WorldWideScience

Sample records for thermal-hydraulic safety analysis

  1. Development of regulatory technology for thermal-hydraulic safety analysis

    International Nuclear Information System (INIS)

    Bang, Young Seok; Lee, S. H.; Ryu, Y. H.

    2001-02-01

    The present study aims to develop the regulation capability in thermal-hydraulic safety analysis which was required for the reasonable safety regulation in the current NPP, the next generation reactors, and the future-type reactors. The fourth fiscal year of the first phase of the research was focused on the following research topics: Investigation on the current status of the thermal-hydraulic safety analysis technology outside and inside of the country; Review on the improved features of the thermal-hydraulic safety analysis regulatory audit code, RELAP5/MOD3; Assessments of code with LOFT L9-3 ATWS experiment and LSTF SB-SG-10 multiple SGTR experiment; Application of the RELAP5/CANDU code to analyses of SLB and LBLOCA and evaluation of its effect on safety; Application of the code to IAEA PHWR ISP analysis; Assessments of RELAP5 and TRAC with UPTF downcomer injection test and Analysis of LBLOCA with RELAP5 for the performance evaluation of KNGR DVI; Setup of a coupled 3-D kinetics and thermal-hydraulics and application it to a reactivity accident analysis; and Extension of database and improvement of plant input decks. For supporting the resolution of safety issues, loss of RHR event during midloop operation was analyzed for Kori Unit 3, issues on high burnup fuel were reviewed and performance of FRAPCON-3 assessed. Also MSLB was analyzed to figure out the sensitivity of downcomer temperature supporting the PTS risk evaluation of Kori Unit 1. Thermal stratification in pipe was analyzed using the method proposed. And a method predicting the thermal-hydraulic performance of IRWST of KNGR was explored. The PWR ECCS performance criteria was issued as a MOST Article 200-19.and a regulatory guide on evaluation methodology was improved to cover concerns raised from the related licensing review process

  2. Status and subjects of thermal-hydraulic analysis for next-generation LWRs with passive safety systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The present status and subjects on thermal-hydraulic analysis for next-generation light water reactors (LWRs) with passive safety systems were summarized based on survey results and discussion by subcommittee on improvement of reactor thermal-hydraulic analysis codes under nuclear code committee in Japan Atomic Energy Research Institute. This survey was performed to promote the research of improvement of reactor thermal-hydraulic analysis codes in future. In the first part of this report, the status and subjects on system analysis and those on evaluation of passive safety system performance are summarized for various types of reactor proposed before. In the second part, the status and subjects on multidimensional two-phase flow analysis are reviewed, since the multidimensional analysis was recognized as one of most important subjects through the investigation in the first part. Besides, databases for bubbly flow and annular dispersed flow were explored, those are needed to assess and verify each multidimensional analytical method. The contents in this report are the forefront of thermal-hydraulic analysis for LWRs and those include current findings for the development of multidimensional two-phase flow analytical method. Thus, we expect that the contents can offer various useful information against the improvement of reactor thermal-hydraulic analysis codes in future. (author)

  3. Thermal-Hydraulic Tests for Reactor Core Safety

    International Nuclear Information System (INIS)

    Chun, Se Young; Chung, Moon Ki; Baek, Won Pil and others

    2005-04-01

    The reflood experiments for single rod annulus geometry have been performed to investigate the effect of spacer grid on thermal-hydraulics under reflood conditions. The reflood experimental loop for 6x6 rod bundle with a spacer grid developed in Korea has been provided. About 8000 data points for Post-CHF heat transfer have been obtained from the experiments About 1400 CHF data points for 3x3 Water and 5x5 Freon rod bundles have been obtained. The existing evaluation methodology for core safety under return-to-power conditions has been investigated using KAERI low flow CHF database. The hydraulic tests for turbulence mixing characteristics in subchannel of 5x5 rod bundle have been carried out using advanced measurement technique, LVD and the database for various spacer grids have been provided. In order to measure the turbulence mixing characteristics in details, the hydraulic loop with a magnified 5x5 rod bundle has been prepared. The database which was constructed through a systematic thermal hydraulic tests for the reflood phenomenon, CHF, Post-CHF is surely to be useful to the industry field, the regulation body and the development of thermal-hydraulic analysis code

  4. Preliminary thermal-hydraulic and safety analysis of China DFLL-TBM system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei [School of Nuclear Science and Technology, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an, Shanxi 710049 (China); Tian, Wenxi, E-mail: wxtian@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an, Shanxi 710049 (China); Qiu, Suizheng; Su, Guanghui; Jiao, Hong [School of Nuclear Science and Technology, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an, Shanxi 710049 (China); Bai, Yunqing; Chen, Hongli [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wu, Yican, E-mail: yican.Wu@Fds.Org.Cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2013-06-15

    Highlights: • Thermal-hydraulic and safety analysis on DFLL-TBM system is performed. • The TBM FW maximum temperature is 541 °C under steady state condition. • The TBM FW maximum temperature does not exceed the melt point of CLAM steel 1500 °C. • Neither the VV pressurization nor vault pressure build-up goes beyond 0.2 MPa. -- Abstract: China has proposed the dual-functional lithium-lead (DFLL) tritium breeding blanket concept for testing in ITER as a test blanket module (TBM), to demonstrate the technologies of tritium self-sufficiency, high-grade heat extraction and efficient electricity production which are needed for DEMO and fusion power plant. Safety assessment of the TBM and its auxiliary system should be conducted to deal with ITER safety issues directly caused by the TBM system failure during the design process. In this work, three potential initial events (PIEs) – in-vessel loss of helium (He) coolant and ex-vessel loss of He coolant and loss of flow without scram (LOFWS) – were analyzed for the TBM system with a modified version of the RELAP5/MOD3 code containing liquid lithium-lead eutectic (LiPb). The code also comprised an empirical expression for MHD pressure drop relevant to three-dimensional (3D) effect, the Lubarsky–Kaufman convective heat transfer correlation for LiPb flow and the Gnielinski convective heat transfer correlation for He flow. Since both LiPb and He serve as TBM coolants, the LiPb and He ancillary cooling systems were modeled to investigate the thermal-hydraulic characteristic of the TBM system and its influence on ITER safety under those accident conditions. The TBM components and the coolants flow within the TBM were simulated with one-dimensional heat structures and their associated hydrodynamic components. ITER enclosures including vacuum vessel (VV), port cell and TCWS vault were also covered in the model for accident analyses. Through this best estimate approach, the calculation indicated that the current

  5. Status and subjects of thermal-hydraulic analysis for next-generation LWRs

    International Nuclear Information System (INIS)

    2000-03-01

    The status and subjects on thermal-hydraulic analysis for next-generation light water reactors (LWRs) with passive safety systems were surveyed through about 5 years until March 1999 by subcommittee on improvement of reactor thermal-hydraulic analysis codes under the nuclear code committee in Japan Atomic Energy Research Institute. Based on the survey results and discussion, the status and subjects on system analysis for various types of proposed reactor were summarized in 1998 and those on multidimensional two-phase flow analysis were also reviewed, since the multidimensional analysis was recognized as one of the most important subjects through the investigation on system analysis. In this report, the status and subjects for the following were summarized from the survey results and discussion in 1998 and 1999; (1) BWR neutronic/thermal-hydraulic coupled analysis, (2) Evaluation of passive safety system performance and (3) Gas-liquid two-phase flow analysis. The contents in this report are the forefront of thermal-hydraulic analysis for LWRs including test results from several large-scale facilities. We expect that the contents can offer a guideline to improve reactor thermal-hydraulic analysis codes in future. (author)

  6. ATLAS program for advanced thermal-hydraulic safety research

    International Nuclear Information System (INIS)

    Song, Chul-Hwa; Choi, Ki-Yong; Kang, Kyoung-Ho

    2015-01-01

    Highlights: • Major achievements of the ATLAS program are highlighted in conjunction with both developing advanced light water reactor technologies and enhancing the nuclear safety. • The ATLAS data was shown to be useful for the development and licensing of new reactors and safety analysis codes, and also for nuclear safety enhancement through domestic and international cooperative programs. • A future plan for the ATLAS testing is introduced, covering recently emerging safety issues and some generic thermal-hydraulic concerns. - Abstract: This paper highlights the major achievements of the ATLAS program, which is an integral effect test program for both developing advanced light water reactor technologies and contributing to enhancing nuclear safety. The ATLAS program is closely related with the development of the APR1400 and APR"+ reactors, and the SPACE code, which is a best-estimate system-scale code for a safety analysis of nuclear reactors. The multiple roles of ATLAS testing are emphasized in very close conjunction with the development, licensing, and commercial deployment of these reactors and their safety analysis codes. The role of ATLAS for nuclear safety enhancement is also introduced by taking some examples of its contributions to voluntarily lead to multi-body cooperative programs such as domestic and international standard problems. Finally, a future plan for the utilization of ATLAS testing is introduced, which aims at tackling recently emerging safety issues such as a prolonged station blackout accident and medium-size break LOCA, and some generic thermal-hydraulic concerns as to how to figure out multi-dimensional phenomena and the scaling issue.

  7. Thermal-hydraulic transient characteristics of ship-propulsion reactor investigated through safety analysis

    International Nuclear Information System (INIS)

    Fujiki, Kazuo; Asaka, Hideaki; Ishida, Toshihisa

    1986-01-01

    Thermal-hydraulic behaviors in the reactor of Nuclear Ship ''Mutsu'' were investigated through safety evaluation of operational transients by using RETRAN and COBRA-IV codes. The results were compared to the transient behaviors of typical commercial PWR and the characteristics of transient thermal-hydraulic behaviors in ship-loaded reactor were figured out. ''Mutsu'' reactor has larger thermal margin than commercial PWR because it is designed to be used as ship-propulsion power source in the load-following operation mode. This margin makes transient behavior in general milder than in commercial PWR but high opening pressure set point of main-steam safety valves leads poor heat-sink condition after reactor trip. The effects of other small-sized components are also investigated. The findings in the paper will be helpful in the design of future advanced reactor for nuclear ship. (author)

  8. Thermal hydraulic and safety analyses for Pakistan Research Reactor-1

    International Nuclear Information System (INIS)

    Bokhari, I.H.; Israr, M.; Pervez, S.

    1999-01-01

    Thermal hydraulic and safety analysis of Pakistan Research Reactor-1 (PARR-1) utilizing low enriched uranium (LEU) fuel have been performed using computer code PARET. The present core comprises of 29 standard and 5 control fuel elements. Results of the thermal hydraulic analysis show that the core can be operated at a steady-state power level of 10 MW for a flow rate of 950 m 3 /h, with sufficient safety margins against ONB (onset of nucleate boiling) and DNB (departure from nucleate boiling). Safety analysis has been carried out for various modes of reactivity insertions. The events studied include: start-up accident; accidental drop of a fuel element in the core; flooding of a beam tube with water; removal of an in-pile experiment during reactor operation etc. For each of these transients, time histories of reactor power, energy released and clad surface temperature etc. were calculated. The results indicate that the peak clad temperatures remain well below the clad melting temperature during these accidents. It is therefore concluded that the reactor can be safely operated at 10 MW without compromising safety. (author)

  9. Thermal hydraulic tests for reactor safety system -Research on the improvement of nuclear safety-

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Park, Chun Kyeong; Yang, Seon Kyu; Chung, Chang Hwan; Chun, Shee Yeong; Song, Cheol Hwa; Chun, Hyeong Gil; Chang, Seok Kyu; Chung, Heung Joon; Won, Soon Yeon; Cho, Yeong Ro; Kim, Bok Deuk; Min, Kyeong Ho

    1994-07-01

    The present research aims at the development of the thermal hydraulic verification test technology for the reactor safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. (Author)

  10. Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, Bub Dong; Kim, Kyung Doo; Hwang, Moon Kyu; Jeong, Jae Jun; Ha, Kwi Seok; Joo, Han Gyu [Korea Atomic Energy Research Institute, T/H Safety Research Team, Yusung, Daejeon (Korea)

    2000-10-01

    MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)

  11. Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, Bub Dong; Kim, Kyung Doo; Hwang, Moon Kyu; Jeong, Jae Jun; Ha, Kwi Seok; Joo, Han Gyu

    2000-01-01

    MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)

  12. TITAN: an advanced three-dimensional neutronics/thermal-hydraulics code for light water reactor safety analysis

    International Nuclear Information System (INIS)

    Griggs, D.P.; Kazimi, M.S.; Henry, A.F.

    1982-01-01

    The initial development of TITAN, a three-dimensional coupled neutronics/thermal-hydraulics code for LWR safety analysis, has been completed. The transient neutronics code QUANDRY has been joined to the two-fluid thermal-hydraulics code THERMIT with the appropriate feedback mechanisms modeled. A detailed steady-state and transient coupling scheme based on the tandem technique was implemented in accordance with the important structural and operational characteristics of QUANDRY and THERMIT. A two channel sample problem formed the basis for steady-state and transient analyses performed with TITAN. TITAN steady-state results were compared with those obtained with MEKIN and showed good agreement. Null transients, simulated turbine trip transients, and a rod withdrawal transient were analyzed with TITAN and reasonable results were obtained

  13. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  14. Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model

    Directory of Open Access Journals (Sweden)

    Reza Akbari

    2017-08-01

    Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.

  15. Quantification of LOCA core damage frequency based on thermal-hydraulics analysis

    International Nuclear Information System (INIS)

    Cho, Jaehyun; Park, Jin Hee; Kim, Dong-San; Lim, Ho-Gon

    2017-01-01

    Highlights: • We quantified the LOCA core damage frequency based on the best-estimated success criteria analysis. • The thermal-hydraulic analysis using MARS code has been applied to Korea Standard Nuclear Power Plants. • Five new event trees with new break size boundaries and new success criteria were developed. • The core damage frequency is 5.80E−07 (/y), which is 12% less than the conventional PSA event trees. - Abstract: A loss-of-coolant accident (LOCA) has always been significantly considered one of the most important initiating events. However, most probabilistic safety assessment models, up to now, have undoubtedly adopted the three groups of LOCA, and even an exact break size boundary that used in WASH-1400 reports was published in 1975. With an awareness of the importance of a realistic PSA for a risk-informed application, several studies have tried to find the realistic thermal-hydraulic behavior of a LOCA, and improve the PSA model. The purpose of this research is to obtain realistic results of the LOCA core damage frequency based on a success criteria analysis using the best-estimate thermal-hydraulics code. To do so, the Korea Standard Nuclear Power Plant (KSNP) was selected for this study. The MARS code was used for a thermal hydraulics analysis and the AIMS code was used for the core damage quantification. One of the major findings in the thermal hydraulics analysis was that the decay power is well removed by only a normal secondary cooling in LOCAs of below 1.4 in and by only a high pressure safety injection in LOCAs of 0.8–9.4 in. Based on the thermal hydraulics results regarding new break size boundaries and new success criteria, five new event trees (ETs) were developed. The core damage frequency of new LOCA ETs is 5.80E−07 (/y), which is 12% less than the conventional PSA ETs. In this research, we obtained not only thermal-hydraulics characteristics for the entire break size of a LOCA in view of the deterministic safety

  16. Quantification of LOCA core damage frequency based on thermal-hydraulics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jaehyun, E-mail: chojh@kaeri.re.kr; Park, Jin Hee; Kim, Dong-San; Lim, Ho-Gon

    2017-04-15

    Highlights: • We quantified the LOCA core damage frequency based on the best-estimated success criteria analysis. • The thermal-hydraulic analysis using MARS code has been applied to Korea Standard Nuclear Power Plants. • Five new event trees with new break size boundaries and new success criteria were developed. • The core damage frequency is 5.80E−07 (/y), which is 12% less than the conventional PSA event trees. - Abstract: A loss-of-coolant accident (LOCA) has always been significantly considered one of the most important initiating events. However, most probabilistic safety assessment models, up to now, have undoubtedly adopted the three groups of LOCA, and even an exact break size boundary that used in WASH-1400 reports was published in 1975. With an awareness of the importance of a realistic PSA for a risk-informed application, several studies have tried to find the realistic thermal-hydraulic behavior of a LOCA, and improve the PSA model. The purpose of this research is to obtain realistic results of the LOCA core damage frequency based on a success criteria analysis using the best-estimate thermal-hydraulics code. To do so, the Korea Standard Nuclear Power Plant (KSNP) was selected for this study. The MARS code was used for a thermal hydraulics analysis and the AIMS code was used for the core damage quantification. One of the major findings in the thermal hydraulics analysis was that the decay power is well removed by only a normal secondary cooling in LOCAs of below 1.4 in and by only a high pressure safety injection in LOCAs of 0.8–9.4 in. Based on the thermal hydraulics results regarding new break size boundaries and new success criteria, five new event trees (ETs) were developed. The core damage frequency of new LOCA ETs is 5.80E−07 (/y), which is 12% less than the conventional PSA ETs. In this research, we obtained not only thermal-hydraulics characteristics for the entire break size of a LOCA in view of the deterministic safety

  17. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-01

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved

  18. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-15

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.

  19. Thermal-hydraulic tests for reactor safety system

    International Nuclear Information System (INIS)

    Chun, Se Young; Chung, Moon Ki; Baek, Won Pil

    2002-05-01

    Tests for the safety depressurization system, Sparger adopted for the Korean next generation reactor, APR1400 are carried out for several geometries with the B and C (Blowdown and Condensation) facility in the condition of high temperature and pressure and with a small test facility in the condition of atmospheric temperature and pressure. Tests for the critical heat flux are performed with the RCS(Reactor Coolant System) facility as well as with the Freon CHF Loop in the condition of high temperature and pressure. The atmospheric temperature and pressure facility is utilized for development of the high standard thermal hydraulic measurement technology. The optical method is developed to measure the local thermal-hydraulic behavior for the single and two-phase boiling phenomena

  20. International benchmark study of advanced thermal hydraulic safety analysis codes against measurements on IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hainoun, A., E-mail: pscientific2@aec.org.sy [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Doval, A. [Nuclear Engineering Department, Av. Cmdt. Luis Piedrabuena 4950, C.P. 8400 S.C de Bariloche, Rio Negro (Argentina); Umbehaun, P. [Centro de Engenharia Nuclear – CEN, IPEN-CNEN/SP, Av. Lineu Prestes 2242-Cidade Universitaria, CEP-05508-000 São Paulo, SP (Brazil); Chatzidakis, S. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Ghazi, N. [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Park, S. [Research Reactor Design and Engineering Division, Basic Science Project Operation Dept., Korea Atomic Energy Research Institute (Korea, Republic of); Mladin, M. [Institute for Nuclear Research, Campului Street No. 1, P.O. Box 78, 115400 Mioveni, Arges (Romania); Shokr, A. [Division of Nuclear Installation Safety, Research Reactor Safety Section, International Atomic Energy Agency, A-1400 Vienna (Austria)

    2014-12-15

    Highlights: • A set of advanced system thermal hydraulic codes are benchmarked against IFA of IEA-R1. • Comparative safety analysis of IEA-R1 reactor during LOFA by 7 working teams. • This work covers both experimental and calculation effort and presents new out findings on TH of RR that have not been reported before. • LOFA results discrepancies from 7% to 20% for coolant and peak clad temperatures are predicted conservatively. - Abstract: In the framework of the IAEA Coordination Research Project on “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal hydraulic computational methods and tools for operation and safety analysis of research reactors” the Brazilian research reactor IEA-R1 has been selected as reference facility to perform benchmark calculations for a set of thermal hydraulic codes being widely used by international teams in the field of research reactor (RR) deterministic safety analysis. The goal of the conducted benchmark is to demonstrate the application of innovative reactor analysis tools in the research reactor community, validation of the applied codes and application of the validated codes to perform comprehensive safety analysis of RR. The IEA-R1 is equipped with an Instrumented Fuel Assembly (IFA) which provided measurements for normal operation and loss of flow transient. The measurements comprised coolant and cladding temperatures, reactor power and flow rate. Temperatures are measured at three different radial and axial positions of IFA summing up to 12 measuring points in addition to the coolant inlet and outlet temperatures. The considered benchmark deals with the loss of reactor flow and the subsequent flow reversal from downward forced to upward natural circulation and presents therefore relevant phenomena for the RR safety analysis. The benchmark calculations were performed independently by the participating teams using different thermal hydraulic and safety

  1. Thermal-hydraulic codes validation for safety analysis of NPPs with RBMK

    International Nuclear Information System (INIS)

    Brus, N.A.; Ioussoupov, O.E.

    2000-01-01

    This work is devoted to validation of western thermal-hydraulic codes (RELAP5/MOD3 .2 and ATHLET 1.1 Cycle C) in application to Russian designed light water reactors. Such validation is needed due to features of RBMK reactor design and thermal-hydraulics in comparison with PWR and BWR reactors, for which these codes were developed and validated. These validation studies are concluded with a comparison of calculation results of modeling with the thermal-hydraulics codes with the experiments performed earlier using the thermal-hydraulics test facilities with the experimental data. (authors)

  2. Regulatory support activities of JNES by thermal-hydraulic and safety analyses

    International Nuclear Information System (INIS)

    Kasahara, Fumio

    2008-01-01

    Current status and some related topics on regulatory support activities of Japan Nuclear Energy Safety Organization (JNES) by thermal-hydraulic and safety analyses are reported. The safety of nuclear facilities is secured primarily by plant owners and operators. However, the regulatory body NISA (Nuclear and Industrial Safety Agency) has conducted a strict regulation to confirm the adequacy of the site condition as well as the basic and detailed design. The JNES has been conducting independent analyses from applicants (audit analyses, etc.) by direction of NISA and supporting its review. In addition to the audit analysis, thermal-hydraulic and safety analyses are used in such areas as analytical evaluation for investigation of causes of accidents and troubles, level 2 PSA for risk informed regulation, etc. Recent activities of audit analyses are for the application of Tsuruga 3 and 4 (APWR), the spent fuel storage facility for the establishment, and the LMFBR Monju for the core change. For the trouble event evaluation, the criticality accident analysis of Sika1 was carried out and the evaluation of effectiveness of accident management (AM) measure for Tomari 3 (PWR) and Monju was performed. The analytical codes for these evaluations are continuously revised by reflecting the state-of-art technical information and validated using the information provided by the data from JAEA, OECD project, etc. (author)

  3. Comparative study of Thermal Hydraulic Analysis Codes for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Hoon; Jang, Mi Suk; Han, Kee Soo [Nuclear Engineering Service and Solution Co. Ltd., Daejeon (Korea, Republic of)

    2015-05-15

    Various codes are used for the thermal hydraulic analysis of nuclear reactors. The use of some codes among these is limited by user and some codes are not even open to general person. Thus, the use of alternative code is considered for some analysis. In this study, simple thermal hydraulic behaviors are analyzed using three codes to show that alternative codes are possible for the analysis of nuclear reactors. We established three models of the simple u-tube manometer using three different codes. RELAP5 (Reactor Excursion and Leak Analysis Program), SPACE (Safety and Performance Analysis CodE for nuclear power Plants), GOTHIC (Generation of Thermal Hydraulic Information for Containments) are selected for this analysis. RELAP5 is widely used codes for the analysis of system behavior of PWRs. SPACE has been developed based on RELAP5 for the analysis of system behavior of PWRs and licensing of the code is in progress. And GOTHIC code also has been widely used for the analysis of thermal hydraulic behavior in the containment system. The internal behavior of u-tube manometer was analyzed by RELAP5, SPACE and GOTHIC codes. The general transient behavior was similar among 3 codes. However, the stabilized status of the transient period analyzed by REPAP5 was different from the other codes. It would be resulted from the different physical models used in the other codes, which is specialized for the multi-phase thermal hydraulic behavior analysis.

  4. Comprehensive thermal-hydraulic and thermal-mechanical analysis of core and fuel rods for the safety validation of real refueling at the Kozloduy WWER-440

    Energy Technology Data Exchange (ETDEWEB)

    Stefanova, S; Panajotov, D; Ilieva, B; Vitkova, M; Simeonova, V; Passage, G; Manolova, M [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika

    1996-12-31

    Safety analysis aimed at determination of thermal-hydraulic and thermal-mechanical margins of core and fuel rods has been carried out using computer codes COBSOFM and PIN-micro. Thermal-hydraulic calculations for the part of the core with maximum heat flux during steady-state regime show that the coolant, cladding and fuel temperatures are within the design limits. A severe accident with reactor blackout has been simulated. It is found that at 95% probability level there is no boiling crisis anywhere in the core. The thermal-mechanical parameters of working assembly fuel rod with maximum load have been calculated. The assembly linear power reached a maximum of 25 kW/m during the second fuel cycle, the fuel temperature remaining well below 1000{sup o} C. As the fuel assembly with typical power history has enough safety margins, it was proposed to use it for one more cycle. 4 refs., 12 figs.

  5. Development of thermal hydraulic evaluation code for CANDU reactors

    International Nuclear Information System (INIS)

    Kim, Man Woong; Yu, Seon Oh; Choi, Yong Seog; Shin, Chull; Hwang, Soo Hyun

    2004-02-01

    To enhance the safety of operating CANDU reactors, the establishment of the safety analysis codes system for CANDU reactors is in progress. As for the development of thermal-hydraulic analysis code for CANDU system, the studies for improvement of evaluation model inside RELAP/CANDU code and the development of safety assessment methodology for GSI (Generic Safety Issues) are in progress as a part of establishment of CANDU safety assessment system. To develop the 3-D thermal-hydraulic analysis code for moderator system, the CFD models for analyzing the CANDU-6 moderator circulation are developed. One model uses a structured grid system with the porous media approach for the 380 Calandria tubes in the core region. The other uses a unstructured grid system on the real geometry of 380 Calandria tubes, so that the detailed fluid flow between the Calandria tubes can be observed. As to the development of thermal-hydraulic analysis code for containment, the study on the applicability of CONTAIN 2.0 code to a CANDU containment was conducted and a simulation of the thermal-hydraulic phenomena during the accident was performed. Besides, the model comparison of ESFs (Engineered Safety Features) inside CONTAIN 2.0 code and PRESCON code has also conducted

  6. Nuclear reactor thermal hydraulics safety analysis and thoughts on FUKUSHIMA

    International Nuclear Information System (INIS)

    Ninokata, Hisashi

    2012-01-01

    The first part of this article is to show my thoughts on the accident at Fukushima Daiichi Nuclear Power Station. It is cited from a summary of my lecture talk in Indonesia, in the beginning of the last December, 2011. This talk was based on my previous lecture and seminar talks including those delivered at MIT, June 16, at the ANS Annual Meeting in Hollywood, Florida, June 28 at NURETH-13 in Toronto, September 27, and others. The content is based on the open and latest information available to date in Japan. It may contain some erroneous or uncertain information. I tried to minimize it to my best capability. Also I tried to eliminate any critical issues or opinions that may jeopardize some people who were involved in. The latter half of this article will be excerpts of my recent R and D activities related to the safety-by-design for sodium cooled fast reactors and light water reactors, thermal hydraulics analysis focusing on the simulation-based technology, in particular subchannel analysis and computational fluid dynamics. (J.P.N.)

  7. Trend analysis of troubles caused by thermal-hydraulic phenomena at nuclear power plants

    International Nuclear Information System (INIS)

    Komatsu, Teruo

    2010-01-01

    The Institute of Nuclear Safety System (INSS) is promoting researches to improve the safety and reliability of nuclear power plants. In the present study, our attention was focused on troubles attributed to thermal-hydraulic phenomena in particular, trend analysis were carried out to learn lessons from these troubles and to prevent their recurrence. Through our survey, we found the following two points. First, many thermal-hydraulics related troubles can be attributed to design faults, since we found some events in foreign countries took place after inadequate facility renovation. To ensure appropriate design verification, it is important to take account of state-of-the-art science and technology and at the same time to pay attention to the compatibility with the initial design concept. Second point, thermal-hydraulic related troubles are common and recurrent to nuclear power plants worldwide. Japanese utilities are planning to introduce some of overseas experiences to their plants, such as power uprate and renovations of aged facilities. It is important to learn lessons from experiences paying close attention continuously to overseas trouble events, including thermal-hydraulics related events, and to use them to improve safety and reliability of nuclear power plants. (author)

  8. Development of realistic thermal hydraulic system analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, B. D; Kim, K. D. [and others

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others.

  9. Development of realistic thermal hydraulic system analysis code

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, B. D; Kim, K. D.

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others

  10. Reactor Thermal Hydraulic Numerical Calculation And Modeling

    International Nuclear Information System (INIS)

    Duong Ngoc Hai; Dang The Ba

    2008-01-01

    In the paper the results of analysis of thermal hydraulic state models using the numerical codes such as COOLOD, EUREKA and RELAP5 for simulation of the reactor thermal hydraulic states are presented. The calculations, analyses of reactor thermal hydraulic state and safety were implemented using different codes. The received numerical results, which were compared each to other, to experiment measurement of Dalat (Vietnam) research reactor and published results, show their appropriateness and capacity for analyses of different appropriate cases. (author)

  11. Thermal Hydraulic Tests for Reactor Core Safety

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S. K.; Baek, W. P.; Chun, S. Y. (and others)

    2007-06-15

    The main objectives of the present project are to resolve the current issues of reactor core thermal hydraulics, to develop an advanced measurement and analytical techniques, and to perform reactor core safety verification tests. 6x6 reflood experiments, various heat transfer experiments using Freon, and experiments on the spacer grids effects on the post-dryout are carried out using spacer grids developed in Korea in order to resolve the current issues of the reactor core thermal hydraulics. In order to develop a reflood heat transfer model, the detailed reflood phenomena are visualized and measured using round tube and 2x2 rod bundle. A detailed turbulent mixing phenomenon for subchannels is measured using advanced measurement techniques such as LDV and PIV. MARS and MATRA codes developed in Korea are assessed, verified and improved using the obtained experimental data. Finally, a systematic quality assurance program and experimental data generation system has been constructed in order to increase the reliability of the experimental data.

  12. Current status and future prospects for thermal-hydraulics and safety research

    International Nuclear Information System (INIS)

    Park, G.C.

    2000-01-01

    The present paper is to outline the current activities in Korea for the thermal-hydraulics and safety researches, and furthermore illuminate the future aspect of those field under the umbrella of worldwide nuclear prospect. In Korea, a long-term nuclear research plan has been established since 1992, which was recently funded with a fixed monetary rate of Korean won 1.20 per kWh of electricity produced with nuclear power. 11.5% of the fund is assigned for nuclear safety research in 6 areas. Under this program, 3 axes of research body (KAERI, KINS, University) has been operated with close cooperation. Their role, current activities and long-term plan of each body are introduced in the point of thermal-hydraulics' view. (author)

  13. Development of best estimate auditing code for CANDU thermal hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Lee, W. J.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-04-15

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool, i.e. RELAP5/MOD3. This scope of project is first step of the whole project, thus focus to the establishment of improvement area. The study was performed by reconsideration of the previous code assessment works and investigation of AECL design analysis tools. In order to identify the thermal hydraulic phenomena for events, the whole system of CANDU plant was divided into main functional systems and subcomponents. Each phenomena was addressed to the each subcomponent. FinaIly improvement areas of model development for auditing tool were established based on the identified phenomena.

  14. Thermal-hydraulic analysis of SMART steam generator tube rupture using TASS/SMR-S code

    International Nuclear Information System (INIS)

    Kim, Hee-Kyung; Kim, Soo Hyoung; Chung, Young-Jong; Kim, Hyeon-Soo

    2013-01-01

    Highlights: ► The analysis was performed from the viewpoint of primary coolant leakage. ► The thermal hydraulic responses and the maximum leakage have been identified. ► There is no direct release into the atmosphere caused by an SGTR accident. ► SMART safety system works well against an SGTR accident. - Abstract: A steam generator tube rupture (SGTR) accident analysis for SMART was performed using the TASS/SMR-S code. SMART with a rated thermal power of 330 MWt has been developed at the Korea Atomic Energy Research Institute. The TASS/SMR-S code can analyze the thermal hydraulic phenomena of SMART in a full range of reactor operating conditions. An SGTR is one of the most important accidents from a thermal hydraulic and radiological viewpoint. A conservative analysis against a SMART SGTR was performed. The major concern of this analysis is to find the thermal hydraulic responses and maximum leakage amount from a primary to a secondary side caused by an SGTR accident. A sensitivity study searching for the conservative thermal hydraulic conditions, break locations, reactivity and other conditions was performed. The dominant parameters related with the integral leak are the high RCS pressure, low core inlet coolant temperature and low break location of the SG cassette. The largest integral leak comes to 28 tons in the most conservative case during 1 h. But there is no direct release into the atmosphere because the secondary system pressure is maintained with a sufficient margin for the design pressure. All leaks go to the condenser. The analysis results show that the primary and secondary system pressures are maintained below the design pressure and the SMART safety system is working well against an SGTR accident

  15. Thermal-hydraulic unreliability of passive systems

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Saltos, N.T.

    1995-01-01

    Advanced light water reactor designs like AP600 and the simplified boiling water reactor (SBWR) use passive safety systems for accident prevention and mitigation. Because these systems rely on natural forces for their operation, their unavailability due to hardware failures and human error is significantly smaller than that of active systems. However, the coolant flows predicted to be delivered by these systems can be subject to significant uncertainties, which in turn can lead to a significant uncertainty in the predicted thermal-hydraulic performance of the plant under accident conditions. Because of these uncertainties, there is a probability that an accident sequence for which a best estimate thermal-hydraulic analysis predicts no core damage (success sequence) may actually lead to core damage. For brevity, this probability will be called thermal-hydraulic unreliability. The assessment of this unreliability for all the success sequences requires very expensive computations. Moreover, the computational cost increases drastically as the required thermal-hydraulic reliability increases. The required computational effort can be greatly reduced if a bounding approach can be used that either eliminates the need to compute thermal-hydraulic unreliabilities, or it leads to the analysis of a few bounding sequences for which the required thermal-hydraulic reliability is relatively small. The objective of this paper is to present such an approach and determine the order of magnitude of the thermal-hydraulic unreliabilities that may have to be computed

  16. Proceedings of the 10th international topical meeting on nuclear thermal hydraulics, operation and safety (NUTHOS-10)

    International Nuclear Information System (INIS)

    2014-01-01

    The 10th International Topical Meeting on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-10) in Okinawa, Japan is sponsored by Atomic Energy Society of Japan, in cooperation with the International Atomic Energy Agency, and co-sponsored by American Nuclear Society Thermal Hydraulics Division among others. Enhanced safety and reducing cost are going together, which can be achieved through continued research and development efforts. NUTHOS keeps you abreast of the most updated information in the advancement of science and technology in nuclear thermal hydraulics, operations and safety, and provides you insights into the future. (J.P.N.)

  17. Proceedings of the fourth international topical meeting on nuclear thermal hydraulics, operations and safety. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    More than 100 papers were presented. The meeting was divided in 56 sessions and covered the following topics: Plant Operation, Retrofitting and Maintenance Experience; Steam Generator Operation and Maintenance; Artificial Intelligence and Expert Systems; Seismic Technologies for Plant Design and Operations; Aging Management and Life Extension; Two-Phase Flow Modeling and Applications; Severe Accidents and Degraded Core Thermal Hydraulics; Plant Simulators, Analyzers, and Workstations; Advanced Nuclear Fuel Challenges; Recent Nuclear Power Station Decommissioning Experiences in the USA; Application of Probabilistic risk assessment/Probabilistic safety assessment (PRA/PSA) in Design and Modification; Numerical Modeling in Thermal Hydraulics; General Thermal Hydraulics; Severe Accident Management; Licensing and Regulatory Requirements; Advanced Light Water Reactor Designs to Support Reduced Emergency Planning; Best Estimate loss-of-coolant (LOCA) Methodologies; Plant Instrumentation and Control; LWR Fuel Designs for Improved Thermal Hydraulic Performance; Performance Assessment of Radioactive Waste Disposal; Thermal Hydraulics in Passive Reactor Systems; Advances in Man-Machine Interface Design and the Related Human Factors Engineering; Advances in Measurements and Instrumentation; Computer Aided Technology for non-destructive evaluation (NDE) and Plant Maintenance Plant Uprating; Flow-Accelerated Corrosion in Nuclear Power Plants; Advances in Radiological Measurement and Analysis Risk Management and Assessment; Stability in Thermal Hydraulic Systems; Critical heat flux (CHF) and Post Dryout Heat Transfer; Plant Transient and Accident Modeling.

  18. Proceedings of the fourth international topical meeting on nuclear thermal hydraulics, operations and safety. Vol. 1

    International Nuclear Information System (INIS)

    2004-01-01

    More than 100 papers were presented. The meeting was divided in 56 sessions and covered the following topics: Plant Operation, Retrofitting and Maintenance Experience; Steam Generator Operation and Maintenance; Artificial Intelligence and Expert Systems; Seismic Technologies for Plant Design and Operations; Aging Management and Life Extension; Two-Phase Flow Modeling and Applications; Severe Accidents and Degraded Core Thermal Hydraulics; Plant Simulators, Analyzers, and Workstations; Advanced Nuclear Fuel Challenges; Recent Nuclear Power Station Decommissioning Experiences in the USA; Application of Probabilistic risk assessment/Probabilistic safety assessment (PRA/PSA) in Design and Modification; Numerical Modeling in Thermal Hydraulics; General Thermal Hydraulics; Severe Accident Management; Licensing and Regulatory Requirements; Advanced Light Water Reactor Designs to Support Reduced Emergency Planning; Best Estimate loss-of-coolant (LOCA) Methodologies; Plant Instrumentation and Control; LWR Fuel Designs for Improved Thermal Hydraulic Performance; Performance Assessment of Radioactive Waste Disposal; Thermal Hydraulics in Passive Reactor Systems; Advances in Man-Machine Interface Design and the Related Human Factors Engineering; Advances in Measurements and Instrumentation; Computer Aided Technology for non-destructive evaluation (NDE) and Plant Maintenance Plant Uprating; Flow-Accelerated Corrosion in Nuclear Power Plants; Advances in Radiological Measurement and Analysis Risk Management and Assessment; Stability in Thermal Hydraulic Systems; Critical heat flux (CHF) and Post Dryout Heat Transfer; Plant Transient and Accident Modeling

  19. Proceedings of the fourth international topical meeting on nuclear thermal hydraulics, operations and safety. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    More than 100 papers presented at the meeting were divided in 56 sessions and covered the following topics: Plant Operation, Retrofitting and Maintenance Experience; Steam Generator Operation and Maintenance; Artificial Intelligence and Expert Systems; Seismic Technologies for Plant Design and Operations; Aging Management and Life Extension; Two-Phase Flow Modeling and Applications; Severe Accidents and Degraded Core Thermal Hydraulics; Plant Simulators, Analyzers, and Workstations; Advanced Nuclear Fuel Challenges; Recent Nuclear Power Station Decommissioning Experiences in the USA; Application of Probabilistic risk assessment/Probabilistic safety assessment (PRA/PSA) in Design and Modification; Numerical Modeling in Thermal Hydraulics; General Thermal Hydraulics; Severe Accident Management; Licensing and Regulatory Requirements; Advanced Light Water Reactor Designs to Support Reduced Emergency Planning; Best Estimate loss-of-coolant (LOCA) Methodologies; Plant Instrumentation and Control; LWR Fuel Designs for Improved Thermal Hydraulic Performance; Performance Assessment of Radioactive Waste Disposal; Thermal Hydraulics in Passive Reactor Systems; Advances in Man-Machine Interface Design and the Related Human Factors Engineering; Advances in Measurements and Instrumentation; Computer Aided Technology for non-destructive evaluation (NDE) and Plant Maintenance Plant Uprating; Flow-Accelerated Corrosion in Nuclear Power Plants; Advances in Radiological Measurement and Analysis Risk Management and Assessment; Stability in Thermal Hydraulic Systems; Critical heat flux (CHF) and Post Dryout Heat Transfer; Plant Transient and Accident Modeling.

  20. Proceedings of the fourth international topical meeting on nuclear thermal hydraulics, operations and safety. Vol. 2

    International Nuclear Information System (INIS)

    2004-01-01

    More than 100 papers presented at the meeting were divided in 56 sessions and covered the following topics: Plant Operation, Retrofitting and Maintenance Experience; Steam Generator Operation and Maintenance; Artificial Intelligence and Expert Systems; Seismic Technologies for Plant Design and Operations; Aging Management and Life Extension; Two-Phase Flow Modeling and Applications; Severe Accidents and Degraded Core Thermal Hydraulics; Plant Simulators, Analyzers, and Workstations; Advanced Nuclear Fuel Challenges; Recent Nuclear Power Station Decommissioning Experiences in the USA; Application of Probabilistic risk assessment/Probabilistic safety assessment (PRA/PSA) in Design and Modification; Numerical Modeling in Thermal Hydraulics; General Thermal Hydraulics; Severe Accident Management; Licensing and Regulatory Requirements; Advanced Light Water Reactor Designs to Support Reduced Emergency Planning; Best Estimate loss-of-coolant (LOCA) Methodologies; Plant Instrumentation and Control; LWR Fuel Designs for Improved Thermal Hydraulic Performance; Performance Assessment of Radioactive Waste Disposal; Thermal Hydraulics in Passive Reactor Systems; Advances in Man-Machine Interface Design and the Related Human Factors Engineering; Advances in Measurements and Instrumentation; Computer Aided Technology for non-destructive evaluation (NDE) and Plant Maintenance Plant Uprating; Flow-Accelerated Corrosion in Nuclear Power Plants; Advances in Radiological Measurement and Analysis Risk Management and Assessment; Stability in Thermal Hydraulic Systems; Critical heat flux (CHF) and Post Dryout Heat Transfer; Plant Transient and Accident Modeling

  1. Status and topics of thermal-hydraulic analysis for next-generation LWRs with passive safety systems

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Ohnuki, Akira; Arai, Kenji; Kikuta, Michitaka; Yonomoto, Taisuke; Araya, Fumimasa; Akimoto, Hajime

    1999-01-01

    For increasing of electric power demand and reducing of carbon dioxide exhaust in the 21st century, studies of the next-generation light water reactor (LWR) with passive safety systems are developing in the world: AP-600 (by Westing House Co.); SBWR (by General Electric Co.); SWR1000 (by Siemens Co.); NP21 (by Mitsubishi Heavy Industry Co., et al.); JPSR (by JAERI). The passive equipment using natural circulation and natural convection are installed in the passive safety system, instead of active safety equipment, such as pumps, etc. It remains still as a important issue, however, to verify the reliability on the functions of the passive equipment, since that the driving forces of the passive equipment are small at comparison with the active safety equipment. The various subjects of thermal-hydraulic analysis for the next-generation light water reactors, such as temperature stratification in the passive safety systems, vapor condensation in the mixture of non-condensable gases and the interactions of the passive safety system with the primary cooling system, are illustrated and discussed in the paper. (M. Suetake)

  2. VIPRE-01. a thermal-hydraulic analysis code for reactor cores. Volume 1. Mathematical modeling

    International Nuclear Information System (INIS)

    Stewart, C.W.; Cuta, J.M.; Koontz, A.S.; Kelly, J.M.; Basehore, K.L.; George, T.L.; Rowe, D.S.

    1983-04-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 1: Mathematical Modeling) explains the major thermal hydraulic models and supporting correlations in detail

  3. Advances in thermal hydraulic and neutronic simulation for reactor analysis and safety

    International Nuclear Information System (INIS)

    Tentner, A.M.; Blomquist, R.N.; Canfield, T.R.; Ewing, T.F.; Garner, P.L.; Gelbard, E.M.; Gross, K.C.; Minkoff, M.; Valentin, R.A.

    1993-01-01

    This paper describes several large-scale computational models developed at Argonne National Laboratory for the simulation and analysis of thermal-hydraulic and neutronic events in nuclear reactors and nuclear power plants. The impact of advanced parallel computing technologies on these computational models is emphasized

  4. Finite mixture models for sensitivity analysis of thermal hydraulic codes for passive safety systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, Francesco, E-mail: francesco.dimaio@polimi.it [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Nicola, Giancarlo [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Zio, Enrico [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Chair on System Science and Energetic Challenge Fondation EDF, Ecole Centrale Paris and Supelec, Paris (France); Yu, Yu [School of Nuclear Science and Engineering, North China Electric Power University, 102206 Beijing (China)

    2015-08-15

    Highlights: • Uncertainties of TH codes affect the system failure probability quantification. • We present Finite Mixture Models (FMMs) for sensitivity analysis of TH codes. • FMMs approximate the pdf of the output of a TH code with a limited number of simulations. • The approach is tested on a Passive Containment Cooling System of an AP1000 reactor. • The novel approach overcomes the results of a standard variance decomposition method. - Abstract: For safety analysis of Nuclear Power Plants (NPPs), Best Estimate (BE) Thermal Hydraulic (TH) codes are used to predict system response in normal and accidental conditions. The assessment of the uncertainties of TH codes is a critical issue for system failure probability quantification. In this paper, we consider passive safety systems of advanced NPPs and present a novel approach of Sensitivity Analysis (SA). The approach is based on Finite Mixture Models (FMMs) to approximate the probability density function (i.e., the uncertainty) of the output of the passive safety system TH code with a limited number of simulations. We propose a novel Sensitivity Analysis (SA) method for keeping the computational cost low: an Expectation Maximization (EM) algorithm is used to calculate the saliency of the TH code input variables for identifying those that most affect the system functional failure. The novel approach is compared with a standard variance decomposition method on a case study considering a Passive Containment Cooling System (PCCS) of an Advanced Pressurized reactor AP1000.

  5. Thermal hydraulic reactor safety analyses and experiments

    International Nuclear Information System (INIS)

    Holmstroem, H.; Eerikaeinen, L.; Kervinen, T.; Kilpi, K.; Mattila, L.; Miettinen, J.; Yrjoelae, V.

    1989-04-01

    The report introduces the results of the thermal hydraulic reactor safety research performed in the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) during the years 1972-1987. Also practical applications i.e. analyses for the safety authorities and power companies are presented. The emphasis is on description of the state-of-the-art know how. The report describes VTT's most important computer codes, both those of foreign origin and those developed at VTT, and their assessment work, VTT's own experimental research, as well as international experimental projects and other forms of cooperation VTT has participated in. Appendix 8 contains a comprehensive list of the most important publications and technical reports produced. They present the content and results of the research in detail.(orig.)

  6. Statistical safety evaluation of BWR turbine trip scenario using coupled neutron kinetics and thermal hydraulics analysis code SKETCH-INS/TRACE5.0

    International Nuclear Information System (INIS)

    Ichikawa, Ryoko; Masuhara, Yasuhiro; Kasahara, Fumio

    2012-01-01

    The Best Estimate Plus Uncertainty (BEPU) method has been prepared for the regulatory cross-check analysis at Japan Nuclear Energy Safety Organization (JNES) on base of the three-dimensional neutron-kinetics/thermal-hydraulics coupled code SKETCH-INS/TRACE5.0. In the preparation, TRACE5.0 is verified against the large-scale thermal-hydraulic tests carried out with NUPEC facility. These tests were focused on the pressure drop of steam-liquid two phase flow and void fraction distribution. From the comparison of the experimental data with other codes (RELAP5/MOD3.3 and TRAC-BF1), TRACE5.0 was judged better than other codes. It was confirmed that TRACE5.0 has high reliability for thermal hydraulics behavior and are used as a best-estimate code for the statistical safety evaluation. Next, the coupled code SKETCH-INS/TRACE5.0 was applied to turbine trip tests performed at the Peach Bottom-2 BWR4 Plant. The turbine trip event shows the rapid power peak due to the voids collapse with the pressure increase. The analyzed peak value of core power is better simulated than the previous version SKETCH-INS/TRAC-BF1. And the statistical safety evaluation using SKETCH-INS/TRACE5.0 was applied to the loss of load transient for examining the influence of the choice of sampling method. (author)

  7. Thermal-hydraulics technological strategy roadmap for LWR safety improvement and development

    International Nuclear Information System (INIS)

    Nakamura, Hideo; Arai, Kenji; Oikawa, Hirohide

    2015-01-01

    New version of the Thermal-Hydraulics Safety Evaluation Fundamental Technology Enhancement Strategy Roadmap (TH-RM) was developed by the Atomic Energy Society of Japan (AESJ) for LWR safety improvement and development. The 1st version of TH-RM was prepared in 2009 under collaboration of utilities, vendors, universities, research institutes and technical support organizations (TSO) for regulatory body. The revision was made by three sub-working groups (SWGs) by considering the lessons learned from the Fukushima Daiichi Accident. The 'safety assessment' SWG pursued development of computer codes for safety assessment. The 'fundamental technology' SWG pursued safety improvement and risk reduction via accident management (AM) measures by referring the technical map for severe accident (SA) established by the 'severe accident' SWG. Phenomena and components for counter-measures and/or proper prediction are identified by going through SA progression in both reactor and spent-fuel pool of PWR and BWR. Twelve important technology development subjects were identified, which include melt coolability enhancement to maintain integrity of containment vessel. Fact Sheet was developed to describe each of identified and selected R and D subjects. External hazards are also considered how to cope with from thermal-hydraulic safety point of view. This paper summarizes the revised TH-RM with several examples and future perspectives. (author)

  8. HANARO thermal hydraulic accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chul; Kim, Heon Il; Lee, Bo Yook; Lee, Sang Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    For the safety assessment of HANARO, accident analyses for the anticipated operational transients, accident scenarios and limiting accident scenarios were conducted. To do this, the commercial nuclear reactor system code. RELAP5/MOD2 was modified to RELAP5/KMRR; the thermal hydraulic correlations and the heat exchanger model was changed to incorporate HANARO characteristics. This report summarizes the RELAP/KMRR calculation results and the subchannel analyses results based on the RELAP/KMRR results. During the calculation, major concern was placed on the integrity of the fuel. For all the scenarios, the important accident analysis parameters, i.e., fuel centerline temperatures and the minimum critical heat flux ratio(MCHFR), satisfied safe design limits. It was verified, therefore, that the HANARO was safely designed. 21 tabs., 89 figs., 39 refs. (Author) .new.

  9. Virginia Power thermal-hydraulics methods

    International Nuclear Information System (INIS)

    Anderson, R.C.; Basehore, K.L.; Harrell, J.R.

    1987-01-01

    Virginia Power's nuclear safety analysis group is responsible for the safety analysis of reload cores for the Surry and North Anna power stations, including the area of core thermal-hydraulics. Postulated accidents are evaluated for potential departure from nucleate boiling violations. In support of these tasks, Virginia Power has employed the COBRA code and the W-3 and WRB-1 DNB correlations. A statistical DNBR methodology has also been developed. The code, correlations and statistical methodology are discussed

  10. Screening of Gas-Cooled Reactor Thermal-Hydraulic and Safety Analysis Tools and Experimental Database

    International Nuclear Information System (INIS)

    Lee, Won Jae; Kim, Min Hwan; Lee, Seung Wook

    2007-08-01

    This report is a final report of I-NERI Project, 'Screening of Gas-cooled Reactor Thermal Hydraulic and Safety Analysis Tools and Experimental Database 'jointly carried out by KAERI, ANL and INL. In this study, we developed the basic technologies required to develop and validate the VHTR TH/safety analysis tools and evaluated the TH/safety database information. The research tasks consist of; 1) code qualification methodology (INL), 2) high-level PIRTs for major nucleus set of events (KAERI, ANL, INL), 3) initial scaling and scoping analysis (ANL, KAERI, INL), 4) filtering of TH/safety tools (KAERI, INL), 5) evaluation of TH/safety database information (KAERI, INL, ANL) and 6) key scoping analysis (KAERI). The code qualification methodology identifies the role of PIRTs in the R and D process and the bottom-up and top-down code validation methods. Since the design of VHTR is still evolving, we generated the high-level PIRTs referencing 600MWth block-type GT-MHR and 400MWth pebble-type PBMR. Nucleus set of events that represents the VHTR safety and operational transients consists of the enveloping scenarios of HPCC (high pressure conduction cooling: loss of primary flow), LPCC/Air-Ingress (low pressure conduction cooling: loss of coolant), LC (load changes: power maneuvering), ATWS (anticipated transients without scram: reactivity insertion), WS (water ingress: water-interfacing system break) and HU (hydrogen-side upset: loss of heat sink). The initial scaling analysis defines dimensionless parameters that need to be reflected in mixed convection modeling and the initial scoping analysis provided the reference system transients used in the PIRTs generation. For the PIRTs phenomena, we evaluated the modeling capability of the candidate TH/safety tools and derived a model improvement need. By surveying and evaluating the TH/safety database information, a tools V and V matrix has been developed. Through the key scoping analysis using available database, the modeling

  11. Screening of Gas-Cooled Reactor Thermal-Hydraulic and Safety Analysis Tools and Experimental Database

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Kim, Min Hwan; Lee, Seung Wook (and others)

    2007-08-15

    This report is a final report of I-NERI Project, 'Screening of Gas-cooled Reactor Thermal Hydraulic and Safety Analysis Tools and Experimental Database 'jointly carried out by KAERI, ANL and INL. In this study, we developed the basic technologies required to develop and validate the VHTR TH/safety analysis tools and evaluated the TH/safety database information. The research tasks consist of; 1) code qualification methodology (INL), 2) high-level PIRTs for major nucleus set of events (KAERI, ANL, INL), 3) initial scaling and scoping analysis (ANL, KAERI, INL), 4) filtering of TH/safety tools (KAERI, INL), 5) evaluation of TH/safety database information (KAERI, INL, ANL) and 6) key scoping analysis (KAERI). The code qualification methodology identifies the role of PIRTs in the R and D process and the bottom-up and top-down code validation methods. Since the design of VHTR is still evolving, we generated the high-level PIRTs referencing 600MWth block-type GT-MHR and 400MWth pebble-type PBMR. Nucleus set of events that represents the VHTR safety and operational transients consists of the enveloping scenarios of HPCC (high pressure conduction cooling: loss of primary flow), LPCC/Air-Ingress (low pressure conduction cooling: loss of coolant), LC (load changes: power maneuvering), ATWS (anticipated transients without scram: reactivity insertion), WS (water ingress: water-interfacing system break) and HU (hydrogen-side upset: loss of heat sink). The initial scaling analysis defines dimensionless parameters that need to be reflected in mixed convection modeling and the initial scoping analysis provided the reference system transients used in the PIRTs generation. For the PIRTs phenomena, we evaluated the modeling capability of the candidate TH/safety tools and derived a model improvement need. By surveying and evaluating the TH/safety database information, a tools V and V matrix has been developed. Through the key scoping analysis using available database, the

  12. Thermal, thermo-hydraulic and thermo-mechanic analysis for fuel elements of IEA-R1 reactor at 5MW

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Silva Macedo, L.V. da

    1989-01-01

    In connection with the on going conversion of IEA-R1 Research Reactor, operated by IPEN-CNEN/SP, from the use of highly enriched uranium (HEU) fuel to the use of low enriched uranium (LEU) fuel, steady-state thermal and thermo-hydraulic analysis of both existing HEU and proposed LEU cores under 2 MW operating conditions have been carried out. Keeping in mind the possibility of power upgrading, steady-state thermal, thermo-hydraulic and thermomechanical analysis of proposed LEU core under 5 MW operating conditions have also been carried out. The thermal and thermo-hydraulic analysis at 2 MW show that the conversion of the existing HEU core to be proposed LEU core will not change the reactor safety margins. Although the upgrading of the reactor power to 5 MW will result in safety margins lower than in case of 2MW, these will be still sufficient for optimum operation and safe behaviour. The thermomechanical analysis at 5 MW show that the thermal stresses induced in the fuel element will satisfy the design limits for mechanical strenght and elastic stability. (author) [pt

  13. Challenges in coupled thermal-hydraulics and neutronics simulations for LWR safety analysis

    International Nuclear Information System (INIS)

    Ivanov, Kostadin; Avramova, Maria

    2007-01-01

    The simulation of nuclear power plant accident conditions requires three-dimensional (3D) modeling of the reactor core to ensure a realistic description of physical phenomena. The operational flexibility of Light Water Reactor (LWR) plants can be improved by utilizing accurate 3D coupled neutronics/thermal-hydraulics calculations for safety margins evaluations. There are certain requirements to the coupling of thermal-hydraulic system codes and neutron-kinetics codes that ought to be considered. The objective of these requirements is to provide accurate solutions in a reasonable amount of CPU time in coupled simulations of detailed operational transient and accident scenarios. These requirements are met by the development and implementation of six basic components of the coupling methodologies: ways of coupling (internal or external coupling); coupling approach (integration algorithm or parallel processing); spatial mesh overlays; coupled time-step algorithms; coupling numerics (explicit, semi-implicit and implicit schemes); and coupled convergence schemes. These principles of the coupled simulations are discussed in details along with the scientific issues associated with the development of appropriate neutron cross-section libraries for coupled code transient modeling. The current trends in LWR nuclear power generation and regulation as well as the design of next generation LWR reactor concepts along with the continuing computer technology progress stimulate further development of these coupled code systems. These efforts have been focused towards extending the analysis capabilities as well as refining the scale and level of detail of the coupling. This article analyses the coupled phenomena and modeling challenges on both global (assembly-wise) and local (pin-wise) levels. The issues related to the consistent qualification of coupled code systems as well as their application to different types of LWR transients are presented. Finally, the advances in numerical

  14. Bootstrap and Order Statistics for Quantifying Thermal-Hydraulic Code Uncertainties in the Estimation of Safety Margins

    Directory of Open Access Journals (Sweden)

    Enrico Zio

    2008-01-01

    Full Text Available In the present work, the uncertainties affecting the safety margins estimated from thermal-hydraulic code calculations are captured quantitatively by resorting to the order statistics and the bootstrap technique. The proposed framework of analysis is applied to the estimation of the safety margin, with its confidence interval, of the maximum fuel cladding temperature reached during a complete group distribution blockage scenario in a RBMK-1500 nuclear reactor.

  15. Steady-state thermal hydraulic analysis and flow channel blockage accident analysis of JRR-3 silicide core

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1997-03-01

    JRR-3 is a light water moderated and cooled, beryllium and heavy water reflected pool type research reactor using low enriched uranium (LEU) plate-type fuels. Its thermal power is 20 MW. The core conversion program from uranium-aluminum (UAl x -Al) dispersion type fuel (aluminide fuel) to uranium-silicon-aluminum (U 3 Si 2 -Al) dispersion type fuel (silicide fuel) is currently conducted at the JRR-3. This report describes about the steady-state thermal hydraulic analysis results and the flow channel blockage accident analysis result. In JRR-3, there are two operation mode. One is high power operation mode up to 20 MW, under forced convection cooling using the primary and the secondary cooling systems. The other is low power operation mode up to 200 kW, under natural circulation cooling between the reactor core and the reactor pool without the primary and the secondary cooling systems. For the analysis of the flow channel blockage accident, COOLOD code was used. On the other hand, steady-state thermal hydraulic analysis for both of the high power operation mode under forced convection cooling and low power operation under natural convection cooling, COOLOD-N2 code was used. From steady-state thermal hydraulic analysis results of both forced and natural convection cooling, fuel temperature, minimum DNBR etc. meet the design criteria and JRR-3 LEU silicide core has enough safety margin under normal operation conditions. Furthermore, flow channel blockage accident analysis results show that one channel flow blockage accident meet the safety criteria for accident conditions which have been established for JRR-3 LEU silicide core. (author)

  16. Development of steady thermal-hydraulic analysis code for China advanced research reactor

    International Nuclear Information System (INIS)

    Tian Wenxi; Qiu Suizheng; Guo Yun; Su Guanghui; Jia Dounan; Liu Tiancai; Zhang Jianwei

    2006-01-01

    A multi-channel model steady-state thermal-hydraulic analysis code was developed for China Advanced Research Reactor (CARR). By simulating the whole reactor core, the detailed flow distribution in the core was obtained. The result shows that the structure size plays the most important role in flow distribution and the influence of core power could be neglected under single-phase flow. The temperature field of fuel element under unsymmetrical cooling condition was also obtained, which is necessary for the further study such as stress analysis etc. of the fuel element. At the same time, considering the hot channel effect including engineering factor and nuclear factor, calculation of hot channel was carried out and it is proved that all thermal-hydraulic parameters accord with the Safety Regulation of CARR. (authors)

  17. Thermal hydraulic issues and challenges for current and new generation FBRs

    Energy Technology Data Exchange (ETDEWEB)

    Chellapandi, P.; Velusamy, K., E-mail: kvelu@igcar.gov.in

    2015-12-01

    Highlights: • We present challenges in thermal hydraulic design of sodium cooled fast reactors. • We present roadmap of Indian fast reactor program and innovative design concepts. • Analysis methodology for thermal striping and thermal stratification are highlighted. • Design solutions for gas entrainment are presented. • Experimental approaches for normal and post accident decay heat removal are highlighted. - Abstract: Pool type sodium cooled fast reactors pose several design challenges and among them, certain thermal hydraulics and structural mechanics issues are special. High frequency temperature fluctuations due to thermal striping, thermal stratifications and sodium free level fluctuations at the liquid–cover gas interfaces are to be investigated carefully to eliminate high cycle thermal fatigue of structures. Solutions to address the core thermal hydraulics call for high power computing. Innovative concepts and methods are developed to carry out plant dynamics and safety studies. Particularly, extensive numerical and experimental simulation techniques are needed for understanding and solving the gas entrainment mechanisms and its effects on core safety. Though decay heat removal through natural convection is achievable in a pool type SFR, demonstration of design solutions conceived in the reactor and performance of diverse systems under all operating conditions, especially over prolonged station blackout situations needs advanced CFD computations and should be validated by relatively large scale simulated experiments. These issues are addressed in this paper under five broad topics: special thermal hydraulic issues to be addressed in SFR, thermal hydraulic design and analysis, plant dynamics studies, safety studies and evolving thermal hydraulic studies for the future FBRs. The 500 MWe Prototype Fast Breeder Reactor (PFBR) is taken as the reference design for addressing the issues. Indian fast reactor programme is highlighted in the introduction

  18. Views on the future of thermal hydraulic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M. [Purdue Univ., West Lafayette, IN (United States)

    1997-07-01

    It is essential for the U.S. NRC to sustain the highest level of the thermal-hydraulics and reactor safety research expertise and continuously improve their accident analysis capability. Such expertise should span over four different areas which are strongly related to each other. These are: (1) Reactor Safety Code Development, (2) Two-phase Flow Modeling, (3) Instrumentation and Fundamental Experimental Research, and (4) Separate Effect and Integral Test. The NRC is already considering a new effort in the area of advanced thermal-hydraulics effort. Its success largely depends on the availability of a significantly improved two-phase flow formulation and constitutive relations supported by detailed experimental data. Therefore, it is recommended that the NRC start significant research efforts in the areas of two-phase flow modeling, instrumentation, basic and separate effect experiments which should be pursued systematically and with clearly defined objectives. It is desirable that some international program is developed in this area. This paper is concentrated on those items in the thermal-hydraulic area which eventually determine the quality of future accident analysis codes.

  19. Views on the future of thermal hydraulic modeling

    International Nuclear Information System (INIS)

    Ishii, M.

    1997-01-01

    It is essential for the U.S. NRC to sustain the highest level of the thermal-hydraulics and reactor safety research expertise and continuously improve their accident analysis capability. Such expertise should span over four different areas which are strongly related to each other. These are: (1) Reactor Safety Code Development, (2) Two-phase Flow Modeling, (3) Instrumentation and Fundamental Experimental Research, and (4) Separate Effect and Integral Test. The NRC is already considering a new effort in the area of advanced thermal-hydraulics effort. Its success largely depends on the availability of a significantly improved two-phase flow formulation and constitutive relations supported by detailed experimental data. Therefore, it is recommended that the NRC start significant research efforts in the areas of two-phase flow modeling, instrumentation, basic and separate effect experiments which should be pursued systematically and with clearly defined objectives. It is desirable that some international program is developed in this area. This paper is concentrated on those items in the thermal-hydraulic area which eventually determine the quality of future accident analysis codes

  20. Thermal-hydraulic interfacing code modules for CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Gold, M.; Sills, H. [Ontario Hydro Nuclear, Toronto (Canada)] [and others

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  1. Thermal-hydraulic interfacing code modules for CANDU reactors

    International Nuclear Information System (INIS)

    Liu, W.S.; Gold, M.; Sills, H.

