WorldWideScience

Sample records for thermal wind component

  1. Statistical and time domain signal analysis of the thermal behaviour of wind turbine drive train components under dynamic operation conditions

    International Nuclear Information System (INIS)

    Nienhaus, K; Baltes, R; Bernet, C; Hilbert, M

    2012-01-01

    Gearboxes and generators are fundamental components of all electrical machines and the backbone of all electricity generation. Since the wind energy represents one of the key energy sources of the future, the number of wind turbines installed worldwide is rapidly increasing. Unlike in the past wind turbines are more often positioned in arctic as well as in desert like regions, and thereby exposed to harsh environmental conditions. Especially the temperature in those regions is a key factor that defines the design and choice of components and materials of the drive train. To optimize the design and health monitoring under varying temperatures it is important to understand the thermal behaviour dependent on environmental and machine parameters. This paper investigates the behaviour of the stator temperature of the double fed induction generator of a wind turbine. Therefore, different scenarios such as start of the turbine after a long period of no load, stop of the turbine after a long period of full load and others are isolated and analysed. For each scenario the dependences of the temperature on multiple wind turbine parameters such as power, speed and torque are studied. With the help of the regression analysis for multiple variables, it is pointed out which parameters have high impact on the thermal behaviour. Furthermore, an analysis was done to study the dependences in the time domain. The research conducted is based on 10 months of data of a 2 MW wind turbine using an adapted data acquisition system for high sampled data. The results appear promising, and lead to a better understanding of the thermal behaviour of a wind turbine drive train. Furthermore, the results represent the base of future research of drive trains under harsh environmental conditions, and it can be used to improve the fault diagnosis and design of electrical machines.

  2. High thermal load component

    International Nuclear Information System (INIS)

    Fuse, Toshiaki; Tachikawa, Nobuo.

    1996-01-01

    A cooling tube made of a pure copper is connected to the inner portion of an armour (heat resistant member) made of an anisotropic carbon/carbon composite (CFC) material. The CFC material has a high heat conductivity in longitudinal direction of fibers and has low conductivity in perpendicular thereto. Fibers extending in the armour from a heat receiving surface just above the cooling tube are directly connected to the cooling tube. A portion of the fibers extending from a heat receiving surface other than portions not just above the cooling tube is directly bonded to the cooling tube. Remaining fibers are disposed so as to surround the cooling tube. The armour and the cooling tube are soldered using an active metal flux. With such procedures, high thermal load components for use in a thermonuclear reactor are formed, which are excellent in a heat removing characteristic and hardly causes defects such as crackings and peeling. (I.N.)

  3. Probabilistic Modeling of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei

    Wind energy is one of several energy sources in the world and a rapidly growing industry in the energy sector. When placed in offshore or onshore locations, wind turbines are exposed to wave excitations, highly dynamic wind loads and/or the wakes from other wind turbines. Therefore, most components...... in a wind turbine experience highly dynamic and time-varying loads. These components may fail due to wear or fatigue, and this can lead to unplanned shutdown repairs that are very costly. The design by deterministic methods using safety factors is generally unable to account for the many uncertainties. Thus......, a reliability assessment should be based on probabilistic methods where stochastic modeling of failures is performed. This thesis focuses on probabilistic models and the stochastic modeling of the fatigue life of the wind turbine drivetrain. Hence, two approaches are considered for stochastic modeling...

  4. Stochastic Modeling Of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2014-01-01

    reliable components are needed for wind turbine. In this paper focus is on reliability of critical components in drivetrain such as bearings and shafts. High failure rates of these components imply a need for more reliable components. To estimate the reliability of these components, stochastic models...... are needed for initial defects and damage accumulation. In this paper, stochastic models are formulated considering some of the failure modes observed in these components. The models are based on theoretical considerations, manufacturing uncertainties, size effects of different scales. It is illustrated how...

  5. Compatibility Between Electric Components in Wind Farms

    DEFF Research Database (Denmark)

    Holdyk, Andrzej; Holbøll, Joachim; Arana Aristi, Iván

    2011-01-01

    The paper describes a method for investigation of the compatibility between electric components in wind farms by identifying critical resonances at different points of an offshore wind farm (OWF), based on systematic variation of critical parameters. In this way, the design of future OWF can...... be improved at a very early stage of the process. It is also revealed what parameters are the most important ones when considering compatibility. It was observed that a change of capacitance in the collection grid shifts the resonance peaks. A change in WT transformer capacitances influences the admittance...

  6. CWTC business plan; Wind turbine component centre

    Energy Technology Data Exchange (ETDEWEB)

    Hjuler Jensen, P; Hillestroem, A; Markou, H; Berring, P; Friis, P

    2011-04-15

    This report presents the Business Plan for the establishment of the Wind Turbine Component Centre (CWTC) to meet the objectives of performing theoretical research and experimental testing. The core idea of a CWTC is to support the Danish wind energy industry and research activities at the component level improving the competitive advantage of that industry. The CWTC will in itself operate its activities, including access to test and experimental facilities, on a semi commercial basis. The business model for the CWTC presented is based on revenues coming from component manufacturers as well as research grants, and will include membership fees as well as hourly payment and larger projects where payment is a limited project sum. The presented roadmap model clarifies the development path towards a fully developed CWTC, which will cover test of all important components along the drive-train as well as offering a comprehensive systematic understanding of the entire drive-train. The CWTC will over time market and sell its products and services on a global scale, but first and foremost the CWTC is established to support and strengthen the Danish wind energy industry and specifically the Danish sub suppliers to the Danish wind turbine industry and also the Danish research establishments. The presented organizational structure reflects that there are certain functions that are separated from the operations and it also reflects that scientific staffing are hired in on a project basis. Machine operators will be hired in on a permanent basis. The breakdown of the cost for running the rig, both for R and D and commercial projects is presented. The income from the other activities is calculated based on the cost for the research staff, both for R and D activities and commercial. In the first year the income will be 100% from R and D activities, which is the cost for the staff to set-up the test-rig, the guidelines and test procedures, and partly for running the rig. Within 3

  7. Thermal Pyrolytic Graphite Enhanced Components

    Science.gov (United States)

    Hardesty, Robert E. (Inventor)

    2015-01-01

    A thermally conductive composite material, a thermal transfer device made of the material, and a method for making the material are disclosed. Apertures or depressions are formed in aluminum or aluminum alloy. Plugs are formed of thermal pyrolytic graphite. An amount of silicon sufficient for liquid interface diffusion bonding is applied, for example by vapor deposition or use of aluminum silicon alloy foil. The plugs are inserted in the apertures or depressions. Bonding energy is applied, for example by applying pressure and heat using a hot isostatic press. The thermal pyrolytic graphite, aluminum or aluminum alloy and silicon form a eutectic alloy. As a result, the plugs are bonded into the apertures or depressions. The composite material can be machined to produce finished devices such as the thermal transfer device. Thermally conductive planes of the thermal pyrolytic graphite plugs may be aligned in parallel to present a thermal conduction path.

  8. Interaction between main components in wind farms

    DEFF Research Database (Denmark)

    Holdyk, Andrzej; Koldby, Erik

    and the simplicity of the measurement methods using the device makes it a good candidate for performing black-box modelling of multiports whenever such models are not available from the manufacturers. Parametric variation method developed for EMT simulations in ATP-EMTP is a good tool for performing large...... with Frequency Domain Severity Factor proved to be a robust tool in assessing stresses on electric components arising from transient phenomena in offshore wind farms, including the voltage magnitude and frequency of oscillations. Quarter-wave resonance frequency is a good approximation of resonance frequency...... as well as performing parametric variation studies. Methods and tools were developed and shown to perform and estimate the severity of a potential mid- and high- frequency interaction between electric components in OWFs by robust sensitivity analysis in commercial EMT simulation tool. Performing...

  9. Estimation of Equivalent Thermal Conductivity for Impregnated Electrical Windings Formed from Profiled Rectangular Conductors

    OpenAIRE

    Ayat, Sabrina S; Wrobel, Rafal; Goss, James; Drury, David

    2016-01-01

    In order to improve accuracy and reduce model setting-up, and solving time in thermal analysis of electrical machines, transformers and wound passive components, the multi-material winding region is frequently homogenised. The existing winding homogenization techniques are predo-minantly focused on winding constructions with round conductors, where thermal conductivity across conductors is usually assumed to be isotropic. However, for the profiled rectangular conductors that assumption is no ...

  10. Transportation of Large Wind Components: A Permitting and Regulatory Review

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cook, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report summarizes permitting and regulatory issues associated with transporting wind turbine blades, towers, and nacelles as well as large transformers (wind components). These wind components are commonly categorized as oversized and overweight (OSOW) and require specific permit approvals from state and local jurisdictions. The report was developed based on a Quadrennial Energy Review (QER) recommendation on logistical requirements for the transportation of 'oversized or high-consequence energy materials, equipment, and components.'

  11. A Wind Power Plant with Thermal Energy Storage for Improving the Utilization of Wind Energy

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2017-12-01

    Full Text Available The development of the wind energy industry is seriously restricted by grid connection issues and wind energy generation rejections introduced by the intermittent nature of wind energy sources. As a solution of these problems, a wind power system integrating with a thermal energy storage (TES system for district heating (DH is designed to make best use of the wind power in the present work. The operation and control of the system are described in detail. A one-dimensional system model of the system is developed based on a generic model library using the object-oriented language Modelica for system modeling. Validations of the main components of the TES module are conducted against experimental results and indicate that the models can be used to simulate the operation of the system. The daily performance of the integrated system is analyzed based on a seven-day operation. And the influences of system configurations on the performance of the integrated system are analyzed. The numerical results show that the integrated system can effectively improve the utilization of total wind energy under great wind power rejection.

  12. Thermal performance of an innovative roof component

    Energy Technology Data Exchange (ETDEWEB)

    Dimoudi, A. [Department of Environmental Engineering, Democritus University of Thrace, Vassilisis Sofias 12, 67 100 Xanthi (Greece); Lykoudis, S. [Institute for Environmental Research and Sustainable Development, National Observatory of Athens, I. Metaxa and B. Pavlou, 152 36 Penteli (Greece); Androutsopoulos, A. [Buildings Department, Division of Energy Efficiency, Centre for Renewable Energy Sources (CRES), 19th km Marathonos Aven., 190 09 Pikermi (Greece)

    2006-11-15

    In this paper, the thermal performance of a ventilated roof component is investigated during the winter period. The ventilated roof component consists of a conventional roof structure - reinforced concrete with a layer of thermal insulation - an air gap that allows the movement of the ambient air and an external layer made of a prefabricated concrete slab. The experimental results of the ventilated roof component during the winter period are presented and its thermal performance is analysed. The effect of key construction parameters like the height of the air gap and the use of a radiant barrier in the air gap is also investigated. Analysis of the results showed that the performance of a ventilated roof component is comparable to a conventional structure during winter. The ventilated component is shown to be in compliance with Greek regulatory requirements in terms of U-value. (author)

  13. Subcontractors and Component Suppliers in the Swedish Wind Power Industry

    International Nuclear Information System (INIS)

    Takeuchi, Linn

    2003-05-01

    This paper studies the Swedish component suppliers in the wind power industry. This group has not received much attention so far, and today very little is known. This study addresses the fact that the Swedish component suppliers have not been able to penetrate the wind power market despite the Swedish industry's strength in mechanical and electrical engineering. The aims of this paper were to gather information regarding the existing production and to identify factors that affect the Swedish component suppliers' scope to penetrate the wind turbine market. To date, although Sweden has spent considerable amounts of money on projects involving wind turbines, there is no series production of large wind turbines in Sweden. The historical development of the wind turbine industry suggests this alone would have inhibited the development of component production in Sweden. Yet, the country's proximity and good access to large wind turbine producing countries should be an advantage. Various factors and issues are identified and discussed in this paper that are relevant for the Swedish component suppliers' scope to penetrate the wind turbine market. These include market and product development, buyer-supplier relationships, export and sourcing behaviors, and time of market entry. This is a first step towards increasing the knowledge of Swedish component production and it is recognized that more studies are required. Various areas where relevant knowledge is largely missing or scarce are identified and discussed as well, and should serve as relevant starting points for continued research

  14. Subcontractors and Component Suppliers in the Swedish Wind Power Industry

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Linn

    2003-05-01

    This paper studies the Swedish component suppliers in the wind power industry. This group has not received much attention so far, and today very little is known. This study addresses the fact that the Swedish component suppliers have not been able to penetrate the wind power market despite the Swedish industry's strength in mechanical and electrical engineering. The aims of this paper were to gather information regarding the existing production and to identify factors that affect the Swedish component suppliers' scope to penetrate the wind turbine market. To date, although Sweden has spent considerable amounts of money on projects involving wind turbines, there is no series production of large wind turbines in Sweden. The historical development of the wind turbine industry suggests this alone would have inhibited the development of component production in Sweden. Yet, the country's proximity and good access to large wind turbine producing countries should be an advantage. Various factors and issues are identified and discussed in this paper that are relevant for the Swedish component suppliers' scope to penetrate the wind turbine market. These include market and product development, buyer-supplier relationships, export and sourcing behaviors, and time of market entry. This is a first step towards increasing the knowledge of Swedish component production and it is recognized that more studies are required. Various areas where relevant knowledge is largely missing or scarce are identified and discussed as well, and should serve as relevant starting points for continued research.

  15. Stochastic Models of Defects in Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2013-01-01

    The drivetrain in a wind turbine nacelle typically consists of a variety of heavily loaded components, like the main shaft, bearings, gearbox and generator. The variations in environmental load challenge the performance of all the components of the drivetrain. Failure of each of these components...

  16. Thermal loading of wind power converter considering dynamics of wind speed

    DEFF Research Database (Denmark)

    Baygildina, Elvira; Peltoniemi, Pasi; Pyrhönen, Olli

    2013-01-01

    The thermal loading of power semiconductors is a crucial performance related to the reliability and cost of the wind power converter. However, the thermal loading impacts by the variation of wind speeds have not yet been clarified, especially when considering the aerodynamic behavior of the wind...... turbines. In this paper, the junction temperatures in the wind power converter are studied under not only steady state, but also turbulent wind speed conditions. The study is based on a 1.5 MW direct-driven turbine system with aerodynamic model described by Unsteady Blade Element Momentum Method (BEMM......), and the thermal stress of power devices is investigated from the frequency spectrum point of view of wind speed. It is concluded that because of the strong inertia effects by the aerodynamic behavior of wind turbines, thermal stress of the semiconductors is relatively more stable and only influenced by the low...

  17. Influence of winding construction on starter-generator thermal processes

    Science.gov (United States)

    Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.

    2018-01-01

    Dynamic processes in starter-generators features high winding are overcurrent. It can lead to insulation overheating and fault operation mode. For hybrid and electric vehicles, new high efficiency construction of induction machines windings is proposed. Stator thermal processes need be considered in the most difficult operation modes. The article describes construction features of new compact stator windings, electromagnetic and thermal models of processes in stator windings and explains the influence of innovative construction on thermal processes. Models are based on finite element method.

  18. Thermally activated, single component epoxy systems

    KAUST Repository

    Unruh, David A.

    2011-08-23

    A single component epoxy system in which the resin and hardener components found in many two-component epoxies are combined onto the same molecule is described. The single molecule precursor to the epoxy resin contains both multiple epoxide moieties and a diamine held latent by thermally degradable carbamate linkages. These bis-carbamate "single molecule epoxies" have an essentially infinite shelf life and access a significant range in curing temperatures related to the structure of the carbamate linkages used. © 2011 American Chemical Society.

  19. Thermally activated, single component epoxy systems

    KAUST Repository

    Unruh, David A.; Pastine, Stefan J.; Moreton, Jessica C.; Frechet, Jean

    2011-01-01

    A single component epoxy system in which the resin and hardener components found in many two-component epoxies are combined onto the same molecule is described. The single molecule precursor to the epoxy resin contains both multiple epoxide moieties and a diamine held latent by thermally degradable carbamate linkages. These bis-carbamate "single molecule epoxies" have an essentially infinite shelf life and access a significant range in curing temperatures related to the structure of the carbamate linkages used. © 2011 American Chemical Society.

  20. Electrical components library for HAWC2; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, N.A.; Larsen, Torben J.; Soerensen, Poul; Hansen, Anca D. (Risoe National Lab., DTU, Wind Energy Dept., Roskilde (DK)); Iov, F. (Aalborg Univ., Institute of Energy Technology (DK))

    2007-12-15

    The work presented in this report is part of the EFP project called ''A Simulation Platform to Model, Optimize and Design Wind Turbines'' partly funded by the Danish Energy Authority under contract number 1363/04-0008. The project is carried out in cooperation between Risoe National Laboratory and Aalborg University. In this project, the focus is on the development of a simulation platform for wind turbine systems using different simulation tools. This report presents the electric component library developed for use in the aeroelastic code HAWC2. The developed library includes both steady state and dynamical models for fixed and variable speed wind turbines. A simple steady-state slip model was developed for the fixed speed wind turbine. This model is suitable for aeroelastic design of wind turbines under normal operation. A dynamic model of an induction generator for the fixed speed wind turbine was developed. The model includes the dynamics of the rotor fluxes. The model is suitable for a more detailed investigation of the mechanical-electrical interaction, both under normal and fault operation. For the variable speed wind turbine, a steadystate model, typically used in aeroelastic design, was implemented. The model can be used for normal and, to some extent, for fault operation. The reduced order dynamic model of a DFIG was implemented. The model includes only the active power controller and can be used for normal operation conditions. (au)

  1. Fatigue Reliability Analysis of Wind Turbine Cast Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Fæster, Søren

    2017-01-01

    .) and to quantify the relevant uncertainties using available fatigue tests. Illustrative results are presented as obtained by statistical analysis of a large set of fatigue data for casted test components typically used for wind turbines. Furthermore, the SN curves (fatigue life curves based on applied stress......The fatigue life of wind turbine cast components, such as the main shaft in a drivetrain, is generally determined by defects from the casting process. These defects may reduce the fatigue life and they are generally distributed randomly in components. The foundries, cutting facilities and test...... facilities can affect the verification of properties by testing. Hence, it is important to have a tool to identify which foundry, cutting and/or test facility produces components which, based on the relevant uncertainties, have the largest expected fatigue life or, alternatively, have the largest reliability...

  2. Reliability of Wind Turbine Components-Solder Elements Fatigue Failure

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    on the temperature mean and temperature range. Constant terms and model errors are estimated. The proposed methods are useful to predict damage values for solder joint in power electrical components. Based on the proposed methods it is described how to find the damage level for a given temperature loading profile....... The proposed methods are discussed for application in reliability assessment of Wind Turbine’s electrical components considering physical, model and measurement uncertainties. For further research it is proposed to evaluate damage criteria for electrical components due to the operational temperature...

  3. Thermal radio emission from the winds of single stars

    International Nuclear Information System (INIS)

    Abbott, D.C.

    1985-01-01

    Observations of thermal emission at radio wavelengths provides a powerful diagnostic of the rate of mass loss and temperature of the winds of early-type stars. Some winds are also strong sources of nonthermal emission. Case studies of known thermal and nonthermal sources provide empirical criteria for classifying the observed radio radiation. Mass loss rates are derived for 37 OB and Wolf-Rayet stars considered definite or probable thermal wind sources by these criteria. The rate of mass loss is strongly linked to stellar luminosity in OB stars and probably linked to stellar mass in Wolf-Rayet stars, with no measurable correlation with any other stellar property. A few late-type giants and supergiants also have detectable thermal emission, which arises from extended, accelerating, partially-ionized chromospheres. (orig.)

  4. MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY

    International Nuclear Information System (INIS)

    Garrett, A.; Kurzeja, R.; Villa-Aleman, E.; Tuckfield, C.; Pendergast, M.

    2009-01-01

    The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper (1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology and water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions

  5. Thermal Loading and Lifetime Estimation for Power Device Considering Mission Profiles in Wind Power Converter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2015-01-01

    for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power application, because the comprehensive mission profiles are not well specified and included......As a key component in the wind turbine system, the power electronic converter and its power semiconductors suffer from complicated power loadings related to environment, and are proven to have high failure rates. Therefore, correct lifetime estimation of wind power converter is crucial...... devices, more detailed information of the lifetime-related performance in wind power converter can be obtained. Some experimental results are also included to validate the thermal behavior of power device under different mission profiles....

  6. Multi-component wind measurements of wind turbine wakes performed with three LiDARs

    Science.gov (United States)

    Iungo, G. V.; Wu, Y.-T.; Porté-Agel, F.

    2012-04-01

    LiDARs are performed over the mean vertical symmetry plane of the wind turbine wake, while a third LiDAR measures the incoming wind over a vertical plane parallel to the mean wind direction and lying outside of the wake. One LiDAR is placed in proximity of the wind turbine location and measures pointing downstream, whereas a second LiDAR is located along the mean wind direction at a downstream distance of 6.5 diameters and measures pointing upstream. For these measurements axial and vertical velocity components are retrieved only for measurement points where the two laser beams result to be roughly orthogonal. Statistics of the two velocity components show in the near wake at hub height strong flow fluctuations with magnitudes about 30% of the mean value, and a gradual reduction for downstream distances larger than three rotor diameters.

  7. Distributionally robust hydro-thermal-wind economic dispatch

    International Nuclear Information System (INIS)

    Chen, Yue; Wei, Wei; Liu, Feng; Mei, Shengwei

    2016-01-01

    Highlights: • A two-stage distributionally robust hydro-thermal-wind model is proposed. • A semi-definite programing equivalent and its algorithm are developed. • Cases that demonstrate the effectiveness of the proposed model are included. - Abstract: With the penetration of wind energy increasing, uncertainty has become a major challenge in power system dispatch. Hydro power can change rapidly and is regarded as one promising complementary energy resource to mitigate wind power fluctuation. Joint scheduling of hydro, thermal, and wind energy is attracting more and more attention nowadays. This paper proposes a distributionally robust hydro-thermal-wind economic dispatch (DR-HTW-ED) method to enhance the flexibility and reliability of power system operation. In contrast to the traditional stochastic optimization (SO) and adjustable robust optimization (ARO) method, distributionally robust optimization (DRO) method describes the uncertain wind power output by all possible probability distribution functions (PDFs) with the same mean and variance recovered from the forecast data, and optimizes the expected operation cost in the worst distribution. Traditional DRO optimized the random parameter in entire space, which is sometimes contradict to the actual situation. In this paper, we restrict the wind power uncertainty in a bounded set, and derive an equivalent semi-definite programming (SDP) for the DR-HTW-ED using S-lemma. A delayed constraint generation algorithm is suggested to solve it in a tractable manner. The proposed DR-HTW-ED is compared with the existing ARO based hydro-thermal-wind economic dispatch (AR-HTW-ED). Their respective features are shown from the perspective of computational efficiency and conservativeness of dispatch strategies.

  8. Thermal Components Boost Performance of HVAC Systems

    Science.gov (United States)

    2012-01-01

    As the International Space Station (ISS) travels 17,500 miles per hour, normal is having a constant sensation of free-falling. Normal is no rain, but an extreme amount of shine.with temperatures reaching 250 F when facing the Sun. Thanks to a number of advanced control systems onboard the ISS, however, the interior of the station remains a cool, comfortable, normal environment where astronauts can live and work for extended periods of time. There are two main control systems on the ISS that make it possible for humans to survive in space: the Thermal Control System (TCS) and the Environmental Control and Life Support system. These intricate assemblies work together to supply water and oxygen, regulate temperature and pressure, maintain air quality, and manage waste. Through artificial means, these systems create a habitable environment for the space station s crew. The TCS constantly works to regulate the temperature not only for astronauts, but for the critical instruments and machines inside the spacecraft as well. To do its job, the TCS encompasses several components and systems both inside and outside of the ISS. Inside the spacecraft, a liquid heat-exchange process mechanically pumps fluids in closed-loop circuits to collect, transport, and reject heat. Outside the ISS, an external system circulates anhydrous ammonia to transport heat and cool equipment, and radiators release the heat into space. Over the years, NASA has worked with a variety of partners.public and private, national and international. to develop and refine the most complex thermal control systems ever built for spacecraft, including the one on the ISS.

  9. Thermal effects influencing measurements in a supersonic blowdown wind tunnel

    Directory of Open Access Journals (Sweden)

    Vuković Đorđe S.

    2016-01-01

    Full Text Available During a supersonic run of a blowdown wind tunnel, temperature of air in the test section drops which can affect planned measurements. Adverse thermal effects include variations of the Mach and Reynolds numbers, variation of airspeed, condensation of moisture on the model, change of characteristics of the instrumentation in the model, et cetera. Available data on thermal effects on instrumentation are pertaining primarily to long-run-duration wind tunnel facilities. In order to characterize such influences on instrumentation in the models, in short-run-duration blowdown wind tunnels, temperature measurements were made in the wing-panel-balance and main-balance spaces of two wind tunnel models tested in the T-38 wind tunnel. The measurements showed that model-interior temperature in a run increased at the beginning of the run, followed by a slower drop and, at the end of the run, by a large temperature drop. Panel-force balance was affected much more than the main balance. Ways of reducing the unwelcome thermal effects by instrumentation design and test planning are discussed.

  10. Process management using component thermal-hydraulic function classes

    Science.gov (United States)

    Morman, J.A.; Wei, T.Y.C.; Reifman, J.

    1999-07-27

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

  11. Process management using component thermal-hydraulic function classes

    Science.gov (United States)

    Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques

    1999-01-01

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  12. Thermal conductivity of multibarrier waste form components

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1981-01-01

    The multiple barrier concept of radioactive waste immobilization under investigation at Pacific Northwest Laboratory (PNL) uses composite waste forms which exhibit enhanced inertness through improvements in thermal stability, mechanical strength, and leachability by the use of coatings and metal matrices. Since excessive heat may be generated by radioactive decay of the waste, the thermal conductivity of the various barriers, and more importantly of the composite, becomes an important parameter in design criteria. This report presents results of thermal conductivity measurements on 21 various glass, ceramic, metal and composite materials used in multibarrier waste forms development

  13. The thermal structure of a wind-driven Reynolds ridge

    Energy Technology Data Exchange (ETDEWEB)

    Phongikaroon, Supathorn; Peter Judd, K.; Smith, Geoffrey B.; Handler, Robert A. [Remote Sensing Division, Naval Research Laboratory, 20375, Washington, DC (United States)

    2004-08-01

    In this study, we investigate the nature of a Reynolds ridge formed by wind shear. We have simultaneously imaged the water surface, with a deposit of a monolayer of the surfactant, oleyl alcohol, subject to different wind shears, by using a high-resolution infrared (IR) detector and a high-speed (HS) digital camera. The results reveal that the regions around the wind-driven Reynolds ridge, which have subtle manifestations in visual imagery, possess surprisingly complex hydrodynamical and thermal structures when observed in the infrared. The IR measurements reveal a warm, clean region upstream of the ridge, which is composed of the so called fishscale structures observed in earlier investigations. The region downstream of the ridge is composed of colder fluid which forms two counter-rotating cells. A region of intermediate temperature, which we call the mixing (wake) region, forms immediately downstream of the ridge near the channel centerline. By measuring the velocity of the advected fishscales, we have determined a surface drift speed of about 2% of the wind speed. The spanwise length-scale of the structures has also been used to estimate the wind shear. In addition, a comparison of IR and visual imagery shows that the thermal field is a very sensitive indicator of the exact position of the ridge itself. (orig.)

  14. Application of Advanced Particle Swarm Optimization Techniques to Wind-thermal Coordination

    DEFF Research Database (Denmark)

    Singh, Sri Niwas; Østergaard, Jacob; Yadagiri, J.

    2009-01-01

    wind-thermal coordination algorithm is necessary to determine the optimal proportion of wind and thermal generator capacity that can be integrated into the system. In this paper, four versions of Particle Swarm Optimization (PSO) techniques are proposed for solving wind-thermal coordination problem...

  15. Genesis Solar Wind Science Canister Components Curated as Potential Solar Wind Collectors and Reference Contamination Sources

    Science.gov (United States)

    Allton, J. H.; Gonzalez, C. P.; Allums, K. K.

    2016-01-01

    The Genesis mission collected solar wind for 27 months at Earth-Sun L1 on both passive and active collectors carried inside of a Science Canister, which was cleaned and assembled in an ISO Class 4 cleanroom prior to launch. The primary passive collectors, 271 individual hexagons and 30 half-hexagons of semiconductor materials, are described in. Since the hard landing reduced the 301 passive collectors to many thousand smaller fragments, characterization and posting in the online catalog remains a work in progress, with about 19% of the total area characterized to date. Other passive collectors, surfaces of opportunity, have been added to the online catalog. For species needing to be concentrated for precise measurement (e.g. oxygen and nitrogen isotopes) an energy-independent parabolic ion mirror focused ions onto a 6.2 cm diameter target. The target materials, as recovered after landing, are described in. The online catalog of these solar wind collectors, a work in progress, can be found at: http://curator.jsc.nasa.gov/gencatalog/index.cfm This paper describes the next step, the cataloging of pieces of the Science Canister, which were surfaces exposed to the solar wind or component materials adjacent to solar wind collectors which may have contributed contamination.

  16. Artificial heart system thermal insulation component development

    International Nuclear Information System (INIS)

    Svedberg, R.C.; Buckman, R.W. Jr.

    1975-01-01

    A concentric cup vacuum multifoil insulation system has been selected by virtue of its size, weight, and thermal performance to insulate the hot radioisotope portion of the thermal converter of an artificial implantable heart system. A factor of 2 improvement in thermal performance, based on the heat loss per number of foil layers (minimum system weight and volume) has been realized over conventional spiral wrapped multifoil vacuum insulation. This improvement is the result of the concentric cup construction to maintain a uniform interfoil spacing and the elimination of corner heat losses. Based on external insulation system dimensions (surface area in contact with host body), heat losses of 0.019 W/ cm 2 at 1140 0 K (1600 0 F) and 0.006 W/cm 2 at 920 0 K (1200 0 F) have been achieved. Factors which influence thermal performance of the nickel foil concentric cup insulation system include the number of cups, configuration and method of application of zirconia (ZrO 2 ) spacer material, system pressure, emittance of the cups, and operating temperature

  17. Thermal Loading and Reliability of 10 MW Multilevel Wind Power Converter at Different Wind Roughness Classes

    DEFF Research Database (Denmark)

    Isidori, Andrea; Rossi, Fabio Mario; Blaabjerg, Frede

    2014-01-01

    This paper focuses on the design, thermal loading, and reliability of a three-level neutral-point-clamped back-to-back full-scale converter for a 10-MW direct-drive wind turbine equipped with a permanent-magnet synchronous generator. The reliability performance of the three-level converter...... is strongly influenced by the thermal behavior of the semiconductor devices and their mission profile which directly affects the lifetime and the cost of the entire converter. Therefore, a simulation platform is developed in a Matlab/Simulink and PLECS simulation environment to analyze the dynamics...... of the system using different kinds of modulation strategies and analyzing the different wind-load conditions that are dependent on roughness classes. This paper shows that the 60 ° discontinuous pulsewidth-modulation strategies allow better thermal performance and increase the estimated lifetime...

  18. Thermal loading and reliability of 10 MW multilevel wind power converter at different wind roughness classes

    DEFF Research Database (Denmark)

    Isidori, Andrea; Rossi, Fabio Mario; Blaabjerg, Frede

    2012-01-01

    This paper focuses on the design, thermal loading and reliability of a three-level Neutral Point Clamped (3-L NPC) back-to-back full scale converter for a 10 MW direct-drive wind turbine equipped with a Permanent Magnet Synchronous Generator (PMSG). The reliability performance of the three......-level converter is strongly influenced by the thermal behaviour of the semiconductor devices and their mission profile which directly affects the lifetime and the cost of the whole converter. Therefore, the simulation platform is developed in Matlab/Simulink and PLECS simulation environment to analyse...... the dynamics of the system using different kinds of modulation strategies and analyzing different wind load conditions dependent on roughness classes. It is concluded that 60° discontinuous PWM modulation strategies show better thermal performance and increase the estimated lifetime of the converter...

  19. Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain. II. Predicting wind components

    Energy Technology Data Exchange (ETDEWEB)

    Kamp, Derek van der [University of Victoria, Pacific Climate Impacts Consortium, Victoria, BC (Canada); University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada); Curry, Charles L. [Environment Canada University of Victoria, Canadian Centre for Climate Modelling and Analysis, Victoria, BC (Canada); University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada); Monahan, Adam H. [University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada)

    2012-04-15

    A regression-based downscaling technique was applied to monthly mean surface wind observations from stations throughout western Canada as well as from buoys in the Northeast Pacific Ocean over the period 1979-2006. A predictor set was developed from principal component analysis of the three wind components at 500 hPa and mean sea-level pressure taken from the NCEP Reanalysis II. Building on the results of a companion paper, Curry et al. (Clim Dyn 2011), the downscaling was applied to both wind speed and wind components, in an effort to evaluate the utility of each type of predictand. Cross-validated prediction skill varied strongly with season, with autumn and summer displaying the highest and lowest skill, respectively. In most cases wind components were predicted with better skill than wind speeds. The predictive ability of wind components was found to be strongly related to their orientation. Wind components with the best predictions were often oriented along topographically significant features such as constricted valleys, mountain ranges or ocean channels. This influence of directionality on predictive ability is most prominent during autumn and winter at inland sites with complex topography. Stations in regions with relatively flat terrain (where topographic steering is minimal) exhibit inter-station consistencies including region-wide seasonal shifts in the direction of the best predicted wind component. The conclusion that wind components can be skillfully predicted only over a limited range of directions at most stations limits the scope of statistically downscaled wind speed predictions. It seems likely that such limitations apply to other regions of complex terrain as well. (orig.)

  20. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    OpenAIRE

    Hesam Mirzaei Rafsanjani; John Dalsgaard Sørensen

    2015-01-01

    Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure of each component will lead to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves an...

  1. Dynamic thermal modelling and analysis of press-pack IGBTs both at component-level and chip-level

    DEFF Research Database (Denmark)

    Busca, Cristian; Teodorescu, Remus; Blaabjerg, Frede

    2013-01-01

    curves under various mechanical clamping conditions are derived. Moreover, the deformation of the internal components of the PP IGBT under operating-like conditions is investigated with the help of the thermal models and the coefficient of thermal expansion (CTE) information.......Thermal models are needed when designing power converters for Wind Turbines (WTs) in order to carry out thermal and reliability assessment of certain designs. Usually the thermal models of Insulated Gate Bipolar Transistors (IGBTs) are given in the datasheet in various forms at component......-level, not taking into account the thermal distribution among the chips. This is especially relevant in the case of Press-Pack (PP) IGBTs because any non-uniformity of the clamping pressure can affect the chip-level thermal impedances. This happens because the contact thermal resistances in the thermal impedance...

  2. Reliability & availability of wind turbine electrical & electronic components

    NARCIS (Netherlands)

    Tavner, P.; Faulstich, S.; Hahn, B.; Bussel, van G.J.W.

    2010-01-01

    Recent analysis of European onshore wind turbine reliability data has shown that whilst wind turbine mechanical subassemblies tend to have relatively low failure rates but long downtimes, electrical and electronic subassemblies have relatively high failure rates and short downtimes. For onshore wind

  3. Observations of thermal and suprathermal tail ions from WIND

    Science.gov (United States)

    Randol, B. M.; Christian, E. R.; Wilson, L. B., III

    2016-12-01

    The velocity distribution function (VDF) of solar wind protons (as well as other ion populations) is comprised of a thermal Maxwellian core and an accelerated suprathermal tail, beginning at around 1 keV in the frame co-moving with solar wind bulk velocity. The form of the suprathermal tail is a power law in phase space density, f, vs. speed, v, such that f / vγ, where γ is the power law index. This commonly observed index is of particular interest because no traditional theory predicts its existence. We need more data in order to test these theories. The general shape is of interest because it is kappa-like. We show combined observations from three different instruments on the WIND spacecraft: 3DP/PLSP, STICS, and 3DP/SST/Open. These data stretch from 102 to 107 eV in energy, encompassing both the thermal and suprathermal proton populations. We show further evidence for this kappa-like distribution and report on our progress on fitting of empirical functions to these data.

  4. Offshore Wind Power Plant Technology Catalogue - Components of wind power plants, AC collection systems and HVDC systems

    DEFF Research Database (Denmark)

    Das, Kaushik; Antonios Cutululis, Nicolaos

    2017-01-01

    Traditionally, Offshore Wind Power Plants (OWPPs) are connected through many com-ponents as shown in the figure 1. An OWPP consists of controllable, variable speed Wind Turbines (WTs). These WTs are connected through Medium Voltage (MV) sub-marine cables typically at voltage level of upto 33-66 k...... for the cables as well reduce the power losses through them....

  5. The Modeling and Simulation of Thermal Analysis at Hydro Generator Stator Winding Insulation

    Directory of Open Access Journals (Sweden)

    Mihaela Raduca

    2006-10-01

    Full Text Available This paper presents the modelling and simulation of thermal analysis at hydro generator stator winding. The winding stator is supplied at high voltage of 11 kV for high power hydro generator. To present the thermal analysis for stator winding is presented at supply of coil by 11 kV, when coil is heat and thermal transfer in insulation at ambient temperature.

  6. Artificial heart thermal converter component research and development

    International Nuclear Information System (INIS)

    Goldowsky, M.; Lehrfeld, D.

    1977-01-01

    Under U.S. ERDA contract, a radioisotope powered artificial heart system to be used as a replacement for the diseased natural heart is under development by the Westinghouse Advanced Energy Systems Division and Philips Laboratories. A portion of the program activity is in research and development of components for the Stirling cycle thermal converter. Developments in current areas of thermal converter R and D investigation are discussed, including the control system, lubrication system, magnetic shaft coupling, rotary seals, and materials joining

  7. Thermal Simulation of the Component Rework Profile Temperature

    OpenAIRE

    Nurminen, Janne

    2015-01-01

    The aim of this study was to clarify the possibilities and feasibility of the ther-mal simulation for the modeling of the rework process. The rework process modeling could enable an easy and fast access to the component and PWB level thermally critical effects like over and under heating of the component during the rework process. The modeling could also be used as a help of the real rework profile definition at an early phase of the electrical device development. The work includes a...

  8. LINCOM wind flow model: Application to complex terrain with thermal stratification

    DEFF Research Database (Denmark)

    Dunkerley, F.; Moreno, J.; Mikkelsen, T.

    2001-01-01

    LINCOM is a fast linearised and spectral wind flow model for use over hilly terrain. It is designed to rapidly generate mean wind field predictions which provide input to atmospheric dispersion models and wind engineering applications. The thermal module, LINCOM-T, has recently been improved to p...

  9. Optimal day-ahead wind-thermal unit commitment considering statistical and predicted features of wind speeds

    International Nuclear Information System (INIS)

    Sun, Yanan; Dong, Jizhe; Ding, Lijuan

    2017-01-01

    Highlights: • A day–ahead wind–thermal unit commitment model is presented. • Wind speed transfer matrix is formed to depict the sequential wind features. • Spinning reserve setting considering wind power accuracy and variation is proposed. • Verified study is performed to check the correctness of the program. - Abstract: The increasing penetration of intermittent wind power affects the secure operation of power systems and leads to a requirement of robust and economic generation scheduling. This paper presents an optimal day–ahead wind–thermal generation scheduling method that considers the statistical and predicted features of wind speeds. In this method, the statistical analysis of historical wind data, which represents the local wind regime, is first implemented. Then, according to the statistical results and the predicted wind power, the spinning reserve requirements for the scheduling period are calculated. Based on the calculated spinning reserve requirements, the wind–thermal generation scheduling is finally conducted. To validate the program, a verified study is performed on a test system. Then, numerical studies to demonstrate the effectiveness of the proposed method are conducted.

