized to evaluate pressure (P), temperature (T), and time (t) paths in the evolution of mountain belts and ore deposits, and to interpret tectonic events and the timing of these events. Our work on coupled processes also extends to other areas where subsurface flow and transport in porous media have consequences such as oil and gas movement, geothermal system development, transport of contaminants, nuclear waste disposal, and other systems rich in fluid-rock reactions. Fluid-rock systems are widespread in the geologic record. Correctly deciphering the products resulting from such systems is important to interpreting a number of geologic phenomena. These systems are characterized by complex interactions involving time-dependent, non-linear processes in heterogeneous materials. While many of these interactions have been studied in isolation, they are more appropriately analyzed in the context of a system with feedback. When one process impacts another process, time and space scales as well as the overall outcome of the interaction can be dramatically altered. Our goals to test this hypothesis are: to develop and incorporate algorithms into our 3D heat and mass transport code to allow the effects of feedback to be investigated numerically, to analyze fluid infiltrated rocks from a variety of terranes at differing P-T conditions, to identify subtle features of the infiltration of fluids and/or feedback, and

  7. The effect of thermal processing on microstructure and mechanical properties in a nickel-iron alloy

    Science.gov (United States)

    Yang, Ling

    The correlation between processing conditions, resulted microstructure and mechanical properties is of interest in the field of metallurgy for centuries. In this work, we investigated the effect of thermal processing parameters on microstructure, and key mechanical properties to turbine rotor design: tensile yield strength and crack growth resistance, for a nickel-iron based superalloy Inconel 706. The first step of the designing of experiments is to find parameter ranges for thermal processing. Physical metallurgy on superalloys was combined with finite element analysis to estimate variations in thermal histories for a large Alloy 706 forging, and the results were adopted for designing of experiments. Through the systematic study, correlation was found between the processing parameters and the microstructure. Five different types of grain boundaries were identified by optical metallography, fractography, and transmission electron microscopy, and they were found to be associated with eta precipitation at the grain boundaries. Proportions of types of boundaries, eta size, spacing and angle respect to the grain boundary were found to be dependent on processing parameters. Differences in grain interior precipitates were also identified, and correlated with processing conditions. Further, a strong correlation between microstructure and mechanical properties was identified. The grain boundary precipitates affect the time dependent crack propagation resistance, and different types of boundaries have different levels of resistance. Grain interior precipitates were correlated with tensile yield strength. It was also found that there is a strong environmental effect on time dependent crack propagation resistance, and the sensitivity to environmental damage is microstructure dependent. The microstructure with eta decorated on grain boundaries by controlled processing parameters is more resistant to environmental damage through oxygen embrittlement than material without eta

  8. [Hydrologic processes of the different landscape zones in Fenhe River headwater catchment].

    Science.gov (United States)

    Yang, Yong-Gang; Li, Cai-Mei; Qin, Zuo-Dong; Zou, Song-Bing

    2014-06-01

    There are few studies on the hydrologic processes of the landscape zone scales at present. Since the water environment is worsening, there is sharp contradiction between supply and demand of water resources in Shanxi province. The principle of the hydrologic processes of the landscape zones in Fenhe River headwater catchment was revealed by means of isotope tracing, hydrology geological exploration and water chemical signal study. The results showed that the subalpine meadow zone and the medium high mountain forest zone were main runoff formation regions in Fenhe River headwater catchment, while the sparse forest shrub zone and the mountain grassland zone lagged the temporal and spatial collection of the precipitation. Fenhe River water was mainly recharged by precipitation, groundwater, melt water of snow and frozen soil. This study suggested that the whole catchment precipitation hardly directly generated surface runoff, but was mostly transformed into groundwater or interflow, and finally concentrated into river channel, completed the "recharge-runoff-discharge" hydrologic processes. This study can provide scientific basis and reference for the containment of water environment deterioration, and is expected to deliver the comprehensive restoration of clear-water reflowing and the ecological environment in Shanxi province.

  9. Fundamental limitations of non-thermal plasma processing for internal combustion engine NOx control

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1993-01-01

    This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NO x control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO x removal mechanisms, and by product formation. Can non-thermal deNO x operate efficiently without additives or catalysts? How much electrical power does it cost to operate? What are the by-products of the process? This paper addresses these fundamental issues based on an analysis of the electron-molecule processes and chemical kinetics

  10. Thermal and mechanical behaviour of oxygen carrier materials for chemical looping combustion in a packed bed reactor

    International Nuclear Information System (INIS)

    Jacobs, M.; Van Noyen, J.; Larring, Y.; Mccann, M.; Pishahang, M.; Amini, S.; Ortiz, M.; Galluci, F.; Sint-Annaland, M.V.; Tournigant, D.; Louradour, E.; Snijkers, F.

    2015-01-01

    Highlights: • Ilmenite-based oxygen carriers were developed for packed-bed chemical looping. • Addition of Mn_2O_3 increased mechanical strength and microstructure of the carriers. • Oxygen carriers were able to withstand creep and thermal cycling up to 1200 °C. • Ilmenite-based granules are a promising shape for packed-bed reactor conditions. - Abstract: Chemical looping combustion (CLC) is a promising carbon capture technology where cyclic reduction and oxidation of a metallic oxide, which acts as a solid oxygen carrier, takes place. With this system, direct contact between air and fuel can be avoided, and so, a concentrated CO_2 stream is generated after condensation of the water in the exit gas stream. An interesting reactor system for CLC is a packed bed reactor as it can have a higher efficiency compared to a fluidized bed concept, but it requires other types of oxygen carrier particles. The particles must be larger to avoid a large pressure drop in the reactor and they must be mechanically strong to withstand the severe reactor conditions. Therefore, oxygen carriers in the shape of granules and based on the mineral ilmenite were subjected to thermal cycling and creep tests. The mechanical strength of the granules before and after testing was investigated by crush tests. In addition, the microstructure of these oxygen particles was studied to understand the relationship between the physical properties and the mechanical performance. It was found that the granules are a promising shape for a packed bed reactor as no severe degradation in strength was noticed upon thermal cycling and creep testing. Especially, the addition of Mn_2O_3 to the ilmenite, which leads to the formation of an iron–manganese oxide, seems to results in stronger granules than the other ilmenite-based granules.

  11. Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0

    Directory of Open Access Journals (Sweden)

    G. Bisht

    2018-01-01

    Full Text Available Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. Here, we analyze the effects of snow redistribution (SR and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0. Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SR and subsurface process representation. When SR was included, model predictions better agreed (higher R2, lower bias and RMSE with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R2 of 0.59 °C, 1.82 °C, and 0.99, respectively. The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ∼ 10 cm shallower and  ∼ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ∼ 3 cm. Our integration of three-dimensional subsurface hydrologic and

  12. Coarse grain model for coupled thermo-mechano-chemical processes and its application to pressure-induced endothermic chemical reactions

    International Nuclear Information System (INIS)

    Antillon, Edwin; Banlusan, Kiettipong; Strachan, Alejandro

    2014-01-01

    We extend a thermally accurate model for coarse grain dynamics (Strachan and Holian 2005 Phys. Rev. Lett. 94 014301) to enable the description of stress-induced chemical reactions in the degrees of freedom internal to the mesoparticles. Similar to the breathing sphere model, we introduce an additional variable that describes the internal state of the particles and whose dynamics is governed both by an internal potential energy function and by interparticle forces. The equations of motion of these new variables are derived from a Hamiltonian and the model exhibits two desired features: total energy conservation and Galilean invariance. We use a simple model material with pairwise interactions between particles and study pressure-induced chemical reactions induced by hydrostatic and uniaxial compression. These examples demonstrate the ability of the model to capture non-trivial processes including the interplay between mechanical, thermal and chemical processes of interest in many applications. (paper)

  13. A question driven socio-hydrological modeling process

    Science.gov (United States)

    Garcia, M.; Portney, K.; Islam, S.

    2016-01-01

    Human and hydrological systems are coupled: human activity impacts the hydrological cycle and hydrological conditions can, but do not always, trigger changes in human systems. Traditional modeling approaches with no feedback between hydrological and human systems typically cannot offer insight into how different patterns of natural variability or human-induced changes may propagate through this coupled system. Modeling of coupled human-hydrological systems, also called socio-hydrological systems, recognizes the potential for humans to transform hydrological systems and for hydrological conditions to influence human behavior. However, this coupling introduces new challenges and existing literature does not offer clear guidance regarding model conceptualization. There are no universally accepted laws of human behavior as there are for the physical systems; furthermore, a shared understanding of important processes within the field is often used to develop hydrological models, but there is no such consensus on the relevant processes in socio-hydrological systems. Here we present a question driven process to address these challenges. Such an approach allows modeling structure, scope and detail to remain contingent on and adaptive to the question context. We demonstrate the utility of this process by revisiting a classic question in water resources engineering on reservoir operation rules: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? Our example model couples hydrological and human systems by linking the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result, per capita demand decreases during

  14. Effect of thermal and mechanical parameter’s damage numerical simulation cycling effects on defects in hot metal forming processes

    Science.gov (United States)

    El Amri, Abdelouahid; el yakhloufi Haddou, Mounir; Khamlichi, Abdellatif

    2017-10-01

    Damage mechanisms in hot metal forming processes are accelerated by mechanical stresses arising during Thermal and mechanical properties variations, because it consists of the materials with different thermal and mechanical loadings and swelling coefficients. In this work, 3D finite element models (FEM) are developed to simulate the effect of Temperature and the stresses on the model development, using a general purpose FE software ABAQUS. Explicit dynamic analysis with coupled Temperature displacement procedure is used for a model. The purpose of this research was to study the thermomechanical damage mechanics in hot forming processes. The important process variables and the main characteristics of various hot forming processes will also be discussed.

  15. Effects of hydrologic conditions on biogeochemical processes and organic pollutant degradation in salt marsh sediments

    Science.gov (United States)

    W. James Catallo

    2000-01-01

    This work addressed the influence of tidal vs. static hydrologic conditions on biogeochemical processes and the transformation of pollutant organic chemicals (eight representative N-, O-, and S-heterocycles (NOSHs) from coal chemicals, crude oils, and pyrogenic mixtures) in salt marsh sediments. The goals were to: (1) determine the effects of static (flooded, drained)...

  16. The evolution of process-based hydrologic models

    NARCIS (Netherlands)

    Clark, Martyn P.; Bierkens, Marc F.P.; Samaniego, Luis; Woods, Ross A.; Uijlenhoet, Remko; Bennett, Katrina E.; Pauwels, Valentijn R.N.; Cai, Xitian; Wood, Andrew W.; Peters-Lidard, Christa D.

    2017-01-01

    The diversity in hydrologic models has historically led to great controversy on the "correct" approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this

  17. Process Parameters for Successful Synthesis of Carbon Nanotubes by Chemical Vapor Deposition: Implications for Chemical Mechanisms and Life-cycle Assessment

    Science.gov (United States)

    Xue, Ke

    Manufacturing of carbon nanotubes (CNTs) via chemical vapor deposition (CVD) calls for thermal treatment associated with gas-phase rearrangement and catalyst deposition to achieve high cost efficiency and limited influence on environmental impact. Taking advantage of higher degree of structure control and economical efficiency, catalytic chemical vapor deposition (CCVD) has currently become the most prevailing synthesis approach for the synthesis of large-scale pure CNTs in past years. Because the synthesis process of CNTs dominates the potential ecotoxic impacts, materials consumption, energy consumption and greenhouse gas emissions should be further limited to efficiently reduce life cycle ecotoxicity of carbon naotubes. However, efforts to reduce energy and material requirements in synthesis of CNTs by CCVD are hindered by a lack of mechanistic understanding. In this thesis, the effect of operating parameters, especially the temperature, carbon source concentration, and residence time on the synthesis were studied to improve the production efficiency in a different angle. Thus, implications on the choice of operating parameters could be provided to help the synthesis of carbon nanotubes. Here, we investigated the typical operating parameters in conditions that have yielded successful CNT production in the published academic literature of over seventy articles. The data were filtered by quality of the resultant product and deemed either "successful" or "unsuccessful" according to the authors. Furthermore, growth rate data were tabulated and used as performance metric for the process whenever possible. The data provided us an opportunity to prompt possible and common methods for practioners in the synthesis of CNTs and motivate routes to achieve energy and material minimization. The statistical analysis revealed that methane and ethylene often rely on thermal conversion process to form direct carbon precursor; further, methane and ethylene could not be the direct

  18. A MODELING AND SIMULATION LANGUAGE FOR BIOLOGICAL CELLS WITH COUPLED MECHANICAL AND CHEMICAL PROCESSES.

    Science.gov (United States)

    Somogyi, Endre; Glazier, James A

    2017-04-01

    Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment.

  19. Failure mechanism for thermal fatigue of thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Giolli, C.; Scrivani, A.; Rizzi, G. [Turbocoating S.p.A., Rubbiano di Solignano (Italy); Borgioli, F. [Firenze Univ., Sesto Fiorentino (Italy); Bolelli, G.; Lusvarghi, L. [Univ. di Modena e Reggio Emilia, Modena (Italy)

    2008-07-01

    High temperature thermal fatigue causes the failure of Thermal Barrier Coating (TBC) systems. Due to the difference in thickness and microstructure between thick TBCs and traditional thin TBCs, they cannot be assumed a-priori to possess the same failure mechanisms. Thick TBCs, consisting of a CoNiCrAlY bond coat and Yttria Partially Stabilised Zirconia top coat with different values of porosity, were produced by Air Plasma Spray. Thermal fatigue resistance limit of TBCs was tested by Furnace Cycling Tests (FCT) according to the specifications of an Original Equipment Manufacturer (OEM). TBC systems were analyzed before and after FCT. The morphological and chemical evolution of CoNiCrAlY/TGO microstructure was studied. Sintering effect, residual stress, phase transformation and fracture toughness were evaluated in the ceramic Top Coat. All the tested samples passed FCT according to the specification of an important OEM. Thermal fatigue resistance increases with the amount of porosity in the top coat. The compressive in-plane stresses increase in the TBC systems after thermal cycling, nevertheless the increasing rate has a trend contrary to the porosity level of top coat. The data suggest that the spallation happens at the TGO/Top Coat interface. The failure mechanism of thick TBCs subjected to thermal fatigue was eventually found to be similar to the failure mechanism of thin TBC systems made by APS. (orig.)

  20. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    International Nuclear Information System (INIS)

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-01-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone ''Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures'' (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  1. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Blanco-Martin, Laura [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Molins, Sergi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  2. Hydrological mixing and geochemical processes characterization in an estuarine/mangrove system using environmental tracers in Babitonga Bay (Santa Catarina, Brazil)

    Science.gov (United States)

    Barros Grace, Virgínia; Mas-Pla, Josep; Oliveira Novais, Therezinha; Sacchi, Elisa; Zuppi, Gian Maria

    2008-03-01

    The hydrologic complex of Babitonga Bay (Brazil) forms a vast environmental complex where agriculture, shellfish farming, and industries coexist with a unique natural area of Atlantic rain forest and mangrove systems. The origin of different continental hydrological components, the environmental transition between saline and freshwaters, and the influence of the seasonality on Babitonga Bay waters are evaluated using isotopes and chemistry. End-member mixing analysis is used to explore hydrological processes in the bay. We show that a mixing of waters from different origins takes place in the bay modifying its chemical characteristics. Furthermore, biogeochemical processes related to well-developed mangrove systems are responsible for an efficient bromide uptake, which limit its use as a tracer as commonly used in non-biologically active environments. Seasonal behaviours are also distinguished from our datasets. The rainy season (April) provides a homogenization of the hydrological processes that is not seen after the dry season (October), when larger spatial differences appear and when the effects of biological processes on the bay hydrochemistry are more dynamic, or can be better recognized. Moreover, Cl/Br and stable isotopes of water molecule allow a neat definition of the hydrological and biogeochemical processes that control chemical composition in coastal and transition areas.

  3. A comparative study on thermal, mechanical and dielectric characteristics of low density polyethylene crosslinked by radiation and chemical methods

    International Nuclear Information System (INIS)

    Kim, B.H.; Ling, D.Y.; Kim, J.S.

    1976-01-01

    A comparative study on thermal, static mechanical and dielectric characteristics were made over a temperature range of ca. 20 0 C to 320 0 C and a frequency range of KHZ band on low density polyethylene specimens crosslinked, respectively, by radiation and chemical method. The thermal property of both specimens shows that softening point appears to unchange by crosslinking however, melting and liquidizing temperatures attain rapid increase at the imitation of crosslinking. Mechanical properties show little difference to both specimens crosslinked by different method, further the behaviors were discussed in connection with the relaxation of molecular segments in amorphous phase. Dose dependent dielectric characteristics observed at ambient temperature under several fixed frequencies exhibit extremities at ca. 20 Mrad and the behaviors also were interpreted qualitatively by taking into consideration of dipole concentration change in amorphous phase together with the role of specimen geometry to the depth of oxidative layer. Observing frequency dependent dielectric characteristics, it was also proved that ionic conduction loss is appreciably greater in the specimen prepared by chemical method than that by radiation. (author)

  4. Analysis of mechanism of carbide tool wear and control by wear process

    Directory of Open Access Journals (Sweden)

    Pham Hoang Trung

    2017-01-01

    Full Text Available The analysis of physic-mechanical and thermal physic properties of hard alloys depending on their chemical composition is conducted. The correlation of cutting properties and regularities of carbide tool wear with cutting conditions and thermal physic properties of tool material are disclosed. Significant influence on the tool wear of not only mechanical, but, in the first place, thermal physic properties of tool and structural materials is established by the researches of Russian scientists, because in the range of industrial used cutting speeds the cause of tool wear are diffusion processes. The directions of intensity decreasing of tool wear by determining rational processing conditions, the choice of tool materials and wear-resistant coating on tool surface are defined.

  5. Thermal annealing of recoil 56Mn in strontium permanganate under (n,γ) process

    International Nuclear Information System (INIS)

    Mishra, Shuddhodan P.; Vijaya

    2002-01-01

    Chemical stabilization of recoil 56 Mn in strontium permanganate (hydrous and anhydrous) has been investigated with a special reference to pre-and post-activation thermal annealing treatments. The retention of 56 Mn in neutron irradiated strontium permanganate showed significant variation on thermal annealing in both pre-and post-activation heated target. The recoil re-entry process obeys simple first order kinetics and the activation energy deduced for thermal annealing process is very low as computed by classical Arrhenius plots. The results observed are discussed in the light of existing ideas for understanding the recoil stabilization mechanism of parent reformation and the nature of precursors in permanganates. (author)

  6. Gradation of complexity and predictability of hydrological processes

    Science.gov (United States)

    Sang, Yan-Fang; Singh, Vijay P.; Wen, Jun; Liu, Changming

    2015-06-01

    Quantification of the complexity and predictability of hydrological systems is important for evaluating the impact of climate change on hydrological processes, and for guiding water activities. In the literature, the focus seems to have been on describing the complexity of spatiotemporal distribution of hydrological variables, but little attention has been paid to the study of complexity gradation, because the degree of absolute complexity of hydrological systems cannot be objectively evaluated. Here we show that complexity and predictability of hydrological processes can be graded into three ranks (low, middle, and high). The gradation is based on the difference in the energy distribution of hydrological series and that of white noise under multitemporal scales. It reflects different energy concentration levels and contents of deterministic components of the hydrological series in the three ranks. Higher energy concentration level reflects lower complexity and higher predictability, but scattered energy distribution being similar to white noise has the highest complexity and is almost unpredictable. We conclude that the three ranks (low, middle, and high) approximately correspond to deterministic, stochastic, and random hydrological systems, respectively. The result of complexity gradation can guide hydrological observations and modeling, and identification of similarity patterns among different hydrological systems.

  7. Welding thermal cycle-triggered precipitation processes in steel S700MC subjected to the thermo-mechanical control processing

    OpenAIRE

    Górka J.

    2017-01-01

    This study presents tests concerned with welding thermal process-induced precipitation processes taking place in 10 mm thick steel S700MC subjected to the Thermo-Mechanical Control Process (TMCP) with accelerated cooling. The thermomechanical processing of steel S700MC leads to its refinement, structural defects and solutioning with hardening constituents. Tests of thin foils performed using a transmission electron microscope revealed that the hardening of steel S700MC was primarily caused by...

  8. Hydrology

    Science.gov (United States)

    Brutsaert, Wilfried

    2005-08-01

    Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. Hydrology - An Introduction presents a coherent introduction to the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the last thirty years. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other earth sciences. Emphasis on fundamentals Clarification of the underlying physical processes Applications of fluid mechanics in the natural environment

  9. Aggregation of egg white proteins with pulsed electric fields and thermal processes.

    Science.gov (United States)

    Wu, Li; Zhao, Wei; Yang, Ruijin; Yan, Wenxu; Sun, Qianyan

    2016-08-01

    Pulsed electric field (PEF) processing is progressing towards application for liquid egg to ensure microbial safety. However, it usually causes protein aggregation, and the mechanism is still unclear. In this study, egg white protein was applied to investigate the changes in protein structure and mechanism of aggregates formation and a comparison was made with thermal treatment. Soluble protein content decreased with the increase of turbidity after both treatments. Fluorescence intensity and free sulfhydryl content were increased after being treated at 70 °C for 4 min. Less-remarkable changes of hydrophobicity were observed after PEF treatments (30 kV cm(-1) , 800 µs). Soluble and insoluble aggregates were observed by thermal treatment, and disulfide bonds were the main binding forces. The main components of insoluble aggregates formed by thermal treatment were ovotransferrin (30.58%), lysozyme (18.47%) and ovalbumin (14.20%). While only insoluble aggregates were detected during PEF processes, which consists of ovotransferrin (11.86%), lysozyme (21.11%) and ovalbumin (31.07%). Electrostatic interaction played a very important role in the aggregates formation. PEF had a minor impact on the structure of egg white protein. PEF had insignificant influence on heat-sensitive protein, indicating that PEF has potential in processing food with high biological activity and heat sensitive properties. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Thermal-Chemical Model Of Subduction: Results And Tests

    Science.gov (United States)

    Gorczyk, W.; Gerya, T. V.; Connolly, J. A.; Yuen, D. A.; Rudolph, M.

    2005-12-01

    Seismic structures with strong positive and negative velocity anomalies in the mantle wedge above subduction zones have been interpreted as thermally and/or chemically induced phenomena. We have developed a thermal-chemical model of subduction, which constrains the dynamics of seismic velocity structure beneath volcanic arcs. Our simulations have been calculated over a finite-difference grid with (201×101) to (201×401) regularly spaced Eulerian points, using 0.5 million to 10 billion markers. The model couples numerical thermo-mechanical solution with Gibbs energy minimization to investigate the dynamic behavior of partially molten upwellings from slabs (cold plumes) and structures associated with their development. The model demonstrates two chemically distinct types of plumes (mixed and unmixed), and various rigid body rotation phenomena in the wedge (subduction wheel, fore-arc spin, wedge pin-ball). These thermal-chemical features strongly perturb seismic structure. Their occurrence is dependent on the age of subducting slab and the rate of subduction.The model has been validated through a series of test cases and its results are consistent with a variety of geological and geophysical data. In contrast to models that attribute a purely thermal origin for mantle wedge seismic anomalies, the thermal-chemical model is able to simulate the strong variations of seismic velocity existing beneath volcanic arcs which are associated with development of cold plumes. In particular, molten regions that form beneath volcanic arcs as a consequence of vigorous cold wet plumes are manifest by > 20% variations in the local Poisson ratio, as compared to variations of ~ 2% expected as a consequence of temperature variation within the mantle wedge.

  11. Hydrological processes at the urban residential scale

    Science.gov (United States)

    Q. Xiao; E.G. McPherson; J.R. Simpson; S.L. Ustin

    2007-01-01

    In the face of increasing urbanization, there is growing interest in application of microscale hydrologic solutions to minimize storm runoff and conserve water at the source. In this study, a physically based numerical model was developed to understand hydrologic processes better at the urban residential scale and the interaction of these processes among different...

  12. Thermodynamic aspects of power production in thermal, chemical and electrochemical systems

    International Nuclear Information System (INIS)

    Sieniutycz, Stanisław; Poświata, Artur

    2012-01-01

    We apply optimization methods to study power generation limits for various energy converters, such as thermal, solar, chemical, and electrochemical engines. Methodological similarity is observed when analysing power limits in thermal machines and fuel cells which are electrochemical flow engines. Operative driving forces and voltage are suitable indicators of imperfect phenomena in energy converters. The results obtained generalize our previous findings for power yield limits in purely thermal systems with finite rates. While temperatures T i of participating media were only necessary variables in purely thermal systems, in the present work both temperatures and chemical potentials μ k are essential. This case is associated with engines propelled by fluxes of both energy and substance. In dynamical systems downgrading or upgrading of resources may occur. Energy flux (power) is created in the generator located between the resource fluid (‘upper’ fluid 1) and the environmental fluid (‘lower’ fluid, 2). Fluid properties, transfer mechanisms and conductance values of dissipative layers or conductors influence the rate of power production. Numerical approaches to the dynamical solutions are based on the dynamic programming or maximum principle. Here we focus especially on the latter method, which involves discrete algorithms of Pontryagin’s type. Downgrading or upgrading of resources may also occur in electrochemical systems of fuel cell type. Yet, in this paper we restrict ourselves to the steady-state fuel cells. We present a simple analysis showing that, in linear systems, only at most ¼ of power dissipated in the natural transfer process can be transformed into the noble form of mechanical power.

  13. Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance

    Science.gov (United States)

    Yi, Shuhua; McGuire, A. David; Harden, Jennifer; Kasischke, Eric; Manies, Kristen L.; Hinzman, Larry; Liljedahl, Anna K.; Randerson, J.; Liu, Heping; Romanovsky, Vladimir E.; Marchenko, Sergey S.; Kim, Yongwon

    2009-01-01

    Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play important roles in controlling interactions among these processes. These interactions were investigated with a new ecosystem model framework, the dynamic organic soil version of the Terrestrial Ecosystem Model, that incorporates an efficient and stable numerical scheme for simulating soil thermal and hydrological dynamics within soil profiles that contain a live moss horizon, fibrous and amorphous organic horizons, and mineral soil horizons. The performance of the model was evaluated for a tundra burn site that had both preburn and postburn measurements, two black spruce fire chronosequences (representing space-for-time substitutions in well and intermediately drained conditions), and a poorly drained black spruce site. Although space-for-time substitutions present challenges in model-data comparison, the model demonstrates substantial ability in simulating the dynamics of evapotranspiration, soil temperature, active layer depth, soil moisture, and water table depth in response to both climate variability and fire disturbance. Several differences between model simulations and field measurements identified key challenges for evaluating/improving model performance that include (1) proper representation of discrepancies between air temperature and ground surface temperature; (2) minimization of precipitation biases in the driving data sets; (3) improvement of the measurement accuracy of soil moisture in surface organic horizons; and (4) proper specification of organic horizon depth/properties, and soil thermal conductivity.

  14. Hydrological character of the soil of a degraded area: comparison of analysis physical, chemical and floristic vegetational

    Science.gov (United States)

    Manfredi, Paolo; Cassinari, Chiara; Giupponi, Luca; Sichel, Giorgio Maria; Trevisan, Marco

    2013-04-01

    This work is an integral part of a project co-financed by the European Union "Environmental recovery of degraded soils and desertified land by a new technology treatment for the recovery of the land" (Life 10 ENV IT 400 "New Life"); this technology is based on a treatment (patented by m.c.m. Ecosistemi) of chemical mechanical processing of degraded soils with an initial process of disgregation of the same followed by their reconstitution incorporating soil matrices, a subsequent polycondensation with humic acids and a final restoration. The area of intervention of the New Life project lies in the municipal territory of Piacenza, where between the years 70 and 80 has been made a landfill for municipal solid waste with subsequent restoration work by placing a layer of soil cover. The first phase of the New Life project was that of a physical and chemical characterization of different cover soils of the area combined with floristic-vegetational analysis. At this stage the present study aims to compare the data related to the analysis of the vegetation with those returned by investigation of hydrological characteristics of soils performed by laboratory methods, together to confront two theoretical calculation methods for determination of hydrological parameters. The comparison of the ecological study of the vegetation with the outcomes obtained by the classical methods regarding the determination of water retention, allows you to have a picture that is as detailed as possible in describing the characteristics of the substrate. The comparison also with the two methods of calculation, which determines the hydrological character conditions in average soil condition, allows you to ascertain the actual disturbance of the soil in the area. In order to delineate the hydrological characteristics of the soils sampled, were quantified by the Maximum Water Concentration, the capacity range, the point of Withering by the method of the Tensiometric box and the Pressure Membrane

  15. Chemomics-based marker compounds mining and mimetic processing for exploring chemical mechanisms in traditional processing of herbal medicines, a continuous study on Rehmanniae Radix.

    Science.gov (United States)

    Zhou, Li; Xu, Jin-Di; Zhou, Shan-Shan; Shen, Hong; Mao, Qian; Kong, Ming; Zou, Ye-Ting; Xu, Ya-Yun; Xu, Jun; Li, Song-Lin

    2017-12-29

    Exploring processing chemistry, in particular the chemical transformation mechanisms involved, is a key step to elucidate the scientific basis in traditional processing of herbal medicines. Previously, taking Rehmanniae Radix (RR) as a case study, the holistic chemome (secondary metabolome and glycome) difference between raw and processed RR was revealed by integrating hyphenated chromatographic techniques-based targeted glycomics and untargeted metabolomics. Nevertheless, the complex chemical transformation mechanisms underpinning the holistic chemome variation in RR processing remain to be extensively clarified. As a continuous study, here a novel strategy by combining chemomics-based marker compounds mining and mimetic processing is proposed for further exploring the chemical mechanisms involved in herbal processing. First, the differential marker compounds between raw and processed herbs were rapidly discovered by untargeted chemomics-based mining approach through multivariate statistical analysis of the chemome data obtained by integrated metabolomics and glycomics analysis. Second, the marker compounds were mimetically processed under the simulated physicochemical conditions as in the herb processing, and the final reaction products were chemically characterized by targeted chemomics-based mining approach. Third, the main chemical transformation mechanisms involved were clarified by linking up the original marker compounds and their mimetic processing products. Using this strategy, a set of differential marker compounds including saccharides, glycosides and furfurals in raw and processed RR was rapidly found, and the major chemical mechanisms involved in RR processing were elucidated as stepwise transformations of saccharides (polysaccharides, oligosaccharides and monosaccharides) and glycosides (iridoid glycosides and phenethylalcohol glycosides) into furfurals (glycosylated/non-glycosylated hydroxymethylfurfurals) by deglycosylation and/or dehydration. The

  16. Interaction of thermal and mechanical processes in steep permafrost rock walls: A conceptual approach

    Science.gov (United States)

    Draebing, D.; Krautblatter, M.; Dikau, R.

    2014-12-01

    Degradation of permafrost rock wall decreases stability and can initiate rock slope instability of all magnitudes. Rock instability is controlled by the balance of shear forces and shear resistances. The sensitivity of slope stability to warming results from a complex interplay of shear forces and resistances. Conductive, convective and advective heat transport processes act to warm, degrade and thaw permafrost in rock walls. On a seasonal scale, snow cover changes are a poorly understood key control of the timing and extent of thawing and permafrost degradation. We identified two potential critical time windows where shear forces might exceed shear resistances of the rock. In early summer combined hydrostatic and cryostatic pressure can cause a peak in shear force exceeding high frozen shear resistance and in autumn fast increasing shear forces can exceed slower increasing shear resistance. On a multiannual system scale, shear resistances change from predominantly rock-mechanically to ice-mechanically controlled. Progressive rock bridge failure results in an increase of sensitivity to warming. Climate change alters snow cover and duration and, hereby, thermal and mechanical processes in the rock wall. Amplified thawing of permafrost will result in higher rock slope instability and rock fall activity. We present a holistic conceptual approach connecting thermal and mechanical processes, validate parts of the model with geophysical and kinematic data and develop future scenarios to enhance understanding on system scale.

  17. Numerical modelling of levee stability based on coupled mechanical, thermal and hydrogeological processes

    Directory of Open Access Journals (Sweden)

    Dwornik Maciej

    2016-01-01

    Full Text Available The numerical modelling of coupled mechanical, thermal and hydrogeological processes for a soil levee is presented in the paper. The modelling was performed for a real levee that was built in Poland as a part of the ISMOP project. Only four parameters were changed to build different flood waves: the water level, period of water increase, period of water decrease, and period of low water level after the experiment. Results of numerical modelling shows that it is possible and advisable to calculate simultaneously changes of thermal and hydro-mechanical fields. The presented results show that it is also possible to use thermal sensors in place of more expensive pore pressure sensors, with some limitations. The results of stability analysis show that the levee is less stable when the water level decreases, after which factor of safety decreases significantly. For all flooding wave parameters described in the paper, the levee is very stable and factor of safety variations for any particular stage were not very large.

  18. Comparative simulation study of coupled THM processes near back-filled and open-drift nuclear waste repositories in Task D of the International DECOVALEX Project

    International Nuclear Information System (INIS)

    Rutqvist, J.; Birkholzer, J.T.; Chijimatsu, M.; Kolditz, O.; Liu, Quan-Sheng; Oda, Y.; Wang, Wenqing; Zhang, Cheng-Yuan

    2006-01-01

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near underground waste emplacement drifts. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower post-closure temperature, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses are currently being resolved. Good agreement in the basic thermal-mechanical responses was also achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglect complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level

  19. Large quantity production of carbon and boron nitride nanotubes by mechano-thermal process

    International Nuclear Information System (INIS)

    Chen, Y.; Fitzgerald, J.D.; Chadderton, L.; Williams, J.S.; Campbell, S.J.

    2002-01-01

    Full text: Nanotube materials including carbon and boron nitride have excellent properties compared with bulk materials. The seamless graphene cylinders with a high length to diameter ratio make them as superstrong fibers. A high amount of hydrogen can be stored into nanotubes as future clean fuel source. Theses applications require large quantity of nanotubes materials. However, nanotube production in large quantity, fully controlled quality and low costs remains challenges for most popular synthesis methods such as arc discharge, laser heating and catalytic chemical decomposition. Discovery of new synthesis methods is still crucial for future industrial application. The new low-temperature mechano-thermal process discovered by the current author provides an opportunity to develop a commercial method for bulk production. This mechano-thermal process consists of a mechanical ball milling and a thermal annealing processes. Using this method, both carbon and boron nitride nanotubes were produced. I will present the mechano-thermal method as the new bulk production technique in the conference. The lecture will summarise main results obtained. In the case of carbon nanotubes, different nanosized structures including multi-walled nanotubes, nanocells, and nanoparticles have been produced in a graphite sample using a mechano-thermal process, consisting of I mechanical milling at room temperature for up to 150 hours and subsequent thermal annealing at 1400 deg C. Metal particles have played an important catalytic effect on the formation of different tubular structures. While defect structure of the milled graphite appears to be responsible for the formation of small tubes. It is found that the mechanical treatment of graphite powder produces a disordered and microporous structure, which provides nucleation sites for nanotubes as well as free carbon atoms. Multiwalled carbon nanotubes appear to grow via growth of the (002) layers during thermal annealing. In the case of BN

  20. The role of soil weathering and hydrology in regulating chemical fluxes from catchments (Invited)

    Science.gov (United States)

    Maher, K.; Chamberlain, C. P.

    2010-12-01

    Catchment-scale chemical fluxes have been linked to a number of different parameters that describe the conditions at the Earth’s surface, including runoff, temperature, rock type, vegetation, and the rate of tectonic uplift. However, many of the relationships relating chemical denudation to surface processes and conditions, while based on established theoretical principles, are largely empirical and derived solely from modern observations. Thus, an enhanced mechanistic basis for linking global solute fluxes to both surface processes and climate may improve our confidence in extrapolating modern solute fluxes to past and future conditions. One approach is to link observations from detailed soil-based studies with catchment-scale properties. For example, a number of recent studies of chemical weathering at the soil-profile scale have reinforced the importance of hydrologic processes in controlling chemical weathering rates. An analysis of data from granitic soils shows that weathering rates decrease with increasing fluid residence times and decreasing flow rates—over moderate fluid residence times, from 5 days to 10 years, transport-controlled weathering explains the orders of magnitude variation in weathering rates to a better extent than soil age. However, the importance of transport-controlled weathering is difficult to discern at the catchment scale because of the range of flow rates and fluid residence times captured by a single discharge or solute flux measurement. To assess the importance of transport-controlled weathering on catchment scale chemical fluxes, we present a model that links the chemical flux to the extent of reaction between the soil waters and the solids, or the fluid residence time. Different approaches for describing the distribution of fluid residence times within a catchment are then compared with the observed Si fluxes for a limited number of catchments. This model predicts high solute fluxes in regions with high run-off, relief, and

  1. Coupled land surface-subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra

    Science.gov (United States)

    Phuong Tran, Anh; Dafflon, Baptiste; Hubbard, Susan S.

    2017-09-01

    Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surface-subsurface hydrological-thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon-climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological-thermal processes associated with annual freeze-thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets - including soil liquid water content, temperature and electrical resistivity tomography (ERT) data - to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological-thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface-subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting) and ice-liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological-thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the

  2. Large sample hydrology in NZ: Spatial organisation in process diagnostics

    Science.gov (United States)

    McMillan, H. K.; Woods, R. A.; Clark, M. P.

    2013-12-01

    A key question in hydrology is how to predict the dominant runoff generation processes in any given catchment. This knowledge is vital for a range of applications in forecasting hydrological response and related processes such as nutrient and sediment transport. A step towards this goal is to map dominant processes in locations where data is available. In this presentation, we use data from 900 flow gauging stations and 680 rain gauges in New Zealand, to assess hydrological processes. These catchments range in character from rolling pasture, to alluvial plains, to temperate rainforest, to volcanic areas. By taking advantage of so many flow regimes, we harness the benefits of large-sample and comparative hydrology to study patterns and spatial organisation in runoff processes, and their relationship to physical catchment characteristics. The approach we use to assess hydrological processes is based on the concept of diagnostic signatures. Diagnostic signatures in hydrology are targeted analyses of measured data which allow us to investigate specific aspects of catchment response. We apply signatures which target the water balance, the flood response and the recession behaviour. We explore the organisation, similarity and diversity in hydrological processes across the New Zealand landscape, and how these patterns change with scale. We discuss our findings in the context of the strong hydro-climatic gradients in New Zealand, and consider the implications for hydrological model building on a national scale.

  3. Mechanisms of fuel-cladding chemical interaction: US interpretation

    International Nuclear Information System (INIS)

    Adamson, M.G.

    1977-01-01

    Proposed mechanisms of fuel-cladding chemical interaction (FCCI) in LMFBR fuel pins are reviewed and examined in terms of in-pile and out-of-pile data. From this examination several factors are identified which may govern the occurrence of localized deep intergranular penetrations of Type-316SS cladding. Using a plausible mechanistic hypothesis for FCCI, first steps have been taken towards developing a quantitative, physically-meaningful, mathematical method of predicting cladding wastage in operating fuel pins. Both kinetic and thermodynamic aspects of FCCI are considered in the development of this prediction method, together with a fuel chemistry model that describes the evolution of thermochemical conditions at the fuel-cladding gap. On the basis of results from recent fuel pin and laboratory tests a thermal transport mechanism has been proposed to explain the thermal gradient-induced migration of Fe, Cr, and Ni from cladding into the fuel. This mechanism involves chemical transport of the metallic cladding components (as tellurides) in liquid Cs-Te. (author)

  4. Mechanisms of fuel-cladding chemical interaction: US interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M G [General Electric Company, Vallecitos Nuclear Center, Pleasanton, CA (United States)

    1977-04-01

    Proposed mechanisms of fuel-cladding chemical interaction (FCCI) in LMFBR fuel pins are reviewed and examined in terms of in-pile and out-of-pile data. From this examination several factors are identified which may govern the occurrence of localized deep intergranular penetrations of Type-316SS cladding. Using a plausible mechanistic hypothesis for FCCI, first steps have been taken towards developing a quantitative, physically-meaningful, mathematical method of predicting cladding wastage in operating fuel pins. Both kinetic and thermodynamic aspects of FCCI are considered in the development of this prediction method, together with a fuel chemistry model that describes the evolution of thermochemical conditions at the fuel-cladding gap. On the basis of results from recent fuel pin and laboratory tests a thermal transport mechanism has been proposed to explain the thermal gradient-induced migration of Fe, Cr, and Ni from cladding into the fuel. This mechanism involves chemical transport of the metallic cladding components (as tellurides) in liquid Cs-Te. (author)

  5. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  6. A process-based typology of hydrological drought

    NARCIS (Netherlands)

    Loon, van A.F.; Lanen, van H.A.J.

    2012-01-01

    Hydrological drought events have very different causes and effects. Classifying these events into distinct types can be useful for both science and management. We propose a hydrological drought typology that is based on governing drought propagation processes derived from catchment-scale drought

  7. Design and Implementation of Hydrologic Process Knowledge-base Ontology: A case study for the Infiltration Process

    Science.gov (United States)

    Elag, M.; Goodall, J. L.

    2013-12-01

    Hydrologic modeling often requires the re-use and integration of models from different disciplines to simulate complex environmental systems. Component-based modeling introduces a flexible approach for integrating physical-based processes across disciplinary boundaries. Several hydrologic-related modeling communities have adopted the component-based approach for simulating complex physical systems by integrating model components across disciplinary boundaries in a workflow. However, it is not always straightforward to create these interdisciplinary models due to the lack of sufficient knowledge about a hydrologic process. This shortcoming is a result of using informal methods for organizing and sharing information about a hydrologic process. A knowledge-based ontology provides such standards and is considered the ideal approach for overcoming this challenge. The aims of this research are to present the methodology used in analyzing the basic hydrologic domain in order to identify hydrologic processes, the ontology itself, and how the proposed ontology is integrated with the Water Resources Component (WRC) ontology. The proposed ontology standardizes the definitions of a hydrologic process, the relationships between hydrologic processes, and their associated scientific equations. The objective of the proposed Hydrologic Process (HP) Ontology is to advance the idea of creating a unified knowledge framework for components' metadata by introducing a domain-level ontology for hydrologic processes. The HP ontology is a step toward an explicit and robust domain knowledge framework that can be evolved through the contribution of domain users. Analysis of the hydrologic domain is accomplished using the Formal Concept Approach (FCA), in which the infiltration process, an important hydrologic process, is examined. Two infiltration methods, the Green-Ampt and Philip's methods, were used to demonstrate the implementation of information in the HP ontology. Furthermore, a SPARQL

  8. Abstraction of Drift-Scale Coupled Processes

    International Nuclear Information System (INIS)

    Francis, N.D.; Sassani, D.

    2000-01-01

    This Analysis/Model Report (AMR) describes an abstraction, for the performance assessment total system model, of the near-field host rock water chemistry and gas-phase composition. It also provides an abstracted process model analysis of potentially important differences in the thermal hydrologic (TH) variables used to describe the performance of a geologic repository obtained from models that include fully coupled reactive transport with thermal hydrology and those that include thermal hydrology alone. Specifically, the motivation of the process-level model comparison between fully coupled thermal-hydrologic-chemical (THC) and thermal-hydrologic-only (TH-only) is to provide the necessary justification as to why the in-drift thermodynamic environment and the near-field host rock percolation flux, the essential TH variables used to describe the performance of a geologic repository, can be obtained using a TH-only model and applied directly into a TSPA abstraction without recourse to a fully coupled reactive transport model. Abstraction as used in the context of this AMR refers to an extraction of essential data or information from the process-level model. The abstraction analysis reproduces and bounds the results of the underlying detailed process-level model. The primary purpose of this AMR is to abstract the results of the fully-coupled, THC model (CRWMS M andO 2000a) for effects on water and gas-phase composition adjacent to the drift wall (in the near-field host rock). It is assumed that drift wall fracture water and gas compositions may enter the emplacement drift before, during, and after the heating period. The heating period includes both the preclosure, in which the repository drifts are ventilated, and the postclosure periods, with backfill and drip shield emplacement at the time of repository closure. Although the preclosure period (50 years) is included in the process models, the postclosure performance assessment starts at the end of this initial period

  9. Applying chemical engineering concepts to non-thermal plasma reactors

    Science.gov (United States)

    Pedro AFFONSO, NOBREGA; Alain, GAUNAND; Vandad, ROHANI; François, CAUNEAU; Laurent, FULCHERI

    2018-06-01

    Process scale-up remains a considerable challenge for environmental applications of non-thermal plasmas. Undersanding the impact of reactor hydrodynamics in the performance of the process is a key step to overcome this challenge. In this work, we apply chemical engineering concepts to analyse the impact that different non-thermal plasma reactor configurations and regimes, such as laminar or plug flow, may have on the reactor performance. We do this in the particular context of the removal of pollutants by non-thermal plasmas, for which a simplified model is available. We generalise this model to different reactor configurations and, under certain hypotheses, we show that a reactor in the laminar regime may have a behaviour significantly different from one in the plug flow regime, often assumed in the non-thermal plasma literature. On the other hand, we show that a packed-bed reactor behaves very similarly to one in the plug flow regime. Beyond those results, the reader will find in this work a quick introduction to chemical reaction engineering concepts.

  10. Chemical and thermal stability of insulin

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2006-01-01

    To study the correlation between the thermal and chemical stability of insulin formulations with various insulin hexamer ligands.......To study the correlation between the thermal and chemical stability of insulin formulations with various insulin hexamer ligands....

  11. Thermal mixtures in stochastic mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, F [Rome Univ. (Italy). Ist. di Matematica; Loffredo, M I [Salerno Univ. (Italy). Ist. di Fisica

    1981-01-17

    Stochastic mechanics is extended to systems in thermal equilibrium. The resulting stochastic processes are mixtures of Nelson processes. Their Markov property is investigated in some simple cases. It is found that in order to inforce Markov property the algebra of observable associated to the present must be suitably enlarged.