    1997-01-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis

  2. Thermal hydraulic analysis of aggressive secondary cooldown in a small break loss of coolant accident with a total loss of high pressure safety injection

    International Nuclear Information System (INIS)

    Han, Seok Jung; Lim, Ho Gon; Yang, Joon Eon

    2003-01-01

    To support the development of a Probabilistic Safety Assessment (PSA) model usable in Riskinformed Applications (RIA) for Korea Standard Nuclear power Plants (KSNP), we have performed a thermal hydraulic analysis of Aggressive Secondary Cooldown (ASC) in a 2-inch Small Break Loss Of Coolant Accident (SBLOCA) with a total loss of High Pressure Safety Injection (HPSI). The present study focuses on the estimation of the success criteria of ASC, and the enhanced understanding of the detailed thermal hydraulic behavior and phenomena. The results have shown that the Reactor Coolant System (RCS) pressure can be reduced to the Low Pressure Safety Injection (LPSI) operation conditions without core damage. It was also shown that more relaxed success criteria compared to those in the previous PSA models of KSNP could be used in the new PSA model. However, it was found that the results could be affected by various parameters related with ASC operation, i.e., reference temperature for the calculation of the cooldown rate and its control method

  3. Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor

    International Nuclear Information System (INIS)

    Hashim, Zaredah; Lanyau, Tonny Anak; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi; Azhar, Noraishah Syahirah

    2016-01-01

    The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel’s center and surface, cladding, coolant temperatures as well as DNBR’s values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR

  4. Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor

    Science.gov (United States)

    Hashim, Zaredah; Lanyau, Tonny Anak; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi; Azhar, Noraishah Syahirah

    2016-01-01

    The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel's center and surface, cladding, coolant temperatures as well as DNBR's values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.

  5. Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Zaredah, E-mail: zaredah@nm.gov.my; Lanyau, Tonny Anak, E-mail: tonny@nm.gov.my; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi [Reactor Technology Centre, Technical Support Division, Malaysia Nuclear Agency, Ministry of Science, Technology and Innovation, Bangi, 43000, Kajang, Selangor Darul Ehsan (Malaysia); Azhar, Noraishah Syahirah [Universiti Teknologi Malaysia, 80350, Johor Bahru, Johor Darul Takzim (Malaysia)

    2016-01-22

    The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel’s center and surface, cladding, coolant temperatures as well as DNBR’s values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.

  6. Steady-state thermal-hydraulic design analysis of the Advanced Neutron Source reactor

    International Nuclear Information System (INIS)

    Yoder, G.L. Jr.; Dixon, J.R.; Elkassabgi, Y.; Felde, D.K.; Giles, G.E.; Harrington, R.M.; Morris, D.G.; Nelson, W.R.; Ruggles, A.E.; Siman-Tov, M.; Stovall, T.K.

    1994-05-01

    The Advanced Neutron Source (ANS) is a research reactor that is planned for construction at Oak Ridge National Laboratory. This reactor will be a user facility with the major objective of providing the highest continuous neutron beam intensities of any reactor in the world. Additional objectives for the facility include providing materials irradiation facilities and isotope production facilities as good as, or better than, those in the High Flux Isotope Reactor. To achieve these objectives, the reactor design uses highly subcooled heavy water as both coolant and moderator. Two separate core halves of 67.6-L total volume operate at an average power density of 4.5 MW(t)/L, and the coolant flows upward through the core at 25 m/s. Operating pressure is 3.1 MPa at the core inlet with a 1.4-MPa pressure drop through the core region. Finally, in order to make the resources available for experimentation, the fuel is designed to provide a 17-d fuel cycle with an additional 4 d planned in each cycle for the refueling process. This report examines the codes and models used to develop the thermal-hydraulic design for ANS, as well as the correlations and physical data; evaluates thermal-hydraulic uncertainties; reports on thermal-hydraulic design and safety analysis; describes experimentation in support of the ANS reactor design and safety analysis; and provides an overview of the experimental plan

  7. Thermal hydraulic model validation for HOR mixed core fuel management

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Vries, J.W. de; Leege, P.F.A. de

    1997-01-01

    A thermal-hydraulic core management model has been developed for the Hoger Onderwijsreactor (HOR), a 2 MW pool-type university research reactor. The model was adopted for safety analysis purposes in the framework of HEU/LEU core conversion studies. It is applied in the thermal-hydraulic computer code SHORT (Steady-state HOR Thermal-hydraulics) which is presently in use in designing core configurations and for in-core fuel management. An elaborate measurement program was performed for establishing the core hydraulic characteristics for a variety of conditions. The hydraulic data were obtained with a dummy fuel element with special equipment allowing a.o. direct measurement of the true core flow rate. Using these data the thermal-hydraulic model was validated experimentally. The model, experimental tests, and model validation are discussed. (author)

  8. Development of best estimate auditing code for CANDU thermal hydraulic safety analysis

    International Nuclear Information System (INIS)

    Hwnag, M.

    2001-04-01

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool , i.e. RELAP5/MOD3. This scope of project is a fourth step of the whole project, applying the RELAP5/MOD3/CANDU+ version for the real CANDU plant LOCA Analysis and D2O leakage incident. There are three main models under investigation, i.e. Moody critical flow model, flow regime model of horizontal CANDU bundle, and fuel element heatup model when the stratification occurs, especially when CANDU LOCA is tested. Also, for Wolsung unit 1 D2O leakage incident analysis, the plant behavior is predicited with the newly developed version for the first 1000 seconds after onset of the incident, with the main interest aiming for system pressure, level control system, and thermal hydraulic transient behavior of the secondary system. The model applided for this particular application includes heat transfer model of nuclear fuel assembly, decay heat model, and MOV (Motor Operated Valve) model. Finally, the code maintenance work, mainly correcting the known errors, is presented

  9. Thermal-hydraulic methods in fast reactor safety

    International Nuclear Information System (INIS)

    Weber, D.P.; Briggs, L.L.

    1985-01-01

    Methods for the solution of thermal-hydraulic problems in liquid metal fast breeder reactors (LMFBRs) arising primarily from transient accident analysis are reviewed. Principal emphasis is given to the important phenomenological issues of sodium boiling and fuel motion. Descriptions of representative phenomenological and mathematical models, computational algorithms, advantages and limitations of the approaches, and current research needs and directions are provided

  10. Development of thermal-hydraulic models for the safety evaluation of CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Young; Jung, Yun Sik; Hwang, Gi Suk; Kim, Nam Seok [Handong Univ., Pohang (Korea, Republic of); No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2004-02-15

    The objective of the present research is to evaluate the safety analysis for CANDU and to improve the Horizontal Stratification Entrainment Model (HSEM) of RELAP5/MOD3.3. This report includes two items the one is the experimental study of entrainment at horizontal pipe with {+-} 36 .deg. C , {+-} 72 .deg. C branch pies, the other is the model improvement of the moderator heat sink in the Calandria. The off-take experiments on onset of entrainment and branch quality were investigated by using water and air as working fluid, and the experimental data were compared by the previous correlations. The previous correlations could not expect experimental results, thus the weak points of the previous correlations were investigated. The improvement of the previous model continues as the next year research. The thermal hydraulic scaling analysis of SPEL, STERN and ideal linear scaling analysis have been studied. As a result, a new scaling method were needed to design a new experimental facility (HGU). A new scaling method with 1/8 length scale was applied. From these results, the thermal hydraulic model for CFD code simulation was designed and test apparatus has been made. The moderator temperature distribution experiments and CFD code simulation will be continued in next year.

  11. Current and anticipated uses of thermal hydraulic codes in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Doo; Chang, Won-Pyo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    In Korea, the current uses of thermal hydraulic codes are categorized into 3 areas. The first application is in designing both nuclear fuel and NSSS. The codes have usually been introduced based on the technology transfer programs agreed between KAERI and the foreign vendors. Another area is in the supporting of the plant operations and licensing by the utility. The third category is research purposes. In this area assessments and some applications to the safety issue resolutions are major activities using the best estimate thermal hydraulic codes such as RELAP5/MOD3 and CATHARE2. Recently KEPCO plans to couple thermal hydraulic codes with a neutronics code for the design of the evolutionary type reactor by 2004. KAERI also plans to develop its own best estimate thermal hydraulic code, however, application range is different from KEPCO developing code. Considering these activities, it is anticipated that use of the best estimate hydraulic analysis code developed in Korea may be possible in the area of safety evaluation within 10 years.

  12. Progress of the DUPIC fuel compatibility analysis (II) - thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Choi, Hang Bok

    2005-03-01

    Thermal-hydraulic compatibility of the DUPIC fuel bundle with a 713 MWe Canada deuterium uranium (CANDU-6) reactor was studied by using both the single channel and sub-channel analysis methods. The single channel analysis provides the fuel channel flow rate, pressure drop, critical channel power, and the channel exit quality, which are assessed against the thermal-hydraulic design requirements of the CANDU-6 reactor. The single channel analysis by the NUCIRC code showed that the thermal-hydraulic performance of the DUPIC fuel is not different from that of the standard CANDU fuel. Regarding the local flow characteristics, the sub-channel analysis also showed that the uncertainty of the critical channel power calculation for the DUPIC fuel channel is very small. As a result, both the single and sub-channel analyses showed that the key thermal-hydraulic parameters of the DUPIC fuel channel do not deteriorate compared to the standard CANDU fuel channel.

  13. Thermal-hydraulic analysis for wire-wrapped PWR cores

    Energy Technology Data Exchange (ETDEWEB)

    Diller, P. [General Electric Company, 3901 Castle Hayne Rd., Wilmington, NC 28401 (United States)], E-mail: pdiller@gmail.com; Todreas, N. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: todreas@mit.edu; Hejzlar, P. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2009-08-15

    This work focuses on the steady-state and transient thermal-hydraulic analyses for PWR cores using wire wraps in a hexagonal array with either U (45% w/o)-ZrH{sub 1.6} (referred to as U-ZrH{sub 1.6}) or UO{sub 2} fuels. Equivalences (thermal-hydraulic and neutronic) were created between grid spacer and wire wrap designs, and were used to apply results calculated for grid spacers to wire wrap designs. Design limits were placed on the pressure drop, critical heat flux (CHF), fuel and cladding temperature and vibrations. The vibrations limits were imposed for flow-induced vibrations (FIV) and thermal-hydraulic vibrations (THV). The transient analysis examined an overpower accident, loss of coolant accident (LOCA) and loss of flow accident (LOFA). The thermal-hydraulic performance of U-ZrH{sub 1.6} and UO{sub 2} were found very similar. Relative to grid spacer designs, wire wrap designs were found to have smaller fretting wear, substantially lower pressure drop and higher CHF. As a result, wire wrap cores were found to offer substantially higher maximum powers than grid spacer cores, allowing for a 25% power increase relative to the grid spacer uprate [Shuffler, C.A., Malen, J.A., Trant, J.M., Todreas, N.E., 2009a. Thermal-hydraulic analysis for grid supported and inverted fueled PWR cores. Nuclear Technology (this special issue devoted to hydride fuel in LWRs)] and a 58% power increase relative to the reference core.

  14. A HISTORICAL PERSPECTIVE OF NUCLEAR THERMAL HYDRAULICS

    Energy Technology Data Exchange (ETDEWEB)

    D’Auria, F; Rohatgi, Upendra S.

    2017-01-12

    The nuclear thermal-hydraulics discipline was developed following the needs for nuclear power plants (NPPs) and, to a more limited extent, research reactors (RR) design and safety. As in all other fields where analytical methods are involved, nuclear thermal-hydraulics took benefit of the development of computers. Thermodynamics, rather than fluid dynamics, is at the basis of the development of nuclear thermal-hydraulics together with the experiments in complex two-phase situations, namely, geometry, high thermal density, and pressure.

  15. Thermal-hydraulic analysis and design improvement for coolant channel of ITER shield block

    International Nuclear Information System (INIS)

    Zhao Ling; Li Huaqi; Zheng Jiantao; Yi Jingwei; Kang Weishan; Chen Jiming

    2013-01-01

    As an important part for ITER, shield block is used to shield the neutron heat. The structure design of shield block, especially the inner coolant channel design will influence its cooling effect and safety significantly. In this study, the thermal-hydraulic analysis for shield block has been performed by the computational fluid dynamics software, some optimization suggestions have been proposed and thermal-hydraulic characteristics of the improved model has been analyzed again. The analysis results for improved model show that pressure drop through flow path near the inlet and outlet region of the shield block has been reduced, and the total pressure drop in cooling path has been reduced too; the uniformity of the mass flowrate distribution and the velocity distribution have been improved in main cooling branches; the local highest temperature of solid domain reduced considerably, which could avoid thermal stress becoming too large because of coolant effect unevenly. (authors)

  16. Thermal reactor safety

    International Nuclear Information System (INIS)

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport

  17. Thermal reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  18. High fidelity thermal-hydraulic analysis using CFD and massively parallel computers

    International Nuclear Information System (INIS)

    Weber, D.P.; Wei, T.Y.C.; Brewster, R.A.; Rock, Daniel T.; Rizwan-uddin

    2000-01-01

    Thermal-hydraulic analyses play an important role in design and reload analysis of nuclear power plants. These analyses have historically relied on early generation computational fluid dynamics capabilities, originally developed in the 1960s and 1970s. Over the last twenty years, however, dramatic improvements in both computational fluid dynamics codes in the commercial sector and in computing power have taken place. These developments offer the possibility of performing large scale, high fidelity, core thermal hydraulics analysis. Such analyses will allow a determination of the conservatism employed in traditional design approaches and possibly justify the operation of nuclear power systems at higher powers without compromising safety margins. The objective of this work is to demonstrate such a large scale analysis approach using a state of the art CFD code, STAR-CD, and the computing power of massively parallel computers, provided by IBM. A high fidelity representation of a current generation PWR was analyzed with the STAR-CD CFD code and the results were compared to traditional analyses based on the VIPRE code. Current design methodology typically involves a simplified representation of the assemblies, where a single average pin is used in each assembly to determine the hot assembly from a whole core analysis. After determining this assembly, increased refinement is used in the hot assembly, and possibly some of its neighbors, to refine the analysis for purposes of calculating DNBR. This latter calculation is performed with sub-channel codes such as VIPRE. The modeling simplifications that are used involve the approximate treatment of surrounding assemblies and coarse representation of the hot assembly, where the subchannel is the lowest level of discretization. In the high fidelity analysis performed in this study, both restrictions have been removed. Within the hot assembly, several hundred thousand to several million computational zones have been used, to

  19. Analysis of uncertainties of thermal hydraulic calculations

    International Nuclear Information System (INIS)

    Macek, J.; Vavrin, J.

    2002-12-01

    In 1993-1997 it was proposed, within OECD projects, that a common program should be set up for uncertainty analysis by a probabilistic method based on a non-parametric statistical approach for system computer codes such as RELAP, ATHLET and CATHARE and that a method should be developed for statistical analysis of experimental databases for the preparation of the input deck and statistical analysis of the output calculation results. Software for such statistical analyses would then have to be processed as individual tools independent of the computer codes used for the thermal hydraulic analysis and programs for uncertainty analysis. In this context, a method for estimation of a thermal hydraulic calculation is outlined and selected methods of statistical analysis of uncertainties are described, including methods for prediction accuracy assessment based on the discrete Fourier transformation principle. (author)

  20. Statistically based uncertainty analysis for ranking of component importance in the thermal-hydraulic safety analysis of the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    Wilson, G.E.

    1992-01-01

    The Analytic Hierarchy Process (AHP) has been used to help determine the importance of components and phenomena in thermal-hydraulic safety analyses of nuclear reactors. The AHP results are based, in part on expert opinion. Therefore, it is prudent to evaluate the uncertainty of the AHP ranks of importance. Prior applications have addressed uncertainty with experimental data comparisons and bounding sensitivity calculations. These methods work well when a sufficient experimental data base exists to justify the comparisons. However, in the case of limited or no experimental data the size of the uncertainty is normally made conservatively large. Accordingly, the author has taken another approach, that of performing a statistically based uncertainty analysis. The new work is based on prior evaluations of the importance of components and phenomena in the thermal-hydraulic safety analysis of the Advanced Neutron Source Reactor (ANSR), a new facility now in the design phase. The uncertainty during large break loss of coolant, and decay heat removal scenarios is estimated by assigning a probability distribution function (pdf) to the potential error in the initial expert estimates of pair-wise importance between the components. Using a Monte Carlo sampling technique, the error pdfs are propagated through the AHP software solutions to determine a pdf of uncertainty in the system wide importance of each component. To enhance the generality of the results, study of one other problem having different number of elements is reported, as are the effects of a larger assumed pdf error in the expert ranks. Validation of the Monte Carlo sample size and repeatability are also documented

  1. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Kukita; Ohnuki, Akira

    1997-01-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission's research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment

  2. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-15

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  3. Full vessel CFD analysis on thermal-hydraulic characteristics of CPR1000 PWR

    International Nuclear Information System (INIS)

    Chao Yanmeng; Yang Lixin; Zhang Mingqian

    2014-01-01

    To obtain flow distributions and thermal-hydraulic properties in a full vessel PWR under limited computation ability and time, a full vessel simulation model of CPR1000 was built based on two simplification methods. One simplified the inner geometry of the control rod guide tubes using equivalent flow area. Another substituted the core by a porous domain to maintain the pressure drop and temperature rise. After the computation, global and localized flow distributions, hydraulic loads of some main assemblies were obtained, as well as other thermal-hydraulic properties. The results indicate the flow distribution in the full vessel is asymmetrical. Therefore it is essential to use the full vessel model to simulate. The calculated thermal-hydraulic characteristics agree well with the operation statistics, providing the reference data for the reactor safety operation. (authors)

  4. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    Song, C. H.; Baek, W. P.; Chung, M. K.

    2007-06-01

    The objectives of the project are to study thermal hydraulic characteristics of advanced nuclear reactor system for evaluating key thermal-hydraulic phenomena relevant to new safety concepts. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. The Followings are main research topics: - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation-induced Thermal Mixing in a Pool - Development of Thermal-Hydraulic Models for Two-Phase Flow - Construction of T-H Data Base

  5. Development of realistic thermal-hydraulic system analysis codes ; development of thermal hydraulic test requirements for multidimensional flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Yull; Yoon, Sang Hyuk; Noh, Sang Woo; Lee, Il Suk [Seoul National University, Seoul (Korea)

    2002-03-01

    This study is concerned with developing a multidimensional flow model required for the system analysis code MARS to more mechanistically simulate a variety of thermal hydraulic phenomena in the nuclear stem supply system. The capability of the MARS code as a thermal hydraulic analysis tool for optimized system design can be expanded by improving the current calculational methods and adding new models. In this study the relevant literature was surveyed on the multidimensional flow models that may potentially be applied to the multidimensional analysis code. Research items were critically reviewed and suggested to better predict the multidimensional thermal hydraulic behavior and to identify test requirements. A small-scale preliminary test was performed in the downcomer formed by two vertical plates to analyze multidimensional flow pattern in a simple geometry. The experimental result may be applied to the code for analysis of the fluid impingement to the reactor downcomer wall. Also, data were collected to find out the controlling parameters for the one-dimensional and multidimensional flow behavior. 22 refs., 40 figs., 7 tabs. (Author)

  6. Coupled neutronics/thermal-hydraulics and safety characteristics of liquid-fueled molten salt reactors

    International Nuclear Information System (INIS)

    Qiu, Suizheng; Zhang, Dalin; Liu, Minghao; Liu, Limin; Xu, Rongshuan; Gong, Cheng; Su, Guanghui

    2016-01-01

    Molten salt reactor (MSR) as one candidate of the Generation IV advanced nuclear power systems is attracted more attention in China due to its top ranked fuel cycle and thorium utilization. The MSRs are characterized by using liquid-fuel, which offers complicated coupling problem of neutronics and thermal hydraulics. In this paper, the fundamental model and numerical method are established to calculate and analyze the safety characteristics for liquid-fuel MSRs. The theories and methodologies are applied to the MOSART concept. The liquid-fuel flow effects on neutronics, reactivity coefficients and three operation parameters' influences at steady state are obtained, which provide the basic information for safety analysis. The unprotected loss of flow transient is calculated, the results of which shows the inherent safety characteristics of MOSART due to its strong negative reactivity feedbacks.

  7. Coupled neutronics/thermal-hydraulics and safety characteristics of liquid-fueled molten salt reactors

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Suizheng; Zhang, Dalin; Liu, Minghao; Liu, Limin; Xu, Rongshuan; Gong, Cheng; Su, Guanghui [Xi' an Jiaotong Univ. (China). State Key Laboratory of Multiphase Flow in Power Engineering

    2016-05-15

    Molten salt reactor (MSR) as one candidate of the Generation IV advanced nuclear power systems is attracted more attention in China due to its top ranked fuel cycle and thorium utilization. The MSRs are characterized by using liquid-fuel, which offers complicated coupling problem of neutronics and thermal hydraulics. In this paper, the fundamental model and numerical method are established to calculate and analyze the safety characteristics for liquid-fuel MSRs. The theories and methodologies are applied to the MOSART concept. The liquid-fuel flow effects on neutronics, reactivity coefficients and three operation parameters' influences at steady state are obtained, which provide the basic information for safety analysis. The unprotected loss of flow transient is calculated, the results of which shows the inherent safety characteristics of MOSART due to its strong negative reactivity feedbacks.

  8. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Hajime; Kukita; Ohnuki, Akira [Japan Atomic Energy Research Institute, Ibaraki (Japan)

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  9. Progress of thermal hydraulic evaluation methods and experimental studies on a sodium-cooled fast reactor and its safety in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kamide, Hideki, E-mail: kamide.hideki@jaea.go.jp; Ohshima, Hiroyuki, E-mail: ohshima.hiroyuki@jaea.go.jp; Sakai, Takaaki, E-mail: sakai.takaaki@jaea.go.jp; Tanaka, Masaaki, E-mail: tanaka.masaaki@jaea.go.jp

    2017-02-15

    Highlights: • Thermal hydraulic issues for safety design criteria of sodium cooled fast reactors. • Measurement of velocity data in a subchannel surrounded by wire wrapped fuel-pins. • Statistical evaluation of core hot spot temperature during natural circulation. • Simulation of dynamics of molten fuel pool in a core disruptive accident. • V&V procedure of a multi-dimensional thermal hydraulic code on thermal striping. - Abstract: In the framework of the Generation-IV International Forum, the safety design criteria (SDC) incorporating safety-related R&D results on innovative technologies and lessons learned from Fukushima Dai-ichi nuclear power plants accident has been established to provide the set of general criteria for the safety designs of structures, systems and components of Generation-IV Sodium-cooled Fast Reactors (Gen-IV SFRs). A number of thermal-hydraulic evaluations are necessary to meet the concept of the criteria in the design studies of Gen-IV SFRs. This paper focuses on four kinds of thermal-hydraulic issues associated with the SDC, i.e., fuel subassembly thermal-hydraulics, natural circulation decay heat removal, core disruptive accidents, and thermal striping. Progress of evaluation methods on these issues is shown with activities on verification and validation (V&V) and experimental studies towards commercialization of SFR in Japan. These evaluation methods are planned to be eventually integrated into a comprehensive numerical simulation system that can be applied to all possible phenomena in SFR systems and that can be expected to become an effective tool for the development of human resource and the handing our knowledge and technologies down.

  10. Thermal Hydraulic Analysis of K-DEMO Single Blanket Module for Preliminary Accident Analysis using MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Bo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    To develop the Korean fusion commercial reactor, preliminary design concept for K-DEMO (Korean fusion demonstration reactor) has been announced by NFRI (National Fusion Research Institute). This pre-conceptual study of K-DEMO has been introduced to identify technical details of a fusion power plant for the future commercialization of fusion reactor in Korea. Before this consideration, to build the K-DEMO, accident analysis is essential. Since the Fukushima accident, which is severe accident from unexpected disaster, safety analysis of nuclear power plant has become important. The safety analysis of both fission and fusion reactors is deemed crucial in demonstrating the low radiological effect of these reactors on the environment, during severe accidents. A risk analysis of K-DEMO should be performed, as a prerequisite for the construction of a fusion reactor. In this research, thermal-hydraulic analysis of single blanket module of K-DEMO is conducted for preliminary accident analysis for K-DEMO. Further study about effect of flow distributer is conducted. The normal K-DEMO operation condition is applied to the boundary condition and simulated to verify the material temperature limit using MELCOR. MELCOR is fully integrated, relatively fast-running code developed by Sandia National Laboratories. MELCOR had been used for Light Water Reactors and fusion reactor version of MELCOR was developed for ITER accident analysis. This study shows the result of thermal-hydraulic simulation of single blanket module with MELCOR which is severe accident code for nuclear fusion safety analysis. The difference of mass flow rate for each coolant channel with or without flow distributer is presented. With flow distributer, advantage of broadening temperature gradient in the K-DEMO blanket module and increase mass flow toward first wall is obtained. This can enhance the safety of K-DEMO blanket module. Most 13 .deg. C temperature difference in blanket module is obtained.

  11. Light-water-reactor coupled neutronic and thermal-hydraulic codes

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1982-01-01

    An overview is presented of computer codes that model light water reactor cores with coupled neutronics and thermal-hydraulics. This includes codes for transient analysis and codes for steady state analysis which include fuel depletion and fission product buildup. Applications in nuclear design, reactor operations and safety analysis are given and the major codes in use in the USA are identified. The neutronic and thermal-hydraulic methodologies and other code features are outlined for three steady state codes (PDQ7, NODE-P/B and SIMULATE) and four dynamic codes (BNL-TWIGL, MEKIN, RAMONA-3B, RETRAN-02). Speculation as to future trends with such codes is also presented

  12. Primary system thermal hydraulics of future Indian fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Velusamy, K., E-mail: kvelu@igcar.gov.in [Thermal Hydraulics Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Natesan, K.; Maity, Ram Kumar; Asokkumar, M.; Baskar, R. Arul; Rajendrakumar, M.; Sarathy, U. Partha; Selvaraj, P.; Chellapandi, P. [Thermal Hydraulics Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Kumar, G. Senthil; Jebaraj, C. [AU-FRG Centre for CAD/CAM, Anna University, Chennai 600 025 (India)

    2015-12-01

    Highlights: • We present innovative design options proposed for future Indian fast reactor. • These options have been validated by extensive CFD simulations. • Hotspot factors in fuel subassembly are predicted by parallel CFD simulations. • Significant safety improvement in the thermal hydraulic design is quantified. - Abstract: As a follow-up to PFBR (Indian prototype fast breeder reactor), many FBRs of 500 MWe capacity are planned. The focus of these future FBRs is improved economy and enhanced safety. They are envisaged to have a twin-unit concept. Design and construction experiences gained from PFBR project have provided motivation to achieve an optimized design for future FBRs with significant design changes for many critical components. Some of the design changes include, (i) provision of four primary pipes per primary sodium pump, (ii) inner vessel with single torus lower part, (iii) dome shape roof slab supported on reactor vault, (iv) machined thick plate rotating plugs, (v) reduced main vessel diameter with narrow-gap cooling baffles and (vi) safety vessel integrated with reactor vault. This paper covers thermal hydraulic design validation of the chosen options with respect to hot and cold pool thermal hydraulics, flow requirement for main vessel cooling, inner vessel temperature distribution, safety analysis of primary pipe rupture event, adequacy of decay heat removal capacity by natural convection cooling, cold pool transient thermal loads and thermal management of top shield and reactor vault.

  13. Horizontal steam generator PGV-1000 thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [Skoda Company, Prague (Switzerland); Doubek, M. [Czech Technical Univ., Prague (Switzerland)

    1995-12-31

    A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.). 5 refs.

  14. Horizontal steam generator PGV-1000 thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Ubra, O.; Doubek, M.

    1995-01-01

    A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.)

  15. Horizontal steam generator PGV-1000 thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O [Skoda Company, Prague (Switzerland); Doubek, M [Czech Technical Univ., Prague (Switzerland)

    1996-12-31

    A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.). 5 refs.

  16. Computer code for the thermal-hydraulic analysis of ITU TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Ustun, G.; Durmayaz, A.

    2002-01-01

    Istanbul Technical University (ITU) TRIGA Mark-II reactor core consists of ninety vertical cylindrical elements located in five rings. Sixty-nine of them are fuel elements. The reactor is operated and cooled with natural convection by pool water, which is also cooled and purified in external coolant circuits by forced convection. This characteristic leads to consider both the natural and forced convection heat transfer in a 'porous-medium analysis'. The safety analysis of the reactor requires a thermal-hydraulic model of the reactor to determine the thermal-hydraulic parameters in each mode of operation. In this study, a computer code cooled TRIGA-PM (TRIGA - Porous Medium) for the thermal-hydraulic analysis of ITU is considered. TRIGA Mark-II reactor code has been developed to obtain velocity, pressure and temperature distributions in the reactor pool as a function of core design parameters and pool configuration. The code is a transient, thermal-hydraulic code and requires geometric and physical modelling parameters. In the model, although the reactor is considered as only porous medium, the other part of the reactor pool is considered partly as continuum and partly as porous medium. COMMIX-1C code is used for the benchmark purpose of TRIGA-PM code. For the normal operating conditions of the reactor, estimations of TRIGA-PM are in good agreement with those of COMMIX-1C. After some more improvements, this code will be employed for the estimation of LOCA scenario, which can not be analyses by COMMIX-1C and the other multi-purpose codes, considering a break at one of the beam tubes of the reactor

  17. Development of numerical simulation technology for high resolution thermal hydraulic analysis

    International Nuclear Information System (INIS)

    Yoon, Han Young; Kim, K. D.; Kim, B. J.; Kim, J. T.; Park, I. K.; Bae, S. W.; Song, C. H.; Lee, S. W.; Lee, S. J.; Lee, J. R.; Chung, S. K.; Chung, B. D.; Cho, H. K.; Choi, S. K.; Ha, K. S.; Hwang, M. K.; Yun, B. J.; Jeong, J. J.; Sul, A. S.; Lee, H. D.; Kim, J. W.

    2012-04-01

    A realistic simulation of two phase flows is essential for the advanced design and safe operation of a nuclear reactor system. The need for a multi dimensional analysis of thermal hydraulics in nuclear reactor components is further increasing with advanced design features, such as a direct vessel injection system, a gravity driven safety injection system, and a passive secondary cooling system. These features require more detailed analysis with enhanced accuracy. In this regard, KAERI has developed a three dimensional thermal hydraulics code, CUPID, for the analysis of transient, multi dimensional, two phase flows in nuclear reactor components. The code was designed for use as a component scale code, and/or a three dimensional component, which can be coupled with a system code. This report presents an overview of the CUPID code development and preliminary assessment, mainly focusing on the numerical solution method and its verification and validation. It was shown that the CUPID code was successfully verified. The results of the validation calculations show that the CUPID code is very promising, but a systematic approach for the validation and improvement of the physical models is still needed

  18. Numerical Methods for an Analysis of Hydrogen Behaviors Coupled with Thermal Hydraulics in a NPP Containment

    International Nuclear Information System (INIS)

    Kim, Jongtae; Park, Rae-Joon; Hong, Seong-Wan; Kim, Gun-Hong

    2016-01-01

    In a containment safety analysis, multi-dimensional characteristics in thermal hydraulics are very important because the flow paths are not confined in a large free volume of the containment. The analysis is difficult because of a difference in length scales between a characteristic length of the flow and representative length of the containment. In order to simulate hydrogen and steam behaviors in a containment during postulated severe accidents, the GASFLOW code as a multi-dimensional analysis tool for NPP containment has been used for years because of its computational efficiency. Though GASFLOW is well developed for a real NPP containment analysis, there exist shortcomings in nodalization, two-phase and turbulence models. It is based on a Cartesian or cylindrical coordinate mesh, so it is impractical to refine a mesh locally in a region with a physical or geometrical complication. In this paper, the importance of the hydrogen safety in an NPP containment and requirements of the analysis tool was described. And physical models necessary for the hydrogen safety analysis code were listed. As a member of international collaborative project HYMERES for containment thermal hydraulics, KAERI is actively participating in an analytic working group. As an analysis tool for blind benchmarkes, the analysis code described in this paper was used. From the blind benchmark analyses, it was found that the code is very promising for hydrogen safety analysis. Currently, it is proposed to develop the code collaboratively in a hydrogen safety community based on an open-source strategy

  19. Numerical Methods for an Analysis of Hydrogen Behaviors Coupled with Thermal Hydraulics in a NPP Containment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Park, Rae-Joon; Hong, Seong-Wan; Kim, Gun-Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In a containment safety analysis, multi-dimensional characteristics in thermal hydraulics are very important because the flow paths are not confined in a large free volume of the containment. The analysis is difficult because of a difference in length scales between a characteristic length of the flow and representative length of the containment. In order to simulate hydrogen and steam behaviors in a containment during postulated severe accidents, the GASFLOW code as a multi-dimensional analysis tool for NPP containment has been used for years because of its computational efficiency. Though GASFLOW is well developed for a real NPP containment analysis, there exist shortcomings in nodalization, two-phase and turbulence models. It is based on a Cartesian or cylindrical coordinate mesh, so it is impractical to refine a mesh locally in a region with a physical or geometrical complication. In this paper, the importance of the hydrogen safety in an NPP containment and requirements of the analysis tool was described. And physical models necessary for the hydrogen safety analysis code were listed. As a member of international collaborative project HYMERES for containment thermal hydraulics, KAERI is actively participating in an analytic working group. As an analysis tool for blind benchmarkes, the analysis code described in this paper was used. From the blind benchmark analyses, it was found that the code is very promising for hydrogen safety analysis. Currently, it is proposed to develop the code collaboratively in a hydrogen safety community based on an open-source strategy.

  20. Thermal hydraulic analysis of the JMTR improved LEU-core

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, Toshio; Nagao, Yoshiharu; Komukai, Bunsaku; Naka, Michihiro; Fujiki, Kazuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Takeda, Takashi [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokai, Ibaraki (Japan)

    2003-01-01

    After the investigation of the new core arrangement for the JMTR reactor in order to enhance the fuel burn-up and consequently extend the operation period, the ''improved LEU core'' that utilized 2 additional fuel elements instead of formerly installed reflector elements, was adopted. This report describes the results of the thermal-hydraulic analysis of the improved LEU core as a part of safety analysis for the licensing. The analysis covers steady state, abnormal operational transients and accidents, which were described in the annexes of the licensing documents as design bases events. Calculation conditions for the computer codes were conservatively determined based on the neutronic analysis results and others. The results of the analysis, that revealed the safety criteria were satisfied on the fuel temperature, DNBR and primary coolant temperature, were used in the licensing. The operation license of the JMTR with the improved LEU core was granted in March 2001, and the reactor operation with new core started in November 2001 as 142nd operation cycle. (author)

  1. Thermal-hydraulic calculations for KUHFR with reduced enrichment uranium fuel

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Shibata, Toshikazu.

    1982-01-01

    This report provides the preliminary results of the thermal-hydraulic calculations to study the safety aspects in fueling the KUHFR with reduced enrichment uranium. The calculations were based on what was outlined in the Safety Analysis Report for the KUHFR and the guidebook for research reactor core conversion, IAEA-TECDOC-233, published by the International Atomic Energy Agency. No significant differences in the thermal-hydraulic operating conditions have been found between HEU and MEU fuels. However, in LEU cases, the combination of three factors - larger power peaking with LEU fuel, smaller thermal conductivity of U 3 O 8 -Al fuel with high uranium densities, and thicker fuel meat - resulted in higher maximum fuel and surface temperatures with the LEU oxide fuel. (author)

  2. Development of neutronics and thermal hydraulics coupled code – SAC-RIT for plate type fuel and its application to reactivity initiated transient analysis

    International Nuclear Information System (INIS)

    Singh, Tej; Kumar, Jainendra; Mazumdar, Tanay; Raina, V.K.

    2013-01-01

    Highlights: • A point reactor kinetics code coupled with thermal hydraulics of plate type fuel is developed. • This code is applicable for two phase flow of coolant. • Safety analysis of IAEA benchmark reactor core is carried out. • Results agree well with the results available in literature. - Abstract: A point reactor kinetics code SAC-RIT, acronym of Safety Analysis Code for Reactivity Initiated Transient, coupled with thermal hydraulics of two phase coolant flow for plate type fuel, is developed to calculate reactivity initiated transient analysis of nuclear research and test reactors. Point kinetics equations are solved by fourth order Runge Kutta method. Reactivity feedback effect is included into the code. Solution of kinetics equations gives neutronic power and it is then fed into a thermal hydraulic code where mass, momentum and thermal energy conservation equations are solved by explicit finite difference method to find out fuel, clad and coolant temperatures during transients. In this code, all possible flow regimes including laminar flow, transient flow and turbulent flow have been covered. Various heat transfer coefficients suitable for single liquid, sub-cooled boiling, saturation boiling, film boiling and single vapor phases are incorporated in the thermal hydraulic code

  3. Regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes

    International Nuclear Information System (INIS)

    Vitkova, M.; Kalchev, B.; Stefanova, S.

    2006-01-01

    The paper presents an overview of the regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes, which are used for safety assessment of the fuel design and the fuel utilization. Some requirements to the model development, verification and validation of the codes and analysis of code uncertainties are also define. Questions concerning Quality Assurance during development and implementation of the codes as well as preparation of a detailed verification and validation plan are briefly discussed

  4. Resolution of thermal-hydraulic safety and licensing issues for the system 80+trademark design

    International Nuclear Information System (INIS)

    Carpentino, S.E.; Ritterbusch, S.E.; Schneider, R.E.

    1995-01-01

    The System 80+ trademark Standard Design is an evolutionary Advanced Light Water Reactor (ALWR) with a generating capacity of 3931 MWt (1350 MWe). The Final Design Approval (FDA) for this design was issued by the Nuclear Regulatory Commission (NRC) in July 1994. The design certification by the NRC is anticipated by the end of 1995 or early 1996. NRC review of the System 80+ design has involved several new safety issues never before addressed in a regulatory atmosphere. In addition, conformance with the Electric Power Research Institute (EPRI) ALWR Utility Requirements Document (URD) required that the System 80+ plant address nuclear industry concerns with regard to design, construction, operation and maintenance of nuclear power plants. A large number of these issues/concerns deals with previously unresolved generic thermal-hydraulic safety issues and severe accident prevention and mitigation. This paper discusses the thermal-hydraulic analyses and evaluations performed for the System 80+ design to resolve safety and licensing issues relevant to both the Nuclear Stream Supply System (NSSS) and containment designs. For the NSSS design, the Safety Depressurization System mitigation capability and resolution of the boron dilution concern are described. Examples of containment design issues dealing with containment shell strength, robustness of the reactor cavity walls and hydrogen mixing under severe accident conditions are also provided. Finally, the overall approach used in the application of NRC's new (NUREG-1465) radiological source term for System 80+ evaluation is described. The robustness of the System 80+ containment design to withstand severe accident consequences was demonstrated through detailed thermal-hydraulic analyses and evaluations. This advanced design to shown to meet NRC severe accident policy goals and ALWR URD requirements without any special design features and unnecessary costs

  5. Modelling and thermal hydraulic analysis of the Angra-2 nuclear reactor using RELAP5-3D code

    International Nuclear Information System (INIS)

    González Mantecón, Javier

    2015-01-01

    The evaluation of Nuclear Power Plants (NPPs) performance during steady-state and accident conditions has been one of the main research subjects in the nuclear field. In order to simulate the behavior of water-cooled reactors, several complex thermal-hydraulic codes systems have been developed. Particularly, the RELAP5 code, developed by the Idaho National Laboratory, is a best-estimate thermal-hydraulic analysis tool and one of the most used in nuclear industry. The RELAP5-3D 3.0.0 code was used to develop a detailed model of Angra 2 nuclear reactor using reference data from the Final Safety Analysis Report. Angra 2 is the second Brazilian NPP, which began commercial operation in 2001. The plant is equipped with a Pressurized Water Reactor (PWR) type with 3771.0 MWt. Simulations of the reactor behavior during normal operation conditions and postulated accident conditions were performed. Results achieved in the reactor steady-state simulation were compared with nominal parameters of the NPP. These results proved to be in good agreement, with relative errors less than 1%. In the transient simulation, the obtained results were coherent and satisfactory. This study demonstrates that the RELAP5-3D model is capable to reproduce the thermal-hydraulic behavior of the Angra-2 PWR during diverse operation conditions and it can contribute for the process of the plant safety analysis. (author)

  6. A review of the current thermal-hydraulic modeling of the Jules Horowitz Reactor: A loss of flow accident analysis

    International Nuclear Information System (INIS)

    Pegonen, R.; Bourdon, S.; Gonnier, C.; Anglart, H.

    2014-01-01

    Highlights: • CEA methodology for thermal-hydraulic calculations in the JHR reactor is described. • Thermal-hydraulics of the JHR is analyzed during LOFA using CATHARE and FLICA4. • Safety criteria, important modeling parameters and correlations are presented. • Possible improvements of the current methodology are discussed and proposed. - Abstract: The newest European high performance material testing reactor, the Jules Horowitz Reactor, will support existing and future nuclear reactor designs. The reactor is under construction at CEA Cadarache research center in France and is expected to start operation at the end of this decade. R and D and analytical works have already been performed to set-up the methodology for thermal-hydraulic calculations of the reactor. This paper presents the off-line coupled thermal-hydraulic modeling of the reactor using the CATHARE system code and the FLICA4 core analysis code. The main objective of the present work is to analyze the thermal-hydraulic calculations of the reactor during the loss of flow accident using CEA methodology. Possible improvements of the current methodology are shortly discussed and suggested

  7. Thermal-hydraulic simulation and analysis of Research Reactor Cooling Systems

    International Nuclear Information System (INIS)

    EL Khatib, H.H.A.

    2013-01-01

    The objective of the present study is to formulate a model to simulate the thermal hydraulic behavior of integrated cooling system in a typical material testing reactor (MTR) under loss of ultimate heat sink, the model involves three interactively coupled sub-models for reactor core, heat exchanger and cooling tower. The developed model predicts the temperature profiles in addition it predicts inlet and outlet temperatures of the hot and cold stream as well as the heat exchangers and cooling tower. The model is validated against PARET code for steady-state operation and also verified by the reactor operational records, and then the model is used to simulate the thermal-hydraulic behavior of the reactor under a loss of ultimate heat sink. The simulation is performed for two operational regimes named regime I of (11 MW) thermal power and three operated cooling tower cells and regime II of (22 MW) thermal power and six operated cooling tower cells. In regime I, the simulation is performed for 1, 2 and 3 cooling tower failed cells while in regime II, it is performed for 1, 2, 3, 4, 5 and 6 cooling tower failed cells. The safety action is conducted by the reactor protection system (RPS) named power reduction safety action, it is triggered to decrease the reactor power by amount of 20% of the present power when the water inlet temperature to the core reaches 43 degree C and a scram (emergency shutdown) is triggered in case of the inlet temperature reaches 44 degree C. The model results are analyzed and discussed. The temperature profiles of fuel, clad and coolant are predicted during transient where its maximum values are far from thermal hydraulic limits.

  8. Proceedings of the 10. Meeting on Reactor Physics and Thermal Hydraulics

    International Nuclear Information System (INIS)

    Santos Bastos, W. dos

    1995-01-01

    These proceedings presents all the Meeting papers emphasizing specific aspects on reactor physics method, criticality, fuel management, nuclear data, safety analysis, simulation and shielding, neutronics, thermal hydraulics, reactor operation and computational methods

  9. Analysis of Thermal-Hydraulic Behavior of CMT in the SMART-ITL Facility

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Byong Guk; Bae, Hwang; Ryu, Sung-Uk; Ryu, Hyobong; Byun, Sun-Joon; Yi, Sung-Jae; Park, Hyun-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    SMART, an integral small modular reactor, received a standard design approval in 2012 and now extends its safety features through replacing active safety injection pumps by passive safety injection systems: core makeup tanks (CMT) and safety injection tanks (SIT). SMART-ITL has been built in a full height scale and 1/49 area and power scale. One train of CMT and SIT has been installed and their thermal-hydraulic behaviors have been identified through a series of tests. In this paper, initial condensation characteristics as well as force balance around the CMT will be discussed for a representative test. PSIS are added into SMART for better treatment of accidents with prolonged station blackout. In the SMART-ITL, the CMT and SIT are installed to evaluate their performance and a series of tests have been conducted. In this paper, the thermal-hydraulic behavior of CMT is addressed based on the experimental data, especially focusing on the issues of fierce condensation after opening of the isolation valve and driving force balance around the CMT.

  10. Analysis of Thermal-Hydraulic Behavior of CMT in the SMART-ITL Facility

    International Nuclear Information System (INIS)

    Jeon, Byong Guk; Bae, Hwang; Ryu, Sung-Uk; Ryu, Hyobong; Byun, Sun-Joon; Yi, Sung-Jae; Park, Hyun-Sik

    2015-01-01

    SMART, an integral small modular reactor, received a standard design approval in 2012 and now extends its safety features through replacing active safety injection pumps by passive safety injection systems: core makeup tanks (CMT) and safety injection tanks (SIT). SMART-ITL has been built in a full height scale and 1/49 area and power scale. One train of CMT and SIT has been installed and their thermal-hydraulic behaviors have been identified through a series of tests. In this paper, initial condensation characteristics as well as force balance around the CMT will be discussed for a representative test. PSIS are added into SMART for better treatment of accidents with prolonged station blackout. In the SMART-ITL, the CMT and SIT are installed to evaluate their performance and a series of tests have been conducted. In this paper, the thermal-hydraulic behavior of CMT is addressed based on the experimental data, especially focusing on the issues of fierce condensation after opening of the isolation valve and driving force balance around the CMT

  11. Feasibility study for objective oriented design of system thermal hydraulic analysis program

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Jeong, Jae Jun; Hwang, Moon Kyu

    2008-01-01

    The system safety analysis code, such as RELAP5, TRAC, CATHARE etc. have been developed based on Fortran language during the past few decades. Refactoring of conventional codes has been also performed to improve code readability and maintenance. However the programming paradigm in software technology has been changed to use objects oriented programming (OOP), which is based on several techniques, including encapsulation, modularity, polymorphism, and inheritance. In this work, objective oriented program for system safety analysis code has been tried utilizing modernized C language. The analysis, design, implementation and verification steps for OOP system code development are described with some implementation examples. The system code SYSTF based on three-fluid thermal hydraulic solver has been developed by OOP design. The verifications of feasibility are performed with simple fundamental problems and plant models. (author)

  12. Single-channel model for steady thermal-hydraulic analysis in nuclear reactor

    International Nuclear Information System (INIS)

    Zhang Xiaoying; Huang Yuanyuan

    2010-01-01

    This article established a single-channel model for steady analysis in the reactor and an example of thermal-hydraulic analysis was made by using this model, including the Maximum heat flux density of fuel element, enthalpy, Coolant flow, various kinds of pressure drop, enthalpy increase in average tube and thermal tube. I also got the Coolant temperature distribution and the fuel element temperature distribution and analysis of the final result. The results show that some relevant parameters which we got in this paper are well coincide with the actual operating parameters. It is also show that the single-channel model can be used to the steady thermal-hydraulic analysis. (authors)

  13. Thermal-hydraulic analysis of a 600 MW supercritical CFB boiler with low mass flux

    International Nuclear Information System (INIS)

    Pan Jie; Yang Dong; Chen Gongming; Zhou Xu; Bi Qincheng

    2012-01-01

    Supercritical Circulating Fluidized Bed (CFB) boiler becomes an important development trend for coal-fired power plant and thermal-hydraulic analysis is a key factor for the design and operation of water wall. According to the boiler structure and furnace-sided heat flux, the water wall system of a 600 MW supercritical CFB boiler is treated in this paper as a flow network consisting of series-parallel loops, pressure grids and connecting tubes. A mathematical model for predicting the thermal-hydraulic characteristics in boiler heating surface is based on the mass, momentum and energy conservation equations of these components, which introduces numerous empirical correlations available for heat transfer and hydraulic resistance calculation. Mass flux distribution and pressure drop data in the water wall at 30%, 75% and 100% of the boiler maximum continuous rating (BMCR) are obtained by iteratively solving the model. Simultaneity, outlet vapor temperatures and metal temperatures in water wall tubes are estimated. The results show good heat transfer performance and low flow resistance, which implies that the water wall design of supercritical CFB boiler is applicable. - Highlights: → We proposed a model for thermal-hydraulic analysis of boiler heating surface. → The model is applied in a 600 MW supercritical CFB boiler. → We explore the pressure drop, mass flux and temperature distribution in water wall. → The operating safety of boiler is estimated. → The results show good heat transfer performance and low flow resistance.

  14. SBWR core thermal hydraulic analysis during startup

    International Nuclear Information System (INIS)

    Lin, J.H.; Huang, R.L.; Sawyer, C.D.

    1993-01-01

    This paper reports on a thermal hydraulic analysis of the SIMPLIFIED BOILING WATER REACTOR (SBWR) during startup. The potential instability during a SBWR startup has drawn the attention of designers, researchers, and engineers. It has not been a concern for a Boiling Water Reactor (BWR) with forced recirculation; however, for SBWR with natural circulation the concern exists. The concern is about the possibility of a geysering mode oscillation during SBWR startup from a cold temperature and a low system pressure with a low natural circulation flow rate. A thermal hydraulic analysis of the SBWR is performed in simulation of the startup using the TRACG computer code. The temperature, pressure, and reactor power profiles of SBWR during the startup are presented. The results are compared with the data of a natural circulation boiling water reactor, the DODEWAARD plant, in which no instabilities have been observed during many startups. It is shown that a SBWR startup which follows proper procedures, geysering and other modes of oscillations can be avoided

  15. 11. international topical meeting on nuclear reactor thermal-hydraulics (NURETH-11)

    International Nuclear Information System (INIS)

    Lemonnier, H.

    2005-01-01

    ; aerosol transport, deposition and re-entrainment; steam generators thermal-hydraulics; system codes development and assessment; uncertainties analysis; diffuse interface methods and interface tracking methods; C - severe accidents and fires: molten core natural convection and physico-chemical phenomena, modeling and experiments; fuel coolant interaction, modeling and experiments; debris bed cooling; combustion and fires, modeling and experiments; molten corium concrete interaction; D - advanced code developments: fast transient modelling and experiments; multidimensional single-phase or two-phase flow and heat transfer modeling; neutronics and thermal-hydraulics coupling; fluid and structures mechanical interactions; coupled thermal-hydraulics of fluids and structures; thermal-hydraulic dependent corrosion and ablation; E - operation and safety of existing reactors: instabilities and nonlinear dynamics; NPP transients and accidents analysis; RBMK and VVER safety analysis, including the OECD benchmark; F - experimental thermal-hydraulics: boiling heat transfer; CHF and post-CHF heat transfer; condensation heat transfer; integral testing; vibrations, wear and thermal fatigue phenomena; fuel design and performance; G - advanced reactors thermal-hydraulics (gen IV, INPRO, fusion, hydrogen production): accelerator driven reactors; advanced pressurized water reactors thermal-hydraulics; gas cooled fast reactors; gas cooled high temperature reactors; lead and lead-bismuth cooled reactors; future and existing sodium cooled reactors; molten salt reactors; H - waste management thermal-hydraulics: thermal-hydraulics problems related to waste processing and storage; I - thermal-hydraulics of non electricity generating nuclear equipment: sono-fusion (cavitation induced bubble fusion; hydrogen producing nuclear reactors

  16. Thermal-hydraulic analysis of PWR core including intermediate flow mixers with the THYC code

    International Nuclear Information System (INIS)

    Mur, J.; Meignin, J.C.

    1997-07-01

    Departure from nucleate boiling (DNB) is one of the major limiting factors of pressurized water reactors (PWRs). Safety requires that occurrence of DNB should be precluded under normal or incidental operating conditions. The thermal-hydraulic THYC code developed by EDF is described. The code is devoted to heat and mass transfer in nuclear components. Critical Heat Flux (CHF) is predicted from local thermal-hydraulic parameters such as pressure, mass flow rate, and quality. A three stage methodology to evaluate thermal margins in order to perform standard core design is described. (K.A.)

  17. Thermal-hydraulic analysis of PWR core including intermediate flow mixers with the THYC code

    Energy Technology Data Exchange (ETDEWEB)

    Mur, J. [Electricite de France (EDF), 78 - Chatou (France); Meignin, J.C. [Electricite de France (EDF), 69 - Villeurbanne (France)

    1997-07-01

    Departure from nucleate boiling (DNB) is one of the major limiting factors of pressurized water reactors (PWRs). Safety requires that occurrence of DNB should be precluded under normal or incidental operating conditions. The thermal-hydraulic THYC code developed by EDF is described. The code is devoted to heat and mass transfer in nuclear components. Critical Heat Flux (CHF) is predicted from local thermal-hydraulic parameters such as pressure, mass flow rate, and quality. A three stage methodology to evaluate thermal margins in order to perform standard core design is described. (K.A.) 8 refs.

  18. Thermal-hydraulic code for estimating safety limits of nuclear reactors with plate type fuels

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, Duvan A.; Moreira, João L.; Maiorino, Jose R.; Rossi, Pedro R.; Carajilescov, Pedro, E-mail: duvan.castellanos@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: pedro.rossi@ufabc.edu.br, E-mail: pedro.carajilescov10@gmail.com [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil). Centro de Engenharias, Modelagem e Ciências Sociais Aplicadas

    2017-07-01

    To ensure the normal and safe operation of PWR type nuclear reactors is necessary the knowledge of nuclear and heat transfer properties of the fuel, coolant and structural materials. The thermal-hydraulic analysis of nuclear reactors yields parameters such as the distribution of fuel and coolant temperatures, and the departure from nucleated boiling ratio. Usually computational codes are used to analyze the safety performance of the core. This research work presents a computer code for performing thermal-hydraulic analyses of nuclear reactors with plate-type fuel elements operating at low pressure and temperature (research reactors) or high temperature and pressure (naval propulsion or small power reactors). The code uses the sub-channel method based on geometric and thermal-hydraulic conditions. In order to solve the conservation equations for mass, momentum and energy, each sub-channel is divided into control volumes in the axial direction. The mass flow distribution for each fuel element of core is obtained. Analysis of critical heat flux is performed in the hottest channel. The code considers the radial symmetry and the chain or cascade method for two steps in order to facilitate the whole analysis. In the first step, we divide the core into channels with size equivalent to a fuel assembly. >From this analysis, the channel with the largest enthalpy is identified as the hot assembly. In the second step, we divide the hottest fuel assembly into sub-channels with size equivalent to one actual coolant channel. As in the previous step, the sub-channel with largest final enthalpy is identified as the hottest sub-channel. For the code validation, we considered results from the chinese CARR research reactor. The code reproduced well the CARR reactor results, yielding detailed information such as static pressure in the channel, mass flow rate distribution among the fuel channels, coolant, clad and centerline fuel temperatures, quality and local heat and critical heat

  19. Thermal-hydraulic code for estimating safety limits of nuclear reactors with plate type fuels

    International Nuclear Information System (INIS)

    Castellanos, Duvan A.; Moreira, João L.; Maiorino, Jose R.; Rossi, Pedro R.; Carajilescov, Pedro

    2017-01-01

    To ensure the normal and safe operation of PWR type nuclear reactors is necessary the knowledge of nuclear and heat transfer properties of the fuel, coolant and structural materials. The thermal-hydraulic analysis of nuclear reactors yields parameters such as the distribution of fuel and coolant temperatures, and the departure from nucleated boiling ratio. Usually computational codes are used to analyze the safety performance of the core. This research work presents a computer code for performing thermal-hydraulic analyses of nuclear reactors with plate-type fuel elements operating at low pressure and temperature (research reactors) or high temperature and pressure (naval propulsion or small power reactors). The code uses the sub-channel method based on geometric and thermal-hydraulic conditions. In order to solve the conservation equations for mass, momentum and energy, each sub-channel is divided into control volumes in the axial direction. The mass flow distribution for each fuel element of core is obtained. Analysis of critical heat flux is performed in the hottest channel. The code considers the radial symmetry and the chain or cascade method for two steps in order to facilitate the whole analysis. In the first step, we divide the core into channels with size equivalent to a fuel assembly. >From this analysis, the channel with the largest enthalpy is identified as the hot assembly. In the second step, we divide the hottest fuel assembly into sub-channels with size equivalent to one actual coolant channel. As in the previous step, the sub-channel with largest final enthalpy is identified as the hottest sub-channel. For the code validation, we considered results from the chinese CARR research reactor. The code reproduced well the CARR reactor results, yielding detailed information such as static pressure in the channel, mass flow rate distribution among the fuel channels, coolant, clad and centerline fuel temperatures, quality and local heat and critical heat

  20. 3D thermal-hydraulic analysis on core of PWR nuclear power station

    International Nuclear Information System (INIS)

    Yao Zhaohui; Wang Xuefang; Shen Mengyu

    1997-01-01

    Thermal hydraulic analysis of core is of great importance in reactor safety analysis. A computer code, thermal hydraulic analysis porous medium analysis (THAPMA), has been developed to simulate the flow and heat transfer characteristics of reactor components. It has been proved reliable by several numerical tests. In the THAPMA code, a new difference scheme and solution method have been studied in developing the computer software. For the difference scheme, a second order accurate, high resolution scheme, called WSUC scheme, has been proposed. This scheme is total variation bounded and unconditionally stable in convective numeral stability. Numerical tests show that the WSUC is better in accuracy and resolution than the 1-st order upwind, 2-nd order upwind, SOUCUP by Zhu and Rodi. In solution method, a modified PISO algorithm is used, which is not only simpler but also more accurate and more rapid in convergence than the original PISO algorithm. Moreover, the modified PISO algorithm can effectively solve steady and transient state problem. Besides, with the THAPMA code, the flow and heat transfer phenomena in reactor core have been numerically simulated in the light of the design condition of Qinshan PWR nuclear power station (the second-term project). The simulation results supply a theoretical basis for the core design

  1. Analysis of molten salt thermal-hydraulics using computational fluid dynamics

    International Nuclear Information System (INIS)

    Yamaji, B.; Csom, G.; Aszodi, A.

    2003-01-01

    To give a good solution for the problem of high level radioactive waste partitioning and transmutation is expected to be a pro missing option. Application of this technology also could extend the possibilities of nuclear energy. Large number of liquid-fuelled reactor concepts or accelerator driven subcritical systems was proposed as transmutors. Several of these consider fluoride based molten salts as the liquid fuel and coolant medium. The thermal-hydraulic behaviour of these systems is expected to be fundamentally different than the behaviour of widely used water-cooled reactors with solid fuel. Considering large flow domains three-dimensional thermal-hydraulic analysis is the method seeming to be applicable. Since the fuel is the coolant medium as well, one can expect a strong coupling between neutronics and thermal-hydraulics too. In the present paper the application of Computational Fluid Dynamics for three-dimensional thermal-hydraulics simulations of molten salt reactor concepts is introduced. In our past and recent works several calculations were carried out to investigate the capabilities of Computational Fluid Dynamics through the analysis of different molten salt reactor concepts. Homogenous single region molten salt reactor concept is studied and optimised. Another single region reactor concept is introduced also. This concept has internal heat exchanges in the flow domain and the molten salt is circulated by natural convection. The analysis of the MSRE experiment is also a part of our work since it may form a good background from the validation point of view. In the paper the results of the Computational Fluid Dynamics calculations with these concepts are presented. In the further work our objective is to investigate the thermal-hydraulics of the multi-region molten salt reactor (Authors)

  2. Ignalina NPP Safety Analysis: Models and Results

    International Nuclear Information System (INIS)

    Uspuras, E.

    1999-01-01

    Research directions, linked to safety assessment of the Ignalina NPP, of the scientific safety analysis group are presented: Thermal-hydraulic analysis of accidents and operational transients; Thermal-hydraulic assessment of Ignalina NPP Accident Localization System and other compartments; Structural analysis of plant components, piping and other parts of Main Circulation Circuit; Assessment of RBMK-1500 reactor core and other. Models and main works carried out last year are described. (author)

  3. Resolution of thermal-hydraulic safety and licensing issues for the system 80+{sup {trademark}} design

    Energy Technology Data Exchange (ETDEWEB)

    Carpentino, S.E.; Ritterbusch, S.E.; Schneider, R.E. [ABB-Combustion Engineering, Windsor, CT (United States)] [and others

    1995-09-01

    The System 80+{sup {trademark}} Standard Design is an evolutionary Advanced Light Water Reactor (ALWR) with a generating capacity of 3931 MWt (1350 MWe). The Final Design Approval (FDA) for this design was issued by the Nuclear Regulatory Commission (NRC) in July 1994. The design certification by the NRC is anticipated by the end of 1995 or early 1996. NRC review of the System 80+ design has involved several new safety issues never before addressed in a regulatory atmosphere. In addition, conformance with the Electric Power Research Institute (EPRI) ALWR Utility Requirements Document (URD) required that the System 80+ plant address nuclear industry concerns with regard to design, construction, operation and maintenance of nuclear power plants. A large number of these issues/concerns deals with previously unresolved generic thermal-hydraulic safety issues and severe accident prevention and mitigation. This paper discusses the thermal-hydraulic analyses and evaluations performed for the System 80+ design to resolve safety and licensing issues relevant to both the Nuclear Stream Supply System (NSSS) and containment designs. For the NSSS design, the Safety Depressurization System mitigation capability and resolution of the boron dilution concern are described. Examples of containment design issues dealing with containment shell strength, robustness of the reactor cavity walls and hydrogen mixing under severe accident conditions are also provided. Finally, the overall approach used in the application of NRC`s new (NUREG-1465) radiological source term for System 80+ evaluation is described. The robustness of the System 80+ containment design to withstand severe accident consequences was demonstrated through detailed thermal-hydraulic analyses and evaluations. This advanced design to shown to meet NRC severe accident policy goals and ALWR URD requirements without any special design features and unnecessary costs.

  4. A Newton-based Jacobian-free approach for neutronic-Monte Carlo/thermal-hydraulic static coupled analysis

    International Nuclear Information System (INIS)

    Mylonakis, Antonios G.; Varvayanni, M.; Catsaros, N.

    2017-01-01

    Highlights: •A Newton-based Jacobian-free Monte Carlo/thermal-hydraulic coupling approach is introduced. •OpenMC is coupled with COBRA-EN with a Newton-based approach. •The introduced coupling approach is tested in numerical experiments. •The performance of the new approach is compared with the traditional “serial” coupling approach. -- Abstract: In the field of nuclear reactor analysis, multi-physics calculations that account for the bonded nature of the neutronic and thermal-hydraulic phenomena are of major importance for both reactor safety and design. So far in the context of Monte-Carlo neutronic analysis a kind of “serial” algorithm has been mainly used for coupling with thermal-hydraulics. The main motivation of this work is the interest for an algorithm that could maintain the distinct treatment of the involved fields within a tight coupling context that could be translated into higher convergence rates and more stable behaviour. This work investigates the possibility of replacing the usually used “serial” iteration with an approximate Newton algorithm. The selected algorithm, called Approximate Block Newton, is actually a version of the Jacobian-free Newton Krylov method suitably modified for coupling mono-disciplinary solvers. Within this Newton scheme the linearised system is solved with a Krylov solver in order to avoid the creation of the Jacobian matrix. A coupling algorithm between Monte-Carlo neutronics and thermal-hydraulics based on the above-mentioned methodology is developed and its performance is analysed. More specifically, OpenMC, a Monte-Carlo neutronics code and COBRA-EN, a thermal-hydraulics code for sub-channel and core analysis, are merged in a coupling scheme using the Approximate Block Newton method aiming to examine the performance of this scheme and compare with that of the “traditional” serial iterative scheme. First results show a clear improvement of the convergence especially in problems where significant

  5. Application of RELAP5/MOD3.3 to Calculate Thermal Hydraulic Behavior of the Pressurizer Safety Valve Performance Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyun; Kim, Young Ae; Oh, Seung Jong; Park, Jong Woon [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2007-10-15

    The increase of the acceptance tolerance of Pressurizer Safety Valve (PSV) test is vital for the safe operation of nuclear power plants because the frequent tests may make the valves decrepit and become a cause of leak. Recently, Korea Hydro and Nuclear Power Company (KHNP) is building a PSV performance test facility to provide the technical background data for the relaxation of the acceptance tolerance of PSV including the valve pop-up characteristics and the loop seal dynamics (if the plant has the loop seal in the upstream of PSV). The discharge piping and supports must be designed to withstand severe transient hydrodynamic loads when the safety valve actuates. The evaluation of hydrodynamic loads is a two-step process: first the thermal hydraulic behavior in the piping must be defined, and then the hydrodynamic loads are calculated from the thermal hydraulic parameters such as pressure and mass flow. The hydrodynamic loads are used as input to the structural analysis.