  10. Electrical and non-electrical environment of wind turbine main components

    DEFF Research Database (Denmark)

    Holboell, J.; Henriksen, M.; Olsen, R.S.

    of the electrical components or even lead to catastrophic component failure. In the present paper, results are presented from investigations on existing standards which give detailed descriptions of the environmental and operational conditions of wind turbine components. It is found that there is currently a lack...... of application standards for wind turbine electrical equipment. Component-level environmental requirements as given in equipment-specific standards are compared with the environment described in the IEC's 61400 series concerning wind turbines. Based on methods defined in IEC 60721, the non-electrical environment...... of wind turbine is described by means of specific classes. In the paper, new class combinations are suggested covering the different operating conditions the components are exposed to. The class combinations include factors of climatic, mechanical and chemical character. The factors occur in different...

  11. Transportation of Large Wind Components: A Review of Existing Geospatial Data

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, Meghan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maclaurin, Galen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report features the geospatial data component of a larger project evaluating logistical and infrastructure requirements for transporting oversized and overweight (OSOW) wind components. The goal of the larger project was to assess the status and opportunities for improving the infrastructure and regulatory practices necessary to transport wind turbine towers, blades, and nacelles from current and potential manufacturing facilities to end-use markets. The purpose of this report is to summarize existing geospatial data on wind component transportation infrastructure and to provide a data gap analysis, identifying areas for further analysis and data collection.

  12. Vertical-axial component wind turbine with a high coefficient using for wind energy

    International Nuclear Information System (INIS)

    Yersin, Ch. Sh.; Manatbev, R.K.; Yersina, A. K.; Tulepbergenov, A. K.

    2012-01-01

    The report presents the results of research and development on of promising wind units carousel type with a high ratio utilization of wind energy. This devices use a well-known invention – the wind turbine Darrieus. The rotation of the turbine is due to the action of ascensional power to aerodynamic well-streamlined symmetrical about the chord wing profiles of NASA, which are working wind turbine blades. The shaft rotation can be connected with the working blades of one of two ways: using the “swings” or the way “troposkino”. Darrieus turbine has a ratio utilization of wind energy xmax=045. Despite the fact that this is a good indicator of the efficiency of the turbine working, the proposed option allows us to significantly increase the value of this coefficient. The bases methodology of this research is a method of technical and technological research and development design of prospective wind energy construction (WES). Key words: wind turbine, the blade, coefficient utilization of wind energy

  13. An extended NSGA-III for solution multi-objective hydro-thermal-wind scheduling considering wind power cost

    International Nuclear Information System (INIS)

    Yuan, Xiaohui; Tian, Hao; Yuan, Yanbin; Huang, Yuehua; Ikram, Rana M.

    2015-01-01

    Highlights: • Multi-objective hydro-thermal-wind scheduling model (MO-HTWS) is establish. • The extra cost in MO-HTWS problem caused by wind uncertainty is considered. • An extended NSGA-III is proposed to solve MO-HTWS problem. • Constraint handling strategies are presented to modify infeasible solutions. • The feasibility and effectiveness of the proposed method is verified by example. - Abstract: Due to the characteristics of clean and renewable, wind power is significant to economic and environmental operation of electric power system so that it attracts more and more attention from researchers. This paper integrates wind power with hydrothermal scheduling to establish multi-objective economic emission hydro-thermal-wind scheduling problem (MO-HTWS) model with considering wind uncertain cost. To solve MO-HTWS problem with various complicated constraints, this paper extends NSGA-III by introducing the dominance relationship criterion based on constraint violation to select new generation. Moreover, the constraint handling strategy which repairs the infeasible solutions by modifying the decision variables in feasible zone according to the violation amount is proposed. Finally, a daily scheduling example of hydro-thermal-wind system is used to test the ability of NSGA-III for solving MO-HTWS problem. It is concluded from the superior quality and good distribution of the Pareto optimal solutions that, NSGA-III can offer an efficient alternative for optimizing MO-HTWS problem

  14. Objective and subjective assessment of tonal components in noise from UK wind farm sites

    International Nuclear Information System (INIS)

    McKenzie, A.R.

    1997-01-01

    The level of any tonal components in the noise from a wind farm site can be quantified using objective analysis procedures. These procedures are, however, open to a certain amount of interpretation. an automated assessment procedure has, therefore, been developed which is appropriate to the needs of the wind turbine industry. This paper describes a study to compare the results of objective assessments carried out using this method with the results of carefully controlled subjective listening tests for samples of wind turbine noise from nine U.K. wind farm sites. (author)

  15. Modulating wind power plant output using different frequency modulation components for damping grid oscillations

    DEFF Research Database (Denmark)

    2017-01-01

    A method, controller, wind power plant, and computer program product are disclosed for operating a wind power plant comprising a plurality of wind turbines, the wind power plant producing a plant power output. The method comprises receiving a modulation request signal indicating a requested...... modulation of the plant power output, the requested modulation specifying a modulation frequency. The method further comprises generating a respective power reference signal for each of at least two wind turbines of the plurality of wind turbines selected to fulfill the requested modulation, Each generated...... power reference signal includes a respective modulation component corresponding to a portion of the requested modulation and having a frequency different than the modulation frequency....

  16. Reliability Analysis of Fatigue Fracture of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Berzonskis, Arvydas; Sørensen, John Dalsgaard

    2016-01-01

    in the volume of the casted ductile iron main shaft, on the reliability of the component. The probabilistic reliability analysis conducted is based on fracture mechanics models. Additionally, the utilization of the probabilistic reliability for operation and maintenance planning and quality control is discussed....

  17. Behaviour at thermal ageing of power cable components through penetrations

    International Nuclear Information System (INIS)

    Puiu, D.; Gyongyosi, T.; Dinu, E.

    2009-01-01

    The materials for electric insulation and exterior jackets of the power cables are formulated organic compounds. The environmental service conditions will induce chemical and/or physical processes at molecular level of the material; these processes are the ageing mechanisms. The power cables passing through penetrations lead to an increase of the rate of thermal ageing mechanisms, resulting in irreversible degradation of mechanical and electric properties of the organic compounds and of the functional properties of the cable. The paper presents the results of the laboratory tests when the real environmental service conditions for penetration are simulated, the comparison with the results of the thermal computation of the power cables heating and the evaluation of the influence of temperature increase of the power cable components on the cable lifetime. For the particular case of a power cable with PVC insulation, we estimated a lifetime decrease about seven years as referred to lifetime of about 30 years for operation in air. (authors)

  18. Research on Power System Scheduling Improving Wind Power Accommodation Considering Thermal Energy Storage and Flexible Load

    Science.gov (United States)

    Zou, Chenlu; Cui, Xue; Wang, Heng; Zhou, Bin; Liu, Yang

    2018-01-01

    In the case of rapid development of wind power and heavy wind curtailment, the study of wind power accommodation of combined heat and power system has become the focus of attention. A two-stage scheduling model contains of wind power, thermal energy storage, CHP unit and flexible load were constructed. This model with the objective function of minimizing wind curtailment and the operation cost of units while taking into account of the total coal consumption of units, constraint of thermal energy storage and electricity-heat characteristic of CHP. This paper uses MICA to solve the problem of too many constraints and make the solution more feasible. A numerical example showed that the two stage decision scheduling model can consume more wind power, and it could provide a reference for combined heat and power system short-term operation

  19. Ceramic thermal wind sensor based on advanced direct chip attaching package

    International Nuclear Information System (INIS)

    Zhou Lin; Qin Ming; Chen Shengqi; Chen Bei

    2014-01-01

    An advanced direct chip attaching packaged two-dimensional ceramic thermal wind sensor is studied. The thermal wind sensor chip is fabricated by metal lift-off processes on the ceramic substrate. An advanced direct chip attaching (DCA) packaging is adopted and this new packaged method simplifies the processes of packaging further. Simulations of the advanced DCA packaged sensor based on computational fluid dynamics (CFD) model show the sensor can detect wind speed and direction effectively. The wind tunnel testing results show the advanced DCA packaged sensor can detect the wind direction from 0° to 360° and wind speed from 0 to 20 m/s with the error less than 0.5 m/s. The nonlinear fitting based least square method in Matlab is used to analyze the performance of the sensor. (semiconductor devices)

  20. Reliability Assessment of Offshore Wind Turbines Considering Faults of Electrical / Mechanical Components

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2013-01-01

    For offshore wind turbines, the cost contribution to Cost of Energy from inspections and Operation & Maintenance can be substantial, and can be expected to increase when wind farms are placed at deeper water depths, further from the coast and in more harsh environments. Estimates of the reliability...... is considered and related to reliability estimation by taking into account faults e.g. due to failure of an electrical component or loss of grid....

  1. Wind pressure testing of tornado safe room components made from wood

    Science.gov (United States)

    Robert Falk; Deepak Shrestha

    2016-01-01

    To evaluate the ability of a wood tornado safe room to resist wind pressures produced by a tornado, two safe room com-ponents were tested for wind pressure strength. A tornado safe room ceiling panel and door were static-pressure-tested according to ASTM E 330 using a vacuum test system. Re-sults indicate that the panels had load capacities from 2.4 to 3.5 times that...

  2. Reactive power influence on the thermal cycling of multi-MW wind power inverter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2012-01-01

    converter system are first presented at different wind speeds. Furthermore, the interaction between paralleled converter systems in a wind park is also considered and analyzed. By controlling the reactive power circulated among paralleled converters, a new concept is then proposed to stabilize the thermal...

  3. The Feasibility Study on Thermal Loading Control of Wind Power Converters with a Flexible Switching Frequency

    DEFF Research Database (Denmark)

    Qin, Zian; Wang, Huai; Blaabjerg, Frede

    2015-01-01

    Thermal loading of wind power converters is critical to their reliability performance. Especially for IGBT modules applied in a converter, both of the mean value and variation of the junction temperature have significant impact on the lifetime. Besides other strategies to reduce the thermal loadi...... the temperature fluctuations due to wind speed variations. The trade-off between the reduced amplitude of temperature fluctuations and the additional power losses that may be introduced is quantitatively studied....

  4. THE NON-THERMAL, TIME-VARIABLE RADIO EMISSION FROM Cyg OB2 no. 5: A WIND-COLLISION REGION

    International Nuclear Information System (INIS)

    Ortiz-Leon, Gisela N.; Loinard, Laurent; RodrIguez, Luis F.; Dzib, Sergio A.; Mioduszewski, Amy J.

    2011-01-01

    The radio emission from the well-studied massive stellar system Cyg OB2 no. 5 is known to fluctuate with a period of 6.7 years between a low-flux state, when the emission is entirely of free-free origin, and a high-flux state, when an additional non-thermal component (of hitherto unknown nature) appears. In this paper, we demonstrate that the radio flux of that non-thermal component is steady on timescales of hours and that its morphology is arc-like. This shows that the non-thermal emission results from the collision between the strong wind driven by the known contact binary in the system and that of an unseen companion on a somewhat eccentric orbit with a 6.7 year period and a 5-10 mas semimajor axis. Together with the previously reported wind-collision region located about 0.''8 to the northeast of the contact binary, so far Cyg OB2 no. 5 appears to be the only multiple system known to harbor two radio-imaged wind-collision regions.

  5. A Chance-Constrained Economic Dispatch Model in Wind-Thermal-Energy Storage System

    Directory of Open Access Journals (Sweden)

    Yanzhe Hu

    2017-03-01

    Full Text Available As a type of renewable energy, wind energy is integrated into the power system with more and more penetration levels. It is challenging for the power system operators (PSOs to cope with the uncertainty and variation of the wind power and its forecasts. A chance-constrained economic dispatch (ED model for the wind-thermal-energy storage system (WTESS is developed in this paper. An optimization model with the wind power and the energy storage system (ESS is first established with the consideration of both the economic benefits of the system and less wind curtailments. The original wind power generation is processed by the ESS to obtain the final wind power output generation (FWPG. A Gaussian mixture model (GMM distribution is adopted to characterize the probabilistic and cumulative distribution functions with an analytical expression. Then, a chance-constrained ED model integrated by the wind-energy storage system (W-ESS is developed by considering both the overestimation costs and the underestimation costs of the system and solved by the sequential linear programming method. Numerical simulation results using the wind power data in four wind farms are performed on the developed ED model with the IEEE 30-bus system. It is verified that the developed ED model is effective to integrate the uncertain and variable wind power. The GMM distribution could accurately fit the actual distribution of the final wind power output, and the ESS could help effectively decrease the operation costs.

  6. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Hesam Mirzaei Rafsanjani

    2015-04-01

    Full Text Available Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure of each component will lead to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves and other sources of loads that are uncertain and have to be modeled as stochastic variables. The types of loads are different for offshore and onshore wind turbines. Moreover, uncertainties about the fatigue strength play an important role in modeling and assessment of the reliability of the components. In this paper, a generic stochastic model for fatigue failure of cast iron components based on fatigue test data and a limit state equation for fatigue failure based on the SN-curve approach and Miner’s rule is presented. The statistical analysis of the fatigue data is performed using the Maximum Likelihood Method which also gives an estimate of the statistical uncertainties. Finally, illustrative examples are presented with reliability analyses depending on various stochastic models and partial safety factors.

  7. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2012-01-01

    Using a continuum model capable of describing the one-component liquid-gas hydrodynamics down to the contact line scale, we carry out numerical simulation and physical analysis for the droplet motion driven by thermal singularity. For liquid droplets in one-component fluids on heated or cooled substrates, the liquid-gas interface is nearly isothermal. Consequently, a thermal singularity occurs at the contact line and the Marangoni effect due to temperature gradient is suppressed. Through evaporation or condensation in the vicinity of the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. This effect on the contact angle can be used to move the droplets on substrates with thermal gradients. Our numerical results for this kind of droplet motion are explained by a simple fluid dynamical model at the droplet length scale. Since the mechanism for droplet motion is based on the change of contact angle, a separation of length scales is exhibited through a comparison between the droplet motion induced by a wettability gradient and that by a thermal gradient. It is shown that the flow field at the droplet length scale is independent of the statics or dynamics at the contact line scale.

  8. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients

    KAUST Repository

    Xu, Xinpeng

    2012-06-26

    Using a continuum model capable of describing the one-component liquid-gas hydrodynamics down to the contact line scale, we carry out numerical simulation and physical analysis for the droplet motion driven by thermal singularity. For liquid droplets in one-component fluids on heated or cooled substrates, the liquid-gas interface is nearly isothermal. Consequently, a thermal singularity occurs at the contact line and the Marangoni effect due to temperature gradient is suppressed. Through evaporation or condensation in the vicinity of the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. This effect on the contact angle can be used to move the droplets on substrates with thermal gradients. Our numerical results for this kind of droplet motion are explained by a simple fluid dynamical model at the droplet length scale. Since the mechanism for droplet motion is based on the change of contact angle, a separation of length scales is exhibited through a comparison between the droplet motion induced by a wettability gradient and that by a thermal gradient. It is shown that the flow field at the droplet length scale is independent of the statics or dynamics at the contact line scale.

  9. Thermal analysis of two-level wind power converter under symmetrical grid fault

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede

    2013-01-01

    In this paper, the case of symmetrical grid fault when using the multi-MW wind turbine of partial-scale and full-scale two-level power converter are designed and investigated. Firstly, the different operation behaviors of the relevant power converters under the voltage dip will be described......) condition as well as the junction temperature. For the full-scale wind turbine system, the most thermal stressed power device in the grid-side converter will appear at the grid voltage below 0.5 pu, and for the partial-scale wind turbine system, the most thermal stressed power device in the rotor...

  10. A Thermal Performance Analysis and Comparison of Fiber Coils with the D-CYL Winding and QAD Winding Methods

    Directory of Open Access Journals (Sweden)

    Xuyou Li

    2016-06-01

    Full Text Available The thermal performance under variable temperature conditions of fiber coils with double-cylinder (D-CYL and quadrupolar (QAD winding methods is comparatively analyzed. Simulation by the finite element method (FEM is done to calculate the temperature distribution and the thermal-induced phase shift errors in the fiber coils. Simulation results reveal that D-CYL fiber coil itself has fragile performance when it experiences an axially asymmetrical temperature gradient. However, the axial fragility performance could be improved when the D-CYL coil meshes with a heat-off spool. Through further simulations we find that once the D-CYL coil is provided with an axially symmetrical temperature environment, the thermal performance of fiber coils with the D-CYL winding method is better than that with the QAD winding method under the same variable temperature conditions. This valuable discovery is verified by two experiments. The D-CYL winding method is thus promising to overcome the temperature fragility of interferometric fiber optic gyroscopes (IFOGs.

  11. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  12. Models for describing the thermal characteristics of building components

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik

    2008-01-01

    , for example. For the analysis of these tests, dynamic analysis models and methods are required. However, a wide variety of models and methods exists, and the problem of choosing the most appropriate approach for each particular case is a non-trivial and interdisciplinary task. Knowledge of a large family....... The characteristics of each type of model are highlighted. Some available software tools for each of the methods described will be mentioned. A case study also demonstrating the difference between linear and nonlinear models is considered....... of these approaches may therefore be very useful for selecting a suitable approach for each particular case. This paper presents an overview of models that can be applied for modelling the thermal characteristics of buildings and building components using data from outdoor testing. The choice of approach depends...

  13. Heat losses and thermal imaging of ferroic components

    International Nuclear Information System (INIS)

    Ilyashenko, S E; Ivanova, A I; Gasanov, O V; Grechishkin, R M; Tretiakov, S A; Yushkov, K B; Linde, B B J

    2015-01-01

    A study is made of spatial and temporal temperature variations in working devices based on ferroic functional materials. The measurement of the sample's temperature is complemented with direct observation of its distribution over the sample surface. For the latter purpose a thermovision infrared videocamera technique was employed. Specific features of the temperature distribution and its evolution during heating and cooling of a number of piezoelectric, acoustooptic and shape memory components are revealed. Examples of hot spot observations indicative of structural defects in the samples under study are given thus suggesting the use of thermal vision for nondestructive testing. A proposal is made to combine the thermovision method with that of thermomagnetic analysis for the study of ferromagnetic shape memory alloys

  14. Harmonic Stability Analysis of Offshore Wind Farm with Component Connection Method

    DEFF Research Database (Denmark)

    Hou, Peng; Ebrahimzadeh, Esmaeil; Wang, Xiongfei

    2017-01-01

    In this paper, an eigenvalue-based harmonic stability analysis method for offshore wind farm is proposed. Considering the internal cable connection layout, a component connection method (CCM) is adopted to divide the system into individual blocks as current controller of converters, LCL filters...

  15. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2015-01-01

    to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves and other sources of loads that are uncertain and have to be modeled as stochastic variables. The types of loads...

  16. Neutralized solar wind ahead of the Earth's magnetopause as contribution to non-thermal exospheric hydrogen

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2018-03-01

    Full Text Available In a most recent paper by Qin and Waldrop (2016, it had been found that the scale height of hydrogen in the upper exosphere of the Earth, especially during solar minimum conditions, appears to be surprisingly large. This indicates that during minimum conditions when exobasic temperatures should be small, large exospheric H-scale heights predominate. They thus seem to indicate the presence of a non-thermal hydrogen component in the upper exosphere. In the following parts of the paper we shall investigate what fraction of such expected hot hydrogen atoms could have their origin from protons of the shocked solar wind ahead of the magnetopause converted into energetic neutral atoms (ENAs via charge-exchange processes with normal atmospheric, i.e., exospheric hydrogen atoms that in the first step evaporate from the exobase into the magnetosheath plasma region. We shall show that, dependent on the sunward location of the magnetopause, the density of these types of non-thermal hydrogen atoms (H-ENAs becomes progressively comparable with the density of exobasic hydrogen with increasing altitude. At low exobasic heights, however, their contribution is negligible. At the end of this paper, we finally study the question of whether the H-ENA population could even be understood as a self-consistency phenomenon of the H-ENA population, especially during solar activity minimum conditions, i.e., H-ENAs leaving the exosphere being replaced by H-ENAs injected into the exosphere.

  17. Neutralized solar wind ahead of the Earth's magnetopause as contribution to non-thermal exospheric hydrogen

    Science.gov (United States)

    Fahr, Hans J.; Nass, Uwe; Dutta-Roy, Robindro; Zoennchen, Jochen H.

    2018-03-01

    In a most recent paper by Qin and Waldrop (2016), it had been found that the scale height of hydrogen in the upper exosphere of the Earth, especially during solar minimum conditions, appears to be surprisingly large. This indicates that during minimum conditions when exobasic temperatures should be small, large exospheric H-scale heights predominate. They thus seem to indicate the presence of a non-thermal hydrogen component in the upper exosphere. In the following parts of the paper we shall investigate what fraction of such expected hot hydrogen atoms could have their origin from protons of the shocked solar wind ahead of the magnetopause converted into energetic neutral atoms (ENAs) via charge-exchange processes with normal atmospheric, i.e., exospheric hydrogen atoms that in the first step evaporate from the exobase into the magnetosheath plasma region. We shall show that, dependent on the sunward location of the magnetopause, the density of these types of non-thermal hydrogen atoms (H-ENAs) becomes progressively comparable with the density of exobasic hydrogen with increasing altitude. At low exobasic heights, however, their contribution is negligible. At the end of this paper, we finally study the question of whether the H-ENA population could even be understood as a self-consistency phenomenon of the H-ENA population, especially during solar activity minimum conditions, i.e., H-ENAs leaving the exosphere being replaced by H-ENAs injected into the exosphere.

  18. Modeling energy production of solar thermal systems and wind turbines for installation at corn ethanol plants

    Science.gov (United States)

    Ehrke, Elizabeth

    Nearly every aspect of human existence relies on energy in some way. Most of this energy is currently derived from fossil fuel resources. Increasing energy demands coupled with environmental and national security concerns have facilitated the move towards renewable energy sources. Biofuels like corn ethanol are one of the ways the U.S. has significantly reduced petroleum consumption. However, the large energy requirement of corn ethanol limits the net benefit of the fuel. Using renewable energy sources to produce ethanol can greatly improve its economic and environmental benefits. The main purpose of this study was to model the useful energy received from a solar thermal array and a wind turbine at various locations to determine the feasibility of applying these technologies at ethanol plants around the country. The model calculates thermal energy received from a solar collector array and electricity generated by a wind turbine utilizing various input data to characterize the equipment. Project cost and energy rate inputs are used to evaluate the profitability of the solar array or wind turbine. The current state of the wind and solar markets were examined to give an accurate representation of the economics of each industry. Eighteen ethanol plant locations were evaluated for the viability of a solar thermal array and/or wind turbine. All ethanol plant locations have long payback periods for solar thermal arrays, but high natural gas prices significantly reduce this timeframe. Government incentives will be necessary for the economic feasibility of solar thermal arrays. Wind turbines can be very profitable for ethanol plants in the Midwest due to large wind resources. The profitability of wind power is sensitive to regional energy prices. However, government incentives for wind power do not significantly change the economic feasibility of a wind turbine. This model can be used by current or future ethanol facilities to investigate or begin the planning process for a

  19. Three-component model of solar wind--interstellar medium interaction: some numerical results

    International Nuclear Information System (INIS)

    Baranov, V.; Ermakov, M.; Lebedev, M.

    1981-01-01

    A three-component (electrons, protons, H atoms) model for the interaction between the local interstellar medium and the solar wind is considered. A numerical analysis has been performed to determine how resonance charge exchange in interstellar H atoms that have penetrated the solar wind would affect the two-shock model developed previously by Baranov et al. In particular, if n/sub Hinfinity//n/sub e/infinity>10 (n/sub Hinfinity/, n/sub e/infinity denote the number density of H atoms and electrons in the local ISM) the inner shock may approach the sun as closely as the outer planetary orbits

  20. On risk-based operation and maintenance of offshore wind turbine components

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2011-01-01

    Operation and maintenance are significant contributors to the cost of energy for offshore wind turbines. Optimal planning could rationally be based on Bayesian pre-posterior decision theory, and all costs through the lifetime of the structures should be included. This paper contains a study...... of a generic case where the costs are evaluated for a single wind turbine with a single component. Costs due to inspections, repairs, and lost production are included in the model. The costs are compared for two distinct maintenance strategies, namely with and without inclusion of periodic imperfect...

  1. Dynamics of the standard deviations of three wind velocity components from the data of acoustic sounding

    Science.gov (United States)

    Krasnenko, N. P.; Kapegesheva, O. F.; Shamanaeva, L. G.

    2017-11-01

    Spatiotemporal dynamics of the standard deviations of three wind velocity components measured with a mini-sodar in the atmospheric boundary layer is analyzed. During the day on September 16 and at night on September 12 values of the standard deviation changed for the x- and y-components from 0.5 to 4 m/s, and for the z-component from 0.2 to 1.2 m/s. An analysis of the vertical profiles of the standard deviations of three wind velocity components for a 6-day measurement period has shown that the increase of σx and σy with altitude is well described by a power law dependence with exponent changing from 0.22 to 1.3 depending on the time of day, and σz depends linearly on the altitude. The approximation constants have been found and their errors have been estimated. The established physical regularities and the approximation constants allow the spatiotemporal dynamics of the standard deviation of three wind velocity components in the atmospheric boundary layer to be described and can be recommended for application in ABL models.

  2. Statistical analysis of manufacturing defects on fatigue life of wind turbine casted Component

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Mukherjee, Krishnendu

    2014-01-01

    Wind turbine components experience heavily variable loads during its lifetime and fatigue failure is a main failure mode of casted components during their design working life. The fatigue life is highly dependent on the microstructure (grain size and graphite form and size), number, type, location...... and size of defects in the casted components and is therefore rather uncertain and needs to be described by stochastic models. Uncertainties related to such defects influence prediction of the fatigue strengths and are therefore important in modelling and assessment of the reliability of wind turbine...... for the fatigue life, namely LogNormal and Weibull distributions. The statistical analyses are performed using the Maximum Likelihood Method and the statistical uncertainty is estimated. Further, stochastic models for the fatigue life obtained from the statistical analyses are used for illustration to assess...

  3. Proton thermal energetics in the solar wind: Helios reloaded

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, P.; Štverák, Štěpán; Matteini, L.; Velli, M.

    2013-01-01

    Roč. 118, č. 4 (2013), s. 1351-1365 ISSN 2169-9380 Institutional support: RVO:68378289 Keywords : solar wind * proton energetics * turbulent heating Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50107/abstract

  4. Control Strategy: Wind Energy Powered Variable Chiller with Thermal Ice Storage

    Science.gov (United States)

    2014-12-01

    of the DOD facilities. A. RENEWABLE ENERGY The United States Department of Energy (DOE) defines renewable energy as being obtained from...include arrays of solar PV cells, solar thermal cells, wind turbines, or biogas digestors. Energy storage devices could consist of one or more of the...At Hachinohe, Japan, the Aomori Project obtains up to 100 kW of power from PV cells and wind turbines (WTs). The New Energy and Industrial Technology

  5. A diagnostic approach to obtaining planetary boundary layer winds using satellite-derived thermal data

    Science.gov (United States)

    Belt, Carol L.; Fuelberg, Henry E.

    1984-01-01

    The feasibility of using satellite derived thermal data to generate realistic synoptic scale winds within the planetary boundary layer (PBL) is examined. Diagnostic modified Ekman wind equations from the Air Force Global Weather Central (AFGWC) Boundary Layer Model are used to compute winds at seven levels within the PBL transition layer (50 m to 1600 m AGL). Satellite derived winds based on 62 predawn TIROS-N soundings are compared to similarly derived wind fields based on 39 AVE-SESAME II rawinsonde (RAOB) soundings taken 2 h later. Actual wind fields are also used as a basis for comparison. Qualitative and statistical comparisons show that the Ekman winds from both sources are in very close agreement, with an average vector correlation coefficient of 0.815. Best results are obtained at 300 m AGL. Satellite winds tend to be slightly weaker than their RAOB counterparts and exhibit a greater degree of cross-isobaric flow. The modified Ekman winds show a significant improvement over geostrophic values at levels nearest the surface.

  6. Thermal analysis of multi-MW two-level wind power converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Mogens, Lau

    2012-01-01

    In this paper, the multi-MW wind turbine of partial-scale and full-scale two-level power converter with DFIG and direct-drive PMSG are designed and compared in terms of their thermal performance. Simulations of different configurations regarding loss distribution and junction temperature...... in the power device in the whole range of wind speed are presented and analyzed. It is concluded that in both partial-scale and full-scale power converter the most thermal stressed power device in the generator-side converter will have higher mean junction temperature and larger junction temperature...... fluctuation compared to grid-side converter at the rated wind speed. Moreover, the thermal performance of the generator-side converter in the partial-scale power converter becomes crucial around the synchronous operating point and should be considered carefully....

  7. Exergy analysis of components of integrated wind energy / hydrogen / fuel cell

    International Nuclear Information System (INIS)

    Hernandez Galvez, G.; Pathiyamattom, J.S.; Sanchez Gamboa, S.

    2009-01-01

    Exergy analysis is made of three components of an integrated wind energy to hydrogen fuel cell: wind turbine, fuel cell (PEMFC) and electrolyzer (PEM). The methodology used to assess how affect the second law efficiency of the electrolyzer and the FC parameters as temperature and operating pressure and membrane thickness. It develop methods to evaluate the influence of changes in the air density and height of the tower on the second law efficiency of the turbine. This work represents a starting point for developing the global availability analysis of an integrated wind / hydrogen / fuel cells, which can be used as a tool to achieve the optimum design of the same. The use of this system contribute to protect the environment

  8. Improving Thermal Insulation Properties for Prefabricated Wall Components Made Of Lightweight Aggregate Concrete with Open Structure

    Science.gov (United States)

    Abramski, Marcin

    2017-10-01

    Porous concrete is commonly used in civil engineering due to its good thermal insulation properties in comparison with normal concrete and high compression strength in comparison with other building materials. Reducing of the concrete density can be obviously obtained by using lightweight aggregate (e.g. pumice). The concrete density can be further minimized by using specially graded coarse aggregate and little-to-no fine aggregates. In this way a large number of air voids arise. The aggregate particles are coated by a cement paste and bonded together with it just in contact points. Such an extremely porous concrete, called ‘lightweight aggregate concrete with open structure’ (LAC), is used in some German plants to produce prefabricated wall components. They are used mainly in hall buildings, e.g. supermarkets. The need of improving thermal insulation properties was an inspiration for the prefabrication plant managers, engineers and a scientific staff of the Technical University of Kaiserslautern / Germany to realise an interesting project. Its aim was to reduce the heat transfer coefficient for the wall components. Three different wall structure types were designed and compared in full-scale laboratory tests with originally produced wall components in terms of load-carrying capacity and stiffness. The load was applied perpendicularly to the wall plane. As the components are not originally used for load-bearing walls, but for curtain walls only, the wind load is the main load for them. The wall components were tested in horizontal position and the load was applied vertically. Totally twelve wall components 8.00 × 2.00 × 0.25m (three for every series) were produced in the prefabrication plant and tested in the University of Kaiserslautern laboratory. The designed and tested components differed from each other in the amount of expanded polystyrene (EPS), which was placed in the plant inside the wall structure. The minimal amount of it was designed in the

  9. The thermal structure of an air–water interface at low wind speeds

    OpenAIRE

    Handler, R. A.; Smith, G. B.; Leighton, R. I.

    2011-01-01

    High-resolution infrared imagery of an air–water interface at wind speeds of 1 to 4 ms−1 wasobtained. Spectral analysis of the data reveals several important features of the thermal structureof the so-called cool skin. At wind speeds for which wind waves are not generated, the interfacialboundary layer appears to be composed of buoyant plumes that are stretched by the surfaceshear as they reach the interface. The plumes appear to form overlapping laminae with ahead–tail...

  10. Investigation of the Promotion of Wind Power Consumption Using the Thermal-Electric Decoupling Techniques

    Directory of Open Access Journals (Sweden)

    Shuang Rong

    2015-08-01

    Full Text Available In the provinces of north China, combined heat and electric power generations (CHP are widely utilized to provide both heating source and electricity. While, due to the constraint of thermal-electric coupling within CHP, a mass of wind turbines have to offline operate during heating season to maintain the power grid stability. This paper proposes a thermal-electric decoupling (TED approach to release the energy waste. Within the thermal-electric decoupling system, heat storage and electric boiler/heat pump are introduced to provide an auxiliary thermal source during hard peak shaving period, thus relying on the participation of an outside heat source, the artificial electric power output change interval could be widened to adopt more wind power and reduce wind power curtailment. Both mathematic models and methods are proposed to calculate the evaluation indexes to weight the effect of TED, by using the Monte Carlo simulation technique. Numerical simulations have been conducted to demonstrate the effectiveness of the proposed methods, and the results show that the proposed approach could relieve up to approximately 90% of wind power curtailment and the ability of power system to accommodate wind power could be promoted about 32%; moreover, the heating source is extended, about 300 GJ heat could be supplied by TED during the whole heating season, which accounts for about 18% of the total heat need.

  11. Measurements of Thermal and Wind Environment of Vernacular Architecture made of Adobe in Morocco

    OpenAIRE

    Deguchi, Kiyotaka; Sugawara, Keiko

    2010-01-01

    This paper deals with the field measurements on thermal and wind environment of a vernacular architecture made of adobe called “Kasbah” in Morocco.It has a courtyard and watch towers in corners.Investigation was carried out by measuring temperature,humidity,wind velocity,heat transfer,etc. The thermal comfort was evaluated by the index of SET*. The courtyard is evaluated as comfort by SET* at the time of the shadow zone,and the central room at the first floor was almost comfort because of th...

  12. Economics of wind power and comparisons with conventional thermal plant

    International Nuclear Information System (INIS)

    Milborrow, D.

    1994-01-01

    Commercial deployment of renewables in the UK depends on their prices converging with those of the conventional sources of generation. Price comparisons, however, are distorted by institutional factors such as the very short contract periods for premium prices under the first two rounds of the Non-Fossil Fuel Obligation (NFFO). Prices are therefore put on a common basis and the prospects for wind energy up to the year 2000 are examined. (author)

  13. Engineering Analysis of Thermal-Load Components in the Process of Heating of Pet Preforms

    Science.gov (United States)

    Sidorov, D. É.; Kolosov, A. E.; Kazak, I. A.; Pogorelyi, A. V.

    2018-05-01

    The influence of thermal-load components (convection, collimated and uncollimated components of infrared radiation) in the process of production of PET packaging on the heating of PET preforms has been assessed. It has been established that the collimated component of infrared radiation ensures most (up to 70%) of the thermal energy in the process of heating of a PET preform.

  14. Hydro-Thermal-Wind Generation Scheduling Considering Economic and Environmental Factors Using Heuristic Algorithms

    Directory of Open Access Journals (Sweden)

    Suresh K. Damodaran

    2018-02-01

    Full Text Available Hydro-thermal-wind generation scheduling (HTWGS with economic and environmental factors is a multi-objective complex nonlinear power system optimization problem with many equality and inequality constraints. The objective of the problem is to generate an hour-by-hour optimum schedule of hydro-thermal-wind power plants to attain the least emission of pollutants from thermal plants and a reduced generation cost of thermal and wind plants for a 24-h period, satisfying the system constraints. The paper presents a detailed framework of the HTWGS problem and proposes a modified particle swarm optimization (MPSO algorithm for evolving a solution. The competency of selected heuristic algorithms, representing different heuristic groups, viz. the binary coded genetic algorithm (BCGA, particle swarm optimization (PSO, improved harmony search (IHS, and JAYA algorithm, for searching for an optimal solution to HTWGS considering economic and environmental factors was investigated in a trial system consisting of a multi-stream cascaded system with four reservoirs, three thermal plants, and two wind plants. Appropriate mathematical models were used for representing the water discharge, generation cost, and pollutant emission of respective power plants incorporated in the system. Statistical analysis was performed to check the consistency and reliability of the proposed algorithm. The simulation results indicated that the proposed MPSO algorithm provided a better solution to the problem of HTWGS, with a reduced generation cost and the least emission, when compared with the other heuristic algorithms considered.

  15. Structural Reliability Methods for Wind Power Converter System Component Reliability Assessment

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    Wind power converter systems are essential subsystems in both off-shore and on-shore wind turbines. It is the main interface between generator and grid connection. This system is affected by numerous stresses where the main contributors might be defined as vibration and temperature loadings....... The temperature variations induce time-varying stresses and thereby fatigue loads. A probabilistic model is used to model fatigue failure for an electrical component in the power converter system. This model is based on a linear damage accumulation and physics of failure approaches, where a failure criterion...... is defined by the threshold model. The attention is focused on crack propagation in solder joints of electrical components due to the temperature loadings. Structural Reliability approaches are used to incorporate model, physical and statistical uncertainties. Reliability estimation by means of structural...

  16. Proton thermal energetics in the solar wind: Helios reloaded

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.; Štverák, Štěpán; Matteini, L.; Velli, M.

    2013-01-01

    Roč. 118, č. 4 (2013), s. 3151-3165 ISSN 2169-9380 R&D Projects: GA ČR GAP209/12/2041; GA ČR GAP209/12/2023 EU Projects: European Commission(XE) 263340 - SWIFF Grant - others:EU(XE) SHOCK Project No. 284515 Institutional support: RVO:67985815 ; RVO:68378289 Keywords : solar wind * proton energetics * turbulent heating Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics; BL - Plasma and Gas Discharge Physics (UFA-U) Impact factor: 3.440, year: 2013

  17. A review of typical thermal fatigue failure models for solder joints of electronic components

    Science.gov (United States)

    Li, Xiaoyan; Sun, Ruifeng; Wang, Yongdong

    2017-09-01

    For electronic components, cyclic plastic strain makes it easier to accumulate fatigue damage than elastic strain. When the solder joints undertake thermal expansion or cold contraction, different thermal strain of the electronic component and its corresponding substrate is caused by the different coefficient of thermal expansion of the electronic component and its corresponding substrate, leading to the phenomenon of stress concentration. So repeatedly, cracks began to sprout and gradually extend [1]. In this paper, the typical thermal fatigue failure models of solder joints of electronic components are classified and the methods of obtaining the parameters in the model are summarized based on domestic and foreign literature research.

  18. Economic Dispatch for Power System Included Wind and Solar Thermal Energy

    Directory of Open Access Journals (Sweden)

    Saoussen BRINI

    2009-07-01

    Full Text Available With the fast development of technologies of alternative energy, the electric power network can be composed of several renewable energy resources. The energy resources have various characteristics in terms of operational costs and reliability. In this study, the problem is the Economic Environmental Dispatching (EED of hybrid power system including wind and solar thermal energies. Renewable energy resources depend on the data of the climate such as the wind speed for wind energy, solar radiation and the temperature for solar thermal energy. In this article it proposes a methodology to solve this problem. The resolution takes account of the fuel costs and reducing of the emissions of the polluting gases. The resolution is done by the Strength Pareto Evolutionary Algorithm (SPEA method and the simulations have been made on an IEEE network test (30 nodes, 8 machines and 41 lines.