  12. Benefits of integrating chemical and mechanical cleaning processes for steam generator sludge removal

    International Nuclear Information System (INIS)

    Varrin, R.D.; Ferriter, A.M.; Oliver, T.W.; Le Surf, J.E.

    1992-01-01

    This paper discusses the benefits of performing in-bundle tubesheet lancing in conjunction with chemical cleaning of PWR and PHWR steam generators in which a hard sludge pile is known to exist. The primary benefits of in-bundle lancing are to: (1) increase the exposed area of the sludge pile by cutting furrows in the surface thereby enhancing dissolution of sludge, (2) reduce the volume of solvents required since material removed by lancing does not have to be dissolved chemically, (3) improve rinsing and removal of residual solvent between iron and copper dissolution steps, and (4) allow for verification of process effectiveness by providing high quality in-bundle visual inspection. The reduction in solvent volumes can lead to a significant reduction in solvent costs and waste processing. A case study which includes an economic evaluation for a combined chemical and mechanical cleaning shows a potential cost saving of up to US$ 300,000 over use of chemical cleaning alone. 14 refs., 2 tabs., 2 figs

  13. Survey and review of near-field performance assessment

    International Nuclear Information System (INIS)

    Apted, M.J.

    1993-01-01

    Chemical reactions control the performance, stability, and rate of degradation of natural and engineered barriers to waste repositories of the near field. Chemical processes are overviewed in this context. Temperature, and associated temperature gradients, are also important parameters in near-field performance assessment. The mechanical conditions of the near-field rock will be perturbed by construction of the underground repository. Mechanical analysis in the near field is further complicated by the introduction of HLW canisters and associated engineered barrier materials. Hydrological processes important to near-field performance include those associated with fluid transport. Considerable discussions and studies have been conducted on the issue of coupling among chemical-thermal-mechanical-hydrological processes; they are overviewed. (R.P.) 2 figs., 2 tabs

  14. Studying the processes relating to oxidation of organic substances contained in the coolant of thermal and nuclear power stations

    Science.gov (United States)

    Khodyrev, B. N.; Krichevtsov, A. L.; Sokolyuk, A. A.

    2010-07-01

    A radical-chain mechanism governing thermal-oxidation destruction of organic substances contained in the coolant of thermal and nuclear power stations is considered. Hypotheses on the chemical nature of antioxidation properties of amines are presented. Theoretical conjectures about the fundamental processes through which protective amine films are formed on the surface of metals are suggested.

  15. Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock

    International Nuclear Information System (INIS)

    Zheng, Liange; Rutqvist, Jonny; Kim, Kunhwi; Houseworth, Jim

    2015-01-01

    The focus of research within the UFD Campaign is on repository-induced interactions that may affect the key safety characteristics of an argillaceous rock. These include thermal-hydrological-mechanical-chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer minerals and petrophysical characteristics, particularly the impacts of induced temperature rise caused by waste heat.

  16. Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kim, Kunhwi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Houseworth, Jim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-07-01

    The focus of research within the UFD Campaign is on repository-induced interactions that may affect the key safety characteristics of an argillaceous rock. These include thermal-hydrological-mechanical-chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer minerals and petrophysical characteristics, particularly the impacts of induced temperature rise caused by waste heat.

  17. Responses of diatom communities to hydrological processes during rainfall events

    Science.gov (United States)

    Wu, Naicheng; Faber, Claas; Ulrich, Uta; Fohrer, Nicola

    2015-04-01

    The importance of diatoms as a tracer of hydrological processes has been recently recognized (Pfister et al. 2009, Pfister et al. 2011, Tauro et al. 2013). However, diatom variations in a short-term scale (e.g., sub-daily) during rainfall events have not been well documented yet. In this study, rainfall event-based diatom samples were taken at the outlet of the Kielstau catchment (50 km2), a lowland catchment in northern Germany. A total of nine rainfall events were caught from May 2013 to April 2014. Non-metric multidimensional scaling (NMDS) revealed that diatom communities of different events were well separated along NMDS axis I and II, indicating a remarkable temporal variation. By correlating water level (a proxy of discharge) and different diatom indices, close relationships were found. For example, species richness, biovolume (μm3), Shannon diversity and moisture index01 (%, classified according to van Dam et al. 1994) were positively related with water level at the beginning phase of the rainfall (i.e. increasing limb of discharge peak). However, in contrast, during the recession limb of the discharge peak, diatom indices showed distinct responses to water level declines in different rainfall events. These preliminary results indicate that diatom indices are highly related to hydrological processes. The next steps will include finding out the possible mechanisms of the above phenomena, and exploring the contributions of abiotic variables (e.g., hydrologic indices, nutrients) to diatom community patterns. Based on this and ongoing studies (Wu et al. unpublished data), we will incorporate diatom data into End Member Mixing Analysis (EMMA) and select the tracer set that is best suited for separation of different runoff components in our study catchment. Keywords: Diatoms, Rainfall event, Non-metric multidimensional scaling, Hydrological process, Indices References: Pfister L, McDonnell JJ, Wrede S, Hlúbiková D, Matgen P, Fenicia F, Ector L, Hoffmann L

  18. Coupled thermo-hydro-mechanical processes associated with a radioactive waste repository

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1988-01-01

    The performance assessment of a nuclear waste geologic repository presents a scientific and technical problem of a scope far beyond the evaluation of most civil and geologic constructions. First performance prediction must be made for tens of thousands of years, and a secondly, in calculating potential leakage rates from a repository to the biosphere the authors must determine not only the mean or average travel time but also the shorter travel times of low concentrations. These two criteria demand an understanding of all significant physical and chemical processes likely to occur around a nuclear waste repository. In particular, processes coupling thermal transfer fluid flow, mechanical deformation and chemical reactors, which may be slow in a laboratory time scale, may become very important. This paper gives a general survey on the subject, with specific examples of a number of relevant coupled thermo-hydro-mechanical processes associated with nuclear waste repository

  19. Thermal and mechanical improvement of aluminum open-cells foams through electrodeposition of copper and graphene

    Directory of Open Access Journals (Sweden)

    Simoncini Alessandro

    2016-01-01

    Full Text Available Thanks to its planar structure, graphene is characterized by unique properties, such as excellent chemical inactivity, high electrical and thermal conductivity, high optical transparency, extraordinary flexibility and high mechanical resistance, which make it suitable in a very wide range of applications. This paper details the state of the art in graphene coating applied to aluminum open-cells foams for the improvement of their mechanical and thermal behavior. Metallic foams are highly porous materials with extremely high convective heat transfer coefficients, thanks to their complex structure of three-dimensional open-cells. Graphene nanoplatelets have been used to improve thermal conductivity of aluminum foams, to make them better suitable during heat transfer in transient state. Also, an improvement of mechanical resistance has been observed. Before electrodeposition, all the samples have been subjected to sandblasting process, to eliminate the oxide layer on the surface, enabling a better adhesion of the coating. Different nanoparticles of graphene have been used. The experimental findings revealed a higher thermal conductivity for aluminum open cells foams electroplated with graphene. Considered the relatively low process costs and the improvements obtainable, these materials are very promising in many technological fields. The topics covered include surface modification, electrochemical plating, thermo-graphic analysis.

  20. Effect of electron beam radiation processing on mechanical and thermal properties of fully biodegradable crops straw/poly (vinyl alcohol) biocomposites

    Science.gov (United States)

    Guo, Dan

    2017-01-01

    Fully biodegradable biocomposites based on crops straw and poly(vinyl alcohol) was prepared through thermal processing, and the effect of electron beam radiation processing with N,N-methylene double acrylamide as radiation sensitizer on mechanical and thermal properties of the biocomposites were investigated. The results showed that, when the radiation dose were in the range of 0-50 kGy, the mechanical and thermal properties of the biocomposites could be improved significantly through the electron beam radiation processing, and the interface compatibility was also improved because of the formation of stable cross-linked network structure, when the radiation dose were above the optimal value (50 kGy), the comprehensive properties of the biocomposites were gradually destroyed. EB radiation processing could be used as an effective technology to improve the comprehensive performance of the biocomposites, and as a green and efficient processing technology, radiation processing takes place at room temperature, and no contamination and by-product are possible.

  1. Scaling Hydrologic Processes in Boreal Forest Stands: New Eco-hydrological Perspectives or Deja vu?

    Science.gov (United States)

    Silins, U.; Lieffers, V. J.; Landhausser, S. M.; Mendoza, C. A.; Devito, K. J.; Petrone, R. M.; Gan, T. Y.

    2006-12-01

    The leaf area of forest canopies is both main attribute of stands controlling water balance through transpiration and interception, and "engine" driving stand growth, stand dynamics, and forest succession. While transpiration and interception dynamics are classic themes in forest hydrology, we present results from our eco-hydrological research on boreal trees to highlight how more recent eco-physiological insights into species specific controls over water use and leaf area such as hydraulic architecture, cavitation, sapwood-leaf area relationships, and root system controls over water uptake are providing new insights into integrated atmospheric-autecological controls over these hydrologic processes. These results are discussed in the context of newer eco-hydrological frameworks which may serve to aid in exploring how forest disturbance and subsequent trajectories of hydrologic recovery are likely to affect both forest growth dynamics and hydrology of forested landscapes in response to forest management, severe forest pest epidemics such as the Mountain Pine Beetle epidemic in Western Canada, and climate change.

  2. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models

  3. Thermal and mechanical cutting of concrete and steel

    International Nuclear Information System (INIS)

    Kloj, G.; Tittel, G.

    1984-01-01

    Various thermal and mechanical processes for dismantling radioactive large components and concrete structures were investigated in order to determine the optimal handling conditions and their respective efficiency. For the thermal processes, the separation of heavy concrete and steel components by means of oxygen lances, powder cutting, ocyacetylene cutting, and plasma cutting processes were tested. In order to gain the necessary data for designing filtering equipment with regard to use in nuclear power stations, the amount of dust deposition and particle size distribution for these thermal processes were measured. The largest particle size proportion occurs for a particle size of ca. 0.3 μm. For the mechanical processes, stationary saws were used. Due to the large dimensions of the components which are to be found in a nuclear installation, it is not possible to use such saws for the initial dismantling. These saws can be used for both low-alloy and austenitic types of steel, and for separating materials not containing iron. In order to compare the efficiency of the saws with that of the thermal processes, to some extent the same test pieces were used that were used for the thermal tests. The advantage of the saw technique in comparison to the thermal separation processes lies in that next to no gas or dust contamination can become released. Also, the amount of shavings produced (secondary waste) is low. Furthermore, some of the saws can be used under remote control

  4. Effect of Chemical Reactions on the Hydrologic Properties of Fractured and Rubbelized Glass Media

    International Nuclear Information System (INIS)

    Saripalli, Prasad; Meyer, P D.; Parker, Kent E.; Lindberg, Michael J.

    2005-01-01

    Understanding the effect of chemical reactions on the hydrologic properties of geological media, such as porosity, permeability and dispersivity, is critical to many natural and engineered sub-surface systems. Influence of glass corrosion (precipitation and dissolution) reactions on fractured and rubbelized (crushed) forms HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted using fractured and rubbelized forms, before and after subjecting them to corrosion using Vapor Hydration Testing (VHT) at 200 C temperature and 200 psig pressure, causing the precipitation of alteration products. Data were analyzed using analytical expressions and CXTFIT, a transport parameter optimization code, for the estimation of the hydrologic characteristics before and after VHT. It was found that glass reactions significantly influence the hydrologic properties of ILAW glass media. Hydrologic properties of rubbelized glass decreased due to precipitation reactions, whereas those of fractured glass media increased due to reaction which led to unconfined expansion of fracture aperture. The results are unique and useful to better understand the effect of chemical reactions on the hydrologic properties of fractured and rubbelized stony media in general and glass media in particular

  5. Hydrological Process Simulation of Inland River Watershed: A Case Study of the Heihe River Basin with Multiple Hydrological Models

    OpenAIRE

    Lili Wang; Zhonggen Wang; Jingjie Yu; Yichi Zhang; Suzhen Dang

    2018-01-01

    Simulating the hydrological processes of an inland river basin can help provide the scientific guidance to the policies of water allocation among different subbasins and water resource management groups within the subbasins. However, it is difficult to simulate the hydrological processes of an inland river basin with hydrological models due to the non-consistent hydrological characteristics of the entire basin. This study presents a solution to this problem with a case study about the hydrolo...

  6. Thermal Stir Welding: A New Solid State Welding Process

    Science.gov (United States)

    Ding, R. Jeffrey

    2003-01-01

    Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  7. Fiber‐optic distributed temperature sensing: A new tool for assessment and monitoring of hydrologic processes

    Science.gov (United States)

    Lane, John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Dawson, Cian B.; Nelms, David L.; Miller, Cheryl; Wheeler, Jerrod D.; Harvey, Charles F.; Karam, Hanan N.

    2008-01-01

    Fiber‐optic distributed temperature sensing (FO DTS) is an emerging technology for characterizing and monitoring a wide range of important earth processes. FO DTS utilizes laser light to measure temperature along the entire length of standard telecommunications optical fibers. The technology can measure temperature every meter over FO cables up to 30 kilometers (km) long. Commercially available systems can measure fiber temperature as often as 4 times per minute, with thermal precision ranging from 0.1 to 0.01 °C depending on measurement integration time. In 2006, the U.S. Geological Survey initiated a project to demonstrate and evaluate DTS as a technology to support hydrologic studies. This paper demonstrates the potential of the technology to assess and monitor hydrologic processes through case‐study examples of FO DTS monitoring of stream‐aquifer interaction on the Shenandoah River near Locke's Mill, Virginia, and on Fish Creek, near Jackson Hole, Wyoming, and estuary‐aquifer interaction on Waquoit Bay, Falmouth, Massachusetts. The ability to continuously observe temperature over large spatial scales with high spatial and temporal resolution provides a new opportunity to observe and monitor a wide range of hydrologic processes with application to other disciplines including hazards, climate‐change, and ecosystem monitoring.

  8. Catalogue of methods of calculation, interpolation, smoothing, and reduction for the physical, chemical, and biological parameters of deep hydrology (CATMETH) (NODC Accession 7700442)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The document presents the methods, formulas and citations used by the BNDO to process physical, chemical, and biological data for deep hydrology including...

  9. CHEMICAL-THERMAL PROCESSING OF TRACTOR PARTS IN VACUUM AT APPLICATION OF TECHNOLOGY OF HARDENING IN THE MEDIUM OF INERT GASES

    Directory of Open Access Journals (Sweden)

    статья Редакционная

    2011-01-01

    Full Text Available Advantages of technology of hardening by inert gases are considered. It is shown that use of unit ModulTherm7/1 at RUP «MTZ» allows to improve quality of chemical thermal processing of details and to provide decrease of expenses for manufacture.

  10. Removal of Cd (II from Aqueous Media by Adsorption onto Chemically and Thermally Treated Rice Husk

    Directory of Open Access Journals (Sweden)

    María Camila Hoyos-Sánchez

    2017-01-01

    Full Text Available Chemically and thermally treated rice husks were evaluated as a potential decontaminant of toxic Cd (II in aqueous media. Rice husk (RH, a by-product from rice milling, was chemically treated with HCl and NaOH. Then, thermal treatments to 300, 500, and 700°C were applied. The chemical composition and morphological characteristics of RH were evaluated by different techniques. The specific surface area analysis of RH samples by BET nitrogen adsorption method provided specific surface areas ranging from 6 to 14 m2/g. SEM, FTIR, and EDX analyses of RH were carried out to determine the surface morphology, functional groups involved in metal binding mechanism, and C/O and C/Si ratios, respectively. The maximum Cd (II adsorption capacity was 28.27 mg/g at an optimum pH, 6.0. The kinetic studies revealed that adsorption process followed the pseudo-second-order kinetic model.

  11. Development of a Procedure to Apply Detailed Chemical Kinetic Mechanisms to CFD Simulations as Post Processing

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Martin Skov; Glarborg, Peter; Jensen, Anker

    2003-01-01

    mechanism. It involves post-processing of data extracted from computational fluid dynamics simulations. Application of this approach successfully describes combustion chemistry in a standard swirl burner, the so-called Harwell furnace. Nevertheless, it needs validation against more complex combustion models......It is desired to make detailed chemical kinetic mechanisms applicable to the complex geometries of practical combustion devices simulated with computational fluid dynamics tools. This work presents a novel general approach to combining computational fluid dynamics and a detailed chemical kinetic...

  12. Improvement of the chemical, thermal, mechanical and ...

    Indian Academy of Sciences (India)

    2018-05-16

    May 16, 2018 ... mal stability and thermal conductivity, it has limitation due its poor thermal .... graphene composites can help determine the percent of carbonyl .... between the glass transition temperature Tg and the amounts of graphene ...

  13. Towards simplification of hydrologic modeling: identification of dominant processes

    Directory of Open Access Journals (Sweden)

    S. L. Markstrom

    2016-11-01

    Full Text Available parameter hydrologic model, has been applied to the conterminous US (CONUS. Parameter sensitivity analysis was used to identify: (1 the sensitive input parameters and (2 particular model output variables that could be associated with the dominant hydrologic process(es. Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff and model performance statistic (mean, coefficient of variation, and autoregressive lag 1. Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1 the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2 the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3 different processes require different numbers of parameters for simulation, and (4 some sensitive parameters influence only one hydrologic process, while others may influence many.

  14. Towards simplification of hydrologic modeling: Identification of dominant processes

    Science.gov (United States)

    Markstrom, Steven; Hay, Lauren E.; Clark, Martyn P.

    2016-01-01

    The Precipitation–Runoff Modeling System (PRMS), a distributed-parameter hydrologic model, has been applied to the conterminous US (CONUS). Parameter sensitivity analysis was used to identify: (1) the sensitive input parameters and (2) particular model output variables that could be associated with the dominant hydrologic process(es). Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff) and model performance statistic (mean, coefficient of variation, and autoregressive lag 1). Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1) the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2) the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3) different processes require different numbers of parameters for simulation, and (4) some sensitive parameters influence only one hydrologic process, while others may influence many

  15. Examination of lignocellulosic fibers for chemical, thermal, and separations properties: Addressing thermo-chemical stability issues

    Science.gov (United States)

    Johnson, Carter David

    Natural fiber-plastic composites incorporate thermoplastic resins with fibrous plant-based materials, sometimes referred to as biomass. Pine wood mill waste has been the traditional source of natural fibrous feedstock. In anticipation of a waste wood shortage other fibrous biomass materials are being investigated as potential supplements or replacements. Perennial grasses, agricultural wastes, and woody biomass are among the potential source materials. As these feedstocks share the basic chemical building blocks; cellulose, hemicellulose, and lignin, they are collectively called lignocellulosics. Initial investigation of a number of lignocellulosic materials, applied to fiber-plastic composite processing and material testing, resulted in varied results, particularly response to processing conditions. Less thermally stable lignocellulosic filler materials were physically changed in observable ways: darkened color and odor. The effect of biomass materials' chemical composition on thermal stability was investigated an experiment involving determination of the chemical composition of seven lignocellulosics: corn hull, corn stover, fescue, pine, soy hull, soy stover, and switchgrass. These materials were also evaluated for thermal stability by thermogravimetric analysis. The results of these determinations indicated that both chemical composition and pretreatment of lignocellulosic materials can have an effect on their thermal stability. A second study was performed to investigate what effect different pretreatment systems have on hybrid poplar, pine, and switchgrass. These materials were treated with hot water, ethanol, and a 2:1 benzene/ethanol mixture for extraction times of: 1, 3, 6, 12, and 24 hours. This factorial experiment demonstrated that both extraction time and medium have an effect on the weight percent of extractives removed from all three material types. The extracted materials generated in the above study were then subjected to an evaluation of thermal

  16. Chemical and mechanical decontamination processes to minimize secondary waste decommissioning

    International Nuclear Information System (INIS)

    Enda, M.; Ichikawa, N.; Yaita, Y.; Kanasaki, T.; Sakai, H.

    2008-01-01

    In the decommissioning of commercial nuclear reactors in Japan, prior to the dismantling of the nuclear power plants, there are plans to use chemical techniques to decontaminate reactor pressure vessels (RPVs), internal parts, primary loop recirculation systems (PLRs), reactor water clean up systems (RWCUs), etc., so as to minimize radiation sources in the materials to be disposed of. After dismantling the nuclear power plants, chemical and mechanical decontamination techniques will then be used to reduce the amounts of radioactive metallic waste. Toshiba Corporation has developed pre-dismantling and post-dismantling decontamination systems. In order to minimize the amounts of secondary waste, the T-OZON process was chosen for decontamination prior to the dismantling of nuclear power plants. Dismantling a nuclear power plant results in large amounts of metallic waste requiring decontamination; for example, about 20,000 tons of such waste is expected to result from the dismantling of a 110 MWe Boiling Water Reactor (BWR). Various decontamination methods have been used on metallic wastes in preparation for disposal in consideration of the complexity of the shapes of the parts and the type of material. The materials in such nuclear power plants are primarily stainless steel and carbon steel. For stainless steel parts having simple shapes, such as plates and pipes, major sources of radioactivity can be removed from the surface of the parts by bipolar electrolysis (electrolyte: H 2 SO 4 ). For stainless steel parts having complicated shapes, such as valves and pumps, major sources of radioactivity can be removed from the surfaces by redox chemical decontamination treatments (chemical agent: Ce(IV)). For carbon steel parts having simple shapes, decontamination by blasting with zirconia grit is effective in removing major sources of radioactivity at the surface, whereas for carbon steel parts having complicated shapes, major sources of radioactivity can be removed from

  17. Synthesis of functional nanocrystallites through reactive thermal plasma processing

    Directory of Open Access Journals (Sweden)

    Takamasa Ishigaki and Ji-Guang Li

    2007-01-01

    Full Text Available A method of synthesizing functional nanostructured powders through reactive thermal plasma processing has been developed. The synthesis of nanosized titanium oxide powders was performed by the oxidation of solid and liquid precursors. Quench gases, either injected from the shoulder of the reactor or injected counter to the plasma plume from the bottom of the reactor, were used to vary the quench rate, and therefore the particle size, of the resultant powders. The experimental results are well supported by numerical analysis on the effects of the quench gas on the flow pattern and temperature field of the thermal plasma as well as on the trajectory and temperature history of the particles. The plasma-synthesized TiO2 nanoparticles showed phase preferences different from those synthesized by conventional wet-chemical processes. Nanosized particles of high crystallinity and nonequilibrium chemical composition were formed in one step via reactive thermal plasma processing.

  18. Influence Of Gamma Irradiation On Mechanical And Thermal Properties Of Waste Polyethylene / Nitrile Butadiene Rubber Blend

    International Nuclear Information System (INIS)

    Aly, R.O.

    2012-01-01

    Gamma irradiation radical-radical interaction crosslinking of elastomers and thermoplastic is a special type of crosslinking technique that has gained importance over conventional chemical crosslinking method as process is fast, pollution free and simple. In this study, a blend polymer, based on waste polyethylene and nitrile butadiene rubber, has been irradiated with gamma rays then mechanically and thermally investigated at varying NBR content. FTIR and SEM techniques were used in addition to the swelling behaviour by toluene solvent to emphasize the blend formation. The mechanical properties like tensile strength, elongation at break and modulus at different elongations were studied and compared with those of non-irradiated ones. A relatively low radiation dose was found effective in improving the level of mechanical properties. Differential scanning calorimeter and thermogravimetric analysis were used to study the thermal characteristics of the irradiated polymer. Enhancement in thermal stability has been observed for higher NBR containing blends and via radiation-induced crosslinking up to ≅ 50 kGy

  19. Influence of gamma irradiation on mechanical and thermal properties of waste polyethylene/nitrile butadiene rubber blend

    Directory of Open Access Journals (Sweden)

    Raouf O. Aly

    2016-11-01

    Full Text Available Gamma irradiation radical–radical interaction crosslinking of elastomers and thermoplastic is a special type of crosslinking technique that has gained importance over conventional chemical crosslinking method as process is fast, pollution free, and simple. In this work a blend polymer, based on waste polyethylene and nitrile butadiene rubber, has been irradiated with gamma-rays, mechanically and thermally investigated at varying NBR content. FTIR and SEM techniques were used in addition to the swelling behavior to emphasize the blend formation. Mechanical properties like tensile strength, elongation at break and modulus at different elongations were studied and compared with those of unirradiated ones. A relatively low-radiation dose was found effective in improving the level of mechanical properties. Differential scanning calorimeter and thermogravimetric analysis were used to study the thermal characteristics of the irradiated polymer. Enhancement in thermal stability has been observed for higher NBR containing blends and via radiation-induced crosslinking up to ≈50 kGy.

  20. Coupled processes in single fractures, double fractures and fractured porous media

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1986-12-01

    The emplacement of a nuclear waste repository in a fractured porous medium provides a heat source of large dimensions over an extended period of time. It also creates a large cavity in the rock mass, changing significantly the stress field. Such major changes induce various coupled thermohydraulic, hydromechanic and hydrochemical transport processes in the environment around a nuclear waste repository. The present paper gives, first, a general overview of the coupled processes involving thermal, mechanical, hydrological and chemical effects. Then investigations of a number of specific coupled processes are described in the context of fluid flow and transport in a single fracture, two intersecting fractures and a fractured porous medium near a nuclear waste repository. The results are presented and discussed

  1. Thermal Mechanical Processing Effects on Microstructure Evolution and Mechanical Properties of the Sintered Ti-22Al-25Nb Alloy.

    Science.gov (United States)

    Wang, Yuanxin; Lu, Zhen; Zhang, Kaifeng; Zhang, Dalin

    2016-03-11

    This work illustrates the effect of thermal mechanical processing parameters on the microstructure and mechanical properties of the Ti-22Al-25Nb alloy prepared by reactive sintering with element powders, consisting of O, B2 and Ti₃Al phases. Tensile and plane strain fracture toughness tests were carried out at room temperature to understand the mechanical behavior of the alloys and its correlation with the microstructural features characterized by scanning and transmission electron microscopy. The results show that the increased tensile strength (from 340 to 500 MPa) and elongation (from 3.6% to 4.2%) is due to the presence of lamellar O/B2 colony and needle-like O phase in B2 matrix in the as-processed Ti-22Al-25Nb alloys, as compared to the coarse lath O adjacent to B2 in the sintered alloys. Changes in morphologies of O phase improve the fracture toughness ( K IC ) of the sintered alloys from 7 to 15 MPa·m -1/2 . Additionally, the fracture mechanism shifts from cleavage fracture in the as-sintered alloys to quasi-cleavage fracture in the as-processed alloys.

  2. Mechanical properties of chemically modified portuguese pinewood

    OpenAIRE

    Lopes, Duarte B; Mai, Carsten; Militz, Holger

    2014-01-01

    To turn wood into a construction material with enhanced properties, many methods of chemical modification have been developed in the last few decades. In this work, mechanical properties of pine wood were chemically modified, compared and evaluated. Maritime pine wood (Pinus pinaster) was modified with four chemical processes: 1,3-dimethylol-4,5- dihydroxyethyleneurea, N-methylol melamine formaldehyde, tetra-alkoxysilane and wax. The following mechanical properties were assessed experiment...

  3. Biodegradable multifunctional oil production chemicals: Thermal polyaspartates

    International Nuclear Information System (INIS)

    Ross, R.J.; Ravenscroft, P.D.

    1996-01-01

    The paper deals with biodegradable oil production chemicals. Control of both mineral scale and corrosion with a single, environmentally acceptable material is an ambitious goal. Polyaspartate polymers represent a significant milestone in the attainment of this goal. Thermal polyaspartates (TPA) are polycarboxylate polymers derived via thermal condensation of the naturally occurring amino acid aspartic acid. These protein-like polymers are highly biodegradable and non-toxic, and are produced by an environmentally benign manufacturing process. TPAs exhibit excellent mineral scale inhibition activity and CO 2 corrosion control. Laboratory data on scale inhibition and corrosion control in the North Sea oil field production applications is presented. 8 refs., 2 figs., 6 tabs

  4. Biodegradable multifunctional oil production chemicals: Thermal polyaspartates

    Energy Technology Data Exchange (ETDEWEB)

    Ross, R J [Donlar Corporation (United States); Ravenscroft, P D [BP Exploration Operating Company, (United Kingdom)

    1997-12-31

    The paper deals with biodegradable oil production chemicals. Control of both mineral scale and corrosion with a single, environmentally acceptable material is an ambitious goal. Polyaspartate polymers represent a significant milestone in the attainment of this goal. Thermal polyaspartates (TPA) are polycarboxylate polymers derived via thermal condensation of the naturally occurring amino acid aspartic acid. These protein-like polymers are highly biodegradable and non-toxic, and are produced by an environmentally benign manufacturing process. TPAs exhibit excellent mineral scale inhibition activity and CO{sub 2} corrosion control. Laboratory data on scale inhibition and corrosion control in the North Sea oil field production applications is presented. 8 refs., 2 figs., 6 tabs.

  5. Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films

    Science.gov (United States)

    Thurn, Jeremy; Cook, Robert F.

    2002-02-01

    The mechanical response of plasma-enhanced chemical vapor deposited SiO2 to thermal cycling is examined by substrate curvature measurement and depth-sensing indentation. Film properties of deposition stress and stress hysteresis that accompanied thermal cycling are elucidated, as well as modulus, hardness, and coefficient of thermal expansion. Thermal cycling is shown to result in major plastic deformation of the film and a switch from a compressive to a tensile state of stress; both athermal and thermal components of the net stress alter in different ways during cycling. A mechanism of hydrogen incorporation and release from as-deposited silanol groups is proposed that accounts for the change in film properties and state of stress.

  6. Hydrological and seasonal export mechanisms for nitrate transport from a forested catchment

    International Nuclear Information System (INIS)

    Rusjan, S; Mikos, M; Brilly, M

    2008-01-01

    Understanding of interactions between hydrological and biogeochemical responses of catchments on rainfall events is usually unclear from periodic measurements and requires tracing of the temporal dynamics of the processes. Smaller streams reflect strong connections between hydrological processes of the rainfall runoff formation and biogeochemical processes in the catchment; consequently, the responsiveness of the streamwater chemistry to changed hydrological states is very high. The study was carried out in 2007, within the 42 km 2 forested Padez catchment in the southwestern part of Slovenia, which is characterized by distinctive flushing, an almost torrential hydrological regime influenced by impermeable flysch geological settings. Recorded hydrographs which, in the hydrological and biogeochemical sense, differed substantially, disclosed a highly variable, but at the same time a strong linkage between hydrological, biogeochemical and particular topographic controls of nitrate exports from the spatial perspective of a studied catchment. The role of specific hydrological events on the nitrate mobilization proved to be important as the size of the accumulated nitrate pool available for mobilization was large throughout the observed hydrographs. The biogeochemical environment of the forest soils presumably significantly affects the size of the available nitrate pool in the studied catchment.

  7. Reflow process stabilization by chemical characteristics and process conditions

    Science.gov (United States)

    Kim, Myoung-Soo; Park, Jeong-Hyun; Kim, Hak-Joon; Kim, Il-Hyung; Jeon, Jae-Ha; Gil, Myung-Goon; Kim, Bong-Ho

    2002-07-01

    With the shrunken device rule below 130nm, the patterning of smaller contact hole with enough process margin is required for mass production. Therefore, shrinking technology using thermal reflow process has been applied for smaller contact hole formation. In this paper, we have investigated the effects of chemical characteristics such as molecular weight, blocking ratio of resin, cross-linker amount and solvent type with its composition to reflow process of resist and found the optimized chemical composition for reflow process applicable condition. And several process conditions like resist coating thickness and multi-step thermal reflow method have been also evaluated to stabilize the pattern profile and improve CD uniformity after reflow process. From the experiment results, it was confirmed that the effect of crosslinker in resist to reflow properties such as reflow temperature and reflow rate were very critical and it controlled the pattern profile during reflow processing. And also, it showed stable CD uniformity and improved resist properties for top loss, film shrinkage and etch selectivity. The application of lower coating thickness of resist induced symmetric pattern profile even at edge with wider process margin. The introduction of two-step baking method for reflow process showed uniform CD value, also. It is believed that the application of resist containing crosslinker and optimized process conditions for smaller contact hole patterning is necessary for the mass production with a design rule below 130nm.

  8. Mechanical and Thermal Characterization of Silica Nanocomposites

    Science.gov (United States)

    Cunningham, Anthony Lamar

    Polymer nanocomposites are a class of materials containing nanoparticles with a large interfacial surface area. Only a small quantity of nanoparticles are needed to provide superior multifunctional properties; such as mechanical, thermal, electrical, and moisture absorption properties in polymers. Nanoparticles tend to agglomerate, so special techniques are required for homogeneous distribution. Nanosilica is now readily available as colloidal sols, for example; Nanopox RTM F400 (supplied by Evonik Nanoresins AG, Germany). The nanoparticles are first synthesized from aqueous sodium silicate solution, and then undergo a surface modification process with organosilane and matrix exchange. F400 contains 40%wt silica nanoparticles colloidally dispersed in a DGEBA epoxy resin. The mean particle diameter is about 20 nm with a narrow distribution range of about 5 to 35 nm. The objectives of this study are to develop a reproducible processing method for nanosilica enhanced resin systems used in the manufacturing of fiber reinforced composites that will be characterized for mechanical and thermal properties. Research has concluded that shows improvements in the properties of the matrix material when processed in loading variations of 0 to 25%wt silica nanoparticles. The loadings were also used to manufacture fiberglass reinforced nanocomposite laminates and also tested for mechanical and thermal properties.

  9. Chemical characterization of milk after treatment with thermal (HTST and UHT) and nonthermal (turbulent flow ultraviolet) processing technologies.

    Science.gov (United States)

    Cappozzo, Jack C; Koutchma, Tatiana; Barnes, Gail

    2015-08-01

    As a result of growing interest to nonthermal processing of milk, the purpose of this study was to characterize the chemical changes in raw milk composition after exposure to a new nonthermal turbulent flow UV process, conventional thermal pasteurization process (high-temperature, short-time; HTST), and their combinations, and compare those changes with commercially UHT-treated milk. Raw milk was exposed to UV light in turbulent flow at a flow rate of 4,000L/h and applied doses of 1,045 and 2,090 J/L, HTST pasteurization, and HTST in combination with UV (before or after the UV). Unprocessed raw milk, HTST-treated milk, and UHT-treated milk were the control to the milk processed with the continuous turbulent flow UV treatment. The chemical characterization included component analysis and fatty acid composition (with emphasis on conjugated linoleic acid) and analysis for vitamin D and A and volatile components. Lipid oxidation, which is an indicator to oxidative rancidity, was evaluated by free fatty acid analysis, and the volatile components (extracted organic fraction) by gas chromatography-mass spectrometry to obtain mass spectral profile. These analyses were done over a 14-d period (initially after treatment and at 7 and 14 d) because of the extended shelf-life requirement for milk. The effect of UV light on proteins (i.e., casein or lactalbumin) was evaluated qualitatively by sodium dodecyl sulfate-PAGE. The milk or liquid soluble fraction was analyzed by sodium dodecyl sulfate-PAGE for changes in the protein profile. From this study, it appears that continuous turbulent flow UV processing, whether used as a single process or in combination with HTST did not cause any statistically significant chemical changes when compared with raw milk with regard to the proximate analysis (total fat, protein, moisture, or ash), the fatty acid profile, lipid oxidation with respect to volatile analysis, or protein profile. A 56% loss of vitamin D and a 95% loss of vitamin A

  10. Technology of combined chemical-mechanical fabrication of durable coatings

    Science.gov (United States)

    Smolentsev, V. P.; Ivanov, V. V.; Portnykh, A. I.

    2018-03-01

    The article presents the scientific fundamentals of methodology for calculating the modes and structuring the technological processes of combined chemical-mechanical fabrication of durable coatings. It is shown that they are based on classical patterns, describing the processes of simultaneous chemical and mechanical impact. The paper demonstrates the possibility of structuring a technological process, taking into account the systematic approach to impact management and strengthening the reciprocal positive influence of each impact upon the combined process. The combined processes have been planned for fabricating the model types of chemical-mechanical coatings of durable products in machine construction. The planning methodology is underpinned by a scientific hypothesis of a single source of impact management through energy potential of process components themselves, or by means of external energy supply through mechanical impact. The control of it is fairly thoroughly studied in the case of pulsed external strikes of hard pellets, similar to processes of vibroimpact hardening, thoroughly studied and mastered in many scientific schools of Russia.

  11. Research on Land Surface Thermal-Hydrologic Exchange in Southern China under Future Climate and Land Cover Scenarios

    Directory of Open Access Journals (Sweden)

    Jianwu Yan

    2013-01-01

    Full Text Available Climate change inevitably leads to changes in hydrothermal circulation. However, thermal-hydrologic exchanging caused by land cover change has also undergone ineligible changes. Therefore, studying the comprehensive effects of climate and land cover changes on land surface water and heat exchanges enables us to well understand the formation mechanism of regional climate and predict climate change with fewer uncertainties. This study investigated the land surface thermal-hydrologic exchange across southern China for the next 40 years using a land surface model (ecosystem-atmosphere simulation scheme (EASS. Our findings are summarized as follows. (i Spatiotemporal variation patterns of sensible heat flux (H and evapotranspiration (ET under the land cover scenarios (A2a or B2a and climate change scenario (A1B are unanimous. (ii Both H and ET take on a single peak pattern, and the peak occurs in June or July. (iii Based on the regional interannual variability analysis, H displays a downward trend (10% and ET presents an increasing trend (15%. (iv The annual average H and ET would, respectively, increase and decrease by about 10% when woodland converts to the cultivated land. Through this study, we recognize that land surface water and heat exchanges are affected greatly by the future climate change as well as land cover change.

  12. Chemical warfare agents identification by thermal neutron detection

    International Nuclear Information System (INIS)

    Liu Boxue; Ai Xianyun; Tan Daoyuan; Zhang Dianqin

    2000-01-01

    The hydrogen concentration determination by thermal neutron detection is a non-destructive, fast and effective method to identify chemical warfare agents and TNT that contain different hydrogen fraction. When an isotropic neutron source is used to irradiate chemical ammunition, hydrogen atoms of the agent inside shell act as a moderator and slow down neutrons. The number of induced thermal neutrons depends mainly upon hydrogen content of the agent. Therefore measurement of thermal neutron influence can be used to determine hydrogen atom concentration, thereby to determine the chemical warfare agents. Under a certain geometry three calibration curves of count rate against hydrogen concentration were measured. According to the calibration curves, response of a chemical agent or TNT could be calculated. Differences of count rate among chemical agents and TNT for each kind of shells is greater than five times of standard deviations of count rate for any agent, so chemical agents or TNT could be identified correctly. Meanwhile, blast tube or liquid level of chemical warfare agent could affect the response of thermal neutron count rate, and thereby the result of identification. (author)

  13. Hydrological model in STEALTH 2-D code

    International Nuclear Information System (INIS)

    Hart, R.; Hofmann, R.

    1979-10-01

    Porous media fluid flow logic has been added to the two-dimensional version of the STEALTH explicit finite-difference code. It is a first-order hydrological model based upon Darcy's Law. Anisotropic permeability can be prescribed through x and y directional permeabilities. The fluid flow equations are formulated for either two-dimensional translation symmetry or two-dimensional axial symmetry. The addition of the hydrological model to STEALTH is a first step toward analyzing a physical system's response to the coupling of thermal, mechanical, and fluid flow phenomena

  14. [Socio-hydrology: A review].

    Science.gov (United States)

    Ding, Jing-yi; Zhao, Wen-wu; Fang, Xue-ning

    2015-04-01

    Socio-hydrology is an interdiscipline of hydrology, nature, society and humanity. It mainly explores the two-way feedbacks of coupled human-water system and its dynamic mechanism of co-evolution, and makes efforts to solve the issues that human faces today such as sustainable utilization of water resources. Starting from the background, formation process, and fundamental concept of socio-hydrology, this paper summarized the features of socio-hydrology. The main research content of socio-hydrology was reduced to three aspects: The tradeoff in coupled human-water system, interests in water resources management and virtual water research in coupled human-water system. And its differences as well as relations with traditional hydrology, eco-hydrology and hydro-sociology were dwelled on. Finally, with hope to promote the development of socio-hydrology researches in China, the paper made prospects for the development of the subject from following aspects: Completing academic content and deepening quantitative research, focusing on scale studies of socio-hydrology, fusing socio-hydrology and eco-hydrology.

  15. Numerical analysis of thermal impact on hydro-mechanical properties of clay

    Directory of Open Access Journals (Sweden)

    Xuerui Wang

    2014-10-01

    Full Text Available As is known, high-level radioactive waste (HLW is commonly heat-emitting. Heat output from HLW will dissipate through the surrounding rocks and induce complex thermo-hydro-mechanical-chemical (THMC processes. In highly consolidated clayey rocks, thermal effects are particularly significant because of their very low permeability and water-saturated state. Thermal impact on the integrity of the geological barriers is of most importance with regard to the long-term safety of repositories. This study focuses on numerical analysis of thermal effects on hydro-mechanical properties of clayey rock using a coupled thermo-mechanical multiphase flow (TH2M model which is implemented in the finite element programme OpenGeoSys (OGS. The material properties of the numerical model are characterised by a transversal isotropic elastic model based on Hooke's law, a non-isothermal multiphase flow model based on van Genuchten function and Darcy's law, and a transversal isotropic heat transport model based on Fourier's law. In the numerical approaches, special attention has been paid to the thermal expansion of three different phases: gas, fluid and solid, which could induce changes in pore pressure and porosity. Furthermore, the strong swelling and shrinkage behaviours of clayey material are also considered in the present model. The model has been applied to simulate a laboratory heating experiment on claystone. The numerical model gives a satisfactory representation of the observed material behaviour in the laboratory experiment. The comparison of the calculated results with the laboratory findings verifies that the simulation with the present numerical model could provide a deeper understanding of the observed effects.

  16. [Construction of research system for processing mechanism of traditional Chinese medicine based on chemical composition transformation combined with intestinal absorption barrier].

    Science.gov (United States)

    Sun, E; Xu, Feng-Juan; Zhang, Zhen-Hai; Wei, Ying-Jie; Tan, Xiao-Bin; Cheng, Xu-Dong; Jia, Xiao-Bin

    2014-02-01

    Based on practice of Epimedium processing mechanism for many years and integrated multidisciplinary theory and technology, this paper initially constructs the research system for processing mechanism of traditional Chinese medicine based on chemical composition transformation combined with intestinal absorption barrier, which to form an innovative research mode of the " chemical composition changes-biological transformation-metabolism in vitro and in vivo-intestinal absorption-pharmacokinetic combined pharmacodynamic-pharmacodynamic mechanism". Combined with specific examples of Epimedium and other Chinese herbal medicine processing mechanism, this paper also discusses the academic thoughts, research methods and key technologies of this research system, which will be conducive to systematically reveal the modem scientific connotation of traditional Chinese medicine processing, and enrich the theory of Chinese herbal medicine processing.

  17. Hydrologic Process-oriented Optimization of Electrical Resistivity Tomography

    Science.gov (United States)

    Hinnell, A.; Bechtold, M.; Ferre, T. A.; van der Kruk, J.

    2010-12-01

    Electrical resistivity tomography (ERT) is commonly used in hydrologic investigations. Advances in joint and coupled hydrogeophysical inversion have enhanced the quantitative use of ERT to construct and condition hydrologic models (i.e. identify hydrologic structure and estimate hydrologic parameters). However the selection of which electrical resistivity data to collect and use is often determined by a combination of data requirements for geophysical analysis, intuition on the part of the hydrogeophysicist and logistical constraints of the laboratory or field site. One of the advantages of coupled hydrogeophysical inversion is the direct link between the hydrologic model and the individual geophysical data used to condition the model. That is, there is no requirement to collect geophysical data suitable for independent geophysical inversion. The geophysical measurements collected can be optimized for estimation of hydrologic model parameters rather than to develop a geophysical model. Using a synthetic model of drip irrigation we evaluate the value of individual resistivity measurements to describe the soil hydraulic properties and then use this information to build a data set optimized for characterizing hydrologic processes. We then compare the information content in the optimized data set with the information content in a data set optimized using a Jacobian sensitivity analysis.

  18. Yucca Mountain drift scale test progress report

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.; Birkholzer, J.T.; Peterson,J.E.; Sonnenthal, E.; Spycher, N.; Tsang, Y.W.; Williams, K.H.

    1999-01-01

    The Drift Scale Test (DST) is part of the Exploratory Studies Facility (ESF) Thermal Test being conducted underground at the potential high-level nuclear waste repository at Yucca Mountain, Nevada. The purpose of the ESF Thermal Test is to acquire a more in-depth understanding of the coupled thermal, mechanical, hydrological, and chemical processes likely to be encountered in the rock mass surrounding the potential geological repository at Yucca Mountain. These processes are monitored by a multitude of sensors to measure the temperature, humidity, gas pressure, and mechanical displacement, of the rock formation in response to the heat generated by the heaters. In addition to collecting passive monitoring data, active hydrological and geophysical testing is also being carried out periodically in the DST. These active tests are intended to monitor changes in the moisture redistribution in the rock mass, to collect water and gas samples for chemical and isotopic analysis, and to detect microfiacturing due to heating. On December 3, 1998, the heaters in the DST were activated. The planned heating phase of the DST is 4 years, and the cooling phase following the power shutoff will be of similar duration. The present report summarizes interpretation and analysis of thermal, hydrological, chemical, and geophysical data for the first 6 months; it is the first of many progress reports to be prepared during the DST.

  19. Reduced thermal budget processing of Y-Ba-Cu-O films by rapid isothermal processing assisted metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Singh, R.; Sinha, S.; Hsu, N.J.; Ng, J.T.C.; Chou, P.; Thakur, R.P.S.; Narayan, J.