  6. Transient thermal-hydraulic/neutronic analysis in a VVER-1000 reactor core

    International Nuclear Information System (INIS)

    Seyed khalil Mousavian; Mohammad Mohsen Ertejaei; Majid Shahabfar

    2005-01-01

    Full text of publication follows: Nowadays, coupled thermal-hydraulic and three-dimensional neutronic codes in order to consider different feedback effects is state of the art subject in nuclear engineering researches. In this study, RELAP5/COBRA and WIMS/CITATION codes are implemented to investigate the VVER-1000 reactor core parameters during Large Break Loss of Coolant Accident (LB-LOCA). In a LB-LOCA, the primary side pressure, coolant density and fuel temperature strongly decrease but the cladding temperature experiences a strong peak. For this purpose, the RELAP5 Best Estimate (BE) system code is used to simulate the LB-LOCA analysis in VVER-1000 nuclear thermal-hydraulic loops. Also, the modified COBRA-IIIc software as a sub-channel analysis code is applied for modeling of VVER-1000 reactor core. Moreover, WIMS and CITATION as a cross section and 3-D neutron flux codes are coupled with thermal-hydraulic codes with the aim of consider the spatial effects through the reactor core. For this reason, suitable software is developed to link and speed up the coupled thermalhydraulic and three-dimensional neutronic calculations. This software utilizes of external coupling concept in order to integrate thermal-hydraulic and neutronic calculations. (authors)

  7. Development of best estimate auditing code for CANDU thermal hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Lee, W. J.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2000-03-15

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model if existing PWR auditing tool, i.e. RELAP5/MOD3. This scope of project is a third step of the whole project, and expand the RELAP5/MOD3/CANDU version for implementation of LOCA analysis. There are three main area of model development, i.e. moody critical flow model, flow regime model of horizontal CANDU bundle, and fuel element heatup model when the stratification occurs. Newly developed version, namely RELAP5/MOD3/CANDU+ is applicable to CANDU plant analysis with keeping the function of light water reactor analysis. The limited validations of model installation were performed. Assessment of CHF model using AECL separated effect test and calculation for Wolsong 2 plant were performed also for the applicability test of the developed version.

  8. Conceptual assessment and thermal hydraulic analysis of MVDS system for the dry storage of reduced metal fuel

    International Nuclear Information System (INIS)

    Lee, J. C.; Bang, K. S.; Shin, H. S.; Joo, J. S.; Su, K. S.; Kim, H. D.

    2003-01-01

    Conceptual assessment and thermal hydraulic analysis of MVDS storage system have been carried out for application of reduced metal fuel. The storage concept was established considering the optimum weight, storage volume and thermal efficiency. The capacity of MVDS system for loading the reduced metal fuel has four times as compared with existing PWR fuel storage system. In the results of thermal analysis, the maximum temperature of metal fuel was estimated to be 110 .deg. C which is lower than the allowable value under normal operation condition. Therefore, it is shown that the MVDS system can feasibly accomodate the reduced metal fuel in aspect of thermal safety

  9. Thermal hydraulic model descrition of TASS/SMR

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Han Young; Kim, H. C.; Chung, Y. J.; Lim, H. S.; Yang, S. H

    2001-04-01

    The TASS/SMR code has been developed for the safety analysis of SMART. The governing equations were applied only to the primary coolant system in TASS which had been developed at KAERI. In TASS/SMR, the solution method is improved so that the primary and secondary coolant systems are solved simultaneously. Besides the solution method, thermal-hydraulic models are incorporated, in TASS/SMR, such as non-condensible gas model, helical steam generator heat transfer model, and passive residual heat removal system (PRHRS) heat transfer model for the application to SMART. The governing equtions of TASS/SMR are based on the drift-flux model so that the accidents and transients accompaning with two-phase flow can be analized. This report describes the governing equations and solution methods used in TASS/SMR and also includes the description for the thermal hydraulic models for SMART design.

  10. FONESYS: The FOrum and NEtwork of SYStem Thermal-Hydraulic Codes in Nuclear Reactor Thermal-Hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S.H., E-mail: k175ash@kins.re.kr [Korea Institute of Nuclear Safety (KINS) (Korea, Republic of); Aksan, N., E-mail: nusr.aksan@gmail.com [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Austregesilo, H., E-mail: henrique.austregesilo@grs.de [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) (Germany); Bestion, D., E-mail: dominique.bestion@cea.fr [Commissariat à l’énergie atomique et aux énergies alternatives (CEA) (France); Chung, B.D., E-mail: bdchung@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI) (Korea, Republic of); D’Auria, F., E-mail: f.dauria@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Emonot, P., E-mail: philippe.emonot@cea.fr [Commissariat à l’énergie atomique et aux énergies alternatives (CEA) (France); Gandrille, J.L., E-mail: jeanluc.gandrille@areva.com [AREVA NP (France); Hanninen, M., E-mail: markku.hanninen@vtt.fi [VTT Technical Research Centre of Finland (VTT) (Finland); Horvatović, I., E-mail: i.horvatovic@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Kim, K.D., E-mail: kdkim@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI) (Korea, Republic of); Kovtonyuk, A., E-mail: a.kovtonyuk@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy); Petruzzi, A., E-mail: a.petruzzi@ing.unipi.it [University of Pisa San Piero a Grado Nuclear Research Group (GRNSPG) (Italy)

    2015-01-15

    Highlights: • We briefly presented the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS). • We presented FONESYS participants and their codes. • We explained FONESYS projects motivation, its main targets and working modalities. • We presented FONESYS position about projects topics and subtopics. - Abstract: The purpose of this article is to present briefly the project called Forum and Network of System Thermal-Hydraulics Codes in Nuclear Reactor Thermal-Hydraulics (FONESYS), its participants, the motivation for the project, its main targets and working modalities. System Thermal-Hydraulics (SYS-TH) codes, also as part of the Best Estimate Plus Uncertainty (BEPU) approaches, are expected to achieve a more-and-more relevant role in nuclear reactor technology, safety and design. Namely, the number of code-users can easily be predicted to increase in the countries where nuclear technology is exploited. Thus, the idea of establishing a forum and a network among the code developers and with possible extension to code users has started to have major importance and value. In this framework the FONESYS initiative has been created. The main targets of FONESYS are: • To promote the use of SYS-TH Codes and the application of the BEPU approaches. • To establish acceptable and recognized procedures and thresholds for Verification and Validation (V and V). • To create a common ground for discussing envisaged improvements in various areas, including user-interface, and the connection with other numerical tools, including Computational Fluid Dynamics (CFD) Codes.

  11. Preliminary analysis of K-DEMO thermal hydraulic system using MELCOR; Parametric study of hydrogen explosion

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Bo; Lim, Soo Min; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    K-DEMO (Korean fusion demonstration reactor) is future reactor for the commercializing the fusion power generation. The Design of K-DEMO is similar to that of ITER but the fusion energy generation is much bigger because ITER is experimental reactor. For this reason, K-DEMO uses more fusion reaction with bigger amount of tritium. Higher fusion power means more neutron generation that can irradiate the structure around fusion plasma. Fusion reactor can produce many kinds of radioactive material in the accident. Because of this hazard, preliminary safety analysis is mandatory before its construction. Concern for safety problem of accident of fusion/fission reactor has been growing after Fukushima accident which is severe accident from unexpected disaster. To model the primary heat transfer system, in this study, MARS-KS thermal hydraulic analysis is referred. Lee et al. and Kim et al. conducted thermal hydraulic analysis using MARS-KS and multiple module simulation to deal with the phenomena of first wall corrosion for each plasma pulse. This study shows the relationship between vacuum vessel rupture area and source term leakage after hydrogen explosion. For the conservative study, first wall heating is not terminated because the heating inside the vacuum vessel increase the pressure inside VV. Pressurizer, steam generator and turbine is not damaged. 6.69 kg of tritiated water (HTO) and 1 ton of dust is modeled which is ITER guideline. The entire system of K-DEMO is smaller than that of ITER. For this reason, lots of aerosol is release into environment although the safety system like DS is maintained. This result shows that the safety system of K-DEMO should use much more safety system.

  12. Uncertainty analysis for results of thermal hydraulic codes of best-estimate-type

    International Nuclear Information System (INIS)

    Alva N, J.

    2010-01-01

    In this thesis, some fundamental knowledge is presented about uncertainty analysis and about diverse methodologies applied in the study of nuclear power plant transient event analysis, particularly related to thermal hydraulics phenomena. These concepts and methodologies mentioned in this work come from a wide bibliographical research in the nuclear power subject. Methodologies for uncertainty analysis have been developed by quite diverse institutions, and they have been widely used worldwide for application to results from best-estimate-type computer codes in nuclear reactor thermal hydraulics and safety analysis. Also, the main uncertainty sources, types of uncertainties, and aspects related to best estimate modeling and methods are introduced. Once the main bases of uncertainty analysis have been set, and some of the known methodologies have been introduced, it is presented in detail the CSAU methodology, which will be applied in the analyses. The main objective of this thesis is to compare the results of an uncertainty and sensibility analysis by using the Response Surface Technique to the application of W ilks formula, apply through a loss coolant experiment and an event of rise in a BWR. Both techniques are options in the part of uncertainty and sensibility analysis of the CSAU methodology, which was developed for the analysis of transients and accidents at nuclear power plants, and it is the base of most of the methodologies used in licensing of nuclear power plants practically everywhere. Finally, the results of applying both techniques are compared and discussed. (Author)

  13. Thermal hydraulic feasibility assessment of the spent nuclear fuel project

    International Nuclear Information System (INIS)

    Heard, F.J.

    1996-01-01

    A series of analyses have been completed investigating the thermal-hydraulic performance and feasibility of the Spent Nuclear Fuel Project (SNFP) Integrated Process Strategy (IPS). The goal was to develop a series of thermal-hydraulic models that could respond to all process and safety related issues that may arise pertaining to the SNFP, as well as provide a basis for validation of the results. Results show that there is a reasonable envelope for process conditions and requirements that are thermally and hydraulically acceptable

  14. Development of best estimate auditing code for CANDU thermal-hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bub Dong; Lee, Won Jae; Hwang, Moon Kyu; Lim, Hong Sik [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool, i.e. RELAP5/MOD3.The study was performed by reconsideration of the previous code assessment works and phenomena identification for essential accident scenario. Improvement areas of model development for auditing tool were identified based on the code comparison and PIRT results. Nine models have been improved significantly for the analysis of LOCA and Mon LOCA event. Conceptual problem or separate effect assessment have been performed to verify the model improvement. The linking calculation with CONTAIN 2.0 has been also enabled to establish the unified auditing code system. Analysis for the CANDU plant real transient and hypothetical LOCA bas been performed using the improved version. It has been concluded that the developed version can be utilized for the auditing analysis of LOCA and non-LOCA event for the CANDU reactor. 25 refs., 84 figs., 36 tabs. (Author)

  15. Thermal-hydraulic modeling needs for passive reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.M. [Nuclear Regulatory Commission, Washington, DC (United States)

    1997-07-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.

  16. Thermal-hydraulic modeling needs for passive reactors

    International Nuclear Information System (INIS)

    Kelly, J.M.

    1997-01-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken

  17. Thermal-hydraulics of the Loviisa reactor pressure vessel overcooling transients

    International Nuclear Information System (INIS)

    Tuomisto, Harri.

    1987-06-01

    In the Loviisa reactor pressure vessel safety analyses, the thermal-hydraulics of various overcooling transients has been evaluated to give pertinent initial data for fracture-mechanics calculations. The thermal-hydraulic simulations of the developed overcooling scenarios have been performed using best-estimate thermal-hydraulic computer codes. Experimental programs have been carried out to study phenomena related to natural circulation interruptions in the reactor coolant system. These experiments include buoyancy-induced phenomena such as thermal mixing and stratification of cold high-pressure safety injection water in the cold legs and the downcomer, and oscillations of the single-phase natural circulation. In the probabilistic pressurized thermal shock study, the Loviisa training simulator and the advanced system code RELAP5/MOD2 were utilized to simulate selected sequences. Flow stagnation cases were separately calculated with the REMIX computer program. The methods employed were assessed for these calculations against the plant data and own experiments

  18. Simulation of Thermal-hydraulic Process in Reactor of HTR-PM

    International Nuclear Information System (INIS)

    Zhou Kefeng; Zhou Yangping; Sui Zhe; Ma Yuanle

    2014-01-01

    This paper provides the physical process in the reactor of High Temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM) and introduces the standard operation conditions. The FORTRAN code developed for the thermal hydraulic module of Full-Scale Simulator (FSS) of HTR-PM is used to simulate two typical operation transients including cold startup process and cold shutdown process. And the results were compared to the safety analysis code, namely TINTE. The good agreement indicates that the code is applicable for simulating the thermal-hydraulic process in reactor of HTR-PM. And for long time transient process, the code shows good stability and convergence. (author)

  19. Thermal-hydraulic analysis under partial loss of flow accident hypothesis of a plate-type fuel surrounded by two water channels using RELAP5 code

    OpenAIRE

    Itamar Iliuk; José Manoel Balthazar; Ângelo Marcelo Tusset; José Roberto Castilho Piqueira

    2016-01-01

    Thermal-hydraulic analysis of plate-type fuel has great importance to the establishment of safety criteria, also to the licensing of the future nuclear reactor with the objective of propelling the Brazilian nuclear submarine. In this work, an analysis of a single plate-type fuel surrounding by two water channels was performed using the RELAP5 thermal-hydraulic code. To realize the simulations, a plate-type fuel with the meat of uranium dioxide sandwiched between two Zircaloy-4 plates was prop...

  20. Core Thermal-Hydraulic Conceptual Design for the Advanced SFR Design Concepts

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Chang, Jin Wook; Yoo, Jae Woon; Song, Hoon; Choi, Sun Rock; Park, Won Seok; Kim, Sang Ji

    2010-01-01

    The Korea Atomic Energy Research Institute (KAERI) has developed the advanced SFR design concepts from 2007 to 2009 under the National longterm Nuclear R and D Program. Two types of core designs, 1,200 MWe breakeven and 600 MWe TRU burner core have been proposed and evaluated whether they meet the design requirements for the Gen IV technology goals of sustainability, safety and reliability, economics, proliferation resistance, and physical protection. In generally, the core thermal hydraulic design is performed during the conceptual design phase to efficiently extract the core thermal power by distributing the appropriate sodium coolant flow according to the power of each assembly because the conventional SFR core is composed of hundreds of ducted assemblies with hundreds of fuel rods. In carrying out the thermal and hydraulic design, special attention has to be paid to several performance parameters in order to assure proper performance and safety of fuel and core; the coolant boiling, fuel melting, structural integrity of the components, fuel-cladding eutectic melting, etc. The overall conceptual design procedure for core thermal and hydraulic conceptual design, i.e., flow grouping and peak pin temperature calculations, pressure drop calculations, steady-state and detailed sub-channel analysis is shown Figure 1. In the conceptual design phase, results of core thermal-hydraulic design for advanced design concepts, the core flow grouping, peak pin cladding mid-wall temperature, and pressure drop calculations, are summarized in this study

  1. Transient analysis for resolving safety issues

    International Nuclear Information System (INIS)

    Chao, J.; Layman, W.

    1987-01-01

    The Nuclear Safety Analysis Center (NSAC) has a Generic Safety Analysis Program to help resolve high priority generic safety issues. This paper describes several high priority safety issues considered at NSAC and how they were resolved by transient analysis using thermal hydraulics and neutronics codes. These issues are pressurized thermal shock (PTS), anticipated transients without scram (ATWS), steam generator tube rupture (SGTR), and reactivity transients in light of the Chernobyl accident

  2. Methodology for thermal hydraulic conceptual design and performance analysis of KALIMER core

    International Nuclear Information System (INIS)

    Young-Gyun Kim; Won-Seok Kim; Young-Jin Kim; Chang-Kue Park

    2000-01-01

    This paper summarizes the methodology for thermal hydraulic conceptual design and performance analysis which is used for KALIMER core, especially the preliminary methodology for flow grouping and peak pin temperature calculation in detail. And the major technical results of the conceptual design for the KALIMER 98.03 core was shown and compared with those of KALIMER 97.07 design core. The KALIMER 98.03 design core is proved to be more optimized compared to the 97.07 design core. The number of flow groups are reduced from 16 to 11, and the equalized peak cladding midwall temperature from 654 deg. C to 628 deg. C. It was achieved from the nuclear and thermal hydraulic design optimization study, i.e. core power flattening and increase of radial blanket power fraction. Coolant flow distribution to the assemblies and core coolant/component temperatures should be determined in core thermal hydraulic analysis. Sodium flow is distributed to core assemblies with the overall goal of equalizing the peak cladding midwall temperatures for the peak temperature pin of each bundle, thus pin cladding damage accumulation and pin reliability. The flow grouping and the peak pin temperature calculation for the preliminary conceptual design is performed with the modules ORFCE-F60 and ORFCE-T60 respectively. The basic subchannel analysis will be performed with the SLTHEN code, and the detailed subchannel analysis will be done with the MATRA-LMR code which is under development for the K-Core system. This methodology was proved practical to KALIMER core thermal hydraulic design from the related benchmark calculation studies, and it is used to KALIMER core thermal hydraulic conceptual design. (author)

  3. Development of whole core thermal-hydraulic analysis program ACT. 4. Incorporation of three-dimensional upper plenum model

    International Nuclear Information System (INIS)

    Ohshima, Hiroyuki

    2003-03-01

    The thermal-hydraulic analysis computer program ACT is under development for the evaluation of detailed flow and temperature fields in a core region of fast breeder reactors under various operation conditions. The purpose of this program development is to contribute not only to clarifying thermal hydraulic characteristics that cannot be revealed by experiments due to measurement difficulty but also to performing rational safety design and assessment. This report describes the incorporation of a three-dimensional upper plenum model to ACT and its verification study as part of the program development. To treat the influence of three-dimensional thermal-hydraulic behavior in a upper plenum on the in-core temperature field, the multi-dimensional general purpose thermal-hydraulic analysis program AQUA, which was developed and validated at JNC, was applied as the base of the upper plenum analysis module of ACT. AQUA enables to model the upper plenum configuration including immersed heat exchangers of the direct reactor auxiliary cooling system (DRACS). In coupling core analysis module that consists of the fuel-assembly and the inter-wrapper gap calculation parts with the upper plenum module, different types of computation mesh systems were jointed using the staggered quarter assembly mesh scheme. A coupling algorithm among core, upper plenum and heat transport system modules, which can keep mass, momentum and energy conservation, was developed and optimized in consideration of parallel computing. ACT was applied to analyzing a sodium experiment (PLANDTL-DHX) performed at JNC, which simulated the natural circulation decay heat removal under DRACS operation conditions for the program verification. From the calculation result, the validity of the improved program was confirmed. (author)

  4. VUJE's experience in the field of thermal-hydraulic behaviour of WWER

    International Nuclear Information System (INIS)

    Klepach, J.

    1995-01-01

    The thermal-hydraulic behavior (THB) of NPP coolant system and its consequences to nuclear safety of WWER reactors in previous Czechoslovakia has been studied in the VUJE (Nuclear Power Plants Research Institute, Trnava, SK). The institute takes part in the development and verification of its own (SLAP, LENKA, PUMKO, SICHTA, TRACO etc.) and international (DYNAMIKA5) codes for thermal-hydraulic analysis. The verification efforts are concentrated on the WWER specific features such as horizontal steam generators, control and safety system functioning, etc. The whole range of NPP accident analyses is covered by the VUJe staff. The author outlined briefly the WWER specific features as design and implemented improvements in Bohunice V-1 and Mochovce V-1 (WWER 230 model). The pros and cons of the WWER design compared against western type PWR are described. It is believed that although the WWERs are designed under the rules and standards of 1960s, their safety and operational performance can be improved to acceptable level by thorough analysis and appropriate measures. 5 figs

  5. Study on safety of a nuclear ship having an integral marine water reactor. Intelligent information database program concerned with thermal-hydraulic characteristics

    International Nuclear Information System (INIS)

    Inasaka, Fujio; Nariai, Hideki; Kobayashi, Michiyuki; Murata, Hiroyuki; Aya, Izuo

    2001-01-01

    As a high economical marine reactor with sufficient safety functions, an integrated type marine water reactor has been considered most promising. At the National Maritime Research Institute, a series of the experimental studies on the thermal-hydraulic characteristics of an integrated/passive-safety type marine water reactor such as the flow boiling of a helical-coil type steam generator, natural circulation of primary water under a ship rolling motion and flashing-condensation oscillation phenomena in pool water has been conducted. This current study aims at making use of the safety analysis or evaluation of a future marine water reactor by developing an intelligent information database program concerned with the thermal-hydraulic characteristics of an integral/passive-safety reactor on the basis of the above-mentioned valuable experimental knowledge. Since the program was created as a Windows application using the Visual Basic, it is available to the public and can be easily installed in the operating system. Main functions of the program are as follows: (1) steady state flow boiling analysis and determination of stability limit for any helical-coil type once-through steam generator design. (2) analysis and comparison with the flow boiling data, (3) reference and graphic display of the experimental data, (4) indication of the knowledge information such as analysis method and results of the study. The program will be useful for the design of not only the future integrated type marine water reactor but also the small sized water reactor. (author)

  6. Thermal Hydraulic Assessment for Loss of SDCS Event During the Outage of CANDU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghyun [Gnest, Inc. Taejon (Korea, Republic of); Lee, Kwangho; Oh, Haechol; Jun, Hwangyong [KEPRI, Taejon (Korea, Republic of)

    2006-07-01

    During the outage(overhaul) of the nuclear power plant, there are several operating states other than the full power state, that is 'Hot-Zero Power', 'Depressurized-Cooldown', and 'Partially Drained'. Until now safety assessment has not been done much for this operating state of CANDU type reactor worldwide. For the accuracy and confidence of PSA for the CANDU outage, the safety analysis is necessary. At the first stage, we analyzed the thermal hydraulic characteristics and safety of the postulated event of loss of shutdown cooling system (SDCS) during the partially drained state which is the longest one in the middle of outage period. As an analysis tool, this study uses the best estimate thermal hydraulic code, RELAP5/CANDU which was modified according to the CANDU specific characteristics and based on RELAP5.Mod3.

  7. Constitutive model development needs for reactor safety thermal-hydraulic codes

    International Nuclear Information System (INIS)

    Kelly, J.M.

    1998-01-01

    This paper discusses the constitutive model development needs for our current and future generation of reactor safety thermal-hydraulic analysis codes. Rather than provide a simple 'shopping list' of models to be improved, a detailed description is given of how a constitutive model works within the computational framework of a current reactor safety code employing the two-fluid model of two-phase flow. The intent is to promote a better understanding of both the types of experiments and the instrumentation needs that will be required in the USNRCs code improvement program. First, a summary is given of the modeling considerations that need to be taken into account when developing constitutive models for use in reactor safety thermal-hydraulic codes. Specifically, the two-phase flow model should be applicable to a control volume formulation employing computational volumes with dimensions on the order of meters but containing embedded structure with a dimension on the order of a centimeter. The closure relations are then required to be suitable when averaged over such large volumes containing millions or even tens of millions of discrete fluid particles (bubbles/drops). This implies a space and time averaging procedure that neglects the intermittency observed in slug and chum turbulent two-phase flows. Furthermore, the geometries encountered in reactor systems are complex, the constitutive relations should therefore be component specific (e.g., interfacial shear in a tube does not represent that in a rod bundle nor in the downcomer). When practicable, future modeling efforts should be directed towards resolving the spatial evolution of two-phase flow patterns through the introduction of interfacial area transport equations and by modeling the individual physical processes responsible for the creation or destruction of interfacial area. Then the example of the implementation and assessment of a subcooled boiling model in a two-fluid code is given. The primary parameter

  8. Thermal-hydraulic calculation and water hammer analysis on CEFR loop system

    International Nuclear Information System (INIS)

    Hao Pengfei; Zhang Xiwen; Cai Weidong; Wang Xuefang

    1997-01-01

    China Experimental Fast Reactor (CEFR) is one of the '863' High-technical Projects. It is necessary to study the hydraulic and thermal Characteristic of CEFR loop system in order to guarantee the safety of operation. The results of the thermal-hydraulic calculation have been given. The main points are as follows: 1. The simplified model is built according to the loop system of CEFR, and the calculation method which is called 'NODE'-'BRANCH' is applied. This method includes two aspects, one is the theoretical analysis that is based on fluid mechanics and heat transfer theory. The other is the engineering calculation. These two aspects are connected in the computation. On the basis of the work mentioned above, the stable state computation is presented. In order to prevent serious damage caused by power failure accident, the courses of surplus reactor heat removing through two different systems have been simulated in the computation. 2. By using the fluid dynamics theory, the simplified model and the equipment boundary conditions of loop system are given. The water hammer computation is processed during the valve closing and pump stopping accidents. Some pictures of water hammer wave are presented, and the most dangerous state in the accident is also given

  9. Thermal modeling of a hydraulic hybrid vehicle transmission based on thermodynamic analysis

    International Nuclear Information System (INIS)

    Kwon, Hyukjoon; Sprengel, Michael; Ivantysynova, Monika

    2016-01-01

    Hybrid vehicles have become a popular alternative to conventional powertrain architectures by offering improved fuel efficiency along with a range of environmental benefits. Hydraulic Hybrid Vehicles (HHV) offer one approach to hybridization with many benefits over competing technologies. Among these benefits are lower component costs, more environmentally friendly construction materials, and the ability to recover a greater quantity of energy during regenerative braking which make HHVs partially well suited to urban environments. In order to further the knowledge base regarding HHVs, this paper explores the thermodynamic characteristics of such a system. A system model is detailed for both the hydraulic and thermal components of a closed circuit hydraulic hybrid transmission following the FTP-72 driving cycle. Among the new techniques proposed in this paper is a novel method for capturing rapid thermal transients. This paper concludes by comparing the results of this model with experimental data gathered on a Hardware-in-the-Loop (HIL) transmission dynamometer possessing the same architecture, components, and driving cycle used within the simulation model. This approach can be used for several applications such as thermal stability analysis of HHVs, optimal thermal management, and analysis of the system's thermodynamic efficiency. - Highlights: • Thermal modeling for HHVs is introduced. • A model for the hydraulic and thermal system is developed for HHVs. • A novel method for capturing rapid thermal transients is proposed. • The thermodynamic system diagram of a series HHV is predicted.

  10. Techniques for the thermal/hydraulic analysis of LMFBR check valves

    International Nuclear Information System (INIS)

    Cho, S.M.; Kane, R.S.

    1979-01-01

    A thermal/hydraulic analysis of the check valves in liquid sodium service for LMFBR plants is required to provide temperature data for thermal stress analysis of the valves for specified transient conditions. Because of the complex three-dimensional flow pattern within the valve, the heat transfer analysis techniques for less complicated shapes could not be used. This paper discusses the thermal analysis techniques used to assure that the valve stress analysis is conservative. These techniques include a method for evaluating the recirculating flow patterns and for selecting appropriately conservative heat transfer correlations in various regions of the valve

  11. Thermal-Hydraulic Analysis Tasks for ANAV NPPs in Support of Plant Operation and Control

    Directory of Open Access Journals (Sweden)

    L. Batet

    2007-11-01

    Full Text Available Thermal-hydraulic analysis tasks aimed at supporting plant operation and control of nuclear power plants are an important issue for the Asociación Nuclear Ascó-Vandellòs (ANAV. ANAV is the consortium that runs the Ascó power plants (2 units and the Vandellòs-II power plant. The reactors are Westinghouse-design, 3-loop PWRs with an approximate electrical power of 1000 MW. The Technical University of Catalonia (UPC thermal-hydraulic analysis team has jointly worked together with ANAV engineers at different levels in the analysis and improvement of these reactors. This article is an illustration of the usefulness of computational analysis for operational support. The contents presented were operational between 1985 and 2001 and subsequently changed slightly following various organizational adjustments. The paper has two different parts. In the first part, it describes the specific aspects of thermal-hydraulic analysis tasks related to operation and control and, in the second part, it briefly presents the results of three examples of analyses that were performed. All the presented examples are related to actual situations in which the scenarios were studied by analysts using thermal-hydraulic codes and prepared nodalizations. The paper also includes a qualitative evaluation of the benefits obtained by ANAV through thermal-hydraulic analyses aimed at supporting operation and plant control.

  12. Coupled neutronic-thermal-hydraulics analysis in a coolant subchannel of a PWR using CFD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Felipe P.; Su, Jian, E-mail: sujian@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    The high capacity of Computational Fluid Dynamics code to predict multi-dimensional thermal-hydraulics behaviour and the increased availability of capable computer systems are making that method a good tool to simulate phenomena of thermal-hydraulics nature in nuclear reactors. However, since there are no neutron kinetics models available in commercial CFD codes to the present day, the application of CFD in the nuclear reactor safety analyses is still limited. The present work proposes the implementation of the point kinetics model (PKM) in ANSYS - Fluent to predict the neutronic behaviour in a Westinghouse Sequoyah nuclear reactor, coupling with the phenomena of heat conduction in the rod and thermal-hydraulics in the cooling fluid, via the reactivity feedback. Firstly, a mesh convergence and turbulence model study was performed, using the Reynolds-Average Navier-Stokes method, with square arrayed rod bundle featuring pitch to diameter ratio of 1:32. Secondly, simulations using the k-! SST turbulence model were performed with an axial distribution of the power generation in the fuel to analyse the heat transfer through the gap and cladding, and its in fluence on the thermal-hydraulics behaviour of the cooling fluid. The wall shear stress distribution for the centre-line rods and the dimensionless velocity were evaluated to validate the model, as well as the in fluence of the mass flow rate variation on the friction factor. The coupled model enabled to perform a dynamic analysis of the nuclear reactor during events of insertion of reactivity and shutdown of primary coolant pumps. (author)

  13. THEAP-I: A computer program for thermal hydraulic analysis of a thermally interacting channel bundle of complex geometry. Code description and user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Bartzis, J G; Megaritou, A; Belessiotis, V

    1987-09-01

    THEAP-I is a computer code developed in NRCPS `DEMOCRITUS` with the aim to contribute to the safety analysis of the open pool research reactors. THEAP-I is designed for three dimensional, transient thermal/hydraulic analysis of a thermally interacting channel bundle totally immersed into water or air, such as the reactor core. In the present report the mathematical and physical models and methods of the solution are given as well as the code description and the input data. A sample problem is also included, refering to the Greek Research Reactor analysis, under an hypothetical severe loss of coolant accident.

  14. Thermal Hydraulic Analysis of RPV Support Cooling System for HTGR

    International Nuclear Information System (INIS)

    Min Qi; Wu Xinxin; Li Xiaowei; Zhang Li; He Shuyan

    2014-01-01

    Passive safety is now of great interest for future generation reactors because of its reduction of human interaction and avoidance of failures of active components. reactor pressure vessel (RPV) support cooling system (SCS) for high temperature gas-cooled reactor (HTGR) is a passive safety system and is used to cool the concrete seats for the four RPV supports at its bottom. The SCS should have enough cooling capacity to ensure the temperature of the concrete seats for the supports not exceeding the limit temperature. The SCS system is composed of a natural circulation water loop and an air cooling tower. In the water loop, there is a heat exchanger embedded in the concrete seat, heat is transferred by thermal conduction and convection to the cooling water. Then the water is cooled by the air cooler mounted in the air cooling tower. The driving forces for water and air are offered by the density differences caused by the temperature differences. In this paper, the thermal hydraulic analysis for this system was presented. Methods for decoupling the natural circulation and heat transfer between the water loop and air flow were introduced. The operating parameters for different working conditions and environment temperatures were calculated. (author)

  15. VIPRE-01: a thermal-hydraulic analysis code for reactor cores. Volume 2. User's manual

    International Nuclear Information System (INIS)

    Cuta, J.M.; Koontz, A.S.; Stewart, C.W.; Montgomery, S.D.

    1983-04-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear energy reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 2: User's Manual) describes the input requirements of VIPRE and its auxiliary programs, SPECSET, ASP and DECCON, and lists the input instructions for each code

  16. Thermal-hydraulic analysis of total loss of steam generator feed water in WWER-440

    International Nuclear Information System (INIS)

    Sabotinov, L.; Cadet-Mercier, S.

    2001-01-01

    The analysis is carried out for a WWER-440/V270 with upgraded primary safety valves (replacement of the existing PRZ safety valves with Pilot Operated Relief Valves (PORV) of the type SEBIM (France)) The current analysis is focused on the scenario 'Total Loss of SGs Feed Water' with application of the operator action of primary system 'Feed and Bleed' in order to check the effectiveness of the installed pressurizer SEBIM valves and to verify that the operator can cool down the reactor system and cope with this accident. The calculations have been performed at the Institute of Protection and Nuclear Safety (IPSN) in Fontenay-aux-Roses with the computer code CATHARE 2 Version 1.3L1. CATHARE is a French best estimate thermal-hydraulic program for accident analysis in the light water nuclear reactors, developed with the participation of the IPSN (Institut de Protection et Surete Nucleaire), CEA (Commissariat a l'Energie Atomique), Framatome and EdF (Electricite de France). (author)

  17. Evaluation on thermal-hydraulic characteristics for passive safety device of APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Yeon; Lee, S. H.; Son, M. K. [Korea Association for Nuclear Technology, Taejon (Korea, Republic of); Jee, M. S.; Chung, M. H. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-07-15

    To establish evaluation and verification guideline for the APR1400, thermal-hydraulic characteristics for fuel rod bundle, reactor vessel and fluidic device is analyzed using FLUENT. Scope and major results of research are as follows : Thermal-hydraulic characteristics for nuclear fuel rod bundle: design data for nuclear fuel rod bundle and structure are surveyed, and 3 x 3 sub-channel model is adopted to investigate the fluid flow and heat transfer characteristics in fuel rod bundle. Computational results are compared with the heat transfer data measured by naphthalene sublimation method, and numerical analysis and evaluation are performed at various design conditions and flow conditions. Thermal-hydraulic characteristics for reactor vessel: reactor vessel design data are surveyed to develop numerical model. Porous media model is applied for fuel rod bundle, and full-scale, three dimensional simulation is performed at actual operating conditions. Distributions of velocity, pressure and temperature are discussed. Flow characteristics for fluidic device: three dimensional numerical model for fluidic device is developed, and numerical results are compared with experimental data obtained at KAERI in order to verify numerical simulation. In addition, variation of flow rate is investigated at various elapsed times after valve operating, and flow characteristics is analyzed at low and high flow rate conditions, respectively.

  18. European liquid metal thermal-hydraulics R and D: present and future

    International Nuclear Information System (INIS)

    Roelofs, F.; Batta, A.; Bandini, G.; Van Tichelen, K.; Gerschenfeld, A.; Cheng, X.

    2014-01-01

    A large role is attributed in the future within the European Sustainable Nuclear Energy Technology Platform (SNE-TP) and especially the underlying European Sustainable Nuclear Industry Initiative (ESNII) to the application of fast reactors for sustainable nuclear energy production. Specifically, fast reactors are considered attractive because of their possibility to use natural resources efficiently and to reduce the volume and lifetime of nuclear waste. Currently four demonstration projects have a promising outlook in Europe, i.e. the ASTRID project in France, the MYRRHA project in Belgium, the ALFRED project developed in Europe and to be built in Romania, and the ELECTRA project in Sweden. Sodium and lead(-alloys) are envisaged as coolants for these reactors. Obviously, in the development of these reactors, thermal-hydraulics is recognized as a key challenge with emphasis on safety issues. This paper will discuss the present development status of liquid metal cooled reactor thermal-hydraulics as an outcome of the European 7. framework programme THINS (Thermal-Hydraulics for Innovative Nuclear Systems) project. The main project results with respect to liquid metal cooled reactors will be summarized, i.e. turbulence heat transfer model development, fuel assembly analysis, pool thermal-hydraulics, system behaviour, multi-phase physics, and multiscale thermal-hydraulics simulation. In conclusion, the main challenges for future developments will be indicated. Emphasis will be put on the important experimental and numerical challenges. (authors)

  19. Neutronics and thermal-hydraulics analysis of KUHFR

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, W L [Argonne National Laboratory, Argonne, IL (United States); Mishima, K [KURRI, Osaka (Japan)

    1983-08-01

    control rod worth with reduced enrichment has not yet determined, but only a small decrease in worth is expected. These BOL boron poisoned fuels are also used as the fresh fuel feed for the equilibrium fuel cycle studies contained in this report. The first three cases shown have matching cycle lengths in the equilibrium cycle, while the last case has a considerably longer cycle length. These results are similarly reflected in the 'Maximum Cycle Lengths' shown for unpoisoned BOL cores. Thus, the first three case can be considered comparable. The last case might be considered as an option for an extended cycle length design. The cycle length for this case is increased by about 21%. Obviously, by decreasing the uranium density in the fuel meat (to 2.7 g/cm{sup 3}), the cycle length for this design could be reduced to match that of the other cases. Thermal-hydraulic calculations have been carried out in order to study the safety aspects of the use of reduced enrichment uranium fuel for the KUHFR. The calculations were based on what is outlined in the Safety Analysis Report for the KUHFR and also the IAEA Guidebook for the RERTR program. Only a few combinations of hydraulic parameters have been tested because the reactor safety cannot be discussed without any nuclear physics considerations. For example, any variations in fuel coolant channels may change not only flow velocities but also power peaking factors which may affect the assessment of reactor safety. For this reason, the thermal-hydraulic calculations were carried out only for those specific cases on which neutronics analysis has been already performed. Low enriched uranium (LEU) cases are also included in this study as initial feasibility studies for potential conversion. The computer code PLTEMP has been developed to calculate the flow distribution in the core, fuel plate temperatures and DNB heat fluxes.

  20. RDS - A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    International Nuclear Information System (INIS)

    Salim, Mohd Faiz; Roslan, Ridha; Ibrahim, Mohd Rizal Mamat

    2014-01-01

    Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges

  1. RDS - A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my [Nuclear Energy Department, Tenaga Nasional Berhad, Level 32, Dua Sentral, 50470 Kuala Lumpur (Malaysia); Roslan, Ridha [Nuclear Installation Division, Atomic Energy Licensing Board, Batu 24, Jalan Dengkil, 43800 Dengkil, Selangor (Malaysia); Ibrahim, Mohd Rizal Mamat [Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2014-02-12

    Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges.

  2. Development of a best estimate auditing code for CANDU thermal hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B.D.; Lee, W.J.; Lim, H.S. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool , i.e. RELAP5/MOD3. This scope of project is a third step of the whole project, and expand the RELAP5/MOD3/CANDU version for implementation of LOCA Analysis. There are three main area of model development, i.e. Moody critical flow model, flow regime model of horizontal CANDU bundle, and fuel element heatup model when the stratification occurs. Newly developed version, namely RELAP5/MOD3/CANDU+ is applicable to CANDU plant analysis with keeping the function of light water reactor analysis. The limited validations of model installation were performed. Assessment of CHF model using AECL separated effect test and calculation for Wolsong 2 plant were performed also for the applicability test of the developed version. 15 refs., 37 figs., 8 tabs. (Author)

  3. The analysis of thermal-hydraulic performances of nuclear ship reactor

    International Nuclear Information System (INIS)

    Wakabayashi, Shinshichi; Hamada, Masao

    1975-01-01

    Thermal-hydraulic performances in the core of nuclear ship reactor was analysed by thermal-hydraulic analyser codes, AMRTC and COBRA-11+DNBCAL. This reactor is of a pressurized water type and incorporates the steam generator within the reactor vessel with the rated power of 330 MWt, which is developed by Nuclear Ship Research Panel Seven (NSR-7) in The Shipbuilding Research Association of Japan. Fuel temperature distributions, coolant temperature distributions, void fractions in coolant and minimum burn out ratio etc. were calculated. Results are as follows; a) The maximum temperature of fuel center is 1,472 0 C that corresponds to 53% as small as the melting point (2,800 0 C). b) Subcooled boiling exists in the core and the maximum void fraction is less than 4%. c) The minimum burn out ratio is not less than the minimum allowable limit of 1.25. It was found from the results of analysis that this reactor was able to be operated wide margin with respect to thermal-hydraulic design limits at the rated power. (auth.)

  4. VIPRE-01: a thermal-hydraulic analysis code for reactor cores. Volume 3. Programmer's manual. Final report

    International Nuclear Information System (INIS)

    Stewart, C.W.; Koontz, A.S.; Cuta, J.M.; Montgomery, S.D.

    1983-05-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear-reactor-core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This is Volume 3, the Programmer's Manual. It explains the codes' structures and the computer interfaces

  5. Uncertainty Evaluation of the SFR Subchannel Thermal-Hydraulic Modeling Using a Hot Channel Factors Analysis

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Cho, Chung Ho; Kim, Sang Ji

    2011-01-01

    In an SFR core analysis, a hot channel factors (HCF) method is most commonly used to evaluate uncertainty. It was employed to the early design such as the CRBRP and IFR. In other ways, the improved thermal design procedure (ITDP) is able to calculate the overall uncertainty based on the Root Sum Square technique and sensitivity analyses of each design parameters. The Monte Carlo method (MCM) is also employed to estimate the uncertainties. In this method, all the input uncertainties are randomly sampled according to their probability density functions and the resulting distribution for the output quantity is analyzed. Since an uncertainty analysis is basically calculated from the temperature distribution in a subassembly, the core thermal-hydraulic modeling greatly affects the resulting uncertainty. At KAERI, the SLTHEN and MATRA-LMR codes have been utilized to analyze the SFR core thermal-hydraulics. The SLTHEN (steady-state LMR core thermal hydraulics analysis code based on the ENERGY model) code is a modified version of the SUPERENERGY2 code, which conducts a multi-assembly, steady state calculation based on a simplified ENERGY model. The detailed subchannel analysis code MATRA-LMR (Multichannel Analyzer for Steady-State and Transients in Rod Arrays for Liquid Metal Reactors), an LMR version of MATRA, was also developed specifically for the SFR core thermal-hydraulic analysis. This paper describes comparative studies for core thermal-hydraulic models. The subchannel analysis and a hot channel factors based uncertainty evaluation system is established to estimate the core thermofluidic uncertainties using the MATRA-LMR code and the results are compared to those of the SLTHEN code

  6. Advanced modelling and numerical strategies in nuclear thermal-hydraulics

    International Nuclear Information System (INIS)

    Staedtke, H.

    2001-01-01

    The first part of the lecture gives a brief review of the current status of nuclear thermal hydraulics as it forms the basis of established system codes like TRAC, RELAP5, CATHARE or ATHLET. Specific emphasis is given to the capabilities and limitations of the underlying physical modelling and numerical solution strategies with regard to the description of complex transient two-phase flow and heat transfer conditions as expected to occur in PWR reactors during off-normal and accident conditions. The second part of the lecture focuses on new challenges and future needs in nuclear thermal-hydraulics which might arise with regard to re-licensing of old plants using bestestimate methodologies or the design and safety analysis of Advanced Light Water Reactors relying largely on passive safety systems. In order to meet these new requirements various advanced modelling and numerical techniques will be discussed including extended wellposed (hyperbolic) two-fluid models, explicit modelling of interfacial area transport or higher order numerical schemes allowing a high resolution of local multi-dimensional flow processes.(author)

  7. Extension of BEPU methods to Sub-channel Thermal-Hydraulics and to Coupled Three-Dimensional Neutronics/Thermal-Hydraulics Codes

    International Nuclear Information System (INIS)

    Avramova, M.; Ivanov, K.; Arenas, C.

    2013-01-01

    The principles that support the risk-informed regulation are to be considered in an integrated decision-making process. Thus, any evaluation of licensing issues supported by a safety analysis would take into account both deterministic and probabilistic aspects of the problem. The deterministic aspects will be addressed using Best Estimate code calculations and considering the associated uncertainties i.e. Plus Uncertainty (BEPU) calculations. In recent years there has been an increasing demand from nuclear research, industry, safety and regulation for best estimate predictions to be provided with their confidence bounds. This applies also to the sub-channel thermal-hydraulic codes, which are used to evaluate local safety parameters. The paper discusses the extension of BEPU methods to the sub-channel thermal-hydraulic codes on the example of the Pennsylvania State University (PSU) version of COBRA-TF (CTF). The use of coupled codes supplemented with uncertainty analysis allows to avoid unnecessary penalties due to incoherent approximations in the traditional decoupled calculations, and to obtain more accurate evaluation of margins regarding licensing limit. This becomes important for licensing power upgrades, improved fuel assembly and control rod designs, higher burn-up and others issues related to operating LWRs as well as to the new Generation 3+ designs being licensed now (ESBWR, AP-1000, EPR-1600 and etc.). The paper presents the application of Generalized Perturbation Theory (GPT) to generate uncertainties associated with the few-group assembly homogenized neutron cross-section data used as input in coupled reactor core calculations. This is followed by a discussion of uncertainty propagation methodologies, being implemented by PSU in cooperation of Technical University of Catalonia (UPC) for reactor core calculations and for comprehensive multi-physics simulations. (authors)

  8. Thermal hydraulic analysis of aggressive secondary cooldown in small break loss of coolant accident with total loss of high pressure safety injection

    International Nuclear Information System (INIS)

    Han, S. J.; Im, H. K.; Yang, J. U.

    2003-01-01

    Recently, Probabilistic Safety Assessment (PSA) has being applied to various fields as a basic technique of Risk-Informed Applications (RIA). To use RIA, the present study focuses on the detailed thermal hydraulic analyses for major accident sequences and success criteria to support a development of PSA model for Korea Standard Nuclear Power plant (KSNP). The primary purpose of the present study is to evaluate the success criteria of Aggressive Secondary Cooldown (ASC) in Small Break Loss Of Coolant Accident (SBLOCA) with total loss of High Pressure Safety Injection (HPSI) and to enhance the understanding of related thermal hydraulic behavior and phenomena. The accident scenario was 2 inch coldleg break LOCA without HPSI, with 1/2 Low Pressure Safety Injection (LPSI), and performing ASC limited by 55.6 .deg. C /hr (100 .deg. F/hr) cooldown rate at 15 minute after reactor trip, which successively reaches the LPSI condition for about 1.5hr after starting ASC operation with the Peak Cladding Temperature (PCT) of the hottest rod below the core damage criteria 1204.4 .deg. C (2200 .deg. F). In the present study, more relaxed success criteria than the previous PSA for KSNP could be generated under an assumption that operator should maintain the adequate ASC operation. However, it is necessary to evaluate uncertainties arisen from the related parameters of the ASC operation

  9. Proceedings of the third nuclear thermal hydraulics meeting

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This book contains the proceedings of the Thermal Hydraulics Division of the American Nuclear Society. The papers presented include: Simulator qualification using engineering codes and Development of thermal hydraulic analysis capabilities for Oyster Creek

  10. Preparation of a thermal-hydraulic design method for driver core fuel pins of a new in-pile experimental reactor for FBR safety research

    International Nuclear Information System (INIS)

    Mizuno, Masahiro; Yamaguchi, Katsuhisa; Uto, Nariaki

    1999-07-01

    A design study of a new in-pile experimental reactor, SERAPH (Safety Engineering Reactor for Accident PHenomenology), for FBR safety research has progressed at JNC (Japan Nuclear Cycle Development Institute). SERAPH is intended for various in-pile experiments to be performed under quasi-steady state and various transient operation modes. In order to evaluate the driver core performance in conducting such experiments, clarify the relating design issues to be resolved and refine the experimental needs, it is indispensable to comprehend the allowable margin for the thermal-hydraulic fuel pin design since it largely affects the strategy for the driver core design. This report presents a thermal-hydraulic design method for the driver core fuel pins, which is a combination of a two-dimensional time-dependent heat transfer analysis code TAC-2D and a general non-linear finite-element structural analysis code FINAS. In TAC-2D, the allowable spatial mesh and the time step sizes are evaluated. The code is modified so as to treat time-dependent thermal properties, include an improved gap heat-transfer model and treat the change of intra-pin gap width under transient modes, for the purpose of improving the accuracy of evaluating heat transfer characteristics which gives a significant impact on the thermal-hydraulic design. As for FINAS, the number of element nodes and spatial meshes required to obtain adequate accuracy for the thermal stress characteristics of a fuel pellet during transient modes are investigated. In addition, post-processing tools are newly developed to process the calculation results obtained from these codes. The results of this work contribute to advancing the fuel pin design study for SERAPH as well with the investigation on the technique of manufacturing fuel pins. (author)

  11. An overview on rod-bundle thermal-hydraulic analyses

    International Nuclear Information System (INIS)

    Sha, W.T.

    1980-01-01

    Three methods used in rod-bundle thermal-hydraulic analysis are summarized. These methods are: (1) subchannel analysis, (2) porous medium formulation with volume porosity, surface permeability, distributed resistance and distributed heat source (sink) and, (3) bench-mark rod-bundle thermal-hydraulic analysis using a boundary-fitted coordinate system. Basic limitations and merits of each method are delineated. (orig.)

  12. Thermal Hydraulic Analysis on Containment Filtered Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Suk; Park, Tong Kyu; Lee, Doo Yong; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Lee, Sang Won; Kim, Hyeong Taek [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this study, the thermal hydraulic conditions (e. g. pressure and flow rate) at each component have been examined and the sensitivity analysis on CFVS design parameters (e. g. water inventory, volumetric flow rate). The purpose is to know the possible range of flow conditions at each component to determine the optimum size of filtration system. GOTHIC code has been used to simulate the thermal-hydraulic behavior inside of CFVS. The behavior of flows in the CFVS has been investigated. The vessel water level and the flow rates during the CFVS operation are examined. It was observed that the vessel water level would be changed significantly due to steam condensation/thermal expansion and steam evaporation. Therefore, the vessel size and the initial water inventory should be carefully determined to keep the minimum water level required for filtration components and not to flood the components in the upper side of the vessel. It has been also observed that the volumetric flow rate is maintained during the CFVS operation, which is beneficial for pool scrubbing units. However, regarding the significant variations at the orifice downstream, careful design would be necessary.

  13. Development of a 1D thermal-hydraulic analysis code for once-through steam generator in SMRs using straight tubes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngjae; Kim, Iljin; Kim, Hyungdae [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    Diverse integral/small-modular reactors (SMRs) have been developed. Once-through steam generator (OTSG) which generates superheated steam without steam separator and dryer was used in the SMRs to reduce volume of steam generator. It would be possible to design a new steam generator with best estimate thermal-hydraulic codes such as RELAP and MARS. However, it is not convenience to use the general purpose thermal-hydraulic analysis code to design a specific component of nuclear power plants. A widely used simulation tool for thermal-hydraulic analysis of drum-type steam generators is ATHOS, which allows 3D analysis. On the other hand, a simple 1D thermal-hydraulic analysis code might be accurate enough for the conceptual design of OTSG. In this study, thermal-hydraulic analysis code for conceptual design of OTSG was developed using 1D homogeneous equilibrium model (HEM). A benchmark calculation was also conducted to verify and validate the prediction accuracy of the developed code by comparing with the analysis results with MARS. Finally, conceptual design of OTSG was conducted by the developed code. A simple 1D thermal-hydraulic analysis code was developed for the purpose of conceptual design OTSG for SMRs. A set of benchmark calculations was conducted to verify and validate the analysis accuracy of the developed code by comparing results obtained with a best-estimated thermal-hydraulic analysis code, MARS. Finally, analysis of two different OTSG design concepts with superheating and recirculation was demonstrated using the developed code.

  14. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Baek, Won Pil; Song, C. H.; Kim, Y. S.

    2007-02-01

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform the tests for design, operation, and safety regulation of pressurized water reactors. In the first phase of this project (1997.8∼2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished. In the second phase (2002.4∼2005.2), an optimized design of the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) was established and the construction of the facility was almost completed. In the third phase (2005.3∼2007.2), the construction and commission tests of the ATLAS are to be completed and some first-phase tests are to be conducted

  15. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  16. Thermal-hydraulic analysis of an innovative decay heat removal system for lead-cooled fast reactors

    International Nuclear Information System (INIS)

    Giannetti, Fabio; Vitale Di Maio, Damiano; Naviglio, Antonio; Caruso, Gianfranco

    2016-01-01

    Highlights: • LOOP thermal-hydraulic transient analysis for lead-cooled fast reactors. • Passive decay heat removal system concept to avoid lead freezing. • Solution developed for the diversification of the decay heat removal functions. • RELAP5 vs. RELAP5-3D comparison for lead applications. - Abstract: Improvement of safety requirements in GEN IV reactors needs more reliable safety systems, among which the decay heat removal system (DHR) is one of the most important. Complying with the diversification criteria and based on pure passive and very reliable components, an additional DHR for the ALFRED reactor (Advanced Lead Fast Reactor European Demonstrator) has been proposed and its thermal-hydraulic performances are analyzed. It consists in a coupling of two innovative subsystems: the radiative-based direct heat exchanger (DHX), and the pool heat exchanger (PHX). Preliminary thermal-hydraulic analyses, by using RELAP5 and RELAP5-3D© computer programs, have been carried out showing that the whole system can safely operate, in natural circulation, for a long term. Sensitivity analyses for: the emissivity of the DHX surfaces, the PHX water heat transfer coefficient (HTC) and the lead HTC have been carried out. In addition, the effects of the density variation uncertainty on the results has been analyzed and compared. It allowed to assess the feasibility of the system and to evaluate the acceptable range of the studied parameters. A comparison of the results obtained with RELAP5 and RELAP5-3D© has been carried out and the analysis of the differences of the two codes for lead is presented. The features of the innovative DHR allow to match the decay heat removal performance with the trend of the reactor decay heat power after shutdown, minimizing at the same time the risk of lead freezing. This system, proposed for the diversification of the DHR in the LFRs, could be applicable in the other pool-type liquid metal fast reactors.

  17. Thermal-hydraulic analysis of an innovative decay heat removal system for lead-cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Giannetti, Fabio; Vitale Di Maio, Damiano; Naviglio, Antonio; Caruso, Gianfranco, E-mail: gianfranco.caruso@uniroma1.it

    2016-08-15

    Highlights: • LOOP thermal-hydraulic transient analysis for lead-cooled fast reactors. • Passive decay heat removal system concept to avoid lead freezing. • Solution developed for the diversification of the decay heat removal functions. • RELAP5 vs. RELAP5-3D comparison for lead applications. - Abstract: Improvement of safety requirements in GEN IV reactors needs more reliable safety systems, among which the decay heat removal system (DHR) is one of the most important. Complying with the diversification criteria and based on pure passive and very reliable components, an additional DHR for the ALFRED reactor (Advanced Lead Fast Reactor European Demonstrator) has been proposed and its thermal-hydraulic performances are analyzed. It consists in a coupling of two innovative subsystems: the radiative-based direct heat exchanger (DHX), and the pool heat exchanger (PHX). Preliminary thermal-hydraulic analyses, by using RELAP5 and RELAP5-3D© computer programs, have been carried out showing that the whole system can safely operate, in natural circulation, for a long term. Sensitivity analyses for: the emissivity of the DHX surfaces, the PHX water heat transfer coefficient (HTC) and the lead HTC have been carried out. In addition, the effects of the density variation uncertainty on the results has been analyzed and compared. It allowed to assess the feasibility of the system and to evaluate the acceptable range of the studied parameters. A comparison of the results obtained with RELAP5 and RELAP5-3D© has been carried out and the analysis of the differences of the two codes for lead is presented. The features of the innovative DHR allow to match the decay heat removal performance with the trend of the reactor decay heat power after shutdown, minimizing at the same time the risk of lead freezing. This system, proposed for the diversification of the DHR in the LFRs, could be applicable in the other pool-type liquid metal fast reactors.

  18. RDS; A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    International Nuclear Information System (INIS)

    Mohd Faiz Salim; Ridha Roslan; Mohd Rizal Mamat

    2013-01-01

    Full-text: Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBIMOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges. (author)

  19. Thermal-Hydraulic Analysis for SBLOCA in OPR1000 and Evaluation of Uncertainty for PSA

    International Nuclear Information System (INIS)

    Kim, Tae Jin; Park, Goon Cherl

    2012-01-01

    Probabilistic Safety assessment (PSA) is a mathematical tool to evaluate numerical estimates of risk for nuclear power plants (NPPs). But PSA has the problems about quality and reliability since the quantification of uncertainties from thermal hydraulic (TH) analysis has not been included in the quantification of overall uncertainties in PSA. From the former research, it is proved that the quantification of uncertainties from best-estimate LBLOCA analysis can improve the PSA quality by modifying the core damage frequency (CDF) from the existing PSA report. Basing on the similar concept, this study considers the quantification of SBLOCA analysis results. In this study, however, operator error parameters are also included in addition to the phenomenon parameters which are considered in LBLOCA analysis

  20. Advanced thermal-hydraulic and neutronic codes: current and future applications. Summary and conclusions

    International Nuclear Information System (INIS)

    2001-05-01

    An OECD Workshop on Advanced Thermal-Hydraulic and Neutronic Codes Applications was held from 10 to 13 April 2000, in Barcelona, Spain, sponsored by the Committee on the Safety of Nuclear Installations (CSNI) of the OECD Nuclear Energy Agency (NEA). It was organised in collaboration with the Spanish Nuclear Safety Council (CSN) and hosted by CSN and the Polytechnic University of Catalonia (UPC) in collaboration with the Spanish Electricity Association (UNESA). The objectives of the Workshop were to review the developments since the previous CSNI Workshop held in Annapolis [NEA/CSNI/ R(97)4; NUREG/CP-0159], to analyse the present status of maturity and remnant needs of thermal-hydraulic (TH) and neutronic system codes and methods, and finally to evaluate the role of these tools in the evolving regulatory environment. The Technical Sessions and Discussion Sessions covered the following topics: - Regulatory requirements for Best-Estimate (BE) code assessment; - Application of TH and neutronic codes for current safety issues; - Uncertainty analysis; - Needs for integral plant transient and accident analysis; - Simulators and fast running codes; - Advances in next generation TH and neutronic codes; - Future trends in physical modeling; - Long term plans for development of advanced codes. The focus of the Workshop was on system codes. An incursion was made, however, in the new field of applying Computational Fluid Dynamic (CFD) codes to nuclear safety analysis. As a general conclusion, the Barcelona Workshop can be considered representative of the progress towards the targets marked at Annapolis almost four years ago. The Annapolis Workshop had identified areas where further development and specific improvements were needed, among them: multi-field models, transport of interfacial area, 2D and 3D thermal-hydraulics, 3-D neutronics consistent with level of details of thermal-hydraulics. Recommendations issued at Annapolis included: developing small pilot/test codes for

  1. Coupled neutronics/thermal-hydraulics for analysis of molten salt reactor

    International Nuclear Information System (INIS)

    Guo, Zhangpeng; Zhou, Jianjun; Zhang, Dalin; Chaudri, Khurrum Saleem; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng

    2013-01-01

    Highlights: ► A multiple-channel analysis code (MAC) is developed to be coupled with MCNP. ► 1/8 of core is simulated in MCNP and thermal-hydraulic code. ► The coupling calculation can achieve stable state after a few iterations. ► The coupling calculation results are in reasonable agreement with the analytic solutions of the ORNL. ► Parametric studies of MSR are performed to provide valuable information for future design MSR. -- Abstract: The Generation IV International Forum (GIF) selected molten salt reactor (MSR) among six advanced reactor types. It is characterized by a liquid circulating fuel that also serves as coolant. In this study, a multiple-channel analysis code (MAC) is developed and it is coupled with MCNP4c to analyze the neutronics/thermal-hydraulics behavior of molten salt reactor experiment (MSRE). The MAC calculates thermal-hydraulic parameters, such as temperature distribution, flow distribution and pressure drop. MCNP4c performs the analysis of effective multiplication factor, neutron flux and power distribution. A linkage code is developed to exchange data between MAC and MCNP to implement coupling iteration process until the power convergence is achieved. The coupling calculation can achieve converged solution after a few iterations. The results are in reasonable agreement with the analytic solutions from the ORNL. For further design analysis, parametric studies are performed to provide valuable information for new design of MSR. The effect of inlet temperature, graphite to molten salt volume ratio (G/Ms) from varying channel diameter and different power levels on the effective multiplication factor, neutron flux, graphite lifetime and temperature distribution are discussed in detail

  2. TRAC-B thermal-hydraulic analysis of the Black Fox boiling water reactor

    International Nuclear Information System (INIS)

    Martin, R.P.

    1993-05-01

    Thermal-hydraulic analyses of six hypothetical accident scenarios for the General Electric Black Fox Nuclear Project boiling water reactor were performed using the TRAC-BF1 computer code. This work is sponsored by the US Nuclear Regulatory Commission and is being done in conjunction with future analysis work at the US Nuclear Regulatory Commission Technical Training Center in Chattanooga, Tennessee. These accident scenarios were chosen to assess and benchmark the thermal-hydraulic capabilities of the Black Fox Nuclear Project simulator at the Technical Training Center to model abnormal transient conditions

  3. Development of RETRAN-03/MOV code for thermal-hydraulic analysis of nuclear reactor under moving conditions

    International Nuclear Information System (INIS)

    Kim, Hak Jae; Park, Goon Cherl

    1996-01-01

    Nuclear ship reactors have several; features different from land-based PWR's. Especially, effects of ship motions on reactor thermal-hydraulics and good load following capability for abrupt load changes are essential characteristics of nuclear ship reactors. This study modified the RETRAN-03 to analyze the thermal-hydraulic transients under three-dimensional ship motions, named RETRAN-03/MOV in order to apply to future marine reactors. First Japanese nuclear ship MUTSU reactor have been analyzed under various ship motions to verify this code. Calculations have been performed under rolling,heaving and stationary inclination conditions during normal operation. Also, the natural circulation has been analyzed, which can provide the decay heat removed to ensure the passive safety of marine reactors. As results, typical thermal-hydraulic characteristics of marine reactors such as flow rate oscillations and S/G water level oscillations have been successfully simulated at various conditions. 7 refs., 11 figs. (author)

  4. Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1

    Directory of Open Access Journals (Sweden)

    Muhammad Atta

    2011-01-01

    Full Text Available The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease.

  5. Thermal-Hydraulic Analysis of a Once-Through Steam Generator Considering Performance Degradation

    International Nuclear Information System (INIS)

    Han, Hun Sik; Kang, Han Ok; Yoon, Ju Hyeon; Kim, Young In; Song, Jae Seung; Kim, Keung Koo

    2016-01-01

    Several countries have entered into a global race for the commercialization of SMRs, and considerable research and development have been implemented. Among the various reactor designs, many SMRs have adopted an integral type pressurized water reactor (PWR) to enhance the nuclear safety and system reliability. In the integral reactor design, a single reactor pressure vessel contains primary system components such as fuel and core, steam generators, pumps, and a pressurizer. For the component integration into a reactor vessel, it is important to design each component as small as possible. Thus, it is a common practice to employ a once-through steam generator in the integral reactor design due to its advantages in compactness. In general, gradual degradation in thermal-hydraulic performance of the steam generator occurs with time, and it changes slowly the operating point of the steam generator during plant lifetime. Numerical solutions are acquired to evaluate the thermal-hydraulic performance of the steam generator at various AUFs. The design results obtained show that the average tube length of the steam generator is augmented with the increase of design margin to compensate for the design uncertainties and heat transfer area reduction by plugging, fouling, etc. A helically coiled tube once-through steam generator with 30% design margin is considered for comparison of thermal-hydraulic performances according to the degradation rate

  6. Thermal-Hydraulic Analysis of a Once-Through Steam Generator Considering Performance Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hun Sik; Kang, Han Ok; Yoon, Ju Hyeon; Kim, Young In; Song, Jae Seung; Kim, Keung Koo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Several countries have entered into a global race for the commercialization of SMRs, and considerable research and development have been implemented. Among the various reactor designs, many SMRs have adopted an integral type pressurized water reactor (PWR) to enhance the nuclear safety and system reliability. In the integral reactor design, a single reactor pressure vessel contains primary system components such as fuel and core, steam generators, pumps, and a pressurizer. For the component integration into a reactor vessel, it is important to design each component as small as possible. Thus, it is a common practice to employ a once-through steam generator in the integral reactor design due to its advantages in compactness. In general, gradual degradation in thermal-hydraulic performance of the steam generator occurs with time, and it changes slowly the operating point of the steam generator during plant lifetime. Numerical solutions are acquired to evaluate the thermal-hydraulic performance of the steam generator at various AUFs. The design results obtained show that the average tube length of the steam generator is augmented with the increase of design margin to compensate for the design uncertainties and heat transfer area reduction by plugging, fouling, etc. A helically coiled tube once-through steam generator with 30% design margin is considered for comparison of thermal-hydraulic performances according to the degradation rate.

  7. Thermal-hydraulic analysis of nuclear reactors

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play.  Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...