  19. Protection of surface assets on Mars from wind blown jettisoned spacecraft components

    Science.gov (United States)

    Paton, Mark

    2017-07-01

    Jettisoned Entry, Descent and Landing System (EDLS) hardware from landing spacecraft have been observed by orbiting spacecraft, strewn over the Martian surface. Future Mars missions that land spacecraft close to prelanded assets will have to use a landing architecture that somehow minimises the possibility of impacts from these jettisoned EDLS components. Computer modelling is used here to investigate the influence of wind speed and direction on the distribution of EDLS components on the surface. Typical wind speeds encountered in the Martian Planetary Boundary Layer (PBL) were found to be of sufficient strength to blow items having a low ballistic coefficient, i.e. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) or parachutes, onto prelanded assets even when the lander itself touches down several kilometres away. Employing meteorological measurements and careful characterisation of the Martian PBL, e.g. appropriate wind speed probability density functions, may then benefit future spacecraft landings, increase safety and possibly help reduce the delta v budget for Mars landers that rely on aerodynamic decelerators.

  20. Thermal and Driven Stochastic Growth of Langmuir Waves in the Solar Wind and Earth's Foreshock

    Science.gov (United States)

    Cairns, Iver H.; Robinson, P. A.; Anderson, R. R.

    2000-01-01

    Statistical distributions of Langmuir wave fields in the solar wind and the edge of Earth's foreshock are analyzed and compared with predictions for stochastic growth theory (SGT). SGT quantitatively explains the solar wind, edge, and deep foreshock data as pure thermal waves, driven thermal waves subject to net linear growth and stochastic effects, and as waves in a pure SGT state, respectively, plus radiation near the plasma frequency f(sub p). These changes are interpreted in terms of spatial variations in the beam instability's growth rate and evolution toward a pure SGT state. SGT analyses of field distributions are shown to provide a viable alternative to thermal noise spectroscopy for wave instruments with coarse frequency resolution, and to separate f(sub p) radiation from Langmuir waves.

  1. A Component Mode Synthesis Algorithm for Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Nielsen, Søren R.K.

    2009-01-01

    A system reduction scheme related to a multibody formulation of wind turbine dynamics is devised. Each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure, in principle without any constraints to the rigid body part of the mot......A system reduction scheme related to a multibody formulation of wind turbine dynamics is devised. Each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure, in principle without any constraints to the rigid body part...... of the motion of the substructure. The system reduction is based on a component mode synthesis method, where the response of the internal degrees of freedom of the substructure is described as the quasi-static response induced by the boundary degrees of freedom via the constraint modes superimposed...

  2. On risk-based operation and maintenance of offshore wind turbine components

    International Nuclear Information System (INIS)

    Jessen Nielsen, Jannie; Dalsgaard Sorensen, John

    2011-01-01

    Operation and maintenance are significant contributors to the cost of energy for offshore wind turbines. Optimal planning could rationally be based on Bayesian pre-posterior decision theory, and all costs through the lifetime of the structures should be included. This paper contains a study of a generic case where the costs are evaluated for a single wind turbine with a single component. Costs due to inspections, repairs, and lost production are included in the model. The costs are compared for two distinct maintenance strategies, namely with and without inclusion of periodic imperfect inspections. Finally the influence of different important parameters, e.g. failure rate, reliability of inspections, inspection interval, and decision rule for repairs, is evaluated.

  3. Experimental investigation of thermal emittance components of copper photocathode

    Directory of Open Access Journals (Sweden)

    H. J. Qian

    2012-04-01

    Full Text Available With progress of photoinjector technology, thermal emittance has become the primary limitation of electron beam brightness. Extensive efforts have been devoted to study thermal emittance, but experiment results differ between research groups and few can be well interpreted. Besides the ambiguity of photoemission mechanism, variations of cathode surface conditions during cathode preparation, such as work function, field enhancement factor, and surface roughness, will cause thermal emittance differences. In this paper, we report an experimental study of electric field dependence of copper cathode quantum efficiency (QE and thermal emittance in a radio frequency (rf gun, through which in situ cathode surface parameters and thermal emittance contributions from photon energy, Schottky effect, and surface roughness are extracted. It is found the QE of a copper cathode illuminated by a 266 nm UV laser increased substantially to 1.5×10^{-4} after cathode cleaning during rf conditioning, and a copper work function of 4.16 eV, which is much lower than nominal value (4.65 eV, was measured. Experimental results also show a thermal emittance growth as much as 0.92  mm mrad/mm at 50  MV/m due to the cathode surface roughness effect, which is consistent with cathode surface morphology measurements.

  4. 75 FR 2159 - In the Matter of Certain Variable Speed Wind Turbines and Components Thereof; Termination of...

    Science.gov (United States)

    2010-01-14

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-641] In the Matter of Certain Variable Speed Wind Turbines and Components Thereof; Termination of Investigation With Final Determination of No..., and the sale within the United States after importation of certain variable speed wind turbines and...

  5. Thermal wind model for the broad emission line region of quasars

    International Nuclear Information System (INIS)

    Weymann, R.J.; Scott, J.S.; Schiano, A.V.R.; Christiansen, W.A.

    1982-01-01

    Arguments are summarized for supposing that the clouds giving rise to the broad emission lines of QSOs are confined by the pressure of an expanding thermal gas and that a flux of relativistic particles with luminosity comparable to the photon luminosity streams through this gas. The resulting heating and momentum deposition produces a transonic thermal wind whose dynamical properties are calculated in detail. This wind accelerates and confines the emission line clouds, thereby producing the broad emission line (BEL) profiles. In a companion paper, the properties of the wind at much larger distances (approx.kpc) than the BEL region are used to explain the production of the broad absorption lines (BAL) observed in some QSOs. The same set of wind parameters can account for the properties of both the BEL and BAL regions, and this unification in the physical description of the BEL and BAL regions is one of the most important advantages of this model. A characteristic size of approx.1 pc for the QSO emission line region is one consequence of the model. This characteristic size is shown to depend upon luminosity in such a way that the ionization parameter is roughly constant over a wide range of luminosities. An X-ray luminosity due to thermal bremsstrahlung of approx.1%--10% of the optical luminosity is another consequence of the model. The trajectories of clouds under the combined influence of ram pressure acceleration and radiative acceleration are calculated. From these trajectories emission line profiles are also calculated, as well as the wind and cloud parameters yielding profiles in fair agreement with observed profiles explored. Opacity in the wind due to electron scattering displaces the line cores of optically thin lines to the blue. This is roughly compensated for by the redward skewing of optically thick lines due to preferential emission of photons from the back side of the clouds.void rapid depletion due to Compton losses are discussed

  6. An Optimization Scheduling Model for Wind Power and Thermal Power with Energy Storage System considering Carbon Emission Trading

    Directory of Open Access Journals (Sweden)

    Huan-huan Li

    2015-01-01

    Full Text Available Wind power has the characteristics of randomness and intermittence, which influences power system safety and stable operation. To alleviate the effect of wind power grid connection and improve power system’s wind power consumptive capability, this paper took emission trading and energy storage system into consideration and built an optimization model for thermal-wind power system and energy storage systems collaborative scheduling. A simulation based on 10 thermal units and wind farms with 2800 MW installed capacity verified the correctness of the models put forward by this paper. According to the simulation results, the introduction of carbon emission trading can improve wind power consumptive capability and cut down the average coal consumption per unit of power. The introduction of energy storage system can smooth wind power output curve and suppress power fluctuations. The optimization effects achieve the best when both of carbon emission trading and energy storage system work at the same time.

  7. Diurnal Dynamics of Standard Deviations of Three Wind Velocity Components in the Atmospheric Boundary Layer

    Science.gov (United States)

    Shamanaeva, L. G.; Krasnenko, N. P.; Kapegesheva, O. F.

    2018-04-01

    Diurnal dynamics of the standard deviation (SD) of three wind velocity components measured with a minisodar in the atmospheric boundary layer is analyzed. Statistical analysis of measurement data demonstrates that the SDs for x- and y-components σx and σy lie in the range from 0.2 to 4 m/s, and σz = 0.1-1.2 m/s. The increase of σx and σy with the altitude is described sufficiently well by a power law with exponent changing from 0.22 to 1.3 depending on time of day, and σz increases by a linear law. Approximation constants are determined and errors of their application are estimated. It is found that the maximal diurnal spread of SD values is 56% for σx and σy and 94% for σz. The established physical laws and the obtained approximation constants allow the diurnal dynamics of the SDs for three wind velocity components in the atmospheric boundary layer to be determined and can be recommended for application in models of the atmospheric boundary layer.

  8. On Different Maintenance Strategies for Casted Components of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ambühl, Simon; Sørensen, John Dalsgaard

    . This maintenance tool uses Crude Monte Carlo Simulations to estimate the expected maintenance costs. Corrective and preventive maintenance strategies with a constant inspection interval or a condition monitoring system are considered. Furthermore, transportation from shore to the wind turbines by boat...... and transportation strategy. The case study shows that the maintenance expenses of casted components correspond to roughly 5% of the overall expected maintenance costs when using a corrective maintenance strategy. This amount can be decreased to roughly 2% when using a condition monitoring system and following...

  9. Examples of fatigue lifetime and reliability evaluation of larger wind turbine components

    DEFF Research Database (Denmark)

    Tarp-Johansen, N.J.

    2003-01-01

    This report is one out of several that constitute the final report on the ELSAM funded PSO project “Vindmøllekomponenters udmattelsesstyrke og levetid”, project no. 2079, which regards the lifetime distribution of larger wind turbine components in ageneric turbine that has real life dimensions....... Though it was the initial intention of the project to consider only the distribution of lifetimes the work reported in this document provides also calculations of reliabilities and partial load safetyfactors under specific assumptions about uncertainty sources, as reliabilities are considered...

  10. POWER SPECTRAL DENSITY OF FLUCTUATIONS OF BULK AND THERMAL SPEEDS IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-01-01

    This paper analyzes solar wind power spectra of bulk and thermal speed fluctuations that are computed with a time resolution of 32 ms in the frequency range of 0.001–2 Hz. The analysis uses measurements of the Bright Monitor of the Solar Wind on board the Spektr-R spacecraft that are limited to 570 km s 1 bulk speed. The statistics, based on more than 42,000 individual spectra, show that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectrum fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the bulk and thermal speeds of the segment attributed to the MHD scale are 1.43 and 1.38, respectively, whereas they are 3.08 and 2.43 in the kinetic range; (4) the kinetic range slopes of bulk and thermal speed spectra become equal when either the ion density or magnetic field strength are high; (5) the break between MHD and kinetic scales seems to be controlled by the ion β parameter; (6) the best scaling parameter for bulk and thermal speed variations is a sum of the inertial length and proton thermal gyroradius; and (7) the above conclusions can be applied to the density variations if the background magnetic field is very low.

  11. POWER SPECTRAL DENSITY OF FLUCTUATIONS OF BULK AND THERMAL SPEEDS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

    2016-07-10

    This paper analyzes solar wind power spectra of bulk and thermal speed fluctuations that are computed with a time resolution of 32 ms in the frequency range of 0.001–2 Hz. The analysis uses measurements of the Bright Monitor of the Solar Wind on board the Spektr-R spacecraft that are limited to 570 km s{sup 1} bulk speed. The statistics, based on more than 42,000 individual spectra, show that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectrum fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the bulk and thermal speeds of the segment attributed to the MHD scale are 1.43 and 1.38, respectively, whereas they are 3.08 and 2.43 in the kinetic range; (4) the kinetic range slopes of bulk and thermal speed spectra become equal when either the ion density or magnetic field strength are high; (5) the break between MHD and kinetic scales seems to be controlled by the ion β parameter; (6) the best scaling parameter for bulk and thermal speed variations is a sum of the inertial length and proton thermal gyroradius; and (7) the above conclusions can be applied to the density variations if the background magnetic field is very low.

  12. Feasibility of a Simple Small Wind Turbine with Variable-Speed Regulation Made of Commercial Components

    Directory of Open Access Journals (Sweden)

    Jesús Peláez Vara

    2013-07-01

    Full Text Available The aim of this study was to propose and evaluate a very small wind turbine (VSWT that competes with commercial grid-connected VSWTs in terms of simplicity, robustness and price. Its main components are a squirrel-cage induction generator (SCIG driven by a frequency converter. The system has a direct-drive shaft, and may be constructed with commercial equipment. Simulation of the wind turbine effect is done with a motor. A control program regulates the variable-speed of rotation through three operational modes: (i to drive the turbine to its optimum operation point; (ii to limit its maximum rotational speed; and (iii to limit the maximum power it generates. Two tests were performed, in order to evaluate the dynamic response of this system under variable wind speeds. The tests demonstrate that the system operates at the optimum operational point of the turbine, and within the set limits of maximum rotational speed and maximum generated power. The drop in performance in relation to its nominal value is about 75%, when operating at 50% of the nominal power. In summary, this VSWT with its proposed control program is feasible and reliable for operating direct-shaft grid-connected VSWTs.

  13. Protection algorithm for a wind turbine generator based on positive- and negative-sequence fault components

    DEFF Research Database (Denmark)

    Zheng, Tai-Ying; Cha, Seung-Tae; Crossley, Peter A.

    2011-01-01

    A protection relay for a wind turbine generator (WTG) based on positive- and negative-sequence fault components is proposed in the paper. The relay uses the magnitude of the positive-sequence component in the fault current to detect a fault on a parallel WTG, connected to the same power collection...... feeder, or a fault on an adjacent feeder; but for these faults, the relay remains stable and inoperative. A fault on the power collection feeder or a fault on the collection bus, both of which require an instantaneous tripping response, are distinguished from an inter-tie fault or a grid fault, which...... in the fault current is used to decide on either instantaneous or delayed operation. The operating performance of the relay is then verified using various fault scenarios modelled using EMTP-RV. The scenarios involve changes in the position and type of fault, and the faulted phases. Results confirm...

  14. THE EFFECT OF ELECTRON THERMAL PRESSURE ON THE OBSERVED MAGNETIC HELICITY IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Markovskii, S. A.; Vasquez, Bernard J.; Smith, Charles W., E-mail: sergei.markovskii@unh.edu, E-mail: bernie.vasquez@unh.edu, E-mail: charles.smith@unh.edu [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)

    2016-12-20

    Statistical analysis of magnetic helicity spectra in the solar wind at 1 au is carried out. A large database of the solar wind intervals assembled from Wind spacecraft magnetic and plasma data is used. The effect of the electron thermal pressure on the wavenumber position of the helicity signature, i.e., the peak of the spectrum, is studied. The position shows a statistically significant dependence on both the electron and proton pressures. However, the strongest dependence is seen when the two pressures are summed. These findings confirm that the generation of the magnetic helicity is associated with an increasing compressibility of the turbulent fluctuations at smaller kinetic scales. It is argued that instrumental artifacts do not contribute to the helicity signature.

  15. Thermal shock problems of bonded structure for plasma facing components

    International Nuclear Information System (INIS)

    Shibui, M.; Kuroda, T.; Kubota, Y.

    1991-01-01

    Thermal shock tests have been performed on W(Re)/Cu and Mo/Cu duplex structures with a particular emphasis on two failure modes: failure on the heated surface and failure near the bonding interface. The results indicate that failure of the duplex structure largely depends on the constraint of thermal strain on the heated surface and on the ductility changes of armour materials. Rapid debonding of the bonding interface may be attributed to the yielding of armour materials. This leads to a residual bending deformation when the armour cools down. Arguments are also presented in this paper on two parameter characterization of the failure of armour materials and on stress distribution near the free edge of the bonding interface. (orig.)

  16. Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method

    International Nuclear Information System (INIS)

    Azizipanah-Abarghooee, Rasoul; Niknam, Taher; Roosta, Alireza; Malekpour, Ahmad Reza; Zare, Mohsen

    2012-01-01

    In this paper, wind power generators are being incorporated in the multiobjective economic emission dispatch problem which minimizes wind-thermal electrical energy cost and emissions produced by fossil-fueled power plants, simultaneously. Large integration of wind energy sources necessitates an efficient model to cope with uncertainty arising from random wind variation. Hence, a multiobjective stochastic search algorithm based on 2m point estimated method is implemented to analyze the probabilistic wind-thermal economic emission dispatch problem considering both overestimation and underestimation of available wind power. 2m point estimated method handles the system uncertainties and renders the probability density function of desired variables efficiently. Moreover, a new population-based optimization algorithm called modified teaching-learning algorithm is proposed to determine the set of non-dominated optimal solutions. During the simulation, the set of non-dominated solutions are kept in an external memory (repository). Also, a fuzzy-based clustering technique is implemented to control the size of the repository. In order to select the best compromise solution from the repository, a niching mechanism is utilized such that the population will move toward a smaller search space in the Pareto-optimal front. In order to show the efficiency and feasibility of the proposed framework, three different test systems are represented as case studies. -- Highlights: ► WPGs are being incorporated in the multiobjective economic emission dispatch problem. ► 2m PEM handles the system uncertainties. ► A MTLBO is proposed to determine the set of non-dominated (Pareto) optimal solutions. ► A fuzzy-based clustering technique is implemented to control the size of the repository.

  17. On the stringy nature of winding modes in noncommutative thermal field theories

    CERN Document Server

    Arcioni, G; Gomis, J P; Vázquez-Mozo, Miguel Angel; Gomis, Joaquim

    2000-01-01

    We show that thermal noncommutative field theories admit a version of `channel duality' reminiscent of open/closed string duality, where non-planar thermal loops can be replaced by an infinite tower of tree-level exchanges of effective fields. These effective fields resemble closed strings in three aspects: their mass spectrum is that of closed-string winding modes, their interaction vertices contain extra moduli, and they can be regarded as propagating in a higher-dimensional `bulk' space-time. In noncommutative models that can be embedded in a D-brane, we show the precise relation between the effective `winding fields' and closed strings propagating off the D-brane. The winding fields represent the coherent coupling of the infinite tower of closed-string oscillator states. We derive a sum rule that expresses this effective coupling in terms of the elementary couplings of closed strings to the D-brane. We furthermore clarify the relation between the effective propagating dimension of the winding fields and t...

  18. Microgrid Control Strategy Utlizing Thermal Energy Storage With Renewable Solar And Wind Power Generation

    Science.gov (United States)

    2016-06-01

    iii Approved for public release; distribution is unlimited MICROGRID CONTROL STRATEGY UTLIZING THERMAL ENERGY STORAGE WITH RENEWABLE SOLAR AND WIND... control tracks increasing power generation in the morning. The batteries require a large amount of electrical power to charge every morning, as charge ...is 37 lost throughout the night. This causes the solar panels to output their maximum power generation. The MPPT control records when power

  19. Estimations of Kappa parameter using quasi-thermal noise spectroscopy: Applications on Wind spacecraft

    Science.gov (United States)

    Martinović, M.

    2017-12-01

    Quasi-thermal noise (QTN) spectroscopy is an accurate technique for in situ measurements of electron density and temperature in space plasmas. The QTN spectrum has a characteristic noise peak just above the plasma frequency produced by electron quasi-thermal fluctuations, which allows a very accurate measurement of the electron density. The size and shape of the peak are determined by suprathermal electrons. Since this nonthermal electron population is well described by a generalized Lorentzian - Kappa velocity distribution, it is possible to determinate the distribution properties in the solar wind from a measured spectrum. In this work, we discuss some basic properties of the QTN spectrum dependence of the Kappa distribution parameters - total electron density, temperature and the Kappa index, giving an overview on how instrument characteristics and environment conditions affect quality of the measurements. Further on, we aim to apply the method to Wind Thermal Noise Receiver (TNR) measurements. However, the spectra observed by this instrument usually contain contributions from nonthermal phenomena, like ion acoustic waves below, or galactic noise above the plasma frequency. This is why, besides comparison of the theory with observations, work with Wind data requires development of a sophisticated algorithm that distinguish parts of the spectra that are dominated by the QTN, and therefore can be used in our study. Postulates of this algorithm, as well as major results of its implementation, are also presented.

  20. Critical success factors for BOT electric power projects in China: Thermal power versus wind power

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhen-Yu. [School of Business Administration, North China Electric Power University, Beijing 102206 (China); Zuo, Jian; Zillante, George [School of Natural and Built Environments, University of South Australia, Adelaide 5001 (Australia); Wang, Xin-Wei [Shandong Nuclear Power Equipment Manufacturing Co. Ltd, Haiyang, Shandong 265118 (China)

    2010-06-15

    Chinese electric power industry has adopted Build-Operate-Transfer (BOT) approach in a number of projects to alleviate the pressure of sole state-owned investment. The Chinese government has taken enormous efforts to create an environment to facilitate the application of BOT approach in electric power projects. Moreover, the growing attention on the sustainability issues puts the traditional major source of electricity - thermal power project under more strict scrutiny. As a result, various renewable energy projects, particularly the wind power projects have involved private sector funds. Both thermal power and wind power projects via BOT approach have met with a varying degree of success. Therefore, it is imperative to understand the factors contributing towards the success of both types of BOT power projects. Using an extensive literature survey, this paper identifies 31 success factors under 5 categories for Chinese BOT electric power projects. This is followed by a questionnaire survey to exam relative significance of these factors. The results reveal the different levels of significance of success factors for BOT thermal power projects versus wind power projects. Finally, survey results were analyzed to explore the underlying construction and distributions among the identified success factors. This study provides a valuable reference for all involved parties that are interested in developing BOT electric power projects in China. (author)

  1. Investigation of effective factors of transient thermal stress of the MONJU-System components

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masaaki; Hirayama, Hiroshi; Kimura, Kimitaka; Jinbo, M. [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1999-03-01

    Transient thermal stress of each system Component in the fast breeder reactor is an uncertain factor on it's structural design. The temperature distribution in a system component changes over a wide range in time and in space. An unified evaluation technique of thermal, hydraulic, and structural analysis, in which includes thermal striping, temperature stratification, transient thermal stress and the integrity of the system components, is required for the optimum design of tho fast reactor plant. Thermal boundary conditions should be set up by both the transient thermal stress analysis and the structural integrity evaluation of each system component. The reasonable thermal boundary conditions for the design of the MONJU and a demonstration fast reactor, are investigated. The temperature distribution analysis models and the thermal boundary conditions on the Y-piece structural parts of each system component, such as reactor vessel, intermediate heat exchanger, primary main circulation pump, steam generator, superheater and upper structure of reactor core, are illustrated in the report. (M. Suetake)

  2. Effect of wind speed on human thermal sensation and thermal comfort

    Science.gov (United States)

    Hou, Yuhan

    2018-06-01

    In this experiment, a method of questionnaire survey was adopted. By changing the air flow rate under the indoor and outdoor natural conditions, the subjective Thermal Sensation Vote (TSV) and the Thermal Comfort Vote (TCV) were recorded. The draft sensation can reduce the thermal sensation, but the draft sensation can cause discomfort, and the thermal comfort in a windy environment is lower than in a windless environment. When the temperature rises or the level of human metabolism increases, the person feels heat, the demand for draft sensation increases, and the uncomfortable feeling caused by the draft sensation may be reduced. Increasing the air flow within a certain range can be used to compensate for the increase in temperature.

  3. A probability evaluation method of early deterioration condition for the critical components of wind turbine generator systems

    DEFF Research Database (Denmark)

    Hu, Y.; Li, H.; Liao, X

    2016-01-01

    method of early deterioration condition for critical components based only on temperature characteristic parameters. First, the dynamic threshold of deterioration degree function was proposed by analyzing the operational data between temperature and rotor speed. Second, a probability evaluation method...... of early deterioration condition was presented. Finally, two cases showed the validity of the proposed probability evaluation method in detecting early deterioration condition and in tracking their further deterioration for the critical components.......This study determines the early deterioration condition of critical components for a wind turbine generator system (WTGS). Due to the uncertainty nature of the fluctuation and intermittence of wind, early deterioration condition evaluation poses a challenge to the traditional vibration...

  4. The Effect of Combined Magnetic Geometries on Thermally Driven Winds. II. Dipolar, Quadrupolar, and Octupolar Topologies

    Science.gov (United States)

    Finley, Adam J.; Matt, Sean P.

    2018-02-01

    During the lifetime of Sun-like or low-mass stars a significant amount of angular momentum is removed through magnetized stellar winds. This process is often assumed to be governed by the dipolar component of the magnetic field. However, observed magnetic fields can host strong quadrupolar and/or octupolar components, which may influence the resulting spin-down torque on the star. In Paper I, we used the MHD code PLUTO to compute steady-state solutions for stellar winds containing a mixture of dipole and quadrupole geometries. We showed the combined winds to be more complex than a simple sum of winds with these individual components. This work follows the same method as Paper I, including the octupole geometry, which not only increases the field complexity but also, more fundamentally, looks for the first time at combining the same symmetry family of fields, with the field polarity of the dipole and octupole geometries reversing over the equator (unlike the symmetric quadrupole). We show, as in Paper I, that the lowest-order component typically dominates the spin-down torque. Specifically, the dipole component is the most significant in governing the spin-down torque for mixed geometries and under most conditions for real stars. We present a general torque formulation that includes the effects of complex, mixed fields, which predicts the torque for all the simulations to within 20% precision, and the majority to within ≈5%. This can be used as an input for rotational evolution calculations in cases where the individual magnetic components are known.

  5. An efficient method for facial component detection in thermal images

    Science.gov (United States)

    Paul, Michael; Blanik, Nikolai; Blazek, Vladimir; Leonhardt, Steffen

    2015-04-01

    A method to detect certain regions in thermal images of human faces is presented. In this approach, the following steps are necessary to locate the periorbital and the nose regions: First, the face is segmented from the background by thresholding and morphological filtering. Subsequently, a search region within the face, around its center of mass, is evaluated. Automatically computed temperature thresholds are used per subject and image or image sequence to generate binary images, in which the periorbital regions are located by integral projections. Then, the located positions are used to approximate the nose position. It is possible to track features in the located regions. Therefore, these regions are interesting for different applications like human-machine interaction, biometrics and biomedical imaging. The method is easy to implement and does not rely on any training images or templates. Furthermore, the approach saves processing resources due to simple computations and restricted search regions.

  6. Report on the thermal-hydraulics computational component

    International Nuclear Information System (INIS)

    Laughton, T.; Jones, B.G.

    1996-01-01

    The nodal methods computer code utilizing hexagonal geometry, which is being developed as part of this DOE contract, is called THMZ. The computational objective of the code is to calculate the steady-state thermal-hydraulic conditions in a hexagonal geometry reactor core given the appropriate initial conditions and the axial neutron flux profile. The latter is given by a companion nodal neutronics code which was developed in an earlier part of the contact. The joining of these two codes to provide a coupled analysis tool for hexagonal lattice cores is the ultimate objective of the contract and its follow-on work. The remaining part of this report presents the current status of the development and the results which have been obtained to date. These will appear in the MS thesis of Mr. Terrill Laughton in the Department of Nuclear Engineering which is currently in preparation

  7. Replacement of Chromium Electroplating on Gas Turbine Engine Components Using Thermal Spray Coatings

    National Research Council Canada - National Science Library

    Sartwell, Bruce D; Legg, Keith O; Schell, Jerry; Bondaruk, Bob; Alford, Charles; Natishan, Paul; Lawrence, Steven; Shubert, Gary; Bretz, Philip; Kaltenhauser, Anne

    2005-01-01

    .... This document constitutes the final report on a project to qualify high-velocity oxygen-fuel (HVOF) and plasma thermal spray coatings as a replacement for hard chrome plating on gas turbine engine components...

  8. FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's

    International Nuclear Information System (INIS)

    Stover, R.L.; Beaver, T.R.; Chang, S.C.

    1983-01-01

    The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met

  9. Two-component wind fields over ocean waves using atmospheric lidar and motion estimation algorithms

    Science.gov (United States)

    Mayor, S. D.

    2016-02-01

    Numerical models, such as large eddy simulations, are capable of providing stunning visualizations of the air-sea interface. One reason for this is the inherent spatial nature of such models. As compute power grows, models are able to provide higher resolution visualizations over larger domains revealing intricate details of the interactions of ocean waves and the airflow over them. Spatial observations on the other hand, which are necessary to validate the simulations, appear to lag behind models. The rough ocean environment of the real world is an additional challenge. One method of providing spatial observations of fluid flow is that of particle image velocimetry (PIV). PIV has been successfully applied to many problems in engineering and the geosciences. This presentation will show recent research results that demonstate that a PIV-style approach using pulsed-fiber atmospheric elastic backscatter lidar hardware and wavelet-based optical flow motion estimation software can reveal two-component wind fields over rough ocean surfaces. Namely, a recently-developed compact lidar was deployed for 10 days in March of 2015 in the Eureka, California area. It scanned over the ocean. Imagery reveal that breaking ocean waves provide copius amounts of particulate matter for the lidar to detect and for the motion estimation algorithms to retrieve wind vectors from. The image below shows two examples of results from the experiment. The left panel shows the elastic backscatter intensity (copper shades) under a field of vectors that was retrieved by the wavelet-based optical flow algorithm from two scans that took about 15 s each to acquire. The vectors, that reveal offshore flow toward the NW, were decimated for clarity. The bright aerosol features along the right edge of the sector scan were caused by ocean waves breaking on the beach. The right panel is the result of scanning over the ocean on a day when wave amplitudes ranged from 8-12 feet and whitecaps offshore beyond the

  10. Data Collection for Current U.S. Wind Energy Projects: Component Costs, Financing, Operations, and Maintenance; January 2011 - September 2011

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Tretton, M.; Reha, M.; Drunsic, M.; Keim, M.

    2012-01-01

    DNV Renewables (USA) Inc. (DNV) used an Operations and Maintenance (O&M) Cost Model to evaluate ten distinct cost scenarios encountered under variations in wind turbine component failure rates. The analysis considers: (1) a Reference Scenario using the default part failure rates within the O&M Cost Model, (2) High Failure Rate Scenarios that increase the failure rates of three major components (blades, gearboxes, and generators) individually, (3) 100% Replacement Scenarios that model full replacement of these components over a 20 year operating life, and (4) Serial Failure Scenarios that model full replacement of blades, gearboxes, and generators in years 4 to 6 of the wind project. DNV selected these scenarios to represent a broad range of possible operational experiences. Also in this report, DNV summarizes the predominant financing arrangements used to develop wind energy projects over the past several years and provides summary data on various financial metrics describing those arrangements.

  11. Solution of wind integrated thermal generation system for environmental optimal power flow using hybrid algorithm

    Directory of Open Access Journals (Sweden)

    Ambarish Panda

    2016-09-01

    Full Text Available A new evolutionary hybrid algorithm (HA has been proposed in this work for environmental optimal power flow (EOPF problem. The EOPF problem has been formulated in a nonlinear constrained multi objective optimization framework. Considering the intermittency of available wind power a cost model of the wind and thermal generation system is developed. Suitably formed objective function considering the operational cost, cost of emission, real power loss and cost of installation of FACTS devices for maintaining a stable voltage in the system has been optimized with HA and compared with particle swarm optimization algorithm (PSOA to prove its effectiveness. All the simulations are carried out in MATLAB/SIMULINK environment taking IEEE30 bus as the test system.

  12. Energy Storage System by Means of Improved Thermal Performance of a 3 MW Grid Side Wind Power Converter

    DEFF Research Database (Denmark)

    Qin, Zian; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    method of the energy storage system. Then the conventional thermal evaluation approach is simplified for evaluation with long term wind profile. The case studies are done to address the optimal power size and capacity of the energy storage system by comparing the improvement of the thermal performance....... Also, the two promising candidates, ultracapacitors and batteries, are compared....

  13. Integration of plug-in hybrid electric vehicles in a regional wind-thermal power system

    International Nuclear Information System (INIS)

    Goeransson, Lisa; Karlsson, Sten; Johnsson, Filip

    2010-01-01

    This study investigates consequences of integrating plug-in hybrid electric vehicles (PHEVs) in a wind-thermal power system supplied by one quarter of wind power and three quarters of thermal generation. Four different PHEV integration strategies, with different impacts on the total electric load profile, have been investigated. The study shows that PHEVs can reduce the CO 2 -emissions from the power system if actively integrated, whereas a passive approach to PHEV integration (i.e. letting people charge the car at will) is likely to result in an increase in emissions compared to a power system without PHEV load. The reduction in emissions under active PHEV integration strategies is due to a reduction in emissions related to thermal plant start-ups and part load operation. Emissions of the power sector are reduced with up to 4.7% compared to a system without PHEVs, according to the simulations. Allocating this emission reduction to the PHEV electricity consumption only, and assuming that the vehicles in electric mode is about 3 times as energy efficient as standard gasoline operation, total emissions from PHEVs would be less than half the emissions of a standard car, when running in electric mode.

  14. Calibration of an experimental six component wind tunnel block balance using optical fibre sensors

    CSIR Research Space (South Africa)

    de Ponte, JD

    2016-05-01

    Full Text Available In order to meet the increasingly stringent requirements for wind tunnel balances, as expressed by the wind tunnel testing community, balance design philosophy needs to be further expanded to include alternative sensor, material, design...

  15. Design and development of an experimental six component wind tunnel block balance using optical fibre sensors.

    CSIR Research Space (South Africa)

    De Ponte, JD

    2014-05-01

    Full Text Available In order to meet the increasingly stringent requirements for wind tunnel balances, as expressed by the wind tunnel testing community, balance design philosophy needs to be further expanded to include alternative sensor, material, design...

  16. Thermal loads on tokamak plasma-facing components during normal operation and disruptions

    International Nuclear Information System (INIS)

    McGrath, R.T.

    1990-01-01

    Power loadings experienced by tokamak plasma-facing components during normal operation and during off-normal events are discussed. A model for power and particle flow in the tokamak boundary layer is presented and model predictions are compared to infrared measurements of component heating. The inclusion of the full three-dimensional geometry of the components and of the magnetic flux surface is very important in the modeling. Experimental measurements show that misalignment of component armour tile surfaces by only a millimeter can lead to significant localized heating. An application to the design of plasma-facing components for future machines is presented. Finally, thermal loads expected during tokamak disruptions are discussed. The primary problems are surface melting and vaporization due to localized intense heating during the disruption thermal quench and volumetric heating of the component armour and structure due to localised impact of runaway electrons. (author)

  17. Graphite-high density polyethylene laminated composites with high thermal conductivity made by filament winding

    Directory of Open Access Journals (Sweden)

    W. Lv

    2018-03-01

    Full Text Available The low thermal conductivity of polymers limits their use in numerous applications, where heat transfer is important. The two primary approaches to overcome this limitation, are to mix in other materials with high thermal conductivity, or mechanically stretch the polymers to increase their intrinsic thermal conductivity. Progress along both of these pathways has been stifled by issues associated with thermal interface resistance and manufacturing scalability respectively. Here, we report a novel polymer composite architecture that is enabled by employing typical composites manufacturing method such as filament winding with the twist that the polymer is in fiber form and the filler in form of sheets. The resulting novel architecture enables accession of the idealized effective medium composite behavior as it minimizes the interfacial resistance. The process results in neat polymer and 50 vol% graphite/polymer plates with thermal conductivity of 42 W·m–1·K–1 (similar to steel and 130 W·m–1·K–1 respectively.

  18. On the flow, thermal field and winds along the western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, M.K.; Shenoi, S.S.C.

    drift will be in phase with the density field or in geostrophic balance. The instrusion of the Bay of 438 M.K. ANTONY and S. S. C. SHENOI Bengal water (less dense than the Arabian Sea water) into the Arabian Sea along the shelf/slope region (SARMA et... flows during May and November are in geostrophic balance or not. For this purpose we used the thermal wind equation Or_-g Op (1) Oz f Ox and substituted the observed values for the average shear (Ov/Oz) and cross-shore density gradient (Op...

  19. Validated Loads Prediction Models for Offshore Wind Turbines for Enhanced Component Reliability

    DEFF Research Database (Denmark)

    Koukoura, Christina

    To improve the reliability of offshore wind turbines, accurate prediction of their response is required. Therefore, validation of models with site measurements is imperative. In the present thesis a 3.6MW pitch regulated-variable speed offshore wind turbine on a monopole foundation is built...... are used for the modification of the sub-structure/foundation design for possible material savings. First, the background of offshore wind engineering, including wind-wave conditions, support structure, blade loading and wind turbine dynamics are presented. Second, a detailed description of the site...

  20. Procedures for the design of the main mechanical components of a wind system; Dimensionamento dos componentes mecanicos principais de aerogeradores

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, M.H.; Marco Filho, F. de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1990-12-31

    Procedures for the design of the main mechanical components of a wind system were developed. One of the main concerns was related to the possibility of its use in small micro-computers. This goal was reached and an APPLE II computer was used. The resulting algorithm permits a friendly interaction between man and machine. 5 refs., 12 figs

  1. Reduction of Thermal Loss in HTS Windings by Using Magnetic Flux Deflection

    Science.gov (United States)

    Tsuzuki, K.; Miki, M.; Felder, B.; Koshiba, Y.; Izumi, M.; Umemoto, K.; Aizawa, K.; Yanamoto, T.

    Efforts on the generation of intensified magnetic flux have been made for the optimized shape of HTS winding applications. This contributes to the high efficiency of the rotating machines using HTS windings. Heat generation from the HTS windings requires to be suppressed as much as possible, when those coils are under operation with either direct or alternative currents. Presently, the reduction of such thermal loss generated by the applied currents on the HTS coils is reported with a magnetic flux deflection system. The HTS coils are fixed together with flattened magnetic materials to realize a kind of redirection of the flux pathway. Eventually, the magnetic flux density perpendicular to the tape surface (equivalent to the a-b plane) of the HTS tape materials is reduced to the proximity of the HTS coil. To verify the new geometry of the surroundings of the HTS coils with magnetic materials, a comparative study of the DC coil voltage was done for different applied currents in prototype field-pole coils of a ship propulsion motor.

  2. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    Science.gov (United States)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-03-27

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  3. The spiral field inhibition of thermal conduction in two-fluid solar wind models

    Science.gov (United States)

    Nerney, S.; Barnes, A.

    1978-01-01

    The paper reports on two-field models which include the inhibition of thermal conduction by the spiraling interplanetary field to determine whether any of the major conclusions obtained by Nerney and Barnes (1977) needs to be modified. Comparisons with straight field line models reveal that for most base conditions, the primary effect of the inhibition of thermal conduction is the bottling-up of heat in the electrons as well as the quite different temperature profiles at a large heliocentric radius. The spiral field solutions show that coronal hole boundary conditions do not correspond to states of high-speed streams as observed at 1 AU. The two-fluid models suggest that the spiral field inhibition of thermal conduction in the equatorial plane will generate higher gas pressures in comparison with flows along the solar rotation axis (between 1 and 10 AU). In particular, massive outflows of stellar winds, such as outflow from T Tauri stars, cannot be driven by thermal conduction. The conclusions of Nerney and Barnes remain essentially unchanged.

  4. Additive Manufacturing Thermal Performance Testing of Single Channel GRCop-84 SLM Components

    Science.gov (United States)

    Garcia, Chance P.; Cross, Matthew

    2014-01-01

    The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 550 to 700 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data.

  5. Evaluation on thermal aging embrittlement of cast stainless steel components in domestic PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bong Sang; Hwa, Hong Jun; Chi, Se Hwan; Ryu, Woo Seog; Kuk, Il Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    This report reviewed the R and D states of thermal aging embrittlement of cast stainless steel components in PWRs. Cast stainless steel is being widely used in PWRs including primary piping. This material shows the reduction of fracture toughness during operating life due to high temperature. Micromechanisms and kinetics are summarized to improve the materials properties. The reduction of toughness due to thermal embrittlement in domestic reactors are predicted based on each chemical composition until the end of plant life time. Substantial degradation was predicted in some components during plant life time. (Author) 26 refs., 19 figs., 11 tabs.

  6. A modified Gaussian model for the thermal plume from a ground-based heat source in a cross-wind

    International Nuclear Information System (INIS)

    Selander, W.N.; Barry, P.J.; Robertson, E.