    1991-01-01

    Metalorganic chemical vapor deposition (MOCVD) has the potential of emerging as a viable technique to fabricate ribbons, tapes, coated wires, and the deposition of films of high-temperature superconductors, and related materials. As a reduced thermal budget processing technique, rapid isothermal processing (RIP) based on incoherent radiation as the source of energy can be usefully coupled to conventional MOCVD. In this paper we report on the deposition and characterization of high quality superconducting thin films of Y-Ba-Cu-O (YBCO) on yttrium stabilized zirconia substrates by RIP assisted MOCVD. Using O 2 gas as the source of oxygen, YBCO films deposited initially at 600 degree C for 1 min and at 745 degree C for 25 min followed by deposition at 780 degree C for 45 s are primarily c-axis oriented and zero resistance is observed at 89--90 K. The zero magnetic field current density at 53 and 77 K are 1.2x10 6 and 3x10 5 A/cm 2 , respectively. By using a mixture of N 2 O and O 2 as the oxygen source substrate temperature was further reduced in the deposition of YBCO films. The films deposited initially at 600 degree C for 1 min and than at 720 degree C for 30 min are c-axis oriented and with zero resistance being observed at 91 K. The zero magnetic field current densities at 53 and 77 K are 3.4x10 6 and 1.2x10 6 A/cm 2 , respectively. To the best of our knowledge this is the highest value of critical current density, J c for films deposited by MOCVD at a substrate temperature as low as 720 degree C. It is envisioned that high energy photons from the incoherent light source and the use of a mixture of N 2 O and O 2 as the oxygen source, assist chemical reactions and lower overall thermal budget for processing of these films

  20. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  1. Relationship of regional water quality to aquifer thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.

    1983-11-01

    Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

  2. DECOVALEX-THMC Task D: Long-Term Permeability/Porosity Changes in the EDZ and Near Field due to THM and THC Processes in Volcanic and Crystalline-Bentonite Systems, Status Report October 2005

    International Nuclear Information System (INIS)

    Birkholzer, J.; Rutqvist, J.; Sonnenthal, E.; Barr, D.

    2005-01-01

    The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The name DECOVALEX stands for DEvelopment of COupled models and their VALidation against Experiments. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. Three multi-year project stages of DECOVALEX have been completed in the past decade, mainly focusing on coupled thermal-hydrological-mechanical processes. Currently, a fourth three-year project stage of DECOVALEX is under way, referred to as DECOVALEX-THMC. THMC stands for Thermal, Hydrological, Mechanical, and Chemical processes. The new project stage aims at expanding the traditional geomechanical scope of the previous DECOVALEX project stages by incorporating geochemical processes important for repository performance. The U.S. Department of Energy (DOE) leads Task D of the new DECOVALEX phase, entitled ''Long-term Permeability/Porosity Changes in the EDZ and Near Field due to THC and THM Processes for Volcanic and Crystalline-Bentonite Systems''. In its leadership role for Task D, DOE coordinates and sets the direction for the cooperative research activities of the international research teams engaged in Task D

  3. Electro Thermal Chemical Gun Technology Study

    National Research Council Canada - National Science Library

    Diamond, P

    1999-01-01

    .... Michael Stroscio. Electro Thermal Chemical (ETC) gun technology refers to the use of plasma devices in place of traditional chemical ignitors to initiate the burning of high energy propellants in a controlled manner...

  4. Hillslope hydrology and stability

    Science.gov (United States)

    Lu, Ning; Godt, Jonathan

    2012-01-01

    Landslides are caused by a failure of the mechanical balance within hillslopes. This balance is governed by two coupled physical processes: hydrological or subsurface flow and stress. The stabilizing strength of hillslope materials depends on effective stress, which is diminished by rainfall. This book presents a cutting-edge quantitative approach to understanding hydro-mechanical processes across variably saturated hillslope environments and to the study and prediction of rainfall-induced landslides. Topics covered include historic synthesis of hillslope geomorphology and hydrology, total and effective stress distributions, critical reviews of shear strength of hillslope materials and different bases for stability analysis. Exercises and homework problems are provided for students to engage with the theory in practice. This is an invaluable resource for graduate students and researchers in hydrology, geomorphology, engineering geology, geotechnical engineering and geomechanics and for professionals in the fields of civil and environmental engineering and natural hazard analysis.

  5. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function

    Science.gov (United States)

    Groenendyk, Derek G.; Ferré, Ty P.A.; Thorp, Kelly R.; Rice, Amy K.

    2015-01-01

    Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth’s surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape

  6. Spatially explicit simulation of hydrologically controlled carbon and nitrogen cycles and associated feedback mechanisms in a boreal ecosystem

    Science.gov (United States)

    Govind, Ajit; Chen, Jing Ming; Ju, Weimin

    2009-06-01

    Ecosystem models that simulate biogeochemical processes usually ignore hydrological controls that govern them. It is quite possible that topographically driven water fluxes significantly influence the spatial distribution of C sources and sinks because of their large contribution to the local water balance. To investigate this, we simulated biogeochemical processes along with the associated feedback mechanisms in a boreal ecosystem using a spatially explicit hydroecological model, boreal ecosystem productivity simulator (BEPS)-TerrainLab V2.0, that has a tight coupling of ecophysiological, hydrological, and biogeochemical processes. First, the simulated dynamics of snowpack, soil temperature, net ecosystem productivity (NEP), and total ecosystem respiration (TER) were validated with high-frequency measurements for 2 years. The model was able to explain 80% of the variability in NEP and 84% of the variability in TER. Further, we investigated the influence of topographically driven subsurface base flow on soil C and N cycling and on the spatiotemporal patterns of C sources and sinks using three hydrological modeling scenarios that differed in hydrological conceptualizations. In general, the scenarios that had nonexplicit hydrological representation overestimated NEP, as opposed to the scenario that had an explicit (realistic) representation. The key processes controlling the NEP differences were attributed to the combined effects of variations in photosynthesis (due to changes in stomatal conductance and nitrogen (N) availability), heterotrophic respiration, and autotrophic respiration, all of which occur simultaneously affecting NEP. Feedback relationships were also found to exacerbate the differences. We identified six types of NEP differences (biases), of which the most commonly found was due to an underestimation of the existing C sources, highlighting the vulnerability of regional-scale ecosystem models that ignore hydrological processes.

  7. Reduced thermal budget processing of Y--Ba--Cu--O high temperature superconducting thin films by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Singh, R.; Sinha, S.; Hsu, N.J.; Ng, J.T.C.; Chou, P.; Thakur, R.P.S.; Narayan, J.

    1991-01-01

    Metalorganic chemical vapor deposition (MOCVD) has the potential of emerging as a viable technique to fabricate ribbons, tapes, coated wires, and the deposition of films of high temperature superconductors, and related materials. As a reduced thermal budget processing technique, rapid isothermal processing (RIP) based on incoherent radiation as the source of energy can be usefully coupled to conventional MOCVD. In this paper we report on the deposition and characterization of high quality superconducting thin films of Y--Ba--Cu--O (YBCO) on MgO and SrTiO 3 substrates by RIP assisted MOCVD. By using a mixture of N 2 O and O 2 as the oxygen source films deposited initially at 600 degree C for 1 min and then at 740 degree C for 30 min are primarily c-axis oriented and with zero resistance being observed at 84 and 89 K for MgO and SrTiO 3 substrates, respectively. The zero magnetic field current densities at 77 K for MgO and SrTiO 3 substrates are 1.2x10 6 and 1.5x10 6 A/cm 2 , respectively. It is envisaged that high energy photons from the incoherent light source and the use of a mixture of N 2 O and O 2 as the oxygen source, assist chemical reactions and lower overall thermal budget for processing of these films

  8. Fabrication of ruthenium thin film and characterization of its chemical mechanical polishing process

    International Nuclear Information System (INIS)

    Chou, Yi-Sin; Yen, Shi-Chern; Jeng, King-Tsai

    2015-01-01

    The fabrication of Ru thin film is conducted on titanium (Ti)-based rotating disk electrodes (RDE) by electrodeposition and characteristics of its chemical mechanical polishing (CMP) are investigated to be employed for copper diffusion layer applications in various semiconductor-device interconnects. The electrodeposits obtained under different electrodeposition conditions are characterized using atomic force microscope (AFM) and field emission scanning electron microscope (FESEM). Experimental results indicate that the Ru electrodeposition exhibits a Tafel behavior with a 2e metal ion reduction process. Both exchange current density and cathodic transfer coefficient are determined. A quasi Koutecky–Levich analysis is proposed to analyze the electrodeposition processes under different applied current density conditions and the activation overpotentials together with electrodeposition rate constants are obtained. For Ru CMP operations, slurries containing metal-free 2wt% ammonium persulfate and 2wt% silica abrasive at various pH values are employed. Potentiodynamic polarization studies indicate that the corrosion current density varies in the presence of ammonia while the static etch rate remains low. Both chemical and mechanical effects are investigated and analyzed, and the CMP efficacy factors are obtained. - Highlights: • Ru electrodeposition is a 2e metal ion reduction process with Tafel behavior. • Ru electrodeposition on Ti RDE fits a quasi Koutecky–Levich equation. • Metal-free slurry is employed for CMP operation to avoid contamination. • The Ru CMP process is affected by the surface condition and the pH of slurry. • The CMP efficacy factor should be high in order to obtain a smooth surface

  9. Fabrication of ruthenium thin film and characterization of its chemical mechanical polishing process

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Yi-Sin [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Yen, Shi-Chern, E-mail: scyen@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Jeng, King-Tsai [Research Division I, TIER, 7F, No. 16-8, Dehuei St., Taipei 10461, Taiwan (China)

    2015-07-15

    The fabrication of Ru thin film is conducted on titanium (Ti)-based rotating disk electrodes (RDE) by electrodeposition and characteristics of its chemical mechanical polishing (CMP) are investigated to be employed for copper diffusion layer applications in various semiconductor-device interconnects. The electrodeposits obtained under different electrodeposition conditions are characterized using atomic force microscope (AFM) and field emission scanning electron microscope (FESEM). Experimental results indicate that the Ru electrodeposition exhibits a Tafel behavior with a 2e metal ion reduction process. Both exchange current density and cathodic transfer coefficient are determined. A quasi Koutecky–Levich analysis is proposed to analyze the electrodeposition processes under different applied current density conditions and the activation overpotentials together with electrodeposition rate constants are obtained. For Ru CMP operations, slurries containing metal-free 2wt% ammonium persulfate and 2wt% silica abrasive at various pH values are employed. Potentiodynamic polarization studies indicate that the corrosion current density varies in the presence of ammonia while the static etch rate remains low. Both chemical and mechanical effects are investigated and analyzed, and the CMP efficacy factors are obtained. - Highlights: • Ru electrodeposition is a 2e metal ion reduction process with Tafel behavior. • Ru electrodeposition on Ti RDE fits a quasi Koutecky–Levich equation. • Metal-free slurry is employed for CMP operation to avoid contamination. • The Ru CMP process is affected by the surface condition and the pH of slurry. • The CMP efficacy factor should be high in order to obtain a smooth surface.

  10. Thulium oxide fuel characterization study: Part 2, Environmental behavior and mechanical, thermal and chemical stability enhancement

    International Nuclear Information System (INIS)

    Nelson, C.A.

    1970-12-01

    A study was performed of the correlation between fuel form stability and exposure environment of (temperature and atmosphere). 100% Tm 2 O 3 , 80% Tm 2 O 3 /20% Yb 2 O 3 and 100% Yb 2 O 3 wafers were subjected to air, dynamic vacuum and static vacuum at temperatures to 2000 0 C for times to 100 hours. Results showed the Tm 2 O 3 /Yb 2 O 3 cubic structure to be unaffected by elemental levels of iron, aluminum, magnesium and silicon and unaffected by the environmental conditions imposed on the wafers. A second task emphasized the optimization of the thermal, mechanical and chemical stability of Tm 2 O 3 fuel forms. Enhancement was sought through process variable optimization and the addition of metal oxides to Tm 2 O 3 . CaO, TiO 2 and Al 2 O 3 were added to form a grain boundary precipitate to control fines generation. The presence of 1% additive was inadequate to depress the melting point of Tm 2 O 3 or to change the cubic crystalline structure of Tm 2 O 3 /Yb 2 O 3 . Tm 2 O 3 /Yb 2 O 3 wafers containing CaO developed a grain boundary phase that improved the resistance to fines generation. The presence of Yb 2 O 3 did not appear to measurably influence behavior

  11. Study of the aging processes in polyurethane adhesives using thermal treatment and differential calorimetric, dielectric, and mechanical techniques ; 1, identifying the aging processes ; 2, quantifying the aging effect

    CERN Document Server

    Althouse, L P

    1979-01-01

    Study of the aging processes in polyurethane adhesives using thermal treatment and differential calorimetric, dielectric, and mechanical techniques ; 1, identifying the aging processes ; 2, quantifying the aging effect

  12. Relating runoff generation mechanisms to concentration-discharge relationships in catchments with well-characterized Critical Zone structures and hydrologic dynamics

    Science.gov (United States)

    Hahm, W. J.; Wang, J.; Druhan, J. L.; Rempe, D.; Dietrich, W. E.

    2017-12-01

    Stream solute concentration-discharge (C-Q) relationships integrate catchment-scale hydrologic and geochemical processes, potentially yielding valuable information about runoff generation and weathering mechanisms. However, recent compilations have established that chemostasis—the condition where solute concentrations are invariant across large ranges of runoff—is observed in watersheds of diverse lithology, climate, and topography, suggesting an equifinality of the C-Q relationship independent of hydrologic process. Here we explore C-Q signals in contrasting catchments of the Eel River Critical Zone (CZ) Observatory in the Northern California Coast Ranges, where, unlike most watersheds where chemostasis has been observed, hillslope hydrologic processes are well characterized via years of intensive hydrologic monitoring. Our two catchments in the Franciscan Complex have radically different runoff generation mechanisms arising from differences in CZ structure: at Elder Creek (Coastal Belt), rain passes vertically as unsaturated flow through soil, saprolite, and a thick weathered rock zone before perching as groundwater on fresh bedrock and flowing laterally through fractures to generate streamflow, resulting in nearly chemostatic major cation behavior (power law C-Q slopes (B) ≈ 0 to -0.1). At Dry Creek (Central Belt), the thin (2 to 3 m) hydrologically active CZ completely saturates in most storm events, generating saturation overland flow across the landscape. New data from Dry Creek reveal log-log C-Q relationships for major cations that exhibit negative curvature, indicating a trend towards increasing dilution at higher flow rates and a possible C-Q signature of overland flow. High geomorphic channel drainage density (16.9 km/km2) results in short flow paths and, presumably, short water hillslope residence times at high runoff when overland flow dominates (> 50 mm d-1). Surprisingly, even at these high runoff rates, pure dilution does not occur (high

  13. In-Situ Preparation of Aramid-Multiwalled CNT Nano-Composites: Morphology, Thermal Mechanical and Electric Properties

    Directory of Open Access Journals (Sweden)

    Jessy Shiju

    2018-05-01

    Full Text Available In this work in-situ polymerization technique has been used to chemically link the functionalized multiwalled carbon nanotubes (CNTs with aramid matrix chains. Phenylene diamine monomers were reacted in the first stage with the carboxylic acid functionalized CNTs and then amidized in-situ using terephthaloyl chloride generating chemically bonded CNTs with the matrix. Various proportions of the CNTs were used to prepare the hybrid materials. The functionalization procedure was studied by Fourier transform infrared (FTIR spectroscopy and composite morphology investigated by scanning electron microscopy (SEM. Thermal mechanical properties of these hybrids, together with those where pristine CNTs with similar loadings were used, are compared using tensile and dynamic mechanical analysis (DMA. The tensile strength and temperature involving α-relaxations on CNT loading increased with CNT loading in both systems, but much higher values, i.e., 267 MPa and 353 °C, respectively, were obtained in the chemically bonded system, which are related to the nature of the interface developed as observed in SE micrographs. The water absorption capacity of the films was significantly reduced from 6.2 to 1.45% in the presence pristine CNTs. The inclusion of pristine CNTs increased the electric conductivity of the aramid films with a minimum threshold value at the loading of 3.5 wt % of CNTs. Such mechanically strong and thermally stable aramid and easily processable composites can be suitable for various applications including high performance films, electromagnetic shielding and radar absorption.

  14. Hydrological balance and water transport processes of partially sealed soils

    Science.gov (United States)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how

  15. Staff Technical Position on geological repository operations area underground facility design: Thermal loads

    International Nuclear Information System (INIS)

    Nataraja, M.S.

    1992-12-01

    The purpose of this Staff Technical Position (STP) is to provide the US Department of Energy (DOE) with a methodology acceptable to the Nuclear Regulatory Commission staff for demonstrating compliance with 10 CFR 60.133(i). The NRC staff's position is that DOE should develop and use a defensible methodology to demonstrate the acceptability of a geologic repository operations area (GROA) underground facility design. The staff anticipates that this methodology will include evaluation and development of appropriately coupled models, to account for the thermal, mechanical, hydrological, and chemical processes that are induced by repository-generated thermal loads. With respect to 10 CFR 60.133(i), the GROA underground facility design: (1) should satisfy design goals/criteria initially selected, by considering the performance objectives; and (2) must satisfy the performance objectives 10 CFR 60.111, 60.112, and 60.113. The methodology in this STP suggests an iterative approach suitable for the underground facility design

  16. Some Ecological Mechanisms to Generate Habitability in Planetary Subsurface Areas by Chemolithotrophic Communities: The Ro Tinto Subsurface Ecosystem as a Model System

    Science.gov (United States)

    Fernández-Remolar, David C.; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T.; Rodríguez, Nuria; Amiols, Ricardo

    2008-02-01

    Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Ro Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Ro Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.

  17. Modeling post-wildfire hydrological processes with ParFlow

    Science.gov (United States)

    Escobar, I. S.; Lopez, S. R.; Kinoshita, A. M.

    2017-12-01

    Wildfires alter the natural processes within a watershed, such as surface runoff, evapotranspiration rates, and subsurface water storage. Post-fire hydrologic models are typically one-dimensional, empirically-based models or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful for modeling and predictions at the watershed outlet; however, do not provide detailed, distributed hydrologic processes at the point scale within the watershed. This research uses ParFlow, a three-dimensional, distributed hydrologic model to simulate post-fire hydrologic processes by representing the spatial and temporal variability of soil burn severity (via hydrophobicity) and vegetation recovery. Using this approach, we are able to evaluate the change in post-fire water components (surface flow, lateral flow, baseflow, and evapotranspiration). This work builds upon previous field and remote sensing analysis conducted for the 2003 Old Fire Burn in Devil Canyon, located in southern California (USA). This model is initially developed for a hillslope defined by a 500 m by 1000 m lateral extent. The subsurface reaches 12.4 m and is assigned a variable cell thickness to explicitly consider soil burn severity throughout the stages of recovery and vegetation regrowth. We consider four slope and eight hydrophobic layer configurations. Evapotranspiration is used as a proxy for vegetation regrowth and is represented by the satellite-based Simplified Surface Energy Balance (SSEBOP) product. The pre- and post-fire surface runoff, subsurface storage, and surface storage interactions are evaluated at the point scale. Results will be used as a basis for developing and fine-tuning a watershed-scale model. Long-term simulations will advance our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes, providing improved guidance for post-fire watershed management. In reference

  18. [Baseflow separation methods in hydrological process research: a review].

    Science.gov (United States)

    Xu, Lei-Lei; Liu, Jing-Lin; Jin, Chang-Jie; Wang, An-Zhi; Guan, De-Xin; Wu, Jia-Bing; Yuan, Feng-Hui

    2011-11-01

    Baseflow separation research is regarded as one of the most important and difficult issues in hydrology and ecohydrology, but lacked of unified standards in the concepts and methods. This paper introduced the theories of baseflow separation based on the definitions of baseflow components, and analyzed the development course of different baseflow separation methods. Among the methods developed, graph separation method is simple and applicable but arbitrary, balance method accords with hydrological mechanism but is difficult in application, whereas time series separation method and isotopic method can overcome the subjective and arbitrary defects caused by graph separation method, and thus can obtain the baseflow procedure quickly and efficiently. In recent years, hydrological modeling, digital filtering, and isotopic method are the main methods used for baseflow separation.

  19. Forensic analysis methodology for thermal and chemical characterization of homemade explosives

    International Nuclear Information System (INIS)

    Nazarian, Ashot; Presser, Cary

    2014-01-01

    Highlights: • Identification of homemade explosives (HME) is critical for determining the origin of explosive precursor materials. • A novel laser-heating technique was used to obtain the thermal/chemical signatures of HME precursor materials. • Liquid-fuel saturation of the pores of a solid porous oxidizer affected the total specific heat release. • Material thermal signatures were dependent on sample mass and heating rate. • This laser-heating technique can be a useful diagnostic tool for characterizing the thermochemical behavior of HMEs. - Abstract: Forensic identification of homemade explosives is critical for determining the origin of the explosive materials and precursors, and formulation procedures. Normally, the forensic examination of the pre- and post-blast physical evidence lacks specificity for homemade-explosive identification. The focus of this investigation was to use a novel measurement technique, referred to as the laser-driven thermal reactor, to obtain the thermal/chemical signatures of homemade-explosive precursor materials. Specifically, nitromethane and ammonium nitrate were studied under a variety of operating conditions and protocols. Results indicated that liquid-fuel saturation of the internal pores of a solid particle oxidizer appear to be a limiting parameter for the total specific heat release during exothermic processes. Results also indicated that the thermal signatures of these materials are dependent on sample mass and heating rate, for which this dependency may not be detectable by other commercially available thermal analysis techniques. This study has demonstrated that the laser-driven thermal reactor can be a useful diagnostic tool for characterizing the thermal and chemical behavior of trace amounts of homemade-explosive materials

  20. Non-thermal hydrogen plasma processing effectively increases the antibacterial activity of graphene oxide

    Science.gov (United States)

    Ke, Zhigang; Ma, Yulong; Zhu, Zhongjie; Zhao, Hongwei; Wang, Qi; Huang, Qing

    2018-01-01

    Graphene-based materials (GMs) are promising antibacterial agents which provide an alternative route to treat pathogenic bacteria with resistance to conventional antibiotics. To further improve their antibacterial activity, many methods have been developed to functionalize the GMs with chemicals. However, the application of additional chemicals may pose potential risks to the environment and human being. Herein, a radio-frequency-driven inductively coupled non-thermal hydrogen plasma was used to treat and reduce graphene oxide (GO) without using any other chemicals, and we found that the plasma-reduced GO (prGO) is with significantly higher bactericidal activity against Escherichia coli. The mechanism of the increased antibacterial activity of prGO is due to that plasma processing breaks down the GO sheets into smaller layers with more rough surface defects, which can thus induce more destructive membrane damages to the bacteria. This work sets another good example, showing that plasma processing is a green and low-cost alternative for GM modification for biomedical applications.

  1. Some ecological mechanisms to generate habitability in planetary subsurface areas by chemolithotrophic communities: the Río Tinto subsurface ecosystem as a model system.

    Science.gov (United States)

    Fernández-Remolar, David C; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T; Rodríguez, Nuria; Amils, Ricardo

    2008-02-01

    Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Río Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Río Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.

  2. Development of the Conceptual Models for Chemical Conditions and Hydrology Used in the 1996 Performance Assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    LARSON, KURT W.

    2000-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) facility for the permanent disposal of defense-related transuranic (TRU) waste. US Environmental Protection Agency (EPA) regulations specify that the DOE must demonstrate on a sound basis that the WIPP disposal system will effectively contain long-lived alpha-emitting radionuclides within its boundaries for 10,000 years following closure. In 1996, the DOE submitted the ''40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant'' (CCA) to the EPA. The CCA proposed that the WIPP site complies with EPA's regulatory requirements. Contained within the CCA are descriptions of the scientific research conducted to characterize the properties of the WIPP site and the probabilistic performance assessment (PA) conducted to predict the containment properties of the WIPP disposal system. In May 1998, the EPA certified that the TRU waste disposal at the WIPP complies with its regulations. Waste disposal operations at WIPP commenced on March 28, 1999. The 1996 WIPP PA model of the disposal system included conceptual and mathematical representations of key hydrologic and geochemical processes. These key processes were identified over a 22-year period involving data collection, data interpretation, computer models, and sensitivity studies to evaluate the importance of uncertainty and of processes that were difficult to evaluate by other means. Key developments in the area of geochemistry were the evaluation of gas generation mechanisms in the repository; development of a model of chemical conditions in the repository and actinide concentrations in brine; selecting MgO backfill and demonstrating its effects experimentally; and determining the chemical retardation capability of the Culebra. Key developments in the area of hydrology were evacuating the potential for groundwater to dissolve the Salado Formation (the repository host formation), development of a regional model for

  3. Development of the conceptual models for chemical conditions and hydrology used in the 1996 performance assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Larson, K.W.

    2000-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) facility for the permanent disposal of defense-related transuranic (TRU) waste. US Environmental Protection Agency (EPA) regulations specify that the DOE must demonstrate on a sound basis that the WIPP disposal system will effectively contain long-lived alpha-emitting radionuclides within its boundaries for 10,000 years following closure. In 1996, the DOE submitted the 40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant (CCA) to the EPA. The CCA proposed that the WIPP site complies with EPA's regulatory requirements. Contained within the CCA are descriptions of the scientific research conducted to characterize the properties of the WIPP site and the probabilistic performance assessment (PA) conducted to predict the containment properties of the WIPP disposal system. In May 1998, the EPA certified that the TRU waste disposal at the WIPP complies with its regulations. Waste disposal operations at WIPP commenced on 28 March 1999. The 1996 WIPP PA model of the disposal system included conceptual and mathematical representations of key hydrologic and geochemical processes. These key processes were identified over a 22-year period involving data collection, data interpretation, computer models, and sensitivity studies to evaluate the importance of uncertainty and of processes that were difficult to evaluate by other means. Key developments in the area of geochemistry were the evaluation of gas generation mechanisms in the repository; development of a model of chemical conditions in the repository and actinide concentrations in brine; selecting MgO backfill and demonstrating its effects experimentally; and, determining the chemical retardation capability of the Culebra. Key developments in the area of hydrology were evaluating the potential for groundwater to dissolve the Salado Formation (the repository host formation); development of a regional model for

  4. Thermal, mechanical and morphological properties of poly (hydroxybutyrate and polypropylene blends after processing

    Directory of Open Access Journals (Sweden)

    Wagner Mauricio Pachekoski

    2009-06-01

    Full Text Available The ever increasing accumulation of plastic waste in the environment has motivated research on polymers that degrade rapidly after being discarded as possible substitutes for conventional inert plastics. Biodegradable polymers can be an alternative, since they have non-toxic residual products and low environmental permanence. Poly (hydroxybutyrate is a biodegradable polymer with a strong potential for industrial purposes, but its thermal instability and fragility limit its applications. Thus, an alternative to improve the processability and properties of poly (hydroxybutyrate is to mix it with another polymer, not necessarily a biodegradable one. In this work, different mixtures of poly(hydroxybutyrate or PHB and polypropylene or PP were extruded and injected. After processing, the blends were studied and their miscibility, mechanical properties and degradability in different soils were analyzed. The main results indicated that the PHB/PP blends had better mechanical properties than pure PHB, as well as improved immiscibility and higher degradation in alkaline soil. The poly-hydroxybutyrate/polypropylene blends showed a tendency for lower crystallinity and stiffness of the polymer matrix, proportional to the amount of polypropylene in the blends, rendering them less stiff and fragile. The degradation tests showed that both pure PHB and blends with 90% PHB and 10% PP were degraded, with loss of their mechanical properties and weight.

  5. Mechanical and Microstructure Study of Nickel-Based ODS Alloys Processed by Mechano-Chemical Bonding and Ball Milling

    Science.gov (United States)

    Amare, Belachew N.

    Due to the need to increase the efficiency of modern power plants, land-based gas turbines are designed to operate at high temperature creating harsh environments for structural materials. The elevated turbine inlet temperature directly affects the materials at the hottest sections, which includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a number of material requirements such as high creep strength, ductility at low temperature, high temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to protect from high operating temperature required to obtain an increased efficiency. Oxide dispersive strengthened (ODS) alloys are being considered due to their high temperature creep strength, good oxidation and corrosion resistance for high temperature applications in advanced power plants. These alloys operating at high temperature are subjected to different loading systems such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is critical to study the high temperature mechanical and microstructure properties of such alloys for their structural integrity. The primary objective of this research work is to investigate the mechanical and microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to be applied for high temperature turbine coating with micro-channel cooling system. Stiffness response and microstructure evaluation of such alloy systems was studied along with their oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using finite element analysis (FEA) to determine their feasibility as a stand-alone structural

  6. Thermally emissive sensing materials for chemical spectroscopy analysis

    Science.gov (United States)

    Poole, Zsolt; Ohodnicki, Paul R.

    2018-05-08

    A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to the material.

  7. Thermal and Chemical Characterization of Non-Metallic Materials Using Coupled Thermogravimetric Analysis and Infrared Spectroscopy

    Science.gov (United States)

    Huff, Timothy L.

    2002-01-01

    Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR. The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected realtime, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in

  8. Controls on the Environmental Fate of Compounds Controlled by Coupled Hydrologic and Reactive Processes

    Science.gov (United States)

    Hixson, J.; Ward, A. S.; McConville, M.; Remucal, C.

    2017-12-01

    Current understanding of how compounds interact with hydrologic processes or reactive processes have been well established. However, the environmental fate for compounds that interact with hydrologic AND reactive processes is not well known, yet critical in evaluating environmental risk. Evaluations of risk are often simplified to homogenize processes in space and time and to assess processes independently of one another. However, we know spatial heterogeneity and time-variable reactivities complicate predictions of environmental transport and fate, and is further complicated by the interaction of these processes, limiting our ability to accurately predict risk. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.

  9. Kinematic analysis of in situ measurement during chemical mechanical planarization process

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongkai; Wang, Tongqing; Zhao, Qian; Meng, Yonggang; Lu, Xinchun, E-mail: xclu@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2015-10-15

    Chemical mechanical planarization (CMP) is the most widely used planarization technique in semiconductor manufacturing presently. With the aid of in situ measurement technology, CMP tools can achieve good performance and stable productivity. However, the in situ measurement has remained unexplored from a kinematic standpoint. The available related resources for the kinematic analysis are very limited due to the complexity and technical secret. In this paper, a comprehensive kinematic analysis of in situ measurement is provided, including the analysis model, the measurement trajectory, and the measurement time of each zone of wafer surface during the practical CMP process. In addition, a lot of numerical calculations are performed to study the influences of main parameters on the measurement trajectory and the measurement velocity variation of the probe during the measurement process. All the efforts are expected to improve the in situ measurement system and promote the advancement in CMP control system.

  10. Reduced Chemical Kinetic Mechanisms for JP-8 Combustion

    National Research Council Canada - National Science Library

    Montgomery, Christopher J; Cannon, S. M; Mawid, M. A; Sekar, B

    2002-01-01

    Using CARM (Computer Aided Reduction Method), a computer program that automates the mechanism reduction process, six different reduced chemical kinetic mechanisms for JP-8 combustion have been generated...

  11. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    International Nuclear Information System (INIS)

    Roh, Heui-Seol

    2015-01-01

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  12. A chemo-mechanical model coupled with thermal effect on the hollow core–shell electrodes in lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Bin Hu

    2017-07-01

    Full Text Available Electrode is a key component to remain durability and safety of lithium-ion (Li-ion batteries. Li-ion insertion/removal and thermal expansion mismatch may induce high stress in electrode during charging and discharging processes. In this paper, we present a continuum model based on COMSOL Multiphysics software, which involves thermal, chemical and mechanical behaviors of electrodes. The results show that, because of diffusion-induced stress and thermal mismatch, the electrode geometry plays an important role in diffusion kinetics of Li-ions. A higher local compressive stress results in a lower Li-ion concentration and thus a lower capacity when a particle is embedded another, which is in agreement with experimental observations. Keywords: Lithium-ion battery, Diffusion-induced stress, COMSOL, Chemo-mechanical, Electrode

  13. Photo, thermal and chemical degradation of riboflavin

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Sheraz

    2014-08-01

    Full Text Available Riboflavin (RF, also known as vitamin B2, belongs to the class of water-soluble vitamins and is widely present in a variety of food products. It is sensitive to light and high temperature, and therefore, needs a consideration of these factors for its stability in food products and pharmaceutical preparations. A number of other factors have also been identified that affect the stability of RF. These factors include radiation source, its intensity and wavelength, pH, presence of oxygen, buffer concentration and ionic strength, solvent polarity and viscosity, and use of stabilizers and complexing agents. A detailed review of the literature in this field has been made and all those factors that affect the photo, thermal and chemical degradation of RF have been discussed. RF undergoes degradation through several mechanisms and an understanding of the mode of photo- and thermal degradation of RF may help in the stabilization of the vitamin. A general scheme for the photodegradation of RF is presented.

  14. Simulating hydrological processes of a typical small mountainous catchment in Tibetan Plateau

    Science.gov (United States)

    Xu, Y. P.; Bai, Z.; Fu, Q.; Pan, S.; Zhu, C.

    2017-12-01

    Water cycle of small watersheds with seasonal/permanent frozen soil and snow pack in Tibetan Plateau is seriously affected by climate change. The objective of this study is to find out how much and in what way the frozen soil and snow pack will influence the hydrology of small mountainous catchments in cold regions and how can the performance of simulation by a distributed hydrological model be improved. The Dong catchment, a small catchment located in Tibetan Plateau, is used as a case study. Two measurement stations are set up to collect basic meteorological and hydrological data for the modeling purpose. Annual and interannual variations of runoff indices are first analyzed based on historic data series. The sources of runoff in dry periods and wet periods are analyzed respectively. Then, a distributed hydrology soil vegetation model (DHSVM) is adopted to simulate the hydrological process of Dong catchment based on limited data set. Global sensitivity analysis is applied to help determine the important processes of the catchment. Based on sensitivity analysis results, the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (ɛ-NSGAII) is finally added into the hydrological model to calibrate the hydrological model in a multi-objective way and analyze the performance of DHSVM model. The performance of simulation is evaluated with several evaluation indices. The final results show that frozen soil and snow pack do play an important role in hydrological processes in cold mountainous region, in particular in dry periods without precipitation, while in wet periods precipitation is often the main source of runoff. The results also show that although the DHSVM hydrological model has the potential to model the hydrology well in small mountainous catchments with very limited data in Tibetan Plateau, the simulation of hydrology in dry periods is not very satisfactory due to the model's insufficiency in simulating seasonal frozen soil.

  15. Exploring Microbial Processes with Thermal-Hydrological Models of the Eastern Flank of the Juan de Fuca Ridge

    Science.gov (United States)

    Weathers, T. S.; Fisher, A. T.; Winslow, D. M.; Stauffer, P. H.; Gable, C. W.

    2017-12-01

    The flanks of mid-ocean ridges experience coupled flows of fluid, heat, and solutes that are critical for a wide range of global processes, including the cycling of carbon and nutrients, which supports a vast crustal biosphere. Only a few ridge-flank sites have been studied in detail; hydrogeologic conditions and processes in the volcanic crust are best understood on the eastern flank of the Juan de Fuca Ridge. This area has been extensively explored with decades of drilling, submersible, observatory, and survey expeditions and experiments, including the first hole-to-hole tracer injection experiment in the ocean crust. This study describes the development of reactive transport simulations for this ridge-flank setting using three-dimensional coupled (thermal-hydrological) models of crustal-scale circulation, beginning with the exploration of tracer transport. The prevailing flow direction is roughly south to north as a result of outcrop-to-outcrop flow, with a bulk flow rate in the range of meters/year. However, tracer was detected 500 m south ("upstream") from the injection borehole during the first year following injection. This may be explained by local mixing and/or formation fluid discharge from the southern borehole during and after injection. The constraints and parameters required to fit the observed tracer behavior can be used as a basis for modeling reactive transport processes such as nutrient delivery or microbial community evolution as a function of fluid flow. For example, the sulfate concentration in fluid samples from Baby Bare outcrop ( 8 km south of the tracer transport experiment) was 17.8 mmol/kg, whereas at Mama Bare outcrop ( 8 km to north of the tracer transport experiment) the sulfate concentration was 16.3 mmol/mg. By integrating laboratory-derived sulfate reduction rates from microbial samples originating from Juan de Fuca borehole observatories into reactive transport models, we can explore the range of microbial activity that supports

  16. Influences of Coupled Hydrologic and Microbial Processes on River Corridor Biogeochemistry and Ecology

    Science.gov (United States)

    Scheibe, T. D.; Song, H. S.; Stegen, J.; Graham, E.; Bao, J.; Goldman, A.; Zhou, T.; Crump, A.; Hou, Z.; Hammond, G. E.; Chen, X.; Huang, M.; Zhang, X.; Nelson, W. C.; Garayburu-Caruso, V. A.

    2017-12-01

    The exchange of water between rivers and surrounding subsurface environments (hydrologic exchange flows or HEFs) is a vital aspect of river ecology and watershed function. HEFs play a key role in water quality, nutrient cycling, and ecosystem health, and they modulate water temperatures and enhance exchange of terrestrial and aquatic nutrients, which lead to elevated biogeochemical activity. However, these coupled hydrologic and microbiological processes are not well understood, particularly in the context of large managed river systems with highly variable discharge, and are poorly represented in system-scale quantitative models. Using the 75 km Hanford Reach of the Columbia River as the research domain, we apply high-resolution flow simulations supported by field observations to understand how variable river discharge interacts with hydromorphic and hydrogeologic structures to generate HEFs and distributions of subsurface residence times. We combine this understanding of hydrologic processes with microbiological activity measurements and reactive transport models to elucidate the holistic impacts of variable discharge on river corridor (surface and subsurface) ecosystems. In particular, our project seeks to develop and test new conceptual and numerical models that explicitly incorporate i) the character (chemical speciation and thermodynamics) of natural organic matter as it varies along flow paths and through mixing of groundwater and surface water, and ii) the history-dependent response of microbial communities to varying time scales of inundation associated with fluctuations in river discharge. The results of these high-resolution mechanistic models are guiding formulation and parameterization of reduced-order models applicable at reach to watershed scales. New understanding of coupled hydrology and microbiology in the river corridor will play a key role in reduction of uncertainties associated with major Earth system biogeochemical fluxes, improving

  17. Chemical and thermal analysis for characterisation of building materials

    International Nuclear Information System (INIS)

    Kumar, S.C.; Sudersanan, M.; Ravindran, P.V.; Kalekar, B.B.; Mathur, P.K.

    2000-01-01

    Cement and other construction materials are extensively used for the construction of shielding materials for nuclear and high energy radiations. The design and optimum utilisation of such materials need an accurate analysis of their chemical composition. The moisture content and presence of bound water and other volatile materials are also important. The use of thermal analysis supplements the data obtained by chemical analysis and enables a distinction of moisture and chemically bound water. It also enables an identification of the process leading to the loss on ignition. The work carried out on the analysis of sand, cement and other aggregate materials used for the preparation of concrete is described in the paper. (author)

  18. Thermal-Hydrologic Sensitivity Analysis of Engineered Barrier System Design Options

    International Nuclear Information System (INIS)

    Dunlap, B.

    2000-01-01

    This sensitivity study presents the effects that changing the ventilation time and initial linear power loading can have on specific thermal-hydrologic response parameters, such as waste package peak temperatures. Results show that an approximate 55 C drop in waste package peak temperature can be expected from the reference case design if the initial line loading is reduced to 0.90 kW/m or if the ventilation time is increased to 125 years. Increasing the waste package to waste package spacing in order to reduce the linear load to 0.90 kW/m requires additional emplacement drifts and an expansion of the area that the repository occupies. Increasing the ventilation duration requires that the repository remains open and is maintained for long periods of time. The effectiveness and expense of each design alternative must be weighed in determining the best way to achieve a particular thermal goal. Also, this sensitivity study shows that certain thermal goals may not be reached if only using ventilation, sometimes only the reduction of the linear load or a combination of linear loading and ventilation can reduce the thermal response to lower temperature specifications, if considered. As an example, Figure 1 shows that waste package peak temperatures below 96 C would require both a reduction in the linear load and an increase in ventilation duration

  19. CHEMICAL COMPOSITION, CRYSTALLINITY, AND THERMAL DEGRADATION OF BLEACHED AND UNBLEACHED KENAF BAST (Hibiscus cannabinus PULP AND NANOFIBERS

    Directory of Open Access Journals (Sweden)

    Mehdi Jonoobi

    2009-05-01

    Full Text Available Kenaf (Hibiscus cannabinus nanofibers were isolated from unbleached and bleached pulp by a combination of chemical and mechanical treatments. The chemical methods were based on NaOH-AQ (anthraquinone and three-stage bleaching (DEpD processes, whereas the mechanical techniques involved refining, cryo-crushing, and high-pressure homogenization. The size and morphology of the obtained fibers were characterized by environmental scanning electron microscopy (ESEM and transmission electron microscopy (TEM, and the studies showed that the isolated nanofibers from unbleached and bleached pulp had diameters between 10-90 nm, while their length was in the micrometer range. Fourier transform infrared (FTIR spectroscopy demonstrated that the content of lignin and hemicellulose decreased in the pulping process and that lignin was almost completely removed during bleaching. Moreover, thermogravimetric analysis (TGA indicated that both pulp types as well as the nanofibers displayed a superior thermal stability as compared to the raw kenaf. Finally, X-ray analyses showed that the chemo-mechanical treatments altered the crystallinity of the pulp and the nanofibers: the bleached pulp had a higher crystallinity than its unbleached counterpart, and the bleached nanofibers presented the highest crystallinity of all the investigated materials.

  20. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice: Part II: Impact on specific chemical and biochemical quality parameters

    NARCIS (Netherlands)

    Vervoort, L.; Plancken, van der I.; Grauwet, T.; Timmermans, R.A.H.; Mastwijk, H.C.; Matser, A.M.; Hendrickx, M.E.; Loey, van A.

    2011-01-01

    The impact of thermal, high pressure (HP) and pulsed electric field (PEF) processing for mild pasteurization of orange juice was compared on a fair basis, using processing conditions leading to an equivalent degree of microbial inactivation. Examining the effect on specific chemical and biochemical

  1. Simulations of ecosystem hydrological processes using a unified multi-scale model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin; Hinkle, Ross; Li, Hong-Yi; Bailey, Vanessa; Bond-Lamberty, Ben

    2015-01-01

    This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling of hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.

  2. Quantification of chemical transport processes from the soil to surface runoff.

    Science.gov (United States)

    Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary

    2013-01-01

    There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. The hydrological functioning of a constructed fen wetland watershed.

    Science.gov (United States)

    Ketcheson, Scott J; Price, Jonathan S; Sutton, Owen; Sutherland, George; Kessel, Eric; Petrone, Richard M

    2017-12-15

    Mine reclamation requires the reconstruction of entire landforms and drainage systems. The hydrological regime of reclaimed landscapes will be a manifestation of the processes operating within the individual landforms that comprise it. Hydrology is the most important process regulating wetland function and development, via strong controls on chemical and biotic processes. Accordingly, this research addresses the growing and immediate need to understand the hydrological processes that operate within reconstructed landscapes following resource extraction. In this study, the function of a constructed fen watershed (the Nikanotee Fen watershed) is evaluated for the first two years following construction (2013-2014) and is assessed and discussed within the context of the construction-level design. The system design was capable of sustaining wet conditions within the Nikanotee Fen during the snow-free period in 2013 and 2014, with persistent ponded water in some areas. Evapotranspiration dominated the water fluxes from the system. These losses were partially offset by groundwater discharge from the upland aquifer, which demonstrated strong hydrologic connectivity with the fen in spite of most construction materials having lower than targeted saturated hydraulic conductivities. However, the variable surface infiltration rates and thick placement of a soil-capping layer constrained recharge to the upland aquifer, which remained below designed water contents in much of the upland. These findings indicate that it is possible to engineer the landscape to accommodate the hydrological functions of a fen peatland following surface oil sands extraction. Future research priorities should include understanding the storage and release of water within coarse-grained reclaimed landforms as well as evaluating the relative importance of external water sources and internal water conservation mechanisms for the viability of fen ecosystems over the longer-term. Copyright © 2017 Elsevier B

  4. Environmentally benign chemical synthesis and processing

    International Nuclear Information System (INIS)

    Hancock, K.G.

    1992-01-01

    A new era of university-industry-government partnership is required to address the intertwined problems of industrial economic competitiveness and environmental quality. Chemicals that go up the stacks and down the drains are simultaneously a serious detriment to the environment, a waste of natural resources, and a threat to industrial profitability. Recently, the NSF Divisions of Chemistry and chemical and Thermal Systems have joined with the Council for Chemical research in a new grant program to reduce pollution at the source by underwriting research aimed at environmentally benign chemical synthesis and processing. Part of a broader NSF initiative on environmental science research, this new program serves as a model for university-industry-government joint action and technology transfer. Other features of this program and related activities will be described in this paper

  5. Calibration process of highly parameterized semi-distributed hydrological model

    Science.gov (United States)

    Vidmar, Andrej; Brilly, Mitja

    2017-04-01

    Hydrological phenomena take place in the hydrological system, which is governed by nature, and are essentially stochastic. These phenomena are unique, non-recurring, and changeable across space and time. Since any river basin with its own natural characteristics and any hydrological event therein, are unique, this is a complex process that is not researched enough. Calibration is a procedure of determining the parameters of a model that are not known well enough. Input and output variables and mathematical model expressions are known, while only some parameters are unknown, which are determined by calibrating the model. The software used for hydrological modelling nowadays is equipped with sophisticated algorithms for calibration purposes without possibility to manage process by modeler. The results are not the best. We develop procedure for expert driven process of calibration. We use HBV-light-CLI hydrological model which has command line interface and coupling it with PEST. PEST is parameter estimation tool which is used widely in ground water modeling and can be used also on surface waters. Process of calibration managed by expert directly, and proportionally to the expert knowledge, affects the outcome of the inversion procedure and achieves better results than if the procedure had been left to the selected optimization algorithm. First step is to properly define spatial characteristic and structural design of semi-distributed model including all morphological and hydrological phenomena, like karstic area, alluvial area and forest area. This step includes and requires geological, meteorological, hydraulic and hydrological knowledge of modeler. Second step is to set initial parameter values at their preferred values based on expert knowledge. In this step we also define all parameter and observation groups. Peak data are essential in process of calibration if we are mainly interested in flood events. Each Sub Catchment in the model has own observations group

  6. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney

    2016-10-01

    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  7. The chemical consequences of thermal neutron capture in alkali selenates

    International Nuclear Information System (INIS)

    Duplatre, G.; Vargas, J.I.