  8. Cross-cutting european thermal-hydraulics research for innovative nuclear systems

    International Nuclear Information System (INIS)

    Roelofs, F.; Class, A.; Cheng, X.; Meloni, P.; Van Tichelen, K.; Boudier, P.; Prasser, M.

    2010-01-01

    Thermal-hydraulics is recognized as a key scientific subject in the development of different innovative nuclear reactor systems. From the thermal-hydraulic point of view, different innovative reactors are mainly characterized by their coolants (gas, water, liquid metals and molten salt). This results in different micro- and macroscopic behavior of flow and heat transfer and requires specific models and advanced analysis tools. However, many common thermal-hydraulic issues are identified among various innovative nuclear systems. In Europe, such cross-cutting thermal-hydraulic issues are the subject of the 7. framework programme THINS (Thermal-Hydraulics of Innovative Nuclear Systems) project which runs from 2010 until 2014. This paper will describe the activities in this project which address the main identified thermal hydraulics issues for innovative nuclear systems. (authors)

  9. Establishment of Safety Analysis System and Technology for CANDU Reactors

    International Nuclear Information System (INIS)

    Min, Byung Joo; Kim, W. Y.; Kim, H. T.; Rhee, B. W.; Yoon, C.; Kang, H. S.; Yoo, K. J.

    2005-03-01

    To improve the CANDU design/operation safety analysis codes and the CANDU safety analysis methodology, the following works have been done. From the development of the lattice codes (WIMS/CANDU), the lattice model simulates the real core lattice geometry and the effect of the pressure tube creep to the core lattice parameter has been evaluated. From the development of the 3-dimensional thermal-hydraulic analysis model of the moderator behavior (CFX4-CAMO), validation of the model against STERN Lab experiment has been executed. The butterfly-shaped grid structure and the 3-dimensional flow resistance model for porous media were developed and applied to the moderator analysis for Wolsong units 2/3/4. The single fuel channel analysis codes for blowdown and post-blowdown were unified by CATHENA. The 3-dimensional fuel channel analysis model (CFX-CACH) has been developed for validation of CATHENA fuel channel analysis model. The interlinking analysis system (CANVAS) of the thermal-hydraulic safety analysis codes for the primary heat transport system and containment system has been executed. The database system of core physics and thermal-hydraulics experimental data for safety analysis has been established on the URL: http://CANTHIS.kaeri.re.kr. For documentation and Standardization of the general safety analysis procedure, the general safety analysis procedure is developed and applied to a large break LOCA. The present research results can be utilized for establishment of the independent safety analysis technology and acquisition of the optimal safety analysis technology

  10. Thermal-hydraulic software development for nuclear waste transportation cask design and analysis

    International Nuclear Information System (INIS)

    Brown, N.N.; Burns, S.P.; Gianoulakis, S.E.; Klein, D.E.

    1991-01-01

    This paper describes the development of a state-of-the-art thermal-hydraulic software package intended for spent fuel and high-level nuclear waste transportation cask design and analysis. The objectives of this software development effort are threefold: (1) to take advantage of advancements in computer hardware and software to provide a more efficient user interface, (2) to provide a tool for reducing inefficient conservatism in spent fuel and high-level waste shipping cask design by including convection as well as conduction and radiation heat transfer modeling capabilities, and (3) to provide a thermal-hydraulic analysis package which is developed under a rigorous quality assurance program established at Sandia National Laboratories. 20 refs., 5 figs., 2 tabs

  11. Thermal hydraulic analysis of aggressive secondary cooldown in a small break loss of coolant accident with a total loss of high pressure safety injection

    International Nuclear Information System (INIS)

    Han, Seok Jung; Lim, Ho Gon; Yang, Joon Eon

    2003-03-01

    Recently, Probabilistic Safety Assessment (PSA) has being applied to various fields as a basic technique of Risk-Informed Applications (RIA). The present study focuses on detailed thermal hydraulic analyses for major accident sequences and success criteria to support a development of PSA model using RIA for Korea Standard Nuclear Power plant (KSNP). The primary purpose of the present study in this year is to evaluate the success cri-teria of Aggressive Secondary Cooldown (ASC) in a Small Size Loss Of Coolant Accident (SBLOCA) without HPSI and to enhance the understanding of related thermal hydraulic behavior and phenomena. An effort was made to evaluate the system success criteria and a mission time for the recovery action by an operator to prevent the core damage for that accident scenario. The accident scenario for KSNP was a 2 inch coldleg break LOCA with a total loss of High Pressure Safety Injection (HPSI) and 1/2 Low Pressure Safety Injection (LPSI) available and perform-ing ASC limited by 55.6 .deg. C/hr (100 .deg. F/hr) cooldown rate at 15 minute after reactor trip. It successively reached the LPSI condition for about 1.5hr after starting the ASC operation with the Peak Cladding Temperature (PCT) of the hottest rod below the core damage criteria of 1204.4 .deg. C (2200 .deg. F). Sensitivity studies were performed for (1) cool-ant average temperature parameters, (2) ASC operation control method, (3) operation start time, (4) 1 inch break size. The present analysis identified thermal hydraulic phenomena and parameters affecting on the behavior, which consist of coolant break flow and inventory, parameters governing secondary heat removal, ASC operation control method, and its reference temperature parameters. In the present study, more relaxed success criteria than the previous PSA for KSNP could be generated under an assumption that an operator should maintain the ade-quate ASC operation. However, it is necessary to evaluate the uncertainties arisen from the

  12. Evaluation of operational safety at Babcock and Wilcox Plants: Volume 2, Thermal-hydraulic results

    International Nuclear Information System (INIS)

    Wheatley, P.D.; Davis, C.B.; Callow, R.A.; Fletcher, C.D.; Dobbe, C.A.; Beelman, R.J.

    1987-11-01

    The Nuclear Regulatory Commission has initiated a research program to develop a methodology to assess the operational performance of Babcock and Wilcox plants and to apply this methodology on a trial basis. The methodology developed for analyzing Babcock and Wilcox plants integrated methods used in both thermal-hydraulics and human factors and compared results with information used in the assessment of risk. The integrated methodology involved an evaluation of a selected plant for each pressurized water reactor vendor during a limited number of transients. A plant was selected to represent each vendor, and three transients were identified for analysis. The plants were Oconee Unit 1 for Babcock and Wilcox, H.B. Robinson Unit 2 for Westinghouse, and Calvert Cliffs Unit 1 for Combustion Engineering. The three transients were a complete loss of all feedwater, a small-break loss-of-coolant accident, and a steam-generator overfill with auxiliary feedwater. Included in the integrated methodology was an assessment of the thermal-hydraulic behavior, including event timing, of the plants during the three transients. Thermal-hydraulic results are presented in this volume (Volume 2) of the report. 26 refs., 30 figs., 7 tabs

  13. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    International Nuclear Information System (INIS)

    O'Brien, Robert C.; Klein, Andrew C.; Taitano, William T.; Gibson, Justice; Myers, Brian; Howe, Steven D.

    2011-01-01

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  14. Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP

    International Nuclear Information System (INIS)

    Maruyama, Soh; Fujimoto, Nozomu; Sudo, Yukio; Kiso, Yoshihiro; Murakami, Tomoyuki.

    1988-09-01

    This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T 1-M ) with simulated fuel rods and fuel blocks. (author)

  15. Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP

    Science.gov (United States)

    Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio

    1988-09-01

    This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.

  16. Horizontal steam generator thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [SKODA Praha Company, Prague (Czechoslovakia); Doubek, M. [Czech Technical Univ., Prague (Czechoslovakia)

    1995-09-01

    Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. The 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.

  17. Comparison for the interfacial and wall friction models in thermal-hydraulic system analysis codes

    International Nuclear Information System (INIS)

    Hwang, Moon Kyu; Park, Jee Won; Chung, Bub Dong; Kim, Soo Hyung; Kim, See Dal

    2007-07-01

    The average equations employed in the current thermal hydraulic analysis codes need to be closed with the appropriate models and correlations to specify the interphase phenomena along with fluid/structure interactions. This includes both thermal and mechanical interactions. Among the closure laws, an interfacial and wall frictions, which are included in the momentum equations, not only affect pressure drops along the fluid flow, but also have great effects for the numerical stability of the codes. In this study, the interfacial and wall frictions are reviewed for the commonly applied thermal-hydraulic system analysis codes, i.e. RELAP5-3D, MARS-3D, TRAC-M, and CATHARE

  18. Compatibility analysis of DUPIC fuel(4) - thermal hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee Won; Chae, Kyung Myung; Choi, Hang Bok

    2000-07-01

    Thermal-hydraulic compatibility of the DUPIC fuel bundle in the CANDU reactor has been studied. The critical channel power, the critical power ratio, the channel exit quality and the channel flow are calculated for the DUPIC and the standard fuels by using the NUCIRC code. The physical models and associated parametric values for the NUCIRC analysis of the fuels are also presented. Based upon the slave channel analysis, the critical channel power and the critical power ratios have been found to be very similar for the two fuel types. The same dryout model is used in this study for the standard and the DUPIC fuel bundles. To assess the dryout characteristics of the DUPIC fuel bundle, the ASSERT-PV code has been used for the subchannel analysis. Based upon the results of the subchannel analysis, it is found that the dryout location and the power for the two fuel types are indeed very similar. This study shows that thermal performance of the DUPIC fuel is not significantly different from that of the standard fuel.

  19. Thermal hydraulic analysis of Pb-Bi cooled HYPER fuel assemblies using SLTHEN code

    International Nuclear Information System (INIS)

    Tak, Nam Il; Song, Tae Y.; Park, Won S.; Kim, Chang Hyun

    2002-12-01

    In the present work, the existing SLTHEN code, which had been originally developed for subchannel analysis of sodium cooled fast reactors, was modified and applied to the Pb-Bi cooled HYPER core which consists of 237 fuel assemblies (TRU assemblies). In the analysis of single fuel assembly having chopped cosine power profile, the validation and the assessment of usefulness of the modified SLTHEN were focused. In the quantitative comparison, the results of the modified SLTHEN agreed well with those of analytical calculations and of MATRA. For the qualitative approaches, the sensitivity calculations for intra-assembly gap flow and turbulent mixing parameter were used. The sensitivity analysis results showed that the modified SLTHEN can provide reasonable simulations of subchannel thermal hydraulics. In particular, turbulent mixing parameter which is known as the most uncertain parameter in subchannel analyses did not affect largely the maximum cladding temperature. Therefore, it can be said that the results of single assembly show the usefulness of the modified SLTHEN code for thermal hydraulic analysis and design of HYPER under the conceptual design stage. In order to assess intra-assembly heat transfer, subchannel analyses were implemented for two types of 7 assemblies; 1) artificial 7 fuel assemblies to maximize intra-assembly heat transfer, 2) central 7 fuel assemblies in the HYPER reference core. The results showed that the modified SLTHEN can reasonably simulate intra-heat transfer and the amount of intra-assembly heat transfer is not so large in HYPER conditions. Particularly, intra-heat transfer did not affect the maximum coolant and the maximum cladding temperatures which are major parameters in conceptual core designs. The capability of full core thermal hydraulic analysis was confirmed by the analysis of 45 fuel assemblies in 1/6 HYPER core at the first cycle. The SLTHEN predicted that the reference design parameters are acceptable in terms of thermal

  20. Transient analysis and thermal hydraulic margins of GHARR-1 using the PARET/NAL code

    International Nuclear Information System (INIS)

    Adoo, N.A.

    2009-06-01

    The PARET code has been adapted by the IAEA for testing transient behaviour in research reactors. The PARET code provides a coupled thermal hydrodynamic and point kinetics capability with a continuous reactivity feedback and an optional voiding model that estimates the voiding produced by the subcooled boiling. The present version of the PARET/ANL 73 code provides a convenient means of assessing the various models and correlations proposed for the use in the analysis of research reactor behaviour. The Monte Carlo N-Particle code (MCNP) has been used to obtain power peaking profile for a two channel PARET/ANL model. A PARET model with the corresponding neutronics and thermal hydraulic characteristics for the miniature neutron source reactor (MNSR) has been used to simulate reactivity accidents for the Ghana Research Reactor - 1(GHARR-1) under the MNSR operation conditions of natural circulation, normal operation and reactivity insertion accidents. The simulation results via the insertion of large reactivity demonstrated the high inherent safety features of the MNSR for which the high negative reactivity feedback of moderator temperature limits power excursion and avoids consequently the escalation of clad temperature to the level of onset of sub-cooled void formation. The hot channel peaking factors for both radial and axial were found to be 1.17 and 1.44 respectively. Thermal hydraulic performance characteristics were investigated and the safety margins determined. The peak clad and coolant temperatures ranged from 59.18 0 C to 106.75 0 C and 42.95 0 C to 178.44 0 C respectively at which nucleate boiling will occur within the flow channels of the core. (au)

  1. Spent nuclear fuel storage pool thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Gay, R.R.

    1984-01-01

    Storage methods and requirements for spent nuclear fuel at U.S. commercial light water reactors are reviewed in Section 1. Methods of increasing current at-reactor storage capabilities are also outlined. In Section 2 the development of analytical methods for the thermal-hydraulic analysis of spent fuel pools is chronicled, leading up to a discussion of the GFLOW code which is described in Section 3. In Section 4 the verification of GFLOW by comparisons of the code's predictions to experimental data taken inside the fuel storage pool at the Maine Yankee nuclear power plant is presented. The predictions of GFLOW using 72, 224, and 1584 node models of the storage pool are compared to each other and to the experimental data. An example of thermal licensing analysis for Maine Yankee using the GFLOW code is given in Section 5. The GFLOW licensing analysis is compared to previous licensing analysis performed by Yankee Atomic using the RELAP-4 computer code

  2. Development of Thermal-hydraulic Analysis Methodology for Multi-module Breeding Blankets in K-DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun; Park, Goon-Cherl; Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In this paper, the purpose of the analyses is to extend the capability of MARS-KS to the entire blanket system which includes a few hundreds of single blanket modules. Afterwards, the plan for the whole blanket system analysis using MARS-KS is introduced and the result of the multiple blanket module analysis is summarized. A thermal-hydraulic analysis code for a nuclear reactor safety, MARS-KS, was applied for the conceptual design of the K-DEMO breeding blanket thermal analysis. Then, a methodology to simulate multiple blanket modules was proposed, which uses a supervisor program to handle each blanket module individually at first and then distribute the flow rate considering pressure drops arises in each module. For a feasibility test of the proposed methodology, 10 outboard blankets in a toroidal field sector were simulated, which are connected with each other through the inlet and outlet common headers. The calculation results of flow rates, pressure drops, and temperatures showed the validity of the calculation and thanks to the parallelization using MPI, almost linear speed-up could be obtained.

  3. Steady-state thermal-hydraulic analysis of the Moroccan TRIGA MARK II reactor by using PARET/ANL and COOLOD-N2 codes

    International Nuclear Information System (INIS)

    Boulaich, Y.; Nacir, B.; El Bardouni, T.; Zoubair, M.; El Bakkari, B.; Merroun, O.; El Younoussi, C.; Htet, A.; Boukhal, H.; Chakir, E.

    2011-01-01

    Research highlights: → The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. → The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). → The most important conclusion is that all obtained values of DNBR, fuel center and surface temperature, cladding surface temperature and coolant temperature across the hottest channel are largely far to compromise safety of the reactor. - Abstract: The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. In order to validate our PARET/ANL and COOLOD-N2 models, the fuel center temperature as function of core power was calculated and compared with the corresponding experimental values. The comparison indicates that the calculated values are in satisfactory agreement with the measurement. The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). Therefore, we have calculated the departure from nucleate boiling ratio (DNBR), fuel center and surface temperature, cladding surface temperature and coolant temperature profiles across the hottest channel. The most important conclusion is that all obtained values are largely far to compromise safety of the reactor.

  4. ITHNA.SYS: An Integrated Thermal Hydraulic and Neutronic Analyzer SYStem for NUR research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mazidi, S., E-mail: samirmazidi@gmail.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Meftah, B., E-mail: b_meftah@yahoo.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Belgaid, M., E-mail: belgaidm@yahoo.com [Faculté de Physique, Université Houari Boumediene, USTHB, BP 31, Bab Ezzouar, Alger (Algeria); Letaim, F., E-mail: fletaim@yahoo.fr [Faculté des Sciences et Technologies, Université d’El-oued, PO Box 789, El-oued (Algeria); Halilou, A., E-mail: hal_rane@yahoo.fr [Division Réacteur NUR, Centre de Recherche Nucléaire de Draria, BP 43 Sebala, Draria, Alger (Algeria)

    2015-08-15

    Highlights: • We develop a neutronic and thermal hydraulic MTR reactor analyzer. • The analyzer allows a rapid determination of the reactor core parameters. • Some NUR reactor parameters have been analyzed. - Abstract: This paper introduces the Integrated Thermal Hydraulic and Neutronic Analyzer SYStem (ITHNA.SYS) that has been developed for the Algerian research reactor NUR. It is used both as an operating aid tool and as a core physics engineering analysis tool. The system embeds three modules of the MTR-PC software package developed by INVAP SE: the cell calculation code WIMSD, the core calculation code CITVAP and the program TERMIC for thermal hydraulic analysis of a material testing reactor (MTR) core in forced convection. ITHNA.SYS operates both in on-line and off-line modes. In the on-line mode, the system is linked, via the computer parallel port, to the data acquisition console of the reactor control room and allows a real time monitoring of major physical and safety parameters of the NUR core. PC-based ITHNA.SYS provides a viable and convenient way of using an accumulated and often complex reactor physics stock of knowledge and frees the user from the intricacy of adequate reactor core modeling. This guaranties an accurate, though rapid, determination of a variety of neutronic and thermal hydraulic parameters of importance for the operation and safety analysis of the NUR research reactor. Instead of the several hours usually required, the processing time for the determination of such parameters is now reduced to few seconds. Validation of the system was performed with respect to experimental measurements and to calculations using reference codes. ITHNA.SYS can be easily adapted to accommodate other kinds of MTR reactors.

  5. Thermal-hydraulic analysis of LTS cables for the DEMO TF coil using simplified models

    Directory of Open Access Journals (Sweden)

    Lewandowska Monika

    2017-03-01

    Full Text Available The conceptual design activities for the DEMOnstration reactor (DEMO – the prototype fusion power plant – are conducted in Europe by the EUROfusion Consortium. In 2015, three design concepts of the DEMO toroidal field (TF coil were proposed by Swiss Plasma Center (EPFL-SPC, PSI Villigen, Italian National Agency for New Technologies (ENEA Frascati, and Atomic Energy and Alternative Energies Commission (CEA Cadarache. The proposed conductor designs were subjected to complete mechanical, electromagnetic, and thermal-hydraulic analyses. The present study is focused on the thermal-hydraulic analysis of the candidate conductor designs using simplified models. It includes (a hydraulic analysis, (b heat removal analysis, and (c assessment of the maximum temperature and the maximum pressure in each conductor during quench. The performed analysis, aimed at verification whether the proposed design concepts fulfil the established acceptance criteria, provides the information for further improvements of the coil and conductors design.

  6. Thermal-hydraulics associated with nuclear education and research

    International Nuclear Information System (INIS)

    Yokobori, Seiichi

    2011-01-01

    This article was the rerecording of the author's lecture at the fourth 'Future Energy Forum' (aiming at improving nuclear safety and economics) held in December 2010. The lecture focused on (1) importance of thermal hydraulics associated with nuclear education and research (critical heat flux, two-phase flow and multiphase flow), (2) emerging trend of maintenance engineering (fluid induced vibration, flow accelerated corrosion and stress corrosion cracks), (3) fostering sensible nuclear engineer with common engineering sense, (4) balanced curriculum of basics and advanced research, (5) computerized simulation and fluid mechanics, (6) crucial point of thermo hydraulics education (viscosity, flux, steam and power generation), (7) safety education and human resources development (indispensable technologies such as defence in depth) and (8) topics of thermo hydraulics research (vortices of curbed pipes and visualization of two-phase flow). (T. Tanaka)

  7. ATWS thermal-hydraulic analysis for Krsko Full Scope Simulator validation

    International Nuclear Information System (INIS)

    Parzer, I.; Kljenak, I.

    2005-01-01

    The purpose of this analysis was to simulate Anticipated Transient without Scram transient for Krsko NPP. The results of these calculations were used for annual ANSI/ANS validation of reactor coolant system thermal-hydraulic response predicted by Krsko Full Scope Simulator. For the thermal-hydraulic analyses the RELAP5/MOD3.3 code and the input model for NPP Krsko, delivered by NPP Krsko, was used. In the presented paper the most severe ATWS scenario has been analyzed, starting with the loss of Main Feedwater at both steam generators. Thus, gradual loss of secondary heat sink occurred. On top of that, control rods were not supposed to scram, leaving the chain reaction to be controlled only by inherent physical properties of the fuel and moderator and eventual actions of the BOP system. The primary system response has been studied assuming AMSAC availability. (author)

  8. Improvement of auditing technology of safety analysis through thermal-hydraulic separate effect tests

    Energy Technology Data Exchange (ETDEWEB)

    No, Hee Cheon; Moon, Young Min; Lee, Dong Won; Lee, Sang Ik; Kim, Eung Soo; Yeom, Keum Soo [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    The objective of the present research is to perform the separate effect tests and to assess the RELAP5/MOD3.2 code for the analysis of thermal-hydraulic behavior in the reactor coolant system and the improvement of the auditing technology of safety analysis. Three Separate Effect Tests (SETs) are the reflux condensation in the U-tube, the direct contact condensation in the hot-leg and the mixture level buildup in the pressurizer. The experimental data and the empirical correlations are obtained through SETs. On the ases of the three SET works, models in RELAP5 are modified and improved, which are compared with the data. The Korea Standard Nuclear Power Plant (KSNP) are assessed using the modified RELAP5. In the reflux condensation test, the data of heat transfer coefficients and flooding are obtained and the condensation models are modified using the non-iterative model, as results, modified code better predicts the data. In the direct contact condensation test, the data of heat transfer coefficients are obtained for the cocurrent and countercurrent flow between the mixture gas and the water in condition of horizontal stratified flow. Several condensation and friction models are modified, which well predict the present data. In the mixture level test, the data for the mixture level and the onset of water draining into the surge line are obtained. The standard RELAP5 over-predicts the mixture level and the void fraction in the pressurizer. Simple modification of model related to the pool void fraction is suggested. The KSNP is assessed using the standard and the modified RELAP5 resulting from the experimental and code works for the SETs. In case of the pressurizer manway opening with available secondary side of the steam generators, the modified code predicts that the collapsed level in the pressurizer is little accumulated. The presence and location of the opening and the secondary condition of the steam generators have an effect on the coolant inventory. The

  9. Coupled neutronics/thermal-hydraulics analysis of a high-performance light-water reactor fuel assembly

    International Nuclear Information System (INIS)

    Waata, C.L.

    2006-07-01

    The use of water at supercritical pressure as coolant and moderator introduces a challenge in the design of a High-Performance Light-Water Reactor (HPLWR) fuel assembly. At supercritical pressure condition (P=25 MPa), the thermal-hydraulics behaviour of water differs strongly from that at sub-critical pressure due to a rapid variation of the thermal-physical properties across the pseudo-critical line. Due of the strong link between the water (moderation) and the neutron spectrum and subsequently the power distribution, a coupling of neutronics and thermal-hydraulics has become a necessity for reactor concepts operating at supercritical pressure condition. The effect of neutron moderation on the local parameters of thermal-hydraulics and vice-verse in a fuel assembly has to be considered for an accurate design analysis. In this study, the Monte Carlo N-Particle code (MCNP) and the sub-channel code STAFAS (Sub-channel Thermal-hydraulics Analysis of a Fuel Assembly under Supercritical conditions) have been coupled for the design analysis of a fuel assembly with supercritical water as coolant and moderator. Both codes are well known for complex geometry modelling. The MCNP code is used for neutronics analyses and for the prediction of power profiles of individual fuel rods. The sub-channel code STAFAS for the thermal-hydraulics analyses takes into account the coolant properties beyond the critical point as well as separate moderator channels. The coupling procedure is realized automatically. MCNP calculates the power distribution in each fuel rod, which is then transferred into STAFAS to obtain the corresponding thermal-hydraulic conditions in each sub-channel. The new thermal-hydraulic conditions are used to generate a new input deck for the next MCNP calculation. This procedure is repeated until a converged state is achieved. The coupled code system was tested on a proposed fuel assembly design of a HPLWR. An under-relaxation was introduced to achieve convergence

  10. CHF predictor derived from a 3D thermal-hydraulic code and an advanced statistical method

    International Nuclear Information System (INIS)

    Banner, D.; Aubry, S.

    2004-01-01

    A rod bundle CHF predictor has been determined by using a 3D code (THYC) to compute local thermal-hydraulic conditions at the boiling crisis location. These local parameters have been correlated to the critical heat flux by using an advanced statistical method based on spline functions. The main characteristics of the predictor are presented in conjunction with a detailed analysis of predictions (P/M ratio) in order to prove that the usual safety methodology can be applied with such a predictor. A thermal-hydraulic design criterion is obtained (1.13) and the predictor is compared with the WRB-1 correlation. (author)

  11. BEPU-FSAR: establishing a background for extension of nuclear thermal hydraulic principles to non thermal-hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Francine; Sabundjian, Gaianê, E-mail: franmenzel@gmail.com, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); D’Auria, Francesco, E-mail: f.dauria@ing.unipi.it [University of Pisa, San Piero a Grado Nuclear Research Group (Italy)

    2017-07-01

    Nuclear thermal hydraulic and accident analysis are based in three pillar activities, which consists in: Scaling, Coupling and V and V. Each of them are established technology, with key documents to describe and widely used. The final goal of this work is to apply the BEPU methodology in all parts of FSAR where analytical techniques are needed (BEPU-FSAR) and for that the crucial step is the transfer of the BEPU concepts into the other areas. In this sense, the issue is how to adapt to other disciplines the pillar activities presented in the thermal hydraulic area. For that we need to identify which elements can be applied in the other areas, to show that the proposed methodology is feasible. This work aims to discuss the first steps towards a BEPU-FSAR methodology and to show that the Scaling, Coupling and V and V elements, currently done for thermal-hydraulic codes, can be also done for different codes, which are used to perform different analysis included on a FSAR of a generic plant. (author)

  12. Thermal-hydraulic analysis of the Three Mile Island Unit 2 reactor accident with THALES code

    International Nuclear Information System (INIS)

    Hashimoto, Kazuichiro; Soda, Kunihisa

    1991-10-01

    The OECD Nuclear Energy Agency (NEA) has established a Task Group in the Committee on the Safety of Nuclear Installations (CSNI) to perform an analysis of Three Mile Island Unit 2 (TMI-2) accident as a standard problem to benchmark severe accident computer codes and to assess the capability of the codes. The TMI-2 Analysis Exercise was performed at the Japan Atomic Energy Research Institute (JAERI) using the THALES (Thermal-Hydraulic Analysis of Loss-of-Coolant, Emergency Core Cooling and Severe Core Damage) - PM1/TMI code. The purpose of the analysis is to verify the capability of THALES-PM1/TMI code to describe accident progression in the actual plant. The present paper describes the final result of the TMI-2 Analysis Exercise performed at JAERI. (author)

  13. Methodology for thermal-hydraulics analysis of pool type MTR fuel research reactors

    International Nuclear Information System (INIS)

    Umbehaun, Pedro Ernesto

    2000-01-01

    This work presents a methodology developed for thermal-hydraulic analysis of pool type MTR fuel research reactors. For this methodology a computational program, FLOW, and a model, MTRCR-IEAR1 were developed. FLOW calculates the cooling flow distribution in the fuel elements, control elements, irradiators, and through the channels formed among the fuel elements and among the irradiators and reflectors. This computer program was validated against experimental data for the IEA-R1 research reactor core at IPEN-CNEN/SP. MTRCR-IEAR1 is a model based on the commercial program Engineering Equation Solver (EES). Besides the thermal-hydraulic analyses of the core in steady state accomplished by traditional computational programs like COBRA-3C/RERTR and PARET, this model allows to analyze parallel channels with different cooling flow and/or geometry. Uncertainty factors of the variables from neutronic and thermalhydraulic calculation and also from the fabrication of the fuel element are introduced in the model. For steady state analyses MTRCR-IEAR1 showed good agreement with the results of COBRA-3C/RERTR and PARET. The developed methodology was used for the calculation of the cooling flow distribution and the thermal-hydraulic analysis of a typical configuration of the IEA-R1 research reactor core. (author)

  14. Safety analysis of RSG-GAS Silicide core using one line cooling system

    International Nuclear Information System (INIS)

    Endiah-Puji-Hastuti

    2003-01-01

    In the frame of minimizing the operation-cost, operation mode using one line cooling system is being evaluated. Maximum reactor has been determined and to continuing this program, steady state and transient analysis were done. The analysis was done by means of a core thermal hydraulic code, COOLOD-N, and PARET. The codes solves core thermal hydraulic equation at steady state conditions and transient, respectively. By using silicide core data and coast down flow rate as the input, thermal hydraulics parameters such as fuel cladding and fuel meat temperatures as well as safety margin against flow instability were calculated. Imposing the safety criteria to the results of steady state and transient analysis, maximum permissible power for this operation was obtained as much as 17.1 MW

  15. Thermal-hydraulic tests with out-of-pile test facility for BOCA development

    International Nuclear Information System (INIS)

    Kitagishi, Shigeru; Aoyama, Masashi; Tobita, Masahiro; Inaba, Yoshitomo; Yamaura, Takayuki

    2012-01-01

    The fuel transient test facility was prepared for power ramping tests of light-water-reactor (LWR) fuels in the Japan Materials Testing Reactor (JMTR) under a contract project with the Nuclear Industrial Safety Agent (NISA) of the Ministry of Economy, Trade and Industry (METI). It is necessary to develop high accuracy analysis procedure for power ramping tests after restart of the JMTR. The out-of-pile test facility to simulate thermal-hydraulic conditions of the fuel transient test facility was therefore developed. Applicability of the analysis code ACE-3D was examined for thermal-hydraulic analysis of power ramping tests for 10x10 BWR fuels by the fuel transient test facility. As the results, the calculated temperature was 304°C in comparison with measured value of 304.9-317.4°C in the condition of 600 W/cm. There is a bright prospect of high accuracy power ramping tests by the fuel transient test facility in JMTR. (author)

  16. A two-step approach for the preliminary evaluation of the thermal-hydraulics and safety of the ELSY open square core design

    International Nuclear Information System (INIS)

    Meloni, Paride; Bandini, Giacomino; Polidori, Massimiliano; Cervone, Antonio; Manservisi, Sandro

    2009-01-01

    Several innovative solutions for a liquid metal fast reactor design have been investigated in the EURATOM Sixth Framework Programme and an open-assembly core design for the ELSY (European Lead-cooled System) reactor has been proposed by ENEA. The development of this new reactor, based on innovative neutronic and safety considerations, requires a new approach to the thermal-hydraulic (T/H) core design. In this paper a new two-step approach of the T/H analysis for this open-assembly core is presented and, in particular is used for the evaluation of the preliminary core design of a 1500 MW lead fast reactor with open square lattice and three fuel radial zones with different levels of enrichment. In the first step a preliminary thermal-hydraulic and safety evaluation of the core neutronic design is investigated by using a one-dimensional RELAP5 model for independent channel analysis. Then two and three-dimensional effects are taken into account by using a dedicated tool for the evaluation of assembly mixing effects. The RELAP5 model, based on pressure loss and heat transfer correlations available for heavy liquid metal flows in rod bundle, consists of completely independent assemblies and therefore it can be used for a conservative evaluation of the thermal-hydraulics of the core reactor. Due to the open-lattice configuration, the two and three-dimensional effects are important and they are taken into account by using a simplified three-dimensional numerical model of an open square lattice reactor core, developed with the purpose of analyzing the whole core behavior. The numerical simulation is performed at assembly length level taking into account the local fluctuations of turbulent viscosity and energy exchange coefficients at sub-channel level through transfer operators based on parametric coefficients. A preliminary evaluation of the mixing effects between assembly flows on the temperature field has been performed by using an average assembly turbulent viscosity

  17. HTGR reactor physics, thermal-hydraulics and depletion uncertainty analysis: a proposed IAEA coordinated research project

    International Nuclear Information System (INIS)

    Tyobeka, Bismark; Reitsma, Frederik; Ivanov, Kostadin

    2011-01-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis and uncertainty analysis methods. In order to benefit from recent advances in modeling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Uncertainty and sensitivity studies are an essential component of any significant effort in data and simulation improvement. In February 2009, the Technical Working Group on Gas-Cooled Reactors recommended that the proposed IAEA Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modeling be implemented. In the paper the current status and plan are presented. The CRP will also benefit from interactions with the currently ongoing OECD/NEA Light Water Reactor (LWR) UAM benchmark activity by taking into consideration the peculiarities of HTGR designs and simulation requirements. (author)

  18. Proceedings of the workshop on advanced thermal-hydraulic and neutronic codes: current and future applications

    International Nuclear Information System (INIS)

    2001-01-01

    An OECD Workshop on Advanced Thermal-Hydraulic and Neutronic Codes Applications was held from 10 to 13 April 2000, in Barcelona, Spain, sponsored by the Committee on the Safety of Nuclear Installations (CSNI) of the OECD Nuclear Energy Agency (NEA). It was organised in collaboration with the Spanish Nuclear Safety Council (CSN) and hosted by CSN and the Polytechnic University of Catalonia (UPC) in collaboration with the Spanish Electricity Association (UNESA). The objectives of the Workshop were to review the developments since the previous CSNI Workshop held in Annapolis [NEA/CSNI/ R(97)4; NUREG/CP-0159], to analyse the present status of maturity and remnant needs of thermal-hydraulic (TH) and neutronic system codes and methods, and finally to evaluate the role of these tools in the evolving regulatory environment. The Technical Sessions and Discussion Sessions covered the following topics: - Regulatory requirements for Best-Estimate (BE) code assessment; - Application of TH and neutronic codes for current safety issues; - Uncertainty analysis; - Needs for integral plant transient and accident analysis; - Simulators and fast running codes; - Advances in next generation TH and neutronic codes; - Future trends in physical modeling; - Long term plans for development of advanced codes. The focus of the Workshop was on system codes. An incursion was made, however, in the new field of applying Computational Fluid Dynamic (CFD) codes to nuclear safety analysis. As a general conclusion, the Barcelona Workshop can be considered representative of the progress towards the targets marked at Annapolis almost four years ago. The Annapolis Workshop had identified areas where further development and specific improvements were needed, among them: multi-field models, transport of interfacial area, 2D and 3D thermal-hydraulics, 3-D neutronics consistent with level of details of thermal-hydraulics. Recommendations issued at Annapolis included: developing small pilot/test codes for

  19. Thermal hydraulic codes for LWR safety analysis - present status and future perspective

    Energy Technology Data Exchange (ETDEWEB)

    Staedtke, H. [Commission of the European Union, Ispra (Italy)

    1997-07-01

    The aim of the present paper is to give a review on the current status and future perspective of present best-estimate Thermal Hydraulic codes. Reference is made to internationally well-established codes which have reached a certain state of maturity. The first part of the paper deals with the common basic code features with respect to the physical modelling and their numerical methods used to describe complex two-phase flow and heat transfer processes. The general predictive capabilities are summarized identifying some remaining code deficiencies and their underlying limitations. The second part discusses various areas including physical modelling, numerical techniques and informatic structure where the codes could be substantially improved.

  20. Thermal hydraulic codes for LWR safety analysis - present status and future perspective

    International Nuclear Information System (INIS)

    Staedtke, H.

    1997-01-01

    The aim of the present paper is to give a review on the current status and future perspective of present best-estimate Thermal Hydraulic codes. Reference is made to internationally well-established codes which have reached a certain state of maturity. The first part of the paper deals with the common basic code features with respect to the physical modelling and their numerical methods used to describe complex two-phase flow and heat transfer processes. The general predictive capabilities are summarized identifying some remaining code deficiencies and their underlying limitations. The second part discusses various areas including physical modelling, numerical techniques and informatic structure where the codes could be substantially improved

  1. Development of safety analysis technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Suk K.; Song, J. H.; Chung, Y. J. and others

    1999-03-01

    Inherent safety features and safety system characteristics of the SMART integral reactor are investigated in this study. Performance and safety of the SMART conceptual design have been evaluated and confirmed through the performance and safety analyses using safety analysis system codes as well as a preliminary performance and safety analysis methodology. SMART design base events and their acceptance criteria are identified to develop a preliminary PIRT for the SMART integral reactor. Using the preliminary PIRT, a set of experimental program for the thermal hydraulic separate effect tests and the integral effect tests was developed for the thermal hydraulic model development and the system code validation. Safety characteristics as well as the safety issues of the integral reactor has been identified during the study, which will be used to resolve the safety issues and guide the regulatory criteria for the integral reactor. The results of the performance and safety analyses performed during the study were used to feedback for the SMART conceptual design. The performance and safety analysis code systems as well as the preliminary safety analysis methodology developed in this study will be validated as the SMART design evolves. The performance and safety analysis technology developed during the study will be utilized for the SMART basic design development. (author)

  2. Thermal-Hydraulic Integral Effect Test with the ATLS for Investigation on CEDM Penetration Nozzle Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyoungho; Seokcho; Park, Hyunsik; Choi, Namhyun; Park, Yusun; Kim, Jongrok; Bae, Byounguhn; Kim, Yeonsik; Choi, Kiyong; Song, Chulhwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    In this study, thermal-hydraulic integral effect test with the ATLAS (Advanced Thermal-Hydraulic Test Loop for Accident Simulation) was performed for simulating a failure of CEDM penetration nozzle. The main objectives of the present test were not only to provide physical insight into the system response during a failure of CEDM penetration nozzle but also to establish an integral effect test database for the validation of the safety analysis codes. Furthermore, present experimental data were utilized to resolve the safety issue raised by the PWSCC at the CEDM penetration nozzle of the YGN-3. Thermal-hydraulic integral effect test with the ATLAS was performed for simulating a failure of CEDM penetration nozzle. Failure of two penetration nozzles of the CEDM in the APR1400 was simulated. Initial and boundary conditions were determined with respect to the reference conditions of the APR1400. However, with an aim of corresponding to the YGN-3 situation, the safety injection water was supplied via CLI mode. Compared to the cold leg break SBLOCA, the consequences of the event were milder in terms of a loop seal clearance, break flow rate, collapsed water level, and PCT. This could be mainly attributed to the small break flow rate in case of the failure in the RPV upper head. Present experimental data were utilized to resolve the safety issue raised by the PWSCC at the CEDM penetration nozzle of the YGN-3.

  3. The analysis of thermal-hydraulic models in MELCOR code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M H; Hur, C; Kim, D K; Cho, H J [POhang Univ., of Science and TECHnology, Pohang (Korea, Republic of)

    1996-07-15

    The objective of the present work is to verify the prediction and analysis capability of MELCOR code about the progression of severe accidents in light water reactor and also to evaluate appropriateness of thermal-hydraulic models used in MELCOR code. Comparing the results of experiment and calculation with MELCOR code is carried out to achieve the above objective. Specially, the comparison between the CORA-13 experiment and the MELCOR code calculation was performed.

  4. A Study on thermal-hydraulic characteristics of the coolant materials for the transmutation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Cho, Jae Seon; Kim, Ju Youl; Kim, Do Hyoung; Kim, Yoon Ik; Yang, Hui Chang [Seoul National University, Taejon (Korea)

    1998-03-01

    The objective of this study is to provide the direction of transmutation reactor design in terms of thermal hydraulics especially through the analysis of thermal hydraulic characteristics of various candidate materials for the transmutation reactor coolant. In this study, the characteristics of coolant materials used in current nuclear power plants and candidate materials for transmutation reactor are analyzed and compared. To evaluate the thermal hydraulic characteristics, the preliminary thermal-hydraulic calculation is performed for the candidate coolant materials of transmutation reactor. An analysis of thermal-hydraulic characteristics of transmutation reactor. An analysis of thermal-hydraulic characteristics of Sodium, Lead, Lead-Bismuth, and Lead-Lithium among the liquid metals considered as the coolant of transmutation reactor is performed by using computational fluid dynamics code FLUENT, and SIMPLER algorithm. (author). 50 refs., 40 figs., 30 tabs.

  5. Development of a steady thermal-hydraulic analysis code for the China Advanced Research Reactor

    Institute of Scientific and Technical Information of China (English)

    TIAN Wenxi; QIU Suizheng; GUO Yun; SU Guanghui; JIA Dounan; LIU Tiancai; ZHANG Jianwei

    2007-01-01

    A multi-channel model steady-state thermalhydraulic analysis code was developed for the China Advanced Research Reactor (CARR). By simulating the whole reactor core, the detailed mass flow distribution in the core was obtained. The result shows that structure size plays the most important role in mass flow distribution, and the influence of core power could be neglected under singlephase flow. The temperature field of the fuel element under unsymmetrical cooling condition was also obtained, which is necessary for further study such as stress analysis, etc. Of the fuel element. At the same time, considering the hot channel effect including engineering factor and nuclear factor, calculation of the mean and hot channel was carried out and it is proved that all thermal-hydraulic parameters satisfy the "Safety design regulation of CARR".

  6. Transmutation technology development; thermal hydraulic power analysis and structure analysis of the HYPER target beam window

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. H.; Ju, E. S.; Song, M. K.; Jeon, Y. Z. [Gyeongsang National University, Jinju (Korea)

    2002-03-01

    A thermal hydraulic power analysis, a structure analysis and optimization computation for some design factor for the design of spallation target suitable for HYPER with 1000 MW thermal power in this study was performed. Heat generation formula was used which was evaluated recently based on the LAHET code, mainly to find the maximum beam current under given computation conditions. Thermal hydraulic power of HYPER target system was calculated using FLUENT code, structure conducted by inputting the data into ANSYS. On the temp of beam windows and the pressure distribution calculated using FLUENT. Data transformation program was composed apply the data calculated using FLUENT being commercial CFD code and ANSYS being FEM code for CFX structure analysis. A basic study was conducted on various singular target to obtain fundamental data on the shape for optimum target design. A thermal hydraulic power analysis and structure analysis were conducted on the shapes of parabolic, uniform, scanning beams to choose the optimum shape of beam current analysis was done according to some turbulent model to simulate the real flow. To evaluate the reliability of numerical analysis result, benchmarking of FLUENT code reformed at SNU and Korea Advanced Institute of Science and Technology and it was compared to CFX in the possession of Korea Atomic Energy Research Institute and evaluated. Reliable deviation was observed in the results calculated using FLUENT code, but temperature deviation of about 200 .deg. C was observed in the result from CFX analysis at optimum design condition. Several benchmarking were performed on the basis of numerical analysis concerning conventional HYPER. It was possible to allow a beam arrests of 17.3 mA in the case of the {phi} 350 mm parabolic beam suggested to the optimum in nuclear transmutation when stress equivalent to VON-MISES was calculated to be 140 MPa. 29 refs., 109 figs. (Author)

  7. Thermal-hydraulics analysis of a PWR reactor using zircaloy and carbide silicon reinforced with type S fibers as fuel claddings: Simulation of a channel blockage transient

    Energy Technology Data Exchange (ETDEWEB)

    Matuck, Vinicius; Ramos, Mario C.; Faria, Rochkhudson B.; Reis, Patricia A.L.; Costa, Antonella L.; Pereira, Claubia, E-mail: rochkdefaria@yahoo.com.br, E-mail: matuck747@gmail.com, E-mail: patricialire@yahoo.com.br, E-mail: marc5663@gmail.com, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear

    2017-11-01

    A detailed thermal-hydraulic reactor model using as reference data from the Angra 2 Final Safety Analysis Report (FSAR) has been developed and SiC reinforced with Hi-Nicalon type S fibers (SiC HNS) was used as fuel cladding. The goal is to compare its behavior from the thermal viewpoint with the Zircaloy, at the steady- state and transient conditions. The RELAP-3D was used to perform the thermal-hydraulic analysis and a blockage transient has been investigated at full power operation. The transient considered is related to total obstruction of a core cooling channel of one fuel assembly. The calculations were performed using a point kinetic model. The reactor behavior after this transient was analyzed and the time evolution of cladding and coolant temperatures mass flow and void fraction are presented. (author)

  8. Thermal hydraulics in undergraduate nuclear engineering education

    International Nuclear Information System (INIS)

    Theofanous, T.G.

    1986-01-01

    The intense safety-related research efforts of the seventies in reactor thermal hydraulics have brought about the recognition of the subject as one of the cornerstones of nuclear engineering. Many nuclear engineering departments responded by building up research programs in this area, and mostly as a consequence, educational programs, too. Whether thermal hydraulics has fully permeated the conscience of nuclear engineering, however, remains yet to be seen. The lean years that lie immediately ahead will provide the test. The purpose of this presentation is to discuss the author's own educational activity in undergraduate nuclear engineering education over the past 10 yr or so. All this activity took place at Purdue's School of Nuclear Engineering. He was well satisfied with the results and expects to implement something similar at the University of California in Santa Barbara in the near future

  9. Thermal - hydraulic analysis of pressurizer water reactors using the model of open lateral boundary

    International Nuclear Information System (INIS)

    Borges, R.C.

    1980-10-01

    A computational method is developed for thermal-hydraulic analysis, where the channel may be analysed by more than one independent steps of calculation. This is made possible by the incorporation of the model of open lateral boundary in the code COBRA-IIIP, which permits the determination of the subchannel of an open lattice PWR core in a multi-step calculation. The thermal-hydraulic code COBRA-IIIP, developed at the Massachusetts Institute of Technology, is used as the basic model for this study. (Author) [pt

  10. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki [Japan Atomic Energy Agency (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan); Hashimoto, Akihiko; Imai, Yasutomo [NDD Corporation (1-1-6 Jounan, Mito, Ibaraki 310-0803, Japan) (Japan); Ito, Masahiro [NESI Inc. (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan)

    2015-12-31

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  11. Aging effect on the fuel behaviors for CANDU fuel safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J.Y.; Bae, J.H.; Park, J.H.; Song, Y.M., E-mail: agahee@kaeri.re.kr [Korea Atomic Energy Research Inst., Yuseong-gu, Daejeon (Korea, Republic of)

    2013-07-01

    Because of the aging of heat transport system components, the reactor thermalhydraulic conditions can vary, which may affect the safety response. In a recent safety analysis for the refurbished Wolsong 1 NPP, various aging effects were incorporated into the hydraulic models of the components in the primary heat transport system (PHTS) for conservatism. The aging data of the thermal-hydraulic components for an 11 EFPY of Wolsong 1 were derived based on the site operation data and were modified to the appropriate input data for the thermal-hydraulic code for a safety analysis of a postulated accident. This paper deals with the aging effect of the PHTS of the CANDU reactor on the fuel performance during normal operation and transient period following a postulated accident such as a feeder stagnation break. (author)

  12. Thermal hydraulic feasibility assessment for the Spent Nuclear Fuel Project

    International Nuclear Information System (INIS)

    Heard, F.J.; Cramer, E.R.; Beaver, T.R.; Thurgood, M.J.

    1996-01-01

    A series of scoping analyses have been completed investigating the thermal-hydraulic performance and feasibility of the Spent Nuclear Fuel Project (SNFP) Integrated Process Strategy (IPS). The SNFP was established to develop engineered solutions for the expedited removal, stabilization, and storage of spent nuclear fuel from the K Basins at the U.S. Department of Energy's Hanford Site in Richland, Washington. The subject efforts focused on independently investigating, quantifying, and establishing the governing heat production and removal mechanisms for each of the IPS operations and configurations, obtaining preliminary results for comparison with and verification of other analyses, and providing technology-based recommendations for consideration and incorporation into the design bases for the SNFP. The goal was to develop a series fo thermal-hydraulic models that could respond to all process and safety-related issues that may arise pertaining to the SNFP. A series of sensitivity analyses were also performed to help identify those parameters that have the greatest impact on energy transfer and hence, temperature control. It is anticipated that the subject thermal-hydraulic models will form the basis for a series of advanced and more detailed models that will more accurately reflect the thermal performance of the IPS and alleviate the necessity for some of the more conservative assumptions and oversimplifications, as well as form the basis for the final process and safety analyses

  13. Thermal-Hydraulic System Codes in Nulcear Reactor Safety and Qualification Procedures

    Directory of Open Access Journals (Sweden)

    Alessandro Petruzzi

    2008-01-01

    Full Text Available In the last four decades, large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Whereas the first system codes, developed at the beginning of the 1970s, utilized the homogenous equilibrium model with three balance equations to describe the two-phase flow, nowadays the more advanced system codes are based on the so-called “two-fluid model” with separation of the water and vapor phases, resulting in systems with at least six balance equations. The wide experimental campaign, constituted by the integral and separate effect tests, conducted under the umbrella of the OECD/CSNI was at the basis of the development and validation of the thermal-hydraulic system codes by which they have reached the present high degree of maturity. However, notwithstanding the huge amounts of financial and human resources invested, the results predicted by the code are still affected by errors whose origins can be attributed to several reasons as model deficiencies, approximations in the numerical solution, nodalization effects, and imperfect knowledge of boundary and initial conditions. In this context, the existence of qualified procedures for a consistent application of qualified thermal-hydraulic system code is necessary and implies the drawing up of specific criteria through which the code-user, the nodalization, and finally the transient results are qualified.

  14. Process management using component thermal-hydraulic function classes

    Science.gov (United States)

    Morman, J.A.; Wei, T.Y.C.; Reifman, J.

    1999-07-27

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

  15. Process management using component thermal-hydraulic function classes

    Science.gov (United States)

    Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques

    1999-01-01

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  16. Thermal-hydraulic analysis under partial loss of flow accident hypothesis of a plate-type fuel surrounded by two water channels using RELAP5 code

    Directory of Open Access Journals (Sweden)

    Itamar Iliuk

    2016-01-01

    Full Text Available Thermal-hydraulic analysis of plate-type fuel has great importance to the establishment of safety criteria, also to the licensing of the future nuclear reactor with the objective of propelling the Brazilian nuclear submarine. In this work, an analysis of a single plate-type fuel surrounding by two water channels was performed using the RELAP5 thermal-hydraulic code. To realize the simulations, a plate-type fuel with the meat of uranium dioxide sandwiched between two Zircaloy-4 plates was proposed. A partial loss of flow accident was simulated to show the behavior of the model under this type of accident. The results show that the critical heat flux was detected in the central region along the axial direction of the plate when the right water channel was blocked.

  17. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.

  18. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries

  19. Gas-cooled reactor thermal-hydraulics using CAST3M and CRONOS2 codes

    International Nuclear Information System (INIS)

    Studer, E.; Coulon, N.; Stietel, A.; Damian, F.; Golfier, H.; Raepsaet, X.

    2003-01-01

    The CEA R and D program on advanced Gas Cooled Reactors (GCR) relies on different concepts: modular High Temperature Reactor (HTR), its evolution dedicated to hydrogen production (Very High Temperature Reactor) and Gas Cooled Fast Reactors (GCFR). Some key safety questions are related to decay heat removal during potential accident. This is strongly connected to passive natural convection (including gas injection of Helium, CO 2 , Nitrogen or Argon) or forced convection using active safety systems (gas blowers, heat exchangers). To support this effort, thermal-hydraulics computer codes will be necessary tools to design, enhance the performance and ensure a high safety level of the different reactors. Accurate and efficient modeling of heat transfer by conduction, convection or thermal radiation as well as energy storage are necessary requirements to obtain a high level of confidence in the thermal-hydraulic simulations. To achieve that goal a thorough validation process has to ve conducted. CEA's CAST3M code dedicated to GCR thermal-hydraulics has been validated against different test cases: academic interaction between natural convection and thermal radiation, small scale in-house THERCE experiments and large scale High Temperature Test Reactor benchmarks such as HTTR-VC benchmark. Coupling with neutronics is also an important modeling aspect for the determination of neutronic parameters such as neutronic coefficient (Doppler, moderator,...), critical position of control rods...CEA's CAST3M and CRONOS2 computer codes allow this coupling and a first example of coupled thermal-hydraulics/neutronics calculations has been performed. Comparison with experimental data will be the next step with High Temperature Test Reactor experimental results at nominal power

  20. Thermal-hydraulic analysis of loss-of-coolant accident in the JMTR

    International Nuclear Information System (INIS)

    Sakurai, Fumio; Oyamada, Rokuro

    1985-02-01

    The reevaluation of the Loss-of-Coolant Accident (LOCA) was required through the process of a safety review for the Japan Materials Testing Reactor (JMTR) core conversion from the high-enriched uranium fuel (Enrichment : 93%) to the medium-enriched uranium fuel (Enrichment : 45%). The following were concluded by thermal-hydraulic analysis of a LOCA caused by a double-ended pipe break in the JMTR primary cooling system. (1) The fuel in the core does not burn-out as long as it is covered with water. (2) A larger siphon break valve (larger than phi60mm) should be installed instead of the present one (phi25mm) on the primary cooling system in order to prevent the core from being uncovered with water in case of a LOCA caused by a double-ended pipe break. The present siphon break valve was installed to keep the core covered with water in case of a LOCA caused by a small pipe rupture. In this analysis, the Siphon Breaker Analysis Code (SBAC) was written in order to analyse the size of the siphon break valve and its accuracy was confirmed to be within 5% through a verification experiment. (author)

  1. BWR transient analysis using neutronic / thermal hydraulic coupled codes including uncertainty quantification

    International Nuclear Information System (INIS)

    Hartmann, C.; Sanchez, V.; Tietsch, W.; Stieglitz, R.

    2012-01-01

    The KIT is involved in the development and qualification of best estimate methodologies for BWR transient analysis in cooperation with industrial partners. The goal is to establish the most advanced thermal hydraulic system codes coupled with 3D reactor dynamic codes to be able to perform a more realistic evaluation of the BWR behavior under accidental conditions. For this purpose a computational chain based on the lattice code (SCALE6/GenPMAXS), the coupled neutronic/thermal hydraulic code (TRACE/PARCS) as well as a Monte Carlo based uncertainty and sensitivity package (SUSA) has been established and applied to different kind of transients of a Boiling Water Reactor (BWR). This paper will describe the multidimensional models of the plant elaborated for TRACE and PARCS to perform the investigations mentioned before. For the uncertainty quantification of the coupled code TRACE/PARCS and specifically to take into account the influence of the kinetics parameters in such studies, the PARCS code has been extended to facilitate the change of model parameters in such a way that the SUSA package can be used in connection with TRACE/PARCS for the U and S studies. This approach will be presented in detail. The results obtained for a rod drop transient with TRACE/PARCS using the SUSA-methodology showed clearly the importance of some kinetic parameters on the transient progression demonstrating that the coupling of a best-estimate coupled codes with uncertainty and sensitivity tools is very promising and of great importance for the safety assessment of nuclear reactors. (authors)

  2. Simulation of Thermal Hydraulic at Supercritical Pressures with APROS

    Energy Technology Data Exchange (ETDEWEB)

    Kurki, Joona [VTT Technical Research Centre of Finland, P.O. Box 1000, FI02044 VTT (Finland)

    2008-07-01

    The proposed concepts for the fourth generation of nuclear reactors include a reactor operating with water at thermodynamically supercritical state, the Supercritical Water Reactor (SCWR). For the design and safety demonstrations of such a reactor, the possibility to accurately simulate the thermal hydraulics of the supercritical coolant is an absolute prerequisite. For this purpose, the one-dimensional two-phase thermal hydraulics solution of APROS process simulation software was developed to function at the supercritical pressure region. Software modifications included the redefinition of some parameters that have physical significance only at the subcritical pressures, improvement of the steam tables, and addition of heat transfer and friction correlations suitable for the supercritical pressure region. (author)

  3. Interaction between thermal/hydraulics, human factors and system analysis for assessing feed and bleed risk benefits

    International Nuclear Information System (INIS)

    Lanore, J.M.; Caron, J.L.

    1987-11-01

    For probabilistic analysis of accident sequences, thermal/hydraulics, human factors and systems operation problems are frequently closely interrelated. This presentation will discuss a typical example which illustrates this interrelation: total loss of feedwater flow. It will present thermal/hydraulic analysises performed, how the T/H analysises are related to human factors and systems operation, and how, based on this, the failure probability of the feed and bleed cooling mode was evaluated

  4. Analysis of PBMR transients using a coupled neutron transport/thermal-hydraulics code DORT-TD/thermix

    International Nuclear Information System (INIS)

    Tyobeka, B.; Ivanov, K.; Pautz, A.

    2007-01-01

    In the advent of increased demand for safety and economics of nuclear power plants, nuclear engineers and designers are called upon to develop advanced computation tools. In these developments, space-time effects in the dynamics of nuclear reactors must be considered within the framework of a full 3-dimensional treatment of both neutron kinetics and thermal hydraulics. In a recent effort at the Pennsylvania State University, a time-dependent version of the discrete ordinates transport code DORT, DORT-TD was coupled to a 2-dimensional core thermal hydraulics code THERMIX-DIREKT. In the coupling process, a feedback model was developed to account for the feedback effects and was implemented into DORT-TD. During the calculation process for each spatial node of the DORT-TD core model, feedback parameters representative of this node are passed to the feedback module. Using these values, cross section tables are then interpolated for the appropriate macroscopic cross section values. The updated macroscopic cross sections are passed back to DORT-TD to perform transport core calculations, and the power distribution is transferred to THERMIX-DIREKT to obtain the relevant thermal-hydraulics data in turn, and this calculation loop continues. In this paper, DORT-TD/THERMIX is used to simulate transients of interest in the PBMR (Pebble Bed Modular Reactor) safety using established benchmark problems: load change from 100% to 40% power and fast control rod ejection (PBMR-268 benchmark problem). The results obtained are compared with those obtained using the diffusion-based module of the code. The results are only preliminary and so far show that diffusion theory is not such a bad approximation for PBMR for the prediction of integral parameters

  5. Thermal hydraulics analysis of LIBRA-SP target chamber

    International Nuclear Information System (INIS)

    Mogahed, E.A.

    1996-01-01

    LIBRA-SP is a conceptual design study of an inertially confined 1000 MWe fusion power reactor utilizing self-pinched light ion beams. There are 24 ion beams which are arranged around the reactor cavity. The reaction chamber is an upright cylinder with an inverted conical roof resembling a mushroom, and a pool floor. The vertical sides of the cylinder are occupied by a blanket zone consisting of many perforated rigid HT-9 ferritic steel tubes called PERITs (PEr-forated RIgid Tube). The breeding/cooling material, liquid lead-lithium, flows through the PERITs, providing protection to the reflector/vacuum chamber so as to make it a lifetime component. The neutronics analysis and cavity hydrodynamics calculations are performed to account for the neutron heating and also to determine the effects of vaporization/condensation processes on the surface heat flux. The steady state nuclear heating distribution at the midplane is used for thermal hydraulics calculations. The maximum surface temperature of the HT-9 is chosen to not exceed 625 degree C to avoid drastic deterioration of the metal's mechanical properties. This choice restricts the thermal hydraulics performance of the reaction cavity. The inlet first surface coolant bulk temperature is 370 degree C, and the heat exchanger inlet coolant bulk temperature is 502 degree C. 4 refs., 6 figs., 2 tabs

  6. Current and anticipated uses of thermal-hydraulic codes in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Teschendorff, V.; Sommer, F.; Depisch, F.

    1997-07-01

    In Germany, one third of the electrical power is generated by nuclear plants. ATHLET and S-RELAP5 are successfully applied for safety analyses of the existing PWR and BWR reactors and possible future reactors, e.g. EPR. Continuous development and assessment of thermal-hydraulic codes are necessary in order to meet present and future needs of licensing organizations, utilities, and vendors. Desired improvements include thermal-hydraulic models, multi-dimensional simulation, computational speed, interfaces to coupled codes, and code architecture. Real-time capability will be essential for application in full-scope simulators. Comprehensive code validation and quantification of uncertainties are prerequisites for future best-estimate analyses.

  7. Current and anticipated uses of thermal-hydraulic codes in Germany

    International Nuclear Information System (INIS)

    Teschendorff, V.; Sommer, F.; Depisch, F.

    1997-01-01

    In Germany, one third of the electrical power is generated by nuclear plants. ATHLET and S-RELAP5 are successfully applied for safety analyses of the existing PWR and BWR reactors and possible future reactors, e.g. EPR. Continuous development and assessment of thermal-hydraulic codes are necessary in order to meet present and future needs of licensing organizations, utilities, and vendors. Desired improvements include thermal-hydraulic models, multi-dimensional simulation, computational speed, interfaces to coupled codes, and code architecture. Real-time capability will be essential for application in full-scope simulators. Comprehensive code validation and quantification of uncertainties are prerequisites for future best-estimate analyses

  8. VIPRE-01: a thermal-hydraulic code for reactor cores. Volume 3: programmer's manual (Revision 2)

    International Nuclear Information System (INIS)

    Stewart, C.W.; Koontz, A.S.; Cuta, J.M.; Montgomery, S.D.

    1985-07-01

    The VIPRE thermal-hydraulic computer code for PWR and BWR core analysis has undergone a detailed design review by a committee of experts. A new version of the code, incorporating the committee's recommendations, has been submitted for NRC review and issuance of a safety evaluation report. The changes in the programmers's manual are given

  9. Research and development program for PWR safety at the CEA reactor thermal hydraulics laboratories

    International Nuclear Information System (INIS)

    Bernard, M.

    1995-01-01

    Since the start of the French electronuclear program, the three partners Fermate, EDF and Cea (DRN and IPSN) have devoted considerable effort to research and development for safety issues. In particular an important program on thermal hydraulics was initiated at the beginning of the seventies. It is illustrated by the development of the CATHARE thermalhydraulic safety code which includes physical models derived from a large experimental support program and the construction of the BETHSY integral facility which is aimed to assess both the CATHARE code and the physical relevance of the accident management procedures to be applied on reactors. The state of the art on this program is described with particular emphasis on the capabilities and the assessment of the last version of CATHARE and the lessons drawn from 50 BETHSY tests performed so far. The future plans for safety research cover the following strategy: - to solve the few problems identified on present computing tools and extend the assessment - to solve the few problems identified on present computing tools and extend the assessment - to perform safety studies on the basis of plant operation feedback - to contribute to treating the safety issues related to the future reactors and in particular the case of severe accidents which have to be taken into account from the design stage. The program on severe accidents is aimed to support the design studies performed by the industrial partners and to provide computing tools which model the various phases of severe accidents and will be validated on experiments performed with real and simulating materials. The main lines of the program are: - the development of the TOLBIAC 3D code for the thermal hydraulics of core melt pools, which will be validated against the Bali experiment presently under construction - the Sultan experiment, to study the capability of cooling by external flooding of the reactor vessel - the development of the MC-3D code for core melt

  10. Sensitivity analysis of thermal hydraulic response in containment at core meltdown accident

    International Nuclear Information System (INIS)

    Kobayashi, Kensuke; Ishigami, Tsutomu; Horii, Hideo; Chiba, Takemi.

    1985-01-01

    A sensitivity analysis of thermal hydraulic response in a containment during a 'station blackout' (the loss of all AC power) accident at Browns Ferry unit one plant was performed with the computer code MARCH 1.0. In the analysis, the plant station batteries were assumed to be available for 4h after the initiation of the accident. The thermal hydraulic response in the containment was calculated by varying several input data for MARCH 1.0 independently and the deviation among calculated results were investigated. The sensitivity analysis showed that (a) the containment would fail due to the overtemperature without any operator actions for plant recovery, which would be strongly dependent on the model of the debris-concrete interaction and the input parameters for specifying the containment failure modes in MARCH 1.0, (b) a core melting temperature and an amount of water left in a primary system at the end of the meltdown were identified as important parameters which influenced the time of the containment failure, and (c) experimental works regarding the parameters mentioned above could be recommended. (author)

  11. Enhancement of safety analysis reliability for a CANDU-6 reactor using RELAP-CANDU/SCAN coupled code system

    International Nuclear Information System (INIS)

    Kim, Man Woong; Choi, Yong Seog; Sin, Chul; Kim, Hyun Koon; Kim, Hho Jung; Hwang, Su Hyun; Hong, In Seob; Kim, Chang Hyo

    2005-01-01

    In LOCA analysis of the CANDU reactor, the system thermal-hydraulic code, RELAP-CANDU, alone cannot predict the transient behavior accurately. Therefore, the best estimate neutronics and system thermal-hydraulic coupled code system is necessary to describe the transient behavior with higher accuracy and reliability. To perform on-line calculation of safety analysis for CANDU reactor, a coupled thermal hydraulics-neutronics code system was developed in such a way that the best-estimate thermal-hydraulic system code for CANDU reactor, RELAP-CANDU, is coupled with the full three-dimensional reactor core kinetic code

  12. Thermal hydraulic-Mechanic Integrated Simulation for Advanced Cladding Thermal Shock Fracture Analysis during Reflood Phase in LBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seong Min; Lee, You Ho; Cho, Jae Wan; Lee, Jeong Ik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This study suggested thermal hydraulic-mechanical integrated stress based methodology for analyzing the behavior of ATF type claddings by SiC-Duplex cladding LBLOCA simulation. Also, this paper showed that this methodology could predict real experimental result well. That concept for enhanced safety of LWR called Advanced Accident-Tolerance Fuel Cladding (ATF cladding, ATF) is researched actively. However, current nuclear fuel cladding design criteria for zircaloy cannot be apply to ATF directly because those criteria are mainly based on limiting their oxidation. So, the new methodology for ATF design criteria is necessary. In this study, stress based analysis methodology for ATF cladding design criteria is suggested. By simulating LBLOCA scenario of SiC cladding which is the one of the most promising candidate of ATF. Also we'll confirm our result briefly through comparing some facts from other experiments. This result is validating now. Some of results show good performance with 1-D failure analysis code for SiC fuel cladding that already developed and validated by Lee et al,. It will present in meeting. Furthermore, this simulation presented the possibility of understanding the behavior of cladding deeper. If designer can predict the dangerous region and the time precisely, it may be helpful for designing nuclear fuel cladding geometry and set safety criteria.