    1990-06-01

    An array of propane burners operating at ground level in a cross-wind was used as a heat source to establish a blown-over thermal plume. A three-dimensional array of thermocouples was used to continuously measure the plume temperature downwind from the source. The resulting data were used to correlate the parameters of a modified Gaussian model for plume rise and dispersion with source strength, wind speed, and atmospheric dispersion parameters

  7. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    Science.gov (United States)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  8. Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System

    Directory of Open Access Journals (Sweden)

    Yanjuan Yu

    2018-01-01

    Full Text Available In regards to the cogeneration system in Northern China, mainly supported by combined heat and power (CHP plants, it usually offers limited operation flexibility due to the joint production of electric and thermal power. For that large-scale wind farms included in the cogeneration system, a large amount of wind energy may have to be wasted. To solve this issue, the utilization of the electric energy storages and the thermal energy auxiliaries are recommended, including pumped hydro storage (PHS, compressed air energy storage (CAES, hydrogen-based energy storage (HES, heat storage (HS, electric boilers (EB, and heat pumps (HP. This paper proposes a general evaluation method to compare the performance of these six different approaches for promoting wind power integration. In consideration of saving coal consumption, reducing CO2 emissions, and increasing investment cost, the comprehensive benefit is defined as the evaluation index. Specifically, a wind-thermal conflicting expression (WTCE is put forward to simplify the formulation of the comprehensive benefit. Further, according to the cogeneration system of the West Inner Mongolia (WIM power grid, a test system is modelled to perform the comparison of the six different approaches. The results show that introducing the electric energy storages and the thermal energy auxiliaries can both contribute to facilitating wind power integration, and the HP can provide the best comprehensive benefit.

  9. A Case Study of Wind-PV-Thermal-Bundled AC/DC Power Transmission from a Weak AC Network

    Science.gov (United States)

    Xiao, H. W.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.

    2017-05-01

    Wind power generation and photovoltaic (PV) power generation bundled with the support by conventional thermal generation enables the generation controllable and more suitable for being sent over to remote load centre which are beneficial for the stability of weak sending end systems. Meanwhile, HVDC for long-distance power transmission is of many significant technique advantages. Hence the effects of wind-PV-thermal-bundled power transmission by AC/DC on power system have become an actively pursued research subject recently. Firstly, this paper introduces the technical merits and difficulties of wind-photovoltaic-thermal bundled power transmission by AC/DC systems in terms of meeting the requirement of large-scale renewable power transmission. Secondly, a system model which contains a weak wind-PV-thermal-bundled sending end system and a receiving end system in together with a parallel AC/DC interconnection transmission system is established. Finally, the significant impacts of several factors which includes the power transmission ratio between the DC and AC line, the distance between the sending end system and receiving end system, the penetration rate of wind power and the sending end system structure on system stability are studied.

  10. PAIR INFLUENCE OF WIND SPEED AND MEAN RADIANT TEMPERATURE ON OUTDOOR THERMAL COMFORT OF HUMID TROPICAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Sangkertadi Sangkertadi

    2016-01-01

    Full Text Available The purposes of this article is to explore knowledge of outdoor thermal comfort in humid tropical environment for urban activities especially for people in walking activity, and those who stationary/seated with moderate action. It will be characterized the pair influence of wind speed and radiant temperature on the outdoor thermal comfort. Many of researchers stated that those two microclimate variables give significant role on outdoor thermal comfort in tropical humid area. Outdoor Tropical Comfort (OTC model was used for simulation in this study. The model output is comfort scale that refers on ASHRAE definition. The model consists of two regression equations with variables of air temperature, globe temperature, wind speed, humidity and body posture, for two types of activity: walking and seated. From the results it can be stated that there is significant role of wind speed to reduce mean radiant temperature and globe temperature, when the velocity is elevated from 0.5 m/s to 2 m/s. However, the wind has not play significant role when the speed is changed from 2 m/s to 3.5 m/s. The results of the study may inspire us to implement effectiveness of electrical-fan equipment for outdoor space in order to get optimum wind speed, coupled with optimum design of shading devices to minimize radiant temperature for thermal comfort.

  11. Thermal Analysis of the Driving Component Based on the Thermal Network Method in a Lunar Drilling System and Experimental Verification

    Directory of Open Access Journals (Sweden)

    Dewei Tang

    2017-03-01

    Full Text Available The main task of the third Chinese lunar exploration project is to obtain soil samples that are greater than two meters in length and to acquire bedding information from the surface of the moon. The driving component is the power output unit of the drilling system in the lander; it provides drilling power for core drilling tools. High temperatures can cause the sensors, permanent magnet, gears, and bearings to suffer irreversible damage. In this paper, a thermal analysis model for this driving component, based on the thermal network method (TNM was established and the model was solved using the quasi-Newton method. A vacuum test platform was built and an experimental verification method (EVM was applied to measure the surface temperature of the driving component. Then, the TNM was optimized, based on the principle of heat distribution. Through comparative analyses, the reasonableness of the TNM is validated. Finally, the static temperature field of the driving component was predicted and the “safe working times” of every mode are given.

  12. Development of active-X component for use in web based thermal hydraulic data bank

    International Nuclear Information System (INIS)

    Lee, Y. J.; Chung, B. D.

    2003-01-01

    An active-X component to use as the engine for the web-based thermal hydraulic data bank has been developed. The development of the active-X component was carried out primarily for employment in the web-based thermal-hydraulic databank. The active-X component was developed with the objective to minimize the size of the component and the data traffic while maximizing the functionality. For this end, the data is downloaded in a compressed format to minimize the downloading time, and Delphi language is used in the efforts to minimize the size of the active-X component as well as for fast execution time. The functionality of active-X component was tested on ENCOUNTER data package by embedding the component in a prototype web-page under a server-client environment. The test demonstrated that the active-X component functions as intended and that it is capable of very easy data retrieval and display

  13. Identification of the main thermal characteristics of building components using MATLAB

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik; Andersen, Klaus Kaae

    2008-01-01

    This paper presents the application of the IDENT Graphical User Interface of MATLAB to estimate the thermal properties of building components from outdoor dynamic testing, imposing appropriate physical constraints and assuming linear and time invariant parametric models. The theory is briefly...

  14. Thermal analysis of the first canted-undulator front-end components at SSRF

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhongmin, E-mail: xuzhongmin@sinap.ac.cn; Feng, Xinkang; Wang, Naxiu; Wu, Guanyuan; Zhang, Min; Wang, Jie

    2015-02-21

    The performance of three kinds of masks: pre-mask, splitter mask and fixed mask-photon shutter, used for the first canted-undulator front end under heat loads at SSRF, is studied. Because these components are shared with two beamlines, the X-rays from both dual undulators and bending magnets can strike on them. Under these complicated conditions, they will absorb much more thermal power than when they operate in usual beamline. So thermal and stress analysis is indispensable for their mechanical design. The method of applying the non-uniform power density using Ansys is presented. During thermal stress analysis, the normal operation or the worst possible case is considered. The finite element analyses results, such as the maximum temperature of the body and the cooling wall and the maximum stress of these components, show the design of them is reasonable and safe.

  15. The Impact of Power Switching Devices on the Thermal Performance of a 10 MW Wind Power NPC Converter

    Directory of Open Access Journals (Sweden)

    Ke Ma

    2012-07-01

    Full Text Available Power semiconductor switching devices play an important role in the performance of high power wind energy generation systems. The state-of-the-art device choices in the wind power application as reported in the industry include IGBT modules, IGBT press-pack and IGCT press-pack. Because of significant deviation in the packaging structure, electrical characteristics, as well as thermal impedance, these available power switching devices may have various thermal cycling behaviors, which will lead to converter solutions with very different cost, size and reliability performance. As a result, this paper aimed to investigate the thermal related characteristics of some important power switching devices. Their impact on the thermal cycling of a 10 MW three-level Neutral-Point-Clamped wind power converter is then evaluated under various operating conditions; the main focus will be on the grid connected inverter. It is concluded that the thermal performances of the 3L-NPC wind power converter can be significantly changed by the power device technology as well as their parallel configurations.

  16. A NEW THREE-DIMENSIONAL SOLAR WIND MODEL IN SPHERICAL COORDINATES WITH A SIX-COMPONENT GRID

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xueshang; Zhang, Man; Zhou, Yufen, E-mail: fengx@spaceweather.ac.cn [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-09-01

    In this paper, we introduce a new three-dimensional magnetohydrodynamics numerical model to simulate the steady state ambient solar wind from the solar surface to 215 R {sub s} or beyond, and the model adopts a splitting finite-volume scheme based on a six-component grid system in spherical coordinates. By splitting the magnetohydrodynamics equations into a fluid part and a magnetic part, a finite volume method can be used for the fluid part and a constrained-transport method able to maintain the divergence-free constraint on the magnetic field can be used for the magnetic induction part. This new second-order model in space and time is validated when modeling the large-scale structure of the solar wind. The numerical results for Carrington rotation 2064 show its ability to produce structured solar wind in agreement with observations.

  17. Near-surface thermal characterization of plasma facing components using the 3-omega method

    International Nuclear Information System (INIS)

    Dechaumphai, Edward; Barton, Joseph L.; Tesmer, Joseph R.; Moon, Jaeyun; Wang, Yongqiang; Tynan, George R.; Doerner, Russell P.; Chen, Renkun

    2014-01-01

    Near-surface regime plays an important role in thermal management of plasma facing components in fusion reactors. Here, we applied a technique referred to as the ‘3ω’ method to measure the thermal conductivity of near-surface regimes damaged by ion irradiation. By modulating the frequency of the heating current in a micro-fabricated heater strip, the technique enables the probing of near-surface thermal properties. The technique was applied to measure the thermal conductivity of a thin ion-irradiated layer on a tungsten substrate, which was found to decrease by nearly 60% relative to pristine tungsten for a Cu ion dosage of 0.2 dpa

  18. The application of linear elastic fracture mechanics to thermally stressed welded components

    International Nuclear Information System (INIS)

    Green, D.

    1981-01-01

    Linear Elastic Fracture Mechanics techniques are applied to components constructed from brittle materials and operating at low or ambient temperatures. It is argued that these techniques can justifiably be applied to components at high temperature provided that stresses are thermally induced, self-equilibrating and cyclic. Such loading conditions occur for example in an LMFBR and a simple welded detail containing a crevice is taken as an example. Theoretical and experimental estimates of crack growth in this component are compared and good agreement is shown. (author)

  19. Separation and prediction of irrecoverable strain components of concrete during the first thermal cycle

    International Nuclear Information System (INIS)

    Khoury, G.A.

    1993-01-01

    Strains of three AGR type concretes were measured during the first heat cycle and their relative thermal stability determined. It was possible to isolate for the first time the shrinkage and creep components for the period during heating-up. Predictions of the residual strains for the loaded specimens can be made by simple superposition of creep and shrinkage components up to a certain critical temperature, which for basalt concrete is about 500 deg. C and limestone concrete is about 200-300 deg. C. Above the critical temperature, it is necessary to add a 'cracking component'. (author)

  20. Simulation of Time-Varying Spatially Uniform Pressure and Near-Surface Wind Flows on Building Components and Cladding

    Directory of Open Access Journals (Sweden)

    Seraphy Y. Shen

    2017-05-01

    Full Text Available This paper describes a new full-scale (FS testing apparatus for conducting performance evaluations of FS building envelope systems. The simulator can generate spatially uniform, time-varying pressure conditions associated with Saffir–Simpson Hurricane Wind Scale Category 5 winds while compensating for large air leakage through the specimen and also operate a high-speed wind tunnel, both with dynamic control. This paper presents system details, operating characteristics, and an early case study on the performance of large sectional door systems under wind pressure loading. Failure mechanisms are discussed, and finite element modeling is validated for two specimens. It demonstrates successful dynamic load control for large component and cladding systems, as well as simulation of flows near the building surface. These capabilities serve to complement other FS wind tunnel facilities by offering tools to generate ultimate load conditions on portions of the building. Further, the paper successfully demonstrates the utility of combining physical testing and computational analysis as a matter of routine, which underscores the potential of evolving FS testing to encompass cyber–physical approaches.

  1. Damage evaluation under thermal fatigue of a vertical target full scale component for the ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Merola, M.; Durocher, A.; Bobin-Vastra, I.; Schedler, B.

    2007-01-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a Full Scale Vertical Target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses thermographic examination and thermal fatigue testing results obtained on this component. The study includes thermal analysis, with a tentative proposal to evaluate with finite element approach the location/size of defects and the possible propagation during fatigue cycling

  2. Examination of high heat flux components for the ITER divertor after thermal fatigue testing

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Schmidt, A.; Riccardi, B.; Bobin-Vastra, I.

    2011-01-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a full-scale vertical target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses metallographic observations performed on both CFC and W part after this intensive thermal fatigue testing campaign for a better understanding of thermally induced mechanical stress within the component, especially close to the armour-heat sink interface.

  3. Examination of high heat flux components for the ITER divertor after thermal fatigue testing

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M., E-mail: marc.missirlian@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Schmidt, A., E-mail: a.schmidt@fz-juelich.de [Forschungszentrum Juelich, IFE-2 (Germany); Riccardi, B., E-mail: Bruno.Riccardi@f4e.europa.eu [Fusion For Energy, E-08019 Barcelona (Spain); Bobin-Vastra, I., E-mail: isabelle.bobinvastra@areva.com [AREVA-NP, 71200 Le Creusot (France)

    2011-10-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a full-scale vertical target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses metallographic observations performed on both CFC and W part after this intensive thermal fatigue testing campaign for a better understanding of thermally induced mechanical stress within the component, especially close to the armour-heat sink interface.

  4. Short-term hydro-thermal-wind complementary scheduling considering uncertainty of wind power using an enhanced multi-objective bee colony optimization algorithm

    International Nuclear Information System (INIS)

    Zhou, Jianzhong; Lu, Peng; Li, Yuanzheng; Wang, Chao; Yuan, Liu; Mo, Li

    2016-01-01

    Highlights: • HTWCS system is established while considering uncertainty of wind power. • An enhanced multi-objective bee colony optimization algorithm is proposed. • Some heuristic repairing strategies are designed to handle various constraints. • HTWCS problem with economic/environment objectives is solved by EMOBCO. - Abstract: This paper presents a short-term economic/environmental hydro-thermal-wind complementary scheduling (HTWCS) system considering uncertainty of wind power, as well as various complicated non-linear constraints. HTWCS system is formulated as a multi-objective optimization problem to optimize conflictive objectives, i.e., economic and environmental criteria. Then an enhanced multi-objective bee colony optimization algorithm (EMOBCO) is proposed to solve this problem, which adopts Elite archive set, adaptive mutation/selection mechanism and local searching strategy to improve global searching ability of standard bee colony optimization (BCO). Especially, a novel constraints-repairing strategy with compressing decision space and a violation-adjustment method are used to handle various hydraulic and electric constraints. Finally, a daily scheduling simulation case of hydro-thermal-wind system is conducted to verify feasibility and effectiveness of the proposed EMOBCO in solving HTWCS problem. The simulation results indicate that the proposed EMOBCO can provide lower economic cost and smaller pollutant emission than other method established recently while considering various complex constraints in HTWCS problem.

  5. Experimental study of wind tunnel performance by a two-component laserDopplerAnemometer

    Directory of Open Access Journals (Sweden)

    M Pourmahabadian

    2005-10-01

    Full Text Available Background and Aims: This survey studies the wind tunnel performance by a two- componentlaser Doppler Anemometer, so some experiments were carried out to assess the performance of awind tunnel.Method: The tunnel was capable to produce air velocity of up to 40 m/s.. Measurements ofvelocity profiles have been made actors the test section of wind tunnel through the using a twocomponentfiber optic Laser Doppler anemometer. Measurements of velocity profiles andturbulence intensities have been made across the test section of the wind tunnel using a twocomponentfiber optic Laser Doppler anemometer (I.D.A for wind speeds ranging from 1 to3m/s.Results: Performance rests of velocity profiles at a given flow rate and various position of aerosolgenerator showed that although uniformity of flow dependent to the place of an atomizer (asaerosol generator but the variation of wind speed across the test section meets the wind speedrequirements, as specified by US EPAfor 3m/s only.Conclusion:At time which particles velocity reach to less than one micron, the air velocity relateson the similarity of particles and

  6. New Role of Thermal Mapping in Winter Maintenance with Principal Components Analysis

    Directory of Open Access Journals (Sweden)

    Mario Marchetti

    2014-01-01

    Full Text Available Thermal mapping uses IR thermometry to measure road pavement temperature at a high resolution to identify and to map sections of the road network prone to ice occurrence. However, measurements are time-consuming and ultimately only provide a snapshot of road conditions at the time of the survey. As such, there is a need for surveys to be restricted to a series of specific climatic conditions during winter. Typically, five to six surveys are used, but it is questionable whether the full range of atmospheric conditions is adequately covered. This work investigates the role of statistics in adding value to thermal mapping data. Principal components analysis is used to interpolate between individual thermal mapping surveys to build a thermal map (or even a road surface temperature forecast, for a wider range of climatic conditions than that permitted by traditional surveys. The results indicate that when this approach is used, fewer thermal mapping surveys are actually required. Furthermore, comparisons with numerical models indicate that this approach could yield a suitable verification method for the spatial component of road weather forecasts—a key issue currently in winter road maintenance.

  7. Thermal loads and their effect on integrity of mechanical systems and components

    International Nuclear Information System (INIS)

    Koenig, G.; Schoeckle, F.

    2010-01-01

    The initial step to establish a required quality status of systems and components is performed during the state of design. Main goal of the design is to consider every possible damage mechanism of the future operation (by specification of loads, medium and environment and the selection of the materials). The knowledge during the state of design determines the reliability of the component. Regarding the thermal loads, especially, only global parameters are specified usually (transients of flow and temperature connected to specified operation). These global transients are analyzed according to the standards. In operation, the safety (integrity) resp. remaining life of a component is determined by the real operation history. As experience showed, failures, defects and not specified (new) loads were discovered during operation, e.g. stratification effects in feedwater pipes and in surge lines or thermal effects in the region of valves due to switching or internal leakage. Standard surveillance in operation is performed using plant transducers that can only monitor global loads. However, problems usually are of local nature. Thermal loads like - turbulent temperatures due to mixing of media with different temperatures - temperature differences across shells or in regions of nozzles/thermal sleeves - temperature differences in piping cross sections (local and global stratification effects) - temperature differences along sections of piping systems have to be monitored by use of local instrumentation. During analysis, both the local loads and construction details have to be considered, in detail, using appropriate calculation / analysis tools. The complexity of the loads requires a comprehensive procedure: - determine the types of loads resulting from measured temperature transients - perform sensitivity studies to identify the load type that results in relevant stresses - evaluate the stresses of the significant loads - assess these stresses according to component

  8. Optimal control of a fuel cell/wind/PV/grid hybrid system with thermal heat pump load

    CSIR Research Space (South Africa)

    Sichilalu, S

    2016-10-01

    Full Text Available This paper presents an optimal energy management strategy for a grid-tied photovoltaic–wind-fuel cell hybrid power supply system. The hybrid system meets the load demand consisting of an electrical load and a heat pump water heater supplying thermal...

  9. Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Quental, P. B., E-mail: pquental@ipfn.tecnico.ulisboa.pt; Policarpo, H.; Luís, R.; Varela, P. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2016-11-15

    The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.

  10. On the propagation of hydromagnetic waves in a plasma of thermal and suprathermal components

    Science.gov (United States)

    Kumar, Nagendra; Sikka, Himanshu

    2007-12-01

    The propagation of MHD waves is studied when two ideal fluids, thermal and suprathermal gases, coupled by magnetic field are moving with the steady flow velocity. The fluids move independently in a direction perpendicular to the magnetic field but gets coupled along the field. Due to the presence of flow in suprathermal and thermal fluids there appears forward and backward waves. All the forward and backward modes propagate in such a way that their rate of change of phase speed with the thermal Mach number is same. It is also found that besides the usual hydromagnetic modes there appears a suprathermal mode which propagates with faster speed. Surface waves are also examined on an interface formed with composite plasma (suprathermal and thermal gases) on one side and the other is a non-magnetized plasma. In this case, the modes obtained are two or three depending on whether the sound velocity in thermal gas is equal to or greater than the sound velocity in suprathermal gas. The results lead to the conclusion that the interaction of thermal and suprathermal components may lead to the occurrence of an additional mode called suprathermal mode whose phase velocity is higher than all the other modes.

  11. Thermal-hydraulic and thermo-mechanical design of plasma facing components for SST-1 tokamak

    International Nuclear Information System (INIS)

    Chaudhuri, Paritosh; Santra, P.; Chenna Reddy, D.; Parashar, S.K.S.

    2014-01-01

    The Plasma Facing Components (PFCs) are one of the major sub-systems of ssT-1 tokamak. PFC of ssT-1 consisting of divertors, passive stabilizers, baffles and limiters are designed to be compatible for steady state operation. The main consideration in the design of the PFC cooling is the steady state heat removal of up to 1 MW/m 2 . The PFC has been designed to withstand the peak heat fluxes and also without significant erosion such that frequent replacement of the armor is not necessary. Design considerations included 2-D steady state and transient tile temperature distribution and resulting thermal loads in PFC during baking, and cooling, coolant parameters necessary to maintain optimum thermal-hydraulic design, and tile fitting mechanism. Finite Element (FE) models using ANSYS have been developed to carry out the heat transfer and stress analyses of the PFC to understand its thermal and mechanical behaviors. The results of the calculation led to a good understanding of the coolant flow behavior and the temperature distribution in the tube wall and the different parts of the PFC. Thermal analysis of the PFC is carried out with the purpose of evaluating the thermal mechanical behavior of PFCs. The detailed thermal-hydraulic and thermo-mechanical designs of PFCs of ssT-1 are discussed in this paper. (authors)

  12. Measurement of macroscopic plasma parameters with a radio experiment: Interpretation of the quasi-thermal noise spectrum observed in the solar wind

    Science.gov (United States)

    Couturier, P.; Hoang, S.; Meyer-Vernet, N.; Steinberg, J. L.

    1983-01-01

    The ISEE-3 SBH radio receiver has provided the first systematic observations of the quasi-thermal (plasma waves) noise in the solar wind plasma. The theoretical interpretation of that noise involves the particle distribution function so that electric noise measurements with long antennas provide a fast and independent method of measuring plasma parameters: densities and temperatures of a two component (core and halo) electron distribution function have been obtained in that way. The polarization of that noise is frequency dependent and sensitive to the drift velocity of the electron population. Below the plasma frequency, there is evidence of a weak noise spectrum with spectral index -1 which is not yet accounted for by the theory. The theoretical treatment of the noise associated with the low energy (thermal) proton population shows that the moving electrical antenna radiates in the surrounding plasma by Carenkov emission which becomes predominant at the low frequencies, below about 0.1 F sub P.

  13. Improving the Penetration of Wind Power with Dynamic Thermal Rating System, Static VAR Compensator and Multi-Objective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Jiashen Teh

    2018-04-01

    Full Text Available The integration of renewable energy sources, especially wind energy, has been on the rise throughout power systems worldwide. Due to this relatively new introduction, the integration of wind energy is often not optimized. Moreover, owing to the technical constraints and transmission congestions of the power network, most of the wind energy has to be curtailed. Due to various factors that influence the connectivity of wind energy, this paper proposes a well-organized posterior multi-objective (MO optimization algorithm for maximizing the connections of wind energy. In this regard, the dynamic thermal rating (DTR system and the static VAR compensator (SVC have been identified as effective tools for improving the loadability of the network. The propose MO algorithm in this paper aims to minimize: (1 wind energy curtailment, (2 operation cost of the network considering all investments and operations, also known as the total social cost, and (3 SVC operation cost. The proposed MO problem was solved using the non-dominated sorting genetic algorithm (NSGA II and it was tested on the modified IEEE reliability test system (IEEE-RTS. The results demonstrate the applicability of the proposed algorithm in aiding power system enhancement planning for integrating wind energy.

  14. Monte Carlo simulations of the detailed iron absorption line profiles from thermal winds in X-ray binaries

    Science.gov (United States)

    Tomaru, Ryota; Done, Chris; Odaka, Hirokazu; Watanabe, Shin; Takahashi, Tadayuki

    2018-05-01

    Blueshifted absorption lines from highly ionized iron are seen in some high inclination X-ray binary systems, indicating the presence of an equatorial disc wind. This launch mechanism is under debate, but thermal driving should be ubiquitous. X-ray irradiation from the central source heats disc surface, forming a wind from the outer disc where the local escape velocity is lower than the sound speed. The mass-loss rate from each part of the disc is determined by the luminosity and spectral shape of the central source. We use these together with an assumed density and velocity structure of the wind to predict the column density and ionization state, then combine this with a Monte Carlo radiation transfer to predict the detailed shape of the absorption (and emission) line profiles. We test this on the persistent wind seen in the bright neutron star binary GX 13+1, with luminosity L/LEdd ˜ 0.5. We approximately include the effect of radiation pressure because of high luminosity, and compute line features. We compare these to the highest resolution data, the Chandra third-order grating spectra, which we show here for the first time. This is the first physical model for the wind in this system, and it succeeds in reproducing many of the features seen in the data, showing that the wind in GX13+1 is most likely a thermal-radiation driven wind. This approach, combined with better streamline structures derived from full radiation hydrodynamic simulations, will allow future calorimeter data to explore the detail wind structure.

  15. Design & Evaluation of a Protection Algorithm for a Wind Turbine Generator based on the fault-generated Symmetrical Components

    DEFF Research Database (Denmark)

    Zheng, T. Y.; Cha, Seung-Tae; Lee, B. E.

    2011-01-01

    A protection relay for a wind turbine generator (WTG) based on the fault-generated symmetrical components is proposed in the paper. At stage 1, the relay uses the magnitude of the positive-sequence component in the fault current to distinguish faults on a parallel WTG, connected to the same feeder......, or on an adjacent feeder from those on the connected feeder, on the collection bus, at an inter-tie or at a grid. For the former faults, the relay should remain stable and inoperative whilst the instantaneous or delayed tripping is required for the latter faults. At stage 2, the fault type is first evaluated using...... the relationships of the fault-generated symmetrical components. Then, the magnitude of the positive-sequence component in the fault current is used again to decide on either instantaneous or delayed operation. The operating performance of the relay is then verified using various fault scenarios modelled using...

  16. Thermal memory influence on the thermoconducting component of indirect photoacoustic response

    International Nuclear Information System (INIS)

    Nešić, M; Popović, M; Gusavac, P; Šoškić, Z; Galović, S

    2012-01-01

    In this paper, a model of the thermoconducting component of the indirect photoacoustic (PA) response is derived that includes thermal memory properties of the examined material and its fluid environment. A comparison is made between the derived model and the classic one, which neglects the influence of thermal memory. It has been shown that, at modulation frequencies lower than a certain boundary frequency of the light source, these models tend to overlap, while at higher frequencies, noticeable differences occur. The boundary frequency depends on heat propagation velocity through the sample and its thickness. This observation limits the validity domain of previous models to a range lower than the boundary frequency, offering, at the same time, the possibility of obtaining thermal memory properties using PA effects at frequencies above it.

  17. Laser/fluorescent dye flow visualization technique developed for system component thermal hydraulic studies

    International Nuclear Information System (INIS)

    Oras, J.J.; Kasza, K.E.

    1988-01-01

    A novel laser flow visualization technique is presented together with examples of its use in visualizing complex flow patterns and plans for its further development. This technique has been successfully used to study (1) the flow in a horizontal pipe subject to temperature transients, to view the formation and breakup of thermally stratified flow and to determine instantaneous velocity distributions in the same flow at various axial locations; (2) the discharge of a stratified pipe flow into a plenum exhibiting a periodic vortex pattern; and (3) the thermal-buoyancy-induced flow channeling on the shell side of a heat exchanger with glass tubes and shell. This application of the technique to heat exchangers is unique. The flow patterns deep within a large tube bundle can be studied under steady or transient conditions. This laser flow visualization technique constitutes a very powerful tool for studying single or multiphase flows in complex thermal system components

  18. Packaging strategies for printed circuit board components. Volume I, materials & thermal stresses.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K. (Kansas City Plant, Kansas City, MO); Austin, Kevin N.; Adolf, Douglas Brian; Spangler, Scott W.; Neidigk, Matthew Aaron; Chambers, Robert S.

    2011-09-01

    Decisions on material selections for electronics packaging can be quite complicated by the need to balance the criteria to withstand severe impacts yet survive deep thermal cycles intact. Many times, material choices are based on historical precedence perhaps ignorant of whether those initial choices were carefully investigated or whether the requirements on the new component match those of previous units. The goal of this program focuses on developing both increased intuition for generic packaging guidelines and computational methodologies for optimizing packaging in specific components. Initial efforts centered on characterization of classes of materials common to packaging strategies and computational analyses of stresses generated during thermal cycling to identify strengths and weaknesses of various material choices. Future studies will analyze the same example problems incorporating the effects of curing stresses as needed and analyzing dynamic loadings to compare trends with the quasi-static conclusions.

  19. Artificial heart system thermal converter and blood pump component research and development

    International Nuclear Information System (INIS)

    Pouchot, W.D.; Bifano, N.J.; Hanson, J.P.

    1975-01-01

    A bench model version of a nuclear-powered artificial heart system to be used as a replacement for the natural heart was constructed and tested as a part of a broader U. S. ERDA program. The objective of the broader program has been to develop a prototype of a fully implantable nuclear-powered total artificial heart system powered by the thermal energy of plutonium-238 and having minimum weight and volume and a minimum life of ten years. As a forward step in this broader program, component research and development has been carried out directed towards a fully implantable and advanced version of the bench model (IVBM). Some of the results of the component research and development effort on a Stirling engine, blood pump drive mechanisms, and coupling mechanisms are presented. The Stirling-mechanical system under development is shown. There are three major subassemblies: the thermal converter, the coupling mechanism, and the blood pump drive mechanism. The thermal converter uses a Stirling cycle to convert the heat of the plutonium-238 fueled heat source to a rotary shaft power output. The coupling mechanism changes the orientation of the output shaft by 90 degrees and transmits the pumping power by wire-wound core flexible shafting to the pumping mechanism. The coupling mechanism also provides routing of the coolant lines which carry the cycle waste heat from the thermal converter to the blood pump. The change in orientation of the thermal converter output shaft is for convenience in implanting in a calf. This orientation of thermal converter to blood pump seemed to give the best overall system fit in a calf based on fit trials with wooden models in a calf cadaver

  20. EVAPORATIVE DROPLETS IN ONE-COMPONENT FLUIDS DRIVEN BY THERMAL GRADIENTS ON SOLID SUBSTRATES

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2013-01-01

    A continuum hydrodynamic model is presented for one-component liquid-gas flows on nonisothermal solid substrates. Numerical simulations are carried out for evaporative droplets moving on substrates with thermal gradients. For droplets in one-component fluids on heated/cooled substrates, the free liquid-gas interfaces are nearly isothermal. Consequently, a thermal singularity occurs at the contact line while the Marangoni effect due to interfacial temperature variation is suppressed. Through evaporation/condensation near the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. Due to this effect, droplets will move toward the cold end on substrates with thermal gradients. The droplet migration velocity is found to be proportional to the change of substrate temperature across the droplet. It follows that for two droplets of different sizes on a substrate with temperature gradient, the larger droplet moves faster and will catch up with the smaller droplet ahead. As soon as they touch, they coalesce rapidly into an even larger droplet that will move even faster. © 2013 World Scientific Publishing Company.

  1. EVAPORATIVE DROPLETS IN ONE-COMPONENT FLUIDS DRIVEN BY THERMAL GRADIENTS ON SOLID SUBSTRATES

    KAUST Repository

    Xu, Xinpeng

    2013-03-20

    A continuum hydrodynamic model is presented for one-component liquid-gas flows on nonisothermal solid substrates. Numerical simulations are carried out for evaporative droplets moving on substrates with thermal gradients. For droplets in one-component fluids on heated/cooled substrates, the free liquid-gas interfaces are nearly isothermal. Consequently, a thermal singularity occurs at the contact line while the Marangoni effect due to interfacial temperature variation is suppressed. Through evaporation/condensation near the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. Due to this effect, droplets will move toward the cold end on substrates with thermal gradients. The droplet migration velocity is found to be proportional to the change of substrate temperature across the droplet. It follows that for two droplets of different sizes on a substrate with temperature gradient, the larger droplet moves faster and will catch up with the smaller droplet ahead. As soon as they touch, they coalesce rapidly into an even larger droplet that will move even faster. © 2013 World Scientific Publishing Company.

  2. Thermal-hydraulic limitations on water-cooled fusion reactor components

    International Nuclear Information System (INIS)

    Cha, Y.S.; Misra, B.

    1986-01-01

    An assessment of the cooling requirements for fusion reactor components, such as the first wall and limiter/divertor, was carried out using pressurized water as the coolant. In order to establish the coolant operating conditions, a survey of the literature on departure from nucleate boiling, critical heat flux, asymmetrical heating and heat transfer augmentation techniques was carried out. The experimental data and the empirical correlations indicate that thermal protection for the fusion reactor components based on conventional design concepts can be provided with an adequate margin of safety without resorting to either high coolant velocities, excessive coolant pressures, or heat transfer augmentation techniques. If, however, the future designs require unconventional shapes or heat transfer enhancement techniques, experimental verification would be necessary since no data on heat transfer augmentation techniques exist for complex geometries, especially under asymmetrically heated conditions. Since the data presented herein are concerned primarily with thermal protection of the reactor components, the final design should consider other factors such as thermal stresses, temperature limits, and fatigue

  3. Thermal inertia in thermal infrared: porosity and chemical components of rocks; Inercia termica no infravermelho termal: porosidade e componentes quimicos de rochas

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Admilson P.; Ehlers, Ricardo Sandes [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Vitorello, Icaro [Instituto de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    1995-12-31

    The effect of porosity, and the relation between thermal inertia values and chemical components were determined. The thermal inertia values and chemical components were determined. The thermal inertia determinations were performed using radiometric observations, in the range 8 to 14 {mu}, of the surface temperature variations of the sample, induced by an incident heat flux. The results show that the increase in porosity tends to reduce the thermal inertia values, when the rock is in a dry state. In the water saturation state, the inertia also tends to show small values, only for porous rocks with thermal inertia values larger than the water values. The acid rocks show thermal inertia values smaller than those of the basic rocks. The intermediate and basic rocks show strong positive correlation between thermal inertia and Si O{sub 2}. 7 refs., 3 figs

  4. Simultaneous Absorptance and Thermal-Diffusivity Determination of Optical Components with Laser Calorimetry Technique

    Science.gov (United States)

    Wang, Yanru; Li, Bincheng

    2012-11-01

    The laser calorimetry (LCA) technique is used to determine simultaneously the absorptances and thermal diffusivities of optical components. An accurate temperature model, in which both the finite thermal conductivity and the finite sample size are taken into account, is employed to fit the experimental temperature data measured with an LCA apparatus for a precise determination of the absorptance and thermal diffusivity via a multiparameter fitting procedure. The uniqueness issue of the multiparameter fitting is discussed in detail. Experimentally, highly reflective (HR) samples prepared with electron-beam evaporation on different substrates (BK7, fused silica, and Ge) are measured with LCA. For the HR-coated sample on a fused silica substrate, the absorptance is determined to be 15.4 ppm, which is close to the value of 17.6 ppm, determined with a simplified temperature model recommended in the international standard ISO11551. The thermal diffusivity is simultaneously determined via multiparameter fitting to be approximately 6.63 × 10-7 m2 · s-1 with a corresponding square variance of 4.8 × 10-4. The fitted thermal diffusivity is in reasonably good agreement with the literature value (7.5 × 10-7 m2 · s -1). Good agreement is also obtained for samples with BK7 and Ge substrates.

  5. The ORC method. Effective modelling of thermal performance of multilayer building components

    Energy Technology Data Exchange (ETDEWEB)

    Akander, Jan

    2000-02-01

    The ORC Method (Optimised RC-networks) provides a means of modelling one- or multidimensional heat transfer in building components, in this context within building simulation environments. The methodology is shown, primarily applied to heat transfer in multilayer building components. For multilayer building components, the analytical thermal performance is known, given layer thickness and material properties. The aim of the ORC Method is to optimise the values of the thermal resistances and heat capacities of an RC-model such as to give model performance a good agreement with the analytical performance, for a wide range of frequencies. The optimisation procedure is made in the frequency domain, where the over-all deviation between model and analytical frequency response, in terms of admittance and dynamic transmittance, is minimised. It is shown that ORC's are effective in terms of accuracy and computational time in comparison to finite difference models when used in building simulations, in this case with IDA/ICE. An ORC configuration of five mass nodes has been found to model building components in Nordic countries well, within the application of thermal comfort and energy requirement simulations. Simple RC-networks, such as the surface heat capacity and the simple R-C-configuration are not appropriate for detailed building simulation. However, these can be used as basis for defining the effective heat capacity of a building component. An approximate method is suggested on how to determine the effective heat capacity without the use of complex numbers. This entity can be calculated on basis of layer thickness and material properties with the help of two time constants. The approximate method can give inaccuracies corresponding to 20%. In-situ measurements have been carried out in an experimental building with the purpose of establishing the effective heat capacity of external building components that are subjected to normal thermal conditions. The auxiliary

  6. Analytical Formulation for Sizing and Estimating the Dimensions and Weight of Wind Turbine Hub and Drivetrain Components

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Parsons, T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, K. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Veers, P. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-06-09

    This report summarizes the theory, verification, and validation of a new sizing tool for wind turbine drivetrain components, the Drivetrain Systems Engineering (DriveSE) tool. DriveSE calculates the dimensions and mass properties of the hub, main shaft, main bearing(s), gearbox, bedplate, transformer if up-tower, and yaw system. The level of fi¬ delity for each component varies depending on whether semiempirical parametric or physics-based models are used. The physics-based models have internal iteration schemes based on system constraints and design criteria. Every model is validated against available industry data or finite-element analysis. The verification and validation results show that the models reasonably capture primary drivers for the sizing and design of major drivetrain components.

  7. Service Life Of Main Piping Component Due To Low Thermal Stresses.Fatigue

    International Nuclear Information System (INIS)

    Miroshnik, R.; Jeager, A.; Ben Haim, H.

    1998-01-01

    The paper deals with estimating the service life of the power station Main piping component and describing the repair process for extending of its service life. After a long period of service, several circular fatigue cracks have been discovered at the bottom of the Main piping component chamber. Finite element analyses of transient thermal stresses, caused by power station startup, are carried out in the paper. The calculation results show good agreement between the theoretical locations of the maximum stresses and the actual locations of the cracks. There is a good agreement between theoretical evaluation and actual service life, as well. The possibility of machining out the cracks in order to prevent their growing is examined here. The machining enables us to extend the power station component's life service

  8. MODELING THERMAL DUST EMISSION WITH TWO COMPONENTS: APPLICATION TO THE PLANCK HIGH FREQUENCY INSTRUMENT MAPS

    International Nuclear Information System (INIS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales

  9. Effects of wind application on thermal perception and self-paced performance

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Haan, A. de; Koning, J.J. de; Daanen, H.A.M.

    2013-01-01

    Physiological and perceptual effects of wind cooling are often intertwined and have scarcely been studied in self-paced exercise. Therefore, we aimed to investigate (1) the independent perceptual effect of wind cooling and its impact on performance and (2) the responses to temporary wind cooling

  10. Practical Aspects of Suspension Plasma Spray for Thermal Barrier Coatings on Potential Gas Turbine Components

    Science.gov (United States)

    Ma, X.; Ruggiero, P.