    1977-01-01

    The initial retention of the SeO 4 2- ion after thermal neutron capture has been studied in various matrices by chemical analysis. A comparison between the thermal behaviour of the chemically analyzed Sesup(IV) and the disappearance of the E.P.R. species SeO 3 - and SeO 4 3- showed that the retention fraction would include all species with oxidation state higher or equal to VI. The retentions observed in the different matrices show the existence of four families with respective retentions of: 2.6%[K 2 SeO 4 diluted in (NH 4 ) 2 SO 4 ], 9.2% [anhydrous and hydrated Li and Ca selenates; K 2 SeO 4 diluted in NaIO 3 ; Se + implanted in K 2 SeO 4 ; Triglycine selenate], 21.5% [K 2 SeO 4 diluted in KNO 3 , K 2 SO 4 , Na 2 WO 4 and Na 2 WO 4 .2H 2 O] and 32.0% [Na,K and Cs selenates]. Whereas chemical considerations may be invoked for the (NH 4 ) 2 SO 4 matrix, a mechanical model is proposed for the three other groups. (author)

  8. Modeling interactions of soil hydrological dynamics and soil thermal and permafrost dynamics and their effects on carbon cycling in northern high latitudes

    Science.gov (United States)

    Zhuang, Q.; Tang, J.

    2008-12-01

    Large areas of northern high latitude ecosystems are underlain with permafrost. The warming temperature and fires deteriorate the stability of those permafrost, altering hydrological cycle, and consequently soil temperature and active layer depth. These changes will determine the fate of large carbon pools in soils and permafrost over the region. We developed a modeling framework of hydrology, permafrost, and biogeochemical dynamics based on our existing modules of these components. The framework was incorporated with a new snow dynamics module and the effects of soil moisture on soil thermal properties. The framework was tested for tundra and boreal forest ecosystems at field sites with respect to soil thermal and hydrological regimes in Alaska and was then applied to the whole Alaskan ecosystems for the period of 1923-2000 at a daily time step. Our two sets of simulations with and without considering soil moisture effects indicated that the soil temperature profile and active layer depth between two simulations are significant different. The differences of soil thermal regime would expect to result in different carbon dynamics. Next, we will verify the framework with the observed data of soil moisture and soil temperature at poor-drain, moderate-drain, and well-drain boreal forest sites in Alaska. With the verified framework, we will evaluate the effects of interactions of soil thermal and hydrological dynamics on carbon dynamics for the whole northern high latitudes.

  9. Plot-scale field experiment of surface hydrologic processes with EOS implications

    Science.gov (United States)

    Laymon, Charles A.; Macari, Emir J.; Costes, Nicholas C.

    1992-01-01

    Plot-scale hydrologic field studies were initiated at NASA Marshall Space Flight Center to a) investigate the spatial and temporal variability of surface and subsurface hydrologic processes, particularly as affected by vegetation, and b) develop experimental techniques and associated instrumentation methodology to study hydrologic processes at increasingly large spatial scales. About 150 instruments, most of which are remotely operated, have been installed at the field site to monitor ground atmospheric conditions, precipitation, interception, soil-water status, and energy flux. This paper describes the nature of the field experiment, instrumentation and sampling rationale, and presents preliminary findings.

  10. Rock fracture processes in chemically reactive environments

    Science.gov (United States)

    Eichhubl, P.

    2015-12-01

    Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed solution-precipitation creep in the

  11. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Samper, J.; Montenegro, L.

    2011-04-01

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO{sub 2}(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO{sub 3}{sup -} and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

  12. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    International Nuclear Information System (INIS)

    Zheng, L.; Samper, J.; Montenegro, L.

    2011-01-01

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO 2 (g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO 3 - and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

  13. Water and chemical budgets in an urbanized river system under various hydrological conditions

    Science.gov (United States)

    Brion, Natacha; Carbonnel, Vincent; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.

    2017-04-01

    Since historical times, riversides are preferential settlement places for human life and activities, ultimately leading to the development of Cities. Available water resources are not only essential to ensure human's vital functions, they are also used for the production of food, goods, and energy, as transport routes and as evacuation ways for domestic and industrial waste products. All these activities profoundly modify natural water circulation as well as water quality, with increased hydrological risks (floods, droughts,…) and chemical hazards (untreated sewage releases, industrial pollution,…) as consequence. An extreme example of strongly modified river system is the river Zenne crossing the city of Brussels. In and around the city, the river together with its connected navigation canal, determine a small vertical urbanized area (800 km2) combining extreme land-use landscapes. While the southern upstream part of this area lies in a region of intensive agricultural activities, the central part is occupied by a dense cityscape including a forested area, and the downstream part is mainly under industrial influence. In this context, we established a box-model representation of water and selected polluting chemicals (N and P, biological oxygen demand, and a selection of metals, pesticides and PAHs) budgets for the studied area under variable hydrological conditions. We first have identified the general distribution of water and pollutant tracers in the various background sources of the system: waters in streams located in the very upstream parts of the catchment, and untreated and treated sewage. Secondly we have assessed the distribution of water flows, and pollutant tracer concentrations at the boundaries of the studied water systems for different stable hydrological conditions and during flood events. Finally we will discuss water budgets and pollution tracer budgets for a yearly average hydrological situation and for dry and wet weather conditions in order

  14. Evaluating permafrost thaw vulnerabilities and hydrologic impacts in boreal Alaska (USA) watersheds using field data and cryohydrogeologic modeling

    Science.gov (United States)

    Walvoord, M. A.; Voss, C.; Ebel, B. A.; Minsley, B. J.

    2017-12-01

    Permafrost environments undergo changes in hydraulic, thermal, chemical, and mechanical subsurface properties upon thaw. These property changes must be considered in addition to alterations in hydrologic, thermal, and topographic boundary conditions when evaluating shifts in the movement and storage of water in arctic and sub-arctic boreal regions. Advances have been made in the last several years with respect to multiscale geophysical characterization of the subsurface and coupled fluid and energy transport modeling of permafrost systems. Ongoing efforts are presented that integrate field data with cryohydrogeologic modeling to better understand and anticipate changes in subsurface water resources, fluxes, and flowpaths caused by climate warming and permafrost thawing. Analyses are based on field data from several sites in interior Alaska (USA) that span a broad north-south transition from continuous to discontinuous permafrost. These data include soil hydraulic and thermal properties and shallow permafrost distribution. The data guide coupled fluid and energy flow simulations that incorporate porewater liquid/ice phase change and the accompanying modifications in hydraulic and thermal subsurface properties. Simulations are designed to assess conditions conducive to active layer thickening and talik development, both of which are expected to affect groundwater storage and flow. Model results provide a framework for identifying factors that control the rates of permafrost thaw and associated hydrologic responses, which in turn influence the fate and transport of carbon.

  15. The application of nuclear energy to the Canadian chemical process industry

    International Nuclear Information System (INIS)

    Robertson, R.F.S.

    1976-03-01

    A study has been made to determine what role nuclear energy, either electrical or thermal, could play in the Canadian chemical process industry. The study was restricted to current-scale CANDU type power reactors. It is concluded that the scale of operation of the chemical industry is rarely large enough to use blocks of electrical power (e) of 500 MW or thermal power (t) of 1500 MW. Thus, with a few predictable exceptions, the role of nuclear energy in the Canadian chemical industry will be as a general thermal/electrical utility supplier, serving a variety of customers in a particular geographic area. This picture would change if nuclear steam generators of 20 to 50 MW(t) become available and are economically competitive. (author)

  16. Improvement of Thermo-Mechanical Properties of Short Natural Fiber Reinforced Recycled Polypropylene Composites through Double Step Grafting Process

    Science.gov (United States)

    Saputra, O. A.; Rini, K. S.; Susanti, T. D.; Mustofa, R. E.; Prameswari, M. D.; Pramono, E.

    2017-07-01

    This study focused on the effect of a compatibilizer addition, maleic anhydrides (MAH) on mechanical, thermal and water absorption properties of oil palm empty fruit bunches (EFB) fiber reinforced recycled polypropylene (rPP) biocomposites. The double steps grafting process were conducted by incorporated MAH on both rPP and EFB to improve the surface adhesion between these materials, to result in a good mechanical properties as well as biocompatibility to nature. The chemical test was carried out using FTIR (Fourier Transform Infra-Red) spectroscopy technique to evaluated grafting process. The mechanical test was investigated and found that the addition of 10 phr MAH to both rPP and EFB improved mechanical strength of the biocomposites higher than another formulas. In this study, thermal properties of biocomposites also characterized. Water absorption (WA) analysis showed the presence of EFB fiber increased the water uptake of the material.

  17. Thermal springs of Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Breckenridge, R.M.; Hinckley, B.S.

    1978-01-01

    This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

  18. Physico-chemical characterization of slag waste coming from GICC thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, A.; Aineto, M.; Iglesias, I. [Laboratory of Applied Mineralogy, Universidad de Castilla-La Mancha, Ciudad Real Madrid (Spain); Romero, M.; Rincon, J.Ma. [The Glass-Ceramics Laboratory, Insituto Eduardo Torroja de Ciencias de la Construccion, CSIC, c/Serrano Galvache s/n, 28033, Madrid (Spain)

    2001-09-01

    The new gas installations of combined cycle (GICC) thermal power plants for production of electricity are more efficient than conventional thermal power plants, but they produce a high quantity of wastes in the form of slags and fly ashes. Nowadays, these by-products are stored within the production plants with, until now, no applications of recycling in other industrial processes. In order to evaluate the capability of these products for recycling in glass and ceramics inductory, an investigation for the full characterization has been made by usual physico-chemical methods such as: chemical analysis, mineralogical analysis by XRD, granulometry, BET, DTA/TG, heating microscopy and SEM/EDX.

  19. Hydrologic response of mechanical mastication in juniper woodland in Utah

    Science.gov (United States)

    Various vegetation control methods have been used to reduce juniper (Juniperus ssp.) woodland encroachment. Mechanical mastication (reducing trees to a mulch residue) has recently been used in some western states. We investigated the hydrologic impacts of rubber tire tracks from the masticating vehi...

  20. Mechanical, thermal and morphological characterization of polycarbonate/oxidized carbon nanofiber composites produced with a lean 2-step manufacturing process.

    Science.gov (United States)

    Lively, Brooks; Kumar, Sandeep; Tian, Liu; Li, Bin; Zhong, Wei-Hong

    2011-05-01

    In this study we report the advantages of a 2-step method that incorporates an additional process pre-conditioning step for rapid and precise blending of the constituents prior to the commonly used melt compounding method for preparing polycarbonate/oxidized carbon nanofiber composites. This additional step (equivalent to a manufacturing cell) involves the formation of a highly concentrated solid nano-nectar of polycarbonate/carbon nanofiber composite using a solution mixing process followed by melt mixing with pure polycarbonate. This combined method yields excellent dispersion and improved mechanical and thermal properties as compared to the 1-step melt mixing method. The test results indicated that inclusion of carbon nanofibers into composites via the 2-step method resulted in dramatically reduced ( 48% lower) coefficient of thermal expansion compared to that of pure polycarbonate and 30% lower than that from the 1-step processing, at the same loading of 1.0 wt%. Improvements were also found in dynamic mechanical analysis and flexural mechanical properties. The 2-step approach is more precise and leads to better dispersion, higher quality, consistency, and improved performance in critical application areas. It is also consistent with Lean Manufacturing principles in which manufacturing cells are linked together using less of the key resources and creates a smoother production flow. Therefore, this 2-step process can be more attractive for industry.

  1. Thermal modeling: at the crossroads of several subjects of physics

    International Nuclear Information System (INIS)

    1997-01-01

    The modeling of thermal phenomena is of prime importance for the dimensioning of industrial facilities. However, the understanding of thermal processes requires to refer to other subjects of physics like electromagnetism, matter transformation, fluid mechanics, chemistry etc.. The aim of this workshop organized by the industrial electro-thermal engineering section of the French society of thermal engineers is to take stock of current or forthcoming advances in the coupling of thermal engineering codes with electromagnetic, fluid mechanics, chemical and mechanical engineering codes. The modeling of phenomena remains the essential link between the laboratory research of new processes and their industrial developments. From the 9 talks given during this workshop, 2 of them deal with thermal processes in nuclear reactors and fall into the INIS scope and the others concern the modeling of industrial heating or electrical processes and were selected for ETDE. (J.S.)

  2. Viscous and thermal modelling of thermoplastic composites forming process

    Science.gov (United States)

    Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe

    2016-10-01

    Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.

  3. Gas turbine with two circuits and intermediate fuel conversion process

    International Nuclear Information System (INIS)

    Bachl, H.

    1978-01-01

    The combination of a fuel conversion process with a thermal process saves coolant and subsequent separation plant, in order to achieve the greatest possible use of the mechanical or electrical energy. The waste heat of a thermal circuit is taken to an endothermal chemical fuel conversion process arranged before a second circuit. The heat remaining after removal of the heat required for the chemical process is taken to a second thermal circuit. The reaction products of the chemical process which condense out during expansion in the second thermal process are selectively separated from the remaining gas mixture in the individual turbine stages. (HGOE) [de

  4. TOUGH2Biot - A simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: Application to CO2 geological storage and geothermal development

    Science.gov (United States)

    Lei, Hongwu; Xu, Tianfu; Jin, Guangrong

    2015-04-01

    Coupled thermal-hydrodynamic-mechanical processes have become increasingly important in studying the issues affecting subsurface flow systems, such as CO2 sequestration in deep saline aquifers and geothermal development. In this study, a mechanical module based on the extended Biot consolidation model was developed and incorporated into the well-established thermal-hydrodynamic simulator TOUGH2, resulting in an integrated numerical THM simulation program TOUGH2Biot. A finite element method was employed to discretize space for rock mechanical calculation and the Mohr-Coulomb failure criterion was used to determine if the rock undergoes shear-slip failure. Mechanics is partly coupled with the thermal-hydrodynamic processes and gives feedback to flow through stress-dependent porosity and permeability. TOUGH2Biot was verified against analytical solutions for the 1D Terzaghi consolidation and cooling-induced subsidence. TOUGH2Biot was applied to evaluate the thermal, hydrodynamic, and mechanical responses of CO2 geological sequestration at the Ordos CCS Demonstration Project, China and geothermal exploitation at the Geysers geothermal field, California. The results demonstrate that TOUGH2Biot is capable of analyzing change in pressure and temperature, displacement, stress, and potential shear-slip failure caused by large scale underground man-made activity in subsurface flow systems. TOUGH2Biot can also be easily extended for complex coupled process problems in fractured media and be conveniently updated to parallel versions on different platforms to take advantage of high-performance computing.

  5. Computationally efficient thermal-mechanical modelling of selective laser melting

    Science.gov (United States)

    Yang, Yabin; Ayas, Can

    2017-10-01

    The Selective laser melting (SLM) is a powder based additive manufacturing (AM) method to produce high density metal parts with complex topology. However, part distortions and accompanying residual stresses deteriorates the mechanical reliability of SLM products. Modelling of the SLM process is anticipated to be instrumental for understanding and predicting the development of residual stress field during the build process. However, SLM process modelling requires determination of the heat transients within the part being built which is coupled to a mechanical boundary value problem to calculate displacement and residual stress fields. Thermal models associated with SLM are typically complex and computationally demanding. In this paper, we present a simple semi-analytical thermal-mechanical model, developed for SLM that represents the effect of laser scanning vectors with line heat sources. The temperature field within the part being build is attained by superposition of temperature field associated with line heat sources in a semi-infinite medium and a complimentary temperature field which accounts for the actual boundary conditions. An analytical solution of a line heat source in a semi-infinite medium is first described followed by the numerical procedure used for finding the complimentary temperature field. This analytical description of the line heat sources is able to capture the steep temperature gradients in the vicinity of the laser spot which is typically tens of micrometers. In turn, semi-analytical thermal model allows for having a relatively coarse discretisation of the complimentary temperature field. The temperature history determined is used to calculate the thermal strain induced on the SLM part. Finally, a mechanical model governed by elastic-plastic constitutive rule having isotropic hardening is used to predict the residual stresses.

  6. Numerical investigations of triggering mechanisms of shallow landslides due to heterogeneous spatio-temporal hydrological patterns.

    Science.gov (United States)

    Schwarz, Massimiliano; Cohen, Denis

    2016-04-01

    regional scale rely on the infinite slope assumption for stability calculations and on continuous hydrological properties of the soil. The objective of the present study is to investigate the influence of non-continuos hydrological features (such as ephemeral springs) on the triggering mechanisms of shallow landslides using a discrete element model (SOSlope) in which the stress-strain behavior of soil is explicitly considered. The application of a stress-strain calculation allows for the simulation of local versus global loading due to hydrological processes. In particular, this study investigates the effects of different types of hydrological loading on the force redistribution on a slope associated with local displacements and following failures of soil masses. Strength and stiffness of soil are considered heterogeneous and are calculated based on the assumption of root distributions within a forested hillslope.

  7. Influence of Processing Techniques on Microstructure and Mechanical Properties of a Biodegradable Mg-3Zn-2Ca Alloy.

    Science.gov (United States)

    Doležal, Pavel; Zapletal, Josef; Fintová, Stanislava; Trojanová, Zuzanka; Greger, Miroslav; Roupcová, Pavla; Podrábský, Tomáš

    2016-10-28

    New Mg-3Zn-2Ca magnesium alloy was prepared using different processing techniques: gravity casting as well as squeeze casting in liquid and semisolid states. Materials were further thermally treated; thermal treatment of the gravity cast alloy was additionally combined with the equal channel angular pressing (ECAP). Alloy processed by the squeeze casting in liquid as well as in semisolid state exhibit improved plasticity; the ECAP processing positively influenced both the tensile and compressive characteristics of the alloy. Applied heat treatment influenced the distribution and chemical composition of present intermetallic phases. Influence of particular processing techniques, heat treatment, and intermetallic phase distribution is thoroughly discussed in relation to mechanical behavior of presented alloys.

  8. Modeling urbanized watershed flood response changes with distributed hydrological model: key hydrological processes, parameterization and case studies

    Science.gov (United States)

    Chen, Y.

    2017-12-01

    Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to

  9. Effect of ultrafiltration process on physico-chemical, rheological, microstructure and thermal properties of syrups from male and female date palm saps.

    Science.gov (United States)

    Makhlouf-Gafsi, Ines; Baklouti, Samia; Mokni, Abir; Danthine, Sabine; Attia, Hamadi; Blecker, Christophe; Besbes, Souhail; Masmoudi, Manel

    2016-07-15

    This study investigates the effect of the ultrafiltration process on physicochemical, rheological, microstructure and thermal properties of syrups from male and female date palm sap. All the studied syrups switched from pseudoplastic rheological behaviour (n=0.783) to Newtonian behaviour (n∼1) from 10 to 50 °C respectively and present similar thermal profiles. Results revealed that the ultrafiltration process significantly affects the rheological behaviour of the male and female syrups. These differences on rheological properties are attributed to the variation of chemical composition between sap and sap permeate syrups. Furthermore, the effect of temperature on viscosity of the syrups was investigated during heating and cooling processes at the same shear rate (50s(-1)). This study provides idea of the stability of the syrup by evaluating the area between heating and cooling curves. Actually, the syrup prepared from male sap permeate is the most stable between the four studied syrups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Applications of 129I and 36Cl in hydrology

    International Nuclear Information System (INIS)

    Fabryka-Martin, J.; Davis, S.N.; Elmore, D.

    1987-01-01

    Since the first AMS measurements of 36 Cl in 1978, this cosmogenic radionuclide has proved to be a versatile tracer of hydrologic processes in over 20 field studies. Natural 129 I also appears to be useful for studying hydrologic processes although incomplete understanding of its production in nature and geochemical behavior largely limits interpretation to qualitative discussions. The range of hydrologic applications demonstrated for these radionuclides covers: estimation of residence time of water in the subsurface and net infiltration in arid soils; evaluation of ion filtration, leaching of connate water, and salt dissolution as sources of ground-water salinity; estimation of lithospheric thermal-neutron fluxes; and emanation and migration characteristics of fission-product 129 I in different geochemical environments. (orig.)

  11. Characterization of chemical interactions during chemical mechanical polishing (CMP) of copper

    Science.gov (United States)

    Lee, Seung-Mahn

    2003-10-01

    Chemical mechanical polishing (CMP) has received much attention as an unique technique to provide a wafer level planarization in semiconductor manufacturing. However, despite the extensive use of CMP, it still remains one of the least understood areas in semiconductor processing. The lack of the fundamental understanding is a significant barrier to further advancements in CMP technology. One critical aspect of metal CMP is the formation of a thin surface layer on the metal surface. The formation and removal of this layer controls all the aspects of the CMP process, including removal rate, surface finish, etc. In this dissertation, we focus on the characterization of the formation and removal of the thin surface layer on the copper surface. The formation dynamics was investigated using static and dynamic electrochemical techniques, including potentiodynamic scans and chronoamperometry. The results were validated using XPS measurements. The mechanical properties of the surface layer were investigated using nanoindentation measurements. The electrochemical investigation showed that the thickness of the surface layer is controlled by the chemicals such as an oxidizer (hydrogen peroxide), a corrosion inhibitor (benzotriazole), a complexing agent (citric acid), and their concentrations. The dynamic electrochemical measurements indicated that the initial layer formation kinetics is unaffected by the corrosion inhibitors. The passivation due to the corrosion inhibitor becomes important only on large time scales (>200 millisecond). The porosity and the density of the chemically modified surface layer can be affected by additives of other chemicals such as citric acid. An optimum density of the surface layer is required for high polishing rate while at the same time maintaining a high degree of surface finish. Nanoindentation measurements indicated that the mechanical properties of the surface layer are strongly dependent on the chemical additives in the slurry. The CMP

  12. Swelling, Mechanics, and Thermal/Chemical Stability of Hydrogels Containing Phenylboronic Acid Side Chains

    Directory of Open Access Journals (Sweden)

    Arum Kim

    2017-12-01

    Full Text Available We report here studies of swelling, mechanics, and thermal stability of hydrogels consisting of 20 mol % methacrylamidophenylboronic acid (MPBA and 80 mol % acrylamide (AAm, lightly crosslinked with methylenebisacrylamide (Bis. Swelling was measured in solutions of fixed ionic strength, but with varying pH values and fructose concentrations. Mechanics was studied by compression and hold. In the absence of sugar or in the presence of fructose, the modulus was mostly maintained during the hold period, while a significant stress relaxation was seen in the presence of glucose, consistent with reversible, dynamic crosslinks provided by glucose, but not fructose. Thermal stability was determined by incubating hydrogels at pH 7.4 at room temperature, and 37, 50, and 65 °C, and monitoring swelling. In PBS (phosphate buffered saline solutions containing 9 mM fructose, swelling remained essentially complete for 50 days at room temperature, but decreased substantially with time at the higher temperatures, with accelerated reduction of swelling with increasing temperature. Controls indicated that over long time periods, both the MPBA and AAm units were experiencing conversion to different species.

  13. Temperature as a diagnostic for the drift scale test

    International Nuclear Information System (INIS)

    Lin, W; Wagoner, J; Ballard, S

    2000-01-01

    The United States Department of Energy (DOE) is investigating Yucca Mountain, Nevada, for its feasibility as a potential deep geological repository of high-level nuclear waste. In a deep geological repository, the radioactive decay heat released from high-level nuclear waste will heat up the rock mass. The heat will mobilize pore water in the rock mass by evaporation, and even boiling, if the thermal load is great enough. The water vapor/steam will flow away from the heat source because of pressure and thermal gradients and the effects of buoyancy force. The vapor/steam may flow along fractures or highly permeable zones and condense into liquid water in the cooler regions. Gravity and fracture network will control the drainage of the condensed water. Some of the water may flow back toward the waste package and reevaporated. This thermal-hydrological (TH) process will affect the amount of water that may come into contact with the waste package. Water is the main concern for the integrity of the waste package and the waste form, and the potential transport of radioactive nuclides. Thermally driven chemical and mechanical processes may affect the TH process. The coupled thermal-hydrological-mechanical-chemical (THMC) processes need to be understood before the performance of a repository can be adequately predicted. DOE is conducting field thermal tests to provide data for validating the model of the coupled THMC processes. Therefore, understanding the processes revealed by a field thermal test is essential for the model validation. This paper presents examples that temperature measurement is an effective tool for understanding the TH process

  14. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing.

    Science.gov (United States)

    Liang, Tingfu; Wei, Feifei; Lu, Yi; Kodani, Yoshinori; Nakada, Mitsuhiko; Miyakawa, Takuya; Tanokura, Masaru

    2015-01-21

    Black garlic is a processed food product obtained by subjecting whole raw garlic to thermal processing that causes chemical reactions, such as the Maillard reaction, which change the composition of the garlic. In this paper, we report a nuclear magnetic resonance (NMR)-based comprehensive analysis of raw garlic and black garlic extracts to determine the compositional changes resulting from thermal processing. (1)H NMR spectra with a detailed signal assignment showed that 38 components were altered by thermal processing of raw garlic. For example, the contents of 11 l-amino acids increased during the first step of thermal processing over 5 days and then decreased. Multivariate data analysis revealed changes in the contents of fructose, glucose, acetic acid, formic acid, pyroglutamic acid, cycloalliin, and 5-(hydroxymethyl)furfural (5-HMF). Our results provide comprehensive information on changes in NMR-detectable components during thermal processing of whole garlic.

  15. Degradation mechanism and thermal stability of urea nitrate below the melting point

    International Nuclear Information System (INIS)

    Desilets, Sylvain; Brousseau, Patrick; Chamberland, Daniel; Singh, Shanti; Feng, Hongtu; Turcotte, Richard; Anderson, John

    2011-01-01

    Highlights: → Decomposition mechanism of urea nitrate. → Spectral characterization of the decomposition mechanism. → Thermal stability of urea nitrate at 50, 70 and 100 o C. → Chemical balance of decomposed products released. - Abstract: Aging and degradation of urea nitrate below the melting point, at 100 o C, was studied by using thermal analysis and spectroscopic methods including IR, Raman, 1 H and 13 C NMR techniques. It was found that urea nitrate was completely degraded after 72 h at 100 o C into a mixture of solids (69%) and released gaseous species (31%). The degradation mechanism below the melting point was clearly identified. The remaining solid mixture was composed of ammonium nitrate, urea and biuret while unreacted residual nitric and isocyanic acids as well as traces of ammonia were released as gaseous species at 100 o C. The thermal stability of urea nitrate, under extreme storage conditions (50 o C), was also examined by isothermal nano-calorimetry.

  16. Isotope and chemical tracers in groundwater hydrology

    International Nuclear Information System (INIS)

    Kendall, C.; Stewart, M.K.; Morgenstern, U.; Trompetter, V.

    1999-01-01

    The course sessions cover: session 1, Fundamentals of stable and radioactive isotopes; session 2, Stable oxygen and hydrogen isotopes in hydrology: background, examples, sampling strategy; session 3, Catchment studies using oxygen and hydrogen isotopes: background - the hydrologic water balance, evapotranspiration - the lion's share, runoff generation - new water/old water fractions, groundwater recharge - the crumbs; session 4, Isotopes in catchment hydrology: survey of applications, future developments; session 5, Applications of tritium in hydrology: background and measurement, interpretation, examples; session 6, Case studies using mixing models: Hutt Valley groundwater system, an extended mixing model for simulating tracer transport in the unsaturated zone; session 7, Groundwater dating using CFC concentrations: background, sampling and measurement, use and applications; session 8, Groundwater dating with carbon-14: background, sampling and measurement, use and applications; session 9, NZ case studies: Tauranga warm springs, North Canterbury Plains groundwater; session 10, Stable carbon and nitrogen isotopes: background and examples, biological applications of C-N-S isotopes; session 11, New developments in isotope hydrology: gas isotopes, compound specific applications, age dating of sediments etc; session 12, NZ case studies: North Canterbury Plains groundwater (continued), Waimea Plains groundwater. (author). refs., figs

  17. Thermal and mechanical stability of zeolitic imidazolate frameworks polymorphs

    Directory of Open Access Journals (Sweden)

    Lila Bouëssel du Bourg

    2014-12-01

    Full Text Available Theoretical studies on the experimental feasibility of hypothetical Zeolitic Imidazolate Frameworks (ZIFs have focused so far on relative energy of various polymorphs by energy minimization at the quantum chemical level. We present here a systematic study of stability of 18 ZIFs as a function of temperature and pressure by molecular dynamics simulations. This approach allows us to better understand the limited stability of some experimental structures upon solvent or guest removal. We also find that many of the hypothetical ZIFs proposed in the literature are not stable at room temperature. Mechanical and thermal stability criteria thus need to be considered for the prediction of new MOF structures. Finally, we predict a variety of thermal expansion behavior for ZIFs as a function of framework topology, with some materials showing large negative volume thermal expansion.

  18. Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Carmichael, Matthew J.; Inglis, Gordon N.; Badger, Marcus P. S.; Naafs, B. David A.; Behrooz, Leila; Remmelzwaal, Serginio; Monteiro, Fanny M.; Rohrssen, Megan; Farnsworth, Alexander; Buss, Heather L.; Dickson, Alexander J.; Valdes, Paul J.; Lunt, Daniel J.; Pancost, Richard D.

    2017-10-01

    The Paleocene-Eocene Thermal Maximum (PETM) hyperthermal, 56 million years ago (Ma), is the most dramatic example of abrupt Cenozoic global warming. During the PETM surface temperatures increased between 5 and 9 °C and the onset likely took hydrological and associated biogeochemical feedbacks, and proxy data from the PETM can provide constraints on changes in warm climate hydrology simulated by general circulation models (GCMs). In this paper, we provide a critical review of biological and geochemical signatures interpreted as direct or indirect indicators of hydrological change at the PETM, explore the importance of adopting multi-proxy approaches, and present a preliminary model-data comparison. Hydrological records complement those of temperature and indicate that the climatic response at the PETM was complex, with significant regional and temporal variability. This is further illustrated by the biogeochemical consequences of inferred changes in hydrology and, in fact, changes in precipitation and the biogeochemical consequences are often conflated in geochemical signatures. There is also strong evidence in many regions for changes in the episodic and/or intra-annual distribution of precipitation that has not widely been considered when comparing proxy data to GCM output. Crucially, GCM simulations indicate that the response of the hydrological cycle to the PETM was heterogeneous - some regions are associated with increased precipitation - evaporation (P - E), whilst others are characterised by a decrease. Interestingly, the majority of proxy data come from the regions where GCMs predict an increase in PETM precipitation. We propose that comparison of hydrological proxies to GCM output can be an important test of model skill, but this will be enhanced by further data from regions of model-simulated aridity and simulation of extreme precipitation events.

  19. Synthesis report on thermally driven coupled processes

    International Nuclear Information System (INIS)

    Hardin, E.L.

    1997-01-01

    The main purpose of this report is to document observations and data on thermally coupled processes for conditions that are expected to occur within and around a repository at Yucca Mountain. Some attempt is made to summarize values of properties (e.g., thermal properties, hydrologic properties) that can be measured in the laboratory on intact samples of the rock matrix. Variation of these properties with temperature, or with conditions likely to be encountered at elevated temperature in the host rock, is of particular interest. However, the main emphasis of this report is on direct observation of thermally coupled processes at various scales. Direct phenomenological observations are vitally important in developing and testing conceptual models. If the mathematical implementation of a conceptual model predicts a consequence that is not observed, either (1) the parameters or the boundary conditions used in the calculation are incorrect or (2) the conceptual basis of the model does not fit the experiment; in either case, the model must be revised. For example, the effective continuum model that has been used in thermohydrology studies combines matrix and fracture flow in a way that is equivalent to an assumption that water is imbibed instantaneously from fractures into adjacent, partially saturated matrix. Based on this approximation, the continuum-flow response that is analogous to fracture flow will not occur until the effective continuum is almost completely saturated. This approximation is not entirely consistent with some of the experimental data presented in this report. This report documents laboratory work and field studies undertaken in FY96 and FY97 to investigate thermally coupled processes such as heat pipes and fracture-matrix coupling. In addition, relevant activities from past years, and work undertaken outside the Yucca Mountain project are summarized and discussed. Natural and artificial analogs are also discussed to provide a convenient source of

  20. Chemical kinetics of gas reactions

    CERN Document Server

    Kondrat'Ev, V N

    2013-01-01

    Chemical Kinetics of Gas Reactions explores the advances in gas kinetics and thermal, photochemical, electrical discharge, and radiation chemical reactions. This book is composed of 10 chapters, and begins with the presentation of general kinetic rules for simple and complex chemical reactions. The next chapters deal with the experimental methods for evaluating chemical reaction mechanisms and some theories of elementary chemical processes. These topics are followed by discussions on certain class of chemical reactions, including unimolecular, bimolecular, and termolecular reactions. The rema

  1. Agricultural watershed modeling: a review for hydrology and soil erosion processes

    Directory of Open Access Journals (Sweden)

    Carlos Rogério de Mello

    2016-02-01

    Full Text Available ABSTRACT Models have been used by man for thousands of years to control his environment in a favorable way to better human living conditions. The use of hydrologic models has been a widely effective tool in order to support decision makers dealing with watersheds related to several economic and social activities, like public water supply, energy generation, and water availability for agriculture, among others. The purpose of this review is to briefly discuss some models on soil and water movement on landscapes (RUSLE, WEPP, GeoWEPP, LASH, DHSVM and AnnAGNPS to provide information about them to help and serve in a proper manner in order to discuss particular problems related to hydrology and soil erosion processes. Models have been changed and evaluated significantly in recent years, highlighting the use of remote sense, GIS and automatic calibration process, allowing them capable of simulating watersheds under a given land-use and climate change effects. However, hydrology models have almost the same physical structure, which is not enough for simulating problems related to the long-term effects of different land-uses. That has been our challenge for next future: to understand entirely the hydrology cycle, having as reference the critical zone, in which the hydrological processes act together from canopy to the bottom of aquifers.

  2. Isoconversional kinetics of thermally stimulated processes

    CERN Document Server

    Vyazovkin, Sergey

    2015-01-01

    The use of isoconversional kinetic methods for analysis of thermogravimetric and calorimetric data on thermally stimulated processes is quickly growing in popularity. The purpose of this book is to create the first comprehensive resource on the theory and applications of isoconversional methodology. The book introduces the reader to the kinetics of physical and chemical condensed phase processes that occur as a result of changing temperature and discusses how isoconversional analysis can provide important kinetic insights into them. The book will help the readers to develop a better understanding of the methodology, and promote its efficient usage and successful development.

  3. Mechanisms controlling the impact of multi-year drought on mountain hydrology.

    Science.gov (United States)

    Bales, Roger C; Goulden, Michael L; Hunsaker, Carolyn T; Conklin, Martha H; Hartsough, Peter C; O'Geen, Anthony T; Hopmans, Jan W; Safeeq, Mohammad

    2018-01-12

    Mountain runoff ultimately reflects the difference between precipitation (P) and evapotranspiration (ET), as modulated by biogeophysical mechanisms that intensify or alleviate drought impacts. These modulating mechanisms are seldom measured and not fully understood. The impact of the warm 2012-15 California drought on the heavily instrumented Kings River basin provides an extraordinary opportunity to enumerate four mechanisms that controlled the impact of drought on mountain hydrology. Two mechanisms intensified the impact: (i) evaporative processes have first access to local precipitation, which decreased the fractional allocation of P to runoff in 2012-15 and reduced P-ET by 30% relative to previous years, and (ii) 2012-15 was 1 °C warmer than the previous decade, which increased ET relative to previous years and reduced P-ET by 5%. The other two mechanisms alleviated the impact: (iii) spatial heterogeneity and the continuing supply of runoff from higher elevations increased 2012-15 P-ET by 10% relative to that expected for a homogenous basin, and iv) drought-associated dieback and wildfire thinned the forest and decreased ET, which increased 2016 P-ET by 15%. These mechanisms are all important and may offset each other; analyses that neglect one or more will over or underestimate the impact of drought and warming on mountain runoff.

  4. Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters

    Science.gov (United States)

    Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon

    2017-12-01

    Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.

  5. Thermal energy storage using thermo-chemical heat pump

    International Nuclear Information System (INIS)

    Hamdan, M.A.; Rossides, S.D.; Haj Khalil, R.

    2013-01-01

    Highlights: ► Understanding of the performance of thermo chemical heat pump. ► Tool for storing thermal energy. ► Parameters that affect the amount of thermal stored energy. ► Lithium chloride has better effect on storing thermal energy. - Abstract: A theoretical study was performed to investigate the potential of storing thermal energy using a heat pump which is a thermo-chemical storage system consisting of water as sorbet, and sodium chloride as the sorbent. The effect of different parameters namely; the amount of vaporized water from the evaporator, the system initial temperature and the type of salt on the increase in temperature of the salt was investigated and hence on the performance of the thermo chemical heat pump. It was found that the performance of the heat pump improves with the initial system temperature, with the amount of water vaporized and with the water remaining in the system. Finally it was also found that lithium chloride salt has higher effect on the performance of the heat pump that of sodium chloride.

  6. Thermal, dielectric characteristics and conduction mechanism of azodyes derived from quinoline and their copper complexes.

    Science.gov (United States)

    El-Ghamaz, N A; Diab, M A; El-Bindary, A A; El-Sonbati, A Z; Nozha, S G

    2015-05-15

    A novel series of (5-(4'-derivatives phenyl azo)-8-hydroxy-7-quinolinecarboxaldehyde) (AQLn) (n=1, p-OCH3; n=2, R=H; and n=3; p-NO2) and their complexes [Cu(AQLn)2]·5H2O are synthesized and investigated. The optimized bond lengths, bond angles and the calculated quantum chemical parameters for AQLn are investigated. HOMO-LUMO energy gap, absolute electronegativities, chemical potentials, and absolute hardness are also calculated. The thermal properties, dielectric properties, alternating current conductivity (σac) and conduction mechanism are investigated in the frequency range 0.1-100kHz and temperature range 293-568K for AQL1-3 and 318-693K for [Cu(AQL1-3)2]·5H2O complexes. The thermal properties are of ligands (AQLn) and their Cu(II) complexes investigated by thermogravimetric analysis (TGA). The temperature and frequency dependence of the real and the imaginary part of the dielectric constant are studied. The values of the thermal activation energy of conduction mechanism for AQLn and their complexes [Cu(AQLn)2]·5H2O under investigation are calculated at different test frequencies. The values of thermal activation energies ΔE1 and ΔE2 for AQLn and [Cu(AQLn)2]·5H2O decrease with increasing the values of frequency. The ac conductivity is found to be depending on the chemical structure of the compounds. Different conduction mechanisms have been proposed to explain the obtained experimental data. The small polaron tunneling (SPT) is the dominant conduction mechanism for AQL1 and its complex [Cu(AQL1)2]·5H2O. The quantum mechanical tunneling (QMT) is the dominant conduction mechanism for AQL2 and its complex [Cu(AQL2)2]·5H2O. The correlated barrier hopping (CBH) is the dominant conduction mechanism for AQL3 and its complex [Cu(AQL3)2]·5H2O, and the values of the maximum barrier height (Wm) are calculated. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.

    Science.gov (United States)

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran

    2015-06-07

    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials.

  8. From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science

    Directory of Open Access Journals (Sweden)

    M. Sivapalan

    2018-03-01

    Full Text Available Hydrology has undergone almost transformative changes over the past 50 years. Huge strides have been made in the transition from early empirical approaches to rigorous approaches based on the fluid mechanics of water movement on and below the land surface. However, progress has been hampered by problems posed by the presence of heterogeneity, including subsurface heterogeneity present at all scales. The inability to measure or map the heterogeneity everywhere prevented the development of balance equations and associated closure relations at the scales of interest, and has led to the virtual impasse we are presently in, in terms of development of physically based models needed for hydrologic predictions. An alternative to the mapping of heterogeneity everywhere is a new Earth system science view, which sees the heterogeneity as the end result of co-evolutionary hydrological, geomorphological, ecological, and pedological processes, each operating at a different rate, which help to shape the landscapes that we find in nature, including the heterogeneity that we do not readily see. The expectation is that instead of specifying exact details of the heterogeneity in our models, we can replace it (without loss of information with the ecosystem function that they perform. Guided by this new Earth system science perspective, development of hydrologic science is now addressing new questions using novel holistic co-evolutionary approaches as opposed to the physical, fluid mechanics based reductionist approaches that we inherited from the recent past. In the emergent Anthropocene, the co-evolutionary view has expanded further to involve interactions and feedbacks with human-social processes as well. In this paper, I present my own perspective of key milestones in the transformation of hydrologic science from engineering hydrology to Earth system science, drawn from the work of several students and colleagues of mine, and discuss their implication for

  9. From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science

    Science.gov (United States)

    Sivapalan, Murugesu

    2018-03-01

    Hydrology has undergone almost transformative changes over the past 50 years. Huge strides have been made in the transition from early empirical approaches to rigorous approaches based on the fluid mechanics of water movement on and below the land surface. However, progress has been hampered by problems posed by the presence of heterogeneity, including subsurface heterogeneity present at all scales. The inability to measure or map the heterogeneity everywhere prevented the development of balance equations and associated closure relations at the scales of interest, and has led to the virtual impasse we are presently in, in terms of development of physically based models needed for hydrologic predictions. An alternative to the mapping of heterogeneity everywhere is a new Earth system science view, which sees the heterogeneity as the end result of co-evolutionary hydrological, geomorphological, ecological, and pedological processes, each operating at a different rate, which help to shape the landscapes that we find in nature, including the heterogeneity that we do not readily see. The expectation is that instead of specifying exact details of the heterogeneity in our models, we can replace it (without loss of information) with the ecosystem function that they perform. Guided by this new Earth system science perspective, development of hydrologic science is now addressing new questions using novel holistic co-evolutionary approaches as opposed to the physical, fluid mechanics based reductionist approaches that we inherited from the recent past. In the emergent Anthropocene, the co-evolutionary view has expanded further to involve interactions and feedbacks with human-social processes as well. In this paper, I present my own perspective of key milestones in the transformation of hydrologic science from engineering hydrology to Earth system science, drawn from the work of several students and colleagues of mine, and discuss their implication for hydrologic observations

  10. Mechanical synthesis of copper-carbon nanocomposites: Structural changes, strengthening and thermal stabilization

    International Nuclear Information System (INIS)

    Nunes, D.; Livramento, V.; Mateus, R.; Correia, J.B.; Alves, L.C.; Vilarigues, M.; Carvalho, P.A.

    2011-01-01

    Highlights: → The study characterized Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites. → Preservation of nD crystalline structure during high-energy milling was demonstrated. → Higher refinement of matrix in Cu-nD comparing to Cu-G is due to a milling mechanism. → Remarkable thermal stability and microhardness have been achieved in Cu-nD and Cu-G. → Strengthening resulted mainly from grain refinement and second-phase reinforcement. - Abstract: Processing of copper-carbon nanocomposites by mechanical synthesis poses specific challenges as carbon phases are prone to amorphization and exhibit an intrinsically difficult bonding with copper. The present work investigates Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites produced by mechanical synthesis and subsequent heat treatments. Transmission electron microscopy observations showed homogeneous particle distributions and intimate bonding between the metallic matrix and the carbon phases. Ring diffraction patterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentially amorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained essentially unaffected by the mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbon fingerprint. Particle-induced X-ray emission spectroscopy showed that the total contamination originating from the milling media remained below 0.7 wt.%. The Cu-nanodiamond composite exhibited remarkable microhardness and microstructural thermal stability when compared with pure nanostructured copper.

  11. Mechanical synthesis of copper-carbon nanocomposites: Structural changes, strengthening and thermal stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.nunes@ist.utl.pt [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Livramento, V. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Mateus, R. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Correia, J.B. [LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Alves, L.C. [ITN, Instituto Tecnologico e Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Vilarigues, M. [Departamento de Conservacao e Restauro e R and D Unit Vidro e da Ceramica Para as Artes, FCT-UNL, Quinta da Torre, 2829-516 Caparica (Portugal); Carvalho, P.A. [ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Departamento de Bioengenharia, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-11-15

    Highlights: {yields} The study characterized Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites. {yields} Preservation of nD crystalline structure during high-energy milling was demonstrated. {yields} Higher refinement of matrix in Cu-nD comparing to Cu-G is due to a milling mechanism. {yields} Remarkable thermal stability and microhardness have been achieved in Cu-nD and Cu-G. {yields} Strengthening resulted mainly from grain refinement and second-phase reinforcement. - Abstract: Processing of copper-carbon nanocomposites by mechanical synthesis poses specific challenges as carbon phases are prone to amorphization and exhibit an intrinsically difficult bonding with copper. The present work investigates Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites produced by mechanical synthesis and subsequent heat treatments. Transmission electron microscopy observations showed homogeneous particle distributions and intimate bonding between the metallic matrix and the carbon phases. Ring diffraction patterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentially amorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained essentially unaffected by the mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbon fingerprint. Particle-induced X-ray emission spectroscopy showed that the total contamination originating from the milling media remained below 0.7 wt.%. The Cu-nanodiamond composite exhibited remarkable microhardness and microstructural thermal stability when compared with pure nanostructured copper.