  13. Validation studies of thermal-hydraulic code for safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Haapalehto, T.

    1995-01-01

    The thesis gives an overview of the validation process for thermal-hydraulic system codes and it presents in more detail the assessment and validation of the French code CATHARE for VVER calculations. Three assessment cases are presented: loop seal clearing, core reflooding and flow in a horizontal steam generator. The experience gained during these assessment and validation calculations has been used to analyze the behavior of the horizontal steam generator and the natural circulation in the geometry of the Loviisa nuclear power plant. Large part of the work has been performed in cooperation with the CATHARE-team in Grenoble, France. (41 refs., 11 figs., 8 tabs.)

  14. Nuclear fuel element design and thermal-hydraulic analysis of Wolsung-1, 600 MWe CANDU-PHWR (Part II)

    International Nuclear Information System (INIS)

    Suk, H.C; Lee, J.C.; Suh, K.S.; Yuk, K.E.; Whang, W.; Park, J.S.; Eim, J.S.; Bang, K.H.; Eim, M.S.; Rim, C.S.

    1982-01-01

    The main objective of the present thermal hydraulic analysis is to determine the thermal hydraulic characteristics of Wolsung-1 600 MWe CANDU-PHW reactor under normal operation. This is to verify and expedite the development of the nuclear fuel design and fabrication as well as the management. The computer program package developed for the stated objective are DOD81, CANREPP, PLOC81 and COBRA-CANDU. (Author)

  15. Thermal-hydraulic analysis of the improved TOPAZ-II power system using a heat pipe radiator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenwen; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Tian, Wenxi; Qiu, Suizheng; Su, G.H.

    2016-10-15

    Highlights: • The system thermal-hydraulic model of the improved space thermionic reactor is developed. • The temperature reactivity feedback effects of the moderator, UO2 fuel, electrodes and reflector are considered. • The alkali metal heat pipe radiator is modeled with the two dimensional heat pipe model. • The steady state and the start-up procedure of the system are analyzed. - Abstract: A system analysis code coupled with the heat pipe model is developed to analyze the thermal-hydraulic characteristics of the improved TOPAZ-II reactor power system with a heat pipe radiator. The core thermal-hydraulic model, neutron physics model, and the coolant loop component models (including pump, volume accumulator, pipes and plenums) are established. The designed heat pipe radiator, which replaces the original pumped loop radiator, is also modeled, including two-dimensional heat pipe analysis model, fin model and coolant transport duct model. The system analysis code and the heat pipe model is coupled in the transport duct model. Steady state condition and start-up procedure of the improved TOPAZ-II system are calculated. The results show that the designed radiator can satisfy the waste heat rejection requirement of the improved power system. Meanwhile, the code can be used to obtained the thermal characteristics of the system transients such as the start-up process.

  16. Development of a multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3 and its verification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    A multi-dimensional realistic thermal-hydraulic system analysis code, MARS version 1.3 has been developed. Main purpose of MARS 1.3 development is to have the realistic analysis capability of transient two-phase thermal-hydraulics of Pressurized Water Reactors (PWRs) especially during Large Break Loss of Coolant Accidents (LBLOCAs) where the multi-dimensional phenomena domain the transients. MARS code is a unified version of USNRC developed COBRA-TF, domain the transients. MARS code is a unified version of USNRC developed COBRA-TF, three-dimensional (3D) reactor vessel analysis code, and RELAP5/MOD3.2.1.2, one-dimensional (1D) reactor system analysis code., Developmental requirements for MARS are chosen not only to best utilize the existing capability of the codes but also to have the enhanced capability in code maintenance, user accessibility, user friendliness, code portability, code readability, and code flexibility. For the maintenance of existing codes capability and the enhancement of code maintenance capability, user accessibility and user friendliness, MARS has been unified to be a single code consisting of 1D module (RELAP5) and 3D module (COBRA-TF). This is realized by implicitly integrating the system pressure matrix equations of hydrodynamic models and solving them simultaneously, by modifying the 1D/3D calculation sequence operable under a single Central Processor Unit (CPU) and by unifying the input structure and the light water property routines of both modules. In addition, the code structure of 1D module is completely restructured using the modular data structure of standard FORTRAN 90, which greatly improves the code maintenance capability, readability and portability. For the code flexibility, a dynamic memory management scheme is applied in both modules. MARS 1.3 now runs on PC/Windows and HP/UNIX platforms having a single CPU, and users have the options to select the 3D module to model the 3D thermal-hydraulics in the reactor vessel or other

  17. Thermal hydraulic analysis of the IPR-R1 TRIGA reactor

    International Nuclear Information System (INIS)

    Veloso, Marcelo Antonio; Fortini, Maria Auxiliadora

    2002-01-01

    The subchannel approach, normally employed for the analysis of power reactor cores that work under forced convection, have been used for the thermal hydraulic evaluation of a TRIGA Mark I reactor, named IPR-R1, at 250 kW power level. This was accomplished by using the PANTERA-1P subchannel code, which has been conveniently adapted to the characteristics of natural convection of TRIGA reactors. The analysis of results indicates that the steady state operation of IPR-R1 at 250 kW do not imply risks to installations, workers and public. (author)

  18. Basic researches on thermo-hydraulic non-equilibrium phenomena related to nuclear reactor safety

    International Nuclear Information System (INIS)

    Sakurai, Akira; Kataoka, Isao; Aritomi, Masanori.

    1989-01-01

    A review was made of recent developments of fundamental researches on thermo-hydraulic non-equilibrium phenomena related to light water reactor safety, in relation to problems to be solved for the improvement of safety analysis codes. As for the problems related to flow con ditions, fundamental researches on basic conservation equations and constitutive equations for transient two-phase flow were reviewed. Regarding to the problems related to thermal non-equilibrium phenomena, fundamental researches on film boiling in pool and forced convection, transient boiling heat transfer and flow behavior caused by pressure transients were reviewed. (author)

  19. Thermal-hydraulic analysis of PWR cores in transient condition

    International Nuclear Information System (INIS)

    Silva Galetti, M.R. da.

    1984-01-01

    A calculational methodology for thermal - hydraulic analysis of PWR cores under steady-state and transient condition was selected and made available to users. An evaluation of the COBRA-IIIP/MIT code, used for subchannel analysis, was done through comparison of the code results with experimental data on steady state and transient conditions. As a result, a comparison study allowing spatial and temporal localization of critical heat flux was obtained. A sensitivity study of the simulation model to variations in some empirically determined parameter is also presented. Two transient cases from Angra I FSAR were analysed, showing the evolution of minimum DNBR with time. (Author) [pt

  20. Investigation of coupling scheme for neutronic and thermal-hydraulic codes

    International Nuclear Information System (INIS)

    Wang Guoli; Yu Jianfeng; Pen Muzhang; Zhang Yuman.

    1988-01-01

    Recently, a number of coupled neutronics/thermal-hydraulics codes have been used in reaction design and safty analysis, which have been obtained by coupling previous neutronic and thermal-hydraulic codes. The different coupling schemes affect computer time and accuracy of calculation results. Numberical experiments of several different coupling schemes and some heuristic results are described

  1. Whole core pin-by-pin coupled neutronic-thermal-hydraulic steady state and transient calculations using COBAYA3 code

    International Nuclear Information System (INIS)

    Jimenez, J.; Herrero, J. J.; Cuervo, D.; Aragones, J. M.

    2010-10-01

    Nowadays coupled 3-dimensional neutron kinetics and thermal-hydraulic core calculations are performed by applying a radial average channel approach using a meshing of one quarter of assembly in the best case. This approach does not take into account the subchannels effects due to the averaging of the physical fields and the loose of heterogeneity in the thermal-hydraulic model. Therefore the models do not have enough resolution to predict those subchannels effects which are important for the fuel design safety margins, because it is in the local scale, where we can search the hottest pellet or the maximum heat flux. The Polytechnic University of Madrid advanced multi-scale neutron-kinetics and thermal-hydraulics methodologies being implemented in COBAYA3 include domain decomposition by alternate core dissections for the local 3-dimensional fine-mesh scale problems (pin cells/subchannels) and an analytical nodal diffusion solver for the coarse mesh scale coupled with the thermal-hydraulic using a model of one channel per assembly or per quarter of assembly. In this work, we address the domain decomposition by the alternate core dissections methodology applied to solve coupled 3-dimensional neutronic-thermal-hydraulic problems at the fine-mesh scale. The neutronic-thermal-hydraulic coupling at the cell-subchannel scale allows the treatment of the effects of the detailed thermal-hydraulic feedbacks on cross-sections, thus resulting in better estimates of the local safety margins at the pin level. (Author)

  2. Validation of thermal hydraulic codes for fusion reactors safety

    International Nuclear Information System (INIS)

    Sardain, P.; Gulden, W.; Massaut, V.; Takase, K.; Merill, B.; Caruso, G.

    2006-01-01

    A significant effort has been done worldwide on the validation of thermal hydraulic codes, which can be used for the safety assessment of fusion reactors. This work is an item of an implementing agreement under the umbrella of the International Energy Agency. The European part is supported by EFDA. Several programmes related to transient analysis in water-cooled fusion reactors were run in order to assess the capabilities of the codes to treat the main physical phenomena governing the accidental sequences related to water/steam discharge into the vacuum vessel or the cryostat. The typical phenomena are namely the pressurization of a volume at low initial pressure, the critical flow, the flashing, the relief into an expansion volume, the condensation of vapor in a pressure suppression system, the formation of ice on a cryogenic structure, the heat transfer between walls and fluid in various thermodynamic conditions. · A benchmark exercise has been done involving different types of codes, from homogeneous equilibrium to six equations non-equilibrium models. Several cases were defined, each one focusing on a particular phenomenon. · The ICE (Ingress of Coolant Event) facility has been operated in Japan. It has simulated an in-vessel LOCA and the discharge of steam into a pressure suppression system. · The EVITA (European Vacuum Impingement Test Apparatus) facility has been operated in France. It has simulated ingress of coolant into the cryostat, i.e. into a volume at low initial pressure containing surfaces at cryogenic temperature. This paper gives the main lessons gained from these programs, in particular the possibilities for the improvement of the computer codes, extending their capabilities. For example, the water properties have been extended below the triple point. Ice formation models have been implemented. Work has also been done on condensation models. The remaining needs for R-and-D are also highlighted. (author)

  3. Determination of thermal-hydraulic loads on reactor internals in a DBA-situation

    International Nuclear Information System (INIS)

    Ville Lestinen; Timo Toppila

    2005-01-01

    Full text of publication follows: According to Finnish regulatory requirements, reactor internals have to stay intact in a design basis accident (DBA) situation, so that control rods can still penetrate into the core. To fulfill this demand some criteria must be followed in periodical in-service inspections. This is the motivation for studying and developing more detailed methods for analysis of thermal-hydraulic loads on reactor internals during the DBA-situation for the Loviisa NPP in Finland. The objective of this research program is to connect thermal-hydraulic and mechanical analysis methods with the goal to produce a reliable method for determination of thermal-hydraulic and mechanical loads on reactor internals in the accident situation. The tools studied are thermal-hydraulic system codes, computational fluid dynamics (CFD) codes and finite element analysis (FEA) codes. This paper concentrates mainly on thermal-hydraulic part of the research, but also the mechanical aspects are discussed. Firstly, the paper includes a short literary review of the available methods to analyse the described problem including both thermal-hydraulic and structural analysis parts. Secondly, different possibilities to carry out thermal-hydraulic analyses have been studied. The DBA-case includes complex physical phenomena and therefore modelling is difficult. The accident situation can be for example LLOCA. When the pipe has broken, the pressure decreases and water starts to evaporate, which consumes energy and that way limits the pressure decrease. After some period of time, the system reaches a new equilibrium state. To perform exact thermal-hydraulic analysis also two phase phenomena must be included. Therefore CFD codes are not capable of modelling the DBA situation very well, but the use of CFD codes requires that the effect of two phase flow must be added somehow. One method to calculate two phase phenomena with CFD codes is to use thermal-hydraulic system codes to calculate

  4. Twenty-third water reactor safety information meeting: Volume 1, plenary session, high burnup fuel behavior, thermal hydraulic research. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 1, present topics on High Burnup Fuel Behavior, Thermal Hydraulic Research, and Plenary Session topics. Individual papers have been cataloged separately.

  5. Twenty-third water reactor safety information meeting: Volume 1, plenary session, high burnup fuel behavior, thermal hydraulic research. Proceedings

    International Nuclear Information System (INIS)

    Monteleone, S.

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 1, present topics on High Burnup Fuel Behavior, Thermal Hydraulic Research, and Plenary Session topics. Individual papers have been cataloged separately

  6. Preliminary LOCA analysis of the westinghouse small modular reactor using the WCOBRA/TRAC-TF2 thermal-hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.; Kucukboyaci, V. N.; Nguyen, L.; Frepoli, C. [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using the WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)

  7. Application of a statistical thermal design procedure to evaluate the PWR DNBR safety analysis limits

    International Nuclear Information System (INIS)

    Robeyns, J.; Parmentier, F.; Peeters, G.

    2001-01-01

    In the framework of safety analysis for the Belgian nuclear power plants and for the reload compatibility studies, Tractebel Energy Engineering (TEE) has developed, to define a 95/95 DNBR criterion, a statistical thermal design method based on the analytical full statistical approach: the Statistical Thermal Design Procedure (STDP). In that methodology, each DNBR value in the core assemblies is calculated with an adapted CHF (Critical Heat Flux) correlation implemented in the sub-channel code Cobra for core thermal hydraulic analysis. The uncertainties of the correlation are represented by the statistical parameters calculated from an experimental database. The main objective of a sub-channel analysis is to prove that in all class 1 and class 2 situations, the minimum DNBR (Departure from Nucleate Boiling Ratio) remains higher than the Safety Analysis Limit (SAL). The SAL value is calculated from the Statistical Design Limit (SDL) value adjusted with some penalties and deterministic factors. The search of a realistic value for the SDL is the objective of the statistical thermal design methods. In this report, we apply a full statistical approach to define the DNBR criterion or SDL (Statistical Design Limit) with the strict observance of the design criteria defined in the Standard Review Plan. The same statistical approach is used to define the expected number of rods experiencing DNB. (author)

  8. From the direct numerical simulation to system codes-perspective for the multi-scale analysis of LWR thermal hydraulics

    International Nuclear Information System (INIS)

    Bestion, D.

    2010-01-01

    A multi-scale analysis of water-cooled reactor thermal hydraulics can be used to take advantage of increased computer power and improved simulation tools, including Direct Numerical Simulation (DNS), Computational Fluid Dynamics (CFD) (in both open and porous mediums), and system thermalhydraulic codes. This paper presents a general strategy for this procedure for various thermalhydraulic scales. A short state of the art is given for each scale, and the role of the scale in the overall multi-scale analysis process is defined. System thermalhydraulic codes will remain a privileged tool for many investigations related to safety. CFD in porous medium is already being frequently used for core thermal hydraulics, either in 3D modules of system codes or in component codes. CFD in open medium allows zooming on some reactor components in specific situations, and may be coupled to the system and component scales. Various modeling approaches exist in the domain from DNS to CFD which may be used to improve the understanding of flow processes, and as a basis for developing more physically based models for macroscopic tools. A few examples are given to illustrate the multi-scale approach. Perspectives for the future are drawn from the present state of the art and directions for future research and development are given

  9. Proceedings of the 10. Meeting on Reactor Physics and Thermal Hydraulics; Anais do 10. Encontro de Fisica de Reatores e Termo-Hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Santos Bastos, W. dos

    1995-12-31

    These proceedings presents all the Meeting papers emphasizing specific aspects on reactor physics method, criticality, fuel management, nuclear data, safety analysis, simulation and shielding, neutronics, thermal hydraulics, reactor operation and computational methods.

  10. KUGEL: a thermal, hydraulic, fuel performance, and gaseous fission product release code for pebble bed reactor core analysis

    International Nuclear Information System (INIS)

    Shamasundar, B.I.; Fehrenbach, M.E.

    1981-05-01

    The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations

  11. Thermal-hydraulic characteristics of double flat core HCLWR

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Iwamura, Takamichi; Okubo, Tsutomu; Murao, Yoshio

    1989-02-01

    A thermal-hydraulic characteristics of double flat core high conversion light water reactor (HCLWR) is described. The concept of flat core proposed by Ishiguro et al. is to achieve negative void reactivity coefficient in tight lattice core, and at the same time, high conversion ratio and high burnup can be obtainable. The proposed double flat core HCLWR, based on these physical advantages and the consideration of safety assurance, aims at efficient use of the pressure vessel space to produce comparable thermal output as current 3-loop PWRs. The present work revealed the following items concerning the thermalhydraulic feasibility of the double flat core HCLWR: (1) Main thermal-hydraulic parameters of the plant can be almost the same as current PWRs, showing the use of PWR standard components without major modifications except in core region. (2) Heat removal from the fuel rod in a steady operational condition has enough margin to the critical heat flux (CHF) limit, which is evaluated with the existing CHF correlations. (3) The calculation by REFLA code shows that the maximum cladding temperature in LOCA-reflood is estimated to be far lower than the licensing criteria. It is therefore considered that the proposed double flat core HCLWR is feasible from the point of thermal-hydraulics. Since the available data base has certain applicational limit to the very short core as the present double flat core HCLWR, further detailed assessment is required. (author)

  12. Methods and Models for the Coupled Neutronics and Thermal-Hydraulics Analysis of the CROCUS Reactor at EFPL

    Directory of Open Access Journals (Sweden)

    A. Rais

    2015-01-01

    Full Text Available In order to analyze the steady state and transient behavior of the CROCUS reactor, several methods and models need to be developed in the areas of reactor physics, thermal-hydraulics, and multiphysics coupling. The long-term objectives of this project are to work towards the development of a modern method for the safety analysis of research reactors and to update the Final Safety Analysis Report of the CROCUS reactor. A first part of the paper deals with generation of a core simulator nuclear data library for the CROCUS reactor using the Serpent 2 Monte Carlo code and also with reactor core modeling using the PARCS code. PARCS eigenvalue, radial power distribution, and control rod reactivity worth results were benchmarked against Serpent 2 full-core model results. Using the Serpent 2 model as reference, PARCS eigenvalue predictions were within 240 pcm, radial power was within 3% in the central region of the core, and control rod reactivity worth was within 2%. A second part reviews the current methodology used for the safety analysis of the CROCUS reactor and presents the envisioned approach for the multiphysics modeling of the reactor.

  13. Thermal-hydraulic criteria for the APT tungsten neutron source design

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.

    1998-03-01

    This report presents the thermal-hydraulic design criteria (THDC) developed for the tungsten neutron source (TNS). The THDC are developed for the normal operations, operational transients, and design-basis accidents. The requirements of the safety analyses are incorporated into the design criteria, consistent with the integrated safety management and the safety-by-design philosophy implemented throughout the APT design process. The phenomenology limiting the thermal-hydraulic design and the confidence level requirements for each limit are discussed. The overall philosophy of the uncertainty analyses and the confidence level requirements also are presented. Different sets of criteria are developed for normal operations, operational transients, anticipated accidents, unlikely accidents, extremely unlikely accidents, and accidents during TNS replacement. In general, the philosophy is to use the strictest criteria for the high-frequency events. The criteria is relaxed as the event frequencies become smaller. The THDC must be considered as a guide for the design philosophy and not as a hard limit. When achievable, design margins greater than those required by the THDC must be used. However, if a specific event sequence cannot meet the THDC, expensive design changes are not necessary if the single event sequence results in sufficient margin to safety criteria and does not challenge the plant availability or investment protection considerations

  14. Neutronic and thermal hydraulic analysis for production of fission molybdenum-99 at Pakistan Research Reactor-1

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq, A. [Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)], E-mail: mushtaqa@pinstech.org.pk; Iqbal, Massod; Bokhari, Ishtiaq Hussain; Mahmood, Tariq; Mahmood, Tayyab; Ahmad, Zahoor; Zaman, Qamar [Nuclear Engineering Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)

    2008-02-15

    Neutronic and thermal hydraulic analysis for the fission molybdenum-99 production at PARR-1 has been performed. Low enriched uranium foil (<20% {sup 235}U) will be used as target material. Annular target designed by ANL (USA) will be irradiated in PARR-1 for the production of 100 Ci of molybdenum-99 at the end of irradiation, which will be sufficient to prepare required {sup 99}Mo/{sup 99m}Tc generators at PINSTECH and its supply in the country. Neutronic and thermal hydraulic analysis were performed using various codes. Data shows that annular targets can be safely irradiated in PARR-1 for production of required amount of fission molybdenum-99.

  15. Thermal hydraulic analyses of LVR-15 research reactor with IRT-M fuel

    International Nuclear Information System (INIS)

    Macek, J.

    1997-01-01

    The LVR-15 pool-type research reactor has been in operation at the Nuclear Research Institute at Rez since 1955. Following a number of reconstructions and redesigning, the current reactor power is 15 MW. Thermal hydraulic analyses to demonstrate that the core heat will be safely removed during operation as well as in accident situations were performed based on methodology which had been specifically developed for the LVR-15 research reactor. This methodology was applied to stationary thermal hydraulic computations, as well as to transients, particularly with reactivity failure and loss of circulation pumps emergencies. The applied methodology and the core configuration as used in the Safety Report are described. The initial and boundary conditions are then considered and the summary of the calculated failures with regard to the defined safety limits is presented. The results of the core configuration analyses are also discussed with respect to meeting the safety limits and to the applicability of the methodology to this purpose

  16. Thermal-hydraulic analysis on the whole module of water cooled ceramic breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng; Ma, Xuebin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Cheng, Xiaoman [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Lin, Shuang [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Huang, Kai [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China)

    2016-11-15

    Highlights: • The 3D thermal hydraulic analysis on the whole module of WCCB is performed by CFD method. • Temperature field and mass flow distribution have been obtained. • The design of WCCB is reasonable from the perspective of thermal-hydraulics. • The scheme for further optimization has been proposed. - Abstract: The Water Cooled Ceramic Breeder blanket (WCCB) is being researched for Chinese Fusion Engineering Test Reactor (CFETR). The thermal-hydraulic analysis is essential because the blanket should remove the high heat flux from the plasma and the volumetric heat generated by neutrons. In this paper, the detailed three dimensional (3D) thermal hydraulic analysis on the whole module of WCCB blanket has been performed by Computational Fluid Dynamics (CFD) method, which is capable of solving conjugate heat transfer between solid structure and fluid. The main results, including temperature field, distribution of mass flow rate and coolant pressure drop, have been calculated simultaneously. These provides beneficial guidance data for the further structural optimization and for the design arrangement of primary and secondary circuit. Under the total heat source of 1.23 MW, the coolant mass flow rate of 5.457 kg/s is required to make coolant water corresponding to the Pressurized Water Reactor (PWR) condition (15.5 MPa, 285 °C–325 °C), generating the total coolant pressure drop (△P) of 0.467 MPa. The results show that the present structural design can make all the materials effectively cooled to the allowable temperature range, except for a few small modifications on the both sides of FW. The main components, including the first wall (FW), cooling plates (CPs), side wall (SWs)&stiffening plates (SPs) and the manifold(1–4), dominate 4.7%/41.7%/13%/40.6% of the total pressure drop, respectively. Additionally, the mass flow rate of each channel has been obtained, showing the peak relative deviation of 3.4% and 2% from the average for the paratactic

  17. Thermal hydraulic analysis of the encapsulated nuclear heat source

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, J.J.; Wade, D.C. [Argonne National Lab., IL (United States)

    2001-07-01

    An analysis has been carried out of the steady state thermal hydraulic performance of the Encapsulated Nuclear Heat Source (ENHS) 125 MWt, heavy liquid metal coolant (HLMC) reactor concept at nominal operating power and shutdown decay heat levels. The analysis includes the development and application of correlation-type analytical solutions based upon first principles modeling of the ENHS concept that encompass both pure as well as gas injection augmented natural circulation conditions, and primary-to-intermediate coolant heat transfer. The results indicate that natural circulation of the primary coolant is effective in removing heat from the core and transferring it to the intermediate coolant without the attainment of excessive coolant temperatures. (authors)

  18. Study on development of virtual reactor core laboratory (1). Development of prototype coupled neutronic, thermal-hydraulic and structural analysis system

    International Nuclear Information System (INIS)

    Uto, Nariaki; Sugaya, Toshio; Tsukimori, Kazuyuki; Negishi, Hitoshi; Enuma, Yasuhiro; Sakai, Takaaki

    1999-09-01

    A study on development of virtual reactor core laboratory, which is to conduct numerical experiments representative of complicated physical phenomena in practical reactor core systems on a computational environment, has progressed at Japan Nuclear Cycle Development Institute (JNC). The study aims at systematic evaluation of these phenomena into which nuclear reactions, thermal-hydraulic characteristics, structural responses and fuel behaviors combine, and effective utilization of the obtained comprehension for core design. This report presents a production of a prototype computational system which is required to construct the virtual reactor core laboratory. This system is to evaluate reactor core performance under the coupled neutronic, thermal-hydraulic and structural phenomena, and is composed of two analysis tools connected by a newly developed interface program; 1) an existing space-dependent coupled neutronic and thermal-hydraulic analysis system arranged at JNC and 2) a core deformation analysis code. It acts on a cluster of several DEC/Alpha workstations. A specific library called MPI1 (Message Passing Interface 1) is incorporated as a tool for communicating among the analysis modules consisting of the system. A series of calculations for simulating a sequence of Unprotected Loss Of Heat Sink (ULOHS) coupled with rapid drop of some neutron absorber devices in a prototype fast reactor is tried to investigate how the system works. The obtained results show the core deformation behavior followed by the reactivity change that can be properly evaluated. The results of this report show that the system is expected to be useful for analyzing sensitivity of reactor core performance with respect to uncertainties of various design parameters and establishing a concept of passive safety reactor system, taking into account space distortion of neutron flux distribution during abnormal events as well as reactivity feedback from core deformation. (author)

  19. Development of whole core thermal-hydraulic analysis program ACT. 3. Coupling core module with primary heat transport system module

    International Nuclear Information System (INIS)

    Ohtaka, Masahiko; Ohshima, Hiroyuki

    1998-10-01

    A whole core thermal-hydraulic analysis program ACT is being developed for the purpose of evaluating detailed in-core thermal hydraulic phenomena of fast reactors including inter-wrapper flow under various reactor operation conditions. In this work, the core module as a main part of the ACT developed last year, which simulates thermal-hydraulics in the subassemblies and the inter-subassembly gaps, was coupled with an one dimensional plant system thermal-hydraulic analysis code LEDHER to simulate transients in the primary heat transport system and to give appropriate boundary conditions to the core model. The effective algorithm to couple these two calculation modules was developed, which required minimum modification of them. In order to couple these two calculation modules on the computing system, parallel computing technique using PVM (Parallel Virtual Machine) programming environment was applied. The code system was applied to analyze an out-of-pile sodium experiment simulating core with 7 subassemblies under transient condition for code verification. It was confirmed that the analytical results show a similar tendency of experimental results. (author)

  20. The SESAME project. State of the art liquid metal thermal hydraulics and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, F.; Shams, A.; Batta, A.; Moreau, V.; Di Piazza, I.; Gerschenfeld, A.; Planquart, P.; Tarantino, M. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands)

    2017-08-15

    The European Sustainable Nuclear Industry Initiative (ESNII) aims at industrial application of fast reactor technology for a sustainable nuclear energy production. Currently four demonstration projects have a promising outlook in Europe, i.e. the ASTRID project in France, the MYRRHA project in Belgium, the ALFRED pan-European project to be realized in Romania, and SEALER in Sweden. Sodium and lead(-alloys) are envisaged as coolants for these reactors. Obviously, in the development of these reactors, thermal-hydraulics is recognized as a key challenge with emphasis on safety issues. This paper discusses the state-of-the-art knowledge with respect to experiments and simulation techniques as pursued in the Horizon 2020 SESAME (thermal hydraulics Simulations and Experiments for the Safety Assessment of MEtal cooled reactors) project.

  1. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    International Nuclear Information System (INIS)

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors

  2. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  3. BWR 9 X 9 Fuel Assembly Thermal-Hydraulic Tests (2): Hydraulic Vibration Test

    International Nuclear Information System (INIS)

    Yoshiaki Tsukuda; Katsuichiro Kamimura; Toshiitsu Hattori; Akira Tanabe; Noboru Saito; Masahiko Warashina; Yuji Nishino

    2002-01-01

    Nuclear Power Engineering Corporation (NUPEC) conducted thermal-hydraulic projects for verification of thermal-hydraulic design reliability for BWR high-burnup 8 x 8 and 9 x 9 fuel assemblies, entrusted by the Ministry of Economy, Trade and Industry (METI). As a part of the NUPEC thermal-hydraulic projects, hydraulic vibration tests using full-scale test assemblies simulating 9 x 9 fuel assemblies were carried out to evaluate BWR fuel integrity. The test data were applied to development of a new correlation for the estimation of fuel rod vibration amplitude. (authors)

  4. Development of a best estimate auditing code for CANDU thermal hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B.D.; Lee, W.J.; Lim, H.S. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-04-01

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool, i.e. RELAP5/MOD3. This scope of project is a second step of the whole project, and focus to the implementation of CANDU models based on the previous study. FORTRAN 90 language have been used for the development of RELAP5.MOD3/CANDU PC version. For the convenience of the previous Workstation users, the FOTRAN 77 version has been coded also and implanted into the original RELAP5 source file. The verification of model implementation has been performed through the simple verification calculations using the CANDU version. 6 refs., 15 figs., 7 tabs. (Author)

  5. Data report of BWR post-CHF tests. Transient core thermal-hydraulic test program. Contract research

    International Nuclear Information System (INIS)

    Iguchi, Tadashi; Itoh, Hideo; Kiuchi, Toshio; Watanabe, Hironori; Kimura, Mamoru; Anoda, Yoshinari

    2001-03-01

    JAERI has been performing transient core thermal-hydraulic test program. In the program, authors performed BWR/ABWR DBE simulation tests with a test facility, which can simulate BWR/ABWR transients. The test facility has a 4 x 4 bundle core simulator with 15-rod heaters and one non-heated rod. Through the tests, authors quantified the thermal safety margin for core cooling. In order to quantify the thermal safety margin, authors collected experimental data on post-CHF. The data are essential for the evaluation of clad temperature transient when core heat-up occurs during DBEs. In comparison with previous post-CHF tests, present experiments were performed in much wider experimental condition, covering high clad temperature, low to high pressure and low to high mass flux. Further, data at wider elevation (lower to higher elevation of core) were obtained in the present experiments, which make possible to discuss the effect of axial position on thermal-hydraulics, while previous works usually discuss the thermal-hydraulics at the position where the first heat-up occurs. This data report describes test procedure, test condition and major experimental data of post-CHF tests. (author)

  6. Thermal-hydraulic characteristic of the PGV-1000 steam generator

    International Nuclear Information System (INIS)

    Ubra, O.; Doubek, M.

    1995-01-01

    Horizontal steam generators are typical parts of nuclear power plants with pressure water reactor type VVER. By means of this computer program, a detailed thermal-hydraulic study of the horizontal steam generator PGV-1000 has been carried out and a special attention has been paid to the thermal-hydraulics of the secondary side. A set of important steam generator characteristics has been obtained and analyzed. Some of the interesting results of the analysis are presented in the paper. (author)

  7. Historical perspective of thermal reactor safety in light water reactors

    International Nuclear Information System (INIS)

    Levy, S.

    1986-01-01

    A brief history of thermal reactor safety in U.S. light water reactors is provided in this paper. Important shortcomings in safety philosophy evolution versus time are identified and potential corrective actions are suggested. It should be recognized, that this analysis represents only one person's opinion and that most historical accountings reflect the author's biases and specific areas of knowledge. In that sense, many of the examples used in this paper are related to heat transfer and fluid flow safety issues, which explains why it has been included in a Thermal Hydraulics session. One additional note of caution: the value of hindsight and the selective nature of human memory when looking at the past cannot be overemphasized in any historical perspective

  8. Development of heat transfer package for core thermal-hydraulic design and analysis of upgraded JRR-3

    International Nuclear Information System (INIS)

    Sudo, Yukio; Ikawa, Hiromasa; Kaminaga, Masanori

    1985-01-01

    A heat transfer package was developed for the core thermal-hydraulic design and analysis of the Japan Research Reactor-3 (JRR-3) which is to be remodeled to a 20 MWt pool-type, light water-cooled reactor with 20 % low enriched uranium (LEU) plate-type fuel. This paper presents the constitution of the developed heat transfer package and the applicability of the heat transfer correlations adopted in it, based on the heat transfer experiments in which thermal-hydraulic features of the new JRR-3 core were properly reflected. (author)

  9. Local chemical and thermal-hydraulic analysis of U-tube steam generators

    International Nuclear Information System (INIS)

    Lee, J.Y.; No, H.C.

    1990-01-01

    In order to know how pH distribution affects corrosion in a U-tube steam generator, a study of the combination of water chemistry and thermal-hydraulic conditions is suggested. A two-fluid (unequal velocity and unequal temperature) formulation is proposed to describe the convective transport of volatile species in each phase, and a spherical bubble model is developed on the basis of the penetration theory to describe the interfacial mass transfer. The thermal-hydraulic local conditions are obtained by the U-tube steam generator design analysis code FAUST which is based on the three-dimensional two-fluid model. The results of the present study are compared with dynamic equilibrium model calculations. This study shows that, in contrast with dynamic equilibrium calculations, the pH is lower in the cold-leg side than in the hot-leg side because of liquid recirculation. Just above the tube sheet, however, the lower void fraction in this region than that in the hot-leg region results in higher pH, which agrees with the prediction of the dynamic equilibrium model. (orig.)

  10. Development of a thermal-hydraulic code for reflood analysis in a PWR experimental loop

    International Nuclear Information System (INIS)

    Alves, Sabrina P.; Mesquita, Amir Z.; Rezende, Hugo C.; Palma, Daniel A.P.

    2017-01-01

    A process of fundamental importance in the event of Loss of Coolant Accident (LOCA) in Pressurized Water nuclear Reactors (PWR) is the reflood of the core or rewetting of nuclear fuels. The Nuclear Technology Development Center (CDTN) has been developing since the 70’s programs to allow Brazil to become independent in the field of reactor safety analysis. To that end, in the 80’s was designed, assembled and commissioned one Rewetting Test Facility (ITR in Portuguese). This facility aims to investigate the phenomena involved in the thermal hydraulic reflood phase of a Loss of Coolant Accident in a PWR nuclear reactor. This work aim is the analysis of physical and mathematical models governing the rewetting phenomenon, and the development a thermo-hydraulic simulation code of a representative experimental circuit of the PWR reactors core cooling channels. It was possible to elaborate and develop a code called REWET. The results obtained with REWET were compared with the experimental results of the ITR, and with the results of the Hydroflut code, that was the old program previously used. An analysis was made of the evolution of the wall temperature of the test section as well as the evolution of the front for two typical tests using the two codes calculation, and experimental results. The result simulated by REWET code for the rewetting time also came closer to the experimental results more than those calculated by Hydroflut code. (author)

  11. Development of a thermal-hydraulic code for reflood analysis in a PWR experimental loop

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Sabrina P.; Mesquita, Amir Z.; Rezende, Hugo C., E-mail: sabrinapral@gmail.com, E-mail: amir@cdtn.brm, E-mail: hcr@cdtn.br, E-mail: hcr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    A process of fundamental importance in the event of Loss of Coolant Accident (LOCA) in Pressurized Water nuclear Reactors (PWR) is the reflood of the core or rewetting of nuclear fuels. The Nuclear Technology Development Center (CDTN) has been developing since the 70’s programs to allow Brazil to become independent in the field of reactor safety analysis. To that end, in the 80’s was designed, assembled and commissioned one Rewetting Test Facility (ITR in Portuguese). This facility aims to investigate the phenomena involved in the thermal hydraulic reflood phase of a Loss of Coolant Accident in a PWR nuclear reactor. This work aim is the analysis of physical and mathematical models governing the rewetting phenomenon, and the development a thermo-hydraulic simulation code of a representative experimental circuit of the PWR reactors core cooling channels. It was possible to elaborate and develop a code called REWET. The results obtained with REWET were compared with the experimental results of the ITR, and with the results of the Hydroflut code, that was the old program previously used. An analysis was made of the evolution of the wall temperature of the test section as well as the evolution of the front for two typical tests using the two codes calculation, and experimental results. The result simulated by REWET code for the rewetting time also came closer to the experimental results more than those calculated by Hydroflut code. (author)

  12. Analysis of the Phebus FPT0 containment thermal hydraulics with the Jericho and Trio-VF codes

    International Nuclear Information System (INIS)

    Layly, V.D.; Spitz, P.; Mailliat, A.

    1994-01-01

    This paper presents the analysis of the thermal hydraulic behavior of the containment, during the Phebus FPT0 test performed on December 2, 1993, with the Jericho code which deals with the thermal hydraulics of containment in the severe accident field. This code is part of Escadre which is the French system of codes in charge of predicting PWR severe accidents. After summarizing the relevant Jericho code characteristics and the preliminary assessment work for the Phebus conditions, we briefly describe the REPF 502 test facility and report the thermal hydraulic FPT0 experimental protocol. Then, the experiment / Jericho calculation comparisons are analysed. Because the Jericho code assumes a well-mixed atmosphere, some additional 3-D calculations have been carried out in order to get further insight on the convection flow patterns and qualify the well-mixed atmosphere assumption in the Phebus containment. (author). 9 refs., 12 figs

  13. CCP Sensitivity Analysis by Variation of Thermal-Hydraulic Parameters of Wolsong-3, 4

    Energy Technology Data Exchange (ETDEWEB)

    You, Sung Chang [KHNP, Daejeon (Korea, Republic of)

    2016-10-15

    The PHWRs are tendency that ROPT(Regional Overpower Protection Trip) setpoint is decreased with reduction of CCP(Critical Channel Power) due to aging effects. For this reason, Wolsong unit 3 and 4 has been operated less than 100% power due to the result of ROPT setpoint evaluation. Typically CCP for ROPT evaluation is derived at 100% PHTS(Primary Heat Transport System) boundary conditions - inlet header temperature, header to header different pressure and outlet header pressure. Therefore boundary conditions at 100% power were estimated to calculate the thermal-hydraulic model at 100% power condition. Actually thermal-hydraulic boundary condition data for Wolsong-3 and 4 cannot be taken at 100% power condition at aged reactor condition. Therefore, to create a single-phase thermal-hydraulic model with 80% data, the validity of the model was confirmed at 93.8%(W3), 94.2%(W4, in the two-phase). And thermal-hydraulic boundary conditions at 100% power were calculated to use this model. For this reason, the sensitivities by varying thermal-hydraulic parameters for CCP calculation were evaluated for Wolsong unit 3 and 4. For confirming the uncertainties by variation PHTS model, sensitivity calculations were performed by varying of pressure tube roughness, orifice degradation factor and SG fouling factor, etc. In conclusion, sensitivity calculation results were very similar and the linearity was constant.

  14. A flexible coupling scheme for Monte Carlo and thermal-hydraulics codes

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J. Eduard, E-mail: J.E.Hoogenboom@tudelft.nl [Delft University of Technology (Netherlands); Ivanov, Aleksandar; Sanchez, Victor, E-mail: Aleksandar.Ivanov@kit.edu, E-mail: Victor.Sanchez@kit.edu [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Eggenstein-Leopoldshafen (Germany); Diop, Cheikh, E-mail: Cheikh.Diop@cea.fr [CEA/DEN/DANS/DM2S/SERMA, Commissariat a l' Energie Atomique, Gif-sur-Yvette (France)

    2011-07-01

    A coupling scheme between a Monte Carlo code and a thermal-hydraulics code is being developed within the European NURISP project for comprehensive and validated reactor analysis. The scheme is flexible as it allows different Monte Carlo codes and different thermal-hydraulics codes to be used. At present the MCNP and TRIPOLI4 Monte Carlo codes can be used and the FLICA4 and SubChanFlow thermal-hydraulics codes. For all these codes only an original executable is necessary. A Python script drives the iterations between Monte Carlo and thermal-hydraulics calculations. It also calls a conversion program to merge a master input file for the Monte Carlo code with the appropriate temperature and coolant density data from the thermal-hydraulics calculation. Likewise it calls another conversion program to merge a master input file for the thermal-hydraulics code with the power distribution data from the Monte Carlo calculation. Special attention is given to the neutron cross section data for the various required temperatures in the Monte Carlo calculation. Results are shown for an infinite lattice of PWR fuel pin cells and a 3 x 3 fuel BWR pin cell cluster. Various possibilities for further improvement and optimization of the coupling system are discussed. (author)

  15. A flexible coupling scheme for Monte Carlo and thermal-hydraulics codes

    International Nuclear Information System (INIS)

    Hoogenboom, J. Eduard; Ivanov, Aleksandar; Sanchez, Victor; Diop, Cheikh

    2011-01-01

    A coupling scheme between a Monte Carlo code and a thermal-hydraulics code is being developed within the European NURISP project for comprehensive and validated reactor analysis. The scheme is flexible as it allows different Monte Carlo codes and different thermal-hydraulics codes to be used. At present the MCNP and TRIPOLI4 Monte Carlo codes can be used and the FLICA4 and SubChanFlow thermal-hydraulics codes. For all these codes only an original executable is necessary. A Python script drives the iterations between Monte Carlo and thermal-hydraulics calculations. It also calls a conversion program to merge a master input file for the Monte Carlo code with the appropriate temperature and coolant density data from the thermal-hydraulics calculation. Likewise it calls another conversion program to merge a master input file for the thermal-hydraulics code with the power distribution data from the Monte Carlo calculation. Special attention is given to the neutron cross section data for the various required temperatures in the Monte Carlo calculation. Results are shown for an infinite lattice of PWR fuel pin cells and a 3 x 3 fuel BWR pin cell cluster. Various possibilities for further improvement and optimization of the coupling system are discussed. (author)

  16. Lead coolant test facility systems design, thermal hydraulic analysis and cost estimate

    Energy Technology Data Exchange (ETDEWEB)

    Khericha, Soli, E-mail: slk2@inel.gov [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Harvego, Edwin; Svoboda, John; Evans, Robert [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Dalling, Ryan [ExxonMobil Gas and Power Marketing, Houston, TX 77069 (United States)

    2012-01-15

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T and FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed below: Bullet Develop and demonstrate feasibility of submerged heat exchanger. Bullet Develop and demonstrate open-lattice flow in electrically heated core. Bullet Develop and demonstrate chemistry control. Bullet Demonstrate safe operation. Bullet Provision for future testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimated. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 Degree-Sign C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  17. Optimised design and thermal-hydraulic analysis of the IFMIF/HFTM test section

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S.; Heinzel, V.; Lang, K.H.; Moeslang, A.; Schleisiek, K.; Slobodtchouk, V.; Stratmanns, E.

    2003-10-01

    On the basis of previous concepts, analyses and experiments, the high flux test module (HFTM) for the International Fusion Materials Irradiation Facility (IFMIF) was further optimised. The work focused on the design and the thermal hydraulic analysis of the HFTM section containing the material specimens to be irradiated, the ''test section'', with the main objective to improve the concept with respect to the optimum use of the available irradiation volume and to the temperature of the specimens. Particular emphasis was laid on the application of design principles which assure stable and reproducible thermal conditions. The present work has confirmed the feasibility and suitability of the optimised design of the HFTM test section with chocolate plate like shaped rigs. In particular it has been shown that the envisaged irradiation temperatures can be reached with acceptable temperature differences inside the specimen stack. The latter can be achieved only by additional electrical heating of the axial ends of the capsules. Division of the heater in three sections with separate power supply and control units is necessary. Maintaining of the temperatures during beam-off periods likewise requires electrical heating. The required electrical heaters - mineral isolated wires - are commercially available. The potential of the CFD code STAR-CD for the thermal hydraulic analysis of complex systems like the HFTM was confirmed. Nevertheless, experimental confirmation is desirable. Suitable experiments are under preparation. To verify the assumptions made on the thermal conductivity of the contact faces and layers between the two shells of the rig, dedicated experiments are suggested. The present work must be complemented by a thermal mechanical analysis of the module. Most critical component in this respect seems to be the rig wall. Furthermore, it will be necessary to investigate the response of the HFTM to power transients, and to determine the requirements

  18. Optimised design and thermal-hydraulic analysis of the IFMIF/HFTM test section

    International Nuclear Information System (INIS)

    Gordeev, S.; Heinzel, V.; Lang, K.H.; Moeslang, A.; Schleisiek, K.; Slobodtchouk, V.; Stratmanns, E.

    2003-10-01

    On the basis of previous concepts, analyses and experiments, the high flux test module (HFTM) for the International Fusion Materials Irradiation Facility (IFMIF) was further optimised. The work focused on the design and the thermal hydraulic analysis of the HFTM section containing the material specimens to be irradiated, the ''test section'', with the main objective to improve the concept with respect to the optimum use of the available irradiation volume and to the temperature of the specimens. Particular emphasis was laid on the application of design principles which assure stable and reproducible thermal conditions. The present work has confirmed the feasibility and suitability of the optimised design of the HFTM test section with chocolate plate like shaped rigs. In particular it has been shown that the envisaged irradiation temperatures can be reached with acceptable temperature differences inside the specimen stack. The latter can be achieved only by additional electrical heating of the axial ends of the capsules. Division of the heater in three sections with separate power supply and control units is necessary. Maintaining of the temperatures during beam-off periods likewise requires electrical heating. The required electrical heaters - mineral isolated wires - are commercially available. The potential of the CFD code STAR-CD for the thermal hydraulic analysis of complex systems like the HFTM was confirmed. Nevertheless, experimental confirmation is desirable. Suitable experiments are under preparation. To verify the assumptions made on the thermal conductivity of the contact faces and layers between the two shells of the rig, dedicated experiments are suggested. The present work must be complemented by a thermal mechanical analysis of the module. Most critical component in this respect seems to be the rig wall. Furthermore, it will be necessary to investigate the response of the HFTM to power transients, and to determine the requirements on the electrical

  19. Evaluation of thermal-hydraulic parameter uncertainties in a TRIGA research reactor

    International Nuclear Information System (INIS)

    Mesquita, Amir Z.; Costa, Antonio C.L.; Ladeira, Luiz C.D.; Rezende, Hugo C.; Palma, Daniel A.P.

    2015-01-01

    Experimental studies had been performed in the TRIGA Research Nuclear Reactor of CDTN/CNEN to find out the its thermal hydraulic parameters. Fuel to coolant heat transfer patterns must be evaluated as function of the reactor power in order to assess the thermal hydraulic performance of the core. The heat generated by nuclear fission in the reactor core is transferred from fuel elements to the cooling system through the fuel-cladding (gap) and the cladding to coolant interfaces. As the reactor core power increases the heat transfer regime from the fuel cladding to the coolant changes from single-phase natural convection to subcooled nucleate boiling. This paper presents the uncertainty analysis in the results of the thermal hydraulics experiments performed. The methodology used to evaluate the propagation of uncertainty in the results was done based on the pioneering article of Kline and McClintock, with the propagation of uncertainties based on the specification of uncertainties in various primary measurements. The uncertainty analysis on thermal hydraulics parameters of the CDTN TRIGA fuel element is determined, basically, by the uncertainty of the reactor's thermal power. (author)

  20. An analysis of the proposed MITR-III core to establish thermal-hydraulic limits at 10 MW. Final report

    International Nuclear Information System (INIS)

    Harling, O.K.; Lanning, D.D.; Bernard, J.A.; Meyer, J.E.; Henry, A.F.

    1997-01-01

    The 5 MW Massachusetts Institute of Technology Research Reactor (MITR-II) is expected to operate under a new license beginning in 1999. Among the options being considered is an upgrade in the heat removal system to allow operation at 10 MW. The purpose of this study is to predict the Limiting Safety System Settings and Safety Limits for the upgraded reactor (MITR-III). The MITR Multi-Channel Analysis Code was written to analyze the response of the MITR system to a series of anticipated transients in order to determine the Limiting Safety System Settings and Safety Limits under various operating conditions. The MIT Multi-Channel Analysis Code models the primary and secondary systems, with special emphasis placed on analyzing the thermal-hydraulic conditions in the core. The code models each MITR fuel element explicitly in order to predict the behavior of the system during flow instabilities. The results of the code are compared to experimental data from MITR-II and other sources. New definitions are suggested for the Limiting Safety System Settings and Safety Limits. MITR Limit Diagrams are included for three different heat removal system configurations. It is concluded that safe, year-round operating at 10 MW is possible, given that the primary and secondary flow rates are both increased by approximately 40%

  1. Coupling analysis of deformation and thermal-hydraulics in a FBR fuel pin bundle using BAMBOO and ASFRE-IV Codes

    International Nuclear Information System (INIS)

    Ito, Masahiro; Imai, Yasutomo; Uwaba, Tomoyuki; Ohshima, Hiroyuki

    2004-03-01

    The bundle-duct interaction may occur in sodium cooled wire-wrapped FBR fuel subassemblies in high burn-up conditions. JNC has been developing a bundle deformation analysis code BAMBOO (Behavior Analysis code for Mechanical interaction of fuel Bundle under On-power Operation), a thermal hydraulics analysis code ASFRE-IV (Analysis of Sodium Flow in Reactor Elements - ver. IV) and their coupling method as a simulation system for the evaluation on the integrity of deformed FBR fuel pin bundles. In this study, the simulation system was applied to a coupling analysis of deformation and thermal-hydraulics in the fuel pin-bundle under a steady-state condition just after startup for the purpose of the verification of the simulation system. The iterative calculations of deformation and thermal-hydraulics employed in the coupling analysis provided numerically unstable solutions. From the result, it was found that improvement of the coupling algorithm of BAMBOO and ASFRE-IV is necessary to reduce numerical fluctuations and to obtain better convergence by introducing such computational technique as the optimized under-relaxation method. (author)

  2. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    International Nuclear Information System (INIS)

    Walton, J.T.

    1992-11-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code

  3. Thermal hydraulics analysis of the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dean, E-mail: Dean_Wang@uml.edu [University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854 (United States); Yoder, Graydon L.; Pointer, David W.; Holcomb, David E. [Oak Ridge National Laboratory, 1 Bethel Valley RD #6167, Oak Ridge, TN 37831 (United States)

    2015-12-01

    Highlights: • The TRACE AHTR model was developed and used to define and size the DRACS and the PHX. • A LOFF transient was simulated to evaluate the reactor performance during the transient. • Some recommendations for modifying FHR reactor system component designs are discussed. - Abstract: The Advanced High Temperature Reactor (AHTR) is a liquid salt-cooled nuclear reactor design concept, featuring low-pressure molten fluoride salt coolant, a carbon composite fuel form with embedded coated particle fuel, passively triggered negative reactivity insertion mechanisms, and fully passive decay heat rejection. This paper describes an AHTR system model developed using the Nuclear Regulatory Commission (NRC) thermal hydraulic transient code TRAC/RELAP Advanced Computational Engine (TRACE). The TRACE model includes all of the primary components: the core, downcomer, hot legs, cold legs, pumps, direct reactor auxiliary cooling system (DRACS), the primary heat exchangers (PHXs), etc. The TRACE model was used to help define and size systems such as the DRACS and the PHX. A loss of flow transient was also simulated to evaluate the performance of the reactor during an anticipated transient event. Some initial recommendations for modifying system component designs are also discussed. The TRACE model will be used as the basis for developing more detailed designs and ultimately will be used to perform transient safety analysis for the reactor.

  4. Issues affecting advanced passive light-water reactor safety analysis

    International Nuclear Information System (INIS)

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-01-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented

  5. TH3D, a three-dimensional thermal hydraulic tool, for design and safety analysis of HTRS - HTR2008-58178

    International Nuclear Information System (INIS)

    Hossain, K.; Buck, M.; Bernnat, W.; Lohnert, G.

    2008-01-01

    The institute of nuclear engineering and energy systems (IKE), Univ. of Stuttgart (Germany)) has developed a new thermal hydraulic tool which can be used for three-dimensional thermal hydraulic analysis of pebble bed as well as block type HTRs. During nominal operation, the flow inside the gas-cooled High Temperature Reactor is essentially single-phase, impressible, and non-isothermal. So, at least one gas phase has to be considered beside the solid phase for thermal hydraulic analysis of HTRs. Each phase (e.g. solid, gas) is considered as a continuum which occupies only its respective fraction of. the control volume. Thermal non-equilibrium is considered between phases and time dependent energy conservation equations for solid and gas phases are solved. Simplified momentum conservation equation for gas obtained from porous media approximation is solved along with the time dependent mass conservation equation. Pro visions for simulating more than one gas component are available in this newly developed code TH3D which could be required for simulating some accident situations (e.g air / water ingress by pipes break). The interaction between phases is made by a set of constitutive equations which re/v on semi-empirical correlations obtained from different experiments. Finite volume method with a staggered grid approach is used for spatial discretization and a fully implicit, time adaptive, multi step method is used for time-dependent discretization. A benchmark calculation which is oriented to the pebble i fuel reactor PBMR-400 and a 3D calculation were presented in HTR -2006 conference and will also be published in Nuclear Engineering and Design (NED) journal. In order to demonstrate the capabilities of TH3D for simulating all block type HTRs. A benchmark calculation which is proposed by IAEA CRP-3 and oriented to the Gas Turbine Modular Helium Reactor (GT-MHR) is performed. calculations are performed for the steady state case (nominal operation) as well as for Loss

  6. CFD studies on thermal hydraulics of spallation targets

    International Nuclear Information System (INIS)

    Tak, N.I.; Batta, A.; Cheng, X.

    2005-01-01

    Full text of publication follows: Due to the fast advances in computer hardware as well as software in recent years, more and more interests have been aroused to use computational fluid dynamics (CFD) technology in nuclear engineering and designs. During recent many years, Forschungszentrum Karlsruhe (FZK) has been actively involved in the thermal hydraulic analysis and design of spallation targets. To understand the thermal hydraulic behaviors of spallation targets very detailed simulations are necessary because of their complex geometries, complicated boundary conditions such as spallation heat distributions, and very strict design limits. A CFD simulation is believed to be the best for this purpose even though the validation of CFD codes are not perfectly completed yet in specific topics like liquid metal heat transfer. The research activities on three spallation targets (i.e., MEGAPIE, TRADE, and XADS targets) are currently very active in Europe in order to consolidate the European ADS road-map. In the thermal hydraulics point of view, two kinds of the research activities, i.e., (1) numerical design and (2) experimental work, are required to achieve the objectives of these targets. It should be noted that CFD studies play important role on both kinds of two activities. A preliminary design of a target can be achieved by sophisticated CFD analysis and pre-and-post analyses of an experimental work using a CFD code help the design of the test section of the experiment as well as the analysis of the experimental results. The present paper gives an overview about the recent CFD studies relating to thermal hydraulics of the spallation targets recently involved in FZK. It covers numerical design studies as well as CFD studies to support experimental works. The CFX code has been adopted for the studies. Main recent results for the selected examples performed by FZK are presented and discussed with their specific lessons learned. (authors)

  7. Neutronic and thermal-hydraulic studies of aqueous homogeneous reactor for medical isotopes production

    International Nuclear Information System (INIS)

    Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Lira, Carlos A. Brayner de Oliveira; Garcia, Lorena P. Rodríguez; Universidade Federal de Pernambuco

    2017-01-01

    The use of Aqueous Homogenous Reactors (AHR) is one of the most promissory alternatives to produce medical isotopes, mainly "9"9Mo. Compare to multipurpose research reactors, an AHR dedicated for "9"9Mo production has advantages because of their low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing, and purification characteristics. This article presents the current state of research in our working group on this topic. Are presented and discussed the group validation efforts with benchmarking exercises that include neutronic and thermal-hydraulic results of two solution reactors, the SUPO and ARGUS reactors. Neutronic and thermal-hydraulic results of 75 kWth AHR based on the ARGUS reactor LEU configuration are presented. The neutronic studies included the determination of parameters such as reflector thickness, critical height, medical isotopes production and others. Thermal-hydraulics studies were focused on demonstrating that sufficient cooling capacity exists to prevent fuel overheating. In addition, the effects of some calculation parameters on the computational modeling of temperature, velocity and gas volume fraction during steady-state operation of an AHR are discussed. The neutronic and thermal-hydraulics studies have been performed with the MCNPX version 2.6e computational code and the version 14 of ANSYS CFX respectively. Our group studies and the results obtained contribute to demonstrate the feasibility of using AHR for the production of medical isotopes, however additional studies are still necessary to confirm these results and contribute to development and demonstration of their technical, safety, and economic viability. (author)

  8. Neutronic and thermal-hydraulic studies of aqueous homogeneous reactor for medical isotopes production

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Lira, Carlos A. Brayner de Oliveira; Garcia, Lorena P. Rodríguez, E-mail: milianperez89@gmail.com, E-mail: dmilian@instec.cu, E-mail: lorenapilar1109@gmail.com, E-mail: cabol@ufpe.br [Higher Institute of Technologies and Applied Sciences (InSTEC), Havana (Cuba); Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

    2017-11-01

    The use of Aqueous Homogenous Reactors (AHR) is one of the most promissory alternatives to produce medical isotopes, mainly {sup 99}Mo. Compare to multipurpose research reactors, an AHR dedicated for {sup 99}Mo production has advantages because of their low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing, and purification characteristics. This article presents the current state of research in our working group on this topic. Are presented and discussed the group validation efforts with benchmarking exercises that include neutronic and thermal-hydraulic results of two solution reactors, the SUPO and ARGUS reactors. Neutronic and thermal-hydraulic results of 75 kWth AHR based on the ARGUS reactor LEU configuration are presented. The neutronic studies included the determination of parameters such as reflector thickness, critical height, medical isotopes production and others. Thermal-hydraulics studies were focused on demonstrating that sufficient cooling capacity exists to prevent fuel overheating. In addition, the effects of some calculation parameters on the computational modeling of temperature, velocity and gas volume fraction during steady-state operation of an AHR are discussed. The neutronic and thermal-hydraulics studies have been performed with the MCNPX version 2.6e computational code and the version 14 of ANSYS CFX respectively. Our group studies and the results obtained contribute to demonstrate the feasibility of using AHR for the production of medical isotopes, however additional studies are still necessary to confirm these results and contribute to development and demonstration of their technical, safety, and economic viability. (author)

  9. Thermal-hydraulic analysis of PWR small assembly for irradiation test of CARR

    International Nuclear Information System (INIS)

    Yin Hao; Zou Yao; Liu Xingmin

    2015-01-01

    The thermal-hydraulic behaviors of the PWR 4 × 4 small assembly tested in the high temperature and high pressure loop of China Advanced Research Reactor were analyzed. The CFD method was used to carry out 3D simulation of the model, thus detailed thermal-hydraulic parameters were obtained. Firstly, the simplified model was simulated to give the 3D temperature and velocity distributions and analyze the heat transfer process. Then the whole scale small assembly model was simulated and the simulation results were compared with those of simplified rod bundle model. Its flow behavior was studied and flow mixing characteristics of the grids were analyzed, and the mixing factor of the grid was calculated and can be used for further thermal-hydraulic study. It is shown that the highest temperature of the fuel rod meets the design limit and the mixing effect of the grid is obvious. (authors)

  10. Development of a preliminary PIRT (Phenomena Identification and Ranking Table) of thermal-hydraulic phenomena for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bub Dong; Lee, Won Jae; Kim, Hee Cheol; Song, Jin Ho; Sim, Suk Ku [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The work reported in this paper identifies the thermal-hydraulic phenomena that are expected to occur during a number of key transients in SMART (System-integrated Modular Advanced ReacTor) which is under development at KAERI. The result of this effort is based on the current design concept of SMART integral reactor. Although the design is still evolving, the preliminary Phenomena Identification and Ranking Table (PIRT) has been developed based on the experts` knowledge and experience. The preliminary PIRT has been developed by consensus of KAERI expert panelists and AHP (Analytical Hierarchy Process). Preliminary PIRT developed in this paper is intended to be used to identify and integrate development areas of further experimental tests needed, thermal hydraulic models and correlations and code improvements for the safety analysis of the SMART. 8 refs., 4 tabs (Author)

  11. Development of a preliminary PIRT (Phenomena Identification and Ranking Table) of thermal-hydraulic phenomena for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bub Dong; Lee, Won Jae; Kim, Hee Cheol; Song, Jin Ho; Sim, Suk Ku [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The work reported in this paper identifies the thermal-hydraulic phenomena that are expected to occur during a number of key transients in SMART (System-integrated Modular Advanced ReacTor) which is under development at KAERI. The result of this effort is based on the current design concept of SMART integral reactor. Although the design is still evolving, the preliminary Phenomena Identification and Ranking Table (PIRT) has been developed based on the experts` knowledge and experience. The preliminary PIRT has been developed by consensus of KAERI expert panelists and AHP (Analytical Hierarchy Process). Preliminary PIRT developed in this paper is intended to be used to identify and integrate development areas of further experimental tests needed, thermal hydraulic models and correlations and code improvements for the safety analysis of the SMART. 8 refs., 4 tabs (Author)

  12. Development of whole core thermal-hydraulic analysis program ACT. 4. Simplified fuel assembly model and parallelization by MPI

    International Nuclear Information System (INIS)

    Ohshima, Hiroyuki

    2001-10-01

    A whole core thermal-hydraulic analysis program ACT is being developed for the purpose of evaluating detailed in-core thermal hydraulic phenomena of fast reactors including the effect of the flow between wrapper-tube walls (inter-wrapper flow) under various reactor operation conditions. As appropriate boundary conditions in addition to a detailed modeling of the core are essential for accurate simulations of in-core thermal hydraulics, ACT consists of not only fuel assembly and inter-wrapper flow analysis modules but also a heat transport system analysis module that gives response of the plant dynamics to the core model. This report describes incorporation of a simplified model to the fuel assembly analysis module and program parallelization by a message passing method toward large-scale simulations. ACT has a fuel assembly analysis module which can simulate a whole fuel pin bundle in each fuel assembly of the core and, however, it may take much CPU time for a large-scale core simulation. Therefore, a simplified fuel assembly model that is thermal-hydraulically equivalent to the detailed one has been incorporated in order to save the simulation time and resources. This simplified model is applied to several parts of fuel assemblies in a core where the detailed simulation results are not required. With regard to the program parallelization, the calculation load and the data flow of ACT were analyzed and the optimum parallelization has been done including the improvement of the numerical simulation algorithm of ACT. Message Passing Interface (MPI) is applied to data communication between processes and synchronization in parallel calculations. Parallelized ACT was verified through a comparison simulation with the original one. In addition to the above works, input manuals of the core analysis module and the heat transport system analysis module have been prepared. (author)

  13. The Phebus FP thermal-hydraulic analysis with Melcor

    Energy Technology Data Exchange (ETDEWEB)

    Akgane, Kikuo; Kiso, Yoshihiro [Nuclear Power Engineering Corporation, Tokyo (Japan); Fukahori, Takanori [Hitachi Engineering Company, Ltd., Hitachi-shi Ibaraki-ken (Japan); Yoshino, Mamoru [Nuclear Engineering Ltd., Tosabori Nishi-ku (Japan)

    1995-09-01

    The severe accident analysis code MELCOR, version 1.8.2, has been applied for thermal-hydraulic pre-test analysis of the first test of the Phebus FP program (test FPT-0) to study the best test parameters and the applicability of the code. The Phebus FP program is an in-pile test program which has been planned by the French Commissariate a L`Energie Atomique and the Commission of the European Union. The experiments are being conducted by an international collaboration to study the release and transport of fission products (FPs) under conditions assumed to be the most representative of those that would occur in a severe accident. The Phebus FP test apparatus simulates a test bundle of an in-pile section, the circuit including the steam generator U-tubes and the containment. The FPT-0 test was designed to simulate the heat-up and subsequent fuel bundle degradation after a loss of coolant severe accident, using fresh fuel. Two options for fuel degradation models in MELCOR have been applied to fuel degradation behavior. the first model assumes that fuel debris will be formed immediately after the fuel support fails by cladding relocation due to the candling process. The other is the uncollapsed bare fuel pellets option, in which the fuel pellets remain standing in a columnar shape until the fuel reaches its melting point, even if the cladding has been relocated by candling. The thermal-hydraulic behaviors in the circuit and containment of Phebus FP are discussed herein. Flow velocities in the Phebus FP circuit are high in order to produce turbulent flow in a small diameter test pipe. The MELCOR calculation has shown that the length of the hot leg and steam generator are adequate to attain steam temperatures or 700{degrees}C and 150{degrees}C in the respective outlets. The containment atmosphere temperature and humidity derived by once through integral system calculation show that objective test conditions would be satisfied in the Phebus FP experiment.