    2018-04-01

    Suspension plasma spray (SPS) process has attracted extensive efforts and interests to produce fine-structured and functional coatings. In particular, thermal barrier coatings (TBCs) applied by SPS process gain increasing interest due to its potential for superior thermal protection of gas turbine hot sections as compared to conventional TBCs. Unique columnar architectures and nano- and submicrometric grains in the SPS-TBC demonstrated some advantages of thermal shock durability, low thermal conductivity, erosion resistance and strain-tolerant microstructure. This work aimed to look into some practical aspects of SPS processing for TBC applications before it becomes a reliable industry method. The spray capability and applicability of SPS process to achieve uniformity thickness and microstructure on curved substrates were emphasized in designed spray trials to simulate the coating fabrication onto industrial turbine parts with complex configurations. The performances of the SPS-TBCs were tested in erosion, falling ballistic impact and indentational loading tests as to evaluate SPS-TBC performances in simulated turbine service conditions. Finally, a turbine blade was coated and sectioned to verify SPS sprayability in multiple critical sections. The SPS trials and test results demonstrated that SPS process is promising for innovative TBCs, but some challenges need to be addressed and resolved before it becomes an economic and capable industrial process, especially for complex turbine components.

  11. Non-thermal Processes in Colliding-wind Massive Binaries: the Contribution of Simbol-X to a Multiwavelength Investigation

    Science.gov (United States)

    De Becker, Michaël; Blomme, Ronny; Micela, Giusi; Pittard, Julian M.; Rauw, Gregor; Romero, Gustavo E.; Sana, Hugues; Stevens, Ian R.

    2009-05-01

    Several colliding-wind massive binaries are known to be non-thermal emitters in the radio domain. This constitutes strong evidence for the fact that an efficient particle acceleration process is at work in these objects. The acceleration mechanism is most probably the Diffusive Shock Acceleration (DSA) process in the presence of strong hydrodynamic shocks due to the colliding-winds. In order to investigate the physics of this particle acceleration, we initiated a multiwavelength campaign covering a large part of the electromagnetic spectrum. In this context, the detailed study of the hard X-ray emission from these sources in the SIMBOL-X bandpass constitutes a crucial element in order to probe this still poorly known topic of astrophysics. It should be noted that colliding-wind massive binaries should be considered as very valuable targets for the investigation of particle acceleration in a similar way as supernova remnants, but in a different region of the parameter space.

  12. Thermal and structural limitations for impurity-control components in FED/INTOR

    International Nuclear Information System (INIS)

    Majumdar, S.; Cha, Y.; Mattas, R.; Abdou, M.; Cramer, B.; Haines, J.

    1983-02-01

    The successful operation of the impurity-control system of the FED/INTOR will depend to a large extent on the ability of its various components to withstand the imposed thermal and mechanical loads. The present paper explores the thermal and stress analyses aspects of the limiter and divertor operation of the FED/INTOR in its reference configuration. Three basic limitations governing the design of the limiter and the divertor are the maximum allowable metal temperature, the maximum allowable stress intensity and the allowable fatigue life of the structural material. Other important design limitations stemming from sputtering, evaporation, melting during disruptions, etc. are not considered in the present paper. The materials considered in the present analysis are a copper and a vanadium alloy for the structural material and graphite, beryllium, beryllium oxide, tungsten and silicon carbide for the coating or tile material

  13. Non-destructive assay of mechanical components using gamma-rays and thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Erica Silvani; Avelino, Mila R. [PPG-EM/UERJ, R. Sao Francisco Xavier, 524, Maracana - Rio de Janeiro - RJ (Brazil); Almeida, Gevaldo L. de; Souza, Maria Ines S. [IEN/CNEN, Rua Helio de Almeida, 75, Ilha do Fundao, Rio de Janeiro - RJ (Brazil)

    2013-05-06

    This work presents the results obtained in the inspection of several mechanical components through neutron and gamma-ray transmission radiography. The 4.46 Multiplication-Sign 10{sup 5} n.cm{sup -2}.s{sup -1} thermal neutron flux available at the main port of the Argonauta research reactor in Instituto de Engenharia Nuclear has been used as source for the neutron radiographic imaging. The 412 keV {gamma}-ray emitted by {sup 198}Au, also produced in that reactor, has been used as interrogation agent for the gamma radiography. Imaging Plates - IP specifically designed to operate with thermal neutrons or with X-rays have been employed as detectors and storage devices for each of these radiations.

  14. The International Standards for Solar Thermal Collectors and Components as a Medium of Quality Assurance

    International Nuclear Information System (INIS)

    Alkishriwi, Nouri; Schorn, Christian A.; Theis, Danjana

    2014-01-01

    Within this publication a detailed overview about the national and international solal't1lel1nai standards is made. The various tests are described and a cross reference list for comparing the different standards is given. Moreover a certification model is presented and the advantage of third party assessment is carried out. The requirement for a solar thermal test laboratory to conduct independent third party assessment by means of an ISO/IEC17065 accreditation is given. Finally the concept of a quality system for solar thermal markets is explained and major advantages are outlined. Solar thermal systems and their components are described in various national and international standards. In Europe the standard EN12975 defines the regulations and requirements for solar thermal collectors. The standard EN12976 is established for the evaluation of factory made solar thermal systems. The EN12977 is the state of the art standard for the evaluation of custom build systems. Nowadays in Libya the standard ISO9806 for solar collectors and the standard ISO9459 for domestic water heating systems define the regulations and requirements for solar thermal collectors and systems. In the meanwhile, empowered Center for Renewable Energy and Energy Efficiency Certification Body is under construction. This body is working now to set the minimum requirements of the testing facilities of solar thermal systems. The international standard for collector testing is the ISO9806 and the standard ISO9459 Part 2, 4, 5 for domestic water heating systems. Within the year 2013 a revision of the ISO9806 will be published and, for the first time, a consistent harmonized standard for the main solar thermal markets will be set in force. Besides the various standards for solar thermal products a meaningful element for the quality assurance and the customer protection is third party certification. Third party certification involves an independent assessment, declaring that specified requirements

  15. Towards standardized testing methodologies for optical properties of components in concentrating solar thermal power plants

    Science.gov (United States)

    Sallaberry, Fabienne; Fernández-García, Aránzazu; Lüpfert, Eckhard; Morales, Angel; Vicente, Gema San; Sutter, Florian

    2017-06-01

    Precise knowledge of the optical properties of the components used in the solar field of concentrating solar thermal power plants is primordial to ensure their optimum power production. Those properties are measured and evaluated by different techniques and equipment, in laboratory conditions and/or in the field. Standards for such measurements and international consensus for the appropriate techniques are in preparation. The reference materials used as a standard for the calibration of the equipment are under discussion. This paper summarizes current testing methodologies and guidelines for the characterization of optical properties of solar mirrors and absorbers.

  16. IAEA consultants' meeting on thermal response of plasma facing materials and components

    International Nuclear Information System (INIS)

    Janev, R.K.

    1990-07-01

    The present Summary Report contains brief proceedings and the main conclusions and recommendations of the IAEA Consultants' Meeting on ''Thermal Response of Plasma Facing Materials and Components'', which was organized by the IAEA Atomic and Molecular Data Unit and held on June 11-13, 1990, in Vienna, Austria. The Report also includes a categorization and assessment of currently studied plasma facing materials, a classification scheme of material properties data, required in fusion reactor design, and a survey of the urgently needed material properties data. (author)

  17. Converter structure-based power loss and static thermal modeling of the press-pack IGBT-based three-level ANPC and HB VSCs applied to Multi-MW wind turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Munk-Nielsen, Stig; Teodorescu, Remus

    2010-01-01

    and the switch thermal performance which is determined by the converter load profile and the converter structure. In this study, the converter-structure based power loss and thermal models are developed for the medium voltage full-scale 3LANPC- VSC and 3L-HB-VSC utilizing press-pack IGBT-diode pairs......The wind turbine converters demand high power density due to nacelle space limitation and high reliability due to high maintenance cost. Once the converter topology with the semiconductor switch technology is selected, the converter power density and reliability are dependent on the component count...

  18. The role of technology transfer for the development of a local wind component industry in Chile

    International Nuclear Information System (INIS)

    Pueyo, Ana; Garcia, Rodrigo; Mendiluce, Maria; Morales, Dario

    2011-01-01

    This paper contributes to the debate about climate change technology transfer by analysing barriers and enablers for a Chilean company starting up the production of wind blades. Literature on the role of technology transfer for the development and deployment of local renewable energy technologies in developing countries often refers to success stories in Brazil, India and China. Instead, this case study highlights the different challenges faced by smaller emerging economies. The paper argues that successful technology transfer in a smaller economy like Chile requires: a minimum internal demand and access to regional markets to attract foreign knowledge providers; a focus in the types of technologies where the recipient country or company have a competitive advantage; and active learning processes by the recipient company. Lessons are drawn for improving the design and implementation of technology-push and market-pull policies in small or medium emerging economies. - Highlights: → We analyse the case of a Chilean company starting up wind blades production. → Technology transfer is required as the relevant knowledge is not available in the country. → We examine the factors that enable technology transfer to draw policy conclusions. → We highlight the particularities of medium sized developing countries.

  19. The role of technology transfer for the development of a local wind component industry in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Pueyo, Ana, E-mail: anapueyo@hotmail.com [Technical University of Madrid (UPM)-Escuela Tecnica Superior de Ingenieros Industriales (ETSII), Madrid (Spain); Garcia, Rodrigo [Centro de Energias Renovables (CER), Santiago de Chile (Chile); Mendiluce, Maria [World Business Council for Sustainable Development (WBCSD), Geneva (Switzerland); Morales, Dario [InnovaChile-CORFO Chile, Santiago de Chile (Chile)

    2011-07-15

    This paper contributes to the debate about climate change technology transfer by analysing barriers and enablers for a Chilean company starting up the production of wind blades. Literature on the role of technology transfer for the development and deployment of local renewable energy technologies in developing countries often refers to success stories in Brazil, India and China. Instead, this case study highlights the different challenges faced by smaller emerging economies. The paper argues that successful technology transfer in a smaller economy like Chile requires: a minimum internal demand and access to regional markets to attract foreign knowledge providers; a focus in the types of technologies where the recipient country or company have a competitive advantage; and active learning processes by the recipient company. Lessons are drawn for improving the design and implementation of technology-push and market-pull policies in small or medium emerging economies. - Highlights: > We analyse the case of a Chilean company starting up wind blades production. > Technology transfer is required as the relevant knowledge is not available in the country. > We examine the factors that enable technology transfer to draw policy conclusions. > We highlight the particularities of medium sized developing countries.

  20. Casting defects and fatigue behaviour of ductile cast iron for wind turbine components: A comprehensive study

    Energy Technology Data Exchange (ETDEWEB)

    Haerkegaard, G. [Norwegian University of Science and Technology, Dept. of Engineering Design and Materials, Trondheim (Norway); Shirani, M.

    2011-12-15

    Two types of EN-GJS-400-18-LT ductile cast iron were investigated in this research, clean baseline material in the shape of castings with different thicknesses and also defective material from a rejected wind turbine hub. P-S-N curves for baseline EN-GJS-400-18-LT specimens with different dimensions and from castings with different thicknesses at different load ratios were established. Geometrical size effect, technological size effects and mean stress effect on fatigue strength of baseline EN-GJS-400-18-LT were evaluated. Fatigue strength of baseline EN-GJS-400-18-LT was compared with that of defective material from the rejected hub. The effect of defects type, shape, size and position on fatigue strength of this material was evaluated. The hypothesis that the endurance observed in an S-N test can be predicted based on the analysis of crack growth from casting defects through defect-free 'base' material was tested for the analyzed defective material. 3D X-ray computed tomography was use to detect defects in defective specimens and find the defect size distribution. The obtained defect size distribution for the defective material was used in random defect analysis to establish the scatter of fatigue life for defective specimens. Finally both safe-life design and damage tolerant design of wind turbine castings were analyzed and compared. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Mechanical characterization of W-armoured plasma-facing components after thermal fatigue

    International Nuclear Information System (INIS)

    Serret, D; Richou, M; Missirlian, M; Loarer, T

    2011-01-01

    The future fusion device ITER is aimed at demonstrating the scientific and technical feasibility of fusion power. Tens of thousands of W-armoured plasma-facing components (PFCs) will be installed in the vertical targets of the ITER divertor and subjected to a high heat flux. The purpose of this paper is to present the results of mechanical and microstructural characterization of tungsten PFCs after thermal fatigue tests. On each component, Vickers hardness measurements are made. In parallel, the mean grain diameter in the corresponding zone of tungsten material is determined. The empirical Hall-Petch relation was adapted to experimental data. However, due to the plateau effect on recrystallization hardness, this relation does not seem to be relevant once recrystallization is complete: a new approach is proposed for predicting the margin to the tungsten melting onset.

  2. Effect of the combined stress on the life of components under thermal cycling conditions

    International Nuclear Information System (INIS)

    Zuchowski, R.; Zietkowski, L.

    1987-01-01

    The life of structural components subjected to temperature changes is affected, among other factors, by the nature of the stress field. If life prediction for axially stressed components can be accomplished with a number of well established techniques, the behaviour under a complex state of stress and varying temperature conditions still is the object of intensive research. The present study was aimed at assessing the influence of the stress field upon the life of specimens made of chromium-nickel H23N18 steel under thermal cycling conditions. The designation of steel is in accordance with Polish Standards. The experiments were made on thin-walled tubular specimens loaded with various combinations of a static axial force and a static torque. (orig./GL)

  3. A probability index for surface zonda wind occurrence at Mendoza city through vertical sounding principal components analysis

    Science.gov (United States)

    Otero, Federico; Norte, Federico; Araneo, Diego

    2018-01-01

    The aim of this work is to obtain an index for predicting the probability of occurrence of zonda event at surface level from sounding data at Mendoza city, Argentine. To accomplish this goal, surface zonda wind events were previously found with an objective classification method (OCM) only considering the surface station values. Once obtained the dates and the onset time of each event, the prior closest sounding for each event was taken to realize a principal component analysis (PCA) that is used to identify the leading patterns of the vertical structure of the atmosphere previously to a zonda wind event. These components were used to construct the index model. For the PCA an entry matrix of temperature ( T) and dew point temperature (Td) anomalies for the standard levels between 850 and 300 hPa was build. The analysis yielded six significant components with a 94 % of the variance explained and the leading patterns of favorable weather conditions for the development of the phenomenon were obtained. A zonda/non-zonda indicator c can be estimated by a logistic multiple regressions depending on the PCA component loadings, determining a zonda probability index \\widehat{c} calculable from T and Td profiles and it depends on the climatological features of the region. The index showed 74.7 % efficiency. The same analysis was performed by adding surface values of T and Td from Mendoza Aero station increasing the index efficiency to 87.8 %. The results revealed four significantly correlated PCs with a major improvement in differentiating zonda cases and a reducing of the uncertainty interval.

  4. Usage of Parameterized Fatigue Spectra and Physics-Based Systems Engineering Models for Wind Turbine Component Sizing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Taylor; Guo, Yi; Veers, Paul; Dykes, Katherine; Damiani, Rick

    2016-01-26

    Software models that use design-level input variables and physics-based engineering analysis for estimating the mass and geometrical properties of components in large-scale machinery can be very useful for analyzing design trade-offs in complex systems. This study uses DriveSE, an OpenMDAO-based drivetrain model that uses stress and deflection criteria to size drivetrain components within a geared, upwind wind turbine. Because a full lifetime fatigue load spectrum can only be defined using computationally-expensive simulations in programs such as FAST, a parameterized fatigue loads spectrum that depends on wind conditions, rotor diameter, and turbine design life has been implemented. The parameterized fatigue spectrum is only used in this paper to demonstrate the proposed fatigue analysis approach. This paper details a three-part investigation of the parameterized approach and a comparison of the DriveSE model with and without fatigue analysis on the main shaft system. It compares loads from three turbines of varying size and determines if and when fatigue governs drivetrain sizing compared to extreme load-driven design. It also investigates the model's sensitivity to shaft material parameters. The intent of this paper is to demonstrate how fatigue considerations in addition to extreme loads can be brought into a system engineering optimization.

  5. Effect of wind, thermal convection, and variation in flight strategies on the daily rhythm and flight paths of migrating raptors at Georgia's Black Sea coast

    NARCIS (Netherlands)

    Vansteelant, W.M.G.; Verhelst, B.; Shamoun-Baranes, J.; Bouten, W.; van Loon, E.E.; Bildstein, K.L.

    2014-01-01

    Every autumn, large numbers of raptors migrate through geographical convergence zones to avoid crossing large bodies of water. At coastal convergence zones, raptors may aggregate along coastlines because of convective or wind conditions. However, the effect of wind and thermal convection on

  6. Thermal aging of some decommissioned reactor components and methodology for life prediction

    International Nuclear Information System (INIS)

    Chung, H.M.

    1989-03-01

    Since a realistic aging of cast stainless steel components for end-of-life or life-extension conditions cannot be produced, it is customary to simulate the thermal aging embrittlement by accelerated aging at ∼400 degree C. In this investigation, field components obtained from decommissioned reactors have been examined after service up to 22 yr to provide a benchmark of the laboratory simulation. The primary and secondary aging processes were found to be identical to those of the laboratory-aged specimens, and the kinetic characteristics were also similar. The extent of the aging embrittlement processes and other key factors that are known to influence the embrittlement kinetics have been compared for the decommissioned reactor components and materials aged under accelerated conditions. On the basis of the study, a mechanistic understanding of the causes of the complex behavior in kinetics and activation energy of aging (i.e., the temperature dependence of aging embrittlement between the accelerated and reactor-operating conditions) is presented. A mechanistic correlation developed thereon is compared with a number of available empirical correlations to provide an insight for development of a better methodology of life prediction of the reactor components. 18 refs., 18 figs., 5 tabs

  7. Thermal fatigue equipment to test joints of materials for high heat flux components

    International Nuclear Information System (INIS)

    Visca, E.; Libera, S.; Orsini, A.; Riccardi, B.; Sacchetti, M.

    2000-01-01

    The activity, carried out in the framework of an ITER divertor task, was aimed at defining a suitable method in order to qualify junctions between armour materials and heat sink of plasma-facing components (PFCs) mock-ups. An equipment able to perform thermal fatigue testing by electrical heating and active water-cooling was constructed and a standard for the sample was defined. In this equipment, during operation cycles, two samples are heated by thermal contact up to a relevant temperature value (350 deg. C) and then the water flow is switched on, thus producing fast cooling with time constants and gradients close to the real operating conditions. The equipment works with a test cycle of about 60 s and is suitable for continuous operation. A complete test consists of about 10000 cycles. After the assembling, the equipment and the control software were optimized to obtain a good reliability. Preliminary tests on mock-ups with flat CFC tiles joined to copper heat sink were performed. Finite-elements calculations were carried out in order to estimate the value of the thermal stresses arising close to the joint under the transient conditions that are characteristic of this equipment

  8. Thermal and Structural Analysis of Beamline Components in the Mu2e Experiment

    International Nuclear Information System (INIS)

    Martin, Luke Daniel

    2016-01-01

    Fermi National Accelerator Laboratory will be conducting the high energy particle physics experiment Muons to Electrons (Mu2e). In this experiment, physicists will attempt to witness and understand an ultra-rare process which is the conversion of a muon into the lighter mass electron, without creating additional neutrinos. The experiment is conducted by first generating a proton beam which will be collided into a target within the production solenoid (PS). This creates a high-intensity muon beam which passes through a transport solenoid (TS) and into the detector solenoid (DS). In the detector solenoid the muons will be stopped in an aluminum target and a series of detectors will measure the electrons produced. These components have been named the DS train since they are coupled and travel on a rail system when being inserted or extracted from the DS. To facilitate the installation and removal of the DS train, a set of external stands and a support stand for the instrumentation feed-through bulkhead (IFB) have been designed. Full analysis of safety factors and performance of these two designs has been completed. The detector solenoid itself will need to be maintained to a temperature of 22°C ± 10°C. This will minimize thermal strain and ensure the accurate position of the components is maintained to the tolerance of 2 mm. To reduce the thermal gradient, a passive heating system has been developed and reported.

  9. Thermal Analysis of Fermilab Mu2e Beamstop and Structural Analysis of Beamline Components

    Energy Technology Data Exchange (ETDEWEB)

    Narug, Colin S. [Northern Illinois U.

    2018-01-01

    The Mu2e project at Fermilab National Accelerator Laboratory aims to observe the unique conversion of muons to electrons. The success or failure of the experiment to observe this conversion will further the understanding of the standard model of physics. Using the particle accelerator, protons will be accelerated and sent to the Mu2e experiment, which will separate the muons from the beam. The muons will then be observed to determine their momentum and the particle interactions occur. At the end of the Detector Solenoid, the internal components will need to absorb the remaining particles of the experiment using polymer absorbers. Because the internal structure of the beamline is in a vacuum, the heat transfer mechanisms that can disperse the energy generated by the particle absorption is limited to conduction and radiation. To determine the extent that the absorbers will heat up over one year of operation, a transient thermal finite element analysis has been performed on the Muon Beam Stop. The levels of energy absorption were adjusted to determine the thermal limit for the current design. Structural finite element analysis has also been performed to determine the safety factors of the Axial Coupler, which connect and move segments of the beamline. The safety factor of the trunnion of the Instrument Feed Through Bulk Head has also been determined for when it is supporting the Muon Beam Stop. The results of the analysis further refine the design of the beamline components prior to testing, fabrication, and installation.

  10. Loading nature of the interfacial cracks in a joint component under fusion-relevant thermal loads

    International Nuclear Information System (INIS)

    You, J.H.

    1998-01-01

    One of the standard design concepts for divertor components in a fusion reactor is the bonded joint structure. Understanding the loading nature of interfacial cracks are significant for the assessment of structural integrity of divertor joint components. In this paper, the thermomechanical loading nature of interfacial cracks is discussed. A bi-material joint element consisting of the CFC/TZM system is considered. A typical fusion operation condition is simulated assuming a pulsed high heat flux loading. Stress singularities near the interfacial crack tips are characterized quantitatively in terms of the fracture mechanical parameters. The evolution of the stress intensity factors and the energy release rate during the given transient thermal load are determined. The difference in loading characteristics between the edge crack and the center crack is discussed. High heat flux cycling tests are performed on brazed CFC/TZM divertor elements in an electron beam test facility. The microstructures of the damaged interface agree with the predicted fracture modes. The loading nature and possible failure mechanisms are discussed for a fusion-relevant thermal loading. (orig.)

  11. Determining Correlation between Shark Location and Atmospheric Wind and Thermal Parameters.

    Science.gov (United States)

    Merchant, J.

    2017-12-01

    Millions of people visit the nation's shorelines every summer. As recreational use of the ocean increases across the country, so too does the risk of shark attacks on people. According to George H. Burgess, curator for the International Shark Attack File and the Florida Program for Shark Research "The number of shark-human interactions occurring in a given year is directly correlated with the amount of time humans spend in the sea. As world population continues its upsurge and interest in aquatic recreation concurrently rises, we realistically should expect increases in the number of shark attacks and other aquatic recreation-related injuries". Burgess' analysis released in February of 2016, states "2015 yearly total of 98 unprovoked attacks (worldwide) was the highest on record" until 2016. Adding to the previous record number of global shark/human interactions in 2015 were 10 confirmed cases of people bitten by sharks off the shores of North Carolina and South Carolina over a five week period in June and July of 2015. The unusually high amount of attacks within close proximity over a short period of time garnered significant media attention nationwide. Preliminary data resulting from the analysis of these 2015 shark attacks and separate acoustic shark location data from Dr. Gregory Skomal's (Program Manager, Senior Marine Fisheries Biologist for the state of Massachusetts) ongoing research across Cape Code do indicate a correlation between environmental and biological factors leading up to human/shark interactions. Not only will these preliminary findings be presented, but a full description of how the use of higher resolution remote sensing and in-situ surface wind and thermal measurements would improve real time detection and prediction of these dangerous conditions, up to hours in advance, mitigating human risk and interaction with shark.

  12. Engineering design and thermal hydraulics of plasma facing components of SST-1

    International Nuclear Information System (INIS)

    Pragash, N. Ravi; Chaudhuri, P.; Santra, P.; Chenna Reddy, D.; Khirwadkar, S.; Saxena, Y.C.

    2001-01-01

    SST-1 is a medium size tokamak with super conducting magnetic field coils. All the subsystems of SST-1 are designed for quasi steady state (∼1000 s) operation. Plasma Facing Components (PFCs) of SST-1 consisting of divertors, passive stabilizers, baffles and poloidal limiters are also designed to be compatible for steady state operation. As SST-1 is designed to run double null divertor plasmas, these components also have up-down symmetry. A closed divertor configuration is chosen to produce high recycling and high pumping speed in the divertor region. All the PFC are made of copper alloys (CuCrZr and CuZr) on which graphite tiles are mechanically attached. These copper alloy back plates are actively cooled with water flowing in the channels grooved on them with the main consideration in the design of PFCs as the steady state heat removal of about 1.0 MW/m 2 . In addition to be able to remove high heat fluxes, the PFCs are also designed to be compatible for baking at 350 degree sign C. Extensive studies, involving different flow parameters and various cooling layouts, have been done to select the final cooling parameters and layout. Thermal response of the PFCs and vacuum vessel during baking, has been calculated using a FORTRAN code and a 2-D finite element analysis. The PFCs and their supports are also designed to withstand large electro-magnetic forces. Finite element analysis using ANSYS software package is used in this and other PFCs design. The engineering design including thermal hydraulics for cooling and baking of all the PFCs is completed. Poloidal limiters are being fabricated. The remaining PFCs, viz. divertors, stabilizers and baffles are likely to go for fabrication in the next few months. The detailed engineering design, the finite element calculations in the structural and thermal designs are presented in this paper

  13. Effect of Defects Distribution on Fatigue Life of Wind Turbine Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2015-01-01

    by a Poisson process / field where the defects form clusters that consist of a parent defect and related defects around the parent defect. The fatigue life is dependent on the number, type, location and size of the defects in the component and is therefore quite uncertain and needs to be described...

  14. The Effect of Combined Magnetic Geometries on Thermally Driven Winds. I. Interaction of Dipolar and Quadrupolar Fields

    Energy Technology Data Exchange (ETDEWEB)

    Finley, Adam J.; Matt, Sean P., E-mail: af472@exeter.ac.uk [University of Exeter (UK), Department of Physics and Astronomy, Stoker Road, Devon, Exeter, EX4 4QL (United Kingdom)

    2017-08-10

    Cool stars with outer convective envelopes are observed to have magnetic fields with a variety of geometries, which on large scales are dominated by a combination of the lowest-order fields such as the dipole, quadrupole, and octupole modes. Magnetized stellar wind outflows are primarily responsible for the loss of angular momentum from these objects during the main sequence. Previous works have shown the reduced effectiveness of the stellar wind braking mechanism with increasingly complex but singular magnetic field geometries. In this paper, we quantify the impact of mixed dipolar and quadrupolar fields on the spin-down torque using 50 MHD simulations with mixed fields, along with 10 each of the pure geometries. The simulated winds include a wide range of magnetic field strength and reside in the slow-rotator regime. We find that the stellar wind braking torque from our combined geometry cases is well described by a broken power-law behavior, where the torque scaling with field strength can be predicted by the dipole component alone or the quadrupolar scaling utilizing the total field strength. The simulation results can be scaled and apply to all main-sequence cool stars. For solar parameters, the lowest-order component of the field (dipole in this paper) is the most significant in determining the angular momentum loss.

  15. Protection against cold in prehospital care-thermal insulation properties of blankets and rescue bags in different wind conditions.

    Science.gov (United States)

    Henriksson, Otto; Lundgren, J Peter; Kuklane, Kalev; Holmér, Ingvar; Bjornstig, Ulf

    2009-01-01

    In a cold, wet, or windy environment, cold exposure can be considerable for an injured or ill person. The subsequent autonomous stress response initially will increase circulatory and respiratory demands, and as body core temperature declines, the patient's condition might deteriorate. Therefore, the application of adequate insulation to reduce cold exposure and prevent body core cooling is an important part of prehospital primary care, but recommendations for what should be used in the field mostly depend on tradition and experience, not on scientific evidence. The objective of this study was to evaluate the thermal insulation properties in different wind conditions of 12 different blankets and rescue bags commonly used by prehospital rescue and ambulance services. The thermal manikin and the selected insulation ensembles were setup inside a climatic chamber in accordance to the modified European Standard for assessing requirements of sleeping bags. Fans were adjusted to provide low (value, Itr (m2 C/Wclo; where C = degrees Celcius, and W = watts), was calculated from ambient air temperature (C), manikin surface temperature (C), and heat flux (W/m2). In the low wind condition, thermal insulation of the evaluated ensembles correlated to thickness of the ensembles, ranging from 2.0 to 6.0 clo (1 clo = 0.155 m2 C/W), except for the reflective metallic foil blankets that had higher values than expected. In moderate and high wind conditions, thermal insulation was best preserved for ensembles that were windproof and resistant to the compressive effect of the wind, with insulation reductions down to about 60-80% of the original insulation capacity, whereas wind permeable and/or lighter materials were reduced down to about 30-50% of original insulation capacity. The evaluated insulation ensembles might all be used for prehospital protection against cold, either as single blankets or in multiple layer combinations, depending on ambient temperatures. However, with extended

  16. Wind Movement Comparison Between Student Dormitory 2 and 3 ITERA and The Correlation Toward its Indoor Thermal Comfort

    Science.gov (United States)

    Perdana Khidmat, Rendy; Donny Koerniawan, M.; Suhendri

    2018-05-01

    Student dormitory is a semi-private building that designated to occupies large number of habitats. This type of building mostly designated in simple type of vertical housing. In the context of utilization, dormitory surely requires indoor thermal comfort yet in the same way it requires the energy efficiency as well. Building in a tropical climate country is expected to be adequate to adopt a potention from its surrounding in order to switch air conditioner and gain efficiency in energy consume. One of its key factors is wind. This paper tries to describe and investigate wind movement that works on two different type of student dormitory in Sumatera Institute of Technology. The distinct difference between two blocks is one of the tower block utilizes void meanwhile the other are not. This research is conducted by using Computational Fluid Dynamic (CFD) based software. This study is expected to provide an overview of the wind movement and its effect on air temperature and its correlation to the indoor thermal comfort in both buildings.

  17. Electro-thermal Modeling for Junction Temperature Cycling-Based Lifetime Prediction of a Press-Pack IGBT 3L-NPC-VSC Applied to Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    Reliability is a critical criterion for multi-MW wind turbines, which are being employed with increasing numbers in wind power plants, since they operate under harsh conditions and have high maintenance cost due to their remote locations. In this study, the wind turbine grid-side converter...... reliability is investigated regarding IGBT lifetime based on junction temperature cycling for the grid-side press-pack IGBT 3L-NPC-VSC, which is a state-of-the art high reliability solution. In order to acquire IGBT junction temperatures for given wind power profiles and to use them in IGBT lifetime...... prediction, the converter electro-thermal model including electrical, power loss, and dynamical thermal models is developed with the main focus on the thermal modeling regarding converter topology, switch technology, and physical structure. Moreover, these models are simplified for their practical...

  18. Thermal-structural response of EBR-II major components under reactor operational transients

    International Nuclear Information System (INIS)

    Chang, L.K.; Lee, M.J.

    1983-01-01

    Until recently, the LMFBR safety research has been focused primarily on severe but highly unlikely accident, such as hypothetical-core-disruptive accidents (HCDA's), and not enough attention has been given to accident prevention, which is less severe but more likely sequence. The objective of the EBR-II operational reliability testing (ORT) is to demonstrate that the reactor can be designed and operated to prevent accident. A series of mild duty cycles and overpower transients were designed for accident prevention tests. An assessment of the EBR-II major plant components has been performed to assure structural integrity of the reactor plant for the ORT program. In this paper, the thermal-structural response and structural evaluation of the reactor vessel, the reactor-vessel cover, the intermediate heat exchanger (IHX) and the superheater are presented

  19. NSGA-II based optimal control scheme of wind thermal power system for improvement of frequency regulation characteristics

    Directory of Open Access Journals (Sweden)

    S. Chaine

    2015-09-01

    Full Text Available This work presents a methodology to optimize the controller parameters of doubly fed induction generator modeled for frequency regulation in interconnected two-area wind power integrated thermal power system. The gains of integral controller of automatic generation control loop and the proportional and derivative controllers of doubly fed induction generator inertial control loop are optimized in a coordinated manner by employing the multi-objective non-dominated sorting genetic algorithm-II. To reduce the numbers of optimization parameters, a sensitivity analysis is done to determine that the above mentioned three controller parameters are the most sensitive among the rest others. Non-dominated sorting genetic algorithm-II has depicted better efficiency of optimization compared to the linear programming, genetic algorithm, particle swarm optimization, and cuckoo search algorithm. The performance of the designed optimal controller exhibits robust performance even with the variation in penetration levels of wind energy, disturbances, parameter and operating conditions in the system.

  20. Post-examination of helium-cooled tungsten components exposed to DEMO specific cyclic thermal loads

    International Nuclear Information System (INIS)

    Ritz, G.; Hirai, T.; Linke, J.; Norajitra, P.; Giniyatulin, R.; Singheiser, L.

    2009-01-01

    A concept of helium-cooled tungsten finger module was developed for the European DEMO divertor. The concept was realized and tested under DEMO specific cyclic thermal loads up to 10 MW/m 2 . The modules were examined carefully before and after loading by metallography and microstructural analyses. While before loading mainly discrete and shallow cracks were found on the tungsten surface due to the manufacturing process, dense crack networks were observed at the loaded surfaces due to the thermal stress. In addition, cracks occurred in the structural, heat sink part and propagated along the grains orientation of the deformed tungsten material. Facilitated by cracking, the molten brazing metal between the tungsten plasma facing material and the W-La 2 O 3 heat sink, that could not withstand the operational temperatures, infiltrated the tungsten components and, due to capillary forces, even reached the plasma facing surface through the cracks. The formed cavity in the brazed layer reduced the heat conduction and the modules were further damaged due to overheating during the applied heat loads. Based on this detailed characterization and possible improvements of the design and of the manufacturing routes are discussed.

  1. A Robot Trajectory Optimization Approach for Thermal Barrier Coatings Used for Free-Form Components

    Science.gov (United States)

    Cai, Zhenhua; Qi, Beichun; Tao, Chongyuan; Luo, Jie; Chen, Yuepeng; Xie, Changjun

    2017-10-01

    This paper is concerned with a robot trajectory optimization approach for thermal barrier coatings. As the requirements of high reproducibility of complex workpieces increase, an optimal thermal spraying trajectory should not only guarantee an accurate control of spray parameters defined by users (e.g., scanning speed, spray distance, scanning step, etc.) to achieve coating thickness homogeneity but also help to homogenize the heat transfer distribution on the coating surface. A mesh-based trajectory generation approach is introduced in this work to generate path curves on a free-form component. Then, two types of meander trajectories are generated by performing a different connection method. Additionally, this paper presents a research approach for introducing the heat transfer analysis into the trajectory planning process. Combining heat transfer analysis with trajectory planning overcomes the defects of traditional trajectory planning methods (e.g., local over-heating), which helps form the uniform temperature field by optimizing the time sequence of path curves. The influence of two different robot trajectories on the process of heat transfer is estimated by coupled FEM models which demonstrates the effectiveness of the presented optimization approach.

  2. Fevers and Chills: Separating thermal and synchrotron components in SNR spectra

    Science.gov (United States)

    Fedor, Emily Elizabeth; Martina-Hood, Hyourin; Stage, Michael D.

    2018-06-01

    Spatially-resolved spectroscopy is an extremely powerful tool in X-ray analysis of extended sources, but can be computationally difficult if a source exhibits complex morphology. For example, high-resolution Chandra data of bright Galactic supernova remnants (Cas A, Tycho, etc.) allow extractions of high-quality spectra from tens to hundreds of thousands of regions, providing a rich laboratory for localizing emission from processes such as thermal line emission, bremsstrahlung, and synchrotron. This soft-band analysis informs our understanding of the typically nonthermal hard X-ray emission observed with other lower-resolution instruments. The analysis is complicated by both projection effects and the presence of multiple emission mechanisms in some regions. In particular, identifying regions with significant nonthermal emission is critical to understanding acceleration processes in remnants. Fitting tens of thousands of regions with complex, multi-component models can be time-consuming and involve so many free parameters that little constraint can be placed on the values. Previous work by Stage & Allen ('06, '07, '11) on Cas A used a technique to identify regions dominated by the highest-cutoff synchrotron emission by fitting with a simple thermal emission model and identifying regions with anomalously high apparent temperatures (caused by presence of the high-energy tail of the synchrotron emission component). Here, we present a similar technique. We verify the previous approach and, more importantly, expand it to include a method to identify regions containing strong lower-cutoff synchrotron radiation. Such regions might be associated with the reverse-shock of a supernova. Identification of a nonthermal electron population in the interior of an SNR would have significant implications for the energy balance and emission mechanisms producing the high-energy (> 10 keV) spectrum.

  3. Optimization Scheduling Model for Wind-thermal Power System Considering the Dynamic penalty factor

    Science.gov (United States)

    PENG, Siyu; LUO, Jianchun; WANG, Yunyu; YANG, Jun; RAN, Hong; PENG, Xiaodong; HUANG, Ming; LIU, Wanyu

    2018-03-01

    In this paper, a new dynamic economic dispatch model for power system is presented.Objective function of the proposed model presents a major novelty in the dynamic economic dispatch including wind farm: introduced the “Dynamic penalty factor”, This factor could be computed by using fuzzy logic considering both the variable nature of active wind power and power demand, and it could change the wind curtailment cost according to the different state of the power system. Case studies were carried out on the IEEE30 system. Results show that the proposed optimization model could mitigate the wind curtailment and the total cost effectively, demonstrate the validity and effectiveness of the proposed model.

  4. Operation and thermal loading of three-level Neutral-Point-Clamped wind power converter under various grid faults

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Liserre, Marco

    2012-01-01

    In order to fulfill the continuous growing grid-side demands, the full-scale power converters are becoming more and more popular in the wind power application. Nevertheless, the more severe loading of the power semiconductor devices in the full-scale power converters, especially during Low Voltage...... Ride Through (LVRT) operation under grid faults, may compromise the reliability of the system and consequently further increase its cost. In this paper, the impact of various grid faults on a three-level Neutral-Point-Clamped (3L-NPC) grid-converter in terms of thermal loading of power semiconductor...

  5. A modified gravitational search algorithm based on a non-dominated sorting genetic approach for hydro-thermal-wind economic emission dispatching

    International Nuclear Information System (INIS)

    Chen, Fang; Zhou, Jianzhong; Wang, Chao; Li, Chunlong; Lu, Peng

    2017-01-01

    Wind power is a type of clean and renewable energy, and reasonable utilization of wind power is beneficial to environmental protection and economic development. Therefore, a short-term hydro-thermal-wind economic emission dispatching (SHTW-EED) problem is presented in this paper. The proposed problem aims to distribute the load among hydro, thermal and wind power units to simultaneously minimize economic cost and pollutant emission. To solve the SHTW-EED problem with complex constraints, a modified gravitational search algorithm based on the non-dominated sorting genetic algorithm-III (MGSA-NSGA-III) is proposed. In the proposed MGSA-NSGA-III, a non-dominated sorting approach, reference-point based selection mechanism and chaotic mutation strategy are applied to improve the evolutionary process of the original gravitational search algorithm (GSA) and maintain the distribution diversity of Pareto optimal solutions. Moreover, a parallel computing strategy is introduced to improve the computational efficiency. Finally, the proposed MGSA-NSGA-III is applied to a typical hydro-thermal-wind system to verify its feasibility and effectiveness. The simulation results indicate that the proposed algorithm can obtain low economic cost and small pollutant emission when dealing with the SHTW-EED problem. - Highlights: • A hybrid algorithm is proposed to handle hydro-thermal-wind power dispatching. • Several improvement strategies are applied to the algorithm. • A parallel computing strategy is applied to improve computational efficiency. • Two cases are analyzed to verify the efficiency of the optimize mode.