  12. Numerical modelling of hydrologically-driven slope instability by means of porous media mechanics

    Science.gov (United States)

    Kakogiannou, Evanthia; Sanavia, Lorenzo; Lora, Marco; Schrefler, Bernhard

    2015-04-01

    Heavy rainfall can trigger slope failure which generally involves shallow soil deposit of different grading and origin usually in a state of partial saturation. In this case of slope instability, the behaviour of the soil slope is closely related not only to the distribution of pore-water pressure but also to the stress state during rainfall infiltration involving both mechanical and hydrological processes. In order to understand better these physical key processes, in this research work, the modelling of rainfall induced slope failure is considered as a coupled variably saturated hydro-mechanical problem. Therefore, the geometrically linear finite element code Comes-Geo for non-isothermal elasto-plastic multiphase solid porous materials is used, as developed by B.A. Schrefler and his co-workers. In this context, a detailed numerical analysis of an experimental slope stability test due to rainfall infiltration is presented. The main goals of this work are to understand the triggering mechanisms during the progressive failure, the effect of using different constitutive models of the mechanical soil behavior on the numerical results and the use of the second order work criterion on the detection of slope instability.

  13. Hydrologic and cryospheric processes observed from space

    NARCIS (Netherlands)

    Menenti, M.; Li, X.; Wang, J.; Vereecken, H.; Li, J.; Mancini, M.; Liu, Q.; Jia, L.; Li, J.; Kuenzer, C.; Huang, S.; Yesou, H.; Wen, J.; Kerr, Y.; Cheng, X.; Gourmelen, N.; Ke, C.; Ludwig, R.; Lin, H.; Eineder, M.; Ma, Y.; Su, Z.B.

    2015-01-01

    Ten Dragon 3 projects deal with hydrologic and cryosphere processes, with a focus on the Himalayas and Qinghai – Tibet Plateau, but not limited to that. At the 1st Dragon 3 Progress Symposium in 2013 a significant potential for a better and deeper integration appeared very clearly and we worked out

  14. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review.

    Science.gov (United States)

    Guo, Bin; Liu, Bo; Yang, Jian; Zhang, Shengen

    2017-05-15

    Safe disposal of solid wastes containing heavy metals is a significant task for environment protection. Immobilization treatment is an effective technology to achieve this task. Cementitious material treatments and thermal treatments are two types of attractive immobilization treatments due to that the heavy metals could be encapsulated in their dense and durable wasteforms. This paper discusses the heavy metal immobilization mechanisms of these methods in detail. Physical encapsulation and chemical stabilization are two fundamental mechanisms that occur simultaneously during the immobilization processes. After immobilization treatments, the wasteforms build up a low permeable barrier for the contaminations. This reduces the exposed surface of wastes. Chemical stabilization occurs when the heavy metals transform into more stable and less soluble metal bearing phases. The heavy metal bearing phases in the wasteforms are also reviewed in this paper. If the heavy metals are incorporated into more stable and less soluble metal bearing phases, the potential hazards of heavy metals will be lower. Thus, converting heavy metals into more stable phases during immobilization processes should be a common way to enhance the immobilization effect of these immobilization methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Rotating thermal flows in natural and industrial processes

    CERN Document Server

    Lappa, Marcello

    2012-01-01

    Rotating Thermal Flows in Natural and Industrial Processes provides the reader with a systematic description of the different types of thermal convection and flow instabilities in rotating systems, as present in materials, crystal growth, thermal engineering, meteorology, oceanography, geophysics and astrophysics. It expressly shows how the isomorphism between small and large scale phenomena becomes beneficial to the definition and ensuing development of an integrated comprehensive framework.  This allows the reader to understand and assimilate the underlying, quintessential mechanisms withou

  16. Thermally Cross-Linkable Hole Transport Materials for Solution Processed Phosphorescent OLEDs

    Science.gov (United States)

    Kim, Beom Seok; Kim, Ohyoung; Chin, Byung Doo; Lee, Chil Won

    2018-04-01

    Materials for unique fabrication of a solution-processed, multi-layered organic light-emitting diode (OLED) were developed. Preparation of a hole transport layer with a thermally cross-linkable chemical structure, which can be processed to form a thin film and then transformed into an insoluble film by using an amine-alcohol condensation reaction with heat treatment, was investigated. Functional groups, such as triplenylamine linked with phenylcarbazole or biphenyl, were employed in the chemical structure of the hole transport layer in order to maintain high triplet energy properties. When phenylcarbazole or biphenyl compounds continuously react with triphenylamine under acid catalysis, a chemically stable thin film material with desirable energy-level properties for a blue OLED could be obtained. The prepared hole transport materials showed excellent surface roughness and thermal stability in comparison with the commercial reference material. On the solution-processed model hole transport layer, we fabricated a device with a blue phosphorescent OLED by using sequential vacuum deposition. The maximum external quantum, 19.3%, was improved by more than 40% over devices with the commercial reference material (11.4%).

  17. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW).

    Science.gov (United States)

    Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P

    2017-11-01

    Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Double stratification effects in chemically reactive squeezed Sutterby fluid flow with thermal radiation and mixed convection

    Directory of Open Access Journals (Sweden)

    S. Ahmad

    2018-03-01

    Full Text Available A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method. The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics. Keywords: Squeezing flow, Sutterby fluid model, Mixed convection, Double stratification, Thermal radiation, Chemical reaction

  19. Operational Constraints on Hydropeaking and its Effects on the Hydrologic and Thermal Regime of a River in Central Chile

    Science.gov (United States)

    Olivares, M. A.; Guzman, C.; Rossel, V.; De La Fuente, A.

    2013-12-01

    Hydropower accounts for about 44% of installed capacity in Chile's Central Interconnected System, which serves most of the Chilean population. Hydropower reservoir projects can affect ecosystems by changing the hydrologic regime and water quality. Given its volumen regulation capacity, low operation costs and fast response to demand fluctuations, reservoir hydropower plants commonly operate on a load-following or hydropeaking scheme. This short-term operational pattern produces alterations in the hydrologic regime downstream the reservoir. In the case of thermally stratified reservoirs, peaking operations can affect the thermal structure of the reservoir, as well as the thermal regime downstream. In this study, we assessed the subdaily hydrologic and thermal alteration donwstream of Rapel reservoir in Central Chile for alternative operational scenarios, including a base case and several scenarios involving minimum instream flow (Qmin) and maximum hourly ramping rates (ΔQmax). Scenarios were simulated for the stratification season of summer 2009-2012 in a grid-wide short-term economic dispatch model which prescribes hourly power production by every power plant on a weekly horizon. Power time series are then translated into time series of turbined flows at each hydropower plants. Indicators of subdaily hydrologic alteration (SDHA) were computed for every scenario. Additionally, turbined flows were used as input data for a three-dimensional hydrodynamic model (CWR-ELCOM) of the reservoir which simulated the vertical temperature profile in the reservoir and the outflow temperature. For the time series of outflow temperatures we computed several indicators of subdaily thermal alteration (SDTA). Operational constraints reduce the values of both SDHA and SDTA indicators with respect to the base case. When constraints are applied separately, the indicators of SDHA decrease as each type of constraint (Qmin or ΔQmax) becomes more stringent. However, ramping rate

  20. Progress in studies on hydrological impacts of degrading permafrost in the Source Area of Yellow River on NE Qinghai-Tibet Plateau, SW China

    Science.gov (United States)

    Jin, H.; Ma, Q.; Jin, X.

    2017-12-01

    Permafrost degradation substantially impacts hydrological processes in the Source Area of the Yellow River (SAYR). Deepening active layer has directly led to a reduction of surface runoffs, alters the generation and dynamics of slope runoffs and groundwater, leading to a deepening of groundwater flow paths. At present, however, there is only a limited understanding of the hydrological impact mechanisms of degrading permafrost. On the basis of analyzing and evaluating the current states, changing history and developing trends of climate, permafrost and hydrological processes, this program aims at further and better quantifying the nature of these mechanisms linking the degrading permafrost with changing hydrological processes. The key scientific themes for this research are the characterization of interactions between ground freezing-thawing and hydrogeology in the SAYR. For this study, a coupling is made between geothermal states and the occurrences of taliks in river systems, in order to understand how expanding taliks control groundwater and surface-water interactions and how these interactions might intensify or weaken when the climate warms and dries persistently. Numerical models include freeze-thaw dynamics coupled to groundwater and surface flow processes. For the proper parameterization of these models, field and laboratory studies are conducted with a focus on the SAYR. Geophysical investigations are employed for mapping permafrost distribution in relation to landscape elements. Boreholes and water wells and observation sites for the hydrothermal processes and water tables are used for establishing the current thermal state of frozen ground and talik and monitor their changes over time, and serve to ground-truth surface geophysical observations. Boreholes and wellbores, water wells and active layer sites have provided access to the permafrost and aquifer systems, allowing the dating of ground-water and -ice and soil strata for elucidating the regional

  1. Dynamical nexus of water supply, hydropower and environment based on the modeling of multiple socio-natural processes: from socio-hydrological perspective

    Science.gov (United States)

    Liu, D.; Wei, X.; Li, H. Y.; Lin, M.; Tian, F.; Huang, Q.

    2017-12-01

    In the socio-hydrological system, the ecological functions and environmental services, which are chosen to maintain, are determined by the preference of the society, which is making the trade-off among the values of riparian vegetation, fish, river landscape, water supply, hydropower, navigation and so on. As the society develops, the preference of the value will change and the ecological functions and environmental services which are chosen to maintain will change. The aim of the study is to focus on revealing the feedback relationship of water supply, hydropower and environment and the dynamical feedback mechanism at macro-scale, and to establish socio-hydrological evolution model of the watershed based on the modeling of multiple socio-natural processes. The study will aim at the Han River in China, analyze the impact of the water supply and hydropower on the ecology, hydrology and other environment elements, and study the effect on the water supply and hydropower to ensure the ecological and environmental water of the different level. Water supply and ecology are usually competitive. In some reservoirs, hydropower and ecology are synergic relationship while they are competitive in some reservoirs. The study will analyze the multiple mechanisms to implement the dynamical feedbacks of environment to hydropower, set up the quantitative relationship description of the feedback mechanisms, recognize the dominant processes in the feedback relationships of hydropower and environment and then analyze the positive and negative feedbacks in the feedback networks. The socio-hydrological evolution model at the watershed scale will be built and applied to simulate the long-term evolution processes of the watershed of the current situation. Dynamical nexus of water supply, hydropower and environment will be investigated.

  2. Hydrological, Physical, and Chemical Functions and Connectivity of Non‐Floodplain Wetlands to Downstream Waters: A Review

    Science.gov (United States)

    We reviewed the scientific literature on non‐floodplain wetlands (NFWs), freshwater wetlands typically located distal to riparian and floodplain systems, to determine hydrological, physical, and chemical functioning and stream and river network connectivity. We assayed the ...

  3. Influence of Chemical, Mechanical, and Transport Processes on Wellbore Leakage from Geologic CO2 Storage Reservoirs.

    Science.gov (United States)

    Carroll, Susan A; Iyer, Jaisree; Walsh, Stuart D C

    2017-08-15

    Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids from the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks. The

  4. Fluoride contamination in the lakes region of the Ethiopian rift: origin, mechanism and evolution

    International Nuclear Information System (INIS)

    Travi, Y.; Chernet, T.

    1998-01-01

    The closed lake basins occupying the Main Ethiopian Rift are characterised by unique hydrogeological conditions which have resulted in very high contents of fluoride associated with highly concentrated sodium bicarbonate waters. The origin, mechanism and evolution of fluoride contents have been examined successively by studying (i) the reservoirs which provide this element in solution, (ii) the hydrochemical context, and (iii) the hydrological evolution which modifies the concentrations. Groundwaters of the ignimbrites present low values compared to those of the lacustrine sediments which can provide contents 5 to 10 times greater. The non equilibrium initial stage between the alkalinity and the calcium, derived from weathering of volcanic rocks, is responsible for the specific chemical evolution and the very high fluoride values. Furthermore, in the thermal waters, the high temperatures (especially those up to 100 deg. C) and the presence of large amounts of CO 2 coming from depth increase significantly the fluoride contents. Finally, the fluoride concentrations can change depending on the interrelation of ancient or present surface waters and groundwaters (mixing) and on the hydrological balance (concentration and dilution processes). (author)

  5. Chemical loading into surface water along a hydrological, biogeochemical, and land use gradient: A holistic watershed approach

    Science.gov (United States)

    Barber, L.B.; Murphy, S.F.; Verplanck, P.L.; Sandstrom, M.W.; Taylor, Howard E.; Furlong, E.T.

    2006-01-01

    Identifying the sources and impacts of organic and inorganic contaminants at the watershed scale is a complex challenge because of the multitude of processes occurring in time and space. Investigation of geochemical transformations requires a systematic evaluation of hydrologic, landscape, and anthropogenic factors. The 1160 km2 Boulder Creek Watershed in the Colorado Front Range encompasses a gradient of geology, ecotypes, climate, and urbanization. Streamflow originates primarily as snowmelt and shows substantial annual variation. Water samples were collected along a 70-km transect during spring-runoff and base-flow conditions, and analyzed for major elements, trace elements, bulk organics, organic wastewater contaminants (OWCs), and pesticides. Major-element and trace-element concentrations were low in the headwaters, increased through the urban corridor, and had a step increase downstream from the first major wastewater treatment plant (WWTP). Boron, gadolinium, and lithium were useful inorganic tracers of anthropogenic inputs. Effluent from the WWTP accounted for as much as 75% of the flow in Boulder Creek and was the largest chemical input. Under both hydrological conditions, OWCs and pesticides were detected in Boulder Creek downstream from the WWTP outfall as well as in the headwater region, and loads of anthropogenic-derived contaminants increased as basin population density increased. This report documents a suite of potential endocrine-disrupting chemicals in a reach of stream with native fish populations showing indication of endocrine disruption.

  6. Thermal and mechanical modelling of convergent plate margins

    NARCIS (Netherlands)

    van den Beukel, P.J.

    1990-01-01

    In this thesis, the thermal and mechanical structure of convergent plate margins will be investigated by means of numerical modelling. In addition, we will discuss the implications of modelling results for geological processes such as metamorphism or the break-up of a plate at a convergent plate

  7. High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process

    Science.gov (United States)

    Tailor, Satish; Modi, Ankur; Modi, S. C.

    2018-04-01

    Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).

  8. Hydrologic refugia, plants, and climate change.

    Science.gov (United States)

    McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E

    2017-08-01

    Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.

  9. Darwinian hydrology: can the methodology Charles Darwin pioneered help hydrologic science?

    Science.gov (United States)

    Harman, C.; Troch, P. A.

    2013-05-01

    There have been repeated calls for a Darwinian approach to hydrologic science or for a synthesis of Darwinian and Newtonian approaches, to deepen understanding the hydrologic system in the larger landscape context, and so develop a better basis for predictions now and in an uncertain future. But what exactly makes a Darwinian approach to hydrology "Darwinian"? While there have now been a number of discussions of Darwinian approaches, many referencing Harte (2002), the term is potentially a source of confusion while its connections to Darwin remain allusive rather than explicit. Here we discuss the methods that Charles Darwin pioneered to understand a variety of complex systems in terms of their historical processes of change. We suggest that the Darwinian approach to hydrology follows his lead by focusing attention on the patterns of variation in populations, seeking hypotheses that explain these patterns in terms of the mechanisms and conditions that determine their historical development, using deduction and modeling to derive consequent hypotheses that follow from a proposed explanation, and critically testing these hypotheses against new observations. It is not sufficient to catalogue the patterns or predict them statistically. Nor is it sufficient for the explanations to amount to a "just-so" story not subject to critical analysis. Darwin's theories linked present-day variation to mechanisms that operated over history, and could be independently test and falsified by comparing new observations to the predictions of corollary hypotheses they generated. With a Darwinian framework in mind it is easy to see that a great deal of hydrologic research has already been done that contributes to a Darwinian hydrology - whether deliberately or not. The various heuristic methods that Darwin used to develop explanatory theories - extrapolating mechanisms, space for time substitution, and looking for signatures of history - have direct application in hydrologic science. Some

  10. Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content (HHC) - Fueled Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Mumm, Daniel

    2013-08-31

    The overarching goal of this research program has been to evaluate the potential impacts of coal-derived syngas and high-hydrogen content fuels on the degradation of turbine hot-section components through attack of protective oxides and thermal barrier coatings. The primary focus of this research program has been to explore mechanisms underpinning the observed degradation processes, and connections to the combustion environments and characteristic non-combustible constituents. Based on the mechanistic understanding of how these emerging fuel streams affect materials degradation, the ultimate goal of the program is to advance the goals of the Advanced Turbine Program by developing materials design protocols leading to turbine hot-section components with improved resistance to service lifetime degradation under advanced fuels exposures. This research program has been focused on studying how: (1) differing combustion environments – relative to traditional natural gas fired systems – affect both the growth rate of thermally grown oxide (TGO) layers and the stability of these oxides and of protective thermal barrier coatings (TBCs); and (2) how low levels of fuel impurities and characteristic non-combustibles interact with surface oxides, for instance through the development of molten deposits that lead to hot corrosion of protective TBC coatings. The overall program has been comprised of six inter-related themes, each comprising a research thrust over the program period, including: (i) evaluating the role of syngas and high hydrogen content (HHC) combustion environments in modifying component surface temperatures, heat transfer to the TBC coatings, and thermal gradients within these coatings; (ii) understanding the instability of TBC coatings in the syngas and high hydrogen environment with regards to decomposition, phase changes and sintering; (iii) characterizing ash deposition, molten phase development and infiltration, and associated corrosive/thermo-chemical

  11. Thermal and chemical durability of nitrogen-doped carbon nanotubes

    International Nuclear Information System (INIS)

    Liu Hao; Zhang Yong; Li Ruying; Sun Xueliang; Abou-Rachid, Hakima

    2012-01-01

    Nitrogen-doped carbon nanotubes (CN x tubes) with nitrogen content of 7.6 at.% are synthesized on carbon papers. Thermal and chemical stability of the nanotubes are investigated by thermogravimetric analysis, differential scanning calorimetry and X-ray photoelectron spectroscopy techniques. The results indicate that the nitrogen can be firmly kept in the nanotubes after annealing at 300 °C in air. Under an argon atmosphere, the nitrogen would not release until 670 °C, and half of the nitrogen incorporated is released after annealing at 700 °C for 30 min. Chemical stability investigation indicates that the nitrogen incorporated in the nanotubes is very stable under the thermal and acid environment comparable to working condition of proton exchange membrane (PEM) fuel cells. Profile of the nitrogen species inside the nanotubes reveals that graphite-like nitrogen releases slower than any other kind of nitrogen in the nanotubes during the chemical stability measurement. These CN x tubes synthesized by this simple chemical vapor deposition method are expected to be suitable for many applications, such as PEM fuel cells that work under both thermal and corrosive conditions and some other mild thermal environments.

  12. Conceptual, experimental and computational approaches to support performance assessment of hydrology and chemical transport at Yucca Mountain

    International Nuclear Information System (INIS)

    Narasimhan, T.N. Wang, J.S.Y.

    1992-07-01

    The authors of this report have been participating in the Sandia National Laboratory's hydrologic performance assessment of the Yucca Mountain, Nevada, since 1983. The scope of this work is restricted to the unsaturated zone at Yucca Mountain and to technical questions about hydrology and chemical transport. The issues defined here are not to be confused with the elaborate hierarchy of issues that forms the framework of the US Department of Energy plans for characterizing the site (DOE, 1989). The overall task of hydrologic performance assessment involves issues related to hydrology, geochemistry, and energy transport in a highly heterogeneous natural geologic system which will be perturbed in a major way by the disposal activity. Therefore, a rational evaluation of the performance assessment issues must be based on an integrated appreciation of the aforesaid interacting processes. Accordingly, a hierarchical approach is taken in this report, proceeding from the statement of the broad features of the site that make it the site for intensive studies and the rationale for disposal strategy, through the statement of the fundamental questions that need to be answered, to the identification of the issues that need resolution. Having identified the questions and issues, the report then outlines the tasks to be undertaken to resolve the issues. The report consists essentially of two parts. The first part deals with the definition of issues summarized above. The second part summarizes the findings of the authors between 1983 and 1989 under the activities of the former Nevada Nuclear Waste Storage Investigations (NNWSI) and the current YMP

  13. Chemical Composition and Fatty Acids of Glodok Fish by High Thermal Processing

    Directory of Open Access Journals (Sweden)

    Sri Purwaningsih

    2014-11-01

    Full Text Available Glodok is an economically underrated fish with a high nutrient content. The research aims to study the changes on chemical composition, fatty acids, omega-6 and omega-3 ratio in glodok muscle after processing with different methods of boiling, steaming, and boiling with addition of salt (3%. The results showed that the treatment (boiling, steaming, and boiling with addition of salt gives a significant effect (α=0.05 in water content, ash, lipid content, nervonat acid, linoleic acid, arachidonic acid, EPA, and DHA. The best processing method was steaming. The ratio of omega-3 and omega-6 in fresh glodok fish was 2,1:1, which is higher than WHO recommendation of 0,6:1,7.Keywords: chemical composition, fatty acid, glodok fish, processing

  14. Multi-pass TIG welding process: simulating thermal SS304

    International Nuclear Information System (INIS)

    Harinadh, Vemanaboina; Akella, S.; Buddu, Ramesh Kumar; Edision, G.

    2015-01-01

    Welding is basic requirement in the construction of nuclear reactors, power plants and structural components development. A basic studies on various aspects of the welding is essential to ensure the stability and structural requirement conditions. The present study explored the thermo-mechanical analysis of the multipass welds of austenitic stainless steels which are widely used in fusion and fission reactor components development. A three-dimensional (3D) finite element model is developed to investigate thermally induced stress field during TIG welding process for SS304 material. The transient thermal analysis is performed to obtain the temperature history, which then is applied to the mechanical (stress) analysis. The present thermal analysis is conducted using element type DC3D8. This element type has a three dimensional thermal conduction capability and eight nodes. The 6 mm thick plated is welded with six numbers of passes. The geometry and meshed model with tetrahedral shape with volume sweep. The analysis is on TIG welding process using 3D-weld interface plug-in on ABAQUS-6.14. The results are reported in the present paper

  15. CH4/air homogeneous autoignition: A comparison of two chemical kinetics mechanisms

    KAUST Repository

    Tingas, Efstathios Al.

    2018-03-11

    Reactions contributing to the generation of the explosive time scale that characterise autoignition of homogeneous stoichiometric CH4/air mixture are identified using two different chemical kinetics models; the well known GRI-3.0 mechanism (53/325 species/reactions with N-chemistry) and the AramcoMech mechanism from NUI Galway (113/710 species/reactions without N-chemistry; Combustion and Flame 162:315-330, 2015). Although the two mechanisms provide qualitatively similar results (regarding ignition delay and profiles of temperature, of mass fractions and of explosive time scale), the 113/710 mechanism was shown to reproduce the experimental data with higher accuracy than the 53/325 mechanism. The present analysis explores the origin of the improved accuracy provided by the more complex kinetics mechanism. It is shown that the reactions responsible for the generation of the explosive time scale differ significantly. This is reflected to differences in the length of the chemical and thermal runaways and in the set of the most influential species.

  16. Relationship of regional water quality to aquifer thermal energy storage

    International Nuclear Information System (INIS)

    Allen, R.D.; Raymond, J.R.

    1990-01-01

    Aquifer thermal energy storage (ATES) involves injection and withdrawal of temperature-conditioned water into and from a permeable water-bearing formation. The groundwater quality and associated geological characteristics were assessed as they may affect the feasibility of ATES system development in any hydrologic region. Seven physical and chemical mechanisms may decrease system efficiency: particulate plugging, chemical precipitation, clay mineral dispersion, piping corrosion, aquifer disaggregation, mineral oxidation, and the proliferation of biota. Factors affecting groundwater quality are pressure, temperature, pH, ion exchange, evaporation/transpiration, and commingling with diverse waters. Modeling with the MINTEQ code showed three potential reactions: precipitation of calcium carbonate at raised temperatures; solution of silica at raised temperature followed by precipitation at reduced temperatures; and oxidation/precipitation of iron compounds. Low concentrations of solutes are generally favorable for ATES. Near-surface waters in high precipitation regions are low in salinity. Groundwater recharged from fresh surface waters also has reduced salinity. Rocks least likely to react with groundwater are siliceous sandstones, regoliths, and metamorphic rocks. On the basis of known aquifer hydrology, ten US water resource regions are candidates for selected exploration and development, all characterized by extensive silica-rich aquifers

  17. The analysis of thermally stimulated processes

    CERN Document Server

    Chen, R; Pamplin, Brian

    1981-01-01

    Thermally stimulated processes include a number of phenomena - either physical or chemical in nature - in which a certain property of a substance is measured during controlled heating from a 'low' temperature. Workers and graduate students in a wide spectrum of fields require an introduction to methods of extracting information from such measurements. This book gives an interdisciplinary approach to various methods which may be applied to analytical chemistry including radiation dosimetry and determination of archaeological and geological ages. In addition, recent advances are included, such

  18. Report on Modeling Coupled Processes in the Near Field of a Clay Repository

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui -Hai [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Houseworth, Jim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Li, Lianchong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Asahina, Daisuke [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Fei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-01

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world. Coupled thermal, hydrological, mechanical, and chemical (THMC) processes have a significant impact on the long-term safety of a clay repository. For example, the excavation damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability. This report documents results from three R&D activities: (1) implementation and validation of constitutive relationships, (2) development of a discrete fracture network (DFN) model for investigating coupled processes in the EDZ, and (3) development of a THM model for the FE tests at Mont Terri, Switzerland, for the purpose of model validation. The overall objective of these activities is to provide an improved understanding of EDZ evolution in clay repositories and the associated coupled processes, and to develop advanced relevant modeling capabilities.

  19. Geochemical and hydrologic data for wells and springs in thermal-spring areas of the Appalachians

    Energy Technology Data Exchange (ETDEWEB)

    Hobba, W.A. Jr.; Chemerys, J.C.; Fisher, D.W.; Pearson, F.J. Jr.

    1976-07-01

    Current interest in geothermal potential of thermal-spring areas in the Appalachians makes all data on thermal springs and wells in these areas valuable. Presented here without interpretive comment are maps showing selected springs and wells and tables of physical and chemical data pertaining to these wells and springs. The chemical tables show compositions of gases (oxygen, nitrogen, argon, methane, carbon dioxide, and helium), isotope contents (tritium, carbon (13), and oxygen (18)), trace and minor element chemical data, and the usual complete chemical data.

  20. Thermal and thermo-mechanical behavior of butyl based rubber exposed to silicon oil at elevated temperature

    International Nuclear Information System (INIS)

    Ali, S.; Ramzan, S.; Raza, R.; Ahmed, F.; Hussain, R.; Ullah, S.; Ali, S.

    2013-01-01

    Silica reinforced rubbers are used as chemical resistant seals at high temperature. In this study the effect of alkali and silicon oil on the thermal and thermo-mechanical properties of the silica reinforced butyl rubber exposed as an interface between two liquid media at elevated temperature is investigated. Rubber bladder containing alkaline solution was immersed in silicon oil at 195+-5 degree C for multiple cycles and loss in its thermal, thermo-mechanical and mechanical properties were studied by TGA, DMA and Tinius Olsen Testing Machine supported by FTIR and Optical microscopy. It was observed that the thermal and thermo-mechanical properties of butyl rubber were negatively affected due to leaching out of silica filler embedded in an organic matrix at elevated temperature. The thermal stability of exposed rubber was decreased around 200 degree C and the loss of storage modulus was observed up to 99.5% at -59 degree C. (author)

  1. Microstructural, thermal and mechanical behavior of co-sputtered binary Zr–Cu thin film metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Apreutesei, M. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Steyer, P., E-mail: philippe.steyer@insa-lyon.fr [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Joly-Pottuz, L. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Billard, A. [LERMPS-UTBM, Site de Montbéliard, 90010 Belfort Cédex (France); Qiao, J.; Cardinal, S. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Sanchette, F. [LASMIS-UTT, UMR CNRS 6279, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex (France); Pelletier, J.M.; Esnouf, C. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France)

    2014-06-30

    Bulk metallic glasses have attracted considerable attention over the last decades for their outstanding mechanical features (high strength, super-elasticity) and physico-chemical properties (corrosion resistance). Recently, some attempts to assign such original behavior from bulk materials to modified surfaces have been reported in the literature based on multicomponent alloys. In this paper we focused on the opportunity to form a metallic glass coating from the binary Zr–Cu system using a magnetron co-sputtering physical vapor deposition process. The composition of the films can be easily controlled by the relative intensities applied to both pure targets, which made possible the study of the whole Zr–Cu system (from 13.4 to 85.0 at.% Cu). The chemical composition of the films was obtained by energy dispersive X-ray spectroscopy, and their microstructure was characterized by scanning and transmission electron microscopy. The thermal stability of the films was deduced from an in situ X-ray diffraction analysis (from room temperature up to 600 °C) and correlated with the results of the differential scanning calorimetry technique. Their mechanical properties were determined by nanoindentation experiments. - Highlights: • We reported deposition of Zr-Cu thin film metallic glasses by co-sputtering • Films were XRD-amorphous in a wide composition range (33.3 – 85.0 at.% Cu) • Microstructure investigation revealed some local nanodomains • We examined the thermal stability by means of in situ X-ray diffraction • Nanoindentation was used to obtained mechanical properties of thin films.

  2. Thermal energy analysis of a lime production process: Rotary kiln, preheater and cooler

    International Nuclear Information System (INIS)

    Shahin, Hamed; Hassanpour, Saeid; Saboonchi, Ahmad

    2016-01-01

    Highlights: • The integrated model for lime production unit which includes cooler, preheater and rotary kiln is developed. • The effect of residence time in each section on efficiency is investigated. • Influence of material feed rate and excess air on specific fuel consumption is analyzed. • The significant effect of particle size on efficiency and specific fuel consumption is shown. - Abstract: In this paper, thermal energy analysis of three zones of a lime production process, which are preheater, rotary kiln and cooler, is performed. In order to perform a proper quantitative estimation, the system was modeled using energy balance equations including coupled heat transfer and chemical reaction mechanisms. A mathematical model was developed, and consequently, the thermal and chemical behavior of limestone was investigated. The model was verified using empirical data. After model confirmation, the variation of Specific Fuel Consumption (SFC) versus production rate was predicted and the optimum condition was determined. Subsequently, fuel consumption was calculated regarding to altered residence time inside each zone of lime production process, for a constant output. Results indicate that increasing the residence time inside each zone of lime production process, will enhance thermal efficiency and saves fuel consumption. Relative enhancement will be the same for different sizes of limestone. It was found that a 10-min increase in material residence time inside the preheater or rotary kiln can reduce fuel consumption by around two percent. Whereas, a 5-min increase in material residence time inside the cooler would be enough to obtain a similar result. Finally, the ratio of air-to-fuel and production rate are changed in such a way that the same product is achieved. The model predicts that lowering excess air from 15% to 10% leads to a 2.5% reduction of Specific Fuel Consumption (SFC).

  3. Synthesis of TiO2 Nanoparticles from Ilmenite Through the Mechanism of Vapor-Phase Reaction Process by Thermal Plasma Technology

    Science.gov (United States)

    Samal, Sneha

    2017-11-01

    Synthesis of nanoparticles of TiO2 was carried out by non-transferred arc thermal plasma reactor using ilmenite as the precursor material. The powder ilmenite was vaporized at high temperature in plasma flame and converted to a gaseous state of ions in the metastable phase. On cooling, chamber condensation process takes place on recombination of ions for the formation of nanoparticles. The top-to-bottom approach induces the disintegration of complex ilmenite phases into simpler compounds of iron oxide and titanium dioxide phases. The vapor-phase reaction mechanism was carried out in thermal plasma zone for the synthesis of nanoparticles from ilmenite compound in a plasma reactor. The easy separation of iron particles from TiO2 was taken place in the plasma chamber with deposition of light TiO2 particles at the top of the cooling chamber and iron particles at the bottom. The dissociation and combination process of mechanism and synthesis are studied briefly in this article. The product TiO2 nanoparticle shows the purity with a major phase of rutile content. TiO2 nanoparticles produced in vapor-phase reaction process shows more photo-induced capacity.

  4. Long-term monitored catchments in Norway - a hydrologic and chemical evaluation -

    Energy Technology Data Exchange (ETDEWEB)

    Lydersen, E

    1994-10-20

    About 20 years ago, long-term monitoring of small Norwegian catchments were initiated, because of increasing concern regarding acidification of surface water and damage to fish populations. Long range transported air pollutants were considered to be the major acidification factor and so both precipitation and runoff chemistry were included in the monitoring programme. This report contains a thorough hydrologic and chemical evaluation of precipitation and runoff water separately as well as relationships between precipitation chemistry and runoff chemistry. The data comes from four catchments: Birkenes, Storgama, Langtjern and Kaarvatn. The chapters are (1) Sampling and analysis, (2) Description of the catchments, (3) Hydrology, (4) Chemistry, with subsections on wet deposition, dry deposition, concentration of marine compounds with distance from the sea, acid precipitation, runoff chemistry, sulphuric acid and other acidifying compounds, acid neutralizing capacity, and aluminium, (5) Time trends in precipitation and runoff chemistry. The time trends are evaluated in relation to the declining emissions of sulphur compounds in Europe since the late seventies. 134 refs., 213 figs., 54 tabs.

  5. What is needed to understand feedback mechanisms from agricultural and climate changes that can alter the hydrological system and the transport of sediments and agricultural chemicals?

    Science.gov (United States)

    Coupe, Richard; Payraudeau, Sylvain; Babcsányi, Izabella; Imfeld, Gwenaël

    2015-04-01

    Modern agriculture activities are constantly changing as producers try to produce a crop, keep their soils fertile, control pests, and prevent contamination of air and water resources. Because most of the world's arable land is already in production we must become more efficient if we are to feed and clothe the world's growing population as well as do this in a sustainable manner; leaving a legacy of fertile soil and clean water resources for our descendants. The objective of this paper is to demonstrate the importance of historical datasets and of developing new strategies to understand the effects of changing agricultural systems on the environment. Scientists who study agriculture and its effects on water must constantly adapt their strategies and evaluate how changing agricultural activities impact the environment. As well as understand from historical datasets on hydrology and agriculture how a changing climate or agricultural activity such as a change in tillage method might impact the processes that determine the movement of agricultural chemicals off of the target site. The 42.7 ha Hohrain (Rouffach, Alsace, France) vineyard experimental catchment offers several examples of how scientists have used historical data from this catchment to understand how the transport of agricultural chemicals may change due to a changing climate as well as how new strategies are developed for understanding the transport of agricultural chemicals. Runoff is a major process of pesticide transport from agricultural land to downstream aquatic ecosystems. The impact of rainfall characteristics on the transport of runoff-related pesticides is crucial to understanding how to prevent or minimize their movement now, but also in understanding how climate change might affect runoff. If we understand how rainfall characteristics affect the transport of pesticides, we can use climate change models to predict how those characteristics might change in the future and be better prepared for

  6. Soft Thermal Sensor with Mechanical Adaptability.

    Science.gov (United States)

    Yang, Hui; Qi, Dianpeng; Liu, Zhiyuan; Chandran, Bevita K; Wang, Ting; Yu, Jiancan; Chen, Xiaodong

    2016-11-01

    A soft thermal sensor with mechanical adaptability is fabricated by the combination of single-wall carbon nanotubes with carboxyl groups and self-healing polymers. This study demonstrates that this soft sensor has excellent thermal response and mechanical adaptability. It shows tremendous promise for improving the service life of soft artificial-intelligence robots and protecting thermally sensitive electronics from the risk of damage by high temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Surface qualities after chemical-mechanical polishing on thin films

    International Nuclear Information System (INIS)

    Fu, Wei-En; Lin, Tzeng-Yow; Chen, Meng-Ke; Chen, Chao-Chang A.

    2009-01-01

    Demands for substrate and film surface planarizations significantly increase as the feature sizes of Integrated Circuit (IC) components continue to shrink. Chemical Mechanical Polishing (CMP), incorporating chemical and mechanical interactions to planarize chemically modified surface layers, has been one of the major manufacturing processes to provide global and local surface planarizations in IC fabrications. Not only is the material removal rate a concern, the qualities of the CMP produced surface are critical as well, such as surface finish, defects and surface stresses. This paper is to examine the CMP produced surface roughness on tungsten or W thin films based on the CMP process conditions. The W thin films with thickness below 1000 nm on silicon wafer were chemical-mechanical polished at different down pressures and platen speeds to produce different surface roughness. The surface roughness measurements were performed by an atomic force microscope (DI D3100). Results show that the quality of surface finish (R a value) is determined by the combined effects of down pressures and platen speeds. An optimal polishing condition is, then, possible for selecting the down pressures and platen speeds.

  8. Coupling effects of chemical stresses and external mechanical stresses on diffusion

    International Nuclear Information System (INIS)

    Xuan Fuzhen; Shao Shanshan; Wang Zhengdong; Tu Shantung

    2009-01-01

    Interaction between diffusion and stress fields has been investigated extensively in the past. However, most of the previous investigations were focused on the effect of chemical stress on diffusion due to the unbalanced mass transport. In this work, the coupling effects of external mechanical stress and chemical stress on diffusion are studied. A self-consistent diffusion equation including the chemical stress and external mechanical stress gradient is developed under the framework of the thermodynamic theory and Fick's law. For a thin plate subjected to unidirectional tensile stress fields, the external stress coupled diffusion equation is solved numerically with the help of the finite difference method for one-side and both-side charging processes. Results show that, for such two types of charging processes, the external stress gradient will accelerate the diffusion process and thus increase the value of concentration while reducing the magnitude of chemical stress when the direction of diffusion is identical to that of the stress gradient. In contrast, when the direction of diffusion is opposite to that of the stress gradient, the external stress gradient will obstruct the process of solute penetration by decreasing the value of concentration and increasing the magnitude of chemical stress. For both-side charging process, compared with that without the coupling effect of external stress, an asymmetric distribution of concentration is produced due to the asymmetric mechanical stress field feedback to diffusion.

  9. Mechanical and thermal properties of short-coirfiber-reinforced natural rubber/polyethylene composites

    Science.gov (United States)

    Xu, Zh. H.; Kong, Zh. N.

    2014-07-01

    Natural rubber (NR) and polyethylene (PE) composites were compounded with chemically treated coir fibers by using a heated two-roll mill. Two chemical treatments of the fibers — by silane and sodium hydroxide — were carried out to improve the interfacial adhesion between them and the polyethylene matrix. The mechanical properties of the composites obtained were evaluated and compared with those made from a neat polymer and untreated fibers. The mechanical properties of the composites, such as the tensile strength, Young's modulus, and the elongation at break, were examined, and their shrinkage and flame retardant characteristics were measured. From these experiments, the effect of plasma treatment on the mechanical-physical behavior of coconut-fiberreinforced NR/PE composites was identified. In addition, their thermal characteristics were evaluated, and the results showed a slight decrease in them with increasing content of coir fibers.

  10. Evaluation of thermo-hydrological performance in support of the thermal loading systems study

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1994-01-01

    Heat generated as a result of emplacing spent nuclear fuel will significantly affect the pre- and post-closure performance of the Mined Geological Disposal System (MGDS) at the potential repository site in Yucca Mountain. Understanding thermo-hydrological behavior under repository thermal loads is essential in (a) planning and conducting the site characterization and testing program, (b) designing the repository and engineered barrier system, and (c) assessing performance. The greatest concern for hydrological performance is source of water that would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. The primary sources of liquid water are: (1) natural infiltration, (2) condensate generated under boiling conditions, and (3) condensate generated under sub-boiling conditions. Buoyant vapor flow, occurring either on a sub-repository scale or on a mountain scale, any affect the generation of the second and third sources of liquid water. A system of connected fractures facilitates repository-heat-driven gas and liquid flow as well as natural infiltration. With the use of repository-scale and sub-repository-scale models, the authors analyze thermo-hydrological behavior for Areal Mass Loadings (AMLs) of 24.2, 35.9, 55.3, 83.4, and 110.5 MTU/acre for a wide range of bulk permeability. They examine the temporal and spatial extent of the temperature and saturation changes during the first 100,000 yr. They also examine the sensitivity of mountain scale moisture redistribution to a range of AMLs and bulk permeabilities. In addition, they investigate how boiling and buoyant, gas-phase convection influence thermo-hydrological behavior in the vicinity of emplacement drifts containing spent nuclear fuel

  11. Effect of thermal-treatment sequence on sound absorbing and mechanical properties of porous sound-absorbing/thermal-insulating composites

    Directory of Open Access Journals (Sweden)

    Huang Chen-Hung

    2016-01-01

    Full Text Available Due to recent rapid commercial and industrial development, mechanical equipment is supplemented massively in the factory and thus mechanical operation causes noise which distresses living at home. In livelihood, neighborhood, transportation equipment, jobsite construction noises impact on quality of life not only factory noise. This study aims to preparation technique and property evaluation of porous sound-absorbing/thermal-insulating composites. Hollow three-dimensional crimp PET fibers blended with low-melting PET fibers were fabricated into hollow PET/low-melting PET nonwoven after opening, blending, carding, lapping and needle-bonding process. Then, hollow PET/low-melting PET nonwovens were laminated into sound-absorbing/thermal-insulating composites by changing sequence of needle-bonding and thermal-treatment. The optimal thermal-treated sequence was found by tensile strength, tearing strength, sound-absorbing coefficient and thermal conductivity coefficient tests of porous composites.

  12. Upscaling Empirically Based Conceptualisations to Model Tropical Dominant Hydrological Processes for Historical Land Use Change

    Science.gov (United States)

    Toohey, R.; Boll, J.; Brooks, E.; Jones, J.

    2009-12-01

    Surface runoff and percolation to ground water are two hydrological processes of concern to the Atlantic slope of Costa Rica because of their impacts on flooding and drinking water contamination. As per legislation, the Costa Rican Government funds land use management from the farm to the regional scale to improve or conserve hydrological ecosystem services. In this study, we examined how land use (e.g., forest, coffee, sugar cane, and pasture) affects hydrological response at the point, plot (1 m2), and the field scale (1-6ha) to empirically conceptualize the dominant hydrological processes in each land use. Using our field data, we upscaled these conceptual processes into a physically-based distributed hydrological model at the field, watershed (130 km2), and regional (1500 km2) scales. At the point and plot scales, the presence of macropores and large roots promoted greater vertical percolation and subsurface connectivity in the forest and coffee field sites. The lack of macropores and large roots, plus the addition of management artifacts (e.g., surface compaction and a plough layer), altered the dominant hydrological processes by increasing lateral flow and surface runoff in the pasture and sugar cane field sites. Macropores and topography were major influences on runoff generation at the field scale. Also at the field scale, antecedent moisture conditions suggest a threshold behavior as a temporal control on surface runoff generation. However, in this tropical climate with very intense rainstorms, annual surface runoff was less than 10% of annual precipitation at the field scale. Significant differences in soil and hydrological characteristics observed at the point and plot scales appear to have less significance when upscaled to the field scale. At the point and plot scales, percolation acted as the dominant hydrological process in this tropical environment. However, at the field scale for sugar cane and pasture sites, saturation-excess runoff increased as

  13. Thermal and mechanical modelling of a mig-type electron gun

    International Nuclear Information System (INIS)

    Patire Junior, H.; Castro, J.J.B. de

    1995-01-01

    A thermal and mechanical modelling of a magnetron injection electron gun has been made to minimize the temperature distribution in the gun elements while keeping the required operating temperature at 1000 0 C of the emitter. Appropriate materials were selected to reduce thermal losses and to improve the gun design from a constructional point of view aiming at extending the capabilities of the gun. A software has been used to simulate a thermal model considering the three processes of thermal transfer and the influence of the physical properties of the materials used. (author). 8 refs., 2 figs, 2 tabs

  14. Thermoreflectance spectroscopy—Analysis of thermal processes in semiconductor lasers

    Science.gov (United States)

    Pierścińska, D.

    2018-01-01

    This review focuses on theoretical foundations, experimental implementation and an overview of experimental results of the thermoreflectance spectroscopy as a powerful technique for temperature monitoring and analysis of thermal processes in semiconductor lasers. This is an optical, non-contact, high spatial resolution technique providing high temperature resolution and mapping capabilities. Thermoreflectance is a thermometric technique based on measuring of relative change of reflectivity of the surface of laser facet, which provides thermal images useful in hot spot detection and reliability studies. In this paper, principles and experimental implementation of the technique as a thermography tool is discussed. Some exemplary applications of TR to various types of lasers are presented, proving that thermoreflectance technique provides new insight into heat management problems in semiconductor lasers and in particular, that it allows studying thermal degradation processes occurring at laser facets. Additionally, thermal processes and basic mechanisms of degradation of the semiconductor laser are discussed.

  15. Simulating Complex, Cold-region Process Interactions Using a Multi-scale, Variable-complexity Hydrological Model

    Science.gov (United States)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2017-12-01

    Accurate management of water resources is necessary for social, economic, and environmental sustainability worldwide. In locations with seasonal snowcovers, the accurate prediction of these water resources is further complicated due to frozen soils, solid-phase precipitation, blowing snow transport, and snowcover-vegetation-atmosphere interactions. Complex process interactions and feedbacks are a key feature of hydrological systems and may result in emergent phenomena, i.e., the arising of novel and unexpected properties within a complex system. One example is the feedback associated with blowing snow redistribution, which can lead to drifts that cause locally-increased soil moisture, thus increasing plant growth that in turn subsequently impacts snow redistribution, creating larger drifts. Attempting to simulate these emergent behaviours is a significant challenge, however, and there is concern that process conceptualizations within current models are too incomplete to represent the needed interactions. An improved understanding of the role of emergence in hydrological systems often requires high resolution distributed numerical hydrological models that incorporate the relevant process dynamics. The Canadian Hydrological Model (CHM) provides a novel tool for examining cold region hydrological systems. Key features include efficient terrain representation, allowing simulations at various spatial scales, reduced computational overhead, and a modular process representation allowing for an alternative-hypothesis framework. Using both physics-based and conceptual process representations sourced from long term process studies and the current cold regions literature allows for comparison of process representations and importantly, their ability to produce emergent behaviours. Examining the system in a holistic, process-based manner can hopefully derive important insights and aid in development of improved process representations.