  14. The Phebus FP thermal-hydraulic analysis with Melcor

    International Nuclear Information System (INIS)

    Akgane, Kikuo; Kiso, Yoshihiro; Fukahori, Takanori; Yoshino, Mamoru

    1995-01-01

    The severe accident analysis code MELCOR, version 1.8.2, has been applied for thermal-hydraulic pre-test analysis of the first test of the Phebus FP program (test FPT-0) to study the best test parameters and the applicability of the code. The Phebus FP program is an in-pile test program which has been planned by the French Commissariate a L'Energie Atomique and the Commission of the European Union. The experiments are being conducted by an international collaboration to study the release and transport of fission products (FPs) under conditions assumed to be the most representative of those that would occur in a severe accident. The Phebus FP test apparatus simulates a test bundle of an in-pile section, the circuit including the steam generator U-tubes and the containment. The FPT-0 test was designed to simulate the heat-up and subsequent fuel bundle degradation after a loss of coolant severe accident, using fresh fuel. Two options for fuel degradation models in MELCOR have been applied to fuel degradation behavior. the first model assumes that fuel debris will be formed immediately after the fuel support fails by cladding relocation due to the candling process. The other is the uncollapsed bare fuel pellets option, in which the fuel pellets remain standing in a columnar shape until the fuel reaches its melting point, even if the cladding has been relocated by candling. The thermal-hydraulic behaviors in the circuit and containment of Phebus FP are discussed herein. Flow velocities in the Phebus FP circuit are high in order to produce turbulent flow in a small diameter test pipe. The MELCOR calculation has shown that the length of the hot leg and steam generator are adequate to attain steam temperatures or 700 degrees C and 150 degrees C in the respective outlets. The containment atmosphere temperature and humidity derived by once through integral system calculation show that objective test conditions would be satisfied in the Phebus FP experiment

  15. Thermal hydraulics of sodium-cooled fast reactors - key issues and highlights

    International Nuclear Information System (INIS)

    Ninokata, H.; Kamide, H.

    2011-01-01

    In this paper key issues and highlighted topics in thermal hydraulics are discussed in connection to the current Japan's sodium-cooled fast reactor development efforts. In particular, design study and related researches of the Japan Sodium-cooled Fast Reactor (JSFR) are focused. Several innovative technologies, e.g., compact reactor vessel, two-loop system, fully natural circulation decay heat removal, and recriticality free core, have been investigated in order to reduce construction cost and to achieve higher level of reactor safety. Preliminary evaluations of innovative technologies to be applied to JSFR are on-going. Here, progress of design study is introduced. Then, research and development activities on the thermal hydraulics related to the innovative technologies are briefly reviewed. (author)

  16. Design and thermal-hydraulic analysis of PFC baking for SST-1 Tokamak

    International Nuclear Information System (INIS)

    Chaudhuri, Paritosh; Reddy, D. Chenna; Khirwadkar, S.; Prakash, N. Ravi; Santra, P.; Saxena, Y.C.

    2001-01-01

    The Steady-State Superconducting Tokamak (SST-1) is a medium-size tokamak with super-conducting magnetic field coils. Plasma facing components (PFC) of the SST-1, consisting of divertors, passive stabilisers, baffles, and poloidal limiters, are designed to be compatible for steady-state operation. Except for the poloidal limiters, all other PFC are structurally continuous in the toroidal direction. As SST-1 is designed to run double-null divertor plasmas, these components also have up-down symmetry. A closed divertor configuration is chosen to produce high recycling and high pumping speed in the divertor region. The passive stabilisers are located close to the plasma to provide stability against the vertical instability of the elongated plasma. The main consideration in the design of the PFC is the steady-state heat removal of up to 1 MW/m 2 . In addition to removing high heat fluxes, the PFC are also designed to be compatible for baking at 350 deg. C. Different flow parameters and various tube layouts have been examined to select the optimum thermal-hydraulic parameters and tube layout for different PFC of SST-1. Thermal response of the PFC during baking has been performed analytically (using a Fortran code) and two-dimensional finite element analysis using ANSYS. The detailed thermal hydraulics and thermal responses of PFC baking is presented in this paper

  17. Design and thermal-hydraulic analysis of PFC baking for SST-1 Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Paritosh E-mail: paritosh@ipr.res.in; Reddy, D. Chenna; Khirwadkar, S.; Prakash, N. Ravi; Santra, P.; Saxena, Y.C

    2001-09-01

    The Steady-State Superconducting Tokamak (SST-1) is a medium-size tokamak with super-conducting magnetic field coils. Plasma facing components (PFC) of the SST-1, consisting of divertors, passive stabilisers, baffles, and poloidal limiters, are designed to be compatible for steady-state operation. Except for the poloidal limiters, all other PFC are structurally continuous in the toroidal direction. As SST-1 is designed to run double-null divertor plasmas, these components also have up-down symmetry. A closed divertor configuration is chosen to produce high recycling and high pumping speed in the divertor region. The passive stabilisers are located close to the plasma to provide stability against the vertical instability of the elongated plasma. The main consideration in the design of the PFC is the steady-state heat removal of up to 1 MW/m{sup 2}. In addition to removing high heat fluxes, the PFC are also designed to be compatible for baking at 350 deg. C. Different flow parameters and various tube layouts have been examined to select the optimum thermal-hydraulic parameters and tube layout for different PFC of SST-1. Thermal response of the PFC during baking has been performed analytically (using a Fortran code) and two-dimensional finite element analysis using ANSYS. The detailed thermal hydraulics and thermal responses of PFC baking is presented in this paper.

  18. Thermal Reactor Safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  19. Thermal Reactor Safety

    International Nuclear Information System (INIS)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods

  20. CRISSUE-S, Neutronics/Thermal-hydraulics Coupling in LWR Technology

    International Nuclear Information System (INIS)

    D'Auria, Francesco; Bousbia Salah, Anis; Galassi, G.M.; Vedovi, Juswald; Van Goethem, Georges; Hadek, Jan; Macek, Jiri; Rindelhardt, Udo; Rohde, Ulrich; Ahnert Iglesias, Carol; Aragones Beltran, Jose Maria; Reventos, Francesc; Cuadra, Arantxa; Gago, Jose Luis; Verdu, Gumersindo; Miro, Rafael; Ginestar, Damian; Sanchez, Ana Maria; Sjoberg, Anders; Yitbarek, M.; Sandervag, Oddbjoern; Garis, Ninos; Frid, Wiktor; Panayotov, Dobromir; Ivanov, Kostadin; Uddin, Rizwan; Sartori, Enrico

    2004-01-01

    Description: The CRISSUE-S project was created with the aim of re-evaluating fundamental technical issues in the technology of LWRs. Specifically, the project seeks to address the interactions between neutron kinetics and thermal-hydraulics that affect neutron moderation and influence the accident performance of the NPPs. This is undertaken in the light of the advanced computational tools that are readily available to the scientific community today. Specifically, the CRISSUE-S activity deals with the control of fission power and the use of high burn up fuel; these topics are part of the EC Work Programme as well as that of other international organisations such as the OECD/NEA and the IAEA. The problems of evaluating reactivity induced accident (RIA) consequences and eventually deciding the possibility of NPP prolongation must be addressed and resolved. RIA constitutes one of the most important of the ?less-resolved? safety issues, and treating this problem may have huge positive financial, social and environmental impacts. Public acceptance of nuclear technology implies that problems such as these be satisfactorily resolved. Cross-disciplinary (regulators, industry, utilities and research bodies) interaction and co operation within CRISSUE-S provides results which can directly and immediately be beneficial to EU industry. Co-operation at an international level: the participation of the EU, former Eastern European countries, the USA, and observers from Japan testify to the broad interest these problems engender. Competencies in broad areas such as thermal-hydraulics, neutronics and fuel, overall system design and reactor surveillance are needed to address the problems that are posed here. Excellent expertise is available in specific areas, while limited knowledge exists in the interface zones of those areas, e.g. in the coupling between thermal-hydraulics and neutronics. In general terms, the activities carried out and described here aim at exploiting available

  1. Validation of the TEXSAN thermal-hydraulic analysis program

    International Nuclear Information System (INIS)

    Burns, S.P.; Klein, D.E.

    1992-01-01

    The TEXSAN thermal-hydraulic analysis program has been developed by the University of Texas at Austin (UT) to simulate buoyancy driven fluid flow and heat transfer in spent fuel and high level nuclear waste (HLW) shipping applications. As part of the TEXSAN software quality assurance program, the software has been subjected to a series of test cases intended to validate its capabilities. The validation tests include many physical phenomena which arise in spent fuel and HLW shipping applications. This paper describes some of the principal results of the TEXSAN validation tests and compares them to solutions available in the open literature. The TEXSAN validation effort has shown that the TEXSAN program is stable and consistent under a range of operating conditions and provides accuracy comparable with other heat transfer programs and evaluation techniques. The modeling capabilities and the interactive user interface employed by the TEXSAN program should make it a useful tool in HLW transportation analysis

  2. Development of subchannel analysis code MATRA-LMR for KALIMER subassembly thermal-hydraulics

    International Nuclear Information System (INIS)

    Won-Seok Kim; Young-Gyun Kim

    2000-01-01

    In the sodium cooled liquid metal reactors, the design limit are imposed on the maximum temperatures of claddings and fuel pins. Thus an accurate prediction of core coolant/fuel temperature distribution is essential to the LMR core thermal-hydraulic design. The detailed subchannel thermal-hydraulic analysis code MATRA-LMR (Multichannel Analyzer for Steady States and Transients in Rod Arrays for Liquid Metal Reactors) is being developed for KALIMER core design and analysis, based on COBRA-IV-i and MATRA. The major modifications and improvements implemented into MATRA-LMR are as follows: a) nonuniform axial noding capability, b) sodium properties calculation subprogram, c) sodium coolant heat transfer correlations, and d) most recent pressure drop correlations, such as Novendstern, Chiu-Rohsenow-Todreas and Cheng-Todreas. To assess the development status of this code, the benchmark calculations were performed with the ORNL 19 pin tests and EBR-II seven-assembly SLTHEN calculation results. The calculation results of MATRA-LMR for ORNL 19-pin assembly tests and EBR-II 91-pin experiments were compared to the measurements, and to SABRE4 and SLTHEN code calculation results, respectively. In this comparison, the differences are found among the three codes because of the pressure drop and the thermal mixing modellings. Finally, the major technical results of the conceptual design for the KALIMER 98.03 core have been compared with the calculations of MATRA-LMR, SABRE4 and SLTHEN codes. (author)

  3. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    International Nuclear Information System (INIS)

    Cui, Shijie; Zhang, Dalin; Cheng, Jie; Tian, Wenxi; Su, G.H.

    2017-01-01

    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  4. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Shijie; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Cheng, Jie; Tian, Wenxi; Su, G.H.

    2017-01-15

    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  5. Experimental thermal hydraulics in support of FBR

    International Nuclear Information System (INIS)

    Padmakumar, G.; Anand Babu, C.; Kalyanasundaram, P.; Vaidyanathan, G.

    2009-01-01

    The thermal hydraulic design plays a crucial role for the safe and economical deployment of Liquid Metal Cooled Fast Breeder Reactor (LMFBR). Robust experimental programmes are required in support of LMFBR thermal hydraulics design. The philosophy of testing has been to construct small scale models to understand the physical behaviour and to build larger scale models to optimize the component design. The experiments are conducted either in sodium or using a simulant like water/air. The paper gives a brief account of the various thermal hydraulic experiments carried out in support of the design of Prototype Fast Breeder Reactor (PFBR). (author)

  6. Oyster Creek fuel thermal margin during core thermal-hydraulic oscillations

    International Nuclear Information System (INIS)

    Dougher, J.D.

    1990-01-01

    The Oyster Creek nuclear facility, a boiling water reactor (BWR)-2 plant type, has never experienced core thermal-hydraulic instability. Power oscillations, however, have been observed in other BWR cores both domestically and internationally. Two modes of oscillations have been observed, core wide and regional half-core. During core wide oscillations, the neutron flux in the core oscillates in the radial fundamental mode. During regional half-core oscillations, higher order harmonics in the radial plane result in out-of-phase oscillations with the neutron flux in one half of the core oscillating 180 deg out-of-phase with the neutron flux in the other half of the core. General Design Criteria 12 requires either prevention or detection and suppression of power oscillations which could result in violations of fuel design limits. Analyses performed by General Electric have demonstrated that for large-magnitude oscillations the potential exists for violation of the safety limit minimum critical power ratio (MCPR). However, for plants with a flow-biased neutron flux scram automatic mitigation of oscillations may be provided at an oscillation magnitude below that at which the safety limit is challenged. Plant-specific analysis for Oyster Creek demonstrates that the existing average power range monitor (APRM) system will sense and suppress power oscillations prior to violation of any safety limits

  7. A thermal hydraulic analysis in PWR reactors with UO2 or (U-Th)O2 fuel rods employing a simplified code

    International Nuclear Information System (INIS)

    Santos, Thiago A. dos; Maiorino, José R.; Stefanni, Giovanni L. de

    2017-01-01

    In order to project a nuclear reactor, the neutronic calculus must be validated, so that its thermal limits and safety parameters are respected. Considering this issue, this research aims to evaluate the APTh-100 reactor thermal limits. This PWR is a project developed in Universidade Federal do ABC (UFABC) using fuel composed of Uranium and Thorium oxide mixed (U,Th)O 2 . For this purpose, a simplified, although conservative, code was developed in a MATLAB environment named STC-MOX-Th 'Simplified Thermal-hydraulics Code-Mixed Oxide Thorium'. This code provides axial and radial temperature distribution, as well as DNBR distribution over the hottest channel of the reactor core. Moreover, it brings other hydraulic quantities, such as pressure drop over the fuel rod, considering any fuel proportion of (U,Th)O 2 .The software uses basic laws of conservation of mass, momentum and energy, it also calculates the thermal conduction equation, considering the thermal conductive coefficient as a temperature function. In order to solve this equation, the finite elements method was used. Furthermore, the proportion of 36% of UO 2 was used to evaluate the temperature over the fuel rod and DNBR minimum in three burn conditions: beginning, middle and ending. The program has proven to be efficient in every condition and the results evidenced that the APTh-1000 reactor, in an initial analysis, has its thermal limits within the recommended security parameters. (author)

  8. Thermal hydraulic analysis of the IPR-R1 TRIGA research reactor using a RELAP5 model

    International Nuclear Information System (INIS)

    Costa, Antonella L.; Reis, Patricia Amelia L.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Mesquita, Amir Z.; Soares, Humberto V.

    2010-01-01

    The RELAP5 code is widely used for thermal hydraulic studies of commercial nuclear power plants. Current investigations and code adaptations have demonstrated that the RELAP5 code can be also applied for thermal hydraulic analysis of nuclear research reactors with good predictions. Therefore, as a contribution to the assessment of RELAP5/MOD3.3 for research reactors analysis, this work presents steady-state and transient calculation results performed using a RELAP5 model to simulate the IPR-R1 TRIGA research reactor at 50 kilowatts (kW) of power operation. The reactor is located in the Nuclear Technology Development Center (CDTN), Brazil. It is a 250 kW, light water moderated and cooled, graphite-reflected, open pool type research reactor. The development and the assessment of a RELAP5 model for the IPR-R1 TRIGA are presented. Experimental data were considered in the process of the RELAP5 model validation. The RELAP5 results were also compared with calculated data from the STHIRP-1 (Research Reactors Thermal Hydraulic Simulation) code. The results obtained have shown that the RELAP5 model for the IPR-R1 TRIGA reproduces the actual steady-state reactor behavior in good agreement with the available data.

  9. Investigation and Development of the Thermal Preparation System of the Trailbuilder Machinery Hydraulic Actuator

    Science.gov (United States)

    Konev, V.; Polovnikov, E.; Krut, O.; Merdanov, Sh; Zakirzakov, G.

    2017-07-01

    It’s determined that the main part of trailbuilders operated in the North is the technology equipped by the hydraulic actuator. Further development of the northern territories will demand using of various means and ways machinery thermal preparation, and also the machinery of the northern fulfillment. On this basis problems in equipment operation are defined. One of the main is efficiency supplying of a hydraulic actuator. On the basis of the operating conditions’ analysis of trailbuilder hydraulic actuator operation it is determined, that under low negative temperatures the means of thermal preparation are necessary. The existing systems warm up only a hydraulic tank or warming up of the hydro equipment before the machinery operation is carried out under loading with intensive wears. Thus, with the purpose to raise the efficiency of thermal hydraulic actuator, operated far from stationary bases autonomous, energy saving, not expensive in creation and operation systems are necessary. In accordance with the analysis of means and ways of the thermal preparation of the hydraulic actuator and the thermal balance calculations of the (internal) combustion engine the system of the hydraulic actuator heating is offered and is being investigated. It contains a local hydraulic actuator warming up and the system of internal combustion engine heat utilization. Within research operation conditions of the local hydraulic actuator heating are viewed and determined, taking into account constructive changes to the local hydraulic actuator heating. Mathematical modelling of the heat technical process in the modernized hydraulic actuator is considered. As a result temperature changes of the heat-transfer and the hydraulic cylinder in time are determined. To check the theoretical researches and to define dependences on hydraulic actuator warming up, the experimental installation is made. It contains the measuring equipment, a small tank with the heat exchanger of the burnt gases

  10. Improvement of multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok

    1998-09-01

    The MARS (Multi-dimensional Analysis of Reactor Safety) code is a multi-dimensional, best-estimate thermal-hydraulic system analysis code. This report describes the new features that have been improved in the MARS 1.3 code since the release of MARS 1.3 in July 1998. The new features include: - implementation of point kinetics model into the 3D module - unification of the heat structure model - extension of the control function to the 3D module variables - improvement of the 3D module input check function. Each of the items has been implemented in the developmental version of the MARS 1.3.1 code and, then, independently verified and assessed. The effectiveness of the new features is well verified and it is shown that these improvements greatly extend the code capability and enhance the user friendliness. Relevant input data changes are also described. In addition to the improvements, this report briefly summarizes the future code developmental activities that are being carried out or planned, such as coupling of MARS 1.3 with the containment code CONTEMPT and the three-dimensional reactor kinetics code MASTER 2.0. (author). 8 refs

  11. Improvement of multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok

    1998-09-01

    The MARS (Multi-dimensional Analysis of Reactor Safety) code is a multi-dimensional, best-estimate thermal-hydraulic system analysis code. This report describes the new features that have been improved in the MARS 1.3 code since the release of MARS 1.3 in July 1998. The new features include: - implementation of point kinetics model into the 3D module - unification of the heat structure model - extension of the control function to the 3D module variables - improvement of the 3D module input check function. Each of the items has been implemented in the developmental version of the MARS 1.3.1 code and, then, independently verified and assessed. The effectiveness of the new features is well verified and it is shown that these improvements greatly extend the code capability and enhance the user friendliness. Relevant input data changes are also described. In addition to the improvements, this report briefly summarizes the future code developmental activities that are being carried out or planned, such as coupling of MARS 1.3 with the containment code CONTEMPT and the three-dimensional reactor kinetics code MASTER 2.0. (author). 8 refs.

  12. COMMIX analysis of four constant flow thermal upramp experiments performed in a thermal hydraulic model of an advanced LMR

    International Nuclear Information System (INIS)

    Yarlagadda, B.S.

    1989-04-01

    The three-dimensional thermal hydraulics computer code COMMIX-1AR was used to analyze four constant flow thermal upramp experiments performed in the thermal hydraulic model of an advanced LMR. An objective of these analyses was the validation of COMMIX-1AR for buoyancy affected flows. The COMMIX calculated temperature histories of some thermocouples in the model were compared with the corresponding measured data. The conclusions of this work are presented. 3 refs., 5 figs

  13. Comparison of EPRI safety valve test data with analytically determined hydraulic results

    International Nuclear Information System (INIS)

    Smith, L.C.; Howe, K.S.

    1983-01-01

    NUREG-0737 (November 1980) and all subsequent U.S. NRC generic follow-up letters require that all operating plant licensees and applicants verify the acceptability of plant specific pressurizer safety valve piping systems for valve operation transients by testing. To aid in this verification process, the Electric Power Research Institute (EPRI) conducted an extensive testing program at the Combustion Engineering Test Facility. Pertinent tests simulating dynamic opening of the safety valves for representative upstream environments were carried out. Different models and sizes of safety valves were tested at the simulated operating conditions. Transducers placed at key points in the system monitored a variety of thermal, hydraulic and structural parameters. From this data, a more complete description of the transient can be made. The EPRI test configuration was analytically modeled using a one-dimensional thermal hydraulic computer program that uses the method of characteristics approach to generate key fluid parameters as a function of space and time. The conservative equations are solved by applying both the implicit and explicit characteristic methods. Unbalanced or wave forces were determined for each straight run of pipe bounded on each side by a turn or elbow. Blowdown forces were included, where appropriate. Several parameters were varied to determine the effects on the pressure, hydraulic forces and timings of events. By comparing these quantities with the experimentally obtained data, an approximate picture of the flow dynamics is arrived at. Two cases in particular are presented. These are the hot and cold loop seal discharge tests made with the Crosby 6M6 spring-loaded safety valve. Included in the paper is a description of the hydraulic code, modeling techniques and assumptions, a comparison of the numerical results with experimental data and a qualitative description of the factors which govern pipe support loading. (orig.)

  14. Thermal-hydraulic modeling of porous bed reactors

    International Nuclear Information System (INIS)

    Araj, K.J.; Nourbakhsh, H.P.

    1987-01-01

    Optimum design of nuclear reactor core requires an iterative approach between the thermal-hydraulic, neutronic and operational analysis. This paper concentrates on the thermal-hydraulic behavior of a hydrogen cooled, small particle bed reactor (PBR). The PBR core, modeled here, consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flow, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit, to a common plenum. 5 refs., 1 fig., 2 tabs

  15. Review of the nuclear reactor thermal hydraulic research in ocean motions

    Energy Technology Data Exchange (ETDEWEB)

    Yan, B.H., E-mail: yanbh3@mail.sysu.edu.cn

    2017-03-15

    The research and development of small modular reactor in floating platform has been strongly supported by Chinese government and enterprises. Due to the effect of ocean waves, the thermal hydraulic behavior and safety characteristics of floating reactor are different from that of land-based reactor. Many scholars including the author have published their research and results in open literatures. Much of these literatures are valuable but there are also some contradictory conclusions. In this wok, the nuclear reactor thermal hydraulic research in ocean motions was systematically summarized. Valuable results and experimental data were analyzed and classified. Inherent mechanism for controversial issues in different experiments was explained. Necessary work needed in the future was suggested. Through this work, we attempt to find as many valuable results as possible for the designing and subsequent research.

  16. Review of the nuclear reactor thermal hydraulic research in ocean motions

    International Nuclear Information System (INIS)

    Yan, B.H.

    2017-01-01

    The research and development of small modular reactor in floating platform has been strongly supported by Chinese government and enterprises. Due to the effect of ocean waves, the thermal hydraulic behavior and safety characteristics of floating reactor are different from that of land-based reactor. Many scholars including the author have published their research and results in open literatures. Much of these literatures are valuable but there are also some contradictory conclusions. In this wok, the nuclear reactor thermal hydraulic research in ocean motions was systematically summarized. Valuable results and experimental data were analyzed and classified. Inherent mechanism for controversial issues in different experiments was explained. Necessary work needed in the future was suggested. Through this work, we attempt to find as many valuable results as possible for the designing and subsequent research.

  17. Final report of the 'Nordic thermal-hydraulic and safety network (NOTNET)' - Project

    International Nuclear Information System (INIS)

    Tuunanen, J.; Tuomainen, M.

    2005-04-01

    A Nordic network for thermal-hydraulics and nuclear safety research was started. The idea of the network is to combine the resources of different research teams in order to carry out more ambitious and extensive research programs than would be possible for the individual teams. From the very beginning, the end users of the research results have been integrated to the network. Aim of the network is to benefit the partners involved in nuclear energy in the Nordic Countries (power companies, reactor vendors, safety regulators, research units). First task within the project was to describe the resources (personnel, know-how, simulation tools, test facilities) of the various teams. Next step was to discuss with the end users about their research needs. Based on these steps, few most important research topics with defined goals were selected, and coarse road maps were prepared for reaching the targets. These road maps will be used as a starting point for planning the actual research projects in the future. The organisation and work plan for the network were established. National coordinators were appointed, as well as contact persons in each participating organisation, whether research unit or end user. This organisation scheme is valid for the short-term operation of NOTNET when only Nordic organisations take part in the work. Later on, it is possible to enlarge the network e.g. within EC framework programme. The network can now start preparing project proposals and searching funding for the first common research projects. (au)

  18. Best estimate LB LOCA approach based on advanced thermal-hydraulic codes

    International Nuclear Information System (INIS)

    Sauvage, J.Y.; Gandrille, J.L.; Gaurrand, M.; Rochwerger, D.; Thibaudeau, J.; Viloteau, E.

    2004-01-01

    Improvements achieved in thermal-hydraulics with development of Best Estimate computer codes, have led number of Safety Authorities to preconize realistic analyses instead of conservative calculations. The potentiality of a Best Estimate approach for the analysis of LOCAs urged FRAMATOME to early enter into the development with CEA and EDF of the 2nd generation code CATHARE, then of a LBLOCA BE methodology with BWNT following the Code Scaling Applicability and Uncertainty (CSAU) proceeding. CATHARE and TRAC are the basic tools for LOCA studies which will be performed by FRAMATOME according to either a deterministic better estimate (dbe) methodology or a Statistical Best Estimate (SBE) methodology. (author)

  19. Development of thermal hydraulic analysis code for IHX of FBR

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi; Naohara, Nobuyuki

    1991-01-01

    In order to obtain flow resistance correlations for thermal-hydrauric analysis code concerned with an intermediate heat exchanger (IHX) of FBR, the hydraulic experiment by air was carried out through a bundle of tubes arranged in an in-line and staggard fashion. The main results are summarized as follows. (1) On pressure loss per unit length of a tube bundle, which is densely a regular triangle arrangement, the in-line fashion is almost the same as the staggard one. (2) In case of 30deg sector model for IHX tube bundle, pressure loss is 1/3 in comparison with the in-line or staggard arrangement. (3) By this experimental data, flow resistance correlations for thermalhydrauric analysis code are obtained. (author)

  20. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 3, Sessions 12-16

    Energy Technology Data Exchange (ETDEWEB)

    Block, R.C.; Feiner, F. [comps.] [American Nuclear Society, La Grange Park, IL (United States)

    1995-09-01

    This document, Volume 3, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, ad the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected abstracts have been indexed separately for inclusion in the Energy Science and Technology Database.

  1. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 1, Sessions 1-5

    International Nuclear Information System (INIS)

    Block, R.C.; Feiner, F.

    1995-09-01

    This document, Volume 1, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  2. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 2, Sessions 6-11

    Energy Technology Data Exchange (ETDEWEB)

    Block, R.C.; Feiner, F. [comps.] [American Nuclear Society, La Grange Park, IL (United States)

    1995-09-01

    This document, Volume 2, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  3. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 1, Sessions 1-5

    Energy Technology Data Exchange (ETDEWEB)

    Block, R.C.; Feiner, F. [comps.] [American Nuclear Society, La Grange Park, IL (United States)

    1995-09-01

    This document, Volume 1, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  4. European activities on crosscutting thermal-hydraulic phenomena for innovative nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X., E-mail: xu.cheng@kit.edu [Karlsruhe Institute of Technology (KIT) (Germany); Batta, A. [Karlsruhe Institute of Technology (KIT) (Germany); Bandini, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) (Italy); Roelofs, F. [Nuclear Research and Consultancy Group (NRG) (Netherlands); Van Tichelen, K. [Studiecentrum voor Kernenergie – Centre d’étude de l’Energie Nucléaire (SCK-CEN) (Belgium); Gerschenfeld, A. [Commissariat à l’Energie Atomique (CEA) (France); Prasser, M. [Paul Scherrer Institute (PSI) (Switzerland); Papukchiev, A. [Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS) (Germany); Hampel, U. [Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR) (Germany); Ma, W.M. [Kungliga Tekniska Högskolan (KTH) (Sweden)

    2015-08-15

    Highlights: • This paper serves as a guidance of the special issue. • The technical tasks and methodologies applied to achieve the objectives have been described. • Main results achieved so far are summarized. - Abstract: Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. In Europe, a consortium is established consisting of 24 institutions of universities, research centers and nuclear industries with the main objectives to identify and to perform research activities on important crosscutting thermal-hydraulic issues encountered in various innovative nuclear systems. For this purpose the large-scale integrated research project THINS (Thermal-Hydraulics of Innovative Nuclear Systems) is launched in the 7th Framework Programme FP7 of European Union. The main topics considered in the THINS project are (a) advanced reactor core thermal-hydraulics, (b) single phase mixed convection, (c) single phase turbulence, (d) multiphase flow, and (e) numerical code coupling and qualification. The main objectives of the project are: • Generation of a data base for the development and validation of new models and codes describing the selected crosscutting thermal-hydraulic phenomena. • Development of new physical models and modeling approaches for more accurate description of the crosscutting thermal-hydraulic phenomena. • Improvement of the numerical engineering tools for the design analysis of the innovative nuclear systems. This paper describes the technical tasks and methodologies applied to achieve the objectives. Main results achieved so far are summarized. This paper serves also as a guidance of this special issue.

  5. VHTR core modeling: coupling between neutronic and thermal-hydraulics

    International Nuclear Information System (INIS)

    Limaiem, I.; Damian, F.; Raepsaet, X.; Studer, E.

    2005-01-01

    Following the present interest in the next generation nuclear power plan (NGNP), Cea is deploying special effort to develop new models and qualify its research tools for this next generation reactors core. In this framework, the Very High Temperature Reactor concept (VHTR) has an increasing place in the actual research program. In such type of core, a strong interaction exists between neutronic and thermal-hydraulics. Consequently, the global core modelling requires accounting for the temperature feedback in the neutronic models. The purpose of this paper is to present the new neutronic and thermal-hydraulics coupling model dedicated to the High Temperature Reactors (HTR). The coupling model integrates a new version of the neutronic scheme calculation developed in collaboration between Cea and Framatome-ANP. The neutronic calculations are performed using a specific calculation processes based on the APOLLO2 transport code and CRONOS2 diffusion code which are part of the French reactor physics code system SAPHYR. The thermal-hydraulics model is characterised by an equivalent porous media and 1-D fluid/3-D thermal model implemented in the CAST3M/ARCTURUS code. The porous media approach involves the definition of both homogenous and heterogeneous models to ensure a correct temperature feedback. This study highlights the sensitivity of the coupling system's parameters (radial/axial meshing and data exchange strategy between neutronic and thermal-hydraulics code). The parameters sensitivity study leads to the definition of an optimal coupling system specification for the VHTR. Besides, this work presents the first physical analysis of the VHTR core in steady-state condition. The analysis gives information about the 3-D power peaking and the temperature coefficient. Indeed, it covers different core configurations with different helium distribution in the core bypass. (authors)

  6. Thermal-hydraulic of partially blocked fuel subassembly with porous media

    International Nuclear Information System (INIS)

    Nagata, Takemitsu; Ohshima, Hiroyuki

    2000-10-01

    The analysis code for investigations of local subassembly phenomena, which has been recognized as an issue of local subassembly accidents, has been required and developed at JNC. It is desirable for the analysis code to be applicable to various blockage conditions and random position of the blockage formation and to evaluate conservatively on the safety assessment with high accuracy. In this study, for the purpose of verifying the application and issues of the subchannel analysis code ASFRE-IV which evaluates thermal hydraulic phenomena in the porous blockage regions, the ASFRE-IV validation analysis was carried out on the basis of the data of an experiment investigation on a local porous blockage in a fuel subassembly performed by Reactor Engineering Groop, O-arai Engineering Center, JNC. Calculational results indicated that ASFRE-IV could reproduce the coolant temperature profile in a fuel subassembly and the peak temperature in the local subchannel conservatively. (author)

  7. Coupled neutronic/thermal-hydraulic analysis of the HPLWR three pass core

    International Nuclear Information System (INIS)

    Monti, Lanfranco; Starflinger, Joerg; Schulenberg, Thomas

    2008-01-01

    The High Performance Light Water Reactor is an innovative Gen-IV reactor cooled and moderated with water at supercritical pressure. The three pass core concept has been proposed to reduce peaking factors, i.e. hot-channel effects, and it further increases the core heterogeneity, which is mainly due to pronounced water density reduction. For this kind of nuclear reactor, the significant feedbacks - which exist between the properties of the components and the power generation rate - can not be neglected and require a coupled Neutronic/Thermal-Hydraulic analysis even for steady state conditions. The main goal of this paper is to present the developed tool for coupled analyses of the HPLWR. Two state-of-the-art codes have been chosen for Thermal-Hydraulic and Neutronic core analyses, namely TRACE and ERANOS, and they have been coupled with in an iterative procedure in which they are run in series until a steady state condition has been reached. In the simplifying assumptions of uniform enrichment distribution, zero burn-up and ignoring the effect of the control rods, the obtained steady state condition will be discussed and a core power map, flow rate redistribution as well as water and fuel temperature variations will be presented. (author)

  8. Steam generator thermal-hydraulics

    International Nuclear Information System (INIS)

    Inch, W.W.; Scott, D.A.; Carver, M.B.

    1980-01-01

    This paper discusses a code for detailed numerical modelling of steam generator thermal-hydraulics, and describes related experimental programs designed to promote in-depth understanding of three-dimensional two-phase flow. (auth)

  9. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Sessions 17-24

    Energy Technology Data Exchange (ETDEWEB)

    Block, R.C.; Feiner, F. [American Nuclear Society, La Grange Park, IL (United States)

    1995-09-01

    Technical papers accepted for presentation at the Seventh International Topical Meeting on Nuclear Reactor Thermal-Hydraulics are included in the present Proceedings. Except for the invited papers in the plenary session, all other papers are contributed papers. The topics of the meeting encompass all major areas of nuclear thermal-hydraulics, including analytical and experimental works on the fundamental mechanisms of fluid flow and heat transfer, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Because of the complex nature of nuclear reactors and power plants, several papers deal with the combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. The participation in the conference by the authors from several countries and four continents makes the Proceedings a comprehensive review of the recent progress in the field of nuclear reactor thermal-hydraulics worldwide. Individual papers have been cataloged separately.

  10. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Sessions 17-24

    International Nuclear Information System (INIS)

    Block, R.C.; Feiner, F.

    1995-09-01

    Technical papers accepted for presentation at the Seventh International Topical Meeting on Nuclear Reactor Thermal-Hydraulics are included in the present Proceedings. Except for the invited papers in the plenary session, all other papers are contributed papers. The topics of the meeting encompass all major areas of nuclear thermal-hydraulics, including analytical and experimental works on the fundamental mechanisms of fluid flow and heat transfer, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Because of the complex nature of nuclear reactors and power plants, several papers deal with the combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. The participation in the conference by the authors from several countries and four continents makes the Proceedings a comprehensive review of the recent progress in the field of nuclear reactor thermal-hydraulics worldwide. Individual papers have been cataloged separately

  11. Multi-scale analysis of nuclear reactor thermal-hydraulics-first applications using the NEPTUNE platform

    International Nuclear Information System (INIS)

    Guelfi, A.; Boucker, M.; Mimouni, S.; Bestion, D.; Boudier, P.

    2005-01-01

    The NEPTUNE project aims at building a new two-phase flow thermal-hydraulics platform for nuclear reactor simulation. EDF (Electricite de France) and CEA (Commissariat a l'Energie Atomique) with the co-sponsorship of IRSN (Institut de Radioprotection et Surete Nucleaire) and FRAMATOME-ANP, are jointly developing the NEPTUNE multi-scale platform that includes new physical models and numerical methods for each of the computing scales. One usually distinguishes three different scales for industrial simulations: the 'system' scale, the 'component' scale (subchannel analysis) and CFD (Computational Fluid Dynamics). In addition DNS (Direct Numerical Simulation) can provide information at a smaller scale that can be useful for the development of the averaged scales. The NEPTUNE project also includes work on software architecture and research on new numerical methods for coupling codes since both are required to improve industrial calculations. All these R and D challenges have been defined in order to meet industrial needs and the underlying stakes (mainly the competitiveness and the safety of Nuclear Power Plants). This paper focuses on three high priority needs: DNB (Departure from Nucleate Boiling) prediction, directly linked to fuel performance; PTS (Pressurized Thermal Shock), a key issue when studying the lifespan of critical components and LBLOCA (Large Break Loss of Coolant Accident), a reference accident for safety studies. For each of these industrial applications, we provide a review of the last developments within the NEPTUNE platform and we present the first results. A particular attention is also given to physical validation and the needs for further experimental data. (authors)

  12. The OECD/NEA/NSC PBMR400 MW coupled neutronics thermal hydraulics transient benchmark - Steady-state results and status

    International Nuclear Information System (INIS)

    Reitsma, F.; Han, J.; Ivanov, K.; Sartori, E.

    2008-01-01

    The PBMR is a High-Temperature Gas-cooled Reactor (HTGR) concept developed to be built in South Africa. The analysis tools used for core neutronic design and core safety analysis need to be verified and validated. Since only a few pebble-bed HTR experimental facilities or plant data are available the use of code-to-code comparisons are an essential part of the V and V plans. As part of this plan the PBMR 400 MW design and a representative set of transient cases is defined as an OECD benchmark. The scope of the benchmark is to establish a series of well-defined multi-dimensional computational benchmark problems with a common given set of cross-sections, to compare methods and tools in coupled neutronics and thermal hydraulics analysis with a specific focus on transient events. The OECD benchmark includes steady-state and transients cases. Although the focus of the benchmark is on the modelling of the transient behaviour of the PBMR core, it was also necessary to define some steady-state cases to ensure consistency between the different approaches before results of transient cases could be compared. This paper describes the status of the benchmark project and shows the results for the three steady state exercises defined as a standalone neutronics calculation, a standalone thermal-hydraulic core calculation, and a coupled neutronics/thermal-hydraulic simulation. (authors)

  13. Characteristic thermal-hydraulic problems in NHRs: Overview of experimental investigations and computer codes

    Energy Technology Data Exchange (ETDEWEB)

    Falikov, A A; Vakhrushev, V V; Kuul, V S; Samoilov, O B; Tarasov, G I [OKBM, Nizhny Novgorod (Russian Federation)

    1997-09-01

    The paper briefly reviews the specific thermal-hydraulic problems for AST-type NHRs, the experimental investigations that have been carried out in the RF, and the design procedures and computer codes used for AST-500 thermohydraulic characteristics and safety validation. (author). 13 refs, 10 figs, 1 tab.

  14. Development of a kinetics analysis code for fuel solution combined with thermal-hydraulics analysis code PHOENICS and analysis of natural-cooling characteristic test of TRACY. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Shouichi; Yamane, Yuichi; Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Since exact information is not always acquired in the criticality accident of fuel solution, parametric survey calculations are required for grasping behaviors of the thermal-hydraulics. On the other hand, the practical methods of the calculation with can reduce the computation time with allowable accuracy will be also required, since the conventional method takes a long calculation time. In order to fulfill the requirement, a two-dimensional (R-Z) nuclear-kinetics analysis code considering thermal-hydraulic based on the multi-region kinetic equations with one-group neutron energy was created by incorporating with the thermal-hydraulics analysis code PHOENICS for all-purpose use the computation time of the code was shortened by separating time mesh intervals of the nuclear- and heat-calculations from that of the hydraulics calculation, and by regulating automatically the time mesh intervals in proportion to power change rate. A series of analysis were performed for the natural-cooling characteristic test using TRACY in which the power changed slowly for 5 hours after the transient power resulting from the reactivity insertion of a 0.5 dollar. It was found that the code system was able to calculate within the limit of practical time, and acquired the prospect of reproducing the experimental values considerably for the power and temperature change. (author)

  15. Thermal hydraulic considerations in liquid-metal-cooled components of tokamak fusion reactors

    International Nuclear Information System (INIS)

    Picologlou, B.F.; Reed, C.B.; Hua, T.Q.

    1989-01-01

    The basic considerations of MHD thermal hydraulics for liquid-metal-cooled blankets and first walls of tokamak fusion reactors are discussed. The liquid-metal MHD program of Argonne National Laboratory (ANL) dedicated to analytical and experimental investigations of reactor relevant MHD flows and development of relevant thermal hydraulic design tools is presented. The status of the experimental program and examples of local velocity measurements are given. An account of the MHD codes developed to date at ANL is also presented as is an example of a 3-D thermal hydraulic analysis carried out with such codes. Finally, near term plans for experimental investigations and code development are outlined. 20 refs., 8 figs., 1 tab

  16. Development of the Real-time Core and Thermal-Hydraulic Models for Kori-1 Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Hyuk; Lee, Myeong Soo; Hwang, Do Hyun; Byon, Soo Jin [KEPRI, Daejeon (Korea, Republic of)

    2010-10-15

    The operation of the Kori-Unit 1 (1723.5MWt) is expanded to additional 10 years with upgrades of the Main Control Room (MCR). Therefore, the revision of the procedures, performance tests and works related with the exchange of the Main Control Board (MCB) are currently carried out. And as a part of it, the fullscope simulator for the Kori-1 is being developed for the purpose of the pre-operation and emergence response capability for the operators. The purpose of this paper is to report on the performance of the developed neutronics and thermal-hydraulic (TH) models of Kori Unit 1 simulator. The neutronics model is based on the NESTLE code and TH model based on the RELAP5/MOD3 thermal-hydraulics analysis code which was funded as FY-93 LDRD Project 7201 and is running on the commercial simulator environment tool (the 3KeyMaster{sup TM} of the WSC). As some examples for the verification of the developed neutronics and TH models, some figures are provided. The outputs of the developed neutronics and TH models are in accord with the Nuclear Design Report (NDR) and Final Safety Analysis Report (FSAR) of the reference plant

  17. Parametric study on thermal-hydraulic characteristics of high conversion light water reactor

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki; Fujii, Sadao.

    1988-11-01

    To assess the feasibility of high conversion light water reactors (HCLWRs) from the thermal-hydraulic viewpoint, parametric study on thermal-hydraulic characteristics of HCLWR has been carried out by using a unit cell model. It is assumed that a HCLWR core is contained in a current 1000 MWe PWR plant. At the present study, reactor core parameters such as fuel pin diameter, pitch, core height and linear heat rate are widely and parametrically changed to survey the relation between these parameters and the basic thermal-hydraulic characteristics, i.e. maximum fuel temperature, minimum DNBR, reduction of reactor thermal output and so on. The validity of the unit cell model used has been ensured by comparison with the result of a subchannel analysis carried out for a whole core. (author)

  18. Transient thermal, hydraulic, and mechanical analysis of a counter flow offset strip fin intermediate heat exchanger using an effective porous media approach

    Science.gov (United States)

    Urquiza, Eugenio

    This work presents a comprehensive thermal hydraulic analysis of a compact heat exchanger using offset strip fins. The thermal hydraulics analysis in this work is followed by a finite element analysis (FEA) to predict the mechanical stresses experienced by an intermediate heat exchanger (IHX) during steady-state operation and selected flow transients. In particular, the scenario analyzed involves a gas-to-liquid IHX operating between high pressure helium and liquid or molten salt. In order to estimate the stresses in compact heat exchangers a comprehensive thermal and hydraulic analysis is needed. Compact heat exchangers require very small flow channels and fins to achieve high heat transfer rates and thermal effectiveness. However, studying such small features computationally contributes little to the understanding of component level phenomena and requires prohibitive computational effort using computational fluid dynamics (CFD). To address this issue, the analysis developed here uses an effective porous media (EPM) approach; this greatly reduces the computation time and produces results with the appropriate resolution [1]. This EPM fluid dynamics and heat transfer computational code has been named the Compact Heat Exchanger Explicit Thermal and Hydraulics (CHEETAH) code. CHEETAH solves for the two-dimensional steady-state and transient temperature and flow distributions in the IHX including the complicating effects of temperature-dependent fluid thermo-physical properties. Temperature- and pressure-dependent fluid properties are evaluated by CHEETAH and the thermal effectiveness of the IHX is also calculated. Furthermore, the temperature distribution can then be imported into a finite element analysis (FEA) code for mechanical stress analysis using the EPM methods developed earlier by the University of California, Berkeley, for global and local stress analysis [2]. These simulation tools will also allow the heat exchanger design to be improved through an

  19. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bostelmann, F. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on

  20. CSNI Status summary on utilization of best-estimate methodology in safety analysis and licensing

    International Nuclear Information System (INIS)

    1996-10-01

    The PWG 2 Task Group on Thermal Hydraulic System Behavior has discussed the subject of the use of best-estimate codes in the licensing process (codes that model thermal hydraulic processes are important to assessing safety system performance). The Task Group set out to determine the prevailing practices in member countries, concerning safety assessment and safety review of transients affecting the reactor coolant system. A summary of information provided by member countries in response to eleven questions is given: Who is Responsible for Safety Analysis? Who is Responsible for Review and Evaluation of Safety Analysis? Do the Regulations Permit the use of Best-Estimate Codes? What are the Requirements for What Constitutes a Best Estimate Code? What are the Requirements Concerning Code Documentation? What are the Requirements for Review of Code Models and Correlations? What are the Requirements Concerning Code Assessment? What are the Requirements Concerning Initial and Boundary Conditions? What are the Requirements Concerning Operability of Active Equipment? What are the Requirements Concerning Operator Actions?

  1. TISKTH-3: a couple neutronics/thermal-hydraulics code for the transient analysis of light water reactors

    International Nuclear Information System (INIS)

    Peng Muzhang; Zhang Quan; Wang Guoli; Zhang Yuman

    1988-01-01

    TISKTH-3 is a coupled neutronics/thermal-hydraulics code for the transient analysis. A 3-dimensional neutron kinetics equation solved by the Nodal Green's Function Method is used for the neutronics model of the code. A homogeneous equilibrium model with a complete boiling curve and two numerical solutions of the implicit and explicit scheme is used for the thermal-hydraulics model of the code. A 2-dimensional heat conduction equation with variable conductivity solved by the method of weighted residuals is used for the fuel rod heat transfer model of the code. TISKTH-3 is able to analyze the fast transient process and complicate accident situations in the core. The initative applications have shown that the stability and convergency in the calculations with the code are satisfactory

  2. TISKTH-3: a couple neutronics/thermal-hydraulics code for the transient analysis of light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Muzhang, Peng; Quan, Zhang; Guoli, Wang; Yuman, Zhang

    1988-03-01

    TISKTH-3 is a coupled neutronics/thermal-hydraulics code for the transient analysis. A 3-dimensional neutron kinetics equation solved by the Nodal Green's Function Method is used for the neutronics model of the code. A homogeneous equilibrium model with a complete boiling curve and two numerical solutions of the implicit and explicit scheme is used for the thermal-hydraulics model of the code. A 2-dimensional heat conduction equation with variable conductivity solved by the method of weighted residuals is used for the fuel rod heat transfer model of the code. TISKTH-3 is able to analyze the fast transient process and complicate accident situations in the core. The initative applications have shown that the stability and convergency in the calculations with the code are satisfactory.

  3. Thermal-hydraulic analysis of an annular fuel element: The Achilles' heel of the particle bed reactor

    International Nuclear Information System (INIS)

    Dibben, M.J.; Tuttle, R.F.

    1993-01-01

    The low pressure nuclear thermal propulsion (LPNTP) concept offers significant improvements in rocket engine specific impulse over rockets employment chemical propulsion. This study investigated a parametric thermal-hydraulic analysis of an annular fueld element, also referred to as a fuel pipe, using the computer code ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer). The fuelpipe is an annular particle bed fuel element of the reactor with radially inward flow of hydrogen through the element. In this study, the outlet temperature of the hydrogen is parametrically related to key effects, including the reactor power at two different pressure drops, the effect of power coupling for in-core testing, and the effect of hydrogen flow rates. Results show that the temperature is linearly related to the reactor power, but not to pressure drop, and that cross flow inside the fuelpipe occurs at approximately 0.3 percent of the radial flow rates

  4. Application of coupled codes for safety analysis and licensing issues

    International Nuclear Information System (INIS)

    Langenbuch, S.; Velkov, K.

    2006-01-01

    An overview is given on the development and the advantages of coupled codes which integrate 3D neutron kinetics into thermal-hydraulic system codes. The work performed within GRS by coupling the thermal-hydraulic system code ATHLET and the 3D neutronics code QUABOX/CUBBOX is described as an example. The application of the coupled codes as best-estimate simulation tools for safety analysis is discussed. Some examples from German licensing practices are given which demonstrate how the improved analytical methods of coupled codes have contributed to solve licensing issues related to optimized and more economical use of fuel. (authors)

  5. INL Experimental Program Roadmap for Thermal Hydraulic Code Validation

    Energy Technology Data Exchange (ETDEWEB)

    Glenn McCreery; Hugh McIlroy

    2007-09-01

    Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role of expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments related

  6. Status of SPACE Safety Analysis Code Development

    International Nuclear Information System (INIS)

    Lee, Dong Hyuk; Yang, Chang Keun; Kim, Se Yun; Ha, Sang Jun

    2009-01-01

    In 2006, the Korean the Korean nuclear industry started developing a thermal-hydraulic analysis code for safety analysis of PWR(Pressurized Water Reactor). The new code is named as SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). The SPACE code can solve two-fluid, three-field governing equations in one dimensional or three dimensional geometry. The SPACE code has many component models required for modeling a PWR, such as reactor coolant pump, safety injection tank, etc. The programming language used in the new code is C++, for new generation of engineers who are more comfortable with C/C++ than old FORTRAN language. This paper describes general characteristics of SPACE code and current status of SPACE code development

  7. Development of an integrated thermal-hydraulics capability incorporating RELAP5 and PANTHER neutronics code

    Energy Technology Data Exchange (ETDEWEB)

    Page, R.; Jones, J.R.

    1997-07-01

    Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation tools is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell `B` Loss of offsite power fault transient.

  8. Development of an integrated thermal-hydraulics capability incorporating RELAP5 and PANTHER neutronics code

    International Nuclear Information System (INIS)

    Page, R.; Jones, J.R.

    1997-01-01

    Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation tools is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell 'B' Loss of offsite power fault transient

  9. Incorporation of advanced accident analysis methodology into safety analysis reports

    International Nuclear Information System (INIS)

    2003-05-01

    The IAEA Safety Guide on Safety Assessment and Verification defines that the aim of the safety analysis should be by means of appropriate analytical tools to establish and confirm the design basis for the items important to safety, and to ensure that the overall plant design is capable of meeting the prescribed and acceptable limits for radiation doses and releases for each plant condition category. Practical guidance on how to perform accident analyses of nuclear power plants (NPPs) is provided by the IAEA Safety Report on Accident Analysis for Nuclear Power Plants. The safety analyses are performed both in the form of deterministic and probabilistic analyses for NPPs. It is customary to refer to deterministic safety analyses as accident analyses. This report discusses the aspects of using the advanced accident analysis methods to carry out accident analyses in order to introduce them into the Safety Analysis Reports (SARs). In relation to the SAR, purposes of deterministic safety analysis can be further specified as (1) to demonstrate compliance with specific regulatory acceptance criteria; (2) to complement other analyses and evaluations in defining a complete set of design and operating requirements; (3) to identify and quantify limiting safety system set points and limiting conditions for operation to be used in the NPP limits and conditions; (4) to justify appropriateness of the technical solutions employed in the fulfillment of predetermined safety requirements. The essential parts of accident analyses are performed by applying sophisticated computer code packages, which have been specifically developed for this purpose. These code packages include mainly thermal-hydraulic system codes and reactor dynamics codes meant for the transient and accident analyses. There are also specific codes such as those for the containment thermal-hydraulics, for the radiological consequences and for severe accident analyses. In some cases, codes of a more general nature such

  10. Thermal-hydraulic and neutron-physical characteristics of a new SCWR fuel assembly

    International Nuclear Information System (INIS)

    Liu, X.J.; Cheng, X.

    2009-01-01

    A new fuel assembly design for a thermal supercritical water cooled reactor (SCWR) core is proposed. Compared to the existing fuel assemblies, the present fuel assembly has two-rows of fuel rods between the moderator channels, to achieve a more uniform moderation for all fuel rod cells, and subsequently, a more uniform radial power distribution. In addition, a neutron-kinetics/thermal-hydraulics coupling method is developed, to analyze the neutron-physical and thermal-hydraulic behavior of the fuel assembly designs. This coupling method is based on the sub-channel analysis code COBRA-IV for thermal-hydraulics and the neutron-kinetics code SKETCH-N for neutron-physics. Both the COBRA-IV code and the SKETCH-N code are accordingly modified. An interface is established for the data transfer between these two codes. This coupling method is applied to both the one-row fuel assemblies (previous design) and the two-row fuel assemblies (present design). The performance of the two types of fuel assemblies is compared. The results show clearly that the two-row fuel assembly has more favorable neutron-physical and thermal-hydraulic characteristics than the one-row fuel assembly. The effect of various parameters on the fuel assembly performance is discussed. The coupling method is proven to be well suitable for further applications to SCWR fuel assembly design analysis

  11. Visual and intelligent transients and accidents analyzer based on thermal-hydraulic system code

    International Nuclear Information System (INIS)

    Meng Lin; Rui Hu; Yun Su; Ronghua Zhang; Yanhua Yang

    2005-01-01

    Full text of publication follows: Many thermal-hydraulic system codes were developed in the past twenty years, such as RELAP5, RETRAN, ATHLET, etc. Because of their general and advanced features in thermal-hydraulic computation, they are widely used in the world to analyze transients and accidents. But there are following disadvantages for most of these original thermal-hydraulic system codes. Firstly, because models are built through input decks, so the input files are complex and non-figurative, and the style of input decks is various for different users and models. Secondly, results are shown in off-line data file form. It is not convenient for analysts who may pay more attention to dynamic parameters trend and changing. Thirdly, there are few interfaces with other program in these original thermal-hydraulic system codes. This restricts the codes expanding. The subject of this paper is to develop a powerful analyzer based on these thermal-hydraulic system codes to analyze transients and accidents more simply, accurately and fleetly. Firstly, modeling is visual and intelligent. Users build the thermalhydraulic system model using component objects according to their needs, and it is not necessary for them to face bald input decks. The style of input decks created automatically by the analyzer is unified and can be accepted easily by other people. Secondly, parameters concerned by analyst can be dynamically communicated to show or even change. Thirdly, the analyzer provide interface with other programs for the thermal-hydraulic system code. Thus parallel computation between thermal-hydraulic system code and other programs become possible. In conclusion, through visual and intelligent method, the analyzer based on general and advanced thermal-hydraulic system codes can be used to analysis transients and accidents more effectively. The main purpose of this paper is to present developmental activities, assessment and application results of the visual and intelligent

  12. Uncertainty analysis for results of thermal hydraulic codes of best-estimate-type; Analisis de incertidumbre para resultados de codigos termohidraulicos de mejor estimacion

    Energy Technology Data Exchange (ETDEWEB)

    Alva N, J.

    2010-07-01

    In this thesis, some fundamental knowledge is presented about uncertainty analysis and about diverse methodologies applied in the study of nuclear power plant transient event analysis, particularly related to thermal hydraulics phenomena. These concepts and methodologies mentioned in this work come from a wide bibliographical research in the nuclear power subject. Methodologies for uncertainty analysis have been developed by quite diverse institutions, and they have been widely used worldwide for application to results from best-estimate-type computer codes in nuclear reactor thermal hydraulics and safety analysis. Also, the main uncertainty sources, types of uncertainties, and aspects related to best estimate modeling and methods are introduced. Once the main bases of uncertainty analysis have been set, and some of the known methodologies have been introduced, it is presented in detail the CSAU methodology, which will be applied in the analyses. The main objective of this thesis is to compare the results of an uncertainty and sensibility analysis by using the Response Surface Technique to the application of W ilks formula, apply through a loss coolant experiment and an event of rise in a BWR. Both techniques are options in the part of uncertainty and sensibility analysis of the CSAU methodology, which was developed for the analysis of transients and accidents at nuclear power plants, and it is the base of most of the methodologies used in licensing of nuclear power plants practically everywhere. Finally, the results of applying both techniques are compared and discussed. (Author)

  13. Thermal hydraulic analysis of BWR containment venting system

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Sharma, Prashant; Paul, U.K.; Gaikwad, Avinash

    2015-01-01

    Installation of additional containment filtered venting system (CFVS) is necessary to depressurize the containment to maintain its mechanical integrity due to over pressurization during severe accident condition. A typical venting system for BWR is modelled using RELAP5 and analysed to investigate the effect of various thermal hydraulic parameters on the operational parameters of the venting system. The venting system consists of piping from the containment to the scrubber tank and exit line from the scrubber tank. The scrubber tank is partially filled with water to enable the scrubbing action to remove the particulate radionuclides from the incoming containment air. The pipe line from the containment is connected to the venturi inlet and the throat of the venturi is open to the scrubber tank water inventory at designed submergence level. The exit of the venturi is open to scrubber tank water. Filters are used in the upper air space of the scrubber tank as mist separator before venting out the air into the atmosphere through the exit vent line. The effect of thermal hydraulic parameters such as inlet fluid temperature, inlet steam content and venturi submergence in the scrubber tank on the venting flow rate, exit steam content, scrubber tank inventory, overflow line and siphon breaker flow rate is analysed. Results show that inlet steam content and the venturi nozzle submergence influence the venting system parameters. (author)

  14. Simplified thermal-hydraulic analysis of single phase natural circulation circuit with two heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Larissa Cunha; Su, Jian, E-mail: larissa@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenhraria Nuclear; Cotta, Renato Machado, E-mail: cotta@mecanica.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (POLI/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica

    2015-07-01

    Single phase natural circulation circuits composed of two convective heat exchangers and connecting tubes are important for the passive heat removal from spent fuel pools (SFP). To keep the structural integrity of the stored spent fuel assemblies, continuously cooling has to be provided in order to avoid increase at the pool temperature and subsequent uncovering of the fuel and enhanced reaction between water and metal releasing hydrogen. Decay heat can achieve considerably high amounts of energy e.g. in the AP1000, considering the emergency fuel assemblies, the maximum heat decay will reach 13 MW in the 15th day (Westinghouse Electric Company, 2010). A highly efficient alternative to do so is by means of natural circulation, which is cost-effective compared to active cooling systems and is inherently safer since presents less associated devices and no external work is required. Many researchers have investigated safety and stability aspects of natural circulation loops (NCL). However, there is a lack of literature concerning the improvement of NCL through a standard unified methodology, especially for natural circulation circuits with two heat exchangers. In the present study, a simplified thermal-hydraulic analysis of single phase natural circulation circuit with two heat exchanges is presented. Relevant dimensionless key groups were proposed to for the design and safety analysis of a scaled NCL for the cooling of spent fuel storage pool with convective cooling and heating. (author)

  15. A thermal hydraulic analysis in PWR reactors with UO{sub 2} or (U-Th)O{sub 2} fuel rods employing a simplified code

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Thiago A. dos; Maiorino, José R., E-mail: thiago.santos@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil); Stefanni, Giovanni L. de, E-mail: giovanni.stefanni@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    In order to project a nuclear reactor, the neutronic calculus must be validated, so that its thermal limits and safety parameters are respected. Considering this issue, this research aims to evaluate the APTh-100 reactor thermal limits. This PWR is a project developed in Universidade Federal do ABC (UFABC) using fuel composed of Uranium and Thorium oxide mixed (U,Th)O{sub 2}. For this purpose, a simplified, although conservative, code was developed in a MATLAB environment named STC-MOX-Th 'Simplified Thermal-hydraulics Code-Mixed Oxide Thorium'. This code provides axial and radial temperature distribution, as well as DNBR distribution over the hottest channel of the reactor core. Moreover, it brings other hydraulic quantities, such as pressure drop over the fuel rod, considering any fuel proportion of (U,Th)O{sub 2}.The software uses basic laws of conservation of mass, momentum and energy, it also calculates the thermal conduction equation, considering the thermal conductive coefficient as a temperature function. In order to solve this equation, the finite elements method was used. Furthermore, the proportion of 36% of UO{sub 2} was used to evaluate the temperature over the fuel rod and DNBR minimum in three burn conditions: beginning, middle and ending. The program has proven to be efficient in every condition and the results evidenced that the APTh-1000 reactor, in an initial analysis, has its thermal limits within the recommended security parameters. (author)

  16. Transitioning from interpretive to predictive in thermal hydraulic codes

    International Nuclear Information System (INIS)

    Mousseau, V.A.

    2004-01-01

    The current thermal hydraulic codes in use in the US, RELAP and TRAC, where originally written in the mid to late 1970's. At that time computers were slow, expensive, and had small memories. Because of these constraints, sacrifices had to be made, both in physics and numerical methods, which resulted in limitations on the accuracy of the solutions. Significant changes have occurred that induce very different requirements for the thermal hydraulic codes to be used for the future GEN-IV nuclear reactors. First, computers speed and memory grow at an exponential rate while the costs hold constant or decrease. Second, passive safety systems in modern designs stretch the length of relevant transients to many days. Finally, costs of experiments have grown very rapidly. Because of these new constraints, modern thermal hydraulic codes will be relied on for a significantly larger portion of bringing a nuclear reactor on line. Simulation codes will have to define in which part of state space experiments will be run. They will then have to be able to extend the small number of experiments to cover the large state space in which the reactors will operate. This data extrapolation mode will be referred to as 'predictive'. One of the keys to analyzing the accuracy of a simulation is to consider the entire domain being simulated. For example, in a reactor design where the containment is coupled to the reactor cooling system through radiative heat transfer, the accuracy of a transient includes the containment, the radiation heat transfer, the fluid flow in the cooling system, the thermal conduction in the solid, and the neutron transport in the reactor. All of this physics is coupled together in one nonlinear system through material properties, cross sections, heat transfer coefficients, and other mechanisms that exchange mass, momentum, and energy. Traditionally, these different physical domains, (containment, cooling system, nuclear fuel, etc.) have been solved in different

  17. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    International Nuclear Information System (INIS)

    Richard, Joshua; Galloway, Jack; Fensin, Michael; Trellue, Holly

    2015-01-01

    Highlights: • A modular mapping methodogy for neutronic-thermal hydraulic nuclear reactor multiphysics, SMITHERS, has been developed. • Written in Python, SMITHERS takes a novel object-oriented approach for facilitating data transitions between solvers. This approach enables near-instant compatibility with existing MCNP/MONTEBURNS input decks. • It also allows for coupling with thermal-hydraulic solvers of various levels of fidelity. • Two BWR and PWR test problems are presented for verifying correct functionality of the SMITHERS code routines. - Abstract: A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. Additionally, it performs the basis mapping from the combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers. The mapping methodology was specifically developed to be flexible enough such that it could successfully integrate preexisting depletion solver case files with different thermal-hydraulic solvers. This approach allows the user to tailor the selection of a

  18. CFD analysis of thermal-hydraulic behavior in SCWR typical flow channels

    International Nuclear Information System (INIS)

    Gu, H.Y.; Cheng, X.; Yang, Y.H.