  6. Low cycle thermal fatigue testing of beryllium grades for ITER plasma facing components

    International Nuclear Information System (INIS)

    Watson, R.D.; Youchison, D.L.; Dombrowski, D.E.; Guiniatouline, R.N.; Kupriynov, I.B.

    1996-01-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium, which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 kW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ''spike'' of 750 degree C for each pass of the beam. Large thermal stresses in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m 2 . Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S- 65H, S-200F, S-200F-H, SR-200, I-400, extruded high purity, HIP'd spherical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe 12 . Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be (SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis

  7. Consideration of a design optimization method for advanced nuclear power plant thermal-hydraulic components

    International Nuclear Information System (INIS)

    Ridluan, Artit; Tokuhiro, Akira; Manic, Milos; Patterson, Michael; Danchus, William

    2009-01-01

    In order to meet the global energy demand and also mitigate climate change, we anticipate a significant resurgence of nuclear power in the next 50 years. Globally, Generation III plants (ABWR) have been built; Gen' III+ plants (EPR, AP1000 others) are anticipated in the near term. The U.S. DOE and Japan are respectively pursuing the NGNP and MSFR. There is renewed interest in closing the fuel cycle and gradually introducing the fast reactor into the LWR-dominated global fleet. In order to meet Generation IV criteria, i.e. thermal efficiency, inherent safety, proliferation resistance and economic competitiveness, plant and energy conversion system engineering design have to increasingly meet strict design criteria with reduced margin for reliable safety and uncertainties. Here, we considered a design optimization approach using an anticipated NGNP thermal system component as a Case Study. A systematic, efficient methodology is needed to reduce time consuming trial-and-error and computationally-intensive analyses. We thus developed a design optimization method linking three elements; that is, benchmarked CFD used as a 'design tool', artificial neural networks (ANN) to accommodate non-linear system behavior and enhancement of the 'design space', and finally, response surface methodology (RSM) to optimize the design solution with targeted constraints. The paper presents the methodology including guiding principles, an integration of CFD into design theory and practice, consideration of system non-linearities (such as fluctuating operating conditions) and systematic enhancement of the design space via application of ANN, and a stochastic optimization approach (RSM) with targeted constraints. Results from a Case Study optimizing the printed circuit heat exchanger for the NGNP energy conversion system will be presented. (author)

  8. The effect of winding and core support material on the thermal gain dependence of a fluxgate magnetometer sensor

    Science.gov (United States)

    Miles, David M.; Mann, Ian R.; Kale, Andy; Milling, David K.; Narod, Barry B.; Bennest, John R.; Barona, David; Unsworth, Martyn J.

    2017-10-01

    Fluxgate magnetometers are an important tool in geophysics and space physics but are typically sensitive to variations in sensor temperature. Changes in instrumental gain with temperature, thermal gain dependence, are thought to be predominantly due to changes in the geometry of the wire coils that sense the magnetic field and/or provide magnetic feedback. Scientific fluxgate magnetometers typically employ some form of temperature compensation and support and constrain wire sense coils with bobbins constructed from materials such as MACOR machinable ceramic (Corning Inc.) which are selected for their ultra-low thermal deformation rather than for robustness, cost, or ease of manufacturing. We present laboratory results comparing the performance of six geometrically and electrically matched fluxgate sensors in which the material used to support the windings and for the base of the sensor is varied. We use a novel, low-cost thermal calibration procedure based on a controlled sinusoidal magnetic source and quantitative spectral analysis to measure the thermal gain dependence of fluxgate magnetometer sensors at the ppm°C-1 level in a typical magnetically noisy university laboratory environment. We compare the thermal gain dependence of sensors built from MACOR, polyetheretherketone (PEEK) engineering plastic (virgin, 30 % glass filled and 30 % carbon filled), and acetal to examine the trade between the thermal properties of the material, the impact on the thermal gain dependence of the fluxgate, and the cost and ease of manufacture. We find that thermal gain dependence of the sensor varies as one half of the material properties of the bobbin supporting the wire sense coils rather than being directly related as has been historically thought. An experimental sensor constructed from 30 % glass-filled PEEK (21.6 ppm°C-1) had a thermal gain dependence within 5 ppm°C-1 of a traditional sensor constructed from MACOR ceramic (8.1 ppm°C-1). If a modest increase in thermal

  9. The effect of winding and core support material on the thermal gain dependence of a fluxgate magnetometer sensor

    Directory of Open Access Journals (Sweden)

    D. M. Miles

    2017-10-01

    Full Text Available Fluxgate magnetometers are an important tool in geophysics and space physics but are typically sensitive to variations in sensor temperature. Changes in instrumental gain with temperature, thermal gain dependence, are thought to be predominantly due to changes in the geometry of the wire coils that sense the magnetic field and/or provide magnetic feedback. Scientific fluxgate magnetometers typically employ some form of temperature compensation and support and constrain wire sense coils with bobbins constructed from materials such as MACOR machinable ceramic (Corning Inc. which are selected for their ultra-low thermal deformation rather than for robustness, cost, or ease of manufacturing. We present laboratory results comparing the performance of six geometrically and electrically matched fluxgate sensors in which the material used to support the windings and for the base of the sensor is varied. We use a novel, low-cost thermal calibration procedure based on a controlled sinusoidal magnetic source and quantitative spectral analysis to measure the thermal gain dependence of fluxgate magnetometer sensors at the ppm°C−1 level in a typical magnetically noisy university laboratory environment. We compare the thermal gain dependence of sensors built from MACOR, polyetheretherketone (PEEK engineering plastic (virgin, 30 % glass filled and 30 % carbon filled, and acetal to examine the trade between the thermal properties of the material, the impact on the thermal gain dependence of the fluxgate, and the cost and ease of manufacture. We find that thermal gain dependence of the sensor varies as one half of the material properties of the bobbin supporting the wire sense coils rather than being directly related as has been historically thought. An experimental sensor constructed from 30 % glass-filled PEEK (21.6 ppm°C−1 had a thermal gain dependence within 5 ppm°C−1 of a traditional sensor constructed from MACOR ceramic (8.1

  10. Interplanetary ions during an energetic storm particle event - The distribution function from solar wind thermal energies to 1.6 MeV

    Science.gov (United States)

    Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Paschmann, G.; Sckopke, N.; Hynds, R. J.

    1981-01-01

    An ion velocity distribution function of the postshock phase of an energetic storm particle (ESP) event is obtained from data from the ISEE 2 and ISEE 3 experiments. The distribution function is roughly isotropic in the solar wind frame from solar wind thermal energies to 1.6 MeV. The ESP event studied (8/27/78) is superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. The observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with shock wave disturbance. The acceleration mechanism is sufficiently efficient so that approximately 1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approximately 290 eV cubic centimeters.

  11. A thermal lens response of the two components liquid in a thin Him cell

    International Nuclear Information System (INIS)

    Ivanov, V I; Ivanova, G D

    2016-01-01

    It was proposed a new thermal lens scheme with a thin layer of cell thickness which is significantly less than the size of the beam. As a result the exact analytical expression for the thermal lens response is achieved, taking into account the thermal lens in the windows of the cell. (paper)

  12. A review of phase change materials for vehicle component thermal buffering

    International Nuclear Information System (INIS)

    Jankowski, Nicholas R.; McCluskey, F. Patrick

    2014-01-01

    Highlights: • A review of latent heat thermal energy storage for vehicle thermal load leveling. • Examined vehicle applications with transient thermal profiles from 0 to 800 °C. • >700 materials from over a dozen material classes examined for the applications. • Recommendations made for future application of high power density materials. - Abstract: The use of latent heat thermal energy storage for thermally buffering vehicle systems is reviewed. Vehicle systems with transient thermal profiles are classified according to operating temperatures in the range of 0–800 °C. Thermal conditions of those applications are examined relative to their impact on thermal buffer requirements, and prior phase change thermal enhancement studies for these applications are discussed. In addition a comprehensive overview of phase change materials covering the relevant operating range is given, including selection criteria and a detailed list of over 700 candidate materials from a number of material classes. Promising material candidates are identified for each vehicle system based on system temperature, specific and volumetric latent heat, and thermal conductivity. Based on the results of previous thermal load leveling efforts, there is the potential for making significant improvements in both emissions reduction and overall energy efficiency by further exploration of PCM thermal buffering on vehicles. Recommendations are made for further material characterization, with focus on the need for improved data for metallic and solid-state phase change materials for high energy density applications

  13. Interplanetary ions during an energetic storm particle event: The distribution function from solar wind thermal energies to 1.6 MeV

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.; Zwickl, R.D.; Paschmann, G.; Sckopke, N.; Hynds, R.J.

    1981-01-01

    Data from the Los Alamos Scientific Laboratory/Max-Planck-Institut fast plasma experiment on Isee 2 have been combined with data from the European Space Agency/Imperial College/Space Research Laboratory low-energy proton experiment on Isee 3 to obtain for the first time an ion velocity distribution function f(v) extending from solar wind energies (-1 keV) to 1.6 MeV during the postshock phase of an energetic storm particle (ESP) event. This study reveals that f(v) of the ESP population is roughly isotropic in the solar wind frame from solar wind thermal energies out to 1.6 MeV. Emerging smoothly out of the solar wind thermal distribution, the ESP f(v) initially falls with increasing energy as E/sup -2.4/ in the solar wind frame. Above about 40 keV no single power law exponent adequately describes the energy dependence of f(v) in the solar wind frame. Above approx.200 keV in both the spacecraft frame and the solar wind frame, f(v) can be described by an exponential in speed (f(v)proportionale/sup -v/v//sub o/) with v/sub o/ = 1.05 x 10 8 cm s -1 . The ESP event studied (August 27, 1978) was superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. Our observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with the shock wave disturbance. The acceleration mechanism is sufficiently efficient that approx.1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approx.290 eV cm -3

  14. Application of the similarity theory to the generalization of experimental results for thermal physic properties of raw cotton and its components

    International Nuclear Information System (INIS)

    Salakhutdinov, M.I.; Mukhiddinov, K.S.; Marupov, R.

    2006-01-01

    In the paper carried out generalization of experimental results on specific isobaric thermal capacity, heat conductivity and thermal diffusivity coefficients of raw cotton of sort 9326-B and its components on the basis of similarity theory

  15. Improving model biases in an ESM with an isopycnic ocean component by accounting for wind work on oceanic near-inertial motions.

    Science.gov (United States)

    de Wet, P. D.; Bentsen, M.; Bethke, I.

    2016-02-01

    It is well-known that, when comparing climatological parameters such as ocean temperature and salinity to the output of an Earth System Model (ESM), the model exhibits biases. In ESMs with an isopycnic ocean component, such as NorESM, insufficient vertical mixing is thought to be one of the causes of such differences between observational and model data. However, enhancing the vertical mixing of the model's ocean component not only requires increasing the energy input, but also sound physical reasoning for doing so. Various authors have shown that the action of atmospheric winds on the ocean's surface is a major source of energy input into the upper ocean. However, due to model and computational constraints, oceanic processes linked to surface winds are incompletely accounted for. Consequently, despite significantly contributing to the energy required to maintain ocean stratification, most ESMs do not directly make provision for this energy. In this study we investigate the implementation of a routine in which the energy from work done on oceanic near-inertial motions is calculated in an offline slab model. The slab model, which has been well-documented in the literature, runs parallel to but independently from the ESM's ocean component. It receives wind fields with a frequency higher than that of the coupling frequency, allowing it to capture the fluctuations in the winds on shorter time scales. The additional energy calculated thus is then passed to the ocean component, avoiding the need for increased coupling between the components of the ESM. Results show localised reduction in, amongst others, the salinity and temperature biases of NorESM, confirming model sensitivity to wind-forcing and points to the need for better representation of surface processes in ESMs.

  16. Analysis of ambient SO2 concentrations and winds in the complex surrounding of a thermal power plant

    International Nuclear Information System (INIS)

    Mlakar, P.

    2004-01-01

    SO 2 pollution is still a significant problem in Slovenia, especially around large thermal power plants (TPPs), like the one at Sostanj. The Sostanj TPP is the exclusive source of SO 2 in the area and is therefore a perfect example for air pollution studies. In order to understand air pollution around the Sostanj TPP in detail, some analyses of emissions and ambient concentrations of SO 2 at six automated monitoring stations in the surrounding of the TPP were made. The data base from 1991 to 1993 was used when there were no desulfurization plants in operations. Statistical analyses of the influence of the emissions from the three TPP stacks at different measuring points were made. The analyses prove that the smallest stack (100 m) mainly pollutes villages and towns near the TPP within a radius of a few kilometers. The medium stack's (150 m) influence is noticed at shorter as well as at longer distances up to more than ten kilometers. The highest stack (230 m) pollutes mainly at longer distances, where the plume reaches the higher hills. Detailed analyses of ambient SO 2 concentrations were made. They show the temporal and spatial distribution of different classes of SO 2 concentrations from very low to alarming values. These analyses show that pollution patterns at a particular station remain the same if observed on a yearly basis, but can vary very much if observed on a monthly basis, mainly because of different weather patterns. Therefore the winds in the basin (as the most important feature influencing air pollution dispersion) were further analysed in detail to find clusters of similar patterns. For cluster analysis of ground-level winds patterns in the basin around the Sostanj Thermal Power Plant, the Kohonen neural network and Leaders' method were used. Furthermore the dependence of ambient SO 2 concentrations on the clusters obtained was analysed. The results proved that effective cluster analysis can be a useful tool for compressing a huge wind data base in

  17. Analysis of ambient SO 2 concentrations and winds in the complex surroundings of a thermal power plant

    Science.gov (United States)

    Mlakar, P.

    2004-11-01

    SO2 pollution is still a significant problem in Slovenia, especially around large thermal power plants (TPPs), like the one at Šoštanj. The Šoštanj TPP is the exclusive source of SO2 in the area and is therefore a perfect example for air pollution studies. In order to understand air pollution around the Šoštanj TPP in detail, some analyses of emissions and ambient concentrations of SO2 at six automated monitoring stations in the surroundings of the TPP were made. The data base from 1991 to 1993 was used when there were no desulfurisation plants in operation. Statistical analyses of the influence of the emissions from the three TPP stacks at different measuring points were made. The analyses prove that the smallest stack (100 m) mainly pollutes villages and towns near the TPP within a radius of a few kilometres. The medium stack's (150 m) influence is noticed at shorter as well as at longer distances up to more than ten kilometres. The highest stack (230 m) pollutes mainly at longer distances, where the plume reaches the higher hills. Detailed analyses of ambient SO2 concentrations were made. They show the temporal and spatial distribution of different classes of SO2 concentrations from very low to alarming values. These analyses show that pollution patterns at a particular station remain the same if observed on a yearly basis, but can vary very much if observed on a monthly basis, mainly because of different weather patterns. Therefore the winds in the basin (as the most important feature influencing air pollution dispersion) were further analysed in detail to find clusters of similar patterns. For cluster analysis of ground-level winds patterns in the basin around the Šoštanj Thermal Power Plant, the Kohonen neural network and Leaders' method were used. Furthermore, the dependence of ambient SO2 concentrations on the clusters obtained was analysed. The results proved that effective cluster analysis can be a useful tool for compressing a huge wind data base

  18. Hypervelocity Wind Tunnel No. 9 Mach 7 Thermal Structural Facility Verification and Calibration

    National Research Council Canada - National Science Library

    Lafferty, John

    1996-01-01

    This report summarizes the verification and calibration of the new Mach 7 Thermal Structural Facility located at the White Oak, Maryland, site of the Dahlgren Division, Naval Surface Warfare Center...

  19. A GENERALIZED TWO-COMPONENT MODEL OF SOLAR WIND TURBULENCE AND AB INITIO DIFFUSION MEAN-FREE PATHS AND DRIFT LENGTHSCALES OF COSMIC RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Wiengarten, T.; Fichtner, H.; Kleimann, J.; Scherer, K. [Institut für Theoretische Physik IV, Ruhr-Universität Bochum (Germany); Oughton, S. [Department of Mathematics, University of Waikato, Hamilton 3240 (New Zealand); Engelbrecht, N. E. [Center for Space Research, North-West University, Potchefstroom 2520 (South Africa)

    2016-12-10

    We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results from the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.

  20. A GENERALIZED TWO-COMPONENT MODEL OF SOLAR WIND TURBULENCE AND AB INITIO DIFFUSION MEAN-FREE PATHS AND DRIFT LENGTHSCALES OF COSMIC RAYS

    International Nuclear Information System (INIS)

    Wiengarten, T.; Fichtner, H.; Kleimann, J.; Scherer, K.; Oughton, S.; Engelbrecht, N. E.

    2016-01-01

    We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results from the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.

  1. Experimental and numerical simulation of the behaviour of building components under alternating thermal stresses

    International Nuclear Information System (INIS)

    Stegmeyer, R.

    1985-01-01

    This publication is intended to clear up to what extent the results from laboratory experiments on components thermally stressed on several axes can be transferred. The turbine shaft was used for this purpose and was geometrically simulated on a reduced scale by means of a test body (model). The deviations of shape due to the design, such as shaft shoulders, grooves etc. were simulated by notches and the position of the expected crack was defined in this way. A 1% Cr steel was selected as the material, for which many results of experiments on laboratory samples were available. The turbine shaft steel 28 CrMoNiV 4 9 was used. With a specially designed experimental rig, it was possible to expose the model to a changing temperature stress, as it occurs during starting and shutdown of turbines. Different notch radii made it possible to vary the strains at the bottom of the notches due to temperature gradients. After developing special travel transducers, the strain behaviour of the sample could be determined relative to the temperature. The crack characteristics obtained were compared with the characteristics of single axis experiments at constant temperature. Fractographic examination of fatigue cracks made it possible to determine the growth of cracks per load change from the existing vibration strip (da/dN). The stress intensity factor was derived from a modified theoretical expression and the characteristic designed from it was compared with crack growth measurements on CT samples. Accompanying numerical and empirical processes (according to Neuber) were examined by direct comparison of the measured strains with the calculated or estimated strains. Finally, regulations such as the ASME code and TRD 301 were applied to the model experiments and evaluated. (orig.) [de

  2. Design and Evaluation of a Protection Relay for a Wind Generator Based on the Positive- and Negative-Sequence Fault Components

    DEFF Research Database (Denmark)

    Zheng, T. Y.; Cha, Seung-Tae; Crossley, P. A.

    2013-01-01

    To avoid undesirable disconnection of healthy wind generators (WGs) or a wind power plant, a WG protection relay should discriminate among faults, so that it can operate instantaneously for WG, connected feeder or connection bus faults, it can operate after a delay for inter-tie or grid faults......, and it can avoid operating for parallel WG or adjacent feeder faults. A WG protection relay based on the positive- and negativesequence fault components is proposed in the paper. At stage 1, the proposed relay uses the magnitude of the positive-sequence component in the fault current to distinguish faults...... at a parallel WG connected to the same feeder or at an adjacent feeder, from other faults at a connected feeder, an inter-tie, or a grid. At stage 2, the fault type is first determined using the relationships between the positive- and negative-sequence fault components. Then, the relay differentiates between...

  3. Performance of tungsten-based materials and components under ITER and DEMO relevant steady-state thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, Guillaume Henri

    2011-07-01

    In nuclear fusion devices the surfaces directly facing the plasma are irradiated with high energy fluxes. The most intense loads are deposited on the divertor located at the bottom of the plasma chamber, which has to withstand continuous heat loads with a power density of several MW . m{sup -2} as well as transient events. These are much shorter (in the millisecond and sub-millisecond regime) but deposit a higher power densities of a few GW . m{sup -2}. The search for materials that can survive to those severe loading conditions led to the choice of tungsten which possesses advantageous attributes such as a high melting point, high thermal conductivity, low thermal expansion and an acceptable activation rate. These properties made it an attractive and promising candidate as armor material for divertors of future fusion devices such as ITER and DEMO. For the DEMO divertor, conceptual studies on helium-cooled tungsten plasma-facing components were performed. The concept was realized and tested under DEMO specific cyclic thermal loads. The examination of the plasma-facing components by microstructural analyses before and after thermal loading enabled to determine the mechanisms for components failure. Among others, it clearly showed the impact of the tungsten grade and the thermal stress induced crack formation on the performance of the armor material and in general of the plasma-facing component under high heat loads. A tungsten qualification program was launched to study the behaviour of various tungsten grades, in particular the crack formation, under fusion relevant steady-state thermal loads. In total, seven commercially available materials from two industrial suppliers were investigated. As the material's thermal response is strongly related to its microstructure, this program comprised different material geometries and manufacturing technologies. It also included the utilization of an actively cooled specimen holder which has been designed to perform

  4. Performance of tungsten-based materials and components under ITER and DEMO relevant steady-state thermal loads

    International Nuclear Information System (INIS)

    Ritz, Guillaume Henri

    2011-01-01

    In nuclear fusion devices the surfaces directly facing the plasma are irradiated with high energy fluxes. The most intense loads are deposited on the divertor located at the bottom of the plasma chamber, which has to withstand continuous heat loads with a power density of several MW . m -2 as well as transient events. These are much shorter (in the millisecond and sub-millisecond regime) but deposit a higher power densities of a few GW . m -2 . The search for materials that can survive to those severe loading conditions led to the choice of tungsten which possesses advantageous attributes such as a high melting point, high thermal conductivity, low thermal expansion and an acceptable activation rate. These properties made it an attractive and promising candidate as armor material for divertors of future fusion devices such as ITER and DEMO. For the DEMO divertor, conceptual studies on helium-cooled tungsten plasma-facing components were performed. The concept was realized and tested under DEMO specific cyclic thermal loads. The examination of the plasma-facing components by microstructural analyses before and after thermal loading enabled to determine the mechanisms for components failure. Among others, it clearly showed the impact of the tungsten grade and the thermal stress induced crack formation on the performance of the armor material and in general of the plasma-facing component under high heat loads. A tungsten qualification program was launched to study the behaviour of various tungsten grades, in particular the crack formation, under fusion relevant steady-state thermal loads. In total, seven commercially available materials from two industrial suppliers were investigated. As the material's thermal response is strongly related to its microstructure, this program comprised different material geometries and manufacturing technologies. It also included the utilization of an actively cooled specimen holder which has been designed to perform sophisticated

  5. Thermal inertia of eclipsing binary asteroids : the role of component shape

    NARCIS (Netherlands)

    Mueller, Michael; van de Weijgaert, Marlies

    2015-01-01

    Thermal inertia controls the temperature distribution on asteroid surfaces. This is of crucial importance to the Yarkovsky effect and for the planning of spacecraft operations on or near the surface. Additionally, thermal inertia is a sensitive indicator for regolith structure.A uniquely direct way

  6. A Technique for Mitigating Thermal Stress and Extending Life Cycle of Power Electronic Converters Used for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Canras Batunlu

    2015-11-01

    Full Text Available Over the last two decades, various models have been developed to assess and improve the reliability of power electronic conversion systems (PECs with a focus on those used for wind turbines. However, only few studies have dealt with mitigating the PECs thermo-mechanical effects on their reliability taking into account variations in wind characteristics. This work critically investigates this issue and attempts to offer a mitigating technique by, first, developing realistic full scale (FS and partial scale (PS induction generator models combined with two level back-to-back PECs. Subsequently, deriving a driving algorithm, which reduces PEC’s operating temperature by controlling its switching patterns. The developed switching procedure ensures minimum temperature fluctuations by adapting the variable DC link and system’s frequency of operation. It was found for both FS and PS topologies, that the generator side converters have higher mean junction temperatures where the grid side ones have more fluctuations on their thermal profile. The FS and PS cycling temperatures were reduced by 12 °C and 5 °C, respectively. Moreover, this led to a significant improvement in stress; approximately 27 MPa stress reduction for the FS induction generator PEC.

  7. CFD Analysis for Assessing the Effect of Wind on the Thermal Control of the Mars Science Laboratory Curiosity Rover

    Science.gov (United States)

    Bhandari, Pradeep; Anderson, Kevin

    2013-01-01

    The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, requires a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to 50 C range. The RHRS harnesses some of the waste heat generated from the rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 W of electrical power while generating waste heat equivalent to approximately 2000 W. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer. Winds on Mars can be as fast as 15 m/s for extended periods. They can lead to significant heat loss from the MMRTG and the hot plates due to convective heat pick up from these surfaces. Estimation of this convective heat loss cannot be accurately and adequately achieved by simple textbook based calculations because of the very complicated flow fields around these surfaces, which are a function of wind direction and speed. Accurate calculations necessitated the employment of sophisticated Computational Fluid Dynamics (CFD) computer codes. This paper describes the methodology and results of these CFD calculations. Additionally, these results are compared to simple textbook based calculations that served as benchmarks and sanity checks for them. And finally, the overall RHRS system performance predictions will be shared to show how these results affected the overall rover thermal performance.

  8. Large-scale Wind Power integration in a Hydro-Thermal Power Market

    OpenAIRE

    Trøtscher, Thomas

    2007-01-01

    This master thesis describes a quadratic programming model used to calculate the spot prices in an efficient multi-area power market. The model has been adapted to Northern Europe, with focus on Denmark West and the integration of large quantities of wind power. In the model, demand and supply of electricity are equated, at an hourly time resolution, to find the spot price in each area. Historical load values are used to represent demand which is assumed to be completely inelastic. Supply i...

  9. Multi-Sensing system for outdoor thermal monitoring: Application to large scale civil engineering components

    Science.gov (United States)

    Crinière, Antoine; Dumoulin, Jean; Manceau, Jean-Luc; Perez, Laetitia; Bourquin, Frederic

    2014-05-01

    and a backup system. All the components of the system are connected to the IrLaW software through an IP network. The monitoring system is fully autonomous since August 2013 and provides data at 0. Hz sampling frequency. First results obtained by data post-processing is addressed. Finally, discussion on experimental feedback and main outcomes of several month of measurement in outdoor conditions will be presented. REFERENCES [1]Proto M. et al., , 2010. Transport infrastructure surveillance and monitoring by electromagnetic sensing: the ISTIMES project. Sensors, 10,10620-10639, doi: 10.3390/s101210620. [2]J. Dumoulin, R. Averty ".Development of an infrared system coupled with a weather station for real time atmospheric corrections using GPU computing: Application to bridge monitoring", in Proc of 11th International Conference on Quantitative InfraRed Thermography, Naples Italy, 2012. [3]J. Dumoulin, A. Crinière, R. Averty ," Detection and thermal characterization of the inner structure of the "Musmeci" bridge deck by infrared thermography monitoring ",Journal of Geophysics and Engineering, Volume 10, Number 2, November 2013, IOP Science, doi:10.1088/1742-2132/10/6/064003. [4]I. Catapano, R. Di Napoli, F. Soldovieri1, M. Bavusi, A. Loperte and J. Dumoulin, "Structural monitoring via microwave tomography-enhanced GPR: the Montagnole test site", Journal of Geophysics and Engineering, Volume 9, Number 4, August 2012, pp 100-107, IOP Science, doi:10.1088/1742-2132/9/4/S100.

  10. Estimating the maritime component of aerosol optical depth and its dependency on surface wind speed using satellite data

    Directory of Open Access Journals (Sweden)

    Y. Lehahn

    2010-07-01

    Full Text Available Six years (2003–2008 of satellite measurements of aerosol parameters from the Moderate Resolution Imaging Spectroradiometer (MODIS and surface wind speeds from Quick Scatterometer (QuikSCAT, the Advanced Microwave Scanning Radiometer (AMSR-E, and the Special Sensor Microwave Imager (SSM/I, are used to provide a comprehensive perspective on the link between surface wind speed and marine aerosol optical depth over tropical and subtropical oceanic regions. A systematic comparison between the satellite derived fields in these regions allows to: (i separate the relative contribution of wind-induced marine aerosol to the aerosol optical depth; (ii extract an empirical linear equation linking coarse marine aerosol optical depth and wind intensity; and (iii identify a time scale for correlating marine aerosol optical depth and surface wind speed. The contribution of wind induced marine aerosol to aerosol optical depth is found to be dominated by the coarse mode elements. When wind intensity exceeds 4 m/s, coarse marine aerosol optical depth is linearly correlated with the surface wind speed, with a remarkably consistent slope of 0.009±0.002 s/m. A detailed time scale analysis shows that the linear correlation between the fields is well kept within a 12 h time frame, while sharply decreasing when the time lag between measurements is longer. The background aerosol optical depth, associated with aerosols that are not produced in-situ through wind driven processes, can be used for estimating the contributions of terrestrial and biogenic marine aerosol to over-ocean satellite retrievals of aerosol optical depth.

  11. Thermal Behavior of Doubly-Fed Induction Generator Wind Turbine System during Balanced Grid Fault

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens

    2014-01-01

    Ride-through capabilities of the doubly-fed induction generator (DFIG) during grid fault have been studied a lot. However, the thermal performance of the power device during this transient period is seldom investigated. In this paper, the dynamic model for the DFIG and the influence of the rotor...

  12. Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components.

    Science.gov (United States)

    Yu, Jie; Sun, Lushi; Wang, Ben; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong

    2016-01-01

    Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover

  13. Experimental Study of Thermal Crisis in Connection with Tokamak Reactor High Heat Flux Components

    International Nuclear Information System (INIS)

    Gallo, D.; Giardina, M.; Castiglia, F.; Celata, G.P.; Mariani, A.; Zummo, G.; Cumo, M.

    2000-01-01

    The results of an experimental research on high heat flux thermal crisis in forced convective subcooled water flow, under operative conditions of interest to the thermal-hydraulic design of TOKAMAK fusion reactors, are here reported. These experiments, carried out in the framework of a collaboration between the Nuclear Engineering Department of Palermo University and the National Institute of Thermal - Fluid Dynamics of the ENEA - Casaccia (Rome), were performed on the STAF (Scambio Termico Alti Flussi) water loop and consisted, essentially, in a high speed photographic study which enabled focusing several information on bubble characteristics and flow patterns taking place during the burnout phenomenology

  14. Hydrogen Wave Heater for Nuclear Thermal Propulsion Component Testing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified Nuclear Thermal Propulsion (NTP) as an approach that can provide the fastest trip times to Mars and as the preferred concept for human space...

  15. Hydrogen Wave Heater for Nuclear Thermal Propulsion Component Testing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified Nuclear Thermal Propulsion (NTP) as a propulsion concept which could provide the fastest trip times to Mars and as the preferred concept for...

  16. Thermal effects of metamorphic reactions in a three-component slab

    DEFF Research Database (Denmark)

    Chemia, Zurab; Dolejš, David; Steinle-Neumann, Gerd

    2010-01-01

    Thermal evolution of a subducting crust is of primary importance for understanding physical properties, phase transformations, fluid migration and melting regimes at convergent plate boundaries. Various factors influencing the thermal structure of a subduction zone have been considered previously......), and moderately serpentinized harzburgite (SHB). These layers are examined over the range of pressure-temperature conditions of interest by computing metamorphic phase diagrams and retrieving whole-rock thermodynamic properties. Our results suggest that metamorphic reactions consume a significant amount of slab...

  17. Spiral field inhibition of thermal conduction in two-fluid solar wind models

    International Nuclear Information System (INIS)

    Nerney, S.; Barnes, A.

    1978-01-01

    The two-fluid solar wind equations, including inhibition of heat conduction by the spiral magnetic field, have been solved for steady radial flow, and the results are compared with those of our previous study of two-fluid models with straight interplanetary field lines. The main effects of the spiral field conduction cutoff are to bottle up electron heat inside 1 AU and to produce adiabatic electron (an proton) temperature profiles at large heliocentric distances. Otherwise, the spiral field models are nearly identical with straight field models with the same temperatures and velocity at 1 AU, except for models associated with very low coronal base densities (n 0 approx.10 6 cm -3 at 1R/sub s/). Low base density spiral models give a nearly isothermal electron temperature profile over 50--100 AU together with high velocities and temperatures at 1 AU. In general, high-velocity models do not agree well with observed high-velocity streams: lower-velocity states can be represented reasonably well at 1 AU, but only for very high proton temperatures (T/sub p/approx.2T/sub e/) at the coronal base. For spherically symmetric base conditions the straight field and spiral field models can be regarded, in lowest order, as approximations to the polar and equatorial three-dimensional flows, respectively. This viewpoint suggests a pole to equator electron temperature gradient in the region 1-10 AU, which would be associated with a meridional velocity of approx.0.5-1.0 km/s, diverging away from the equatorial plane. The formalism developed in this paper shows rather stringent limits to the mass loss rate for conductively driven winds and, in particular, illustrates that putative T Tauri outflows could not be conductively driven

  18. Parametric Analysis to Study the Influence of Aerogel-Based Renders' Components on Thermal and Mechanical Performance.

    Science.gov (United States)

    Ximenes, Sofia; Silva, Ana; Soares, António; Flores-Colen, Inês; de Brito, Jorge

    2016-05-04

    Statistical models using multiple linear regression are some of the most widely used methods to study the influence of independent variables in a given phenomenon. This study's objective is to understand the influence of the various components of aerogel-based renders on their thermal and mechanical performance, namely cement (three types), fly ash, aerial lime, silica sand, expanded clay, type of aerogel, expanded cork granules, expanded perlite, air entrainers, resins (two types), and rheological agent. The statistical analysis was performed using SPSS (Statistical Package for Social Sciences), based on 85 mortar mixes produced in the laboratory and on their values of thermal conductivity and compressive strength obtained using tests in small-scale samples. The results showed that aerial lime assumes the main role in improving the thermal conductivity of the mortars. Aerogel type, fly ash, expanded perlite and air entrainers are also relevant components for a good thermal conductivity. Expanded clay can improve the mechanical behavior and aerogel has the opposite effect.

  19. Parametric Analysis to Study the Influence of Aerogel-Based Renders’ Components on Thermal and Mechanical Performance

    Directory of Open Access Journals (Sweden)

    Sofia Ximenes

    2016-05-01

    Full Text Available Statistical models using multiple linear regression are some of the most widely used methods to study the influence of independent variables in a given phenomenon. This study’s objective is to understand the influence of the various components of aerogel-based renders on their thermal and mechanical performance, namely cement (three types, fly ash, aerial lime, silica sand, expanded clay, type of aerogel, expanded cork granules, expanded perlite, air entrainers, resins (two types, and rheological agent. The statistical analysis was performed using SPSS (Statistical Package for Social Sciences, based on 85 mortar mixes produced in the laboratory and on their values of thermal conductivity and compressive strength obtained using tests in small-scale samples. The results showed that aerial lime assumes the main role in improving the thermal conductivity of the mortars. Aerogel type, fly ash, expanded perlite and air entrainers are also relevant components for a good thermal conductivity. Expanded clay can improve the mechanical behavior and aerogel has the opposite effect.

  20. The Thermal-hydraulic Analysis for the Aging Effect of the Component in CANDU-6 Reactor

    International Nuclear Information System (INIS)

    Bae, Jun Ho; Jung, Jong Yeob

    2014-01-01

    CANDU reactor consists of a lot of components, including pressure tube, reactor pump, steam generator, feeder pipe, and so on. These components become to have the aging characteristics as the reactor operates for a long time. The aging phenomena of these components lead to the change of operating parameters, and it finally results to the decrease of the operating safety margin. Actually, due to the aging characteristics of components, CANDU reactor power plant has the operating license for the duration of 30 years and the plant regularly check the plant operating state in the overhaul period. As the reactor experiences the aging, the reactor operators should reduce the reactor power level in order to keep the minimum safety margin, and it results to the deficit of economical profit. Therefore, in order to establish the safety margin for the aged reactor, the aging characteristics for components should be analyzed and the effect of aging of components on the operating parameter should be studied. In this study, the aging characteristics of components are analyzed and revealed how the aging of components affects to the operating parameter by using NUCIRC code. Finally, by scrutinizing the effect of operating parameter on the operating safety margin, the effect of aging of components on the safety margin has been revealed

  1. Simplified calculation of thermal stresses - on the reduction of effort in the stress analysis of reactor components

    International Nuclear Information System (INIS)

    Karow, K.

    1984-01-01

    The fatigue behaviour of reactor components is predominantly determined from the in-service thermal stresses. The calculation of such stresses for a number of temperature transients in the adjacent fluid may be expensive, particularly with complicated structures. Under certain conditions this expense can be reduced considerably with the aid of a rule, which permits interpolation of thermal stresses from known reference values instead of calculation. This paper presents the derivation and method of application of this interpolation rule. The derivation procedure is based on well-known proportionalities between thermal stress range Δsigma in the structure and temperature change ΔT and rate of change T of the fluid in the extreme cases of an ideal thermal shock and quasi-steady-state conditions, respectively. For the real transients in between the relationship Δsigma proportional (ΔT)sup(x) Tsup(1-x)αsup(y) is proposed, where x is the shock-degree and lies between 0 and 1, and, additionally, y designates the influence of the heat transfer coefficient α. This formula yields the interpolation rule. The rule permits interpolation of stress ranges for additional thermal transients from at least 3 reference stresses via x and y. The procedure is applicable to any metallic structure, reduces fatigue analysis effort considerably and yields excellent results. The paper is split up into 2 parts. In the following the derivation of the rule is presented. The second part describes its application and will be published shortly. (orig.)

  2. Thermal hydraulic considerations in liquid-metal-cooled components of tokamak fusion reactors

    International Nuclear Information System (INIS)

    Picologlou, B.F.; Reed, C.B.; Hua, T.Q.

    1989-01-01

    The basic considerations of MHD thermal hydraulics for liquid-metal-cooled blankets and first walls of tokamak fusion reactors are discussed. The liquid-metal MHD program of Argonne National Laboratory (ANL) dedicated to analytical and experimental investigations of reactor relevant MHD flows and development of relevant thermal hydraulic design tools is presented. The status of the experimental program and examples of local velocity measurements are given. An account of the MHD codes developed to date at ANL is also presented as is an example of a 3-D thermal hydraulic analysis carried out with such codes. Finally, near term plans for experimental investigations and code development are outlined. 20 refs., 8 figs., 1 tab

  3. Thermal effects of variable material properties and metamorphic reactions in a three-component subducting slab

    DEFF Research Database (Denmark)

    Chemia, Zurab; Dolejš, David; Steinle-Neumann, Gerd

    2015-01-01

    We explore the effects of variable material properties, phase transformations, and metamorphic devolatilization reactions on the thermal structure of a subducting slab using thermodynamic phase equilibrium calculations combined with a thermal evolution model. The subducting slab is divided...... into three layers consisting of oceanic sediments, altered oceanic crust, and partially serpentinized or anhydrous harzburgite. Solid-fluid equilibria and material properties are computed for each layer individually to illustrate distinct thermal consequences when chemical and mechanical homogenization...... indicate that subducting sediments and oceanic crust warm by 40 and 70°C, respectively, before the effect of wedge convection and heating is encountered at 1.7 GPa. Retention of fluid in the slab pore space plays a negligible role in oceanic crust and serpentinized peridotites. By contrast, the large...