  16. Effect of conditioner load on the polishing pad surface during chemical mechanical planarization process

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Cheol Min; Qin, Hong Yi; Hong, Seok Jun; Jeon, Sang Hyuk; Kulkarni, Atul; Kim, Tae Sun [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-12-15

    During the Chemical mechanical planarization (CMP), the pad conditioning process can affect the pad surface characteristics. Among many CMP process parameters, the improper applied load on the conditioner arm may have adverse effects on the polyurethane pad. In this work, we evaluated the pad surface properties under the various conditioner arm applied during pad conditioning process. The conditioning pads were evaluated for surface topography, surface roughness parameters such as Rt and Rvk and Material removal rate (MRR) and within-wafer non-uniformity after wafer polishing. We observed that, the pad asperities were collapsed in the direction of conditioner rotation and blocks the pad pores applied conditioner load. The Rvk value and MRR were founded to be in relation with 4 > 1 > 7 kgF conditioner load. Hence, this study shows that, 4 kgF applied load by conditioner is most suitable for the pad conditioning during CMP.

  17. Study on chemical mechanical polishing of silicon wafer with megasonic vibration assisted.

    Science.gov (United States)

    Zhai, Ke; He, Qing; Li, Liang; Ren, Yi

    2017-09-01

    Chemical mechanical polishing (CMP) is the primary method to realize the global planarization of silicon wafer. In order to improve this process, a novel method which combined megasonic vibration to assist chemical mechanical polishing (MA-CMP) is developed in this paper. A matching layer structure of polishing head was calculated and designed. Silicon wafers are polished by megasonic assisted chemical mechanical polishing and traditional chemical mechanical polishing respectively, both coarse polishing and precision polishing experiments were carried out. With the use of megasonic vibration, the surface roughness values Ra reduced from 22.260nm to 17.835nm in coarse polishing, and the material removal rate increased by approximately 15-25% for megasonic assisted chemical mechanical polishing relative to traditional chemical mechanical polishing. Average Surface roughness values Ra reduced from 0.509nm to 0.387nm in precision polishing. The results show that megasonic assisted chemical mechanical polishing is a feasible method to improve polishing efficiency and surface quality. The material removal and finishing mechanisms of megasonic vibration assisted polishing are investigated too. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Chemical evolution studies: the radiolysis and thermal decomposition of malonic acid

    International Nuclear Information System (INIS)

    Cruz-Castaneda, J.; Negron-Mendoza, A.; Heredia, A.; Ramos-Bernal, S.; Villafane-Barajas, S.; Frias, D.; Colin-Garcia, M.

    2015-01-01

    In the context of chemical evolution a simulation of a hydrothermal vent was performed. The thermolysis and radiolysis of malonic acid in aqueous solution were studied. The thermolysis was done by heating the samples (95 deg C) and radiolysis using gamma radiation. Products were identified by gas chromatography and gas chromatography-mass spectrometry. The thermal treatment produced acetic acid and CO 2 . The radiolysis experiments yield carbon dioxide, acetic acid, and di- and tricarboxylic acids. A theoretical model of the chemical process occurring under irradiation was developed; this was able to reproduce formation of products and the consumption of malonic acid. (author)

  19. A thermal spike analysis of low energy ion activated surface processes

    International Nuclear Information System (INIS)

    Gilmore, G.M.; Haeri, A.; Sprague, J.A.

    1989-01-01

    This paper reports a thermal spike analysis utilized to predict the time evolution of energy propagation through a solid resulting from energetic particle impact. An analytical solution was developed that can predict the number of surface excitations such as desorption, diffusion or chemical reaction activated by an energetic particle. The analytical solution is limited to substrates at zero Kelvin and to materials with constant thermal diffusivities. These limitations were removed by developing a computer numerical integration of the propagation of the thermal spike through the solid and the subsequent activation of surface processes

  20. Evaluation of ethanol aged PVDF: diffusion, crystallinity and dynamic mechanical thermal properties

    International Nuclear Information System (INIS)

    Silva, Agmar J.J.; Costa, Marysilvia F.

    2015-01-01

    This work discuss firstly the effect of the ethanol fuel absorption by PVDF at 60°C through mass variation tests. A Fickian character was observed for the ethanol absorption kinetics of the aged PVDF at 60°C. In the second step, the dynamic mechanical thermal properties (E’, E’, E” and tan δ) of the PVDF were evaluated through dynamic mechanical thermal analysis (DMTA). The chemical structure of the materials was analyzed by X-ray diffraction analysis (XRD), and significant changes in the degree of crystallinity were verified after the aging. However, DMTA results showed a reduction in the storage modulus (E') of the aged PVDF, which was associated to diffusion of ethanol and swelling of the PVDF, which generated a prevailing plasticizing effect and led to reduction of its structural stiffness. (author)

  1. Differentiation of the molecular structure of nitro compounds as the basis for simulation of their thermal destruction processes

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V L; Pivina, Tatyana S; Sheremetev, Aleksei B [N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Porollo, A A [University of Cincinnati, Cincinnati (United States); Petukhova, T V; Ivshin, Viktor P [Mari State University, Yoshkar-Ola (Russian Federation)

    2009-10-31

    Data on the experimental and theoretical studies of thermal decomposition of C- and N-nitro compounds of aliphatic, alicyclic, aromatic and heteroaromatic compounds, which formed the grounds for the development of ab initio approach to the prediction of the mechanisms of thermolysis of energetic compounds, are described systematically. The relationships between the structures and thermolysis mechanisms of compounds based on differentiation of the structural fragments depending on the functional surrounding of nitro groups are identified. Using the RRN (Recombination Reaction Network) strategy and original CASB (Computer Assisted Structure Building) software, full reaction mechanisms for the thermal destruction of nitro compounds at different thermal decomposition levels (including extensive ones) are simulated. The full set of possible mechanisms of thermal decomposition of 38 chemically different nitro compounds is presented

  2. Improving Robustness of Hydrologic Ensemble Predictions Through Probabilistic Pre- and Post-Processing in Sequential Data Assimilation

    Science.gov (United States)

    Wang, S.; Ancell, B. C.; Huang, G. H.; Baetz, B. W.

    2018-03-01

    Data assimilation using the ensemble Kalman filter (EnKF) has been increasingly recognized as a promising tool for probabilistic hydrologic predictions. However, little effort has been made to conduct the pre- and post-processing of assimilation experiments, posing a significant challenge in achieving the best performance of hydrologic predictions. This paper presents a unified data assimilation framework for improving the robustness of hydrologic ensemble predictions. Statistical pre-processing of assimilation experiments is conducted through the factorial design and analysis to identify the best EnKF settings with maximized performance. After the data assimilation operation, statistical post-processing analysis is also performed through the factorial polynomial chaos expansion to efficiently address uncertainties in hydrologic predictions, as well as to explicitly reveal potential interactions among model parameters and their contributions to the predictive accuracy. In addition, the Gaussian anamorphosis is used to establish a seamless bridge between data assimilation and uncertainty quantification of hydrologic predictions. Both synthetic and real data assimilation experiments are carried out to demonstrate feasibility and applicability of the proposed methodology in the Guadalupe River basin, Texas. Results suggest that statistical pre- and post-processing of data assimilation experiments provide meaningful insights into the dynamic behavior of hydrologic systems and enhance robustness of hydrologic ensemble predictions.

  3. Statistical mechanics of microscopically thin thermalized shells

    Science.gov (United States)

    Kosmrlj, Andrej

    Recent explosion in fabrication of microscopically thin free standing structures made from graphene and other two-dimensional materials has led to a renewed interest in the mechanics of such structures in presence of thermal fluctuations. Since late 1980s it has been known that for flat solid sheets thermal fluctuations effectively increase the bending rigidity and reduce the bulk and shear moduli in a scale-dependent fashion. However, much is still unknown about the mechanics of thermalized flat sheets of complex geometries and about the mechanics of thermalized shells with non-zero background curvature. In this talk I will present recent development in the mechanics of thermalized ribbons, spherical shells and cylindrical tubes. Long ribbons are found to behave like hybrids between flat sheets with renormalized elastic constants and semi-flexible polymers, and these results can be used to predict the mechanics of graphene kirigami structures. Contrary to the anticipated behavior for ribbons, the non-zero background curvature of shells leads to remarkable novel phenomena. In shells, thermal fluctuations effectively generate negative surface tension, which can significantly reduce the critical buckling pressure for spherical shells and the critical axial load for cylindrical tubes. For large shells this thermally generated load becomes big enough to spontaneously crush spherical shells and cylindrical tubes even in the absence of external loads. I will comment on the relevance for crushing of microscopic shells (viral capsids, bacteria, microcapsules) due to osmotic shocks and for crushing of nanotubes.

  4. Modelling hydrologic and hydrodynamic processes in basins with large semi-arid wetlands

    Science.gov (United States)

    Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Pontes, Paulo; Crétaux, Jean-François; Bergé-Nguyen, Muriel; Biancamaria, Sylvain; Gosset, Marielle; Calmant, Stephane; Tanimoun, Bachir

    2018-06-01

    Hydrological and hydrodynamic models are core tools for simulation of large basins and complex river systems associated to wetlands. Recent studies have pointed towards the importance of online coupling strategies, representing feedbacks between floodplain inundation and vertical hydrology. Especially across semi-arid regions, soil-floodplain interactions can be strong. In this study, we included a two-way coupling scheme in a large scale hydrological-hydrodynamic model (MGB) and tested different model structures, in order to assess which processes are important to be simulated in large semi-arid wetlands and how these processes interact with water budget components. To demonstrate benefits from this coupling over a validation case, the model was applied to the Upper Niger River basin encompassing the Niger Inner Delta, a vast semi-arid wetland in the Sahel Desert. Simulation was carried out from 1999 to 2014 with daily TMPA 3B42 precipitation as forcing, using both in-situ and remotely sensed data for calibration and validation. Model outputs were in good agreement with discharge and water levels at stations both upstream and downstream of the Inner Delta (Nash-Sutcliffe Efficiency (NSE) >0.6 for most gauges), as well as for flooded areas within the Delta region (NSE = 0.6; r = 0.85). Model estimates of annual water losses across the Delta varied between 20.1 and 30.6 km3/yr, while annual evapotranspiration ranged between 760 mm/yr and 1130 mm/yr. Evaluation of model structure indicated that representation of both floodplain channels hydrodynamics (storage, bifurcations, lateral connections) and vertical hydrological processes (floodplain water infiltration into soil column; evapotranspiration from soil and vegetation and evaporation of open water) are necessary to correctly simulate flood wave attenuation and evapotranspiration along the basin. Two-way coupled models are necessary to better understand processes in large semi-arid wetlands. Finally, such coupled

  5. International conference on the performance of engineered barriers. Physical and chemical properties, behaviour and evolution. Short abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Schaefers, Annika; Fahland, Sandra (eds.)

    2014-08-01

    The volume includes the abstracts of the papers presented at the international conference on the performance of engineered barrier systems, their physical and chemical properties, behavior and evolution. The papers cover the topics bentonite buffers, radioactive waste repository safety, geophysical and geochemical property monitoring, repository sealing materials, thermo-hydro-mechanical characterization, gas injection tests, hydration and heating tests, clay-iron interaction experiments, water retention behavior, thermal stability of materials, numerical modeling studies, long-term simulations, thermo-hydrologic phenomena, uncertainty and sensitivity studies, probabilistic assessments, preliminary safety analyses of Gorleben.

  6. Modeling the Hydrologic Processes of a Permeable Pavement System

    Science.gov (United States)

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has be...

  7. Kinetics of physico-chemical processes during intensive mechanical processing of ZnO-MnO2 powder mixture

    International Nuclear Information System (INIS)

    Kakazey, M.; Vlasova, M.; Dominguez-Patino, M.; Juarez-Arellano, E.A.; Bykov, A.; Leon, I.; Siqueiros-Diaz, A.

    2011-01-01

    Experimental results of electron paramagnetic resonance spectra, X-ray diffraction, scanning electron microscopy and infrared spectroscopy demonstrate that the kinetic of the physical and chemical processes that takes place during prolonged intensive mechanical processing (MP, 0 MP >3120min) of powder mixtures of 50%wt ZnO+50%wt MnO 2 can be described as a three stage process. (1) 0 MP >30min, particles destruction, formation of superficial defects, fast increment of sample average temperature (from 290 to ∼600K) and annealing of defects with the lowest energy of activation E ac . (2) 30 MP >390min, further particle destruction, slow increment of sample average temperature (from ∼600 to ∼700K), formation and growth of a very disordered layer of β-MnO 2 around ZnO particles, dehydration of MnO 2 , formation of solid solution of Mn 2+ ions in ZnO, formation of nano-quasiamorphous states in the ZnO-MnO 2 mixture and onset of the formation of the ZnMnO 3 phase. (3) 390 MP >3120min, the sample average temperature remains constant (∼700K), the reaction is completed and the spinel ZnMnO 3 phase with a unit cell a=8.431(1) A and space group Fd3-barm is the only phase present in the sample. No ferromagnetism at room temperature was detected in this study. - Highlights: → The kinetics during mechanical processing of ZnO-MnO 2 samples is a three stage process. → First stage, reduction of crystallites size and accumulation of defects. → Second stage, nano-quasiamorphous states formation and onset of the ZnMnO 3 phase. → Third stage, complete reaction to the spinel ZnMnO 3 phase.

  8. Effort problem of chemical pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Okrajni, J.; Ciesla, M.; Mutwil, K. [Silesian Technical University, Katowice (Poland)

    1998-12-31

    The problem of the technical state assessment of the chemical pipelines working under mechanical and thermal loading has been shown in the paper. The pipelines effort after the long time operating period has been analysed. Material geometrical and loading conditions of the crack initiation and crack growth process in the chosen object has been discussed. Areas of the maximal effort have been determined. The material structure charges after the long time operating period have been described. Mechanisms of the crack initiation and crack growth in the pipeline elements have been analysed and mutual relations between the chemical and mechanical influences have been shown. (orig.) 16 refs.

  9. Curricula and Syllabi in Hydrology. A Contribution to the International Hydrological Programme. UNESCO Technical Papers in Hydrology No. 22. Second Edition.

    Science.gov (United States)

    Chandra, Satish, Ed.; Mostertman, L. J., Ed.

    Hydrology is the science dealing with the earth's waters, their occurrence, circulation, and distribution, their chemical and physical properties, and their reaction with the environment. As such, hydrology is an indispensible requirement for planning in the field of water resources. Objectives for, spectrum of, and topics for education in…

  10. Characteristics and Impact of Imperviousness From a GIS-based Hydrological Perspective

    Science.gov (United States)

    Moglen, G. E.; Kim, S.

    2005-12-01

    With the concern that imperviousness can be differently quantified depending on data sources and methods, this study assessed imperviousness estimates using two different data sources: land use and land cover. Year 2000 land use developed by the Maryland Department of Planning was utilized to estimate imperviousness by assigning imperviousness coefficients to unique land use categories. These estimates were compared with imperviousness estimates based on satellite-derived land cover from the 2001 National Land Cover Dataset. Our study developed the relationships between these two estimates in the form of regression equations to convert imperviousness derived from one data source to the other. The regression equations are considered reliable, based on goodness-of-fit measures. Furthermore, this study examined how quantitatively different imperviousness estimates affect the prediction of hydrological response both in the flow regime and in the thermal regime. We assessed the relationships between indicators of hydrological response and imperviousness-descriptors. As indicators of flow variability, coefficient of variance, lag-one autocorrelation, and mean daily flow change were calculated based on measured mean daily stream flow from the water year 1997 to 2003. For thermal variability, indicators such as percent-days of surge, degree-day, and mean daily temperature difference were calculated base on measured stream temperature over several basins in Maryland. To describe imperviousness through the hydrological process, GIS-based spatially distributed hydrological models were developed based on a water-balance method and the SCS-CN method. Imperviousness estimates from land use and land cover were used as predictors in these models to examine the effect of imperviousness using different data sources on the prediction of hydrological response. Indicators of hydrological response were also regressed on aggregate imperviousness. This allowed for identifying if

  11. Forest hydrology

    Science.gov (United States)

    Ge Sun; Devendra Amatya; Steve McNulty

    2016-01-01

    Forest hydrology studies the distribution, storage, movement, and quality of water and the hydrological processes in forest-dominated ecosystems. Forest hydrological science is regarded as the foundation of modern integrated water¬shed management. This chapter provides an overview of the history of forest hydrology and basic principles of this unique branch of...

  12. Investigating the Thermal and Phase Stability of Nanocrystalline Ni-W Produced by Electrodeposition, Sputtering, and Mechanical Alloying

    Science.gov (United States)

    Marvel, Christopher Jonathan

    The development of nanocrystalline materials has been increasingly pursued over the last few decades. They have been shown to exhibit superior properties compared to their coarse-grain counterparts, and thus present a tremendous opportunity to revolutionize the performance of nanoscale devices or bulk structural materials. However, nanocrystalline materials are highly prone to grain growth, and if the nanocrystalline grains coarsen, the beneficial properties are lost. There is a strong effort to determine the most effective thermal stability mechanisms to avoid grain growth, but the physical nature of nanocrystalline grain growth is still unclear due to a lack of detailed understanding of nanocrystalline microstructures. Furthermore, the influence of contamination has scarcely been explored with advanced transmission electron microscopy techniques, nor has there been a direct comparison of alloys fabricated with different bulk processes. Therefore, this research has applied aberration-corrected scanning transmission electron microscopy to characterize nanocrystalline Ni-W on the atomic scale and elucidate the physical grain growth behavior. Three primary objectives were pursued: (1) explore the thermal stability mechanisms of nanocrystalline Ni-W, (2) evaluate the phase stability of Ni-W and link any findings to grain growth behavior, and (3) compare the influences of bulk fabrication processing, including electrodeposition, DC magnetron sputtering, and mechanical alloying, on the thermal stability and phase stability of Ni-W. Several thermal stability mechanisms were identified throughout the course of this research. First and foremost, W-segregation was scarcely observed to grain boundaries, and it is unclear if W-segregation improves thermal stability contrary to most reports in the 2 literature. Long-range Ni4W chemical ordering was observed in alloys with more than 20 at.% W, and it is likely Ni4W domains reduce grain boundary mobility. In addition, lattice

  13. Hydrologic impacts of thawing permafrost—A review

    Science.gov (United States)

    Walvoord, Michelle Ann; Kurylyk, Barret L.

    2016-01-01

    Where present, permafrost exerts a primary control on water fluxes, flowpaths, and distribution. Climate warming and related drivers of soil thermal change are expected to modify the distribution of permafrost, leading to changing hydrologic conditions, including alterations in soil moisture, connectivity of inland waters, streamflow seasonality, and the partitioning of water stored above and below ground. The field of permafrost hydrology is undergoing rapid advancement with respect to multiscale observations, subsurface characterization, modeling, and integration with other disciplines. However, gaining predictive capability of the many interrelated consequences of climate change is a persistent challenge due to several factors. Observations of hydrologic change have been causally linked to permafrost thaw, but applications of process-based models needed to support and enhance the transferability of empirical linkages have often been restricted to generalized representations. Limitations stem from inadequate baseline permafrost and unfrozen hydrogeologic characterization, lack of historical data, and simplifications in structure and process representation needed to counter the high computational demands of cryohydrogeologic simulations. Further, due in part to the large degree of subsurface heterogeneity of permafrost landscapes and the nonuniformity in thaw patterns and rates, associations between various modes of permafrost thaw and hydrologic change are not readily scalable; even trajectories of change can differ. This review highlights promising advances in characterization and modeling of permafrost regions and presents ongoing research challenges toward projecting hydrologic and ecologic consequences of permafrost thaw at time and spatial scales that are useful to managers and researchers.

  14. Epitaxial Growth and Cracking Mechanisms of Thermally Sprayed Ceramic Splats

    Science.gov (United States)

    Chen, Lin; Yang, Guan-jun

    2018-02-01

    In the present study, the epitaxial growth and cracking mechanisms of thermally sprayed ceramic splats were explored. We report, for the first time, the epitaxial growth of various splat/substrate combinations at low substrate temperatures (100 °C) and large lattice mismatch (- 11.26%). Our results suggest that thermal spray deposition was essentially a liquid-phase epitaxy, readily forming chemical bonding. The interface temperature was also estimated. The results convincingly demonstrated that atoms only need to diffuse and rearrange over a sufficiently short range during extremely rapid solidification. Concurrently, severe cracking occurred in the epitaxial splat/substrate systems, which indicated high tensile stress was produced during splat deposition. The origin of the tensile stress was attributed to the strong constraint of the locally heated substrate by its cold surroundings.

  15. Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation ageing

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Shimada, Akihiko; Sugimoto, Masaki; Kudoh, Hisaaki

    2012-01-01

    The mechanism of polymer oxidation by radiation and thermal ageing was investigated for the life evaluation of cables installed in radiation environments. The antioxidant as a stabilizer was very effective for thermal oxidation with a small content in polymers, but was not effective for radiation oxidation. The ionizing radiation induced the oxidation to result in chain scission even at low temperature, because the free radicals were produced and the antioxidant could not stop the oxidation of radicals with the chain scission. A new mechanism of antioxidant effect for polymer oxidation was proposed. The effect of antioxidant was not the termination of free radicals in polymer chains such as peroxy radicals, but was the depression of initial radical formation in polymer chains by thermal activation. The antioxidant molecule was assumed to delocalize the activated energy in polymer chains by the Boltzmann statics (distribution) to result in decrease in the probability of radical formation at a given temperature. The interaction distance (delocalization volume) by one antioxidant molecule was estimated to be 5–10 nm by the radius of sphere in polymer matrix, though the value would depend on the chemical structure of antioxidant. - Highlights: ► Interaction of antioxidant on polymer oxidation is discussed for thermal and radiation ageings. ► Antioxidant is very effective for thermal oxidation, but not for radiation induced oxidation. ► Interaction of antioxidant is not the termination reaction of radicals on polymers. ► Antioxidant is supposed to reduce the provability of polymer radical formation by thermal activation. ► Mechanism of polymer oxidation may not be chain reaction via peroxy radical and hydro-peroxide.

  16. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Yang; Lei, Huimin; Yang, Dawen; Huang, Maoyi; Liu, Dengfeng; Yuan, Xing

    2017-08-01

    Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of ecohydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of the Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965–1969) from 0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010–2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.

  17. Application of oxygen-18 tracer techniques to arctic hydrological processes

    International Nuclear Information System (INIS)

    Cooper, L.W.; Solis, C.; Kane, D.L.; Hinzman, L.D.

    1993-01-01

    The δ 18 O value of streamflow at Imnavait Creek, Alaska, shifted dramatically from -30.3 per-thousand on 14 May, the first day of streamflow in 1990, to -22.5 per-thousand on 22 May, at the end of the snowmelt. Nevertheless, independent hydrological measurements of snow redistribution by wind, snow ablation, snow and soil mixture content, and snowmelt runoff indicate there cannot be significant mixing of meltwater with underlying ice-rich soils. An alternative explanation is that isotopic fractionation during the phase change from solid to liquid dominates the isotopic variation in streamflow during snowmelt and prevents a straightforward application of 18 O as a conservative hydrological tracer. By contrast, under dry antecedent conditions in late summer, 18 O appeared to be a suitable tracer following rain contributions to streamflow. Streamflow increased as a result of rainfall, but stream isotopic composition did not change until at least two hours after streamflow increased, implicating a wave, or piston-like mechanism for forcing open-quotes oldclose quotes water into the stream channel. Analyses of the stable hydrogen and oxygen isotope composition of various hydrological components within the watershed indicate the importance of evaporation as a dominant factor in the hydrological cycle; soil moisture, alteration as a result of evaporation. The analyses indicate that caution would be advised for any application of stable isotopes to hydrological studies in arctic watersheds. Proportions of snowmelt mixing with underlying soil water may be subject to overestimation because isotopic fractionation as snow melts can be similar in direction and magnitude to the isotopic mixing of snowmelt an soil waters. 40 refs., 7 figs., 1 tab

  18. Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials

    Science.gov (United States)

    Nagabandi, N.; Yegin, C.; Feng, X.; King, C.; Oh, J. K.; Scholar, E. A.; Narumanchi, S.; Akbulut, M.

    2018-03-01

    Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of the bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. The internal nanostructure was found to be strongly dependent on the linker chemistry. While the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W m-1 K and 306-321 W m-1 K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 400-495 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3 × 10-6 m2 K-1 s for MBCA-BNNS and 8.5 × 10-7 m2 K-1 s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.

  19. Carbon nanotubes for thermal interface materials in microelectronic packaging

    Science.gov (United States)

    Lin, Wei

    As the integration scale of transistors/devices in a chip/system keeps increasing, effective cooling has become more and more important in microelectronics. To address the thermal dissipation issue, one important solution is to develop thermal interface materials with higher performance. Carbon nanotubes, given their high intrinsic thermal and mechanical properties, and their high thermal and chemical stabilities, have received extensive attention from both academia and industry as a candidate for high-performance thermal interface materials. The thesis is devoted to addressing some challenges related to the potential application of carbon nanotubes as thermal interface materials in microelectronics. These challenges include: 1) controlled synthesis of vertically aligned carbon nanotubes on various bulk substrates via chemical vapor deposition and the fundamental understanding involved; 2) development of a scalable annealing process to improve the intrinsic properties of synthesized carbon nanotubes; 3) development of a state-of-art assembling process to effectively implement high-quality vertically aligned carbon nanotubes into a flip-chip assembly; 4) a reliable thermal measurement of intrinsic thermal transport property of vertically aligned carbon nanotube films; 5) improvement of interfacial thermal transport between carbon nanotubes and other materials. The major achievements are summarized. 1. Based on the fundamental understanding of catalytic chemical vapor deposition processes and the growth mechanism of carbon nanotube, fast synthesis of high-quality vertically aligned carbon nanotubes on various bulk substrates (e.g., copper, quartz, silicon, aluminum oxide, etc.) has been successfully achieved. The synthesis of vertically aligned carbon nanotubes on the bulk copper substrate by the thermal chemical vapor deposition process has set a world record. In order to functionalize the synthesized carbon nanotubes while maintaining their good vertical alignment

  20. Effect of Ionizing Beta Radiation on the Mechanical Properties of Poly(ethylene under Thermal Stress

    Directory of Open Access Journals (Sweden)

    Bednarik Martin

    2016-01-01

    Full Text Available It was found in this study, that ionizing beta radiation has a positive effect on the mechanical properties of poly(ethylene. In recent years, there have been increasing requirements for quality and cost effectiveness of manufactured products in all areas of industrial production. These requirements are best met with the polymeric materials, which have many advantages in comparison to traditional materials. The main advantages of polymer materials are especially in their ease of processability, availability, and price of the raw materials. Radiation crosslinking is one of the ways to give the conventional plastics mechanical, thermal, and chemical properties of expensive and highly resistant construction polymers. Several types of ionizing radiation are used for crosslinking of polymers. Each of them has special characteristics. Electron beta and photon gamma radiation are used the most frequently. The great advantage is that the crosslinking occurs after the manufacturing process at normal temperature and pressure. The main purpose of this paper has been to determine the effect of ionizing beta radiation on the tensile modulus, strength and elongation of low and high density polyethylene (LDPE and HDPE. These properties were examined in dependence on the dosage of the ionizing beta radiation (non-irradiated samples and those irradiated by dosage 99 kGy were compared and on the test temperature. Radiation cross-linking of LDPE and HDPE results in increased tensile strength and modulus, and decreased of elongation. The measured results indicate that ionizing beta radiation treatment is effective tool for improvement of mechanical properties of LDPE and HDPE under thermal stress.

  1. Modeling of hydrological processes in arid agricultural regions

    Directory of Open Access Journals (Sweden)

    Jiang LI,Xiaomin MAO,Shaozhong KANG,David A. BARRY

    2015-12-01

    Full Text Available Understanding of hydrological processes, including consideration of interactions between vegetation growth and water transfer in the root zone, underpins efficient use of water resources in arid-zone agriculture. Water transfers take place in the soil-plant-atmosphere continuum, and include groundwater dynamics, unsaturated zone flow, evaporation/transpiration from vegetated/bare soil and surface water, agricultural canal/surface water flow and seepage, and well pumping. Models can be categorized into three classes: (1 regional distributed hydrological models with various land uses, (2 groundwater-soil-plant-atmosphere continuum models that neglect lateral water fluxes, and (3 coupled models with groundwater flow and unsaturated zone water dynamics. This review highlights, in addition, future research challenges in modeling arid-zone agricultural systems, e.g., to effectively assimilate data from remote sensing, and to fully reflect climate change effects at various model scales.

  2. Discrete and continuum approaches for the analysis of coupled thermal-mechanical processes in the near field of a HLW repository

    International Nuclear Information System (INIS)

    Shimizu, Hiroyuki; Fujita, Tomoo; Nakama, Shigeo; Koyama, Tomofumi; Chijimatsu, Masakazu

    2011-01-01

    This paper reports on the results of the numerical simulations for the analysis of coupled thermal-mechanical processes in the near field of a HLW repository using Finite Element Method (FEM) and Distinct Element Method (DEM). The FEM approach provides quantitative information of the change of stress during excavation and heating process. On the other hand, the DEM approach shows the crack propagation process at the borehole surface, and this result agrees qualitatively well with the experimental observation. By comparing these results obtained from both approaches, quantitative and qualitative insights into various aspects of the processes occurred in the near field can be obtained. (author)

  3. Hydrological and thermal issues concerning a nuclear waste repository in fractured rocks

    International Nuclear Information System (INIS)

    Wang, J.S.Y.

    1991-12-01

    The characterization of the ambient conditions of a potential site and the assessment of the perturbations induced by a nuclear waste repository require hydrological and thermal investigations of the geological formations at different spatial and temporal scales. For high-level wastes, the near-field impacts depend on the heat power of waste packages and the far-field long-term perturbations depend on the cumulative heat released by the emplaced wastes. Surface interim storage of wastes for several decades could lower the near-field impacts but would have relatively small long-term effects if spent fuels were the waste forms for the repository. One major uncertainty in the assessment of repository impacts is from the variation of hydrological properties in heterogeneous media, including the effects of fractures as high-permeability flow paths for containment migration. Under stress, a natural fracture cannot be represented by the parallel plate model. The rock surface roughness, the contact area, and the saturation state in the rock matrix could significantly change the fracture flow. In recent years, the concern of fast flow through fractures in saturated media has extended to the unsaturated zones. The interactions at different scales between fractures and matrix, between fractured matrix unites and porous units, and between formations and faults are discussed

  4. Engineered Barrier System: Physical and Chemical Environment

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  5. RESEARCH OF INFLUENCE OF THE HIGH-SPEED THERMAL PROCESSING REGIMES ON STRUCTURE AND MECHANICAL PROPERTIES OF PIPE STEEL 32G2

    Directory of Open Access Journals (Sweden)

    A. I. Gordienko

    2012-01-01

    Full Text Available Researches on influence of high-speed heating temperature, regimes of cooling and temperature of abatement on structure and mechanical properties of pipe steel 32G2 are carried out. Recommendations on the regimes of high-speed thermal processing of steel 32G2 which can be used at manufacturing of seamless pipes are given.

  6. A review of hydrological and chemical stressors in the Adige catchment and its ecological status.

    Science.gov (United States)

    Chiogna, Gabriele; Majone, Bruno; Cano Paoli, Karina; Diamantini, Elena; Stella, Elisa; Mallucci, Stefano; Lencioni, Valeria; Zandonai, Fabiana; Bellin, Alberto

    2016-01-01

    Quantifying the effects of multiple stressors on Alpine freshwater ecosystems is challenging, due to the lack of tailored field campaigns for the contemporaneous measurement of hydrological, chemical and ecological parameters. Conducting exhaustive field campaigns is costly and hence most of the activities so far have been performed addressing specific environmental issues. An accurate analysis of existing information is therefore useful and necessary, to identify stressors that may act in synergy and to design new field campaigns. We present an extended review of available studies and datasets concerning the hydrological, chemical and ecological status of the Adige, which is the second longest river and the third largest river basin in Italy. The most relevant stressors are discussed in the light of the information extracted from a large number of studies. The detailed analysis of these studies identified that hydrological alterations caused by hydropower production are the main source of stress for the freshwater ecosystems in the Adige catchment. However, concurrent effects with other stressors, such as the release of pollutants from waste water treatment plants or from agricultural and industrial activities, have not been explored at depth, so far. A wealth of available studies address a single stressor separately without exploring their concurrent effect. It is concluded that a combination of extended experimental field campaigns, focusing on the coupled effects of multiple stressors, and modeling activities is highly needed in order to quantify the impact of the multifaceted human pressures on freshwater ecosystems in the Adige river. Copyright © 2015. Published by Elsevier B.V.

  7. Advancements in Hydrology and Erosion Process Understanding and Post-Fire Hydrologic and Erosion Model Development for Semi-Arid Landscapes

    Science.gov (United States)

    Williams, C. Jason; Pierson, Frederick B.; Al-Hamdan, Osama Z.; Robichaud, Peter R.; Nearing, Mark A.; Hernandez, Mariano; Weltz, Mark A.; Spaeth, Kenneth E.; Goodrich, David C.

    2017-04-01

    Fire activity continues to increase in semi-arid regions around the globe. Private and governmental land management entities are challenged with predicting and mitigating post-fire hydrologic and erosion responses on these landscapes. For more than a decade, a team of scientists with the US Department of Agriculture has collaborated on extensive post-fire hydrologic field research and the application of field research to development of post-fire hydrology and erosion predictive technologies. Experiments funded through this research investigated the impacts of fire on vegetation and soils and the effects of these fire-induced changes on infiltration, runoff generation, erodibility, and soil erosion processes. The distribution of study sites spans diverse topography across grassland, shrubland, and woodland landscapes throughout the western United States. Knowledge gleaned from the extensive field experiments was applied to develop and enhance physically-based models for hillslope- to watershed-scale runoff and erosion prediction. Our field research and subsequent data syntheses have identified key knowledge gaps and challenges regarding post-fire hydrology and erosion modeling. Our presentation details some consistent trends across a diverse domain and varying landscape conditions based on our extensive field campaigns. We demonstrate how field data have advanced our understanding of post-fire hydrology and erosion for semi-arid landscapes and highlight remaining key knowledge gaps. Lastly, we briefly show how our well-replicated experimental methodologies have contributed to advancements in hydrologic and erosion model development for the post-fire environment.

  8. Rapid thermal processing and beyond applications in semiconductor processing

    CERN Document Server

    Lerch, W

    2008-01-01

    Heat-treatment and thermal annealing are very common processing steps which have been employed during semiconductor manufacturing right from the beginning of integrated circuit technology. In order to minimize undesired diffusion, and other thermal budget-dependent effects, the trend has been to reduce the annealing time sharply by switching from standard furnace batch-processing (involving several hours or even days), to rapid thermal processing involving soaking times of just a few seconds. This transition from thermal equilibrium, to highly non-equilibrium, processing was very challenging a

  9. Ethylene–propylene–diene terpolymer/hexa fluoropropylene–vinylidinefluoride dipolymer rubber blends: Thermal and mechanical properties

    International Nuclear Information System (INIS)

    Balachandran Nair, Ajalesh; Kurian, Philip; Joseph, Rani

    2012-01-01

    Highlights: ► The EPDM/MA-g-EPDM/FKM blends show good mechanical properties. ► In compatibilized blends, better thermal and swelling resistance was obtained. ► Random nucleation mechanism is the rate controlling process in degradation. ► Good phase morphology is obtained in the case of compatibilized blends. -- Abstract: Hexa fluoropropylene–vinylidinefluoride dipolymer, fluoroelastomer (FKM) and ethylene propylene diene rubber (EPDM) blends with and without compatibilizer (MA-g-EPDM) were prepared by two-roll mill mixing. The effects of blend ratio and amount of compatibilizer on mechanical properties and thermal stability were investigated. The cure characteristics and mechanical properties of EPDM, FKM and their blends of varying compositions were studied for unaged and aged samples. The 50:50 (w/w) FKM/EPDM showed highest mechanical properties. The tensile properties of all the composites, especially those with higher proportion of FKM increased with aging. Swelling of the blends was reduced after aging. The thermal stability of FKM/EPDM rubber blends was studied using thermogravimetric analysis (TGA). The incorporation of FKM rubber improved the thermal stability of EPDM rubber. The apparent degradation activation energy (E) of EPDM/FKM reactive blends was calculated by the Coats–Redfern method. The results showed that the EPDM/FKM reactive blends had higher thermal stability but lower E than FKM. The thermal degradation process of both EPDM/FKM reactive blends and FKM were determined by nucleation and growth mechanism. The differential scanning calorimetry (DSC) results suggest that glass transition temperature (T g ) peak for EPDM region is shifted to FKM phase, due to improved compatibility on addition of compatibilizer. The morphology of blends was investigated using scanning electron microscopy (SEM).

  10. Prediction of thermo-mechanical reliability of wafer backend processes

    NARCIS (Netherlands)

    Gonda, V.; Toonder, den J.M.J.; Beijer, J.G.J.; Zhang, G.Q.; van Driel, W.D.; Hoofman, R.J.O.M.; Ernst, L.J.

    2004-01-01

    More than 65% of IC failures are related to thermal and mechanical problems. For wafer backend processes, thermo-mechanical failure is one of the major bottlenecks. The ongoing technological trends like miniaturization, introduction of new materials, and function/product integration will increase

  11. Prediction of thermo-mechanical integrity of wafer backend processes

    NARCIS (Netherlands)

    Gonda, V.; Toonder, den J.M.J.; Beijer, J.G.J.; Zhang, G.Q.; Hoofman, R.J.O.M.; Ernst, L.J.; Ernst, L.J.

    2003-01-01

    More than 65% of IC failures are related to thermal and mechanical problems. For wafer backend processes, thermo-mechanical failure is one of the major bottlenecks. The ongoing technological trends like miniaturization, introduction of new materials, and function/product integration will increase

  12. 3D Thermal and Mechanical Analysis of a Single Event Burnout

    Science.gov (United States)

    Peretti, Gabriela; Demarco, Gustavo; Romero, Eduardo; Tais, Carlos

    2015-08-01

    This paper presents a study related to thermal and mechanical behavior of power DMOS transistors during a Single Event Burnout (SEB) process. We use a cylindrical heat generation region for emulating the thermal and mechanical phenomena related to the SEB. In this way, it is avoided the complexity of the mathematical treatment of the ion-device interaction. This work considers locating the heat generation region in positions that are more realistic than the ones used in previous work. For performing the study, we formulate and validate a new 3D model for the transistor that maintains the computational cost at reasonable level. The resulting mathematical models are solved by means of the Finite Element Method. The simulations results show that the failure dynamics is dominated by the mechanical stress in the metal layer. Additionally, the time to failure depends on the heat source position, for a given power and dimension of the generation region. The results suggest that 3D modeling should be considered for a detailed study of thermal and mechanical effects induced by SEBs.

  13. A system of automated processing of deep water hydrological information

    Science.gov (United States)

    Romantsov, V. A.; Dyubkin, I. A.; Klyukbin, L. N.

    1974-01-01

    An automated system for primary and scientific analysis of deep water hydrological information is presented. Primary processing of the data in this system is carried out on a drifting station, which also calculates the parameters of vertical stability of the sea layers, as well as their depths and altitudes. Methods of processing the raw data are described.

  14. Integrated climate and hydrology modelling

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl

    To ensure optimal management and sustainable strategies for water resources, infrastructures, food production and ecosystems there is a need for an improved understanding of feedback and interaction mechanisms between the atmosphere and the land surface. This is especially true in light of expected...... global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate...... and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface...

  15. Osteo-Odonto-Keratoprosthesis in Severe Thermal and Chemical Injuries.

    Science.gov (United States)

    Vasquez-Perez, Alfonso; Zarei-Ghanavati, Mehran; Avadhanam, Venkata; Liu, Christopher

    2018-05-16

    To report the results of osteo-odonto-keratoprosthesis (OOKP) surgery in patients who sustained severe chemical and thermal injuries. This is a noncomparative retrospective case series of 14 patients who underwent OOKP surgery between 2001 and 2016 at the Sussex Eye Hospital, Brighton, UK, because of severe chemical and thermal injuries RESULTS:: OOKP surgery was performed in 14 eyes of 14 patients. Eight patients (57%) sustained thermal injuries and 6 patients (43%) chemical injuries. Every eye had previously undergone adnexal or ocular surgery, including 2 cases that underwent synthetic keratoprosthesis implantation. One case had choroidal hemorrhage during stage 2. Laminar retention was observed in 11 cases (85%) at the end of the study. The Kaplan-Meier curve showed a probability of 81% of laminar retention at 5 years and a decrease at 15 years to 61%. Functional visual success was observed in only 7 patients (50%) because of end-stage glaucomatous optic neuropathy in 4 cases and macular scar in 1 case. Two cases developed endophthalmitis. Two cases required removal of laminae, one because of endophthalmitis, bone resorption and aqueous leak and the other because of development of a retroprosthetic membrane. Glaucoma was the most frequent complication (79%) and required surgical intervention with tube shunts in 5 cases. Six cases (43%) required buccal mucosal repair, which included two cases that developed endophthalmitis. Anatomic success was achieved in 11 of 13 cases in this series of OOKP surgery after severe chemical and thermal trauma; 8 of these cases had at least 5 years of follow-up and thus qualified as long-term.

  16. Filling, storing and draining. Three key aspects of landslide hydrology

    Science.gov (United States)

    Bogaard, Thom; Greco, Roberto

    2016-04-01

    Rainfall-triggered landslides are among the most widespread hazards in the world. The hydrology in and around a landslide area is key to pore pressure build-up in the soil skeleton which reduces shear strength due to the buoyancy force exerted by water in a saturated soil and to soil suction in an unsaturated soil. Extraordinary precipitation events trigger most of the landslides, but, at the same time, the vast majority of slopes do not fail. The intriguing question is: 'When and where exactly can a slope become triggered to slide and flow downwards?' The objective of this article is to present and discuss landslide hydrology at three scales - pore, hillslope, and catchment - which, taken together, give an overview of this interdisciplinary science. In fact, for rainfall-triggered landslides to occur, an unfavourable hydrological interplay should exist between fast and/or prolonged infiltration, and a relatively 'slow' drainage. The competition of water storage, pressure build-up and the subsequently induced drainage contains the importance of the timing, which is indisputably one of the more delicate but relevant aspects of landslide modelling, the overlay of hydrological processes with different time scales. As slopes generally remain stable, we can argue that effective drainage mechanisms spontaneously develop, as the best for a slope to stay stable is getting rid of the overload of water (above field capacity), either vertically or laterally. So, landslide hydrology could be framed as 'Filling-Storing-Draining'. Obviously, 'Storing' is added to stress the importance of dynamic pressure build-up for slope stability. 'Draining' includes all removal of water from the system (vertical and lateral flow, evaporation and transpiration) and thus pore water pressure release. Furthermore, by addressing landslide hydrology from both earth sciences and soil mechanics perspectives, we aim to manifest the hydrological processes in hillslopes and their influence on behaviour

  17. Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA

    Science.gov (United States)

    Lin, Liulan; Zhang, Lingfeng; Guo, Yanwei

    2018-01-01

    In this study, the effect of content of glutaraldehyde (GA) on the shape memory behavior of a shape memory polymer based on polyvinyl alcohol chemically cross-linked with GA was investigated. Thermal-responsive shape memory composites with three different GA levels, GA-PVA (3 wt%, 5 wt%, 7 wt%), were prepared by particle melting, mold forming and freeze-drying technique. The mechanical properties, thermal properties and shape memory behavior were measured by differential scanning calorimeter, physical bending test and cyclic thermo-mechanical test. The addition of GA to PVA led to a steady shape memory transition temperature and an improved mechanical compressive strength. The composite with 5 wt% of GA exhibited the best shape recoverability. Further increase in the crosslinking agent content of GA would reduce the recovery force and prolong the recovery time due to restriction in the movement of the soft PVA chain segments. These results provide important information for the study on materials in 4D printing.

  18. Development of corn starch based green composites reinforced with Saccharum spontaneum L fiber and graft copolymers--evaluation of thermal, physico-chemical and mechanical properties.

    Science.gov (United States)

    Kaith, B S; Jindal, R; Jana, A K; Maiti, M

    2010-09-01

    In this paper, corn starch based green composites reinforced with graft copolymers of Saccharum spontaneum L. (Ss) fiber and methyl methacrylates (MMA) and its mixture with acrylamide (AAm), acrylonitrile (AN), acrylic acid (AA) were prepared. Resorcinol-formaldehyde (Rf) was used as the cross-linking agent in corn starch matrix and different physico-chemical, thermal and mechanical properties were evaluated. The matrix and composites were found to be thermally more stable than the natural corn starch backbone. Further the matrix and composites were subjected for biodegradation studies through soil composting method. Different stages of biodegradation were evaluated through FT-IR and scanning electron microscopic (SEM) techniques. S. spontaneum L fiber-reinforced composites were found to exhibit better tensile strength. On the other hand Ss-g-poly (MMA) reinforced composites showed maximum compressive strength and wear resistance than other graft copolymers reinforced composite and the basic matrix. (c) 2010 Elsevier Ltd. All rights reserved.

  19. Material compatibility and corrosion control of the KWU chemical cleaning process

    International Nuclear Information System (INIS)

    Odar, S.