    2008-01-01

    Investigations on thermal-hydraulic behavior in SCWR fuel assembly have obtained a significant attention in the international SCWR community. However, there is still a lack of understanding and ability to predict the heat transfer behavior of supercritical water. In this paper, CFD analysis is carried out to study the flow and heat transfer behavior of supercritical water in sub-channels of both square and triangular rod bundles. Effect of various parameters, e.g. thermal boundary conditions and pitch-to-diameter ratio on the thermal-hydraulic behavior is investigated. Two boundary conditions, i.e., constant heat flux at the outer surface of cladding and constant heat density in the fuel pin are applied. The results show that the structure of the secondary flow mainly depends on the rod bundle configuration as well as the pitch-to-diameter ratio, whereas, the amplitude of the secondary flow is affected by the thermal boundary conditions, as well. The secondary flow is much stronger in a square lattice than that in a triangular lattice. The turbulence behavior is similar in both square and triangular lattices. The dependence of the amplitude of the turbulent velocity fluctuation across the gap on Reynolds number becomes prominent in both lattices as the pitch-to-diameter ratio increases. The effect of thermal boundary conditions on turbulent velocity fluctuation is negligibly small. For both lattices with small pitch-to-diameter ratios (P/D < 1.3), the mixing coefficient is about 0.022. Both secondary flow and turbulent mixing show unusual behavior in the vicinity of the pseudo-critical point. Further investigation is needed. A strong circumferential non-uniformity of wall temperature and heat transfer is observed in tight lattices at constant heat flux boundary conditions, especially in square lattices. In the case with constant heat density of fuel pin, the circumferential conductive heat transfer significantly reduces the non-uniformity of circumferential

  19. Neutronics and Thermal Hydraulics Analysis of a Conceptual Ultra-High Temperature MHD Cermet Fuel Core for Nuclear Electric Propulsion

    Directory of Open Access Journals (Sweden)

    Jian Song

    2018-04-01

    Full Text Available Nuclear electric propulsion (NEP offers unique advantages for the interplanetary exploration. The extremely high conversion efficiency of magnetohydrodynamics (MHD conversion nuclear reactor makes it a highly potential space power source in the future, especially for NEP systems. Research on ultra-high temperature reactor suitable for MHD power conversion is performed in this paper. Cermet is chosen as the reactor fuel after a detailed comparison with the (U,ZrC graphite-based fuel and mixed carbide fuel. A reactor design is carried out as well as the analysis of the reactor physics and thermal-hydraulics. The specific design involves fuel element, reactor core, and radiation shield. Two coolant channel configurations of fuel elements are considered and both of them can meet the demands. The 91 channel configuration is chosen due to its greater heat transfer performance. Besides, preliminary calculation of nuclear criticality safety during launch crash accident is also presented. The calculation results show that the current design can meet the safety requirements well.

  20. Environmental conditions using thermal-hydraulics computer code GOTHIC for beyond design basis external events

    International Nuclear Information System (INIS)

    Pleskunas, R.J.

    2015-01-01

    In response to the Fukushima Dai-ichi beyond design basis accident in March 2011, the Nuclear Regulatory Commission (NRC) issued Order EA-12-049, 'Issuance of Order to Modify Licenses with Regard to Requirements for Mitigation Strategies Beyond-Design-Basis-External-Events'. To outline the process to be used by individual licensees to define and implement site-specific diverse and flexible mitigation strategies (FLEX) that reduce the risks associated with beyond design basis conditions, Nuclear Energy Institute document NEI 12-06, 'Diverse and Flexible Coping Strategies (FLEX) Implementation Guide', was issued. A beyond design basis external event (BDBEE) is postulated to cause an Extended Loss of AC Power (ELAP), which will result in a loss of ventilation which has the potential to impact room habitability and equipment operability. During the ELAP, portable FLEX equipment will be used to achieve and maintain safe shutdown, and only a minimal set of instruments and controls will be available. Given these circumstances, analysis is required to determine the environmental conditions in several vital areas of the Nuclear Power Plant. The BDBEE mitigating strategies require certain room environments to be maintained such that they can support the occupancy of personnel and the functionality of equipment located therein, which is required to support the strategies associated with compliance to NRC Order EA-12-049. Three thermal-hydraulic analyses of vital areas during an extended loss of AC power using the GOTHIC computer code will be presented: 1) Safety-related pump and instrument room transient analysis; 2) Control Room transient analysis; and 3) Auxiliary/Control Building transient analysis. GOTHIC (Generation of Thermal-Hydraulic Information for Containment) is a general purpose thermal-hydraulics software package for the analysis of nuclear power plant containments, confinement buildings, and system components. It is a volume/path/heat sink

  1. CFD modeling and thermal-hydraulic analysis for the passive decay heat removal of a sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Hung, T.C.; Dhir, V.K.; Chang, J.C.; Wang, S.K.

    2011-01-01

    Research highlights: → The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. → The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). → The most important conclusion is that all obtained values of DNBR, fuel center and surface temperature, cladding surface temperature and coolant temperature across the hottest channel are largely far to compromise safety of the reactor. - Abstract: In this study, a pool-typed design similar to sodium-cooled fast reactor (SFR) of the fourth generation reactors has been modeled using CFD simulations to investigate the characteristics of a passive mechanism of Shutdown Heat Removal System (SHRS). The main aim is to refine the reactor pool design in terms of temperature safety margin of the sodium pool. Thus, an appropriate protection mechanism is maintained in order to ensure the safety and integrity of the reactor system during a shutdown mode without using any active heat removal system. The impacts on the pool temperature are evaluated based on the following considerations: (1) the aspect ratio of pool diameter to depth, (2) the values of thermal emissivity of the surface materials of reactor and guard vessels, and (3) innerpool liner and core periphery structures. The computational results show that an optimal pool design in geometry can reduce the maximum pool temperature down to ∼551 o C which is substantially lower than ∼627 o C as calculated for the reference case. It is also concluded that the passive Reactor Air Cooling System (RACS) is effective in removing decay heat after shutdown. Furthermore, thermal radiation from the surface of the reactor vessel is found to be important; and thus, the selection of the vessel surface materials with a high emissivity would be a

  2. Towards an Industrial Application of Statistical Uncertainty Analysis Methods to Multi-physical Modelling and Safety Analyses

    International Nuclear Information System (INIS)

    Zhang, Jinzhao; Segurado, Jacobo; Schneidesch, Christophe

    2013-01-01

    Since 1980's, Tractebel Engineering (TE) has being developed and applied a multi-physical modelling and safety analyses capability, based on a code package consisting of the best estimate 3D neutronic (PANTHER), system thermal hydraulic (RELAP5), core sub-channel thermal hydraulic (COBRA-3C), and fuel thermal mechanic (FRAPCON/FRAPTRAN) codes. A series of methodologies have been developed to perform and to license the reactor safety analysis and core reload design, based on the deterministic bounding approach. Following the recent trends in research and development as well as in industrial applications, TE has been working since 2010 towards the application of the statistical sensitivity and uncertainty analysis methods to the multi-physical modelling and licensing safety analyses. In this paper, the TE multi-physical modelling and safety analyses capability is first described, followed by the proposed TE best estimate plus statistical uncertainty analysis method (BESUAM). The chosen statistical sensitivity and uncertainty analysis methods (non-parametric order statistic method or bootstrap) and tool (DAKOTA) are then presented, followed by some preliminary results of their applications to FRAPCON/FRAPTRAN simulation of OECD RIA fuel rod codes benchmark and RELAP5/MOD3.3 simulation of THTF tests. (authors)

  3. Introduction to Safety Analysis Approach for Research Reactors

    International Nuclear Information System (INIS)

    Park, Suki

    2016-01-01

    The research reactors have a wide variety in terms of thermal powers, coolants, moderators, reflectors, fuels, reactor tanks and pools, flow direction in the core, and the operating pressure and temperature of the cooling system. Around 110 research reactors have a thermal power greater than 1 MW. This paper introduces a general approach to safety analysis for research reactors and deals with the experience of safety analysis on a 10 MW research reactor with an open-pool and open-tank reactor and a downward flow in the reactor core during normal operation. The general approach to safety analysis for research reactors is described and the design features of a typical open-pool and open-tank type reactor are discussed. The representative events expected in research reactors are investigated. The reactor responses and the thermal hydraulic behavior to the events are presented and discussed. From the minimum CHFR and the maximum fuel temperature calculated, it is ensured that the fuel is not damaged in the step insertion of reactivity by 1.8 mk and the failure of all primary pumps for the reactor with a 10 MW thermal power and downward core flow

  4. The STAT7 Code for Statistical Propagation of Uncertainties In Steady-State Thermal Hydraulics Analysis of Plate-Fueled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Floyd E. [Argonne National Lab. (ANL), Argonne, IL (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Nuclear Reactor Lab.; Wilson, Erik [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The STAT code was written to automate many of the steady-state thermal hydraulic safety calculations for the MIT research reactor, both for conversion of the reactor from high enrichment uranium fuel to low enrichment uranium fuel and for future fuel re-loads after the conversion. A Monte-Carlo statistical propagation approach is used to treat uncertainties in important parameters in the analysis. These safety calculations are ultimately intended to protect against high fuel plate temperatures due to critical heat flux or departure from nucleate boiling or onset of flow instability; but additional margin is obtained by basing the limiting safety settings on avoiding onset of nucleate boiling. STAT7 can simultaneously analyze all of the axial nodes of all of the fuel plates and all of the coolant channels for one stripe of a fuel element. The stripes run the length of the fuel, from the bottom to the top. Power splits are calculated for each axial node of each plate to determine how much of the power goes out each face of the plate. By running STAT7 multiple times, full core analysis has been performed by analyzing the margin to ONB for each axial node of each stripe of each plate of each element in the core.

  5. LWR containment thermal hydraulic codes benchmark demona B3 exercise

    International Nuclear Information System (INIS)

    Della Loggia, E.; Gauvain, J.

    1988-01-01

    Recent discussion about the aerosol codes currently used for the analysis of containment retention capabilities have revealed a number of questions concerning the reliabilities and verifications of the thermal-hydraulic modules of these codes with respect to the validity of implemented physical models and the stability and effectiveness of numerical schemes. Since these codes are used for the calculation of the Source Term for the assessment of radiological consequences of severe accidents, they are an important part of reactor safety evaluation. For this reason the Commission of European Communities (CEC), following the recommendation mode by experts from Member Stades, is promoting research in this field with the aim also of establishing and increasing collaboration among Research Organisations of member countries. In view of the results of the studies, the CEC has decided to carry out a Benchmark exercise for severe accident containment thermal hydraulics codes. This exercise is based on experiment B3 in the DEMONA programme. The main objective of the benchmark exercise has been to assess the ability of the participating codes to predict atmosphere saturation levels and bulk condensation rates under conditions similar to those predicted to follow a severe accident in a PWR. This exercise follows logically on from the LA-4 exercise, which, is related to an experiment with a simpler internal geometry. We present here the results obtained so far and from them preliminary conclusions are drawn, concerning condensation temperature, pressure, flow rates, in the reactor containment

  6. Needs of thermal-hydraulic codes for analyzing hydrogen behavior of future chinese NPPs

    International Nuclear Information System (INIS)

    Zhiwei Zhou; Jianjun Xiao; Mengjia Yang

    2005-01-01

    Full text of publication follows: forecast to Chinese economic growth in next 20 years, a great deal of new electric generation capacity has to be installed for fulfilling the requirement of Chinese market, among which about 36 GWe of nuclear power plants are predicted to be added into the fleet of Chinese electric generation industry. Realistically, the current status of Chinese nuclear industrial infrastructure and experience gained in developing the existing nuclear power plants has led the selection of the light water reactor based mature technology to be in favor for accomplishing the tough goal of establishing the nuclear electric generation capacity of China in next 20 years. The safety performance of nuclear power units to be built in China in the near future certainly is one of crucial issues for any new nuclear power plant project to obtain the approval of the authority of Chinese government. The national nuclear safety administration of China (NNSA) issued a policy statement in 2002, namely 'the technology policy about a few important safety problems in the design of a new nuclear power plant', in which a number of enhanced safety objectives have been clearly clarified. In principle, any new nuclear power plant to be constructed in China in the near future should satisfy these new objectives, including: - severe core damage frequency -5 per plant operating year; - frequency of the event with large amount of radioactive material release leading to early emergent response < 10-6 per reactor operating year; - design provisions with realistic assumptions and best-estimate analyses to prevent late containment failure as a consequence of severe accidents; - full considerations of severe accident spectra in safety analysis. The new safety objectives aiming at new nuclear power plants to be constructed in China have introduced some new challenges to the thermal-hydraulic design. Thermal-hydraulic codes to implement severe accident analysis and to establish

  7. Proceedings of transient thermal-hydraulics and coupled vessel and piping system responses 1991

    International Nuclear Information System (INIS)

    Wang, G.Y.; Shin, Y.W.; Moody, F.J.

    1991-01-01

    This book reports on transient thermal-hydraulics and coupled vessel and piping system responses. Topics covered include: nuclear power plant containment designs; analysis of control rods; gate closure of hydraulic turbines; and shock wave solutions for steam water mixtures in piping systems

  8. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    International Nuclear Information System (INIS)

    Zhou, Jianjun; Zhang, Daling; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei

    2015-01-01

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor

  9. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianjun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); College of Mechanical and Power Engineering, China Three Gorges University, No 8, Daxue road, Yichang, Hubei 443002 (China); Zhang, Daling, E-mail: dlzhang@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China)

    2015-02-15

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor.

  10. Overview of the use of ATHENA for thermal-hydraulic analysis of systems with lead-bismuth coolant

    International Nuclear Information System (INIS)

    Davis, C.B.; Shieh, A. S.

    2000-01-01

    The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work

  11. Overview of the Use of ATHENA for Thermal-Hydraulic Analysis of Systems with Lead-Bismuth Coolant

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cliff Bybee; Shieh, Arthur Shan Luk

    2000-04-01

    The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work.

  12. Validation of containment thermal hydraulic computer codes for VVER reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jiri Macek; Lubomir Denk [Nuclear Research Institute Rez plc Thermal-Hydraulic Analyses Department CZ 250 68 Husinec-Rez (Czech Republic)

    2005-07-01

    Full text of publication follows: The Czech Republic operates 4 VVER-440 units, two VVER-1000 units are being finalized (one of them is undergoing commissioning). Thermal-hydraulics Department of the Nuclear Research Institute Rez performs accident analyses for these plants using a number of computer codes. To model the primary and secondary circuits behaviour the system codes ATHLET, CATHARE, RELAP, TRAC are applied. Containment and pressure-suppression system are modelled with COCOSYS and MELCOR codes, the reactor power calculations (point and space-neutron kinetics) are made with DYN3D, NESTLE and CDF codes (FLUENT, TRIO) are used for some specific problems.An integral part of the current Czech project 'New Energy Sources' is selection of a new nuclear source. Within this and the preceding projects financed by the Czech Ministry of Industry and Trade and the EU PHARE, the Department carries and has carried out the systematic validation of thermal-hydraulic and reactor physics computer codes applying data obtained on several experimental facilities as well as the real operational data. One of the important components of the VVER 440/213 NPP is its containment with pressure suppression system (bubble condenser). For safety analyses of this system, computer codes of the type MELCOR and COCOSYS are used in the Czech Republic. These codes were developed for containments of classic PWRs or BWRs. In order to apply these codes for VVER 440 systems, their validation on experimental facilities must be performed.The paper provides concise information on these activities of the NRI and its Thermal-hydraulics Department. The containment system of the VVER 440/213, its functions and approaches to solution of its safety is described with definition of acceptance criteria. A detailed example of the containment code validation on EREC Test facility (LOCA and MSLB) and the consequent utilisation of the results for a real NPP purposes is included. An approach to

  13. Multi-Function Waste Tank Facility thermal hydraulic analysis for Title II design

    International Nuclear Information System (INIS)

    Cramer, E.R.

    1994-01-01

    The purpose of this work was to provide the thermal hydraulic analysis for the Multi-Function Waste Tank Facility (MWTF) Title II design. Temperature distributions throughout the tank structure were calculated for subsequent use in the structural analysis and in the safety evaluation. Calculated temperatures of critical areas were compared to design allowables. Expected operating parameters were calculated for use in the ventilation system design and in the environmental impact documentation. The design requirements were obtained from the MWTF Functional Design Criteria (FDC). The most restrictive temperature limit given in the FDC is the 200 limit for the haunch and dome steel and concrete. The temperature limit for the rest of the primary and secondary tanks and concrete base mat and supporting pad is 250 F. Also, the waste should not be allowed to boil. The tank geometry was taken from ICF Kaiser Engineers Hanford drawing ES-W236A-Z1, Revision 1, included here in Appendix B. Heat removal rates by evaporation from the waste surface were obtained from experimental data. It is concluded that the MWTF tank cooling system will meet the design temperature limits for the design heat load of 700,000 Btu/h, even if cooling flow is lost to the annulus region, and temperatures change very slowly during transients due to the high heat capacity of the tank structure and the waste. Accordingly, transients will not be a significant operational problem from the viewpoint of meeting the specified temperature limits

  14. Liquid metal thermal-hydraulics

    International Nuclear Information System (INIS)

    Kottowski-Duemenil, H.M.

    1994-01-01

    This textbook is a report of the 26 years activity of the Liquid Metal Boiling Working Group (LMBWG). It summarizes the state of the art of liquid metal thermo-hydraulics achieved through the collaboration of scientists concerned with the development of the Fast Breeder Reactor. The first chapter entitled ''Liquid Metal Boiling Behaviour'', presents the background and boiling mechanisms. This section gives the reader a brief but thorough survey on the superheat phenomena in liquid metals. The second chapter of the text, ''A Review of Single and Two-Phase Flow Pressure Drop Studies and Application to Flow Stability Analysis of Boiling Liquid Metal Systems'' summarizes the difficulty of pressure drop simulation of boiling sodium in core bundles. The third chapter ''Liquid Metal Dry-Out Data for Flow in Tubes and Bundles'' describes the conditions of critical heat flux which limits the coolability of the reactor core. The fourth chapter dealing with the LMFBR specific topic of ''Natural Convection Cooling of Liquid Metal Systems''. This chapter gives a review of both plant experiments and out-of-pile experiments and shows the advances in the development of computing power over the past decade of mathematical modelling ''Subassembly Blockages Suties'' are discussed in chapter five. Chapter six is entitled ''A Review of the Methods and Codes Available for the Calculation on Thermal-Hydraulics in Rod-Cluster and other Geometries, Steady state and Transient Boiling Flow Regimes, and the Validation achieves''. Codes available for the calculation of thermal-hydraulics in rod-clusters and other geometries are reviewed. Chapter seven, ''Comparative Studies of Thermohydraulic Computer Code Simulations of Sodium Boiling under Loss of Flow Conditions'', represents one of the key activities of the LMBWG. Several benchmark exercises were performed with the aim of transient sodium boiling simulation in single channels and bundle blockages under steady state conditions and loss of

  15. Thermal-Hydraulic Sensitivity Study of Intermediate Loop Parameters for Nuclear Hydrogen Production System

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Hwa; Lee, Heung Nae; Park, Jea Ho [KONES Corp., Seoul (Korea, Republic of); Lee, Won Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Sang Il; Yoo, Yeon Jae [Hyundai Engineering Co., Seoul (Korea, Republic of)

    2016-10-15

    The heat generated from the VHTR is transferred to the intermediate loop through Intermediate Heat Exchanger (IHX). It is further passed on to the Sulfur-Iodine (SI) hydrogen production system (HPS) through Process Heat Exchanger (PHX). The IL provides the safety distance between the VHTR and HPS. Since the IL performance affects the overall nuclear HPS efficiency, it is required to optimize its design and operation parameters. In this study, the thermal-hydraulic sensitivity of IL parameters with various coolant options has been examined by using MARS-GCR code, which was already applied for the case of steam generator. Sensitivity study of the IL and PHX parameters has been carried out based on their thermal-hydraulic performance. Several parameters for design and operation, such as the pipe diameter, safety distance and surface area, are considered for different coolant options, He, CO{sub 2} and He-CO{sub 2} (2:8). It was found that the circulator work is the major factor affecting on the overall nuclear hydrogen production system efficiency. Circulator work increases with the safety distance, and decreases with the operation pressure and loop pipe diameter. Sensitivity results obtained from this study will contribute to the optimization of the IL design and operation parameters and the optimal coolant selection.

  16. Transient thermal-hydraulic characteristics analysis software for PWR nuclear power systems

    International Nuclear Information System (INIS)

    Wu Yingwei; Zhuang Chengjun; Su Guanghui; Qiu Suizheng

    2010-01-01

    A point reactor neutron kinetics model, a two-phase drift-flow U-tube steam generator model, an advanced non-equilibrium three regions pressurizer model, and a passive emergency core decay heat-removed system model are adopted in the paper to develop the computerized analysis code for PWR transient thermal-hydraulic characteristics, by Compaq Visual Fortran 6.0 language. Visual input, real-time processing and dynamic visualization output are achieved by Microsoft Visual Studio. NET language. The reliability verification of the soft has been conducted by RELAP 5, and the verification results show that the software is with high calculation precision, high calculation speed, modern interface, luxuriant functions and strong operability. The software was applied to calculate the transient accident conditions for QSNP, and the analysis results are significant to the practical engineering applications. (authors)

  17. Establishment of International Cooperative Network and Cooperative Research Strategy Between Korea and USA on Nuclear Thermal Hydraulics

    International Nuclear Information System (INIS)

    Baek, Won Pil; Song, Chul Hwa; Jeong, Jae Jun; Choi, Ki Yong; Kang, Kyoung Ho

    2004-07-01

    1. Scope and Objectives of the Project - Successful holding of the NURETH-10 - Analysis of the international trends in technology development and applications for nuclear thermal-hydraulics - Establishment of the international cooperative network and cooperative research strategy between Korea and USA on nuclear thermal-hydraulics 2. Research Results - Successful holding of the NURETH-10 - Analysis of the international trends in technology development and applications for nuclear thermal-hydraulics: - Establishment of international cooperative network and cooperative research strategy focused between Korea and USA on nuclear thermal-hydraulics: 3. Application Plan of the Research Results - Utilization as the basic data/information in establishing the domestic R and D directions and the international cooperative research strategy, - Application of the relevant experiences and data bases of NURETH-10 for holding future international conferences, - Promote more effective and productive research cooperation between Korea and USA

  18. Thermal-hydraulic effects of transition to improved System 80TM fuel

    International Nuclear Information System (INIS)

    Rodack, T.; Joffre, P.F.; Kapoor, R.K.

    2004-01-01

    ABB CE's improved System 80 TM PWR fuel design includes GUARDIAN debris-resistant features and laser-welded Zircaloy grids. The GUARDIAN features include an Inconel grid with debris-filtering features located just above the Lower End Fitting, and a solid fuel rod bottom end cap that extends above the filtering features. Tests and analyses were done to establish the impact of these design improvements on fuel assembly hydraulic performance. Further analysis was done to determine the mixed core thermal-hydraulic performance as the transition is made over two fuel cycles to a full core of the improved System 80 TM fuel. Results confirm that the Thermal-Hydraulic (T-H) effects of the reduction in hydraulic resistance between the improved and resident fuel due to the laser-welded Zircaloy grids offsets the effects of the increased resistance GUARDIAN grid. Therefore, the mechanically improved System 80 TM fuel can be implemented with no net impact on Departure from Nucleate Boiling (DNB) margin in transition cores. (author)

  19. Implicit Treatment of Technical Specification and Thermal Hydraulic Parameter Uncertainties in Gaussian Process Model to Estimate Safety Margin

    Directory of Open Access Journals (Sweden)

    Douglas A. Fynan

    2016-06-01

    Full Text Available The Gaussian process model (GPM is a flexible surrogate model that can be used for nonparametric regression for multivariate problems. A unique feature of the GPM is that a prediction variance is automatically provided with the regression function. In this paper, we estimate the safety margin of a nuclear power plant by performing regression on the output of best-estimate simulations of a large-break loss-of-coolant accident with sampling of safety system configuration, sequence timing, technical specifications, and thermal hydraulic parameter uncertainties. The key aspect of our approach is that the GPM regression is only performed on the dominant input variables, the safety injection flow rate and the delay time for AC powered pumps to start representing sequence timing uncertainty, providing a predictive model for the peak clad temperature during a reflood phase. Other uncertainties are interpreted as contributors to the measurement noise of the code output and are implicitly treated in the GPM in the noise variance term, providing local uncertainty bounds for the peak clad temperature. We discuss the applicability of the foregoing method to reduce the use of conservative assumptions in best estimate plus uncertainty (BEPU and Level 1 probabilistic safety assessment (PSA success criteria definitions while dealing with a large number of uncertainties.

  20. An approach to model reactor core nodalization for deterministic safety analysis

    International Nuclear Information System (INIS)

    Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-01

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH 1.6 , stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D ® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M

  1. An approach to model reactor core nodalization for deterministic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my; Samsudin, Mohd Rafie, E-mail: rafies@tnb.com.my [Nuclear Energy Department, Regulatory Economics & Planning Division, Tenaga Nasional Berhad (Malaysia); Mamat Ibrahim, Mohd Rizal, E-mail: m-rizal@nuclearmalaysia.gov.my [Prototypes & Plant Development Center, Malaysian Nuclear Agency (Malaysia); Roslan, Ridha, E-mail: ridha@aelb.gov.my; Sadri, Abd Aziz [Nuclear Installation Divisions, Atomic Energy Licensing Board (Malaysia); Farid, Mohd Fairus Abd [Reactor Technology Center, Malaysian Nuclear Agency (Malaysia)

    2016-01-22

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  2. An approach to model reactor core nodalization for deterministic safety analysis

    Science.gov (United States)

    Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-01

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  3. A General Model for Thermal, Hydraulic and Electric Analysis of Superconducting Cables

    CERN Document Server

    Bottura, L; Rosso, C

    2000-01-01

    In this paper we describe a generic, multi-component and multi-channel model for the analysis of superconducting cables. The aim of the model is to treat in a general and consistent manner simultaneous thermal, electric and hydraulic transients in cables. The model is devised for most general situations, but reduces in limiting cases to most common approximations without loss of efficiency. We discuss here the governing equations, and we write them in a matrix form that is well adapted to numerical treatment. We finally demonstrate the model capability by comparison with published experimental data on current distribution in a two-strand cable.

  4. Review and investigations of oscillatory flow behaviour of a horizontal ceiling opening for nuclear containment and fire safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P.K.; Singh, R.K.; Ghosh, A.K. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Reactor Safety Div.

    2011-05-15

    In the thermal hydraulics codes developed for fire safety analysis and for containment thermal hydraulic analysis, junctions in the multi-compartment geometries is often modeled as uni-directional junctions. However, ceiling junctions are known to depict unstable/oscillatory bi-directional flow behavior. Detailed investigations have been carried out to understand the unstable flow behaviour of a junction by analyzing an earlier reported experiment and its subsequent two dimensional numerical RANS based study of fire in an enclosure. The authors attempt more realistic and desired three dimensional and inherently transient large eddy simulations using a computer code Fire Dynamics Simulator (FDS). The paper presents the details of the analysis, the results obtained and further studies required to be conducted so that the findings can be applied to the fire/containment thermal hydraulics analysis codes successfully. (orig.)

  5. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 3: Thermal hydraulic research and codes; Digital instrumentation and control; Structural performance

    International Nuclear Information System (INIS)

    Monteleone, S.

    1998-04-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) thermal hydraulic research and codes; (2) digital instrumentation and control; (3) structural performance

  6. Thermal-hydraulic modeling of porous bed reactors

    International Nuclear Information System (INIS)

    Araj, K.J.; Nourbakhsh, H.P.

    1987-01-01

    Optimum design of nuclear reactor cores requires an iterative approach between the thermal-hydraulic, neutronic, and operational analysis. This paper will concentrate on the thermal-hydraulic behavior of a hydrogen-cooled small particle bed reactor (PBR). The PBR core modeled here consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flows, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit to a common plenum. A fast running one-dimensional lumped-parameter steady-state code (FTHP) was developed to evaluate the effects of design changes in fuel assembly and power distribution. Another objective for the code was to investigate various methods of coolant control to minimize hot channel effects and maximize outlet temperatures

  7. Thermal-hydraulic analysis code development and application to passive safety reactor at JAERI

    International Nuclear Information System (INIS)

    Araya, F.

    1995-01-01

    After a brief overview of safety assessment process, the author describes the LOCA analysis code system developed in JAERI. It comprises audit calculation code (WREM, WREM-J2, Japanese own code and BE codes (2D/3D, ICAP, ROSA). The codes are applied to development of Japanese passive safety reactor concept JPSR. Special attention is paid to the passive heat removal system and phenomena considered to occur under loss of heat sink event. Examples of LOCA analysis based on operation of JPSR for the cases of heat removal by upper RHR and heat removal from core to atmosphere are given. Experiments for multi-dimensional flow field in RPV and steam condensation in water pool are used for understanding the phenomena in passive safety reactors. The report is in a poster form only. 1 tab., 13 figs

  8. 3-D thermal hydraulic analysis of transient heat removal from fast reactor core using immersion coolers

    International Nuclear Information System (INIS)

    Chvetsov, I.; Volkov, A.

    2000-01-01

    For advanced fast reactors (EFR, BN-600M, BN-1600, CEFR) the special complementary loop is envisaged in order to ensure the decay heat removal from the core in the case of LOF accidents. This complementary loop includes immersion coolers that are located in the hot reactor plenum. To analyze the transient process in the reactor when immersion coolers come into operation one needs to involve 3-D thermal hydraulics code. Furthermore sometimes the problem becomes more complicated due to necessity of simulation of the thermal hydraulics processes into the core interwrapper space. For example on BN-600M and CEFR reactors it is supposed to ensure the effective removal of decay heat from core subassemblies by specially arranged internal circulation circuit: 'inter-wrapper space'. For thermal hydraulics analysis of the transients in the core and in the whole reactor including hot plenum with immersion coolers and considering heat and mass exchange between the main sodium flow and sodium that moves in the inter-wrapper space the code GRIFIC (the version of GRIF code family) was developed in IPPE. GRIFIC code was tested on experimental data obtained on RAMONA rig under conditions simulating decay heat removal of a reactor with the use of immersion coolers. Comparison has been made of calculated and experimental result, such as integral characteristics (flow rate through the core and water temperature at the core inlet and outlet) and the local temperatures (at thermocouple location) as well. In order to show the capabilities of the code some results of the transient analysis of heat removal from the core of BN-600M - type reactor under loss-of-flow accident are presented. (author)

  9. RAMONA-3B/MINET composite representation of BWR thermal-hydraulic systems

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Slovik, G.; Cazzoli, E.G.; Nepsee, T.C.; Guppy, J.G.

    1985-01-01

    The modification and interfacing of two computer codes, RAMONA-3B and MINET, for the thermal hydraulic transient analysis of a Boiling Water Reactor nuclear steam supply system, is described. The RAMONA-3B code provides for multi-channel thermal hydraulics and three-dimensional (or one-dimensional) neutron kinetics analysis of a boiling water reactor core. The RAMONA-3B system representation terminates at the end of the steam line and at the junction of the feedwater line at the vessel inlet. By interfacing RAMONA-3B with MINET, a generic balance-of-plant systems analysis code, a complete BWR systems code with detailed core modeling was obtained. The result is a code of particular importance to the analysis of transients such as ATWS. A comparison between the 3-D and 1-D neutronics representation is provided, along with a test case utilizing the composite RAMONA-3B/MINET code

  10. ERP-IV-A program for transient thermal-hydraulic analysis of PWR plant

    International Nuclear Information System (INIS)

    Dai Anguo; Tang Jiahuan; Qian Huifu; Gao Zhikang

    1987-12-01

    The author deal with the descriptions of physical model of transient process in PWR plant and the function of ERP-IV (ERR-IV Transient Thermo-Hydraulic Analysis Code). The code has been developed for safety analysis and design transient. The code is characterized by the multi-loop long-term, short term, wide-range plant simulation with the capability to analyze natural circulation condition. The description of ERP-IV includes following parts: reactor, primary coolant loops, pressurizer, steam generators, main steam system, turbine, feedwater system, steam dump, relive valves, and safety valves in secondary side, etc.. The code can use for accident analysis, such as loss of all A.C. power to power plant auxiliaries (a station blackout), loss of normal feedwater, loss of load, loss of condenser vacuum and other events causing a turbine trip, complete loss of forced reactor coolant flow, uncontrolled rod cluster control assembly bank withdrawal. It can also be used for accident analysis of the emergency and limiting conditions, such as feedwater line break and main steam line rupture. It can also be utilized as a tool for system design studies, component design, setpoint studies and design transition studies, etc

  11. Final report of the 'Nordic thermal-hydraulic and safety network (NOTNET)' - Project

    Energy Technology Data Exchange (ETDEWEB)

    Tuunanen, J.; Tuomainen, M. [VTT Processes (Finland)

    2005-04-01

    A Nordic network for thermal-hydraulics and nuclear safety research was started. The idea of the network is to combine the resources of different research teams in order to carry out more ambitious and extensive research programs than would be possible for the individual teams. From the very beginning, the end users of the research results have been integrated to the network. Aim of the network is to benefit the partners involved in nuclear energy in the Nordic Countries (power companies, reactor vendors, safety regulators, research units). First task within the project was to describe the resources (personnel, know-how, simulation tools, test facilities) of the various teams. Next step was to discuss with the end users about their research needs. Based on these steps, few most important research topics with defined goals were selected, and coarse road maps were prepared for reaching the targets. These road maps will be used as a starting point for planning the actual research projects in the future. The organisation and work plan for the network were established. National coordinators were appointed, as well as contact persons in each participating organisation, whether research unit or end user. This organisation scheme is valid for the short-term operation of NOTNET when only Nordic organisations take part in the work. Later on, it is possible to enlarge the network e.g. within EC framework programme. The network can now start preparing project proposals and searching funding for the first common research projects. (au)

  12. Proceedings of the 8. Brazilian Meeting on Reactor Physics and Thermal Hydraulics

    International Nuclear Information System (INIS)

    1991-01-01

    Some papers about pressurized light water reactors, fast reactors, accident analysis, transients, research reactors, nuclear data collection, thermal hydraulics, reactor monitoring, neutronics are presented. (E.G.)

  13. Development of a preliminary PIRT (Phenomena Identification and Ranking Table) of thermal-hydraulic phenomena for 330MWt SMART integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Lee, W. J.; Sim, S. K.; Song, J. H.; Kim, H. C.

    1997-09-01

    The work reported in this document identifies the thermal-hydraulic phenomena that are expected to occur during a number of key transients in a 330 MWt SMART integral reactor which is under development at KAERI. The result of this efforts is based on the current design concept of SMART integral reactor. Although the design is still evolving, the preliminary Phenomena Identification and Ranking Table (PIRT) has been developed based on the experts` knowledge and experience. The preliminary PIRT has been developed by the consensus of KAERI expert panelists and AHP (Analytical Hierarchy Process). Preliminary PIRT developed in this report is intended for use to identify and integrate development areas of further experimental tests needed and thermal-hydraulic models and correlations and code improvements for the safety analysis of the SMART integral reactor. (author). 7 refs., 21 tabs., 22 figs.

  14. Hydraulic performance of compacted clay liners under simulated daily thermal cycles.

    Science.gov (United States)

    Aldaeef, A A; Rayhani, M T

    2015-10-01

    Compacted clay liners (CCLs) are commonly used as hydraulic barriers in several landfill applications to isolate contaminants from the surrounding environment and minimize the escape of leachate from the landfill. Prior to waste placement in landfills, CCLs are often exposed to temperature fluctuations which can affect the hydraulic performance of the liner. Experimental research was carried out to evaluate the effects of daily thermal cycles on the hydraulic performance of CCLs under simulated landfill conditions. Hydraulic conductivity tests were conducted on different soil specimens after being exposed to various thermal and dehydration cycles. An increase in the CCL hydraulic conductivity of up to one order of magnitude was recorded after 30 thermal cycles for soils with low plasticity index (PI = 9.5%). However, medium (PI = 25%) and high (PI = 37.2%) plasticity soils did not show significant hydraulic deviation due to their self-healing potential. Overlaying the CCL with a cover layer minimized the effects of daily thermal cycles, and maintained stable hydraulic performance in the CCLs even after exposure to 60 thermal cycles. Wet-dry cycles had a significant impact on the hydraulic aspect of low plasticity CCLs. However, medium and high plasticity CCLs maintained constant hydraulic performance throughout the test intervals. The study underscores the importance of protecting the CCL from exposure to atmosphere through covering it by a layer of geomembrane or an interim soil layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Perturbative methods applied for sensitive coefficients calculations in thermal-hydraulic systems

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de

    1993-01-01

    The differential formalism and the Generalized Perturbation Theory (GPT) are applied to sensitivity analysis of thermal-hydraulics problems related to pressurized water reactor cores. The equations describing the thermal-hydraulic behavior of these reactors cores, used in COBRA-IV-I code, are conveniently written. The importance function related to the response of interest and the sensitivity coefficient of this response with respect to various selected parameters are obtained by using Differential and Generalized Perturbation Theory. The comparison among the results obtained with the application of these perturbative methods and those obtained directly with the model developed in COBRA-IV-I code shows a very good agreement. (author)

  16. Development of core thermal-hydraulics module for intelligent reactor design system (IRDS)

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki; Fujii, Sadao.

    1994-08-01

    We have developed an innovative reactor core thermal-hydraulics module where a designer can easily and efficiently evaluate his design concept of a new type reactor in the thermal-hydraulics field. The main purpose of this module is to decide a feasible range of basic design parameters of a reactor core in a conceptual design stage of a new type reactor. The module is to be implemented in Intelligent Reactor Design System (IRDS). The module has the following characteristics; 1) to deal with several reactor types, 2) four thermal hydraulics and fuel behavior analysis codes are installed to treat different type of reactors and design detail, 3) to follow flexibly modification of a reactor concept, 4) to provide analysis results in an understandable way so that a designer can easily evaluate feasibility of his concept, and so on. The module runs on an engineering workstation (EWS) and has a user-friendly man-machine interface on a pre- and post-processing. And it is equipped with a function to search a feasible range called as Design Window, for two design parameters by artificial intelligence (AI) technique and knowledge engineering. In this report, structure, guidance for users of an usage of the module and instruction of input data for analysis modules are presented. (author)

  17. Fuel management service for Tarapur Atomic Power Station core thermal hydraulics

    International Nuclear Information System (INIS)

    Saha, D.; Venkat Raj, V.; Markandeya, S.G.

    1977-01-01

    Core thermal hydraulic analysis forms an integral part of the fuel management service for the Tarapur reactors. A distinguishing feature of boiling water reactors is the dependence of core flow distribution on the power distribution. Because of the changes in the axial and radial power distribution from cycle to cycle as well as during the cycle and also the variations in leakage flow, it is necessary to evaluate the core thermal hydraulic parameters for every cycle. Some of the typical results obtained in the course of analysis for different cycles of both the units at Tarapur are presented. The use of MCPR (Minimum Critical Power Ratio), instead of MCHFR (Minimum Critical Heat Flux Ratio) as a figure of merit for fuel cladding integrity is also discussed. (K.B.)

  18. Neutronic, thermal-hydraulics and safety calculations of a Miniplate Irradiation Device (MID) of dispersion type fuel elements

    International Nuclear Information System (INIS)

    Domingos, Douglas Borges

    2010-01-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of a Miniplate Irradiation Device (MID) to be placed in the IEA-R1 reactor core. The irradiation device is used to receive miniplates of U 3 O 8 -Al and U 3 Si 2 - Al dispersion fuels, LEU type (19.75 % 235 U) with uranium densities of, respectively, 3.2 gU/cm 3 and 4.8 gU/cm 3 . The fuel miniplates will be irradiated to nominal 235 U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor (RMB), now in the conception phase. For the neutronic calculation, the computer codes CITATION and 2DB were utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation should occur without adverse consequences in the IEA-R1 reactor. (author)

  19. A comprehensive review on the methodologies to simulate the nuclear fuel bundle for the thermal hydraulic experiments

    International Nuclear Information System (INIS)

    Vishnoi, A.K.; Chandraker, D.K.; Pal, A.K.; Vijayan, P.K.; Saha, D.

    2011-01-01

    The designer of a nuclear reactor system has to ensure its safety during normal operation as well as accidental conditions. This requires, among other things, a proper understanding of the various thermal hydraulic phenomena occurring in the reactor core. In a nuclear reactor core the fuel elements are the heat source and highly loaded components of the reactor system. Therefore their behaviour under normal and accidental conditions must be extensively investigated. Data generation for Critical heat flux (CHF) in full scale bundle and parallel channel instability studies with at least two full size channels are required in order to evaluate the thermal margin and stability margin of the reactor. The complex nature of these phenomena calls for exhaustive experimental investigations. Fuel Rod Cluster Simulator (FRCS) is a very important component required for the experimental investigation of the thermal hydraulic behaviour of reactor fuel elements under normal and accidental conditions. This paper brings out a comprehensive review of the FRCS elaborating the challenges and important design aspects of the FRCS. Some of the main features and analysis results on the performance of the developed FRCS with respect to the actual nuclear fuel bundle will be presented in the paper. (author)

  20. Thermal-hydraulic feedback model to calculate the neutronic cross-section in PWR reactions

    International Nuclear Information System (INIS)

    Santiago, Daniela Maiolino Norberto

    2011-01-01

    In neutronic codes,it is important to have a thermal-hydraulic feedback module. This module calculates the thermal-hydraulic feedback of the fuel, that feeds the neutronic cross sections. In the neutronic co de developed at PEN / COPPE / UFRJ, the fuel temperature is obtained through an empirical model. This work presents a physical model to calculate this temperature. We used the finite volume technique of discretized the equation of temperature distribution, while calculation the moderator coefficient of heat transfer, was carried out using the ASME table, and using some of their routines to our program. The model allows one to calculate an average radial temperature per node, since the thermal-hydraulic feedback must follow the conditions imposed by the neutronic code. The results were compared with to the empirical model. Our results show that for the fuel elements near periphery, the empirical model overestimates the temperature in the fuel, as compared to our model, which may indicate that the physical model is more appropriate to calculate the thermal-hydraulic feedback temperatures. The proposed model was validated by the neutronic simulator developed in the PEN / COPPE / UFRJ for analysis of PWR reactors. (author)

  1. Simulation of thermal-hydraulic process in reactor of HTR-PM based on flow and heat transfer network

    International Nuclear Information System (INIS)

    Zhou Kefeng; Zhou Yangping; Sui Zhe; Ma Yuanle

    2012-01-01

    The development of HTR-PM full scale simulator (FSS) is an important part in the project. The simulation of thermal-hydraulic process in reactor is one of the key technologies in the development of FSS. The simulation of thermal-hydraulic process in reactor was studied. According to the geometry structures and the characteristics of thermal-hydraulic process in reactor, the model was setup in components construction way. Based on the established simulation method of flow and heat transfer network, a Fortran code was developed and the simulation of thermal-hydraulic process was achieved. The simulation results of 50% FP steady state, 100% FP steady state and control rod mistakenly ascension accidents were given. The verification of simulation results was carried out by comparing with the design and analysis code THERMIX. The results show that the method and model based on flow and heat transfer network can meet the requirements of FSS and reflect the features of thermal-hydraulic process in HTR-PM. (authors)

  2. Transient three-dimensional thermal-hydraulic analysis of nuclear reactor fuel rod arrays: general equations and numerical scheme

    International Nuclear Information System (INIS)

    Wnek, W.J.; Ramshaw, J.D.; Trapp, J.A.; Hughes, E.D.; Solbrig, C.W.

    1975-11-01

    A mathematical model and a numerical solution scheme for thermal-hydraulic analysis of fuel rod arrays are given. The model alleviates the two major deficiencies associated with existing rod array analysis models, that of a correct transverse momentum equation and the capability of handling reversing and circulatory flows. Possible applications of the model include steady state and transient subchannel calculations as well as analysis of flows in heat exchangers, other engineering equipment, and porous media

  3. Follow 1.1 - a program for visualization of Thermal-Hydraulic computer simulations. User's manual

    International Nuclear Information System (INIS)

    Hyvarinen, J.

    1990-04-01

    FOLLOW is a computer program designed to function as an analyst's aid when performing large thermalhydraulic and related safety calculations using the well known simulation codes RELAP5, MELCOR, SMABRE and TRAB. The code is a by-product of the effort to improve the analysis capabilities of the Finnish Centre for Radiation and Nuclear Safety (STUK). FOLLOW's most important application is as an on-line 'window' into the progress of the simulation calculation. The thermal-hydraulic analyses related to nuclear safety routinely require very long calculation times. FOLLOW provides a possibility to follow the course of the simulation and thus make observations of the results already during the simulation. FOLLOW's various outputs have been designed to mimic those available at nuclear power plant operators' console. Thus FOLLOW can also be used much like a nuclear power plant simulator. This manual describes the usages, features and input requirements of FOLLOW version 1.1, including a sample problem input and various outputs. (orig.)

  4. PANDA a multi-purpose thermal-hydraulics facility devoted to nuclear reactor containment safety analysis

    International Nuclear Information System (INIS)

    Paladino, Domenico

    2014-01-01

    This paper presents the multi purpose facility PANDA devised for the safety analysis of nuclear reactor containment. The passive safety systems for LWRs have been explained with details about the PAssive Nachzerfallswärmeabfuhr und Druck-Abbau Testanlage (PANDA)

  5. Analysis of SCARABEE BE+3 experiment with ASTEC-Na and comparison with other SFR safety analysis codes

    International Nuclear Information System (INIS)

    Bandini, Giacomino; Ederli, Stefano; Perez-Martin, Sara; Pfrang, Werner; Girault, Nathalie; Cloarec, Laure

    2017-01-01

    The ASTEC-Na code was further developed and assessed in the frame of JASMIN project of the 7th EU Framework Program to extend the original capability of ASTEC, dealing with severe accident analysis in LWR to Sodium-cooled Fast Reactors (SFR). The in-pile BE+3 experiment from the SCARABEE-N program has been simulated with ASTEC-Na for thermal-hydraulic models validation purpose. The adequacy of ASTEC-Na thermal-hydraulic models has been also investigated through the comparison with other safety analysis codes. The analysis of SCARABEE BE+3 test confirms the good performance of ASTEC-Na code in the calculation of single-phase conditions and boiling onset, while larger deviations are encountered in the analysis of the two-phase conditions, mainly regarding the propagation of the boiling front. Furthermore, reasonable agreement was found with other code results. (author)

  6. Thermal-hydraulic analysis for changing feedwater check valve leakage rate testing methodology

    International Nuclear Information System (INIS)

    Fuller, R.; Harrell, J.

    1996-01-01

    The current design and testing requirements for the feedwater check valves (FWCVs) at the Grand Gulf Nuclear Station are established from original licensing requirements that necessitate extremely restrictive air testing with tight allowable leakage limits. As a direct result of these requirements, the original high endurance hard seats in the FWCVs were modified with elastomeric seals to provide a sealing surface capable of meeting the stringent air leakage limits. However, due to the relatively short functional life of the elastomeric seals compared to the hard seats, the overall reliability of the sealing function actually decreased. This degraded performance was exhibited by frequent seal failures and subsequent valve repairs. The original requirements were based on limited analysis and the belief that all of the high energy feedwater vaporized during the LOCA blowdown. These phenomena would have resulted in completely voided feedwater lines and thus a steam environment within the feedwater leak pathway. To challenge these criteria, a comprehensive design basis accident analysis was developed using the RELAP5/MOD3.1 thermal-hydraulic code. Realistic assumptions were used to more accurately model the post-accident fluid conditions within the feedwater system. The results of this analysis demonstrated that no leak path exists through the feedwater lines during the reactor blowdown phase and that sufficient subcooled water remains in various portions of the feedwater piping to form liquid water loop seals that effectively isolate this leak path. These results provided the bases for changing the leak testing requirements of the FWCVs from air to water. The analysis results also established more accurate allowable leakage limits, determined the real effective margins associated with the FWCV safety functions, and led to design changes that improved the overall functional performance of the valves

  7. Thermal-hydraulic analysis for changing feedwater check valve leakage rate testing methodology

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, R.; Harrell, J.

    1996-12-01

    The current design and testing requirements for the feedwater check valves (FWCVs) at the Grand Gulf Nuclear Station are established from original licensing requirements that necessitate extremely restrictive air testing with tight allowable leakage limits. As a direct result of these requirements, the original high endurance hard seats in the FWCVs were modified with elastomeric seals to provide a sealing surface capable of meeting the stringent air leakage limits. However, due to the relatively short functional life of the elastomeric seals compared to the hard seats, the overall reliability of the sealing function actually decreased. This degraded performance was exhibited by frequent seal failures and subsequent valve repairs. The original requirements were based on limited analysis and the belief that all of the high energy feedwater vaporized during the LOCA blowdown. These phenomena would have resulted in completely voided feedwater lines and thus a steam environment within the feedwater leak pathway. To challenge these criteria, a comprehensive design basis accident analysis was developed using the RELAP5/MOD3.1 thermal-hydraulic code. Realistic assumptions were used to more accurately model the post-accident fluid conditions within the feedwater system. The results of this analysis demonstrated that no leak path exists through the feedwater lines during the reactor blowdown phase and that sufficient subcooled water remains in various portions of the feedwater piping to form liquid water loop seals that effectively isolate this leak path. These results provided the bases for changing the leak testing requirements of the FWCVs from air to water. The analysis results also established more accurate allowable leakage limits, determined the real effective margins associated with the FWCV safety functions, and led to design changes that improved the overall functional performance of the valves.

  8. Applications for coupled core neutronics and thermal-hydraulic models

    International Nuclear Information System (INIS)

    Eller, J.

    1996-01-01

    The unprecedented increases in computing capacity that have occurred during the last decade have affected our sciences, and thus our lives, to an extent that is difficult to overstate. All indications are that this trend will continue for years to come. Nuclear reactor systems analysis is one of many areas of engineering that has changed dramatically as a result of this evolution. Our ability to model the various mechanical and physical systems in greater and greater detail has allowed significant improvements in operational efficiency in spite of increasing regulatory requirements. Many of these efficiencies result from the use of more complex and geometrically detailed computer modeling, which is used to justify a reduction or elimination of some of the conservatisms required by earlier, less sophisticated analyses. And more recently, as our industries open-quotes downsize,close quotes efforts are being made to find ways to use the ever-increasing computing capacity to design systems that accomplish more work, in less time, and with fewer people. The balance of this paper discusses some of the visions that Duke Power Company feels would most benefit their particular methodologies. One of the concepts receiving a lot of attention involves an automated coupling of a thermal-hydraulic plant systems analysis model to a three-dimensional core neutronics program. The thermal-hydraulic analysis of several postulated system transients incorporates large conservatisms because of limited ability to model complex time-dependent asymmetric heat sources in adequate geometric detail. For these transients, the core behavior is closely coupled with the thermal-hydraulic behavior of the total plant system and vice versa. Steam-line break, uncontrolled rod withdrawal, and rod drop anayses are likely to benefit most from this type of linked process

  9. Installation of aerosol behavior model into multi-dimensional thermal hydraulic analysis code AQUA

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Yamaguchi, Akira

    1997-12-01

    The safety analysis of FBR plant system for sodium leak phenomena needs to evaluate the deposition of the aerosol particle to the components in the plant, the chemical reaction of aerosol to humidity in the air and the effect of the combustion heat through aerosol to the structural component. For this purpose, ABC-INTG (Aerosol Behavior in Containment-INTeGrated Version) code has been developed and used until now. This code calculates aerosol behavior in the gas area of uniform temperature and pressure by 1 cell-model. Later, however, more detailed calculation of aerosol behavior requires the installation of aerosol model into multi-cell thermal hydraulic analysis code AQUA. AQUA can calculate the carrier gas flow, temperature and the distribution of the aerosol spatial concentration. On the other hand, ABC-INTG can calculate the generation, deposition to the wall and flower, agglomeration of aerosol particle and figure out the distribution of the aerosol particle size. Thus, the combination of these two codes enables to deal with aerosol model coupling the distribution of the aerosol spatial concentration and that of the aerosol particle size. This report describes aerosol behavior model, how to install the aerosol model to AQUA and new subroutine equipped to the code. Furthermore, the test calculations of the simple structural model were executed by this code, appropriate results were obtained. Thus, this code has prospect to predict aerosol behavior by the introduction of coupling analysis with multi-dimensional gas thermo-dynamics for sodium combustion evaluation. (J.P.N.)

  10. Computational features of the MELT-III neutronics, thermal-hydraulics computer code system

    International Nuclear Information System (INIS)

    Wilburn, N.P.; Waltar, A.E.

    1976-01-01

    A multichannel, thermal-hydraulics, neutronic accident analysis program for simulating fast reactor behavior from a hypothetical accident inception to the start of core disassembly or to reactor shutdown is described

  11. Experimental studies of thermo-hydraulic processes during passive safety systems operation in new WWER NPP projects

    International Nuclear Information System (INIS)

    Morozov, A.V.; Remizov, O.V.; Kalyakin, D.S.

    2014-01-01

    The results of experimental study of thermal-hydraulic processes during operation of the passive safety systems of WWER reactors of new generation are given. The interaction processes of counter flows of saturated steam and cold water in vertical steam-line of the auxiliary passive core reflood system from secondary hydraulic accumulator are studied. The peculiarities of undeveloped boiling on single horizontal tube heating by steam and steam-gas mixture, which is character for WWER steam generator condensing mode, are investigated [ru

  12. Thermal-hydraulic calculation and analysis for QNPP (Qinshan Nuclear Power Plant) containment

    International Nuclear Information System (INIS)

    Xie Hui; Zhou Jie; He Yingchao

    1993-01-01

    Three containment thermal-hydraulic codes CONTEMPT-LT/028, CONTEMPT-4/MOD3 and COMPARE are used to compute and analyse the Qinshan Nuclear Power Plant (QNPP) containment response under LOCA or MSLB conditions. An evaluation of the capability of containment of QNPP is given

  13. Assessing the thermal-hydraulic behaviour of steam generators in a CANDU-6 type NPP in the event of MSSV blockage on the open-setting

    International Nuclear Information System (INIS)

    Dinca, Elena

    2004-01-01

    This work aims at achieving an analysis regarding the thermal-hydraulic behaviour of a CANDU-6 type NPP in the event of the blockage on open-setting of an MSSV (Main Steam Safety Valve) for steam relief from steam generators. The systems studied are main steam and feedwater mixture in the secondary circuit, particularly being analyzed the behaviour of the steam generators as well as the primary heat transfer and the control system of heavy water pressure and inventory in the primary system. One supposes that the MSSV blockage occurs directly after its opening in the event of an accident that led to the a steam pressure rise in the steam generators up to the threshold value of MSSV o penning. The analysis was applied to two events of initiation which lead to MSSV o penning, namely a Class IV loss of electric supply and loss of vacuum in turbine condenser. In the simulation of the events selected for analysis a long elapse of time is supposed (3600 seconds) and no operator intervention while the NPP is operating at rating power and equilibrium fuel regime. Each of the two events were analyzed for two distinct sets of conditions of event initiation and evolution. The study was focussed on the behaviour of NPP, particularly of the steam generators, and on the estimation of the amount of water in the secondary circuit released into the atmosphere during the event. The analysis is of deterministic type and supplies information required by the Probabilistic Safety Assessment (PSA) applied to nuclear facilities in establishing the operation procedures and documentation. The analysis was based on design data for a CANDU-6 NPP and the HYDN3 code for thermal-hydraulic computation in CANDU type NPPs. In the paper there are presented the analysis, methodology, models, hypotheses and the input data as well as the analyzed cases. Within the computing code some models were developed to allow simulating the event sequences chosen for analyses. The results are plotted and

  14. Development of thermal hydraulic models for the reliable regulatory auditing code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Song, C. H.; Lee, Y. J.; Kwon, T. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2003-04-15

    The objective of this project is to develop thermal hydraulic models for use in improving the reliability of the regulatory auditing codes. The current year fall under the first step of the 3 year project, and the main researches were focused on identifying the candidate thermal hydraulic models for improvement and to develop prototypical model development. During the current year, the verification calculations submitted for the APR 1400 design certification have been reviewed, the experimental data from the MIDAS DVI experiment facility in KAERI have been analyzed and evaluated, candidate thermal hydraulic models for improvement have been identified, prototypical models for the improved thermal hydraulic models have been developed, items for experiment in connection with the model development have been identified, and preliminary design of the experiment has been carried out.

  15. Development of thermal hydraulic models for the reliable regulatory auditing code

    International Nuclear Information System (INIS)

    Chung, B. D.; Song, C. H.; Lee, Y. J.; Kwon, T. S.

    2003-04-01

    The objective of this project is to develop thermal hydraulic models for use in improving the reliability of the regulatory auditing codes. The current year fall under the first step of the 3 year project, and the main researches were focused on identifying the candidate thermal hydraulic models for improvement and to develop prototypical model development. During the current year, the verification calculations submitted for the APR 1400 design certification have been reviewed, the experimental data from the MIDAS DVI experiment facility in KAERI have been analyzed and evaluated, candidate thermal hydraulic models for improvement have been identified, prototypical models for the improved thermal hydraulic models have been developed, items for experiment in connection with the model development have been identified, and preliminary design of the experiment has been carried out

  16. Thermal-hydraulic considerations for particle bed reactors

    Science.gov (United States)

    Benenati, R.; Araj, K. J.; Horn, F.

    In the design of particle bed reactor (PBR) cores, consideration must be given to the gas coolant channels and their configuration. Neutronics analysis provides the relative volume fractions of the component materials, but these must be arranged in such a manner as to allow proper cooling of all components by the gas flow at relatively low pressure drops. The thermal hydraulic aspects of this problem are addressed. A description of the computer model used in the analysis of the steady state condition is also included. Blowdown tests on hot particle bed fuel elements were carried out and are described.

  17. Loss-of-Fluid Test findings in pressurized water reactor core's thermal-hydraulic behavior

    International Nuclear Information System (INIS)

    Russell, M.

    1983-01-01

    This paper summarizes the pressurized water reactor (PWR) core's thermal-hydraulic behavior findings from experiments performed at the Loss-of-Fluid Test (LOFT) Facility at the Idaho National Engineering Laboratory. The potential impact of these findings on the safety and economics of PWR's generation of electricity is also discussed. Reviews of eight important findings in the core's physical behavior and in experimental methods are presented with supporting evidence

  18. Contribution to the study of thermal-hydraulic problems in nuclear reactors

    International Nuclear Information System (INIS)

    Cognet, G.

    1998-01-01

    In nuclear reactors, whatever the type considered, Pressurized Water Water Reactors (PWRs), Fast Breeder reactors (FBRs)..., thermal-hydraulics, the science of fluid mechanics and thermal behaviour, plays an essential role, both in nominal operating and accidental conditions. Fluid can either be the primary fluid (liquid or gas) or a very specific fluid called corium, which, in case of severe accident, could result from core and environning structure melting. The work reported here represents a 20-year contribution to thermal-hydraulic issues which could occur in FBRs and PWRs. Working on these two types of reactors, both in nominal and severe accident situations, has allowed me to compare the problems and to realize the importance of communication between research teams. The evolution in the complexity of studied problems, unavoidable in order to reduce costs and significantly improve safety, has led me from numerical modelling of single-phase flow turbulence to high temperature real melt experiments. The difficulties encountered in understanding the observed phenomena and in increasing experimental databases for computer code qualification have often entailed my participation in specific measurement device developments or adaptations, in particular non-intrusive devices generally based on optical techniques. Being concerned about the end-use of this research work, I actively participated in 'in-situ' thermalhydraulic experiments in the FBRs: Phenix and Super-Phenix, of which I appreciated their undeniable scientific contribution. In my opinion, the thermal-hydraulic questions related to severe accidents are the most complex as they are at the cross-roads of several scientific specialities. Consequently, they require a multi-disciplinary approach and a continuous see-saw motion between experimentalists and modelling teams. After a brief description of the various problems encountered, the main ones are reported. Finally, the importance for research teams to

  19. ANTEO+: A subchannel code for thermal-hydraulic analysis of liquid metal cooled systems

    Energy Technology Data Exchange (ETDEWEB)

    Lodi, F., E-mail: francesco.lodi5@unibo.it [DIN – Laboratory of Montecuccolino, University of Bologna, Via dei Colli 16, 40136 Bologna (Italy); Grasso, G., E-mail: giacomo.grasso@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Mattioli, D., E-mail: davide.mattioli@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Sumini, M., E-mail: marco.sumini@unibo.it [DIN – Laboratory of Montecuccolino, University of Bologna, Via dei Colli 16, 40136 Bologna (Italy)

    2016-05-15

    Highlights: • The code structure is presented in detail. • The performed validation is outlined. • Results are critically discussed assessing code accuracy. • Conclusions are drawn and ground for future work identified. - Abstract: Liquid metal cooled fast reactors are promising options for achieving the high degrees of safety and sustainability demanded by the Generation IV paradigm. Among the critical aspects to be addressed in the design process, thermal-hydraulics is one of the most challenging; in order to embed safety in the core conceptualization, these aspects are to be considered at the very beginning of the design process, and translated in a design perspective. For achieving these objectives the subchannel code ANTEO+ has been conceived, able to simulate pin bundle arrangements cooled by liquid metals. The main purposes of ANTEO+ are simplifying the problem description maintaining the required accuracy, enabling a more transparent interface with the user, and having a clear and identifiable application domain, in order to help the user interpreting the results and, mostly, defining their confidence. Since ANTEO+ relies on empirical correlations, the validation phase is of paramount importance along with a clear discussion on the simplifications adopted in modeling the conservation equations. In the present work a detailed description of ANTEO+ structure is given along with a thorough validation of the main models implemented for flow split, pressure drops and subchannel temperatures. The analysis confirmed the ability of ANTEO+ in reproducing experimental data in its anticipated validity domain, with a relatively high degree of accuracy when compared to other classical subchannel tools like ENERGY-II, COBRA-IV-I-MIT and BRS-TVS.

  20. GCFR thermal-hydraulic experiments

    International Nuclear Information System (INIS)

    Schlueter, G.; Baxi, C.B.; Dalle Donne, M.; Gat, U.; Fenech, H.; Hanson, D.; Hudina, M.

    1980-01-01

    The thermal-hydraulic experimental studies performed and planned for the Gas-Cooled Fast Reactor (GCFR) core assemblies are described. The experiments consist of basic studies performed to obtain correlations, and bundle experiments which provide input for code validation and design verification. These studies have been performed and are planned at European laboratories, US national laboratories, Universities in the US, and at General Atomic Company

  1. Multiple Module Simulation of Water Cooled Breeding Blankets in K-DEMO Using Thermal-Hydraulic Analysis Code MARS-KS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun; Park, Goon-Cherl; Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A preliminary concept for the Korean fusion demonstration reactor (K-DEMO) has been studied by the National Fusion Research Institute (NFRI) based on the National Fusion Roadmap of Korea. The feasibility studies have been performed in order to establish the conceptual design guidelines of the breeding blanket. As a part of the NFRI research, Seoul National University (SNU) is conducting thermal design, evaluation and validation of the water-cooled breeding blanket for the K-DEMO reactor. The purpose of this study is to extend the capability of MARS-KS to the overall blanket system analysis which includes 736 blanket modules in total. The strategy for the multi-module blanket system analysis using MARS-KS is introduced and the analysis result of the 46 blanket modules of single sector was summarized. A thermal-hydraulic analysis code for a nuclear reactor safety, MARS-KS, was applied for thermal analysis of the conceptual design of the K-DEMO breeding blanket. Then, a methodology to simulate multiple blanket modules was proposed, which uses a supervisor program to handle each blanket module individually at first and then distribute the flow rate considering the pressure drop that occurs in each module. For a feasibility test of the proposed methodology, 46 blankets in a sector, which are connected with each other through the common headers for the sector inlet and outlet, were simulated. The calculation results of flow rates, pressure drops, and temperatures showed the validity of the calculation. Because of parallelization using the MPI system, the computational time could be reduced significantly. In future, this methodology will be extended to an efficient simulation of multiple sectors, and further validation for transient simulation will be carried out for more practical applications.