  4. Multi-objective hybrid PSO-APO algorithm based security constrained optimal power flow with wind and thermal generators

    Directory of Open Access Journals (Sweden)

    Kiran Teeparthi

    2017-04-01

    Full Text Available In this paper, a new low level with teamwork heterogeneous hybrid particle swarm optimization and artificial physics optimization (HPSO-APO algorithm is proposed to solve the multi-objective security constrained optimal power flow (MO-SCOPF problem. Being engaged with the environmental and total production cost concerns, wind energy is highly penetrating to the main grid. The total production cost, active power losses and security index are considered as the objective functions. These are simultaneously optimized using the proposed algorithm for base case and contingency cases. Though PSO algorithm exhibits good convergence characteristic, fails to give near optimal solution. On the other hand, the APO algorithm shows the capability of improving diversity in search space and also to reach a near global optimum point, whereas, APO is prone to premature convergence. The proposed hybrid HPSO-APO algorithm combines both individual algorithm strengths, to get balance between global and local search capability. The APO algorithm is improving diversity in the search space of the PSO algorithm. The hybrid optimization algorithm is employed to alleviate the line overloads by generator rescheduling during contingencies. The standard IEEE 30-bus and Indian 75-bus practical test systems are considered to evaluate the robustness of the proposed method. The simulation results reveal that the proposed HPSO-APO method is more efficient and robust than the standard PSO and APO methods in terms of getting diverse Pareto optimal solutions. Hence, the proposed hybrid method can be used for the large interconnected power system to solve MO-SCOPF problem with integration of wind and thermal generators.

  5. Modulation Methods for Neutral-Point-Clamped Wind Power Converter Achieving Loss and Thermal Redistribution Under Low-Voltage Ride-Through

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2014-01-01

    The three-level neutral-point (NP)-clamped (3L-NPC) converter is a promising multilevel topology in the application of megawatt wind power generation systems. However, the growing requirements by grid codes may impose high stress and even give reliability problem to this converter topology......, with the proposed modulation methods, the thermal distribution in the 3L-NPC wind power inverter undergoing LVRT becomes more equal, and the junction temperature of the most stressed devices can be also relieved. Also, the control ability of the dc-bus NP potential, which is one of the crucial considerations...

  6. Loss and thermal redistributed modulation methods for three-level neutral-point-clamped wind power inverter undergoing Low Voltage Ride Through

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2012-01-01

    The three-level neutral-point-clamped (3L-NPC) converter is a promising multilevel topology in the application of mega-watts wind power generation system. However, the growing requirements by grid codes may impose high stress and even give reliability problem to this converter topology. This paper...... modulation methods, the thermal distribution in the 3L-NPC wind power inverter undergoing LVRT becomes more equal, and the junction temperature of the most stressed devices can be also relieved. Also the control ability of DC-bus neutral point potential, which is one of the crucial considerations for the 3L...

  7. Thermal cycling in LWR components in OECD-NEA member countries - CSNI integrity and ageing working group

    International Nuclear Information System (INIS)

    Faidy, Claude; Chapuliot, Stephane; Mathet, Eric

    2005-01-01

    Thermal cycling is a widespread and recurring problem in nuclear power plants worldwide. Several incidents with leakage of primary water inside the containment challenged the integrity of NPPs although no release outside of containment occurred. Thermal cycling was not taken into account at the design stage. Regulatory bodies, utilities and researchers have to address it for their operating plants. It is a complex phenomenon that involves and links thermal hydraulic, fracture mechanic, materials and plant operation. Thermal cycling is connected either to operating transients (low cycle fatigue) or to complex phenomenon like stratification, vortex and mixing (low and high cycle fatigue). The former is covered by existing rules and codes. The latter is partially addressed by national rules and constitutes the subject of this report. In 2002, the Committee on the Safety of Nuclear Installations (CSNI) requested the working group on the integrity of reactor components and structures (IAGE WG) to prepare a program of work on thermal cycling to provide information to NEA member countries on operational experience, regulatory policies, countermeasures in place, current status of research and development, and to identify areas where research is needed both at national and international levels. The working group proposed a 3 fold program that covered: - Review of operating experience, regulatory framework, countermeasures and current research; - Benchmark to assess calculation capabilities in NEA member countries for crack initiation and propagation under a cyclic thermal loading, and ultimately to develop screening criteria to identify susceptible components; results of the benchmark were published in 2005; - Organisation of an international conference in cooperation with the EPRI and the USNRC on fatigue of reactor components. This conference reviews progress in the areas and provides a forum for discussion and exchange of information between high level experts. The

  8. Advanced 3D Human Simulation Components with Thermal/Haptic Feedback and Tissue Deformation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In integrating the following three significant components for its research/research and development (R/R&D) effort, the power of this candidate Phase II project...

  9. Advanced 3D Human Simulation Components with Thermal/Haptic Feedback and Tissue Deformation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In integrating the following three significant components for its research/research and development (R/R&D) effort, the power of this candidate Phase I project...

  10. Determination of the pozzolanic activity of mortar’s components by thermal analysis

    Czech Academy of Sciences Publication Activity Database

    Frankeová, Dita; Slížková, Zuzana

    2016-01-01

    Roč. 125, č. 3 (2016), s. 1115-1123 ISSN 1388-6150 R&D Projects: GA ČR(CZ) GBP105/12/G059 Institutional support: RVO:68378297 Keywords : pozzolanic activity * hydraulic phases * thermal analysis * consolidation * historic mortars Subject RIV: JJ - Other Materials Impact factor: 1.953, year: 2016 http://link.springer.com/article/10.1007/s10973-016-5360-7

  11. An effect of humid climate on micro structure and chemical component of natural composite (Boehmeria nivea-Albizia falcata based wind turbine blade

    Directory of Open Access Journals (Sweden)

    Sudarsono S.

    2018-01-01

    Full Text Available In this work, wind turbine blade NACA 4415 is fabricated from natural composite of Boehmeria nivea and Albizia falcate. The composite fabrication method used is hand lay up method. The aim of the work is to investigate an effect of humid climate of coastal area on micro structure and chemical composition of composite material of the blade. The wind turbine is tested at Pantai Baru, Bantul, Yogyakarta for 5.5 months. The micro structure scanning is performed with Scanning Electron Microscope (SEM and material component is measured with Energy Dispersive X-ray spectrometer (EDS. The samples are tested before and after the use within 5.5 month at the location. The results show that composite material inexperienced interface degradation and insignificant change of micro structure. From EDS test, it is observed that Na filtration reduces C and increases O in composite material after 5.5 months.

  12. An effect of humid climate on micro structure and chemical component of natural composite (Boehmeria nivea-Albizia falcata) based wind turbine blade

    Science.gov (United States)

    Sudarsono, S.; Purwanto; Sudarsono, Johny W.

    2018-02-01

    In this work, wind turbine blade NACA 4415 is fabricated from natural composite of Boehmeria nivea and Albizia falcate. The composite fabrication method used is hand lay up method. The aim of the work is to investigate an effect of humid climate of coastal area on micro structure and chemical composition of composite material of the blade. The wind turbine is tested at Pantai Baru, Bantul, Yogyakarta for 5.5 months. The micro structure scanning is performed with Scanning Electron Microscope (SEM) and material component is measured with Energy Dispersive X-ray spectrometer (EDS). The samples are tested before and after the use within 5.5 month at the location. The results show that composite material inexperienced interface degradation and insignificant change of micro structure. From EDS test, it is observed that Na filtration reduces C and increases O in composite material after 5.5 months.

  13. Analyses of divertor high heat-flux components on thermal and electromagnetic loads

    Energy Technology Data Exchange (ETDEWEB)

    Araki, M.; Kitamura, K.; Suzuki, S. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Urata, K. [Mitsubishi Geavy Industries Ltd., 2-5-1, Marunouchi,Chiyoda-ku, Tokyo 100 (Japan)

    1998-09-01

    In the International Thermonuclear Experimental Reactor (ITER), the divertor high heat-flux components are subjected not to only severe heat and particle loads, but also to large electromagnetic loads during reactor operation. A great deal of R and D has been carried out throughout the world with regard to the design of robust high heat-flux components. Based on R and D results, small and intermediate size mock-ups constructed from various armor tile materials have been successfully developed with respect to a thermomechanical point of view. However, little analysis has been carried out with regard to the elastic stresses induced with in the high heat-flux components via the electromagnetic loads during a plasma disruption. Furthermore, past research has only considered thermomechanical and electromagnetic loadings separately and uncoupled. Therefore, a systematic analysis of the combined effects of thermomechanical and electromagnetic loadings has been performed, with the analytical results assessed by ASME section 3 evaluation code. (orig.) 20 refs.

  14. Analyses of divertor high heat-flux components on thermal and electromagnetic loads

    International Nuclear Information System (INIS)

    Araki, M.; Kitamura, K.; Suzuki, S.

    1998-01-01

    In the International Thermonuclear Experimental Reactor (ITER), the divertor high heat-flux components are subjected not to only severe heat and particle loads, but also to large electromagnetic loads during reactor operation. A great deal of R and D has been carried out throughout the world with regard to the design of robust high heat-flux components. Based on R and D results, small and intermediate size mock-ups constructed from various armor tile materials have been successfully developed with respect to a thermomechanical point of view. However, little analysis has been carried out with regard to the elastic stresses induced with in the high heat-flux components via the electromagnetic loads during a plasma disruption. Furthermore, past research has only considered thermomechanical and electromagnetic loadings separately and uncoupled. Therefore, a systematic analysis of the combined effects of thermomechanical and electromagnetic loadings has been performed, with the analytical results assessed by ASME section 3 evaluation code. (orig.)

  15. Strength and Reliability of Wood for the Components of Low-cost Wind Turbines: Computational and Experimental Analysis and Applications

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Freere, Peter; Sharma, Ranjan

    2009-01-01

    of experiments and computational investigations. Low cost testing machines have been designed, and employed for the systematic analysis of different sorts of Nepali wood, to be used for the wind turbine construction. At the same time, computational micromechanical models of deformation and strength of wood......This paper reports the latest results of the comprehensive program of experimental and computational analysis of strength and reliability of wooden parts of low cost wind turbines. The possibilities of prediction of strength and reliability of different types of wood are studied in the series...... are developed, which should provide the basis for microstructure-based correlating of observable and service properties of wood. Some correlations between microstructure, strength and service properties of wood have been established....

  16. Thermal damage of power plants components and their reparation. Aspects of welding engineering

    International Nuclear Information System (INIS)

    Kautz, H.R.; Zurn, H.E.D.

    1993-01-01

    In the last years, the technology of power plants has been developed. With the recommendation in environmental protection, the research is focussed on gaseous effluents purification . In case of were an accident, the welding engineering might repair the components. 47 refs

  17. Transferring of components and energy output in industrial sewage sludge disposal by thermal pretreatment and two-phase anaerobic process.

    Science.gov (United States)

    Yang, Xiaoyi; Wang, Xin; Wang, Lei

    2010-04-01

    For a better sewage sludge disposal and more efficient energy reclamation, transforming of components and energy in sludge by thermal and WAO pretreatment followed by two-phase anaerobic UASB process were studied in the pilot scale. Biogas outputs and the qualities and quantities of the effluent and solid residue were compared with a traditional anaerobic sludge digestion. Sludge components, including carbon, nitrogen, phosphorus, sulphur, were observed and mass balances were discussed throughout the process. The input and output energy balance was also studied. Results showed different trait to compare with biogas outputs in terms of COD added and raw sludge added. Pretreatment improved the transformation of carbon substances into biogas production with higher carbon removal and higher VSS removal. Comparing the energy obtained from biogas production with energy inputs required for pretreatment, energy output in the whole process decreased with higher pretreatment temperature. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Hydrodynamic and thermal modeling of solid particles in a multi-phase, multi-component flow

    International Nuclear Information System (INIS)

    Tentner, A.M.; Wider, H.U.

    1984-01-01

    This paper presents the new thermal hydraulic models describing the hydrodynamics of the solid fuel/steel chunks during an LMFBR hypothetical core disruptive accident. These models, which account for two-way coupling between the solid and fluid phases, describe the mass, momentum and energy exchanges which occur when the chunks are present at any axial location. They have been incorporated in LEVITATE, a code for the analysis of fuel and cladding dynamics under Loss-of-Flow (LOF) conditions. Their influence on fuel motion is presented in the context of the L6 TREAT experiment analysis. It is shown that the overall hydrodynamic behavior of the molten fuel and solid fuel chunks is dependent on both the size of the chunks and the power level. At low and intermediate power levels the fuel motion is more dispersive when small chunks, rather than large ones, are present. At high power levels the situation is reversed

  19. Film-based Sensors with Piezoresistive Molecular Conductors as Active Components Strain Damage and Thermal Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Laukhina

    2011-02-01

    Full Text Available The article is addressed to the development of flexible all-organic bi layer (BL film-based sensors being capable of measuring strain as a well-defined electrical signal in a wide range of elongations and temperature. The purpose was achieved by covering polycarbonate films with the polycrystalline layer of a high piezoresistive organic molecular conductor. To determine restrictions for sensor applications, the effect of monoaxial strain on the resistance and texture of the sensing layers of BL films was studied. The experiments have shown that the maximum strain before fracture is about 1 %. A thermal regeneration of the sensing layer of the BL film-based sensors that were damaged by cyclic load is also described. These sensors are able to take the place of conventional metal-based strain and pressure gages in low cost innovative controlling and monitoring technologies.

  20. Current components, physical, ocean circulation, wind circulation, and other data from moored buoys, CTD casts, drifting buoys, and in situ wind recorders from AIRCRAFT and other platforms from the North Atlantic Ocean and other locations as part of the Seasonal Response of the Equatorial Atlantic Experiment/Français Océan et Climat dans l'Atlantique Equatorial (SEQUAL/FOCAL) project from 1980-01-25 to 1985-12-18 (NODC Accession 8700111)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, physical, ocean circulation, wind circulation, and other data were collected from moored buoys, CTD casts, drifting buoys, and in situ wind...

  1. Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater

    Energy Technology Data Exchange (ETDEWEB)

    Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A [Solar Energy Research Inst., Golden, CO (USA); Panchal, C B [Argonne National Lab., IL (USA)

    1990-09-01

    This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

  2. Replacement of Chromium Electroplating on C-2, E-2, P-3 and C-130 Propeller Hub Components Using HVOF Thermal Spray Coatings

    National Research Council Canada - National Science Library

    Sartwell, Bruce

    2004-01-01

    .... This document constitutes the final report on a project to qualify high-velocity oxygen-fuel (HVOF) thermal spray coatings as a replacement for hard chrome plating on propeller hub components from various military aircraft...

  3. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  4. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    Science.gov (United States)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  5. Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications.

    Science.gov (United States)

    Mei, Shuo-Jun; Liu, Cheng-Wei; Liu, Di; Zhao, Fu-Yun; Wang, Han-Qing; Li, Xiao-Hong

    2016-09-15

    The pedestrian level pollutant transport in street canyons with multiple aspect ratios (H/W) is numerically investigated in the present work, regarding of various unstable thermal stratification scenarios and plain surrounding. Non-isothermal turbulent wind flow, temperature field and pollutant spread within and above the street canyons are solved by the realizable k-ε turbulence model along with the enhanced wall treatment. One-vortex flow regime is observed for shallow canyons with H/W=0.5, whereas multi-vortex flow regime is observed for deep canyons with H/W=2.0. Both one-vortex and multi-vortex regimes could be observed for the street canyons with H/W=1.0, where the secondary vortex could be initiated by the flow separation and intensified by unstable thermal stratification. Air exchange rate (AER) and pollutant retention time are adopted to respectively evaluate the street canyon ventilation and pollutant removal performance. A second-order polynomial functional relationship is established between AER and Richardson number (Ri). Similar functional relationship could be established between retention time and Ri, and it is only valid for canyons with one-vortex flow regime. In addition, retention time could be prolonged abruptly for canyons with multi-vortex flow regime. Very weak secondary vortex is presented at the ground level of deep canyons with mild stratification, where pollutants are highly accumulated. However, with the decrease of Ri, pollutant concentration adjacent to the ground reduces accordingly. Present research could be applied to guide the urban design and city planning for enhancing pedestrian environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Chemically reacting flow of a compressible thermally radiating two-component plasma

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1990-12-01

    The paper studies the compressible flow of a hot two-component plasma in the presence of gravitation and chemical reaction in a vertical channel. For the optically thick gas approximation, closed form analytical solutions are possible. Asymptotic solutions are also obtained for the general differential approximation when the temperature of the two bounding walls are the same. In the general case the problem is reduced to the solution of standard nonlinear integral equations which can be tackled by iterative procedure. The results are discussed quantitatively. The problem may be applicable to the understanding of explosive hydrogen-burning model of solar flares. (author). 6 refs, 4 figs

  7. Development of high thermal flux components for continuous operation in Tokamaks

    International Nuclear Information System (INIS)

    Schlosser, J.; Chappuis, P.; Coston, J.F.; Deschamps, P.; Lipa, M.

    1991-01-01

    High heat flux plasma facing components are under development and appropriate experimental evaluations have been carried out in order to operate during cycles of several hundred seconds. In Tore Supra, a large tokamak with a plasma nominal duration in excess of 30 seconds, solutions are tested that could be later applied to the NET/ITER tokamak, where peaked heat flux values of 15 MW/m 2 on the divertor plates are foreseen. The proposed concept is a swirl square tube design protected with brazed CFC flat tiles. Development programs and validation tests are presented. The tests results are compared with calculations

  8. Developmental assessment of the multidimensional component in RELAP5 for Savannah River Site thermal hydraulic analysis

    International Nuclear Information System (INIS)

    Hanson, R.G.; Johnson, E.C.; Carlson, K.E.; Chou, C.Y.; Davis, C.B.; Martin, R.P.; Riemke, R.A.; Wagner, R.J.

    1992-07-01

    This report documents ten developmental assessment problems which were used to test the multidimensional component in RELAP5/MOD2.5, Version 3w. The problems chosen were a rigid body rotation problem, a pure radial symmetric flow problem, an r-θ symmetric flow problem, a fall problem, a rest problem, a basic one-dimensional flow test problem, a gravity wave problem, a tank draining problem, a flow through the center problem, and coverage analysis using PIXIE. The multidimensional code calculations are compared to analytical solutions and one-dimensional code calculations. The discussion section of each problem contains information relative to the code's ability to simulate these problems

  9. Advanced structural wind engineering

    CERN Document Server

    Kareem, Ahsan

    2013-01-01

    This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.

  10. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Pt. II. Analysis of ITER plasma facing components

    International Nuclear Information System (INIS)

    Federici, G.; Raffray, A.R.

    1997-01-01

    For pt.I see ibid., p.85-100, 1997. The transient thermal model RACLETTE (acronym of Rate Analysis Code for pLasma Energy Transfer Transient Evaluation) described in part I of this paper is applied here to analyse the heat transfer and erosion effects of various slow (100 ms-10 s) high power energy transients on the actively cooled plasma facing components (PFCs) of the International Thermonuclear Experimental Reactor (ITER). These have a strong bearing on the PFC design and need careful analysis. The relevant parameters affecting the heat transfer during the plasma excursions are established. The temperature variation with time and space is evaluated together with the extent of vaporisation and melting (the latter only for metals) for the different candidate armour materials considered for the design (i.e., Be for the primary first wall, Be and CFCs for the limiter, Be, W, and CFCs for the divertor plates) and including for certain cases low-density vapour shielding effects. The critical heat flux, the change of the coolant parameters and the possible severe degradation of the coolant heat removal capability that could result under certain conditions during these transients, for example for the limiter, are also evaluated. Based on the results, the design implications on the heat removal performance and erosion damage of the various ITER PFCs are critically discussed and some recommendations are made for the selection of the most adequate protection materials and optimum armour thickness. (orig.)

  11. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part II: Analysis of ITER plasma facing components

    Science.gov (United States)

    Federici, Gianfranco; Raffray, A. René

    1997-04-01

    The transient thermal model RACLETTE (acronym of Rate Analysis Code for pLasma Energy Transfer Transient Evaluation) described in part I of this paper is applied here to analyse the heat transfer and erosion effects of various slow (100 ms-10 s) high power energy transients on the actively cooled plasma facing components (PFCs) of the International Thermonuclear Experimental Reactor (ITER). These have a strong bearing on the PFC design and need careful analysis. The relevant parameters affecting the heat transfer during the plasma excursions are established. The temperature variation with time and space is evaluated together with the extent of vaporisation and melting (the latter only for metals) for the different candidate armour materials considered for the design (i.e., Be for the primary first wall, Be and CFCs for the limiter, Be, W, and CFCs for the divertor plates) and including for certain cases low-density vapour shielding effects. The critical heat flux, the change of the coolant parameters and the possible severe degradation of the coolant heat removal capability that could result under certain conditions during these transients, for example for the limiter, are also evaluated. Based on the results, the design implications on the heat removal performance and erosion damage of the variuos ITER PFCs are critically discussed and some recommendations are made for the selection of the most adequate protection materials and optimum armour thickness.

  12. Detection of gear cracks in a complex gearbox of wind turbines using supervised bounded component analysis of vibration signals collected from multi-channel sensors

    Science.gov (United States)

    Li, Zhixiong; Yan, Xinping; Wang, Xuping; Peng, Zhongxiao

    2016-06-01

    In the complex gear transmission systems, in wind turbines a crack is one of the most common failure modes and can be fatal to the wind turbine power systems. A single sensor may suffer with issues relating to its installation position and direction, resulting in the collection of weak dynamic responses of the cracked gear. A multi-channel sensor system is hence applied in the signal acquisition and the blind source separation (BSS) technologies are employed to optimally process the information collected from multiple sensors. However, literature review finds that most of the BSS based fault detectors did not address the dependence/correlation between different moving components in the gear systems; particularly, the popular used independent component analysis (ICA) assumes mutual independence of different vibration sources. The fault detection performance may be significantly influenced by the dependence/correlation between vibration sources. In order to address this issue, this paper presents a new method based on the supervised order tracking bounded component analysis (SOTBCA) for gear crack detection in wind turbines. The bounded component analysis (BCA) is a state of art technology for dependent source separation and is applied limitedly to communication signals. To make it applicable for vibration analysis, in this work, the order tracking has been appropriately incorporated into the BCA framework to eliminate the noise and disturbance signal components. Then an autoregressive (AR) model built with prior knowledge about the crack fault is employed to supervise the reconstruction of the crack vibration source signature. The SOTBCA only outputs one source signal that has the closest distance with the AR model. Owing to the dependence tolerance ability of the BCA framework, interfering vibration sources that are dependent/correlated with the crack vibration source could be recognized by the SOTBCA, and hence, only useful fault information could be preserved in

  13. Stochastic risk-averse coordinated scheduling of grid integrated energy storage units in transmission constrained wind-thermal systems within a conditional value-at-risk framework

    International Nuclear Information System (INIS)

    Hemmati, Reza; Saboori, Hedayat; Saboori, Saeid

    2016-01-01

    In recent decades, wind power resources have been integrated in the power systems increasingly. Besides confirmed benefits, utilization of large share of this volatile source in power generation portfolio has been faced system operators with new challenges in terms of uncertainty management. It is proved that energy storage systems are capable to handle projected uncertainty concerns. Risk-neutral methods have been proposed in the previous literature to schedule storage units considering wind resources uncertainty. Ignoring risk of the cost distributions with non-desirable properties may result in experiencing high costs in some unfavorable scenarios with high probability. In order to control the risk of the operator decisions, this paper proposes a new risk-constrained two-stage stochastic programming model to make optimal decisions on energy storage and thermal units in a transmission constrained hybrid wind-thermal power system. Risk-aversion procedure is explicitly formulated using the conditional value-at-risk measure, because of possessing distinguished features compared to the other risk measures. The proposed model is a mixed integer linear programming considering transmission network, thermal unit dynamics, and storage devices constraints. The simulations results demonstrate that taking the risk of the problem into account will affect scheduling decisions considerably depend on the level of the risk-aversion. - Highlights: • Risk of the operation decisions is handled by using risk-averse programming. • Conditional value-at-risk is used as risk measure. • Optimal risk level is obtained based on the cost/benefit analysis. • The proposed model is a two-stage stochastic mixed integer linear programming. • The unit commitment is integrated with ESSs and wind power penetration.

  14. Proportion of various dendromass components of spruce (Picea abies), and partial models for modification of wind speed and radiation by pure spruce stands

    International Nuclear Information System (INIS)

    Wollmerstädt, J.; Sharma, S.C.; Marsch, M.

    1992-01-01

    Means for quantifying dendromass components of spruce stands have been discussed, and partial models for modification of radiation and wind by the pure spruce stand were developed. By means of a sampling procedure, the components needle dry mass and branchwood dry mass without needles of individual trees are recorded. Using the relationship between branch basal diameter and needle respectively branchwood dry mass, the total needle and branchwood dry mass of trees is estimated. Based on that, stand or regional parameters for the allometric function between diameter breast height and needle respectively branchwood dry mass can be determined for defined H/D-clusters. Published data from various sources were used in this paper. The lowest coefficients of determination were found in H/D-cluster 120 (H/D-values over 114). Therefore, further differentiation within this range seems to be necessary. For assimilation models, there should be quantification of needle dry mass separately for needle age classes and morphological characteristics of needles. Basis for the estimate of tree-bole volume is the relationship between H/D-value and oven-dry weight. There are problems as far as methods for quantifying the subterranean dendromass (e.g. dynamics of fine roots) are concerned; this is requiring considerable efforts, too. Spatial structure was also described by allometric functions (crown length and crown cover in relation to diameter breast height). For the partial model to express wind modification by the stand, standardized wind profiles as related to crown canopy density were used. The modification of radiation by the stand is closely related with the vertical needle mass distribution (sum curves). These two partial models have to be considered as an approach for the description of the modifying effect by the stocking [de

  15. UNRAVELLING THE COMPONENTS OF A MULTI-THERMAL CORONAL LOOP USING MAGNETOHYDRODYNAMIC SEISMOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S. Krishna; Jess, D. B. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Klimchuk, J. A. [Heliophysics Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771 (United States); Banerjee, D., E-mail: krishna.prasad@qub.ac.uk [Indian Institute of Astrophysics, II Block Koramangala, Bengaluru 560034 (India)

    2017-01-10

    Coronal loops, constituting the basic building blocks of the active Sun, serve as primary targets to help understand the mechanisms responsible for maintaining multi-million Kelvin temperatures in the solar and stellar coronae. Despite significant advances in observations and theory, our knowledge on the fundamental properties of these structures is limited. Here, we present unprecedented observations of accelerating slow magnetoacoustic waves along a coronal loop that show differential propagation speeds in two distinct temperature channels, revealing the multi-stranded and multithermal nature of the loop. Utilizing the observed speeds and employing nonlinear force-free magnetic field extrapolations, we derive the actual temperature variation along the loop in both channels, and thus are able to resolve two individual components of the multithermal loop for the first time. The obtained positive temperature gradients indicate uniform heating along the loop, rather than isolated footpoint heating.

  16. Effects of the components in rice flour on thermal radical generation under microwave irradiation.

    Science.gov (United States)

    Lin, Lufen; Huang, Luelue; Fan, Daming; Hu, Bo; Gao, Yishu; Lian, Huizhang; Zhao, Jianxin; Zhang, Hao; Chen, Wei

    2016-12-01

    The relationships between radical generation under microwave irradiation and the components of various types of rice flour were investigated. Electron paramagnetic resonance (EPR) spectroscopy was used to characterize the radicals found in rice flour samples. The EPR spectra revealed that several types of radical (carbon-centered, tyrosyl and semiquinone) were localized in the starch and protein fractions of the rice flour. The signal intensity of the free radicals was observed to increase exponentially with increasing microwave power and residence time. The rice bran samples exhibited the greatest free radical signal intensity, followed by the brown rice samples and the white rice samples. This finding was consistent for both the native and the microwaved samples. The ratio of rice starch to rice protein also played an important role in the generation of radicals. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The Impact of Power Switching Devices on the Thermal Performance of a 10 MW Wind Power NPC Converter

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2012-01-01

    Power semiconductor switching devices play an important role in the performance of high power wind energy generation systems. The state-of-the-art device choices in the wind power application as reported in the industry include IGBT modules, IGBT press-pack and IGCT press-pack. Because...

  18. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    International Nuclear Information System (INIS)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-01-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime

  19. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    Science.gov (United States)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-03-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime.

  20. Network constrained wind integration on Vancouver Island

    International Nuclear Information System (INIS)

    Maddaloni, Jesse D.; Rowe, Andrew M.; Kooten, G. Cornelis van

    2008-01-01

    The aim of this study is to determine the costs and carbon emissions associated with operating a hydro-dominated electricity generation system (Vancouver Island, Canada) with varying degrees of wind penetration. The focus is to match the wind resource, system demand and abilities of extant generating facilities on a temporal basis, resulting in an operating schedule that minimizes system cost over a given period. This is performed by taking the perspective of a social planner who desires to find the lowest-cost mix of new and existing generation facilities. Unlike other studies, this analysis considers variable efficiency for thermal and hydro-generators, resulting in a fuel cost that varies with respect to generator part load. Since this study and others have shown that wind power may induce a large variance on existing dispatchable generators, forcing more frequent operation at reduced part load, inclusion of increased fuel cost at part load is important when investigating wind integration as it can significantly reduce the economic benefits of utilizing low-cost wind. Results indicate that the introduction of wind power may reduce system operating costs, but this depends heavily on whether the capital cost of the wind farm is considered. For the Vancouver Island mix with its large hydro-component, operating cost was reduced by a maximum of 15% at a wind penetration of 50%, with a negligible reduction in operating cost when the wind farm capital cost was included

  1. Cement blocks with EVA waste for extensive modular green roof: contribution of the components for thermal insulation

    Directory of Open Access Journals (Sweden)

    A. B. DE MELO

    Full Text Available Abstract Green roofs can contribute in many ways to the quality of the environment, being known for reducing the heat transfer to the interior of the buildings. Amongst the available techniques for the execution of this type of covering, the use of light cement blocks which are compatible with the system of extensive modular green roofs is proposed. For the light cement blocks, produced with EVA aggregates (waste from the footwear industry, an additional contribution in the capacity of thermal insulation of the proposed green roof is expected. In the present article, the demonstration of such contribution is intended through measurements carried out in prototypes in hot and humid climates. After characterizing the capacity of thermal insulation of the proposed green roof, with different types of conventional covering as a reference, an additional contribution of the component used in this green roof was identified by making comparisons with measurements collected from another green roof, executed with cement blocks without the presence of the EVA aggregates. In the experiments, external and internal surface temperatures were measured in each of the prototypes' coverings, as well as the air temperatures in the internal and external environments. From the analysis of the data for a typical summer day, it was possible to prove that the proposed green roof presented the lowest temperature ranges, considering the internal air and surface temperatures. The presence of the EVA aggregates in the proposed blocks contributed to the decrease of the internal temperatures.

  2. Conversion of the thermal hydraulics components of Almaraz NPP model from RELAP5 into TRAC-M

    International Nuclear Information System (INIS)

    Queral, C.; Mulas, J.; Collazo, I.; Concejal, A.; Burbano, N.; Gallego, I.; Lopez Lechas, A.

    2002-01-01

    In the scope of a joint project between the Spanish Nuclear Regulatory Commission (CSN) and the electric energy industry of Spain (UNESA) on the USNRC state-of-the-art thermal hydraulic code, TRAC-M, there is a task relating to the translation of the Spanish NPP models from other TH codes to the new one. As part of this project, our team is working on the translation of Almaraz NPP model from RELAP5/MOD3.2 to TRAC-M. At present, several portions of the input deck have been converted to TRAC-M, and the output data have also been compared with RELAP5 data. This paper refers to the translation of the following thermal hydraulic models: pressurizer, hot and cold legs (including the pumps and the injection systems), and steam generators. The comparison of the results obtained with both codes shows a good agreement. However, some difficulties have been found in the translation of some code components, like pipes, heat structures, pumps, branchs, valves and boundary conditions. In this paper, these translation problems and their solutions are described.(author)

  3. Steady state and transient thermal-hydraulic characterization of full-scale ITER divertor plasma facing components

    International Nuclear Information System (INIS)

    Tincani, A.; Malavasi, A.; Ricapito, I.; Riccardi, B.; Di Maio, P.A.; Vella, G.

    2007-01-01

    In the frame of the activities related to ITER divertor R and D, ENEA CR Brasimone was charged by EFDA (European Fusion Design Agreement) to investigate the thermal-hydraulic behaviour of the full-scale divertor plasma facing components, i.e. Inner Vertical Target, Dome Liner and Outer Vertical Target, both in steady state and during draining and drying transient. More in detail, for each PFC, the first phase of the work is the steady state hydraulic characterization which consists of: - measurements of pressure drops at different temperatures; - determination of the velocity distribution in the internal channels; - check the possible insurgence of cavitation. The subsequent phase of the thermal-hydraulic characterization foresees a testing campaign of draining and drying procedure by means of a suitable gas flow. The objective of this experimental procedure is to eliminate in the most efficient way the residual amount of water after gravity discharge. In order to accomplish this experimental campaign a significant modification of CEF1 loop has been designed and realized. This paper presents, first of all, the experimental set-up, the agreed test matrix and the achieved results for both steady state and transient tests. Moreover, the level of the implementation of a predictive hydraulic model, based on RELAP 5 code, as well as its results are described, discussed and compared with the experimental ones. (orig.)

  4. Consequences of Reducing the Cost of PV Modules on a PV Wind Diesel Hybrid System with Limited Sizing Components

    Directory of Open Access Journals (Sweden)

    Jones S. Silva

    2012-01-01

    Full Text Available The use of renewable resources for power supply in family homes has passed the stage of utopia to became a reality, with limits set by technical and economic parameters. This paper presents the results of a project originated from the initiative of a middle-class family to achieve energy independence at home. The starting point was the concept of home with “zero energy” in which the total energy available is equal to the energy consumed. The solution devised to meet the energy demand of the residence in question is a PV wind diesel hybrid system connected to the grid, with the possibility of energy storage in batteries and in the form of heating water and the environment of the house. As a restriction, the family requested that the system would represent little impact to the lifestyle and landscape. This paper aims to assess the consequences of reductions in the cost of the PV modules on the optimization space, as conceived by the software Homer. The results show that for this system, a 50% reduction in the cost of PV modules allows all viable solutions including PV modules.

  5. The influence of thermal inertia on Mars' seasonal pressure variation and the effect of the weather component

    Science.gov (United States)

    Wood, S. E.; Paige, D. A.

    Using a Leighton-Murray type diurnal and seasonal Mars thermal model, we found that it is possible to reproduce the seasonal variation in daily-averaged pressures (approximately 680-890 Pa) measured by Viking Lander 1 (VL1), during years without global dust storms, with a standard deviation of less than 5 Pa. In this simple model, surface CO2, frost condensation, and sublimation rates at each latitude are determined by the net effects of radiation, latent heat, and heat conduction in subsurface soil layers. An inherent assumption of our model is that the seasonal pressure variation is due entirely to the exchange of mass between the atmosphere and polar caps. However, the results of recent Mars GCM modeling have made it clear that there is a significant dynamical contribution to the seasonal pressure variation. This 'weather' component is primarily due to large-scale changes in atmospheric circulation, and its magnitude depends somewhat on the dust content of the atmosphere. The overall form of the theoretical weather component at the location of VL1, as calculated by the AMES GCM, remains the same over the typical range of Mars dust opacities.

  6. Additive Manufacturing of Wind Turbine Molds

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Richardson, Bradley [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lloyd, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nolet, Stephen [TPI Composites, Scottsdale, AZ (United States); Hannan, James [TPI Composites, Scottsdale, AZ (United States)

    2017-07-01

    The objective of this project was to explore the utility of Big Area Additive Manufacturing (BAAM) for low cost manufacturing of wind turbine molds. Engineers at Oak Ridge National Laboratory (ORNL) and TPI Composites (TPI) collaborated to design and manufacture a printed mold that can be used for resin infusion of wind turbine components. Specific focus was on required material properties (operating temperatures and pressures, coefficient of thermal expansion (CTE), thermal conductivity), surface finish (accuracy and coatings) and system integration (integrated vacuum ports, and heating element). The project began with a simple proof of principle components, targeting surface coatings and material properties for printing a small section (approximately 4’ x 4’ x 2’) of a mold. Next, the second phase scaled up and integrated with the objective of capturing all of the necessary components (integrated heating to accelerate cure time, and vacuum, sealing) for resin infusion on a mold of significant size (8’ x 20’ x 6’).

  7. Joint estimation of the fast and thermal components of a high neutron flux with a two on-line detector system

    International Nuclear Information System (INIS)

    Filliatre, P.; Oriol, L.; Jammes, C.; Vermeeren, L.

    2009-01-01

    A fission chamber with a 242 Pu deposit is the best suited detector for on-line measurements of the fast component of a high neutron flux (∼10 14 ncm -2 s -1 or more) with a significant thermal component. To get the fast flux, it is, however, necessary to subtract the contribution of the thermal neutrons, which increases with fluence because of the evolution of the isotopic content of the deposit. This paper presents an algorithm that permits, thanks to measurements provided by a 242 Pu fission chamber and a detector for thermal neutrons, to estimate the thermal and the fast flux at any time. An implementation allows to test it with simulated data.

  8. Joint estimation of the fast and thermal components of a high neutron flux with a two on-line detector system

    Energy Technology Data Exchange (ETDEWEB)

    Filliatre, P. [CEA, DEN, SPEx/LDCI, F-13108 Saint-Paul-lez-Durance (France); Laboratoire Commun d' Instrumentation CEA-SCK-CEN (France)], E-mail: philippe.filliatre@cea.fr; Oriol, L.; Jammes, C. [CEA, DEN, SPEx/LDCI, F-13108 Saint-Paul-lez-Durance (France); Laboratoire Commun d' Instrumentation CEA-SCK-CEN (France); Vermeeren, L. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Laboratoire Commun d' Instrumentation CEA-SCK-CEN (France)

    2009-05-21

    A fission chamber with a {sup 242}Pu deposit is the best suited detector for on-line measurements of the fast component of a high neutron flux ({approx}10{sup 14}ncm{sup -2}s{sup -1} or more) with a significant thermal component. To get the fast flux, it is, however, necessary to subtract the contribution of the thermal neutrons, which increases with fluence because of the evolution of the isotopic content of the deposit. This paper presents an algorithm that permits, thanks to measurements provided by a {sup 242}Pu fission chamber and a detector for thermal neutrons, to estimate the thermal and the fast flux at any time. An implementation allows to test it with simulated data.

  9. Review of wind power tariff policies in China

    International Nuclear Information System (INIS)

    Hu, Zheng; Wang, Jianhui; Byrne, John; Kurdgelashvili, Lado

    2013-01-01

    In the past 20 years, China has paid significant attention to wind power. Onshore wind power in China has experienced tremendous growth since 2005, and offshore wind power development has been on-going since 2009. In 2010, with a total installed wind power capacity of 41.8 GW, China surpassed the U.S. as the country with the biggest wind power capacity in the world. By comparing the wind power situations of three typical countries, Germany, Spain, and Denmark, this paper provides a comprehensive evaluation and insights into the prospects of China’s wind power development. The analysis is carried out in four aspects including technology, wind resources, administration and time/space frame. We conclude that both German and Spanish have been growing rapidly in onshore capacity since policy improvements were made. In Denmark, large financial subsidies flow to foreign markets with power exports, creating inverse cost-benefit ratios. Incentives are in place for German and Danish offshore wind power, while China will have to remove institutional barriers to enable a leap in wind power development. In China, cross-subsidies are provided from thermal power (coal-fired power generation) in order to limit thermal power while encouraging wind power. However, the mass installation of wind power capacity completely relies on power subsidies. Furthermore, our study illustrates that capacity growth should not be the only consideration for wind power development. It is more important to do a comprehensive evaluation of multi-sectorial efforts in order to achieve long-term development. - Highlights: ► Key components to exam China’s wind power. ► Evaluation of Europe could be helpful. ► China has to remove institutional barrier.