    1994-01-01

    The concentrations of salt impurities within the deposits on the tube sheet and in the tube to tube-support-plate crevices can induce a variety of corrosion mechanisms on steam generator tubes. One of the most effective ways of counteracting corrosion mechanisms and thus of improving steam generator performance is to clean the steam generators and keep them in a clean condition. As shown by field results chemical cleaning is a way of removing hazardous deposits from steam generators. All available chemical cleaning processes use inhibitors to control the corrosion except the KWU chemical cleaning process. In this article the corrosion control technique of KWU Chemical Cleaning Process without using conventional inhibitors will be explained and the state of the field experience with respect to material compatibility will be presented. (author). 4 figs., 1 tab., 8 refs

  20. Normal processes of phonon-phonon scattering and thermal conductivity of germanium crystals with isotopic disorder

    CERN Document Server

    Kuleev, I G

    2001-01-01

    The effect of normal processes of the phonon-phonon scattering on the thermal conductivity of the germanium crystals with various isotopic disorder degrees is considered. The phonon pulse redistribution in the normal scattering processes both inside each oscillatory branch (the Simons mechanism) and between various phonon oscillatory branches (the Herring mechanism) is accounted for. The contributions of the longitudinal and cross-sectional phonons drift motion into the thermal conductivity are analyzed. It is shown that the pulse redistribution in the Herring relaxation mechanism leads to essential suppression of the longitudinal phonons drift motion in the isotopically pure germanium crystals. The calculations results of thermal conductivity for the Herring relaxation mechanism agree well with experimental data on the germanium crystals with various isotopic disorder degrees

  1. Towards a fully synthetic substitute of alginate: optimization of a thermal gelation/chemical cross-linking scheme ("tandem" gelation) for the production of beads and liquid-core capsules.

    Science.gov (United States)

    Cellesi, F; Weber, W; Fussenegger, M; Hubbell, J A; Tirelli, N

    2004-12-20

    Fully synthetic polymers were used for the preparation of hydrogel beads and capsules, in a processing scheme that, originally designed for calcium alginate, was adapted to a "tandem" process, that is the combination a physical gelation with a chemical cross-linking. The polymers feature a Tetronic backbone (tetra armed Pluronics), which exhibits a reverse thermal gelation in water solutions within a physiological range of temperatures and pHs. The polymers bear terminal reactive groups that allow for a mild, but effective chemical cross-linking. Given an appropriate temperature jump, the thermal gelation provides a hardening kinetics similar to that of alginate. With slower kinetics, the chemical cross-linking then develops an irreversible and elastic gel structure, and determines its transport properties. In the present article this process has been optimized for the production of monodisperse, high elastic, hydrogel microbeads, and liquid-core microcapsules. We also show the feasibility of the use of liquid-core microcapsules in cell encapsulation. In preliminary experiments, CHO cells have been successfully encapsulated preserving their viability during the process and after incubation. The advantages of this process are mainly in the use of synthetic polymers, which provide great flexibility in the molecular design. This, in principle, allows for a precise tailoring of mechanical and transport properties and of bioactivity of the hydrogels, and also for a precise control in material purification.

  2. Mechanical-biological waste treatment with thermal processing of partial fractions; Mechanisch-biologische Restabfallbehandlung unter Einbindung thermischer Verfahren fuer Teilfraktionen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Technologies for mechanical-biological treatment of waste in the Land of Hessen were compared including thermal processes like combustion and gasification. The new and more rigid limiting values specified in the Technical Guide for Municipal Waste Treatment (Technische Anleitung Siedlungsabfall - TASI) get a special mention. [Deutsch] Verschiedene Technologien der mechanisch-biologischen Restabfallbehandlung im Raum Hessen wurden unter Einbezug thermischer Verfahren (Verbrennung, Vergasung) miteinander verglichen. Dabei wurden besonders auf die verschaerften Grenzwerte der Technischen Anleitung Siedlungsabfall (TASI) eingegangen. (ABI)

  3. Method of operating a thermal engine powered by a chemical reaction

    Science.gov (United States)

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  4. Consumable Process Development for Chemical Mechanical Planarization of Bit Patterned Media for Magnetic Storage Fabrication

    Science.gov (United States)

    Bonivel, Joseph T., Jr.

    2010-09-01

    As the superparamagnetic limit is reached, the magnetic storage industry looks to circumvent the barrier by implementing patterned media (PM) as a viable means to store and access data. Chemical mechanical polishing (CMP) is a semiconductor fabrication technique used to planarize surfaces and is investigated as a method to ensure that the PM is polished to surface roughness parameters that allow the magnetic read/write head to move seamlessly across the PM. Results from this research have implications in feasibility studies of utilizing CMP as the main planarization technique for PM fabrication. Benchmark data on the output parameters of the CMP process, for bit patterned media (BPM), based on the machine process parameters, pad properties, and slurry characteristics are optimized. The research was conducted in a systematic manner in which the optimized parameters for each phase are utilized in future phases. The optimum results from each of the phases provide an overall optimum characterization for BPM CMP. Results on the CMP machine input parameters indicate that for optimal surface roughness and material removal, low polish pressures and high velocities should be used on the BPM. Pad characteristics were monitored by non destructive technique and results indicate much faster deterioration of all padcharacteristics versus polish time of BPM when compared to IC CMP. The optimum pad for PM polishing was the IC 1400 dual layer Suba V pad with a shore hardness of 57, and a k-groove pattern. The final phase of polishing evaluated the slurry polishing properties and novel nanodiamond (ND) slurry was created and benchmarked on BPM. The resulting CMP output parameters were monitored and neither the ND slurry nor the thermally responsive polymer slurry performed better than the commercially available Cabot iCue slurry for MRR or surface roughness. Research results indicate CMP is a feasible planarization technique for PM fabrication, but successful implementation of CMP

  5. Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

    2007-01-01

    When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix. These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO2 volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However

  6. Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Mukhopadhyay, S.; Sonnenthal, E.L.; Spycher, N.

    2007-01-01

    When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix. These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO 2 volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However

  7. Improvement of chemical control in the water-steam cycle of thermal power plants

    International Nuclear Information System (INIS)

    Rajakovic-Ognjanovic, Vladana N.; Zivojinovic, Dragana Z.; Grgur, Branimir N.; Rajakovic, Ljubinka V.

    2011-01-01

    A more effective chemical control in the water-steam cycle (WSC) of thermal power plants (TPP) is proposed in this paper. Minimization of corrosion effects by the production of ultra pure water and its strict control is the basis of all the investigated processes. The research involved the analysis of water samples in the WSC through key water quality parameters and by the most convenient analytical tools. The necessity for the stricter chemical control is demonstrated through a concrete example of the TPP Nikola Tesla, Serbia. After a thorough analysis of the chemical control system of the WSC, diagnostic and control parameters were chosen for continuous systematic measurements. Sodium and chloride ions were recognized as the ions which indicate the corrosion potential of the water and give insight into the proper production and maintenance of water within the WSC. Chemical transformations of crucial corrosion elements, iron and silica, were considered and related to their quantitative values. - Research highlights: → The more effective chemical control in the water-steam cycle of thermal power plant Nikola Tesla, Serbia. → In chemical control the diagnostic and control parameters were optimized and introduced for the systematic measurements in the water-steam cycle. → Sodium and chloride ions were recognized as ions which indicate corrosion potential of water and give insight to proper function of production and maintenance of water within water-team cycle. → Chemical transformations of crucial corrosion elements, iron and silica are considered and related with their quantitative values.

  8. Thermal analysis of physical and chemical changes occuring during regeneration of activated carbon

    Directory of Open Access Journals (Sweden)

    Radić Dejan B.

    2017-01-01

    Full Text Available High-temperature thermal process is a commercial way of regeneration of spent granular activated carbon. The paper presents results of thermal analysis conducted in order to examine high-temperature regeneration of spent activated carbon, produced from coconut shells, previously used in drinking water treatment. Results of performed thermogravimetric analysis, derivative thermogravimetric analysis, and differential thermal analysis, enabled a number of hypotheses to be made about different phases of activated carbon regeneration, values of characteristic parameters during particular process phases, as well as catalytic impact of inorganic materials on development of regeneration process. Samples of activated carbon were heated up to 1000°C in thermogravimetric analyser while maintaining adequate oxidizing or reducing conditions. Based on diagrams of thermal analysis for samples of spent activated carbon, temperature intervals of the first intense mass change phase (180-215°C, maximum of exothermic processes (400-450°C, beginning of the second intense mass change phase (635-700°C, and maximum endothermic processes (800-815°C were deter-mined. Analysing and comparing the diagrams of thermal analysis for new, previously regenerated and spent activated carbon, hypothesis about physical and chemical transformations of organic and inorganic adsorbate in spent activated carbon are given. Transformation of an organic adsorbate in the pores of activated carbon, results in loss of mass and an exothermic reaction with oxygen in the vapour phase. The reactions of inorganic adsorbate also result the loss of mass of activated carbon during its heating and endothermic reactions of their degradation at high temperatures.

  9. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashad; Nizami, Abdul-Sattar; Murphy, Jerry D.; Kiely, Gerard [Department of Civil and Environmental Engineering, University College Cork (Ireland); Poulsen, Tjalfe Gorm [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University (Denmark); Asam, Zaki-ul-Zaman [Department of Civil Engineering, National University of Ireland Galway (Ireland)

    2010-12-15

    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 C-150 C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25-100 C). Maximum enhancement is observed at 70 C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 C), with maximum enhancement at 100 C having 28% biogas and 25% methane increase. (author)

  10. Post-test comparison of thermal-hydrologic measurements and numerical predictions for the in situ single heater test, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ballard, S.; Francis, N.D.; Sobolik, S.R.; Finley, R.E.

    1998-01-01

    The Single Heater Test (SHT) is a sixteen-month-long heating and cooling experiment begun in August, 1996, located underground within the unsaturated zone near the potential geologic repository at Yucca Mountain, Nevada. During the 9 month heating phase of the test, roughly 15 m 3 of rock were raised to temperatures exceeding 100 C. In this paper, temperatures measured in sealed boreholes surrounding the heater are compared to temperatures predicted by 3D thermal-hydrologic calculations performed with a finite difference code. Three separate model runs using different values of bulk rock permeability (4 microdarcy to 5.2 darcy) yielded significantly different predicted temperatures and temperature distributions. All the models differ from the data, suggesting that to accurately model the thermal-hydrologic behavior of the SHT, the Equivalent Continuum Model (ECM), the conceptual basis for dealing with the fractured porous medium in the numerical predictions, should be discarded in favor of more sophisticated approaches

  11. Exploring Chemical and Thermal Non-equilibrium in Nitrogen Arcs

    International Nuclear Information System (INIS)

    Ghorui, S; Das, A K

    2012-01-01

    Plasma torches operating with nitrogen are of special importance as they can operate with usual tungsten based refractory electrodes and offer radical rich non-oxidizing high temperature environment for plasma chemistry. Strong gradients in temperature as well as species densities and huge convective fluxes lead to varying degrees of chemical non-equilibrium in associated regions. An axi-symmetric two-temperature chemical non-equilibrium model of a nitrogen plasma torch has been developed to understand the effects of thermal and chemical non-equilibrium in arcs. A 2-D finite volume CFD code in association with a non-equilibrium property routine enabled extraction of steady state self-consistent distributions of various plasma quantities inside the torch under various thermal and chemical non-equilibrium conditions. Chemical non-equilibrium has been incorporated through computation of diffusive and convective fluxes in each finite volume cell in every iteration and associating corresponding thermodynamic and transport properties through the scheme of 'chemical non-equilibrium parameter' introduced by Ghorui et. al. Recombination coefficient data from Nahar et. al. and radiation data from Krey and Morris have been used in the simulation. Results are presented for distributions of temperature, pressure, velocity, current density, electric potential, species densities and chemical non-equilibrium effects. Obtained results are compared with similar results under LTE.

  12. Kinetics of physico-chemical processes during intensive mechanical processing of ZnO-MnO{sub 2} powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kakazey, M.; Vlasova, M.; Dominguez-Patino, M. [CIICAp-Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Juarez-Arellano, E.A., E-mail: eajuarez@unpa.edu.mx [Universidad del Papaloapan, Tuxtepec, Oaxaca (Mexico); Bykov, A. [Institute for Problems of Materials Science of NASU, Kyiv (Ukraine); Leon, I. [CIQ-Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Siqueiros-Diaz, A. [FCQI-Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico)

    2011-10-15

    Experimental results of electron paramagnetic resonance spectra, X-ray diffraction, scanning electron microscopy and infrared spectroscopy demonstrate that the kinetic of the physical and chemical processes that takes place during prolonged intensive mechanical processing (MP, 03120min) of powder mixtures of 50%wt ZnO+50%wt MnO{sub 2} can be described as a three stage process. (1) 030min, particles destruction, formation of superficial defects, fast increment of sample average temperature (from 290 to {approx}600K) and annealing of defects with the lowest energy of activation E{sub ac}. (2) 30390min, further particle destruction, slow increment of sample average temperature (from {approx}600 to {approx}700K), formation and growth of a very disordered layer of {beta}-MnO{sub 2} around ZnO particles, dehydration of MnO{sub 2}, formation of solid solution of Mn{sup 2+} ions in ZnO, formation of nano-quasiamorphous states in the ZnO-MnO{sub 2} mixture and onset of the formation of the ZnMnO{sub 3} phase. (3) 3903120min, the sample average temperature remains constant ({approx}700K), the reaction is completed and the spinel ZnMnO{sub 3} phase with a unit cell a=8.431(1) A and space group Fd3-barm is the only phase present in the sample. No ferromagnetism at room temperature was detected in this study. - Highlights: > The kinetics during mechanical processing of ZnO-MnO{sub 2} samples is a three stage process. > First stage, reduction of crystallites size and accumulation of defects. > Second stage, nano-quasiamorphous states formation and onset of the ZnMnO{sub 3} phase. > Third stage, complete reaction to the spinel ZnMnO{sub 3} phase.

  13. Effects of electron irradiation in space environment on thermal and mechanical properties of carbon fiber/bismaleimide composite

    International Nuclear Information System (INIS)

    Yu, Qi; Chen, Ping; Gao, Yu; Ma, Keming; Lu, Chun; Xiong, Xuhai

    2014-01-01

    Highlights: •Electron irradiation decreased the storage modulus finally. •T g decreased first and then increased and finally decreased. •The thermal stability was reduced and then improved and finally decreased. •The changing trend of flexural strength and ILSS are consistent. -- Abstract: The effects of electron irradiation in simulated space environment on thermal and mechanical properties of high performance carbon fiber/bismaleimide composites were investigated. The dynamic mechanical properties of the composites exposed to different fluences of electron irradiation were evaluated by Dynamic mechanical analysis (DMA). Thermogravimetric analysis was applied to investigate the changes in thermal stability of the resin matrix after exposure to electron irradiation. The changes in mechanical properties of the composites were evaluated by flexural strength and interlaminar shear strength (ILSS). The results indicated that electron irradiation in high vacuum had an impact on thermal and mechanical properties of CF/BMI composites, which depends on irradiation fluence. At lower irradiation fluences less than 5 × 10 15 cm −2 , the dynamic storage modulus, cross-linking degree, thermal stability and mechanical properties that were determined by a competing effect between chain scission and cross-linking process, decreased firstly and then increased. While at higher fluences beyond 5 × 10 15 cm −2 , the chain scission process was dominant and thus led to the degradation in thermal and mechanical properties of the composites

  14. Study on thermal stability and chemical structure of polyamide blended with small amount of Cu

    International Nuclear Information System (INIS)

    Arai, Tsuyoshi; Ueno, Tomonaga; Kajiya, Takafumi; Ishikawa, Tomoyuki; Takeda, Kunihiko

    2007-01-01

    The thermal stability and the chemical structure of Polyamide 66 (PA66) blended with a small amount of copper have been studied. The thermal degradation of the blend with 35 ppm or more of copper was restrained and no strong influence of the concentration of copper was observed. The molecular weight of PA66 decreased by the thermal aging process but the amount of decrease of the blend was smaller than that of the non-blend. The water uptake of the blend increased. The chemical structure, which was observed by IR and NMR, changed slightly by blending with copper after aging at higher temperatures. Multiple items influenced the thermal stability of PA66 blended with a small amount of copper instead of just one. Namely, the main chain of PA66 is cut by heat and the degree of the cut is restrained by the copper. The diffusion time of copper atoms that disperse uniformly in the PA66 matrix is short enough to cover the individual amide groups and the effect enlarges the entire configuration of the PA66 chain to enhance the thermal stability. (author)

  15. Assessing the elements mobility through the regolith and their potential as tracers for hydrological processes

    Science.gov (United States)

    Moragues-Quiroga, Cristina; Hissler, Christophe; Chabaux, François; Legout, Arnaud; Stille, Peter

    2017-04-01

    Regoliths encompass different materials from the fresh bedrock to the top of the organic horizons. The regolith is a major component of the critical zone where fluxes of water, energy, solutes and matter occur. Therefore, its bio-physico-chemical properties drastically impact the water that percolates and/or stores in its different parts (organic and mineral soil horizons, and weathered and fractured bedrock). In order to better understand the critical zone functioning, we propose to assess the interaction between chemical elements from the regolith matrix and water during drainage infiltration. For this, we focus firstly on the potential mobility of different groups of major and trace elements according to a leaching experiment made on 10 different layers of a 7.5 m depth slate regolith, which covers a large part of the Rhenish Massif. Secondly, we carried out Sr-Nd-Pb-U-Th isotope analyses for 5 of these samples in both the untreated and leached samples. Given the specific chemical and mineralogical composition of each sampled material, our approach enables to trace the origin of major and trace elements and eventually assess their mobility. The results deliver valuable information on exchange processes at the water-mineral interface in the different zones of the regolith, which could improve the selection of tracers for the study of hydrological processes.

  16. Correlation between thermal behavior of clays and their chemical and mineralogical composition: a review

    Science.gov (United States)

    Dwi Yanti, Evi; Pratiwi, I.

    2018-02-01

    Clay's abundance has been widely used as industrial raw materials, especially ceramic and tile industries. Utilization of these minerals needs a thermal process for producing ceramic products. Two studies conducted by Septawander et al. and Chin C et al., showed the relationship between thermal behavior of clays and their chemical and mineralogical composition. Clays are characterized by XRD analysis and thermal analysis, ranging from 1100°C to 1200°C room temperature. Specimen of raw materials of clay which is used for the thermal treatment is taken from different geological conditions and formation. In raw material, Quartz is almost present in all samples. Halloysite, montmorillonite, and feldspar are present in Tanjung Morawa raw clay. KC and MC similar kaolinite and illite are present in the samples. The research illustrates the interrelationships of clay minerals and chemical composition with their heat behavior. As the temperature of combustion increases, the sample reduces a significant weight. The minerals which have undergone a transformation phase became mullite, cristobalite or illite and quartz. Under SEM analysis, the microstructures of the samples showed irregularity in shape; changes occurred due the increase of heat.

  17. GEOMORPHIC AND HYDROLOGIC INTERACTIONS IN THE DETERMINATION OF EQUILIBRIUM SOIL DEPTH

    Science.gov (United States)

    Nicotina, L.; Rinaldo, A.; Tarboton, D. G.

    2009-12-01

    In this work we propose numerical studies of the interactions between hydrology and geomorphology in the formation of the actual soil depth that drives ecologic and hydrologic processes. Sediment transport and geomorphic landscape evolution processes (i.e. erosion/deposition vs. soil production) strongly influence hydrology, carbon sequestration, soil formation and stream water chemistry. The process of rock conversion into soil originates a strong hydrologic control through the formation of the soil depth that participates to hydrologic processes, influence vegetation type and patterns and actively participate in the co-evolution mechanisms that shape the landscape. The description of spatial patterns in hydrology is usually constrained by the availability of field data, especially when dealing with quantities that are not easily measurable. In these circumstances it is deemed fundamental the capability of deriving hydrologic boundary conditions from physically based approaches. Here we aim, in a general framework, at the formulation of an integrated approach for the prediction of soil depth by mean of i) soil production models and ii) geomorphic transport laws. The processes that take place in the critical zone are driven by the extension of it and have foundamental importance over short time scales as well as on geologic time scales (i.e. as biota affects climate that drives hydrology and thus contributes on shaping the landscape). Our study aims at the investigation of the relationships between soil depth, topography and runoff production, we also address the mechanisms that bring to the development of actual patterns of soil depths which at the same time influence runoff. We use a schematic representation of the hydrologic processes that relies on the description of the topography (throuh a topographic wetness index) and the spatially variable soil depths. Such a model is applied in order to investigate the development of equilibrium soil depth patterns under

  18. Perspective on Eco-Hydrology Developing Strategy in China

    Science.gov (United States)

    Xia, J.

    2017-12-01

    China is one of developing countries with higher eco-environmental press in the world due to large population and its socio-economic development. In China, water is not only the sources for life, but also the key for production, and the foundation for eco-system. Thus, Eco-hydrology becomes a fundamental also an applied sciences related to describe the hydrologic mechanisms that underlie ecologic patterns and processes. This paper addresses the issue of Eco-hydrology Developing Strategy in China, supported by Chinese Academy of Sciences (CAS). Major contents include four aspects, namely: (1) Demands and frontier of eco-hydrology in the world; (2) Major theories and approaches of Eco-hydrology; (3) Perspective of future development on Eco-hydrology; (4) Enacting and proposal for China development strategy on Eco-hydrology. Application fields involves urban, rural area, wetland, river & lake, forest and special regions in China, such as the arid and semi-arid region and so on. The goal is to promote the disciplinary development of eco-hydrology, and serve for national demands on ecological civilization construction in China.

  19. Enrichment of 15N and 10B isotopes by chemical exchange process

    International Nuclear Information System (INIS)

    D'Souza, A.B.; Sonwalkar, A.S.; Subrahmanyam, B.V.; Valladares, B.A.

    1994-01-01

    Many processes are available for separation of stable isotopes like distillation, chemical exchange, thermal diffusion, gaseous diffusion, centrifuge etc. Chemical exchange process is eminently suitable for separation of isotopes of light elements. Work done on separation and enrichment of two of the stable isotopes viz. 15 N and 10 B in Chemical Engineering Division is presented. 15 N is widely used as a tracer in agricultural research and 10 B is used in nuclear industry as control rod material, soluble reactor poison, neutron detector etc. The work on 15 N isotope resulted in a pilot plant, which was the only source of this material in the country for many years and later it was translated into a production plant as M/s. RCF Ltd. The work done on the ion-exchange process for enrichment of 10 B isotope which is basically a chemical exchange process, is now being updated into a pilot plant to produce enriched 10 B to be used as soluble reactor poison. (author)

  20. Chemical and physicochemical characteristics changes during passion fruit juice processing

    Directory of Open Access Journals (Sweden)

    Aline Gurgel Fernandes

    2011-09-01

    Full Text Available Passion fruit is widely consumed due to its pleasant flavour and aroma acidity, and it is considered very important a source of minerals and vitamins. It is used in many products such as ice-cream, mousses and, especially, juices. However, the processing of passion fruit juice may modify the composition and biodisponibility of the bioactive compounds. Investigations of the effects of processing on nutritional components in tropical juices are scarce. Frequently, only losses of vitamin C are evaluated. The objective of this paper is to investigate how some operations of passion fruit juice processing (formulation/homogeneization/thermal treatment affect this product's chemical and physicochemical characteristics. The results showed that the chemical and physicochemical characteristics are little affected by the processing although a reduction in vitamin C contents and anthocyanin, large quantities of carotenoids was verified even after the pasteurization stage.

  1. Biodegradable compounds: Rheological, mechanical and thermal properties

    Science.gov (United States)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  2. CFX-10 Analysis of the High Temperature Thermal- Chemical Experiment (CS28-2)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Tae; Park, Joo Hwan; Rhee, Bo Wook

    2008-02-15

    A Computational Fluid Dynamics (CFD) model of a post-blowdown fuel channel analysis for aged CANDU reactors with crept pressure tube has been developed, and validated against a high temperature thermal-chemical experiment: CS28-2. The CS28-2 experiment is one of three series of experiments to simulate the thermal-chemical behavior of a 28-element fuel channel at a high temperature and a low steam flow rate which may occur in severe accident conditions such as a LBLOCA (Large Break Loss of Coolant Accident) of CANDU reactors. Pursuant to the objective of this study, the current study has focused on understanding the involved phenomena such as the thermal radiation and convection heat transfer, and the high temperature zirconium-steam reaction in a multi-ring geometry. Therefore, a zirconium-steam oxidation model based on a parabolic rate law was implemented into the CFX-10 code, which is a commercial CFD code offered from ANSYS Inc., and other heat transfer mechanisms in the 28-element fuel channel were modeled by the original CFX-10 heat transfer packages. To assess the capability of the CFX-10 code to model the thermal-chemical behavior of the 28-element fuel channel, the measured temperatures of the Fuel Element Simulators (FES) of three fuel rings in the test bundle and the pressure tube, and the hydrogen production in the CS28-2 experiment were compared with the CFX-10 predictions. In spite of some discrepancy between the measurement data and CFX results, it was found that the CFX-10 prediction based on the Urbanic-Heidrick correlation of the zirconium-steam reaction as well as the Discrete Transfer Model for a radiation heat transfer among the FES of three rings and the pressure tube are quite accurate and sound even for the offset a cluster fuel bundle of an aged fuel channel.

  3. CFX-10 Analysis of the High Temperature Thermal- Chemical Experiment (CS28-2)

    International Nuclear Information System (INIS)

    Kim, Hyoung Tae; Park, Joo Hwan; Rhee, Bo Wook

    2008-02-01

    A Computational Fluid Dynamics (CFD) model of a post-blowdown fuel channel analysis for aged CANDU reactors with crept pressure tube has been developed, and validated against a high temperature thermal-chemical experiment: CS28-2. The CS28-2 experiment is one of three series of experiments to simulate the thermal-chemical behavior of a 28-element fuel channel at a high temperature and a low steam flow rate which may occur in severe accident conditions such as a LBLOCA (Large Break Loss of Coolant Accident) of CANDU reactors. Pursuant to the objective of this study, the current study has focused on understanding the involved phenomena such as the thermal radiation and convection heat transfer, and the high temperature zirconium-steam reaction in a multi-ring geometry. Therefore, a zirconium-steam oxidation model based on a parabolic rate law was implemented into the CFX-10 code, which is a commercial CFD code offered from ANSYS Inc., and other heat transfer mechanisms in the 28-element fuel channel were modeled by the original CFX-10 heat transfer packages. To assess the capability of the CFX-10 code to model the thermal-chemical behavior of the 28-element fuel channel, the measured temperatures of the Fuel Element Simulators (FES) of three fuel rings in the test bundle and the pressure tube, and the hydrogen production in the CS28-2 experiment were compared with the CFX-10 predictions. In spite of some discrepancy between the measurement data and CFX results, it was found that the CFX-10 prediction based on the Urbanic-Heidrick correlation of the zirconium-steam reaction as well as the Discrete Transfer Model for a radiation heat transfer among the FES of three rings and the pressure tube are quite accurate and sound even for the offset a cluster fuel bundle of an aged fuel channel

  4. Processing Conditions, Thermal and Mechanical Responses of Stretchable Poly (Lactic Acid)/Poly (Butylene Succinate) Films.

    Science.gov (United States)

    Fortunati, Elena; Puglia, Debora; Iannoni, Antonio; Terenzi, Andrea; Kenny, José Maria; Torre, Luigi

    2017-07-16

    Poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) based films containing two different plasticizers [Acetyl Tributyl Citrate (ATBC) and isosorbide diester (ISE)] at three different contents (15 wt %, 20 wt % and 30 wt %) were produced by extrusion method. Thermal, morphological, mechanical and wettability behavior of produced materials was investigated as a function of plasticizer content. Filmature parameters were also adjusted and optimized for different formulations, in order to obtain similar thickness for different systems. Differential scanning calorimeter (DSC) results and evaluation of solubility parameter confirmed that similar miscibility was obtained for ATBC and ISE in PLA, while the two selected plasticizers resulted as not efficient for plasticization of PBS, to the limit that the PBS-30ATBC resulted as not processable. On the basis of these results, isosorbide-based plasticizer was considered a suitable agent for modification of a selected blend (PLA/PBS 80:20) and two mixing approaches were used to identify the role of ISE in the plasticization process: results from mechanical analysis confirmed that both produced PLA-PBS blends (PLA85-ISE15)-PBS20 and (PLA80-PBS20)-ISE15 could guarantee advantages in terms of deformability, with respect to the PLA80-PBS20 reference film, suggesting that the promising use of these stretchable PLA-PBS based films plasticized with isosorbide can provide novel solutions for food packaging applications.

  5. Spark Plasma Sintering constrained process parameters of sintered silver paste for connection in power electronic modules: Microstructure, mechanical and thermal properties

    Energy Technology Data Exchange (ETDEWEB)

    Alayli, N. [Université Paris 13, Sorbonne Paris Cité, Laboratoire des Sciences des Procédés et des Matériaux, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3407, 99 avenue Jean Baptiste Clément, F-93430 Villetaneuse (France); Université de Versailles-Saint-Quentin-en-Yvelines, Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Centre National de la Recherche Scientifique/INSU, Laboratoire Atmosphères Milieux Observations Spatiales-IPSL, Quartier des Garennes, 11 Boulevard d' Alembert, F-78280 Guyancourt (France); Schoenstein, F., E-mail: frederic.schoenstein@univ-paris13.fr [Université Paris 13, Sorbonne Paris Cité, Laboratoire des Sciences des Procédés et des Matériaux, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3407, 99 avenue Jean Baptiste Clément, F-93430 Villetaneuse (France); Girard, A. [Office National d' Étude et de Recherches Aérospatiales, Laboratoire d' Étude des Microstructures, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 104, 29 avenue de la Division Leclerc, F-92322 Châtillon (France); and others

    2014-11-14

    Processing parameters of Spark Plasma Sintering (SPS) technique were constrained to process nano sized silver particles bound in a paste for interconnection in power electronic devices. A novel strategy combining debinding step and consolidation processes (SPS) in order to elaborate nano-structured silver bulk material is investigated. Optimum parameters were sought for industrial power electronics packaging from the microstructural and morphological properties of the sintered material. The latter was studied by Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) to determine the density and the grain size of crystallites. Two types of samples, termed S1 (bulk) and S2 (multilayer) were elaborated and characterized. They are homogeneous with a low degree of porosity and a good adhesion to the substrate and the process parameters are compatible with industrial constraints. As the experimental results show, the mean crystallite size is between 60 nm and 790 nm with a density between 50% and 92% resulting in mechanical and thermal properties that are better than that of lead free solder. The best SPS sintering parameters, the applied pressure, the temperature and the processing time were determined as being 3 MPa, 300 °C and 1 min respectively when the desizing time of the preprocessing step was kept below 5 min at 150 °C. Using these processing parameters, acceptable for automotive packaging industry, a semi-conductor power chip was successfully connected to a metalized substrate by sintered silver with thermal and electrical properties better than those of current solders and with thermomechanical properties allowing absorption of thermoplastic stresses. - Highlights: • The sintered silver joints have nanometric structure. • The grain growth was controlled by the SPS sintering parameters. • New connection material improve thermal and electrical properties of current solders. • Interconnection's plastic strain can absorb thermo-mechanical

  6. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    Jolley, D. M.; Jarek, R.; Mariner, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  7. Reduced chemical kinetic mechanisms for hydrocarbon fuels

    International Nuclear Information System (INIS)

    Montgomery, C.J.; Cremer, M.A.; Heap, M.P.; Chen, J-Y.; Westbrook, C.K.; Maurice, L.Q.

    1999-01-01

    Using CARM (Computer Aided Reduction Method), a computer program that automates the mechanism reduction process, a variety of different reduced chemical kinetic mechanisms for ethylene and n-heptane have been generated. The reduced mechanisms have been compared to detailed chemistry calculations in simple homogeneous reactors and experiments. Reduced mechanisms for combustion of ethylene having as few as 10 species were found to give reasonable agreement with detailed chemistry over a range of stoichiometries and showed significant improvement over currently used global mechanisms. The performance of reduced mechanisms derived from a large detailed mechanism for n-heptane was compared to results from a reduced mechanism derived from a smaller semi-empirical mechanism. The semi-empirical mechanism was advantageous as a starting point for reduction for ignition delay, but not for PSR calculations. Reduced mechanisms with as few as 12 species gave excellent results for n-heptane/air PSR calculations but 16-25 or more species are needed to simulate n-heptane ignition delay

  8. Effect of thermal processing practices on the properties of superplastic Al-Li alloys

    Science.gov (United States)

    Hales, Stephen J.; Lippard, Henry E.

    1993-01-01

    The effect of thermal processing on the mechanical properties of superplastically formed structural components fabricated from three aluminum-lithium alloys was evaluated. The starting materials consisted of 8090, 2090, and X2095 (Weldalite(TM) 049), in the form of commercial-grade superplastic sheet. The experimental test matrix was designed to assess the impact on mechanical properties of eliminating solution heat treatment and/or cold water quenching from post-forming thermal processing. The extensive hardness and tensile property data compiled are presented as a function of aging temperature, superplastic strain and temper/quench rate for each alloy. The tensile properties of the materials following superplastic forming in two T5-type tempers are compared with the baseline T6 temper. The implications for simplifying thermal processing without degradation in properties are discussed on the basis of the results.

  9. Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments

    International Nuclear Information System (INIS)

    Das, Oisik; Sarmah, Ajit K.

    2015-01-01

    To impart usability in waste based biomass through thermo-chemical reactions, several physical and chemical pre-treatments were conducted to gain an insight on their mode of action, effect on the chemistry and the change in thermal degradation profiles. Two different waste biomasses (Douglas fir, a softwood and hybrid poplar, a hardwood) were subjected to four different pre-treatments, namely, hot water pre-treatment, torrefaction, acid (sulphuric acid) and salt (ammonium phosphate) doping. Post pre-treatments, the changes in the biomass structure, chemistry, and thermal makeup were studied through electron microscopy, atomic absorption/ultra violet spectroscopy, ion exchange chromatography, and thermogravimetry. The pre-treatments significantly reduced the amounts of inorganic ash, extractives, metals, and hemicellulose from both the biomass samples. Furthermore, hot water and torrefaction pre-treatment caused mechanical disruption in biomass fibres leading to smaller particle sizes. Torrefaction of Douglas fir wood yielded more solid product than hybrid poplar. Finally, the salt pre-treatment increased the activation energies of the biomass samples (especially Douglas fir) to a great extent. Thus, salt pre-treatment was found to bestow thermal stability in the biomass. - Highlights: • Pre-treatments reduce ash, extractives, alkalines and hemicellulose from biomass. • Torrefaction of Douglas fir yields more solid product than hybrid poplar. • Salt pretreatment significantly increases the activation energy of biomass. • Acid and salt pretreatment bestows thermal stability in biomass.

  10. Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments

    Energy Technology Data Exchange (ETDEWEB)

    Das, Oisik [Department of Biological Systems Engineering, Washington State University, Pullman 99164-6120, WA (United States); Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand)

    2015-12-15

    To impart usability in waste based biomass through thermo-chemical reactions, several physical and chemical pre-treatments were conducted to gain an insight on their mode of action, effect on the chemistry and the change in thermal degradation profiles. Two different waste biomasses (Douglas fir, a softwood and hybrid poplar, a hardwood) were subjected to four different pre-treatments, namely, hot water pre-treatment, torrefaction, acid (sulphuric acid) and salt (ammonium phosphate) doping. Post pre-treatments, the changes in the biomass structure, chemistry, and thermal makeup were studied through electron microscopy, atomic absorption/ultra violet spectroscopy, ion exchange chromatography, and thermogravimetry. The pre-treatments significantly reduced the amounts of inorganic ash, extractives, metals, and hemicellulose from both the biomass samples. Furthermore, hot water and torrefaction pre-treatment caused mechanical disruption in biomass fibres leading to smaller particle sizes. Torrefaction of Douglas fir wood yielded more solid product than hybrid poplar. Finally, the salt pre-treatment increased the activation energies of the biomass samples (especially Douglas fir) to a great extent. Thus, salt pre-treatment was found to bestow thermal stability in the biomass. - Highlights: • Pre-treatments reduce ash, extractives, alkalines and hemicellulose from biomass. • Torrefaction of Douglas fir yields more solid product than hybrid poplar. • Salt pretreatment significantly increases the activation energy of biomass. • Acid and salt pretreatment bestows thermal stability in biomass.

  11. Industrial application of thermal image processing and thermal control

    Science.gov (United States)

    Kong, Lingxue

    2001-09-01

    Industrial application of infrared thermography is virtually boundless as it can be used in any situations where there are temperature differences. This technology has particularly been widely used in automotive industry for process evaluation and system design. In this work, thermal image processing technique will be introduced to quantitatively calculate the heat stored in a warm/hot object and consequently, a thermal control system will be proposed to accurately and actively manage the thermal distribution within the object in accordance with the heat calculated from the thermal images.

  12. Global Precipitation Responses to Land Hydrological Processes

    Science.gov (United States)

    Lo, M.; Famiglietti, J. S.

    2012-12-01

    Several studies have established that soil moisture increases after adding a groundwater component in land surface models due to the additional supply of subsurface water. However, impacts of groundwater on the spatial-temporal variability of precipitation have received little attention. Through the coupled groundwater-land-atmosphere model (NCAR Community Atmosphere Model + Community Land Model) simulations, this study explores how groundwater representation in the model alters the precipitation spatiotemporal distributions. Results indicate that the effect of groundwater on the amount of precipitation is not globally homogeneous. Lower tropospheric water vapor increases due to the presence of groundwater in the model. The increased water vapor destabilizes the atmosphere and enhances the vertical upward velocity and precipitation in tropical convective regions. Precipitation, therefore, is inhibited in the descending branch of convection. As a result, an asymmetric dipole is produced over tropical land regions along the equator during the summer. This is analogous to the "rich-get-richer" mechanism proposed by previous studies. Moreover, groundwater also increased short-term (seasonal) and long-term (interannual) memory of precipitation for some regions with suitable groundwater table depth and found to be a function of water table depth. Based on the spatial distributions of the one-month-lag autocorrelation coefficients as well as Hurst coefficients, air-land interaction can occur from short (several months) to long (several years) time scales. This study indicates the importance of land hydrological processes in the climate system and the necessity of including the subsurface processes in the global climate models.

  13. Comparison of thermal and radical effects of EGR gases on combustion process in dual fuel engines at part loads

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Khoshbakhti Saray, R.; Sohrabi, A.; Niaei, A.

    2007-01-01

    Dual fuel engines at part load inevitably suffer from lower thermal efficiency and higher emission of carbon monoxide and unburned fuel. This work is conducted to investigate the combustion characteristics of a dual fuel (Diesel-gas) engine at part loads using a single zone combustion model with detailed chemical kinetics for combustion of natural gas fuel. In this home made software, the presence of the pilot fuel is considered as a heat source that is deriving form two superposed Wiebe's combustion functions to account for its contribution to ignition of the gaseous fuel and the rest of the total released energy. The chemical kinetics mechanism consists of 112 reactions with 34 species. This combustion model is able to establish the development of the combustion process with time and the associated important operating parameters, such as pressure, temperature, heat release rate (HRR) and species concentration. Therefore, this work is an attempt to investigate the combustion phenomenon at part load and using exhaust gas recirculation (EGR) to improve the above mentioned problems. Also, the results of this work show that each of the different cases of EGR (thermal, chemical and radical cases) has an important role on the combustion process in dual fuel engines at part loads. It is found that all the different cases of EGR have positive effects on the performance and emission parameters of dual fuel engines at part loads despite the negative effect of some diluent gases in the chemical case, which moderates too much the positive effects of the thermal and radical cases of EGR. Predicted values show good agreement with corresponding experimental values over the whole range of engine operating conditions. Implications will be discussed in detail

  14. Thermalization with chemical potentials, and higher spin black holes

    International Nuclear Information System (INIS)

    Mandal, Gautam; Sinha, Ritam; Sorokhaibam, Nilakash

    2015-01-01

    We study the long time behaviour of local observables following a quantum quench in 1+1 dimensional conformal field theories possessing additional conserved charges besides the energy. We show that the expectation value of an arbitrary string of local observables supported on a finite interval exponentially approaches an equilibrium value. The equilibrium is characterized by a temperature and chemical potentials defined in terms of the quenched state. For an infinite number of commuting conserved charges, the equilibrium ensemble is a generalized Gibbs ensemble (GGE). We compute the thermalization rate in a systematic perturbation in the chemical potentials, using a new technique to sum over an infinite number of Feynman diagrams. The above technique also allows us to compute relaxation times for thermal Green’s functions in the presence of an arbitrary number of chemical potentials. In the context of a higher spin (hs[λ]) holography, the partition function of the final equilibrium GGE is known to agree with that of a higher spin black hole. The thermalization rate from the CFT computed in our paper agrees with the quasinormal frequency of a scalar field in this black hole.

  15. Approach to chemical equilibrium in thermal models

    International Nuclear Information System (INIS)

    Boal, D.H.

    1984-01-01

    The experimentally measured (μ - , charged particle)/(μ - ,n) and (p,n/p,p') ratios for the emission of energetic nucleons are used to estimate the time evolution of a system of secondary nucleons produced in a direct interaction of a projectile or captured muon. The values of these ratios indicate that chemical equilibrium is not achieved among the secondary nucleons in noncomposite induced reactions, and this restricts the time scale for the emission of energetic nucleons to be about 0.7 x 10 -23 sec. It is shown that the reason why thermal equilibrium can be reached so rapidly for a particular nucleon species is that the sum of the particle spectra produced in multiple direct reactions looks surprisingly thermal. The rate equations used to estimate the reaction times for muon and nucleon induced reactions are then applied to heavy ion collisions, and it is shown that chemical equilibrium can be reached more rapidly, as one would expect

  16. Surface-modified polymeric pads for enhanced performance during chemical mechanical planarization

    International Nuclear Information System (INIS)

    Deshpande, S.; Dakshinamurthy, S.; Kuiry, S.C.; Vaidyanathan, R.; Obeng, Y.S.; Seal, S.

    2005-01-01

    The chemical mechanical planarization (CMP) process occurs at an atomic level at the slurry/wafer interface and hence slurries and polishing pads play a critical role in their successful implementation. Polyurethane is a commonly used polymer in the manufacturing of CMP pads. These pads are incompatible with some chemicals present in the CMP slurries, such as hydrogen peroxide. To overcome these problems, Psiloquest has developed new Application Specific Pads (ASP). Surface of such pads has been modified by depositing a thin film of tetraethyl orthosilicate using plasma-enhanced chemical vapor deposition (PECVD) process. In the present study, mechanical properties of such coated pads have been investigated using nanoindentation. The surface morphology and the chemistry of the ASP were studied using scanning electron microcopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy techniques. It was observed that mechanical and chemical properties of the pad top surface are a function of the PECVD coating time. Such PECVD-treated pads are found to be hydrophilic and do not require storage in aqueous media during the not-in-use period. The metal removal rate using such surface-modified polishing pads was found to increase linearly with the PECVD coating time

  17. Impacts of thermal and chemical discharges to surface water

    International Nuclear Information System (INIS)

    Stober, Q.J.

    1974-01-01

    Various aspects of thermal and chemical discharges to surface water are outlined. The major impacts of nuclear power plants on aquatic resources are disruption during construction, intake of cooling water, discharge problems, and interactions with other water users. The following topics are included under the heading, assessment of aquatic ecology: identification of flora and fauna; abundance of aquatic organisms; species-environment relationships; and identification of pre-existing environmental stress. The following topics are included under the heading, environmental effects of plant operation: entrapment of fish by cooling water; passage of plankton through cooling system; discharge area and thermal plume; chemical effluents; and plant construction. (U.S.)

  18. Coupled hydrological-mechanical effects due to excavation of underground openings in unsaturated fractured rocks

    International Nuclear Information System (INIS)

    Montazer, P.

    1985-01-01

    One of the effects of excavating an underground opening in fractured rocks is a modification of the state of the stress in the rock mass in the vicinity of the opening. This effect causes changes in the geometry of the cross sections of the fracture planes, which in turn results in modification of the hydrologic properties of the fractures of the rock mass. The significance of the orientation of the fractures and their stiffness on the extent of the modification of the hydrologic properties as a result of excavation of underground openings is demonstrated. A conceptual model is presented to illustrate the complexity of the coupled hydrological-mechanical phenomena in the unsaturated zone. This conceptual model is used to develop an investigative program to assess the extent of the effect at a proposed repository site for storing high-level nuclear wastes

  19. Micromanufacturing Of Hard To Machine Materials By Physical And Chemical Ablation Processes

    International Nuclear Information System (INIS)

    Schubert, A.; Edelmann, J.; Gross, S.; Meichsner, G.; Wolf, N.; Schneider, J.; Zeidler, H.; Hackert, M.

    2011-01-01

    Miniaturization leads to high requirements to the applied manufacturing processes especially in respect to the used hard to machine materials and the aims of structure size and geometrical accuracy. Traditional manufacturing processes reach their limits here. One alternative for these provide thermal and chemical ablation processes. These processes are applied for the production of different microstructures in different materials like hardened steel, carbides and ceramics especially for medical engineering and tribological applications.

  20. A model of hydrological and mechanical feedbacks of preferential fissure flow in a slow-moving landslide

    Directory of Open Access Journals (Sweden)

    D. M. Krzeminska

    2013-03-01

    Full Text Available The importance of hydrological processes for landslide activity is generally accepted. However, the relationship between precipitation, hydrological responses and movement is not straightforward. Groundwater recharge is mostly controlled by the hydrological material properties and the structure (e.g., layering, preferential flow paths such as fissures of the unsaturated zone. In slow-moving landslides, differential displacements caused by the bedrock structure complicate the hydrological regime due to continuous opening and closing of the fissures, creating temporary preferential flow paths systems for infiltration and groundwater drainage. The consecutive opening and closing of fissure aperture control the formation of a critical pore water pressure by creating dynamic preferential flow paths for infiltration and groundwater drainage. This interaction may explain the seasonal nature of the slow-moving landslide activity, including the often observed shifts and delays in hydrological responses when compared to timing, intensity and duration of precipitation. The main objective of this study is to model the influence of fissures on the hydrological dynamics of slow-moving landslide and the dynamic feedbacks between fissures, hydrology and slope stability. For this we adapt the spatially distributed hydrological and slope stability model (STARWARS to account for geotechnical and hydrological feedbacks, linking between hydrological response of the landside and the dynamics of the fissure network and applied the model to the hydrologically controlled Super-Sauze landslide (South French Alps.