  2. Thermal-hydraulic analysis for the LBE-cooled natural circulation reactor. Development of the MSG-COPD code and application to the system analysis. Research Document

    International Nuclear Information System (INIS)

    Iwasaki, Takashi; Sakai, Takaaki; Enuma, Yasuhiro; Mizuno, Tomoyasu

    2002-03-01

    Thermal-hydraulic analysis for the Lead-Bismuth eutectic (LBE)-cooled natural circulation reactor has been conducted by using a combined plant dynamics code (MSG-COPD). MSG-COPD has been developed to consider the multi-dimensional thermal-hydraulics effect on the plant dynamics during transients. Plant dynamics analyses for the LBE-cooled STAR-LM reactor, which has been designed by Argonne National Laboratory in U.S.A., have been performed to understand the basic thermal-hydraulic characteristics of the natural circulation reactor. As a result, it has been made clear that cold coolant remains in the lower plenum by the thermal stratification in case of the ULOHS condition with a severe temperature gradient at the stratified surface in the lower plenum. In addition, the flow-redistribution effect in a core channels by the buoyancy force has been evaluated for a candidate LBE-cooled FBR plant concept (LBE-FR), which has been designed by JNC. A linear evaluation method for the flow-redistribution coefficient is proposed for the LBE-FR, and compared with the multi-dimensional results by MSG-COPD. In conclusion, the method shows sufficient performance for the prediction of the flow-redistribution coefficient for typical lateral power distributions in the core. (author)

  3. Validation of the RALOC-mod.4 thermal-hydraulics code on evaporation transients in the Phebus containment

    International Nuclear Information System (INIS)

    Spitz, P.B.; Lemoine, F.; Tirini, S.

    1997-01-01

    IPSN (Nuclear Protection and Safety Institute) and GRS (Gesellschaft fur Anlagen und Reaktorsicherheit Schwertnergasse 1) are developing the ESCADRE-ASTEC systems of codes devoted to the prediction of the behaviour of water-cooled reactors during a severe accident. The RALOC-mod 4 code belongs to this system and is specifically devoted to containment thermal-hydraulics studies. IPSN has designed a Thermal Hydraulic Containment Test Program in support to the Phebus Fission Product Test Program/2/. Evaporation tests have been recently performed in the Phebus containment test facility. The objective of this work is to assess against these tests the capability of the RALOC -mod 4 code to capture the phenomena observed in these experiments and more particularly the evaporation heat transfer and wall heat transfers. (DM)

  4. Conceptual Thermal Hydraulic Design of a 20MW Multipurpose Research Reactor (KAERI/VAEC joint study on a new research reactor for Vietnam)

    International Nuclear Information System (INIS)

    Chae, Hee Taek; Seo, Chul Gyo; Park, Jong Hark; Park, Cheol; Vinh, Le Vinh; Nghiem, Huynh Ton; Dang, Vo Doan Hai

    2007-08-01

    The conceptual thermal hydraulics design analyses for the 20 MW reference AHR core have been jointly performed by the KAERI and DNRI(VAEC). The preliminary core thermal hydraulic characteristics and safety margins for the AHR core were studied for various core flow rates, fuel assembly powers and core inlet temperatures. Statistical method was applied to the thermal hydraulic design of the reactor core. The MATRA h subchannel code has been applied to evaluate the thermal hydraulic performances of the AHR and the resulting thermal margins of the core under the forced convection cooling mode during a nominal power operation and the natural circulation mode during a reactor shutdown condition. In addition, typical accident analyses were carried out for a loss of flow accident by a primary pump seizure and a reactivity induced accident by a CAR rod withdrawal during a normal full power operation. The normal full power operation of the AHR was ensured with a sufficient safety margin for the onset of nucleate boiling phenomena. The AHR also had a sufficient natural circulation cooling capability to cool the core without the onset of nucleate boiling in the channel after a normal reactor shutdown and the anticipated transients. It was confirmed by the typical accident analyses that the AHR core was sufficiently protected from the loss of flow by the primary cooling pump seizure and the overpower transients by the CAR withdrawal from the MCHFR and fuel temperature points of view

  5. Evaluation of hot spot factors for thermal and hydraulic design of HTTR

    International Nuclear Information System (INIS)

    Maruyama, So; Yamashita, Kiyonobu; Fujimoto, Nozomu; Murata, Isao; Sudo, Yukio; Murakami, Tomoyuki; Fujii, Sadao.

    1993-01-01

    High Temperature Engineering Test Reactor (HTTR) is a graphite-moderated and helium gas-cooled reactor with 30 MW in thermal power and 950degC in reactor outlet coolant temperature. One of the major items in thermal and hydraulic design of the HTTR is to evaluate the maximum fuel temperature with a sufficient margin from a viewpoint of integrity of coated fuel particles. Hot spot factors are considered in the thermal and hydraulic design to evaluate the fuel temperature not only under the normal operation condition but also under any transient condition conservatively. This report summarizes the items of hot spot factors selected in the thermal and hydraulic design and their estimated values, and also presents evaluation results of the thermal and hydraulic characteristics of the HTTR briefly. (author)

  6. Development of thermal-hydraulic analysis methodology for multiple modules of water-cooled breeder blanket in fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Im, Kihak [National Fusion Research Institute, 169-148, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2016-02-15

    Highlights: • A methodology to simulate the K-DEMO blanket system was proposed. • The results were compared with the CFD, to verify the prediction capability of MARS. • 46 Blankets in a single sector in K-DEMO were simulated using MARS-KS. • Supervisor program was devised to handle each blanket module individually. • The calculation results showed the flow rates, pressure drops, and temperatures. - Abstract: According to the conceptual design of the fusion DEMO reactor proposed by the National Fusion Research Institute of Korea, the water-cooled breeding blanket system incorporates a total of 736 blanket modules. The heat flux and neutron wall loading to each blanket module vary along their poloidal direction, and hence, thermal analysis for at least one blanket sector is required to confirm that the temperature limitations of the materials are satisfied in all the blanket modules. The present paper proposes a methodology of thermal analysis for multiple modules of the blanket system using a nuclear reactor thermal-hydraulic analysis code, MARS-KS. In order to overcome the limitations of the code, caused by the restriction on the number of computational nodes, a supervisor program was devised, which handles each blanket module separately at first, and then corrects the flow rate, considering pressure drops that occur in each module. For a feasibility test of the proposed methodology, 46 blankets in a single sector were simulated; the calculation results of the parameters, such as mass flow, pressure drops, and temperature distribution in the multiple blanket modules showed that the multi-module analysis method can be used for efficient thermal-hydraulic analysis of the fusion DEMO reactor.

  7. Real time thermal hydraulic model for high temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Sui Zhe; Sun Jun; Ma Yuanle; Zhang Ruipeng

    2013-01-01

    A real-time thermal hydraulic model of the reactor core was described and integrated into the simulation system for the high temperature gas-cooled pebble bed reactor nuclear power plant, which was developed in the vPower platform, a new simulation environment for nuclear and fossil power plants. In the thermal hydraulic model, the helium flow paths were established by the flow network tools in order to obtain the flow rates and pressure distributions. Meanwhile, the heat structures, representing all the solid heat transfer elements in the pebble bed, graphite reflectors and carbon bricks, were connected by the heat transfer network in order to solve the temperature distributions in the reactor core. The flow network and heat transfer network were coupled and calculated in real time. Two steady states (100% and 50% full power) and two transients (inlet temperature step and flow step) were tested that the quantitative comparisons of the steady results with design data and qualitative analysis of the transients showed the good applicability of the present thermal hydraulic model. (authors)

  8. Thermal-hydraulic studies on the safety of VVER-440 type nuclear power plants

    International Nuclear Information System (INIS)

    Tuunanen, J.

    1994-01-01

    The thesis includes several thermal-hydraulic analyses related to the Loviisa VVER-440 nuclear power plant units. The work consists of experimental studies, analysis of the experiments, analysis of some plant transients and development of a calculational model for calculation of boric concentrations in the reactor. In the first part of thesis, in the case of simulation of boric acid solution behaviour during long-term cooling period of LOCAs, experiments were performed in scaled-down test facilities. The experimental data together with the results of RELAP5/MOD3 simulations were used to develop a model for calculations of boric acid concentrations in the reactor during LOCAs. In the second part, in the case of simulation of horizontal generators, experiments were performed with PACTEL integral test loop to simulate loss of feedwater transients. The PACTEL experiments as well as earlier REWETT-III natural circulation tests, were analyzed with RELAP5/MOD3 Version 5m5 code. The third part of the work consists of simulations of Loviisa VVER reactor pump trip transients with RELAP5/MOD1-Eur, RELAP5/MOD3 and CATHARE codes. (56 refs., 9 figs.)

  9. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    Science.gov (United States)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  10. Development of a preliminary PIRT(Phenomena Indentification and Ranking Table) of thermal-hydraulic phenomena for SMART

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Lee, Won Jae; Kim, Hee Cheol; Song, Jin Ho; Sim, Suk Ku

    1997-01-01

    The work reported in this paper identifies the thermal-hydraluic phenomena that are expected to occur during a number of key transients in SMART (System-integrated Modular Advanced ReacTor) which is under development at KAERI. The result of this effort is based on the current design concept of SMART integral reactor. Although the design is still evolving, the preliminary Phenomena Identification and Ranking Table (PIRT) has been developed based on the expert's knowledge and experience. The preliminary PIRT has been developed by consensus of KAERI expert panelists and AHP (Analytical Hierachy Process). Preliminary PIRT developed in this paper is intended to be used to identify and integrate development areas of further experimental test needed, thermal hydraulic models and correlations and code improvements for the safety analysis of the SMART

  11. Nuclear power plant thermal-hydraulic performance research program plan

    International Nuclear Information System (INIS)

    1988-07-01

    The purpose of this program plan is to present a more detailed description of the thermal-hydraulic research program than that provided in the NRC Five-Year Plan so that the research plan and objectives can be better understood and evaluated by the offices concerned. The plan is prepared by the Office of Nuclear Regulatory Research (RES) with input from the Office of Nuclear Reactor Regulation (NRR) and updated periodically. The plan covers the research sponsored by the Reactor and Plant Systems Branch and defines the major issues (related to thermal-hydraulic behavior in nuclear power plants) the NRC is seeking to resolve and provides plans for their resolution; relates the proposed research to these issues; defines the products needed to resolve these issues; provides a context that shows both the historical perspective and the relationship of individual projects to the overall objectives; and defines major interfaces with other disciplines (e.g., structural, risk, human factors, accident management, severe accident) needed for total resolution of some issues. This plan addresses the types of thermal-hydraulic transients that are normally considered in the regulatory process of licensing the current generation of light water reactors. This process is influenced by the regulatory requirements imposed by NRC and the consequent need for technical information that is supplied by RES through its contractors. Thus, most contractor programmatic work is administered by RES. Regulatory requirements involve the normal review of industry analyses of design basis accidents, as well as the understanding of abnormal occurrences in operating reactors. Since such transients often involve complex thermal-hydraulic interactions, a well-planned thermal-hydraulic research plan is needed

  12. Thermal and hydraulic analyses of the System 81 cold traps

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.

    1977-06-15

    Thermal and hydraulic analyses of the System 81 Type I and II cold traps were completed except for thermal transients analysis. Results are evaluated, discussed, and reported. Analytical models were developed to determine the physical dimensions of the cold traps and to predict the performance. The FFTF cold trap crystallizer performances were simulated using the thermal model. This simulation shows that the analytical model developed predicts reasonably conservative temperatures. Pressure drop and sodium residence time calculations indicate that the present design will meet the requirements specified in the E-Specification. Steady state temperature data for the critical regions were generated to assess the magnitude of the thermal stress.

  13. Validation of the Thermal-Hydraulic Model in the SACAP Code with the ISP Tests

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soon-Ho; Kim, Dong-Min; Park, Chang-Hwan [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    In safety viewpoint, the pressure of the containment is the important parameter, of course, the local hydrogen concentration is also the parameter of the major concern because of its flammability and the risk of the detonation. In Korea, there have been an extensive efforts to develop the computer code which can analyze the severe accident behavior of the pressurized water reactor. The development has been done in a modularized manner and SACAP(Severe Accident Containment Analysis Package) code is now under final stage of development. SACAP code adopts LP(Lumped Parameter) model and is applicable to analyze the synthetic behavior of the containment during severe accident occurred by thermal-hydraulic transient, combustible gas burn, direct containment heating by high pressure melt ejection, steam explosion and molten core-concrete interaction. The analyses of a number of ISP(International Standard Problem) experiments were done as a part of the SACAP code V and V(verification and validation). In this paper, the SACAP analysis results for ISP-35 NUPEC and ISP-47 TOSQAN are presented including comparison with other existing NPP simulation codes. In this paper, we selected and analyzed ISP-35 NUPEC, ISP-47 TOSQAN in order to confirm the computational performance of SACAP code currently under development. Now the multi-node analysis for the ISP-47 is under process. As a result of simulation, SACAP predicts well the thermal-hydraulic variables such as temperature, pressure, etc. Also, we verify that SACAP code is properly equipped to analyze the gas distribution and condensation.

  14. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations

  15. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  16. Thermal hydraulic behavior evaluation of tank A-101

    International Nuclear Information System (INIS)

    Ogden, D.M.

    1996-01-01

    This report describes a new evaluation conducted to help understand the thermal-hydraulic behavior of tank A-101. Prior analysis of temperature data indicated that the dome space and upper waste layer was slowly increasing in temperature increases are due to increasing ambient temperatures and termination of forced ventilation. However, this analysis also indicates that other dome cooling processes are slowly decreasing, or some slow increase in heating is occurring at the waste surface. Dome temperatures are not decreasing at the rate expected as a forced ventilation termination effects are accounted for

  17. Thermal-hydraulic analysis of Ignalina NPP compartments response to group distribution header rupture using RALOC4 code

    International Nuclear Information System (INIS)

    Urbonavicius, E.

    2000-01-01

    The Accident Localisation System (ALS) of Ignalina NPP is a containment of pressure suppression type designed to protect the environment from the dangerous impact of the radioactivity. The failure of ALS could lead to contamination of the environment and prescribed public radiation doses could be exceeded. The purpose of the presented analysis is to perform long term thermal-hydraulic analysis of compartments response to Group Distribution Header rupture and verify if design pressure values are not exceeded. (authors)

  18. Whole Core Thermal-Hydraulic Design of a Sodium Cooled Fast Reactor Considering the Gamma Energy Transport

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Back, Min Ho; Park, Won Seok; Kim, Sang Ji

    2012-01-01

    Since a fuel cladding failure is the most important parameter in a core thermal-hydraulic design, the conceptual design stage only involves fuel assemblies. However, although non-fuel assemblies such as control rod, reflector, and B4C generate a relatively smaller thermal power compared to fuel assemblies, they also require independent flow allocation to properly cool down each assembly. The thermal power in non-fuel assemblies is produced from both neutron and gamma energy, and thus the core thermal-hydraulic design including non-fuel assemblies should consider an energy redistribution by the gamma energy transport. To design non-fuel assemblies, the design-limiting parameters should be determined considering the thermal failure modes. While fuel assemblies set a limiting factor with cladding creep temperature to prevent a fission product ejection from the fuel rods, non-fuel assemblies restrict their outlet temperature to minimize thermally induced stress on the upper internal structure (UIS). This work employs a heat generation distribution reflecting both neutron and gamma transport. The whole core thermal-hydraulic design including fuel and non-fuel assemblies is then conducted using the SLTHEN (Steady-State LMR Thermal-Hydraulic Analysis Code Based on ENERGY Model) code. The other procedures follow from the previous conceptual design

  19. Thermal-hydraulics design comparisons for the tandem mirror hybrid reactor blanket

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Yang, Y.S.; Schultz, K.R.

    1980-09-01

    The Tandem Mirror Hybrid Reactor (TMHR) is a cylindrical reactor, and the fertile materials and tritium breeding fuel elements can be arranged with radial or axial orientation in the blanket module. Thermal-hydraulics performance comparisons were made between plate, axial rod and radial rod fuel geometrices. The three configurations result in different coolant/void fractions and different clad/structure fractions. The higher void fraction in the two rod designs means that these blankets will have to be thicker than the plate design blanket in order to achieve the same level of nuclear interactions. Their higher structural fractions will degrade the uranium breeding ratio and energy multiplication factor of the design. One difficulty in the thermal-hydraulics analysis of the plate design was caused by the varying energy multiplication of the blanket during the lifetime of the plate which forced the use of designs that operated in the transition flow regime at some point during life. To account for this, an approach was adopted from Gas Cooled Fast Reactor (GCFR) experience for the pressure drop calculation and the corresponding heat transfer coefficient that was used for the film drop thermal calculation. Because of the superior nuclear performance, the acceptable thermal-hydraulic characteristics and the mechanical design feasibility, the plate geometry concept was chosen for the reference gas-cooled TMHR blanket design

  20. Improvement of computer programs 'BAMBOO' and 'ASFRE-IV' for coupling analysis of deformation and thermal-hydraulics in a high burn-up fuel subassembly of fast reactor

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ohshima, Hiroyuki; Imai, Yasutomo

    2003-04-01

    A simulation system of a deformed fuel subassembly is being developed for the structure integrity of high burn-up wire-spacer-type fuel subassemblies of sodium-cooled fast breeder reactors. This report describes a computer program improvement work for coupling analyses of deformation and thermal-hydraulics in a fuel subassembly as part of the simulation system development. In this work, a function of data conversion as an interface between a bundle deformation analysis program BAMBOO and a thermal hydraulic analysis program ASFRE-IV was incorporated to each program. BAMBOO was improved to accept the coolant temperature data from ASFRE-IV and to offer bundle deformation data to ASFRE-IV. ASFRE-IV was also improved to offer the coolant temperature data to BAMBOO and to obtain the bundle deformation data from BAMBOO. Improved BAMBOO and ASFRE-IV were applied to an analysis of 169-pin bundle for the program verification. It was confirmed that the coupling analysis gave the physically reasonable results on both deformation and thermal hydraulic behaviors in the fuel subassembly. (author)

  1. Steady state thermal hydraulic analysis of LMR core using COBRA-K code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eui Kwang; Kim, Young Gyun; Kim Young In; Kim Young Cheol

    1997-02-01

    A thermal hydraulics analysis code COBRA-K is being developed by the KAERI LMR core design technology development team. COBRA-K is a part of the integrated computation system for LMR core design and analysis, the K-CORE system. COBRA-K is supposed to predict the flow and temperature distributions in LMR core. COBRA-K is an extension of the previously published COBRA-IV-I code with several functional improvements. Specially COBRA-K has been improved to analyze single and multi-assembly, and whole-core in the transient condition. This report describes the overall features of COBRA-K and gives general input descriptions. The 19 pin assembly experimental data of ORNL were used to verify the accuracy of this code for the steady state analysis. The comparative results show good agreements between the calculated and the measured data. And COBRA-K can be used to predict flow and temperature distributions for the LMR core design. (author). 7 refs., 6 tabs., 13 figs.

  2. Proceedings of the ANS/ASME/NRC international topical meeting on nuclear reactor thermal-hydraulics: LMFBR and HTGR advanced reactor concepts and analysis methods

    International Nuclear Information System (INIS)

    1980-01-01

    Separate abstracts are included for each of the papers presented concerning the thermal-hydraulics of LMFBR type reactors; mathematical methods in nuclear reactor thermal-hydraulics; heat transfer in gas-cooled reactors; and thermal-hydraulics of pebble-bed reactors. Two papers have been previously abstracted and input to the data base

  3. A THERMAL-HYDRAULIC SYSTEM FOR THE CONVERSION AND THE STORAGE OF ENERGY

    Directory of Open Access Journals (Sweden)

    MITRAN Tudor

    2016-05-01

    Full Text Available The paper proposes the concept design of a thermal-hydraulic system that converts the thermal energy (from the geothermal water, from the cooling water of power equipment, from exhaust gasses, and so. in hydrostatic energy, that is stored in a hydraulic accumulator. The hydraulic energy can be converted into electrical energy when needed.

  4. 2-D CFD time-dependent thermal-hydraulic simulations of CANDU-6 moderator flows

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi Zadeh, Foad [Department of Engineering Physics/Polytechnique Montréal, Montréal, QC (Canada); Étienne, Stéphane [Department of Mechanical Engineering/Polytechnique Montréal, Montréal, QC (Canada); Teyssedou, Alberto, E-mail: alberto.teyssedou@polymtl.ca [Department of Engineering Physics/Polytechnique Montréal, Montréal, QC (Canada)

    2016-12-01

    Highlights: • 2-D time-dependent CFD simulations of CANDU-6 moderator flows are presented. • A thermal-hydraulic code using thermal physical fluid properties is used. • The numerical approach and convergence is validated against available data. • Flow configurations are correlated using Richardson’s number. • Frequency components indicate moderator flow oscillations vs. Richardson numbers. - Abstract: The distribution of the fluid temperature and mass density of the moderator flow in CANDU-6 nuclear power reactors may affect the reactivity coefficient. For this reason, any possible moderator flow configuration and consequently the corresponding temperature distributions must be studied. In particular, the variations of the reactivity may result in major safety issues. For instance, excessive temperature excursions in the vicinity of the calandria tubes nearby local flow stagnation zones, may bring about partial boiling. Moreover, steady-state simulations have shown that for operating condition, intense buoyancy forces may be dominant, which can trigger a thermal stratification. Therefore, the numerical study of the time-dependent flow transition to such a condition, is of fundamental safety concern. Within this framework, this paper presents detailed time-dependent numerical simulations of CANDU-6 moderator flow for a wide range of flow conditions. To get a better insight of the thermal-hydraulic phenomena, the simulations were performed by covering long physical-time periods using an open-source code (Code-Saturne V3) developed by Électricité de France. The results show not only a region where the flow is characterized by coherent structures of flow fluctuations but also the existence of two limit cases where fluid oscillations disappear almost completely.

  5. Current Development and Trends in Thermal-Hydraulics

    International Nuclear Information System (INIS)

    Toth, I.

    2008-01-01

    A review of CSNI activities during the last two decades in the field of thermal-hydraulics and related topics has been extensively presented in sessions 2. to 9. New activities are in progress or planned partly based on recommendations of the CSNI Operating Plan and the CSNI SESAR SFEAR report, but also on requests coming from the member states. These activities are performed in the frame of the CSNI Working Group on the Analysis and Management of Accidents (GAMA) or in the frame of CSNI Projects. These actions are summarized in this paper.

  6. Thermal hydraulics in the hot pool of Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Padmakumar, G.; Pandey, G.K.; Vaidyanathan, G.

    2009-01-01

    Sodium cooled Fast Breeder Test Reactor (FBTR) of 40 MWt/13 MWe capacity is in operation at Kalpakkam, near Chennai. Presently it is operating with a core of 10.5 MWt. Knowledge of temperatures and flow pattern in the hot pool of FBTR is essential to assess the thermal stresses in the hot pool. While theoretical analysis of the hot pool has been conducted by a three-dimensional code to access the temperature profile, it involves tuning due to complex geometry, thermal stresses and vibration. With this in view, an experimental model was fabricated in 1/4 scale using acrylic material and tests were conducted in water. Initially hydraulic studies were conducted with ambient water maintaining Froude number similarity. After that thermal studies were conducted using hot and cold water maintaining Richardson similitude. In both cases Euler similarity was also maintained. Studies were conducted simulating both low and full power operating conditions. This paper discusses the model simulation, similarity criteria, the various thermal hydraulic studies that were carried out, the results obtained and the comparison with the prototype measurements.

  7. Validation of coupled neutronic / thermal-hydraulic codes for VVER reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mittag, S.; Grundmann, U.; Kliem, S.; Kozmenkov, Y.; Rindelhardt, U.; Rohde, U.; Weiss, F.-P.; Langenbuch, S.; Krzykacz-Hausmann, B.; Schmidt, K.-D.; Vanttola, T.; Haemaelaeinen, A.; Kaloinen, E.; Kereszturi, A.; Hegyi, G.; Panka, I.; Hadek, J.; Strmensky, C.; Darilek, P.; Petkov, P.; Stefanova, S.; Kuchin, A.; Khalimonchuk, V.; Hlbocky, P.; Sico, D.; Danilin, S.; Ionov, V.; Nikonov, S.; Powney, D.

    2004-08-01

    In recent years, the simulation methods for the safety analysis of nuclear power plants have been continuously improved to perform realistic calculations. Therefore in VALCO work package 2 (WP 2), the usual application of coupled neutron-kinetic / thermal-hydraulic codes to VVER has been supplemented by systematic uncertainty and sensitivity analyses. A comprehensive uncertainty analysis has been carried out. The GRS uncertainty and sensitivity method based on the statistical code package SUSA was applied to the two transients studied earlier in SRR-1/95: A load drop of one turbo-generator in Loviisa-1 (VVER-440), and a switch-off of one feed water pump in Balakovo-4 (VVER-1000). The main steps of these analyses and the results obtained by applying different coupled code systems (SMABRE - HEXTRAN, ATHLET - DYN3D, ATHLET - KIKO3D, ATHLET - BIPR-8) are described in this report. The application of this method is only based on variations of input parameter values. No internal code adjustments are needed. An essential result of the analysis using the GRS SUSA methodology is the identification of the input parameters, such as the secondary-circuit pressure, the control-assembly position (as a function of time), and the control-assembly efficiency, that most sensitively affect safety-relevant output parameters, like reactor power, coolant heat-up, and primary pressure. Uncertainty bands for these output parameters have been derived. The variation of potentially uncertain input parameter values as a consequence of uncertain knowledge can activate system actions causing quite different transient evolutions. This gives indications about possible plant conditions that might be reached from the initiating event assuming only small disturbances. In this way, the uncertainty and sensitivity analysis reveals the spectrum of possible transient evolutions. Deviations of SRR-1/95 coupled code calculations from measurements also led to the objective to separate neutron kinetics from

  8. Improvement of auditing technology of safety analysis through thermal-hydraulic separate effect tests

    Energy Technology Data Exchange (ETDEWEB)

    No, Hee Cheon; Park, Hyun Sik; Kim, Hyoung Tae; Moon, Young Min; Choi, Sung Won; Hwang, Do Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2000-03-15

    The direct-contact condensation hear transfer coefficients are experimentally obtained in the following conditions : pure steam/steam in the presence of noncondensible gas, horizontal/slightly inclined pipe, cocurrent/countercurrent stratified flow with water. The empirical correlation for liquid Nusselt number is developed in conditions of the slightly inclined pipe and the cocurrent stratified flow. The several models - the wall friction coefficient, the interfacial friction coefficient, the correlation of direct-contact condensation with noncondensible gases, and the correlation of wall film condensation - in the RELAP5/MOD3.2 code are modified, As results, RELAP5/MOD3.2 is improved. The present experimental data is used for evaluating the improved code. The standard RELAP5/MOD3.2 code is modified using the non-iterative modeling, which is a mechanistic model and does not require any interfacial information such as the interfacial temperature, The modified RELAP5/MOD3.2 code os used to simulate the horizontally stratified in-tube condensation experiment which represents the direct-contact condensation phenomena in a hot leg of a nuclear reactor. The modeling capabilities of the modified code as well as the standard code are assessed using several hot-leg condensation experiments. The modified code gives better prediction over local experimental data of liquid void fraction and interfacial heat transfer coefficient than the standard code. For the separate effect test of the thermal-hydraulic phenomena in the pressurizer, the scaling analysis is performed to obtain a similarity of the phenomena between the Korea Standard Nuclear Power Plant(KSNPP) and the present experimental facility. The diameters and lengths of the hot-leg, the surge line and the pressurizer are scaled down with the similitude of CCFL and velocity. The ratio of gas flow rate is 1/25. The experimental facility is composed of the air-water supply tank, the horizontal pipe, the surge line and the

  9. Neutronics and thermal hydraulics coupling scheme for design improvement of liquid metal fast systems

    International Nuclear Information System (INIS)

    Sanchez-Espinoza, V.H.; Jaeger, W.; Travleev, A.; Monti, L.; Doern, R.

    2009-01-01

    Many advanced reactor concepts are nowadays under investigations within the Generation IV international initiative as well as in European research programs including subcritical and critical fast reactor systems cooled by liquid metal, gas and supercritical water. The Institute of Neutron Physics and Reactor Technology (INR) at the Forschungszentrum Karlsruhe GmbH is involved in different European projects like IP EUROTRANS, ELSY, ESFR. The main goal of these projects is, among others, to assess the technical feasibility of proposed concepts regarding safety, economics and transmutation requirements. In view of increased computer capabilities, improved computational schemes, where the neutronic and the thermal hydraulic solution is iteratively coupled, become practicable. The codes ERANOS2.1 and TRACE are being coupled to analyze fuel assembly or core designs of lead-cooled fast reactors (LFR). The neutronic solution obtained with the coupled system for a LFR fuel assembly was compared with the MCNP5 solution. It was shown that the coupled system is predicting physically sound results. The iterative coupling scheme was realized using Perlscripts and auxiliary Fortran programs to ensure that the mapping between the neutronic and the thermal hydraulic part is consistent. The coupled scheme is very flexible and appropriate for the neutron physical and thermal hydraulic investigation of fuel assemblies and of cores of lead cooled fast reactors. The developed methods and the obtained results will be presented and discussed. (author)

  10. Thermal-hydraulics stability of natural circulation BWR under startup. Flashing effects

    International Nuclear Information System (INIS)

    Hu, Rui; Kazimi, Mujid S.

    2009-01-01

    To help achieve the necessary natural circulation flow, a fairly long chimney is installed in a boiling natural circulation reactor like the ESBWR. In such systems, thermal-hydraulic stability during low pressure start-up should be examined while considering the flashing induced by the pressure drop in the channel and the chimney due to gravity head. In this work, a BWR stability analysis code in the frequency domain, named FISTAB (Flashing-Induced STability Analysis for BWR), was developed to address the issue of flashing-induced instability. A thermal-hydraulics non-homogeneous equilibrium model (NHEM) based on a drift flux formulation along with a lumped fuel dynamics model is incorporated in the work. The vapor generation rate is derived from the mixture energy conservation equation while considering the effect of flashing. The functionality of the FISTAB code was confirmed by comparison to experimental results from SIRIUS-N facility at CRIEPI, Japan. Both stationary and perturbation results agree well with the experimental results. (author)

  11. Development of system analysis code for thermal-hydraulic simulation of integral reactor, Rex-10

    International Nuclear Information System (INIS)

    Lee, Y. G.; Kim, J. W.; Yoon, S. J.; Park, G. C.

    2010-10-01

    Rex-10 is an environment-friendly and economical small-scale nuclear reactor to provide the energy for district heating as well as the electric power in micro-grid. This integral reactor comprises several innovative concepts supported by advanced primary circuit components, low coolant parameters and natural circulation cooling. To evaluate the system performance and thermal-hydraulic behavior of the reactor, a system analysis code is being developed so that the new designs and technologies adopted in Rex-10 can be reflected. The research efforts are absorbed in programming the simple and fast-running thermal-hydraulic analysis software. The details of hydrodynamic governing equations component models and numerical solution scheme used in this code are presented in this paper. On the basis of one-dimensional momentum integral model, the models of point reactor neutron kinetics for thorium-fueled core, physical processes in the steam-gas pressurizer, and heat transfers in helically coiled steam generator are implemented to the system code. Implicit numerical scheme is employed to momentum and energy equations to assure the numerical stability. The accuracy of simulation is validated by applying the solution method to the Rex-10 test facility. Calculated natural circulation flow rate and coolant temperature at steady-state are compared to the experimental data. The validation is also carried out for the transients in which the sudden reduction in the core power or the feedwater flow takes place. The code's capability to predict the steady-state flow by natural convection and the qualitative behaviour of the primary system in the transients is confirmed. (Author)

  12. Development of system analysis code for thermal-hydraulic simulation of integral reactor, Rex-10

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Rex-10 is an environment-friendly and economical small-scale nuclear reactor to provide the energy for district heating as well as the electric power in micro-grid. This integral reactor comprises several innovative concepts supported by advanced primary circuit components, low coolant parameters and natural circulation cooling. To evaluate the system performance and thermal-hydraulic behavior of the reactor, a system analysis code is being developed so that the new designs and technologies adopted in Rex-10 can be reflected. The research efforts are absorbed in programming the simple and fast-running thermal-hydraulic analysis software. The details of hydrodynamic governing equations component models and numerical solution scheme used in this code are presented in this paper. On the basis of one-dimensional momentum integral model, the models of point reactor neutron kinetics for thorium-fueled core, physical processes in the steam-gas pressurizer, and heat transfers in helically coiled steam generator are implemented to the system code. Implicit numerical scheme is employed to momentum and energy equations to assure the numerical stability. The accuracy of simulation is validated by applying the solution method to the Rex-10 test facility. Calculated natural circulation flow rate and coolant temperature at steady-state are compared to the experimental data. The validation is also carried out for the transients in which the sudden reduction in the core power or the feedwater flow takes place. The code's capability to predict the steady-state flow by natural convection and the qualitative behaviour of the primary system in the transients is confirmed. (Author)

  13. Neutronics - thermal-hydraulics coupling: application to the helium-cooled fast reactor

    International Nuclear Information System (INIS)

    Vaiana, F.

    2009-11-01

    This thesis focuses on the study of interactions between neutron-kinetics and thermal-hydraulics. Neutron-kinetics allow to calculate the power in a nuclear reactor and the temperature evolution of materials where this power is deposited is known thanks to thermal-hydraulics. Moreover, when the temperatures evolve, the densities and cross sections change. These two disciplines are thus coupled. The first part of this work corresponds to the study and development of a method which allows to simulate transients in nuclear reactors and especially with a Monte-Carlo code for neutron-kinetics. An algorithm for the resolution of the neutron transport equation has been established and validated with a benchmark. In thermal-hydraulics, a porous media approach, based on another thesis, is considered. This gives the opportunity to solve the equations on the whole core without unconscionable computation time. Finally, a theoretical study has been performed on the statistical uncertainties which result from the use of a Monte-Carlo code and which spread from the reactivity to the power and from the power to the temperatures. The second part deals with the study of a misplaced control rod withdrawing in a GFR (helium-cooled fast reactor), a fourth generation reactor. Some models allowing to calculate neutron-kinetics and thermal-hydraulics in the core (which contains assemblies built up with fuel plates) were defined. In thermal-hydraulics, a model for the core based on the porous media approach and a fuel plate homogenization model have been set up. A similar homogenization model has been studied for neutron-kinetics. Finally, the control rod withdrawing transient where we can observe the power raising and the stabilisation by thermal feedback has been performed with the Monte-Carlo code Tripoli for neutron-kinetics and the code Trio-U for thermal-hydraulics. (author)

  14. E-SCAPE: A scale facility for liquid-metal, pool-type reactor thermal hydraulic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Van Tichelen, Katrien, E-mail: kvtichel@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Mirelli, Fabio, E-mail: fmirelli@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Greco, Matteo, E-mail: mgreco@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Viviani, Giorgia, E-mail: giorgiaviviani@gmail.com [University of Pisa, Lungarno Pacinotti 43, 56126 Pisa (Italy)

    2015-08-15

    Highlights: • The E-SCAPE facility is a thermal hydraulic scale model of the MYRRHA fast reactor. • The focus is on mixing and stratification in liquid-metal pool-type reactors. • Forced convection, natural convection and the transition are investigated. • Extensive instrumentation allows validation of computational models. • System thermal hydraulic and CFD models have been used for facility design. - Abstract: MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a flexible fast-spectrum research reactor under design at SCK·CEN. MYRRHA is a pool-type reactor with lead bismuth eutectic (LBE) as primary coolant. The proper understanding of the thermal hydraulic phenomena occurring in the reactor pool is an important issue in the design and licensing of the MYRRHA system and liquid-metal cooled reactors by extension. Model experiments are necessary for understanding the physics, for validating experimental tools and to qualify the design for the licensing. The E-SCAPE (European SCAled Pool Experiment) facility at SCK·CEN is a thermal hydraulic 1/6-scale model of the MYRRHA reactor, with an electrical core simulator, cooled by LBE. It provides experimental feedback to the designers on the forced and natural circulation flow patterns. Moreover, it enables to validate the computational methods for their use with LBE. The paper will elaborate on the design of the E-SCAPE facility and its main parameters. Also the experimental matrix and the pre-test analysis using computational fluid dynamics (CFD) and system thermal hydraulics codes will be described.

  15. Analysis of the OECD/NRC BWR Turbine Trip Transient Benchmark with the Coupled Thermal-Hydraulics and Neutronics Code TRAC-M/PARCS

    International Nuclear Information System (INIS)

    Lee, Deokjung; Downar, Thomas J.; Ulses, Anthony; Akdeniz, Bedirhan; Ivanov, Kostadin N.

    2004-01-01

    An analysis of the Peach Bottom Unit 2 Turbine Trip 2 (TT2) experiment has been performed using the U.S. Nuclear Regulatory Commission coupled thermal-hydraulics and neutronics code TRAC-M/PARCS. The objective of the analysis was to assess the performance of TRAC-M/PARCS on a BWR transient with significance in two-phase flow and spatial variations of the neutron flux. TRAC-M/PARCS results are found to be in good agreement with measured plant data for both steady-state and transient phases of the benchmark. Additional analyses of four fictitious extreme scenarios are performed to provide a basis for code-to-code comparisons and comprehensive testing of the thermal-hydraulics/neutronics coupling. The obtained results of sensitivity studies on the effect of direct moderator heating on transient simulation indicate the importance of this modeling aspect

  16. Development of thermal hydraulic models for the reliable regulatory auditing code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Song, C. H.; Lee, Y. J.; Kwon, T. S.; Lee, S. W. [Korea Automic Energy Research Institute, Taejon (Korea, Republic of)

    2004-02-15

    The objective of this project is to develop thermal hydraulic models for use in improving the reliability of the regulatory auditing codes. The current year fall under the second step of the 3 year project, and the main researches were focused on the development of downcorner boiling model. During the current year, the bubble stream model of downcorner has been developed and installed in he auditing code. The model sensitivity analysis has been performed for APR1400 LBLOCA scenario using the modified code. The preliminary calculation has been performed for the experimental test facility using FLUENT and MARS code. The facility for air bubble experiment has been installed. The thermal hydraulic phenomena for VHTR and super critical reactor have been identified for the future application and model development.

  17. Development of the coupled 'system thermal-hydraulics, 3D reactor kinetics, and hot channel' analysis capability of the MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J. J.; Chung, B. D.; Lee, W.J

    2005-02-01

    The subchannel analysis capability of the MARS 3D module has been improved. Especially, the turbulent mixing and void drift models for flow mixing phenomena in rod bundles have been assessed using some well-known rod bundle test data. Then, the subchannel analysis feature was combined to the existing coupled 'system Thermal-Hydraulics (T/H) and 3D reactor kinetics' calculation capability of MARS. These features allow the coupled 'system T/H, 3D reactor kinetics, and hot channel' analysis capability and, thus, realistic simulations of hot channel behavior as well as global system T/H behavior. In this report, the MARS code features for the coupled analysis capability are described first. The code modifications relevant to the features are also given. Then, a coupled analysis of the Main Steam Line Break (MSLB) is carried out for demonstration. The results of the coupled calculations are very reasonable and realistic, and show these methods can be used to reduce the over-conservatism in the conventional safety analysis.

  18. Coupled 3D neutronics/thermal hydraulics modeling of the SAFARI-1 MTR

    International Nuclear Information System (INIS)

    Rosenkrantz, Adam; Avramova, Maria; Ivanov, Kostadin; Prinsloo, Rian; Botes, Danniëll; Elsakhawy, Khalid

    2014-01-01

    Highlights: • Development of 3D coupled neutronics/thermal–hydraulic model of SAFARI-1. • Verification of 3D steady-state NEM based neutronics model for SAFARI-1. • Verification of 3D COBRA-TF based thermal–hydraulic model of SAFARI-1. • Quantification of the effect of correct modeling of thermal–hydraulic feedback. - Abstract: The purpose of this study was to develop a coupled accurate multi-physics model of the SAFARI-1 Material Testing Reactor (MTR), a facility that is used for both research and the production of medical isotopes. The model was developed as part of the SAFARI-1 benchmarking project as a cooperative effort between the Pennsylvania State University (PSU) and the South African Nuclear Energy Corporation (Necsa). It was created using a multi-physics coupling of state of the art nuclear reactor simulation tools, consisting of a neutronics code and a thermal hydraulics code. The neutronics tool used was the PSU code NEM, and the results from this component were verified using the Necsa neutronics code OSCAR-4, which is utilized for SAFARI-1 core design and fuel management. On average, the multiplication factors of the neutronics models agreed to within 5 pcm and the radial assembly-averaged powers agreed to within 0.2%. The thermal hydraulics tool used was the PSU version of COBRA-TF (CTF) sub-channel code, and the results of this component were verified against another thermal hydraulics code, the RELAP5-3D system code, used at Necsa for thermal–hydraulics analysis of SAFARI-1. Although only assembly-averaged results from RELAP5-3D were available, they fell within the range of values for the corresponding assemblies in the comprehensive CTF solution. This comparison allows for the first time to perform a quantification of steady-state errors for a low-powered MTR with an advanced thermal–hydraulic code such as CTF on a per-channel basis as compared to simpler and coarser-mesh RELAP5-3D modeling. Additionally, a new cross section

  19. Proceedings of the OECD/CSNI workshop on transient thermal-hydraulic and neutronic codes requirements

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, D.

    1997-07-01

    This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items to be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.

  20. Proceedings of the OECD/CSNI workshop on transient thermal-hydraulic and neutronic codes requirements

    International Nuclear Information System (INIS)

    Ebert, D.

    1997-07-01

    This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts' meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items to be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes

  1. ZZ-PBMR-400, OECD/NEA PBMR Coupled Neutronics/Thermal Hydraulics Transient Benchmark - The PBMR-400 Core Design

    International Nuclear Information System (INIS)

    Reitsma, Frederik

    2007-01-01

    Description of benchmark: This international benchmark, concerns Pebble-Bed Modular Reactor (PBMR) coupled neutronics/thermal hydraulics transients based on the PBMR-400 MW design. The deterministic neutronics, thermal-hydraulics and transient analysis tools and methods available to design and analyse PBMRs lag, in many cases, behind the state of the art compared to other reactor technologies. This has motivated the testing of existing methods for HTGRs but also the development of more accurate and efficient tools to analyse the neutronics and thermal-hydraulic behaviour for the design and safety evaluations of the PBMR. In addition to the development of new methods, this includes defining appropriate benchmarks to verify and validate the new methods in computer codes. The scope of the benchmark is to establish well-defined problems, based on a common given set of cross sections, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events through a set of multi-dimensional computational test problems. The benchmark exercise has the following objectives: - Establish a standard benchmark for coupled codes (neutronics/thermal-hydraulics) for PBMR design; - Code-to-code comparison using a common cross section library ; - Obtain a detailed understanding of the events and the processes; - Benefit from different approaches, understanding limitations and approximations. Major Design and Operating Characteristics of the PBMR (PBMR Characteristic and Value): Installed thermal capacity: 400 MW(t); Installed electric capacity: 165 MW(e); Load following capability: 100-40-100%; Availability: ≥ 95%; Core configuration: Vertical with fixed centre graphite reflector; Fuel: TRISO ceramic coated U-235 in graphite spheres; Primary coolant: Helium; Primary coolant pressure: 9 MPa; Moderator: Graphite; Core outlet temperature: 900 C.; Core inlet temperature: 500 C.; Cycle type: Direct; Number of circuits: 1; Cycle

  2. Development of thermal-hydraulic models for the safety evaluation of CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Young; Hwang, Gi Suk; Jung, Yun Sik [Handong Univ., Pohang (Korea, Republic of); No, Hee Cheon; Moon, Young Min [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2003-03-15

    The objective of the present research is to evaluate the safety analysis for CANDU and to improve the Horizontal Stratification Entrainment Model (HSEM) of RELAP5/MOD3.3. This report includes two items : the one is the development of experimental facility for the safety evaluation of CANDU, the other is the results of comparison with the existing correlations and data. The literature reviews are performed and the database for previous off-take experiments are built. By a survey of state-of-the-articles, the deficiencies of previous works and limitations of existing models are examined. The hydraulic behavior branching through the feeder pipes from the header pipe is analyzed and the test facility of off-take experiment is designed and manufactured as the prototype CANDU6, by a proper scaling methodologies. The test facility contains various branch pipes not only for three directions (top, side and bottom), but for arbitrary directions. The experiments about the onset of entrainment and branch quality only for three directions (top, side and bottom) are carried out by using air-water as working fluids. On the whole, the existing correlations predict the present experimental results well branch quality, entrainment, which validates the availability of experimental facility and methodology. Especially, for the branch quality with top and bottom branches, the different results are shown because of the unstable flow regimes in the horizontal pipe and the different branch diameters. The deficiencies of previous works and limitations of existing models are considered. The off-take experiment for arbitrary branch angles continues as the next year research.

  3. Review of computational thermal-hydraulic modeling

    International Nuclear Information System (INIS)

    Keefer, R.H.; Keeton, L.W.

    1995-01-01

    Corrosion of heat transfer tubing in nuclear steam generators has been a persistent problem in the power generation industry, assuming many different forms over the years depending on chemistry and operating conditions. Whatever the corrosion mechanism, a fundamental understanding of the process is essential to establish effective management strategies. To gain this fundamental understanding requires an integrated investigative approach that merges technology from many diverse scientific disciplines. An important aspect of an integrated approach is characterization of the corrosive environment at high temperature. This begins with a thorough understanding of local thermal-hydraulic conditions, since they affect deposit formation, chemical concentration, and ultimately corrosion. Computational Fluid Dynamics (CFD) can and should play an important role in characterizing the thermal-hydraulic environment and in predicting the consequences of that environment,. The evolution of CFD technology now allows accurate calculation of steam generator thermal-hydraulic conditions and the resulting sludge deposit profiles. Similar calculations are also possible for model boilers, so that tests can be designed to be prototypic of the heat exchanger environment they are supposed to simulate. This paper illustrates the utility of CFD technology by way of examples in each of these two areas. This technology can be further extended to produce more detailed local calculations of the chemical environment in support plate crevices, beneath thick deposits on tubes, and deep in tubesheet sludge piles. Knowledge of this local chemical environment will provide the foundation for development of mechanistic corrosion models, which can be used to optimize inspection and cleaning schedules and focus the search for a viable fix

  4. CFD thermal-hydraulic analysis of a CANDU fuel channel

    International Nuclear Information System (INIS)

    Catana, A.; Prisecaru, I.; Dupleac, D.; Danila, N.

    2009-01-01

    This paper presents the numerical investigation of a CANDU fuel channel using CFD (Computational fluid dynamics) methodology approach. Limited computer power available at Bucharest University POLITEHNICA forced the authors to analyse only segments of fuel channel namely the significant ones: fuel bundle junctions with adjacent segments, fuel bundle spacer planes with adjacent segments, regular segments of fuel bundles. The computer code used is FLUENT. Fuel bundles contained in pressure tubes forms a complex flow domain. The flow is characterized by high turbulence and in some parts of fuel channel also by multi-phase flow. The flow in the fuel channel has been simulated by solving the equations for conservation of mass and momentum. For turbulence modelling the standard k-e model is employed although other turbulence models can be used as well. In this paper we do not consider heat generation and heat transfer capabilities of CFD methods. Since we consider only some relatively short segments of a CANDU fuel channel we can assume, for this starting stage, that heat transfer is not very important for these short segments of fuel channel. The boundary conditions for CFD analysis are provided by system and sub-channel analysis. In this paper the discussion is focused on some flow parameters behaviour at the bundle junction, spacer's plane configuration, etc. In this paper we present results for Standard CANDU 6 Fuel Bundles as a basis for CFD thermal-hydraulic analysis of INR proposed SEU43 and other new nuclear fuels. (authors)

  5. Multiphase Flow Dynamics 5 Nuclear Thermal Hydraulics

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step...

  6. Multiphase flow dynamics 5 nuclear thermal hydraulics

    CERN Document Server

    Kolev, Nikolay Ivanov

    2015-01-01

    This Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demons...

  7. The Use of Coupled Code Technique for Best Estimate Safety Analysis of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Bousbia Salah, A.; D'Auria, F.

    2006-01-01

    Issues connected with the thermal-hydraulics and neutronics of nuclear plants still challenge the design, safety and the operation of Light Water nuclear Reactors (LWR). The lack of full understanding of complex mechanisms related to the interaction between these issues imposed the adoption of conservative safety limits. Those safety margins put restrictions on the optimal exploitation of the plants and consequently reduced economic profit of the plant. In the light of the sustained development in computer technology, the possibilities of code capabilities have been enlarged substantially. Consequently, advanced safety evaluations and design optimizations that were not possible few years ago can now be performed. In fact, during the last decades Best Estimate (BE) neutronic and thermal-hydraulic calculations were so far carried out following rather parallel paths with only few interactions between them. Nowadays, it becomes possible to switch to new generation of computational tools, namely, Coupled Code technique. The application of such method is mandatory for the analysis of accident conditions where strong coupling between the core neutronics and the primary circuit thermal-hydraulics, and more especially when asymmetrical processes take place in the core leading to local space-dependent power generation. Through the current study, a demonstration of the maturity level achieved in the calculation of 3-D core performance during complex accident scenarios in NPPs is emphasized. Typical applications are outlined and discussed showing the main features and limitations of this technique. (author)

  8. Thermal-hydraulic Fortran program for steady-state calculations of plate-type fuel research reactors

    Directory of Open Access Journals (Sweden)

    Khedr Ahmed

    2008-01-01

    Full Text Available The safety assessment of research and power reactors is a continuous process covering their lifespan and requiring verified and validated codes. Power reactor codes all over the world are well established and qualified against real measuring data and qualified experimental facilities. These codes are usually sophisticated, require special skills and consume a lot of running time. On the other hand, most research reactor codes still require much more data for validation and qualification. It is, therefore, of benefit to any regulatory body to develop its own codes for the review and assessment of research reactors. The present paper introduces a simple, one-dimensional Fortran program called THDSN for steady-state thermal-hydraulic calculations of plate-type fuel research reactors. Besides calculating the fuel and coolant temperature distributions and pressure gradients in an average and hot channel, the program calculates the safety limits and margins against the critical phenomena encountered in research reactors, such as the onset of nucleate boiling, critical heat flux and flow instability. Well known thermal-hydraulic correlations for calculating the safety parameters and several formulas for the heat transfer coefficient have been used. The THDSN program was verified by comparing its results for 2 and 10 MW benchmark reactors with those published in IAEA publications and a good agreement was found. Also, the results of the program are compared with those published for other programs, such as the PARET and TERMIC.

  9. Some Findings from Thermal-Hydraulic Validation Tests for SMART Passive Safety System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Sik; Bae, Hwang; Ryu, Sung-Uk; Ryu, Hyobong; Shin, Yong-Cheol; Min, Kyoung-Ho; Yi, Sung-Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To satisfy the domestic and international needs for nuclear safety improvement after the Fukushima accident, an effort to improve its safety has been studied, and a Passive Safety System (PSS) for SMART has been designed. In addition, an Integral Test Loop for the SMART design (SMART-ITL, or FESTA) has been constructed and it finished its commissioning tests in 2012. Consequently, a set of Design Base Accident (DBA) scenarios have been simulated using SMARTITL. Recently, a test program to validate the performance of the SMART PSS was launched and its scaled-down test facility was additionally installed at the existing SMART-ITL facility. In this paper, some findings from the validation tests for the SMART PSS will be summarized. The acquired data will be used to validate the safety analysis code and its related models, to evaluate the performance of SMART PSS, and to provide base data during the application phase of SDA revision and construction licensing. A test program to validate the performance of SMARS PSS was launched with an additional scaleddown test facility of SMART PSS, which will be installed at the existing SMART-ITL facility. In this paper, some findings from the validation tests of the SMART passive safety system during 2013-2014 were summarized. They include a couple of SMART PSS tests using active pumps and several 1-train SMART PSS tests. From the test results it was estimated that the SMART PSS has sufficient cooling capability to deal with the SBLOCA scenario of SMART. During the SBLOCA scenario, in the CMT the water layer inventory was well stratified thermally and the safety injection water was injected efficiently into the RPV from the initial period and cools down the RCS properly.

  10. Thermal hydraulics and mechanics core design programs

    International Nuclear Information System (INIS)

    Heinecke, J.

    1992-10-01

    The report documents the work performed within the Research and Development Task T hermal hydraulics and mechanics core design programs , funded by the German government. It contains the development of new codes, the extension of existing codes, the qualification and verification of codes and the development of a code library. The overall goal of this work was to adapt the system of thermal hydraulics and mechanics codes to the permanently growing requirements of the status of science and technology

  11. Hydraulic and thermal design of a gas microchannel heat exchanger

    International Nuclear Information System (INIS)

    Yang Yahui; Brandner, Juergen J; Morini, Gian Luca

    2012-01-01

    In this paper investigations on the design of a gas flow microchannel heat exchanger are described in terms of hydrodynamic and thermal aspects. The optimal choice for thermal conductivity of the solid material is discussed by analysis of its influences on the thermal performance of a micro heat exchanger. Two numerical models are built by means of a commercial CFD code (Fluent). The simulation results provide the distribution of mass flow rate, inlet pressure and pressure loss, outlet pressure and pressure loss, subjected to various feeding pressure values. Based on the thermal and hydrodynamic analysis, a micro heat exchanger made of polymer (PEEK) is designed and manufactured for flow and heat transfer measurements in air flows. Sensors are integrated into the micro heat exchanger in order to measure the local pressure and temperature in an accurate way. Finally, combined with numerical simulation, an operating range is suggested for the present micro heat exchanger in order to guarantee uniform flow distribution and best thermal and hydraulic performances.

  12. Impact of uranium concentration reduction in side plates of the fuel elements of IEA-R1 reactor on neutronic and thermal hydraulic analyses

    International Nuclear Information System (INIS)

    Rios, Ilka Antonia

    2013-01-01

    This master thesis presents a study to verify the impact of the uranium concentration reduction in the side plates of the reactor IEA-R1 fuel elements on the neutronic and thermal-hydraulic analyses. To develop such study, a previous IPEN-CNEN/SP research was reproduced by simulating the fuel elements burn-up, with side plate uranium density reduced to 50, 60 and 70% of the standard fuel element plates. This research begins with the neutronic analysis using the computer code HAMMER and the first step consists in the calculation of the cross section of all materials presented at the reactor core, with their initial concentration; the second step consists in the calculation of the fast and thermal neutron group fluxes and power densities for fuel elements using the computer code CITATION. HAMMER output data is used as input data. Once the neutronic analysis is finished and the most critical fuel elements with highest power density have been defined, the thermal-hydraulics analysis begins. This analysis uses MCTR-IEA-R1 thermal-hydraulics model, which equations are solved by commercial code EES. Thermalhydraulics analysis input is the power density data calculated by CITATION: it is considered the highest power density on each fuel element, where there is a higher energy release and, consequently, higher temperatures. This data is used on energy balance equations to calculate temperatures on critical fuel element regions. Reactor operation comparison for three different uranium densities on fuel side plates is presented. Uranium density reduction contributes to the cladding surface temperature to remain below the established limit, as reactor operation safety requirement and it does not affect significantly fuel element final burn-up nor reactor reactivity. The reduction of uranium in the side plates of the fuel elements of the IEA-R1 showed to be a viable option to avoid corrosion problems due to high temperatures. (author)

  13. Current and anticipated uses of the thermal hydraulics codes at the NRC

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, R.

    1997-07-01

    The focus of Thermal-Hydraulic computer code usage in nuclear regulatory organizations has undergone a considerable shift since the codes were originally conceived. Less work is being done in the area of {open_quotes}Design Basis Accidents,{close_quotes}, and much more emphasis is being placed on analysis of operational events, probabalistic risk/safety assessment, and maintenance practices. All of these areas need support from Thermal-Hydraulic computer codes to model the behavior of plant fluid systems, and they all need the ability to perform large numbers of analyses quickly. It is therefore important for the T/H codes of the future to be able to support these needs, by providing robust, easy-to-use, tools that produce easy-to understand results for a wider community of nuclear professionals. These tools need to take advantage of the great advances that have occurred recently in computer software, by providing users with graphical user interfaces for both input and output. In addition, reduced costs of computer memory and other hardware have removed the need for excessively complex data structures and numerical schemes, which make the codes more difficult and expensive to modify, maintain, and debug, and which increase problem run-times. Future versions of the T/H codes should also be structured in a modular fashion, to allow for the easy incorporation of new correlations, models, or features, and to simplify maintenance and testing. Finally, it is important that future T/H code developers work closely with the code user community, to ensure that the code meet the needs of those users.

  14. Current and anticipated uses of the thermal hydraulics codes at the NRC

    International Nuclear Information System (INIS)

    Caruso, R.

    1997-01-01

    The focus of Thermal-Hydraulic computer code usage in nuclear regulatory organizations has undergone a considerable shift since the codes were originally conceived. Less work is being done in the area of Design Basis Accidents, , and much more emphasis is being placed on analysis of operational events, probabalistic risk/safety assessment, and maintenance practices. All of these areas need support from Thermal-Hydraulic computer codes to model the behavior of plant fluid systems, and they all need the ability to perform large numbers of analyses quickly. It is therefore important for the T/H codes of the future to be able to support these needs, by providing robust, easy-to-use, tools that produce easy-to understand results for a wider community of nuclear professionals. These tools need to take advantage of the great advances that have occurred recently in computer software, by providing users with graphical user interfaces for both input and output. In addition, reduced costs of computer memory and other hardware have removed the need for excessively complex data structures and numerical schemes, which make the codes more difficult and expensive to modify, maintain, and debug, and which increase problem run-times. Future versions of the T/H codes should also be structured in a modular fashion, to allow for the easy incorporation of new correlations, models, or features, and to simplify maintenance and testing. Finally, it is important that future T/H code developers work closely with the code user community, to ensure that the code meet the needs of those users

  15. Assessment of the impact of neutronic/thermal-hydraulic coupling on the design and performance of nuclear reactors for space propulsion

    International Nuclear Information System (INIS)

    Aithal, S.M.; Aldemir, T.; Vafai, K.

    1994-01-01

    A series of studies has been performed to investigate the potential impact of the coupling between neutronics and thermal hydraulics on the design and performance assessment of solid core reactors for nuclear thermal space propulsion, using the particle bed reactor (PBR) concept as an example system. For a given temperature distribution in the reactor, the k eff and steady-state core power distribution are obtained from three-dimensional, continuous energy Monte Carlo simulations using the MCNP code. For a given core power distribution, determination of the temperature distribution in the core and hydrogen-filled annulus between the reflector and pressure vessel is based on a nonthermal equilibrium analysis. The results show that a realistic estimation of fuel, core size, and control requirements for PBRs using hydrogenous moderators, as well as optimization of the overall engine design, may require coupled neutronic/thermal-hydraulic studies. However, it may be possible to estimate the thermal safety margins and propellant exit temperatures based on power distributions obtained from neutronic calculations at room temperature. The results also show that, while variation of the hydrogen flow rate in the annulus has been proposed as a partial control mechanism for PBRs, such control mechanism may not be feasible for PBRs with high moderator-to-fuel ratios and hence soft core neutron spectra

  16. Improving SFR Economics through Innovations from Thermal Design and Analysis Aspects

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Hongbin Zhang; Vincent Mousseau; Per F. Peterson

    2008-06-01

    Achieving economic competitiveness as compared to LWRs and other Generation IV (Gen-IV) reactors is one of the major requirements for large-scale investment in commercial sodium cooled fast reactor (SFR) power plants. Advances in R&D for advanced SFR fuel and structural materials provide key long-term opportunities to improve SFR economics. In addition, other new opportunities are emerging to further improve SFR economics. This paper provides an overview on potential ideas from the perspective of thermal hydraulics to improve SFR economics. These include a new hybrid loop-pool reactor design to further optimize economics, safety, and reliability of SFRs with more flexibility, a multiple reheat and intercooling helium Brayton cycle to improve plant thermal efficiency and reduce safety related overnight and operation costs, and modern multi-physics thermal analysis methods to reduce analysis uncertainties and associated requirements for over-conservatism in reactor design. This paper reviews advances in all three of these areas and their potential beneficial impacts on SFR economics.

  17. Implementation of CFD module in the KORSAR thermal-hydraulic system code

    Energy Technology Data Exchange (ETDEWEB)

    Yudov, Yury V.; Danilov, Ilia G.; Chepilko, Stepan S. [Alexandrov Research Inst. of Technology (NITI), Sosnovy Bor (Russian Federation)

    2015-09-15

    The Russian KORSAR/GP (hereinafter KORSAR) computer code was developed by a joint team from Alexandrov NITI and OKB ''Gidropress'' for VVER safety analysis and certified by the Rostechnadzor of Russia in 2009. The code functionality is based on a 1D two-fluid model for calculation of two-phase flows. A 3D CFD module in the KORSAR computer code is being developed by Alexandrov NITI for representing 3D effects in the downcomer and lower plenum during asymmetrical loop operation. The CFD module uses Cartesian grid method with cut cell approach. The paper presents a numerical algorithm for coupling 1D and 3D thermal- hydraulic modules in the KORSAR code. The combined pressure field is calculated by the multigrid method. The performance efficiency of the algorithm for coupling 1D and 3D modules was demonstrated by solving the benchmark problem of mixing cold and hot flows in a T-junction.

  18. Neutronic and thermal-hydraulic calculations for the AP-1000 NPP with the MCNP6 and SERPENT codes

    International Nuclear Information System (INIS)

    Stefani, Giovanni Laranjo; Maiorino, Jose R.; Santos, Thiago A.

    2015-01-01

    The AP-1000 is an evolutionary PWR reactor designed as an evolution of the AP-600 project. The reactor is already pre-licensed by NRC, and is considered to have achieved high standards of safety, possible short construction time and good economic competitiveness. The core is a 17x17 typical assembly using Zirlo as cladding, 3 different enrichment regions, and is controlled by boron, control banks, and burnable poison. The expected fuel final burnup is 62 MWD/ton U and a cycle of 18 months. In this paper we present results for neutronic and thermal-hydraulic calculations for the AP-1000. We use the MCNP6 and SERPENT codes to calculate the first cycle of operation. The calculated parameters are K eff at BOL and EOL and its variation with burnup and neutron flux, and reactivity coefficients. The production of transuranic elements such as Pu-239 and Pu-241, and burning fuel are calculated over time. In the work a complete reactor was burned for 450 days with no control elements, boron or burnable poison were considered, these results were compared with data provided by the Westinghouse. The results are compared with those reported in the literature. A simple thermal hydraulic analysis allows verification of thermal limits such as fuel and cladding temperatures, and MDNB. (author)

  19. Neutronic and thermal-hydraulic calculations for the AP-1000 NPP with the MCNP6 and SERPENT codes

    Energy Technology Data Exchange (ETDEWEB)

    Stefani, Giovanni Laranjo; Maiorino, Jose R.; Santos, Thiago A., E-mail: giovanni.laranjo@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: thiago.santos@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais; Rossi, Pedro R., E-mail: pedro.russorossi@gmail.com [FERMIUM - Tecnologia Nuclear, Sao Paulo, SP (Brazil)

    2015-07-01

    The AP-1000 is an evolutionary PWR reactor designed as an evolution of the AP-600 project. The reactor is already pre-licensed by NRC, and is considered to have achieved high standards of safety, possible short construction time and good economic competitiveness. The core is a 17x17 typical assembly using Zirlo as cladding, 3 different enrichment regions, and is controlled by boron, control banks, and burnable poison. The expected fuel final burnup is 62 MWD/ton U and a cycle of 18 months. In this paper we present results for neutronic and thermal-hydraulic calculations for the AP-1000. We use the MCNP6 and SERPENT codes to calculate the first cycle of operation. The calculated parameters are K{sub eff} at BOL and EOL and its variation with burnup and neutron flux, and reactivity coefficients. The production of transuranic elements such as Pu-239 and Pu-241, and burning fuel are calculated over time. In the work a complete reactor was burned for 450 days with no control elements, boron or burnable poison were considered, these results were compared with data provided by the Westinghouse. The results are compared with those reported in the literature. A simple thermal hydraulic analysis allows verification of thermal limits such as fuel and cladding temperatures, and MDNB. (author)

  20. Current and anticipated uses of thermal-hydraulic codes in NFI

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, K. [Nuclear Fuel Industries, Ltd., Tokyo (Japan); Takayasu, M. [Nuclear Fuel Industries, Ltd., Sennann-gun (Japan)

    1997-07-01

    This paper presents the thermal-hydraulic codes currently used in NFI for the LWR fuel development and licensing application including transient and design basis accident analyses of LWR plants. The current status of the codes are described in the context of code capability, modeling feature, and experience of code application related to the fuel development and licensing. Finally, the anticipated use of the future thermal-hydraulic code in NFI is briefly given.