  1. OpenGeoSys: An open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media

    DEFF Research Database (Denmark)

    Kolditz, O.; Bauer, S.; Bilke, L.

    In this paper we describe the OpenGeoSys (OGS) project, which is a scientific open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical processes in porous media. The basic concept is to provide a flexible numerical framework (using primarily the Finite Element Method (FEM...

  2. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  3. Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii

    International Nuclear Information System (INIS)

    Cooper, David A; Corcoran, Patricia L

    2010-01-01

    Plastic debris is accumulating on the beaches of Kauai at an alarming rate, averaging 484 pieces/day in one locality. Particles sampled were analyzed to determine the effects of mechanical and chemical processes on the breakdown of polymers in a subtropical setting. Scanning electron microscopy (SEM) indicates that plastic surfaces contain fractures, horizontal notches, flakes, pits, grooves, and vermiculate textures. The mechanically produced textures provide ideal loci for chemical weathering to occur which further weakens the polymer surface leading to embrittlement. Fourier transform infrared spectroscopy (FTIR) results show that some particles have highly oxidized surfaces as indicated by intense peaks in the lower wavenumber region of the spectra. Our textural analyses suggest that polyethylene has the potential to degrade more readily than polypropylene. Further evaluation of plastic degradation in the natural environment may lead to a shift away from the production and use of plastic materials with longer residence times.

  4. Engineered Barrier System: Physical and Chemical Environment

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  5. Basic thermal-mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten

    Science.gov (United States)

    Zhang, Xiaoxin; Yan, Qingzhi; Lang, Shaoting; Xia, Min; Ge, Changchun

    2014-09-01

    The potassium doped tungsten (W-K) grade was achieved via swaging + rolling process. The swaged + rolled W-K alloy exhibited acceptable thermal conductivity of 159.1 W/m K and ductile-to-brittle transition temperature of about 873 K while inferior mechanical properties attributed to the coarse pores and small deformation degree. Then the thermal shock, fatigue resistance of the W-K grade were characterized by an electron beam facility. Thermal shock tests were conducted at absorbed power densities varied from 0.22 to 1.1 GW/m2 in a step of 0.22 GW/m2. The cracking threshold was in the range of 0.44-0.66 GW/m2. Furthermore, recrystallization occurred in the subsurface of the specimens tested at 0.66-1.1 GW/m2 basing on the analysis of microhardness and microstructure. Thermal fatigue tests were performed at 0.44 GW/m2 up to 1000 cycles and no cracks emerged throughout the tests. Moreover, recrystallization occurred after 1000 cycles.

  6. The thermal and mechanical properties of electron beam-irradiated polylactide

    International Nuclear Information System (INIS)

    Kuk, In Seol; Jung, Chan Hee; Hwang, In Tae; Choi, Jae Hak; Nho, Young Chang

    2010-01-01

    The effect of electron beam irradiation on the thermal and mechanical properties of polylactide (PLA) was investigated in this research. PLA films were irradiated by electron beams at different absorption doses ranging from 20 to 200 kGy. The thermal and mechanical properties of the irradiated PLA films were investigated by means of differential scanning calorimeter, thermogravimetric analyzer, universal testing machine, dynamic mechanical analyzer, and thermal mechanical analyzer. The results revealed that the chain scission of the PLA predominated over the crosslinking during the irradiation, which considerably deteriorated the thermal and mechanical properties of the PLA

  7. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  8. Inline chemical process analysis in micro-plants based on thermoelectric flow and impedimetric sensors

    International Nuclear Information System (INIS)

    Jacobs, T; Kutzner, C; Hauptmann, P; Kropp, M; Lang, W; Brokmann, G; Steinke, A; Kienle, A

    2010-01-01

    In micro-plants, as used in chemical micro-process engineering, an integrated inline analytics is regarded as an important factor for the development and optimization of chemical processes. Up to now, there is a lack of sensitive, robust and low-priced micro-sensors for monitoring mixing and chemical conversion in micro-fluidic channels. In this paper a novel sensor system combining an impedimetric sensor and a novel pressure stable thermoelectric flow sensor for monitoring chemical reactions in micro-plants is presented. The CMOS-technology-based impedimetric sensor mainly consists of two capacitively coupled interdigital electrodes on a silicon chip. The thermoelectric flow sensor consists of a heater in between two thermopiles on a perforated membrane. The pulsed and constant current feeds of the heater were analyzed. Both sensors enable the analysis of chemical conversion by means of changes in the thermal and electrical properties of the liquid. The homogeneously catalyzed synthesis of n-butyl acetate as a chemical model system was studied. Experimental results revealed that in an overpressure regime, relative changes of less than 1% in terms of thermal and electrical properties can be detected. Furthermore, the transition from one to two liquid phases accompanied by the change in slug flow conditions could be reproducibly detected

  9. Thermodynamic analysis of tar reforming through auto-thermal reforming process

    Energy Technology Data Exchange (ETDEWEB)

    Nurhadi, N., E-mail: nurhadi@tekmira.esdm.go.id; Diniyati, Dahlia; Efendi, M. Ade Andriansyah [R& D Centre for Mineral and Coal Technology, Jln. Jend.Sudirman no. 623, Bandung. Telp. 022-6030483 (Malaysia); Istadi, I. [Department of Chemical Engineering, Diponegoro University, Jln. Jl. Prof. Soedarto, SH, Semarang (Malaysia)

    2015-12-29

    Fixed bed gasification is a simple and suitable technology for small scale power generation. One of the disadvantages of this technology is producing tar. So far, tar is not utilized yet and being waste that should be treated into a more useful product. This paper presents a thermodynamic analysis of tar conversion into gas producer through non-catalytic auto-thermal reforming technology. Tar was converted into components, C, H, O, N and S, and then reacted with oxidant such as mixture of air or pure oxygen. Thus, this reaction occurred auto-thermally and reached chemical equilibrium. The sensitivity analysis resulted that the most promising process performance occurred at flow rate of air was reached 43% of stoichiometry while temperature of process is 1100°C, the addition of pure oxygen is 40% and preheating of oxidant flow is 250°C. The yield of the most promising process performance between 11.15-11.17 kmol/h and cold gas efficiency was between 73.8-73.9%.The results of this study indicated that thermodynamically the conversion of tar into producer gas through non-catalytic auto-thermal reformingis more promising.

  10. Mechanisms governing the physico-chemical processes of transfer in NPP circuits

    International Nuclear Information System (INIS)

    Brusakov, V.P.; Sedov, V.M.; Khitrov, Yu.A.; Rybalchenko, I.L.

    1983-01-01

    The paper deals with the theoretical physico-chemical processes of corrosion products and their radionuclide transport in NPS circuits by thermoelectromotive and electromotive forces of microgalvanic couples. The laboratory and rig test results as well as the NPP operating experience data confirm the developed theoretical concept validity

  11. Material recognition based on thermal cues: Mechanisms and applications.

    Science.gov (United States)

    Ho, Hsin-Ni

    2018-01-01

    Some materials feel colder to the touch than others, and we can use this difference in perceived coldness for material recognition. This review focuses on the mechanisms underlying material recognition based on thermal cues. It provides an overview of the physical, perceptual, and cognitive processes involved in material recognition. It also describes engineering domains in which material recognition based on thermal cues have been applied. This includes haptic interfaces that seek to reproduce the sensations associated with contact in virtual environments and tactile sensors aim for automatic material recognition. The review concludes by considering the contributions of this line of research in both science and engineering.

  12. Isolation and properties of cellulose nanofibrils from coconut palm petioles by different mechanical process.

    Science.gov (United States)

    Xu, Changyan; Zhu, Sailing; Xing, Cheng; Li, Dagang; Zhu, Nanfeng; Zhou, Handong

    2015-01-01

    In this study, cellulose nanofibrils (CNFs) were successfully isolated from coconut palm petiole residues falling off naturally with chemical pretreatments and mechanical treatments by a grinder and a homogenizor. FTIR spectra analysis showed that most of hemicellulose and lignin were removed from the fiber after chemical pretreatments. The compositions of CNFS indicated that high purity of nanofibrils with cellulose contain more than 95% was obtained. X-ray diffractogram demonstrated that chemical pretreatments significantly increased the crystallinity of CNFs from 38.00% to 70.36%; however, 10-15 times of grinding operation followed by homogenizing treatment after the chemical pretreatments did not significantly improve the crystallinity of CNFs. On the contrary, further grinding operation could destroy crystalline regions of the cellulose. SEM image indicated that high quality of CNFs could be isolated from coconut palm petiole residues with chemical treatments in combination of 15 times of grinding followed by 10 times of homogenization and the aspect ratio of the obtained CNFs ranged from 320 to 640. The result of TGA-DTG revealed that the chemical-mechanical treatments improved thermal stability of fiber samples, and the CNFs with 15 grinding passing times had the best thermal stability. This work suggests that the CNFs can be successfully extracted from coconut palm petiole residues and it may be a potential feedstock for nanofiber reinforced composites due to its high aspect ratio and crystallinity.

  13. Isolation and Properties of Cellulose Nanofibrils from Coconut Palm Petioles by Different Mechanical Process

    Science.gov (United States)

    Li, Dagang; Zhu, Nanfeng

    2015-01-01

    In this study, cellulose nanofibrils (CNFs) were successfully isolated from coconut palm petiole residues falling off naturally with chemical pretreatments and mechanical treatments by a grinder and a homogenizor. FTIR spectra analysis showed that most of hemicellulose and lignin were removed from the fiber after chemical pretreatments. The compositions of CNFS indicated that high purity of nanofibrils with cellulose contain more than 95% was obtained. X-ray diffractogram demonstrated that chemical pretreatments significantly increased the crystallinity of CNFs from 38.00% to 70.36%; however, 10-15 times of grinding operation followed by homogenizing treatment after the chemical pretreatments did not significantly improve the crystallinity of CNFs. On the contrary, further grinding operation could destroy crystalline regions of the cellulose. SEM image indicated that high quality of CNFs could be isolated from coconut palm petiole residues with chemical treatments in combination of 15 times of grinding followed by 10 times of homogenization and the aspect ratio of the obtained CNFs ranged from 320 to 640. The result of TGA-DTG revealed that the chemical-mechanical treatments improved thermal stability of fiber samples, and the CNFs with 15 grinding passing times had the best thermal stability. This work suggests that the CNFs can be successfully extracted from coconut palm petiole residues and it may be a potential feedstock for nanofiber reinforced composites due to its high aspect ratio and crystallinity. PMID:25875280

  14. Effects of chemical contamination on HDPE - thermo-mechanical and characterisation properties

    International Nuclear Information System (INIS)

    Ashraf, G.

    2002-01-01

    Studying the effects of chemical contamination on HDPE is an important precursor in recycling of plastic packaging and polymer reprocessing. This research involves and discusses the results of an in-depth investigation into the effects of chemically contaminating, using various acids, commercial grade high density polyethylene (HDPE) used commonly in packaging applications. An extensive formulation study was conducted and it became obvious that in some cases degradation had occurred to HDPE when chemically contaminated with particular functional group types. The functional groups in contaminated HDPE were successfully identified. A variety of analytical techniques such as Fourier transform Infra-red spectroscopy, X-ray Florescence, x-ray photo electron spectroscopy could identify compounds such as HCl acid, HNO/sub 3/ acid and other related contaminants. Some chemical additives had effects on the mechanical and thermal properties when added in the most appropriate concentration. The results have shown lower tensile modulus and strength tensile elongation, lower modular weight, melt flow index and crystallinity. The amount of contaminant concentration, the type of chemical functional groups used and the type of test selected to affect degradation are important factors in proving the effects of chemical contamination on HDPE in the melt state. (author)

  15. The Mica Creek Experimental Watershed: An Outdoor Laboratory for the Investigation of Hydrologic Processes in a Continental/Maritime Mountainous Environment

    Science.gov (United States)

    Link, T. E.; Gravelle, J.; Hubbart, J.; Warnsing, A.; Du, E.; Boll, J.; Brooks, E.; Cundy, T.

    2004-12-01

    Experimental catchments have proven to be extremely useful for investigations focused on fundamental hydrologic processes and on the impacts of land cover change on hydrologic regimes and water quality. Recent studies have illustrated how watershed responses to experimental treatments vary greatly between watersheds with differing physical, ecological and hydroclimatic characteristics. Meteorological and hydrological data within catchments are needed to help identify how hydrologic mechanisms may be altered by land cover alterations, and to both constrain and develop spatially-distributed physically based models. Existing instrumentation at the Mica Creek Experimental Watershed (MCEW) in northern Idaho is a fourth-order catchment that is undergoing expansion to produce a comprehensive dataset for model development and testing. The experimental catchments encompass a 28 km2 area spanning elevations from 975 to 1725 m msl. Snow processes dominate the hydrology of the catchment and climate conditions in the winter alternate between cold, dry continental and warm, moist maritime weather systems. Landcover is dominated by 80 year old second growth conifer forests, with partially cut (thinned) and clear-cut sub-catchments. Climate and precipitation data are collected at a SNOTEL site, three primary, and seven supplemental meteorological stations stratified by elevation and canopy cover. Manual snow depth measurements are recorded every 1-2 weeks during snowmelt, stratified by aspect, elevation and canopy cover. An air temperature transect spans three second-order sub-catchments to track air temperature lapse rate dynamics. Precipitation gauge arrays are installed within thinned and closed-canopy stands to track throughfall and interception loss. Nine paired and nested sub-catchments are monitored for flow, temperature, sediment, and nutrients. Hydroclimatic data are augmented by LiDAR and hyperspectral imagery for determination of canopy and topographic structure

  16. Rapid thermal processing by stamping

    Science.gov (United States)

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  17. Transient thermal-mechanical coupling behavior analysis of mechanical seals during start-up operation

    Science.gov (United States)

    Gao, B. C.; Meng, X. K.; Shen, M. X.; Peng, X. D.

    2016-05-01

    A transient thermal-mechanical coupling model for a contacting mechanical seal during start-up has been developed. It takes into consideration the coupling relationship among thermal-mechanical deformation, film thickness, temperature and heat generation. The finite element method and multi-iteration technology are applied to solve the temperature distribution and thermal-mechanical deformation as well as their evolution behavior. Results show that the seal gap transforms from negative coning to positive coning and the contact area of the mechanical seal gradually decreases during start-up. The location of the maximum temperature and maximum contact pressure move from the outer diameter to inside diameter. The heat generation and the friction torque increase sharply at first and then decrease. Meanwhile, the contact force decreases and the fluid film force and leakage rate increase.

  18. The I2 dissociation mechanisms in the chemical oxygen-iodine laser revisited.

    Science.gov (United States)

    Waichman, K; Barmashenko, B D; Rosenwaks, S

    2012-06-28

    The recently suggested mechanism of I(2) dissociation in the chemical oxygen-iodine laser (COIL) [K. Waichman, B. D. Barmashenko, and S. Rosenwaks, J. Appl. Phys. 106, 063108 (2009); and J. Chem. Phys. 133, 084301 (2010)] was largely based on the suggestion of V. N. Azyazov, S. Yu. Pichugin, and M. C. Heaven [J. Chem. Phys. 130, 104306 (2009)] that the vibrational population of O(2)(a) produced in the chemical generator is high enough to play an essential role in the dissociation. The results of model calculations based on this mechanism agreed very well with measurements of the small signal gain g, I(2) dissociation fraction F, and temperature T in the COIL. This mechanism is here revisited, following the recent experiments of M. V. Zagidullin [Quantum Electron. 40, 794 (2010)] where the observed low population of O(2)(b, v = 1) led to the conclusion that the vibrational population of O(2)(a) at the outlet of the generator is close to thermal equilibrium value. This value corresponds to a very small probability, ∼0.05, of O(2)(a) energy pooling to the states O(2)(X,a,b, v > 0). We show that the dissociation mechanism can reproduce the experimentally observed values of g, F, and T in the COIL only if most of the energy released in the processes of O(2)(a) energy pooling and O(2)(b) quenching by H(2)O ends up as vibrational energy of the products, O(2)(X,a,b), where the vibrational states v = 2 and 3 are significantly populated. We discuss possible reasons for the differences in the suggested vibrational population and explain how these differences can be reconciled.

  19. Thermal-chemical Mantle Convection Models With Adaptive Mesh Refinement

    Science.gov (United States)

    Leng, W.; Zhong, S.

    2008-12-01

    In numerical modeling of mantle convection, resolution is often crucial for resolving small-scale features. New techniques, adaptive mesh refinement (AMR), allow local mesh refinement wherever high resolution is needed, while leaving other regions with relatively low resolution. Both computational efficiency for large- scale simulation and accuracy for small-scale features can thus be achieved with AMR. Based on the octree data structure [Tu et al. 2005], we implement the AMR techniques into the 2-D mantle convection models. For pure thermal convection models, benchmark tests show that our code can achieve high accuracy with relatively small number of elements both for isoviscous cases (i.e. 7492 AMR elements v.s. 65536 uniform elements) and for temperature-dependent viscosity cases (i.e. 14620 AMR elements v.s. 65536 uniform elements). We further implement tracer-method into the models for simulating thermal-chemical convection. By appropriately adding and removing tracers according to the refinement of the meshes, our code successfully reproduces the benchmark results in van Keken et al. [1997] with much fewer elements and tracers compared with uniform-mesh models (i.e. 7552 AMR elements v.s. 16384 uniform elements, and ~83000 tracers v.s. ~410000 tracers). The boundaries of the chemical piles in our AMR code can be easily refined to the scales of a few kilometers for the Earth's mantle and the tracers are concentrated near the chemical boundaries to precisely trace the evolvement of the boundaries. It is thus very suitable for our AMR code to study the thermal-chemical convection problems which need high resolution to resolve the evolvement of chemical boundaries, such as the entrainment problems [Sleep, 1988].

  20. An electrothermal chemical technology for thermal spray coatings

    International Nuclear Information System (INIS)

    Wald, S.; Appelbaum, G.; Alimi, R.; Rabani, L.; Zoler, D.; Zhitomirsky, V.; Factor, M.; Roman, I.

    1998-01-01

    A new spray technology for producing hard-coatings, has been developed at the SOREQ Nuclear Research Center. The concept is based on the extensive experience accumulated at SOREQ in the course of the development of Electrothermal (ET), Electrothermal-Chemical (ETC) and Solid-Propellant Electrothermal-Chemical (SPETC) guns(r). High quality coatings may be obtained by thermal spraying powder particles onto a variety of substrates. Mature state-of-the-art technologies such as plasma spray, high velocity oxy fuel (HVOF) and detonation gun (D-Gun) are widely used for many applications. As each method has its own drawbacks there is a need for a combination of several parameters which cannot be achieved by any existing individual commercial technology. The method presented is oriented toward a high-quality, multi-step, high-throughput, easily programmable continuous coating process and relatively inexpensive technology. The combustion products of a solid or liquid propellant accelerate the powder particles of the coating material. A pulsed-plasma jet, provided by a confined capillary discharge, ignites the propellant and controls the combustion process. The powder particles are accelerated to velocities over 1000 m/s. Due to the very high carrier gas density, high velocity, high throughput and high powder consumption efficiency are obtained. The plasma jet enables control of the gas temperature and consequently influences the powder temperature

  1. Grid based calibration of SWAT hydrological models

    Directory of Open Access Journals (Sweden)

    D. Gorgan

    2012-07-01

    Full Text Available The calibration and execution of large hydrological models, such as SWAT (soil and water assessment tool, developed for large areas, high resolution, and huge input data, need not only quite a long execution time but also high computation resources. SWAT hydrological model supports studies and predictions of the impact of land management practices on water, sediment, and agricultural chemical yields in complex watersheds. The paper presents the gSWAT application as a web practical solution for environmental specialists to calibrate extensive hydrological models and to run scenarios, by hiding the complex control of processes and heterogeneous resources across the grid based high computation infrastructure. The paper highlights the basic functionalities of the gSWAT platform, and the features of the graphical user interface. The presentation is concerned with the development of working sessions, interactive control of calibration, direct and basic editing of parameters, process monitoring, and graphical and interactive visualization of the results. The experiments performed on different SWAT models and the obtained results argue the benefits brought by the grid parallel and distributed environment as a solution for the processing platform. All the instances of SWAT models used in the reported experiments have been developed through the enviroGRIDS project, targeting the Black Sea catchment area.

  2. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  3. Legacy model integration for enhancing hydrologic interdisciplinary research

    Science.gov (United States)

    Dozier, A.; Arabi, M.; David, O.

    2013-12-01

    Many challenges are introduced to interdisciplinary research in and around the hydrologic science community due to advances in computing technology and modeling capabilities in different programming languages, across different platforms and frameworks by researchers in a variety of fields with a variety of experience in computer programming. Many new hydrologic models as well as optimization, parameter estimation, and uncertainty characterization techniques are developed in scripting languages such as Matlab, R, Python, or in newer languages such as Java and the .Net languages, whereas many legacy models have been written in FORTRAN and C, which complicates inter-model communication for two-way feedbacks. However, most hydrologic researchers and industry personnel have little knowledge of the computing technologies that are available to address the model integration process. Therefore, the goal of this study is to address these new challenges by utilizing a novel approach based on a publish-subscribe-type system to enhance modeling capabilities of legacy socio-economic, hydrologic, and ecologic software. Enhancements include massive parallelization of executions and access to legacy model variables at any point during the simulation process by another program without having to compile all the models together into an inseparable 'super-model'. Thus, this study provides two-way feedback mechanisms between multiple different process models that can be written in various programming languages and can run on different machines and operating systems. Additionally, a level of abstraction is given to the model integration process that allows researchers and other technical personnel to perform more detailed and interactive modeling, visualization, optimization, calibration, and uncertainty analysis without requiring deep understanding of inter-process communication. To be compatible, a program must be written in a programming language with bindings to a common

  4. Thermal integrity in mechanics and engineering

    International Nuclear Information System (INIS)

    Shorr, Boris F.

    2015-01-01

    The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author's contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspects of thermal integrity. The author endeavors to provide a thorough yet sufficiently simple presentation of the underlying concepts, making the book compelling to a wide audience.

  5. Thermal integrity in mechanics and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shorr, Boris F. [Central Institute of Aviation Motors (CIAM), Moscow (Russian Federation)

    2015-07-01

    The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author's contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspects of thermal integrity. The author endeavors to provide a thorough yet sufficiently simple presentation of the underlying concepts, making the book compelling to a wide audience.

  6. Storage effects on anthocyanins, phenolics and antioxidant activity of thermally processed conventional and organic blueberries.

    Science.gov (United States)

    Syamaladevi, Roopesh M; Andrews, Preston K; Davies, Neal M; Walters, Thomas; Sablani, Shyam S

    2012-03-15

    Consumer demand for products rich in phytochemicals is increasing as a result of greater awareness of their potential health benefits. However, processed products are stored for long-term and the phytochemicals are susceptible to degradation during storage. The objective of this study was to assess the storage effects on phytochemicals in thermally processed blueberries. Thermally processed canned berries and juice/puree were analysed for phytochemicals during their long-term storage. The phytochemical retention of thermally processed blueberries during storage was not influenced by production system (conventional versus organic). During 13 months of storage, total anthocyanins, total phenolics and total antioxidant activity in canned blueberry solids decreased by up to 86, 69 and 52% respectively. In canned blueberry syrup, total anthocyanins and total antioxidant activity decreased by up to 68 and 15% respectively, while total phenolic content increased by up to 117%. Similar trends in phytochemical content were observed in juice/puree stored for 4 months. The extent of changes in phytochemicals of thermally processed blueberries during storage was significantly influenced by blanching. Long-term storage of thermally processed blueberries had varying degrees of influence on degradation of total anthocyanins, total phenolics and total antioxidant activity. Blanching before thermal processing helped to preserve the phytochemicals during storage of blueberries. Copyright © 2011 Society of Chemical Industry.

  7. Thermal integrity in mechanics and engineering

    CERN Document Server

    Shorr, Boris F

    2015-01-01

    The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author’s contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspec...

  8. Waste energy harvesting mechanical and thermal energies

    CERN Document Server

    Ling Bing, Kong; Hng, Huey Hoon; Boey, Freddy; Zhang, Tianshu

    2014-01-01

    Waste Energy Harvesting overviews the latest progress in waste energy harvesting technologies, with specific focusing on waste thermal mechanical energies. Thermal energy harvesting technologies include thermoelectric effect, storage through phase change materials and pyroelectric effect. Waste mechanical energy harvesting technologies include piezoelectric (ferroelectric) effect with ferroelectric materials and nanogenerators. The book aims to strengthen the syllabus in energy, materials and physics and is well suitable for students and professionals in the fields.

  9. Vulcanization Kinetics and Mechanical Properties of Ethylene Propylene Diene Monomer Thermal Insulation

    Directory of Open Access Journals (Sweden)

    Mohamad Irfan Fathurrohman

    2015-07-01

    Full Text Available The vulcanization kinetics of Ethylene-propylene diene monomer (EPDM rubber thermal insulation was studied by using rheometer under isothermal condition at different temperatures. The rheometry analysis was used to determining the cure kinetic parameters and predicting the cure time of EPDM thermal insulation. The experimental results revealed that the curing curves of EPDM thermal insulation were marching and the optimum curing time decreased with increasing the temperature. The kinetic parameters were determined from the autocatalytic model showed close fitting with the experimental results, indicating suitability of autocatalytic model in characterizing the cure kinetics. The activation energy was determined from the autocatalytic model is 46.3661 kJ mol-1. The cure time were predicted from autocatalytic model and the obtained kinetic parameter by using the relationship among degree of conversion, cure temperature, and cure time. The predictions of cure time provide information for the actual curing characteristic of EPDM thermal insulation. The mechanical properties of EPDM thermal insulation with different vulcanization temperatures showed the same hardness, tensile strength and modulus at 300%, except at temperature 70 °C, while the elongation at breaking point decreased with increasing temperature of vulcanization. © 2015 BCREC UNDIP. All rights reservedReceived: 8th April 2014; Revised: 7th January 2015; Accepted: 16th January 2015How to Cite: Fathurrohman, M.I., Maspanger, D.R., Sutrisno, S. (2015. Vulcanization Kinetics and Mechanical Properties of Ethylene Propylene Diene Monomer Thermal Insulation. Bulletin of Chemi-cal Reaction Engineering & Catalysis, 10 (2, 104-110. (doi:10.9767/bcrec.10.2.6682.104-110Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.6682.104-110 

  10. Investigation of the mechanisms of using metal complexation and cellulose nanofiber/sodium alginate layer-by-layer coating for retaining anthocyanin pigments in thermally processed blueberries in aqueous media.

    Science.gov (United States)

    Jung, Jooyeoun; Cavender, George; Simonsen, John; Zhao, Yanyun

    2015-03-25

    This study investigated the mechanisms of anthocyanin pigment retention using Fe(3+)-anthocyanin complexation and cellulose nanofiber (CNF)/sodium alginate (SA) layer-by-layer (LBL) coatings on thermally processed blueberries in aqueous media. Anthocyanin pigments were polymerized through complexation with Fe(3+) but readily degraded by heat (93 °C for 7 min) in the aqueous media because of poor stability. CNF/SA LBL coating was successful to retain anthocyanin pigments in thermally processed blueberries. Fruits coated with CNF containing CaCl2 followed by treatment in a SA bath formed a second hydrogel layer onto the CNF layer (LBL coating system) through cross-linking between Ca(2+) and alginic acid. Methyl-cellulose-modified CNF improved the interactions between CNF, the fruit surface, and the SA layer. This study demonstrated that the CNF/SA LBL coating system was effective to retain anthocyanin pigments on thermally processed whole blueberries, whereas no combined benefit of complexation with coating was observed. Results explained the mechanisms of the new approaches for developing colorful and nutritionally enhanced anthocyanin-rich fruit products.

  11. Analysis of Hydrologic Properties Data

    Energy Technology Data Exchange (ETDEWEB)

    H. H. Liu

    2003-04-03

    ) Matrix properties (porosity, permeability, and van Genuchten a and m parameters) for each UZ Model layer; (3) Thermal properties (grain density, wet and dry thermal conductivity, and grain specific heat) for each UZ Model layer; and (4) Fault properties for each major hydrogeologic unit. These properties incorporate the available measurement data, as applicable, to estimate fracture and matrix properties. Field data from liquid release testing in the ESF and other relevant data are also used to validate these properties and provide bounds on property values. Another objective of this report is to document activities to validate the AFM based on experimental observations and theoretical developments. The AFM is a conceptual model that describes the fracture-matrix interaction in the UZ of Yucca Mountain. It is intended to be used to represent the hydrologic characteristics of rock fractures for the UZ Flow Model, UZ Radionuclide Transport Model under ambient conditions, Mountain-Scale and Drift-Scale Thermal-Hydrological-Chemical Models, and Multiscale Thermohydrology Model. These MDL-validation activities are documented in Section 7 of this report regarding use of independent lines of evidence to provide additional confidence in the use of the AFM in the UZ models.

  12. Thermal and Mechanical Properties of Poly(butylene succinate Films Reinforced with Silica

    Directory of Open Access Journals (Sweden)

    Sangviroon Nanthaporn

    2015-01-01

    Full Text Available In recent year, bioplastics have become more popular resulting from the growing concerns on environmental issues and the rising fossil fuel price. However, their applications were limited by its mechanical and thermal properties. The aim of this research is thus to improve mechanical and thermal properties of PBS bioplastic films by reinforcing with silica. Due to the poor interfacial interaction between the PBS matrix and silica, glycidyl methacrylate grafted poly(butylene succinate (PBS-g-GMA was used as a compatibilizer in order to improve the interaction between bioplastic films and filler. PBS-g-GMA was prepared in a twin-screw extruder and analyzed by the FTIR spectrometer. PBS and silica were then mixed in a twin-screw extruder and processed into films by a chill-roll cast extruder. The effects of silica loading on thermal and mechanical properties of the prepared bioplastic films were investigated. It was found that the mechanical properties of PBS/silica composite films were improved when 1%wt of silica was added. However, the mechanical properties decreased with increasing silica loading due to the agglomeration of silica particles. The results also show that the silica/PBS films with PBS-g-GMA possessed improved mechanical properties over the films without the compatibilizer.

  13. Radiation-chemical alkylation of olefines with adamantane

    International Nuclear Information System (INIS)

    Podkhalyuzin, A.T.; Vikulin, V.V.; Morozov, V.A.; Nazarova, M.P.; Vereshchinskii, I.V.

    1977-01-01

    Radiation-chemical alkylation of C 2 to C 4 olefines with adamantane was studied in gas phase at temperatures 270 to 430 0 C. The main reaction product is monoalkyladamantane. The reaction proceeds by a free radical chain mechanism. The effective activation energy is of the order of 8 to 10 kcal/mole. Thermal alkylation was carried out for comparison and the contribution of the thermal component to the radiation-thermal process was estimated. Liquid phase alkylation of hexafluoropropylene with adamantane was studied in the presence of solvents. Under various conditions mono- and di-substituted adamantanes are produced containing fluorine in end groups. These compounds were converted to corresponding fluoroalkenyladamantanes by dehydrofluorination. The kinetic parameters were calculated and physical-chemical data concerning some of the resulting products were determined. (author)

  14. Nanobioceramic Composites: A Study of Mechanical, Morphological, and Thermal Properties

    Directory of Open Access Journals (Sweden)

    Sivabalan Sasthiryar

    2013-12-01

    Full Text Available The aim of this study was to explore the incorporation of biomass carbon nanofillers (CNF into advanced ceramic. Biomass from bamboo, bagasse (remains of sugarcane after pressing, and oil palm ash was used as the predecessor for producing carbon black nanofillers. Furnace pyrolysis was carried out at 1000 °C and was followed by ball-mill processing to obtain carbon nanofillers in the range of 50 nm to 100 nm. CNFs were added to alumina in varying weight fractions and the resulting mixture was subjected to vacuum sintering at 1400 °C to produce nanobioceramic composites. The ceramic composites were characterized for mechanical, thermal, and morphological properties. A high-resolution Charge-coupled device (CCD camera was used to study the fracture impact and the failure mechanism. An increase in the loading percentage of CNFs in the alumna decreased the specific gravity, vickers hardness (HV, and fracture toughness values of the composite materials. Furthermore, the thermal conductivity and the thermal stability of the ceramic composite increased as compared to the pristine alumina.

  15. Durability, mechanical, and thermal properties of experimental glass-ceramic forms for immobilizing ICPP high level waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1990-01-01

    The high-level liquid waste generated at the Idaho Chemical Processing Plant (ICPP) is routinely solidified into granular calcined high-level waste (HLW) and stored onsite. Research is being conducted at the ICPP on methods of immobilizing the HLW, including developing a durable glass-ceramic form which has the potential to significantly reduce the final waste volume by up to 60% compared to a glass form. Simulated, pilot plant, non-radioactive, calcines similar to the composition of the calcined HLW and glass forming additives are used to produce experimental glass-ceramic forms. The objective of the research reported in this paper is to study the impact of ground calcine particle size on durability and mechanical and thermal properties of experimental glass-ceramic forms

  16. Vegetation management with fire modifies peatland soil thermal regime.

    Science.gov (United States)

    Brown, Lee E; Palmer, Sheila M; Johnston, Kerrylyn; Holden, Joseph

    2015-05-01

    Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from post burning), and (ii) developing statistical models to determine the magnitude of thermal change caused by vegetation management. Compared to plots burned 15 + years previously, plots recently burned (management effects. Temperatures measured in soil plots burned vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime change for carbon processing and release, and hydrological processes, in these peatlands. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. The thermal and mechanical deformation study of up-stream pumping mechanical seal

    International Nuclear Information System (INIS)

    Chen, H L; Xu, C; Zuo, M Z; Wu, Q B

    2015-01-01

    Taking the viscosity-temperature relationship of the fluid film into consideration, a 3-D numerical model was established by ANSYS software which can simulate the heat transfer between the upstream pumping mechanical seal stationary and rotational rings and the fluid film between them as well as simulate the thermal deformation, structure deformation and the coupling deformation of them. According to the calculation result, thermal deformation causes the seal face expansion and the maximum thermal deformation appears at the inside of the seal ring. Pressure results in a mechanical deformation, the maximum deformation occurs at the top of the spiral groove and the overall trend is inward the mating face, opposite to the thermal deformation. The coupling deformation indicate that the thermal deformation can be partly counteracted by pressure deformation. Using this model, the relationship between deformation and shaft speed and the sealing liquid pressure was studied. It's found that the shaft speed will both enhance the thermal and structure deformation and the fluid pressure will enhance the structure deformation but has little to do with the thermal deformation. By changing the sealing material, it's found that material with low thermal expansion coefficient and low elastic modulus will suffer less thermal-pressure deformation

  18. The thermal and mechanical deformation study of up-stream pumping mechanical seal

    Science.gov (United States)

    Chen, H. L.; Xu, C.; Zuo, M. Z.; Wu, Q. B.

    2015-01-01

    Taking the viscosity-temperature relationship of the fluid film into consideration, a 3-D numerical model was established by ANSYS software which can simulate the heat transfer between the upstream pumping mechanical seal stationary and rotational rings and the fluid film between them as well as simulate the thermal deformation, structure deformation and the coupling deformation of them. According to the calculation result, thermal deformation causes the seal face expansion and the maximum thermal deformation appears at the inside of the seal ring. Pressure results in a mechanical deformation, the maximum deformation occurs at the top of the spiral groove and the overall trend is inward the mating face, opposite to the thermal deformation. The coupling deformation indicate that the thermal deformation can be partly counteracted by pressure deformation. Using this model, the relationship between deformation and shaft speed and the sealing liquid pressure was studied. It's found that the shaft speed will both enhance the thermal and structure deformation and the fluid pressure will enhance the structure deformation but has little to do with the thermal deformation. By changing the sealing material, it's found that material with low thermal expansion coefficient and low elastic modulus will suffer less thermal-pressure deformation.

  19. Mass Dependency of Isotope Fractionation of Gases Under Thermal Gradient and Its Possible Implications for Planetary Atmosphere Escaping Process

    Science.gov (United States)

    Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard

    2014-01-01

    Physical processes that unmix elements/isotopes of gas molecules involve phase changes, diffusion (chemical or thermal), effusion and gravitational settling. Some of those play significant roles for the evolution of chemical and isotopic compositions of gases in planetary bodies which lead to better understanding of surface paleoclimatic conditions, e.g. gas bubbles in Antarctic ice, and planetary evolution, e.g. the solar-wind erosion induced gas escaping from exosphere on terrestrial planets.. A mass dependent relationship is always expected for the kinetic isotope fractionations during these simple physical processes, according to the kinetic theory of gases by Chapman, Enskog and others [3-5]. For O-bearing (O16, -O17, -O18) molecules the alpha O-17/ alpha O-18 is expected at 0.5 to 0.515, and for S-bearing (S32,-S33. -S34, -S36) molecules, the alpha S-33/ alpha S-34 is expected at 0.5 to 0.508, where alpha is the isotope fractionation factor associated with unmixing processes. Thus, one isotope pair is generally proxied to yield all the information for the physical history of the gases. However, we recently] reported the violation of mass law for isotope fractionation among isotope pairs of multiple isotope system during gas diffusion or convection under thermal gradient (Thermal Gradient Induced Non-Mass Dependent effect, TGI-NMD). The mechanism(s) that is responsible to such striking observation remains unanswered. In our past studies, we investigated polyatomic molecules, O2 and SF6, and we suggested that nuclear spin effect could be responsible to the observed NMD effect in a way of changing diffusion coefficients of certain molecules, owing to the fact of negligible delta S-36 anomaly for SF6.. On the other hand, our results also showed that for both diffusion and convection under thermal gradient, this NMD effect is increased by lower gas pressure, bigger temperature gradient and lower average temperature, which indicate that the nuclear spin effect may

  20. Numerical Simulations of Thermo-Mechanical Processes during Thermal Spallation Drilling for Geothermal Reservoirs

    Science.gov (United States)

    Vogler, D.; Walsh, S. D. C.; Rudolf von Rohr, P.; Saar, M. O.

    2017-12-01

    Drilling expenses constitute a significant share of the upfront capital costs and thereby the associated risks of geothermal energy production. This is especially true for deep boreholes, as drilling costs per meter increase significantly with depth. Thermal spallation drilling is a relatively new drilling technique, particularly suited to the hard crystalline (e.g., basement) rocks in which many deep geothermal resources are located. The method uses a hot jet-flame to rapidly heat the rock surface, which leads to large temperature gradients in the rock. These temperature gradients cause localized thermal stresses that, in combination with the in situ stress field, lead to the formation and ejection of spalls. These spalls are then transported out of the borehole with the drilling mud. Thermal spallation not only in principle enables much faster rates of penetration than traditional rotary drilling, but is also contact-less, which significantly reduces the long tripping times associated with conventional rotary head drilling. We present numerical simulations investigating the influence of rock heterogeneities on the thermal spallation process. Special emphasis is put on different mineral compositions, stress regimes, and heat sources.

  1. Applications of AMS to hydrology

    International Nuclear Information System (INIS)

    Bentley, H.W.; Davis, S.N.

    1981-01-01

    The evaluation and management of water as a resource requires an understanding of the chemical, and geological interactions that water effects or undergoes in the hydrologic cycle. Delivery of water to the land surface by precipitation, subsequent streamflow, circulation in surface waters and evapotranspiration, infiltration, recharge, movement of waters in the subsurface, and discharge are of interest. Also important are the quality of water, water's role in mineral dissolution, transport, and deposition, and the various water-related geotechnical problems of subsidence, tectonics, slope instability, and earth structures. Mathematical modeling techniques are available and are being improved which describe these phenomena and predict future system behavior. Typically, however, models suffer from substantial uncertainties due to insufficient data. Refinement, calibration,and verification of hydrologic models require expansion of the data base. Examination of chemical constituents of water which act as tracers can often supply the needed information. Unfortunately, few tracers are available which are both mobile and chemically stable. Several long-lived radioisotopic hydrologic tracers exist, however, which have received little attention in hydrologic studies to date because of low concentration, low specific activity, or sample size limitations. Recent development of ultra-sensitive accelerator mass spectrometry techniques (AMS) by Purser and others (1977), Nelson and others (1977), Bennett and others (1978), Muller and others (1978), Raisbeck and others (1978) is now expected to provide access to many of these tracers

  2. Hydrologic connectivity and implications for ecosystem processes - Lessons from naked watersheds

    Science.gov (United States)

    Gooseff, Michael N.; Wlostowski, Adam; McKnight, Diane M.; Jaros, Chris

    2017-01-01

    Hydrologic connectivity has received great attention recently as our conceptual models of watersheds and water quality have evolved in the past several decades. However, the structural complexity of most temperate watersheds (i.e. connections among shallow soils, deep aquifers, the atmosphere and streams) and the dynamic seasonal changes that occur within them (i.e., plant senescence which impacts evapotranspiration) create significant challenges to characterizing or quantifying hydrologic connectivity. The McMurdo Dry Valleys, a polar desert in Antarctica, provide a unique opportunity to study hydrologic connectivity because there is no vegetative cover (and therefore no transpiration), and no deep aquifers connected to surface soils or streams. Glacier melt provides stream flow to well-established channels and closed-basin, ice-covered lakes on the valley floor. Streams are also connected to shallow hyporheic zones along their lengths, which are bounded at 75 cm depth by ice-cemented permafrost. These hydrologic features and connections provide water for and underpin biological communities. Hence, exchange of water among them provides a vector for exchange of energy and dissolved solutes. Connectivity is dynamic on timescales of a day to a flow season (6-12 weeks), as streamflow varies over these timescales. The timescales over which these connections occur is also dynamic. Exchanges between streams and hyporheic zones, for example, have been estimated to be as short as hours to as long as several weeks. These exchanges have significant implications for the biogeochemistry of these systems and the biotic communities in each feature. Here we evaluate the lessons we can learn about hydrologic connectivity in the MDV watersheds that are simplified in the context of processes occurring and water reservoirs included in the landscape, yet are sensitive to climate controls and contain substantial physical heterogeneity. We specifically explore several metrics that are

  3. Modeling Hydrologic Processes after Vegetation Restoration in an Urban Watershed with HEC-HMS

    Science.gov (United States)

    Stevenson, K.; Kinoshita, A. M.

    2017-12-01

    The San Diego River Watershed in California (USA) is highly urbanized, where stream channel geomorphology are directly affected by anthropogenic disturbances. Flooding and water quality concerns have led to an increased interest in improving the condition of urban waterways. Alvarado Creek, a 1200-meter section of a tributary to the San Diego River will be used as a case study to understand the degree to which restoration efforts reduce the impacts of climate change and anthropogenic activities on hydrologic processes and water quality in urban stream ecosystems. In 2016, non-native vegetation (i.e. Washingtonia spp. (fan palm), Phoenix canariensis (Canary Island palm)) and approximately 7257 kilograms of refuse were removed from the study reach. This research develops the United States Army Corp of Engineers Hydrologic Engineering Center's Hydraulic Modeling System (USACE HEC-HMS) using field-based data to model and predict the short- and long-term impacts of restoration on geomorphic and hydrologic processes. Observations include cross-sectional area, grain-size distributions, water quality, and continuous measurements of streamflow, temperature, and precipitation. Baseline and design storms are simulated before and after restoration. The model will be calibrated and validated using field observations. The design storms represent statistical likelihoods of storms occurrences, and the pre- and post-restoration hydrologic responses will be compared to evaluate the impact of vegetation and waste removal on runoff processes. Ultimately model parameters will be transferred to other urban creeks in San Diego that may potentially undergo restoration. Modeling will be used to learn about the response trajectory of rainfall-runoff processes following restoration efforts in urban streams and guide future management and restoration activities.

  4. Experimental studies of thermal and chemical interactions between molten aluminum and water

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, A.A.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    The possibility of rapid physical and chemical aluminum/water interactions during a core melt accident in a noncommercial reactor (e.g., HFIR, ATR) has resulted in extensive research to determine the mechanism by which these interactions occur and propagate on an explosive time scale. These events have been reported in nuclear testing facilities, i.e., during SPERT 1D experiment, and also in aluminum casting industries. Although rapid chemical reactions between molten aluminum and water have been subject of many studies, very few reliable measurements of the extent of the chemical reactions have thus far been made. We have modified an existing 1-D shock tube facility to perform experiments in order to determine the extent of the explosive thermal/chemical interactions between molton aluminum and water by measuring important physical quantities such as the maximum dynamic pressure and the amount of the generated hydrogen. Experimental results show that transient pressures greater than 69 MPa with a rise time of less than 125 {mu}sec can occur as the result of the chemical reaction of 4.2 grams of molton aluminum (approximately 15% of the total mass of the fuel of 28 grams) at 980 C with room temperature water.

  5. Ultrasound in chemical processes

    International Nuclear Information System (INIS)

    Baig, S.; Farooq, R.; Malik, A.H.

    2009-01-01

    The use of ultrasound to promote chemical reactions or sono chemistry is a field of chemistry which involves the process of acoustic cavitations i.e. the collapse of microscopic bubbles in liquid. There are two essential components for the application of sono chemistry, a liquid medium and a source of high-energy vibrations. The liquid medium is necessary because sono chemistry is driven by acoustic cavitations that can only occur in liquids. The source of the vibrational energy is the transducer. The chemical effects of ultrasound include the enhancement of reaction rates at ambient temperatures and striking advancements in stoichiometric and catalytic reactions In some cases, ultrasonic irradiation can increase reactivities by nearly million fold. The ultrasound has large number of applications not only in emending old chemical processes but also in developing new synthetic strategies. Ultrasound enhances all chemical and physical processes e.g., crystallization, vitamin synthesis, preparation of catalysts, dissolution of chemicals, organometallic reactions, electrochemical processes, etc. High-power ultrasonics is a new powerful technology that is not only safe and environmentally friendly in its application but is also efficient and economical. It can be applied to existing processes to eliminate the need for chemicals and/or heat application in a variety of industrial processes. (author)