  10. Coastal Ohio Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, Peter [Bowling Green State Univ., OH (United States); Afjeh, Abdollah [Univ. of Toledo, OH (United States); Jamali, Mohsin [Univ. of Toledo, OH (United States); Bingman, Verner [Bowling Green State Univ., OH (United States)

    2014-04-04

    reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and

  11. Wake Effects on Lifetime Distribution in DFIG-based Wind Farms

    DEFF Research Database (Denmark)

    Tian, Jie; Zhou, Dao; Su, Chi

    2017-01-01

    With the increasing size of the wind farms, the impact of the wake effect on the energy yields and lifetime consumption of wind turbine can no longer be neglected. In this paper, the affecting factors like the wind speed and wind direction are investigated in terms of the single wake and multiple...... wakes. As the power converter is the most fragile component among the turbine system, its lifetime estimation can be calculated seen from the thermal stress of the power semiconductor. On the basis of the relationship of the power converter in a 5 MW Doubly-Fed Induction Generator (DFIG) wind turbine...... system and the wind speed, the lifetime consumption of the individual turbine in a 10-turbine and an 80-turbine wind farms can be calculated by considering the real distributions of the wind speed and direction. It can be seen that there is significant lifetime difference among individual turbines...

  12. Thermal analysis of multilevel grid side converters for 10 MW wind turbines under Low Voltage Ride Through

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Liserre, Marco

    2011-01-01

    , and able to contribute to the grid recovery by injecting reactive current during grid faults. Consequently, the full-scale power converter solutions are becoming more and more popular to fulfill the growing challenges in the wind power application. Nevertheless, the loading of the power devices in full...

  13. Reliability Assessment of Solder Joints in Power Electronic Modules by Crack Damage Model for Wind Turbine Applications

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2011-01-01

    Wind turbine reliability is an important issue for wind energy cost minimization, especially by reduction of operation and maintenance costs for critical components and by increasing wind turbine availability. To develop an optimal operation and maintenance plan for critical components, it is nec......Wind turbine reliability is an important issue for wind energy cost minimization, especially by reduction of operation and maintenance costs for critical components and by increasing wind turbine availability. To develop an optimal operation and maintenance plan for critical components...... to each other and they operate at a thermal-power cycling environment. Temperature loadings affect the reliability of soldered joints by developing cracks and fatigue processes that eventually result in failure. Based on Miner’s rule a linear damage model that incorporates a crack development...

  14. Wind power outlook 2006

    Energy Technology Data Exchange (ETDEWEB)

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  15. Sustainable Energy Solutions Task 2.0: Wind Turbine Reliability and Maintainability Enhancement through System-wide Structure Health Monitoring and Modifications to Rotating Components

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, Janet M. [Wichita State Univ., Wichita, KS (United States)

    2010-04-30

    An evaluation of nondestructive structural health monitoring methods was completed with over 132 documents, 37 specifically about wind turbines, summarized into a technology matrix. This matrix lists the technology, what can be monitored with this technology, and gives a short summary of the key aspects of the technology and its application. Passive and active acoustic emission equipment from Physical Acoustics Corp. and Acellent Technologies have been evaluated and selected for use in experimental state loading and fatigue tests of composite wind turbine blade materials. Acoustic Emission (AE) and Active Ultrasonic Testing (AUT), were applied to composite coupons with both simulated and actual damage. The results found that, while composites are more complicated in nature, compared to metallic structures, an artificial neural network analysis could still be used to determine damage. For the AE system, the failure mode could be determined (i.e. fiber breakage, delamination, etc.). The Acellent system has been evaluated to work well with composite materials. A test-rig for reliability testing of the rotating components was constructed. The research on the types of bearings used in the wind turbines indicated that in most of the designs, the main bearings utilized to support the shaft are cylindrical roller bearings. The accelerated degradation testing of a population of bearings was performed. Vibration and acoustic emission data was collected and analyzed in order to identify a representative degradation signal for each bearing to identify the initiation of the degradation process in the bearings. Afterwards, the RMS of the vibration signal from degradation initiation up to the end of the useful life of the bearing was selected to predict the remaining useful life of the bearing. This step included fitting Autoregressive Moving Average (ARMA) models to the degradation signals and approximating the probability distribution function (PDF) of remaining useful life

  16. Wind Turbine Converter Control Interaction with Complex Wind Farm Systems

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2013-01-01

    . The same wind turbine converter control strategy is evaluated in two different wind farms. It is emphasised that the grid-side converter controller should be characterised by sufficient harmonic/noise rejection and adjusted depending on wind farms to which it is connected. Various stability indices......This study presents wind turbine converter stability analysis of wind farms in frequency domain. The interaction between the wind turbine control system and the wind farm structure in wind farms is deeply investigated. Two wind farms (i.e. Horns Rev II and Karnice) are taken into consideration...... in this study. It is shown that wind farm components, such as long high-voltage alternating current cables and park transformers, can introduce significant low-frequency series resonances seen from the wind turbine terminals that can affect wind turbine control system operation and overall wind farm stability...

  17. On Inverse Coefficient Heat-Conduction Problems on Reconstruction of Nonlinear Components of the Thermal-Conductivity Tensor of Anisotropic Bodies

    Science.gov (United States)

    Formalev, V. F.; Kolesnik, S. A.

    2017-11-01

    The authors are the first to present a closed procedure for numerical solution of inverse coefficient problems of heat conduction in anisotropic materials used as heat-shielding ones in rocket and space equipment. The reconstructed components of the thermal-conductivity tensor depend on temperature (are nonlinear). The procedure includes the formation of experimental data, the implicit gradient-descent method, the economical absolutely stable method of numerical solution of parabolic problems containing mixed derivatives, the parametric identification, construction, and numerical solution of the problem for elements of sensitivity matrices, the development of a quadratic residual functional and regularizing functionals, and also the development of algorithms and software systems. The implicit gradient-descent method permits expanding the quadratic functional in a Taylor series with retention of the linear terms for the increments of the sought functions. This substantially improves the exactness and stability of solution of the inverse problems. Software systems are developed with account taken of the errors in experimental data and disregarding them. On the basis of a priori assumptions of the qualitative behavior of the functional dependences of the components of the thermal-conductivity tensor on temperature, regularizing functionals are constructed by means of which one can reconstruct the components of the thermal-conductivity tensor with an error no higher than the error of the experimental data. Results of the numerical solution of the inverse coefficient problems on reconstruction of nonlinear components of the thermal-conductivity tensor have been obtained and are discussed.

  18. Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study

    Directory of Open Access Journals (Sweden)

    Leonardo P. Chamorro

    2011-11-01

    Full Text Available Wind-tunnel experiments were carried out to better understand boundary layer effects on the flow pattern inside and above a model wind farm under thermally neutral conditions. Cross-wire anemometry was used to characterize the turbulent flow structure at different locations around a 10 by 3 array of model wind turbines aligned with the mean flow and arranged in two different layouts (inter-turbine separation of 5 and 7 rotor diameters in the direction of the mean flow by 4 rotor diameters in its span. Results suggest that the turbulent flow can be characterized in two broad regions. The first, located below the turbine top tip height, has a direct effect on the performance of the turbines. In that region, the turbulent flow statistics appear to reach equilibrium as close as the third to fourth row of wind turbines for both layouts. In the second region, located right above the first one, the flow adjusts slowly. There, two layers can be identified: an internal boundary layer where the flow is affected by both the incoming wind and the wind turbines, and an equilibrium layer, where the flow is fully adjusted to the wind farm. An adjusted logarithmic velocity distribution is observed in the equilibrium layer starting from the sixth row of wind turbines. The effective surface roughness length induced by the wind farm is found to be higher than that predicted by some existing models. Momentum recovery and turbulence intensity are shown to be affected by the wind farm layout. Power spectra show that the signature of the tip vortices, in both streamwise and vertical velocity components, is highly affected by both the relative location in the wind farm and the wind farm layout.

  19. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data

    Science.gov (United States)

    Romaguera, Mireia; Vaughan, R. Greg; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F.D.

    2018-01-01

    This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of LST, the LSTgt. We hypothesize that in geothermal areas the LSM time series will underestimate the LST as compared to the remote sensing data, since the former does not account for the geothermal component in its model.In order to extract LSTgt, two approaches of different nature (physical based and data mining) were developed and tested in an area of about 560 × 560 km2 centered at the Kenyan Rift. Pre-dawn data in the study area during the first 45 days of 2012 were analyzed.The results show consistent spatial and temporal LSTgt patterns between the two approaches, and systematic differences of about 2 K. A geothermal area map from surface studies was used to assess LSTgt inside and outside the geothermal boundaries. Spatial means were found to be higher inside the geothermal limits, as well as the relative frequency of occurrence of high LSTgt. Results further show that areas with strong topography can result in anomalously high LSTgt values (false positives), which suggests the need for a slope and aspect correction in the inputs to achieve realistic results in those areas. The uncertainty analysis indicates that large uncertainties of the input parameters may limit detection of LSTgt anomalies. To validate the approaches, higher spatial resolution images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data over the Olkaria geothermal field were used. An established method to estimate radiant geothermal flux was applied providing values between 9 and 24 W/m2 in the geothermal area, which coincides with the LSTgt flux rates obtained with the proposed approaches.The proposed approaches are a first step in estimating LSTgt

  20. The role of demand response in single and multi-objective wind-thermal generation scheduling: A stochastic programming

    International Nuclear Information System (INIS)

    Falsafi, Hananeh; Zakariazadeh, Alireza; Jadid, Shahram

    2014-01-01

    This paper focuses on using DR (Demand Response) as a means to provide reserve in order to cover uncertainty in wind power forecasting in SG (Smart Grid) environment. The proposed stochastic model schedules energy and reserves provided by both of generating units and responsive loads in power systems with high penetration of wind power. This model is formulated as a two-stage stochastic programming, where first-stage is associated with electricity market, its rules and constraints and the second-stage is related to actual operation of the power system and its physical limitations in each scenario. The discrete retail customer responses to incentive-based DR programs are aggregated by DRPs (Demand Response Providers) and are submitted as a load change price and amount offer package to ISO (Independent System Operator). Also, price-based DR program behavior and random nature of wind power are modeled by price elasticity concept of the demand and normal probability distribution function, respectively. In the proposed model, DRPs can participate in energy market as well as reserve market and submit their offers to the wholesale electricity market. This approach is implemented on a modified IEEE 30-bus test system over a daily time horizon. The simulation results are analyzed in six different case studies. The cost, emission and multiobjective functions are optimized in both without and with DR cases. The multiobjective generation scheduling model is solved using augmented epsilon constraint method and the best solution can be chosen by Entropy and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) methods. The results indicate demand side participation in energy and reserve scheduling reduces the total operation costs and emissions. - Highlights: • Simultaneous participation of loads in both energy and reserve scheduling. • Environmental/economical scheduling of energy and reserve. • Using demand response for covering wind generation forecast

  1. An experimental investigation of unsteady thermal processes on a pre-cooled circular cylinder of porous material in the wind

    Czech Academy of Sciences Publication Activity Database

    Král, Radomil

    2014-01-01

    Roč. 77, October (2014), s. 906-914 ISSN 0017-9310 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0060; GA ČR(CZ) GBP105/12/G059 Institutional support: RVO:68378297 Keywords : circular cylinder * unsteady heat transfer * temperature distribution * wind tunnel experiment * porous material Subject RIV: JN - Civil Engineering Impact factor: 2.383, year: 2014 http://www.sciencedirect.com/science/article/pii/S0017931014005171

  2. THE EFFECT OF MAGNETIC TOPOLOGY ON THERMALLY DRIVEN WIND: TOWARD A GENERAL FORMULATION OF THE BRAKING LAW

    Energy Technology Data Exchange (ETDEWEB)

    Réville, Victor; Brun, Allan Sacha; Strugarek, Antoine; Pinto, Rui F. [Laboratoire AIM, DSM/IRFU/SAp, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Matt, Sean P., E-mail: victor.reville@cea.fr, E-mail: sacha.brun@cea.fr, E-mail: s.matt@exeter.ac.uk, E-mail: strugarek@astro.umontreal.ca, E-mail: rui.pinto@obspm.fr [Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4SB (United Kingdom)

    2015-01-10

    Stellar wind is thought to be the main process responsible for the spin down of main-sequence stars. The extraction of angular momentum by a magnetized wind has been studied for decades, leading to several formulations for the resulting torque. However, previous studies generally consider simple dipole or split monopole stellar magnetic topologies. Here we consider, in addition to a dipolar stellar magnetic field, both quadrupolar and octupolar configurations, while also varying the rotation rate and the magnetic field strength. Sixty simulations made with a 2.5D cylindrical and axisymmetric set-up, and computed with the PLUTO code, were used to find torque formulations for each topology. We further succeed to give a unique law that fits the data for every topology by formulating the torque in terms of the amount of open magnetic flux in the wind. We also show that our formulation can be applied to even more realistic magnetic topologies, with examples of the Sun in its minimum and maximum phases as observed at the Wilcox Solar Observatory, and of a young K-star (TYC-0486-4943-1) whose topology has been obtained by Zeeman-Doppler Imaging.

  3. Wind Climate Parameters for Wind Turbine Fatigue Load Assessment

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    Site-specific assessment of wind turbine design requires verification that the individual wind turbine components can survive the site-specific wind climate. The wind turbine design standard, IEC 61400-1 (third edition), describes how this should be done using a simplified, equivalent wind climate...... climate required by the current design standard by comparing damage equivalent fatigue loads estimated based on wind climate parameters for each 10 min time-series with fatigue loads estimated based on the equivalent wind climate parameters. Wind measurements from Boulder, CO, in the United States...

  4. Wind Generators

    Science.gov (United States)

    1989-01-01

    When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.

  5. Wind farm economics

    International Nuclear Information System (INIS)

    Milborrow, D.J.

    1995-01-01

    The economics of wind energy are changing rapidly, with improvements in machine performance and increases in size both contributing to reduce costs. These trends are examined and future costs assessed. Although the United Kingdom has regions of high wind speed, these are often in difficult terrain and construction costs are often higher than elsewhere in Europe. Nevertheless, wind energy costs are converging with those of the conventional thermal sources. At present, bank loan periods for wind projects are shorter than for thermal plant, which means that energy prices are higher. Ways of overcoming this problem are explored. It is important, also, to examine the value of wind energy. It is argued that wind energy has a higher value than energy from centralized plant, since it is fed into the low-voltage distribution network. (Author)

  6. Hydrodynamic effects of nuclear active galaxy winds on host galaxies

    International Nuclear Information System (INIS)

    Schiano, A.V.R.

    1984-01-01

    In order to test the hypothesized existence of a powerful, thermal wind in active galactic nuclei, the hydrodynamic effects of such a wind on a model galactic interstellar medium (ISM) are investigated. The properties of several model ISMs are derived from observations of the Milky Way's ISM and those of nearby spiral and elliptical galaxies. The propagation of the wind into the low density gas component of the ISM is studied using the Kompaneets approximation of a strong explosion in an exponential atmosphere. Flattened gas distributions are shown to experience blow-out of wind gas along the symmetry axis. Next, the interaction of dense, interstellar clouds with the wind is investigated. The stability and mass loss of clouds in the wind are studied and it is proposed that clouds survive the encounter with the wind over large timescales. It is proposed that the narrow emission line regions (NELR) of active galaxies are the result of the interaction of active nuclei photons and a thermal wind on large, interstellar clouds

  7. Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: Cellulose, xylan and lignin. TG-FTIR analysis of volatile products

    Energy Technology Data Exchange (ETDEWEB)

    Benítez-Guerrero, Mónica, E-mail: monica_benitez_guerrero@yahoo.es [Departamento de Ingeniería Civil, Materiales y Fabricación, Universidad de Málaga, Escuela de Ingenierías, C/ Dr. Ortiz Ramos s/n, Campus Teatinos, 29071 Málaga (Spain); López-Beceiro, Jorge [Departamento de Ingeniería Industrial II, Escola Politécnica Superior, Universidade da Coruña, Avda. Mendizábal, 15403 Ferrol (Spain); Sánchez-Jiménez, Pedro E. [Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, C/ Américo Vespucio 49, 41092 Sevilla (Spain); Pascual-Cosp, José [Departamento de Ingeniería Civil, Materiales y Fabricación, Universidad de Málaga, Escuela de Ingenierías, C/ Dr. Ortiz Ramos s/n, Campus Teatinos, 29071 Málaga (Spain)

    2014-04-01

    Highlights: • Thermal decomposition of sisal fibers has been discussed. • Decompositions of lignocellulosic components and sisal are compared by TXRD and TG-FTIR. • Hot washing reduces the temperature range in which sisal decomposition occurs. • Sisal cellulose decomposition goes by an alternative route to levoglucosan generation. - Abstract: This paper presents in a comprehensive way the thermal behavior of natural and hot-washed sisal fibers, based on the fundamental components of lignocellulosic materials: cellulose, xylan and lignin. The research highlights the influence exerted on the thermal stability of sisal fibers by other constituents such as non-cellulosic polysaccharides (NCP) and mineral matter. Thermal changes were investigated by thermal X-ray diffraction (TXRD), analyzing the crystallinity index (%Ic) of cellulosic samples, and by simultaneous thermogravimetric and differential thermal analysis coupled with Fourier-transformed infrared spectrometry (TG/DTA-FTIR), which allowed to examine the evolution of the main volatile compounds evolved during the degradation under inert and oxidizing atmospheres. The work demonstrates the potential of this technique to elucidate different steps during the thermal decomposition of sisal, providing extensible results to other lignocellulosic fibers, through the analysis of the evolution of CO{sub 2}, CO, H{sub 2}O, CH{sub 4}, acetic acid, formic acid, methanol, formaldehyde and 2-butanone, and comparing it with the volatile products from pyrolysis of the biomass components. The hydroxyacetaldehyde detected during pyrolysis of sisal is indicative of an alternative route to that of levoglucosan, generated during cellulose pyrolysis. Hot-washing at 75 °C mostly extracts non-cellulosic components of low decomposition temperature, and reduces the range of temperature in which sisal decomposition occurs, causing a retard in the pyrolysis stage and increasing Tb{sub NCP} and Tb{sub CEL}, temperatures at the

  8. Thermal Analysis of Multilevel Grid-side Converters for 10-MW Wind turbines under Low-Voltage Ride Through

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Liserre, Marco

    2013-01-01

    in the power network and able to contribute to the grid recovery by injecting reactive current during grid faults. Consequently, the full-scale power converter solutions are becoming more and more popular to fulfill the growing challenges in the wind power application. Nevertheless, the loading of the power...... devices (particularly the diodes) under LVRT operation. Moreover, the three-level and five-level H-bridge topologies show more potential to reduce the inequality and level of device stress than the well-known three-level neutral point clamped topology....

  9. Reliability Evaluation of Power Capacitors in a Wind Turbine System

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede

    2018-01-01

    With the increasing penetration of wind power, reliable and cost-effective wind energy production is of more and more importance. The doubly-fed induction generator based partial-scale wind power converter is still dominating in the existing wind farms. In this paper, the reliability assessment...... block diagram is used to bridge the gap between the Weibull distribution based component-level individual capacitor and the capacitor bank. A case study of a 2 MW wind power converter shows that the lifetime is significantly reduced from the individual capacitor to the capacitor bank. Besides, the dc...... of power capacitors is studied considering the annual mission profile. According to an electro-thermal stress evaluation, the time-to-failure distribution of both the dc-link capacitor and ac-side filter capacitor is detailed investigated. Aiming for the systemlevel reliability analysis, a reliability...

  10. Cast iron components for the wind power industry. Development of resource saving products and processes in global competition. Final report; Gjutgods till vindkraftsindustrin. Utveckling av resurssnaala produkter och processer i global konkurrens. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Conny; Gustafsson, Ingela; Petku, Damir [Swedish Foundry Association, Joenkoeping (SE)] [and others

    2006-01-15

    The demand for large cast components in ductile iron for wind power plants has increased strongly. As wind power plants become larger, today up to 4-5 MW, the components grow with them. Weights around 20 tons become common, and are demanded in growing numbers. For most Swedish foundries production of such size components is impossible, but for a few, accustomed to large castings a new growing market has opened. Higher prices for scrap and electricity is however a menace to profit. This project concentrates on factors that may optimize the flow in production, reduce rejections, reduce the consumption of new sand, and to reduce energy consumption in all processes. The project has resulted in ten separate reports, that are included in this publication.

  11. Large-Eddy Simulation of the Impact of Great Garuda Project on Wind and Thermal Environment over Built-Up Area in Jakarta

    Science.gov (United States)

    Yucel, M.; Sueishi, T.; Inagaki, A.; Kanda, M.

    2017-12-01

    `Great Garuda' project is an eagle-shaped offshore structure with 17 artificial islands. This project has been designed for the coastal protection and land reclamation of Jakarta due to catastrophic flooding in the city. It offers an urban generation for 300.000 inhabitants and 600.000 workers in addition to its water safety goal. A broad coalition of Indonesian scientists has criticized the project for being negative impacts on the surrounding environment. Despite the vast research by Indonesian scientist on maritime environment, studies on wind and thermal environment over built-up area are still lacking. However, the construction of the various islands off the coast may result changes in wind patterns and thermal environment due to the alteration of the coastline and urbanization in the Jakarta Bay. Therefore, it is important to understand the airflow within the urban canopy in case of unpredictable gust events. These gust events may occur through the closely-packed high-rise buildings and pedestrians may be harmed from such gusts. Accordingly, we used numerical simulations to investigate the impact of the sea wall and the artificial islands over built-up area and, the intensity of wind gusts at the pedestrian level. Considering the fact that the size of turbulence organized structure sufficiently large computational domain is required. Therefore, a 19.2km×4.8km×1.0 km simulation domain with 2-m resolution in all directions was created to explicitly resolve the detailed shapes of buildings and the flow at the pedestrian level. This complex computation was accomplished by implementing a large-eddy simulation (LES) model. Two case studies were conducted considering the effect of realistic surface roughness and upward heat flux. Case_1 was conducted based on the current built environment and Case_2 for investigating the effect of the project on the chosen coastal region of the city. Fig.1 illustrates the schematic of the large-eddy simulation domains of two cases

  12. Influence of the angle between the wind and the isothermal surfaces on the boundary layer structures in turbulent thermal convection.

    Science.gov (United States)

    Shishkina, Olga; Wagner, Sebastian; Horn, Susanne

    2014-03-01

    We derive the asymptotes for the ratio of the thermal to viscous boundary layer thicknesses for infinite and infinitesimal Prandtl numbers Pr as functions of the angle β between the large-scale circulation and an isothermal heated or cooled surface for the case of turbulent thermal convection with laminar-like boundary layers. For this purpose, we apply the Falkner-Skan ansatz, which is a generalization of the Prandtl-Blasius one to a nonhorizontal free-stream flow above the viscous boundary layer. Based on our direct numerical simulations (DNS) of turbulent Rayleigh-Bénard convection for Pr=0.1, 1, and 10 and moderate Rayleigh numbers up to 108 we evaluate the value of β that is found to be around 0.7π for all investigated cases. Our theoretical predictions for the boundary layer thicknesses for this β and the considered Pr are in good agreement with the DNS results.

  13. Thermal response of core and central-cavity components of a high-temperature gas-cooled reactor in the absence of forced convection coolant flow

    International Nuclear Information System (INIS)

    Whaley, R.L.; Sanders, J.P.

    1976-09-01

    A means of determining the thermal responses of the core and the components of a high-temperature gas-cooled reactor after loss of forced coolant flow is discussed. A computer program, using a finite-difference technique, is presented together with a solution of the confined natural convection. The results obtained are reasonable and demonstrate that the computer program adequately represents the confined natural convection

  14. Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

    1995-01-01

    Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

  15. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  16. TG-MS analysis and kinetic study for thermal decomposition of six representative components of municipal solid waste under steam atmosphere.

    Science.gov (United States)

    Zhang, Jinzhi; Chen, Tianju; Wu, Jingli; Wu, Jinhu

    2015-09-01

    Thermal decomposition of six representative components of municipal solid waste (MSW, including lignin, printing paper, cotton, rubber, polyvinyl chloride (PVC) and cabbage) was investigated by thermogravimetric-mass spectroscopy (TG-MS) under steam atmosphere. Compared with TG and derivative thermogravimetric (DTG) curves under N2 atmosphere, thermal decomposition of MSW components under steam atmosphere was divided into pyrolysis and gasification stages. In the pyrolysis stage, the shapes of TG and DTG curves under steam atmosphere were almost the same with those under N2 atmosphere. In the gasification stage, the presence of steam led to a greater mass loss because of the steam partial oxidation of char residue. The evolution profiles of H2, CH4, CO and CO2 were well consistent with DTG curves in terms of appearance of peaks and relevant stages in the whole temperature range, and the steam partial oxidation of char residue promoted the generation of more gas products in high temperature range. The multi-Gaussian distributed activation energy model (DAEM) was proved plausible to describe thermal decomposition behaviours of MSW components under steam atmosphere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Expected energy fluxes onto ITER Plasma Facing Components during disruption thermal quenches from multi-machine data comparisons

    International Nuclear Information System (INIS)

    Loarte, A.; Andrew, P.; Matthews, G.F.; Paley, J.; Riccardo, V.; Counsell, G.; Eich, T.; Fuchs, C.; Gruber, O.; Herrmann, A.; Pautasso, G.; Federici, G.; Finken, K.H.; Maddaluno, G.; Whyte, D.

    2005-01-01

    A comparison of the power flux characteristics during the thermal quench of plasma disruptions among various tokamak experiments has been carried out and conclusions for ITER have been drawn. It is generally observed that the energy of the plasma at the thermal quench is much smaller than that of a full performance plasma. The timescales for power fluxes onto PFCs during the thermal quench, as determined by IR measurements, are found to scale with device size but not to correlate with pre-disruptive plasma characteristics. The profiles of the thermal quench power fluxes are very broad for diverted discharges, typically a factor of 5-10 broader than that measured during 'normal' plasma operation, while for limiter discharges this broadening is absent. The combination of all the above factors is used to derive the expected range of power fluxes on the ITER divertor target during the thermal quench. The new extrapolation derived in this paper indicates that the average disruption in ITER will deposit an energy flux approximately one order of magnitude lower than previously thought. The evaluation of the ITER divertor lifetime with these revised specifications is carried out. (author)

  18. Performance evaluation of a thermal Doppler Michelson interferometer system.

    Science.gov (United States)

    Mani, Reza; Dobbie, Steven; Scott, Alan; Shepherd, Gordon; Gault, William; Brown, Stephen

    2005-11-20

    The thermal Doppler Michelson interferometer is the primary element of a proposed limb-viewing satellite instrument called SWIFT (Stratospheric Wind Interferometer for Transport studies). SWIFT is intended to measure stratospheric wind velocities in the altitude range of 15-45 km. SWIFT also uses narrowband tandem etalon filters made of germanium to select a line out of the thermal spectrum. The instrument uses the same technique of phase-stepping interferometry employed by the Wind Imaging Interferometer onboard the Upper Atmosphere Research Satellite. A thermal emission line of ozone near 9 microm is used to detect the Doppler shift due to winds. A test bed was set up for this instrument that included the Michelson interferometer and the etalon filters. For the test bed work, we investigate the behavior of individual components and their combination and report the results.

  19. An investigation on the effects of phase change material on material components used for high temperature thermal energy storage system

    Science.gov (United States)

    Kim, Taeil; Singh, Dileep; Zhao, Weihuan; Yua, Wenhua; France, David M.

    2016-05-01

    The latent heat thermal energy storage (LHTES) systems for concentrated solar power (CSP) plants with advanced power cycle require high temperature phase change materials (PCMs), Graphite foams with high thermal conductivity to enhance the poor thermal conductivity of PCMs. Brazing of the graphite foams to the structural metals of the LHTES system could be a method to assemble the system and a method to protect the structural metals from the molten salts. In the present study, the LHTES prototype capsules using MgCl2-graphite foam composites were assembled by brazing and welding, and tested to investigate the corrosion attack of the PCM salt on the BNi-4 braze. The microstructural analysis showed that the BNi-4 braze alloy can be used not only for the joining of structure alloy to graphite foams but also for the protecting of structure alloy from the corrosion by PCM.

  20. Ions and electrons thermal effects on the fast-slow mode conversion process in a three components plasma

    International Nuclear Information System (INIS)

    Fidone, I.; Gomberoff, L.

    1977-07-01

    Fast-slow mode conversion in a deuterium plasma with a small amount of hydrogen impurity, for frequencies close to the two-ion hybrid frequency, is investigated. It is shown that while electron thermal effects tend to inhibit the wave conversion process, ion thermal effects tend to restore, qualitatively, the cold plasma properties, favouring therefore, the energy exchange between the two modes. The aforementioned effects are competitive for zetasub(o)sup(e)=1/nsub(parall).vsub(e)>=1. For zetasub(o)sup(e)<=1, electron thermal effects, in particular Landau damping, dominate over ion Larmor radius effects, drastically diminishing the wave conversion efficacy. For zetasub(o)sup(e)<<1, the coupling between the modes disappears altogether

  1. Materials colloquium `96: Thermal insulation coatings. Thermally insulating coating systems for heavy-duty structural components in aerospace engineering and energy engineering; Werkstoff-Kolloquium `96: Waermedaemmschichten. Waermeisolierende Schichtsysteme fuer hoechstbelastete Strukturbauteile in der Luft- und Raumfahrt sowie der Energietechnik

    Energy Technology Data Exchange (ETDEWEB)

    Peters, M.; Schulz, U.; Leushake, U.; Kaysser, W.A. [eds.

    1996-12-31

    The 15 contributions in this colloquium report document the current state of research and development in Germany in the field of thermally insulating layer structures for heavy-duty components like gas turbines. Five papers have been recorded separately in the ENERGY database. [Deutsch] Die 15 Beitraege in diesem Kolloquiumband dokumentieren den aktuellen Stand der Forschungs- und Entwicklungsarbeiten in Deutschland auf dem Gebiet der waermeisolierenden Schichtsysteme fuer hoechstbelastete Bauteile wie z.B. Gasturbinen. Fuer die Datenbank ENERGY wurden fuenf Artikel separat aufgenommen.

  2. MERRA 3D IAU Tendency, Wind Components, Time average 3-hourly (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3CPUDT or tavg3_3d_udt_Cp data product is the MERRA Data Assimilation System 3-Dimensional eastward wind tendencies that is time averaged on pressure levels...

  3. MERRA 3D IAU Tendency, Wind Components, Monthly Mean (1.25x1.25L42) V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMCPUDT or tavgM_3d_udt_Cp data product is the MERRA Data Assimilation System 3-Dimensional eastward wind tendencies that is time averaged on pressure levels...

  4. Extending the life of thermal power plants components by using the triad: checking - diagnosis - restoring; Extinderea duratei de viata a componentelor termoenergetice utilizand Triada: expertiza - diagnoza - remediere

    Energy Technology Data Exchange (ETDEWEB)

    Lupescue, L.; Nicolescu, N.; Delamarian, C.

    2004-12-01

    The current state of thermal power plants components requires a clear cut definition of how to apply the concept of 'Assessing the state and lifetime' to them. The application of the concept of prolonging the life of thermal power plants components represents a practical alternative to the activity of preventive maintenance, by using 'the component oriented maintenance'. A feasibility study gives results that are a covering prediction for the level of technical risk characterizing the operation of technological equipment. There are many methods of analysing the dangers and assessing the risk, as two basic types can be established: a deductive one, in which the final event is presupposed and the events that might cause this final event are searched, and an inductive one, in which the failure of a component is presupposed, and the analysis is to identify the events that led to failure. In compliance with the worldwide trends the authors of the present paper make efforts to apply the methods specific of the probability analyses, efficiently and harmoniously supplementing the concerns and results of the activities based on deterministic methods and models. 13 refs., 1 fig.

  5. Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage

    International Nuclear Information System (INIS)

    Zhang, Yuan; Yang, Ke; Li, Xuemei; Xu, Jianzhong

    2014-01-01

    A simulation model consisting of wind speed, wind turbine and AA-CAES (advanced adiabatic compressed air energy storage) system is developed in this paper, and thermodynamic analysis on energy conversion and transfer in hybrid system is carried out. The impacts of stable wind speed and unstable wind speed on the hybrid system are analyzed and compared from the viewpoint of energy conversion and system efficiency. Besides, energy conversion relationship between wind turbine and AA-CAES system is investigated on the basis of process analysis. The results show that there are several different forms of energy in hybrid system, which have distinct conversion relationship. As to wind turbine, power coefficient determines wind energy utilization efficiency, and in AA-CAES system, it is compressor efficiency that mainly affects energy conversion efficiencies of other components. The strength and fluctuation of wind speed have a direct impact on energy conversion efficiencies of components of hybrid system, and within proper wind speed scope, the maximum of system efficiency could be expected. - Highlights: • A hybrid system consisting of wind, wind turbine and AA-CAES system is established. • Energy conversion in hybrid system with stable and unstable wind speed is analyzed. • Maximum efficiency of hybrid system can be reached within proper wind speed scope. • Thermal energy change in hybrid system is more sensitive to wind speed change. • Compressor efficiency can affect other efficiencies in AA-CAES system

  6. Evaluation of thermal conductivity of multi-component and multi-phase nuclear fuels by the finite element method

    International Nuclear Information System (INIS)

    Kurosaki, K.

    2015-01-01

    The effects of the shape and distribution state of voids on the thermal conductivity of UO 2 , and the temperature distribution and heat flow within the irradiated MOX fuel were evaluated by finite element analysis. Although the work is still in progress, some preliminary results are presented. (author)

  7. Modelling the water mass circulation in the Aegean Sea. Part I: wind stresses, thermal and haline fluxes

    Directory of Open Access Journals (Sweden)

    I. A. Valioulis

    1994-07-01

    Full Text Available The aim of this work is to develop a computer model capable of simulating the water mass circulation in the Aegean Sea. There is historical, phenomenological and recent experimental evidence of important hydrographical features whose causes have been variably identified as the highly complex bathymetry, the extreme seasonal variations in temperature, the considerable fresh water fluxes, and the large gradients in salinity or temperature across neighbouring water masses (Black Sea and Eastern Mediterranean. In the approach taken here, physical processes are introduced into the model one by one. This method reveals the parameters responsible for permanent and seasonal features of the Aegean Sea circulation. In the first part of the work reported herein, wind-induced circulation appears to be seasonally invariant. This yearly pattern is overcome by the inclusion of baroclinicity in the model in the form of surface thermohaline fluxes. The model shows an intricate pattern of sub-basin gyres and locally strong currents, permanent or seasonal, in accord with the experimental evidence.

  8. Modelling the water mass circulation in the Aegean Sea. Part I: wind stresses, thermal and haline fluxes

    Directory of Open Access Journals (Sweden)

    I. A. Valioulis

    Full Text Available The aim of this work is to develop a computer model capable of simulating the water mass circulation in the Aegean Sea. There is historical, phenomenological and recent experimental evidence of important hydrographical features whose causes have been variably identified as the highly complex bathymetry, the extreme seasonal variations in temperature, the considerable fresh water fluxes, and the large gradients in salinity or temperature across neighbouring water masses (Black Sea and Eastern Mediterranean. In the approach taken here, physical processes are introduced into the model one by one. This method reveals the parameters responsible for permanent and seasonal features of the Aegean Sea circulation. In the first part of the work reported herein, wind-induced circulation appears to be seasonally invariant. This yearly pattern is overcome by the inclusion of baroclinicity in the model in the form of surface thermohaline fluxes. The model shows an intricate pattern of sub-basin gyres and locally strong currents, permanent or seasonal, in accord with the experimental evidence.

  9. An experimental investigation on the thermal field of overlapping layers in laser-assisted tape winding process

    Science.gov (United States)

    Hosseini, S. M. A.; Baran, I.; Akkerman, R.

    2018-05-01

    The laser-assisted tape winding (LATW) is an automated process for manufacturing fiber-reinforced thermoplastic tubular products, such as pipes and pressure vessels. Multi-physical phenomena such as heat transfer, mechanical bonding, phase changes and solid mechanics take place during the process. These phenomena need to be understood and described well for an improved product reliability. Temperature is one of the important parameters in this process to control and optimize the product quality which can be employed in an intelligent model-based inline control system. The incoming tape can overlap with the already wounded layer during the process based on the lay-up configuration. In this situation, the incoming tape can step-on or step-off to an already deposited layer/laminate. During the overlapping, the part temperature changes due to the variation of the geometry caused by previously deposited layer, i.e. a bump geometry. In order to qualify the temperature behavior at the bump regions, an experimental set up is designed on a flat laminate. Artificial bumps/steps are formed on the laminate with various thicknesses and fiber orientations. As the laser head experiences the step-on and step-off, the IR (Infra-Red) camera and the embedded thermocouples measure the temperature on the surface and inside the laminate, respectively. During the step-on, a small drop in temperature is observed while in step-off a higher peak in temperature is observed. It can be concluded that the change in the temperature during overlapping is due to the change in laser incident angle made by the bump geometry. The effect of the step thickness on the temperature peak is quantified and found to be significant.

  10. Wind energy economics

    International Nuclear Information System (INIS)

    Milborrow, D.J.

    1995-01-01

    The economics of wind energy have improved rapidly in the past few years, with improvements in machine performance and increases in size both contributing to reduce costs. These trends are examined and future costs assessed. As bank loan periods for wind projects are shorter than for thermal plant, the effect on the price of wind energy is discussed. It is argued that wind energy has a higher value than that of centralised plant, since it is fed into the low voltage distribution network and it follows that the price of wind energy is converging with its value. The paper also includes a brief review of the capacity credit of wind plant and an assessment of the cost penalties which are incurred due to the need to hold extra plant on part load. These penalties are shown to be small. (author)

  11. Influence of Philosamia ricini silk fibroin components on morphology, secondary structure and thermal properties of chitosan biopolymer film.

    Science.gov (United States)

    Prasong, S; Nuanchai, K; Wilaiwan, S

    2009-09-15

    This study aimed to prepare Eri (Philosamia ricini) Silk Fibroin (SF)/chitosan (CS) blend films by a solvent evaporation method and to compare the blend films with both native SF and CS films. Influence of SF ratios on the morphology, secondary structure and thermal decomposition of the CS blend films were investigated. The native SF and CS films were uniform and homogeneous without phase separation. For the blend films, the uniform can be found less than 60% of SF composition. All of SF/CS blend films showed both SF and CS characteristics. FT-IR results showed that the blend films composed of both random coil and beta-sheet with predominant of beta-sheet form. Interaction of intermolecular between SF and CS have occurred which were measured by thermogravimetric thermograms. Increasing of SF contents was leading to the increase of beta-sheet structures which were enhanced the thermal stability of the CS blend films.

  12. Thermal-Fatigue Analysis of W-coated Ferritic-Martensitic Steel Mockup for Fusion Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Kim, Suk Kwon; Park, Seong Dae; Kim, Dong Jun [KAERI, Daejeon (Korea, Republic of); Moon, Se Yeon; Hong, Bong Guen [Chonbuk University, Jeonju (Korea, Republic of)

    2016-05-15

    In this study, commercial ANSYS-CFX for thermalhydraulic analysis and ANSYS-mechanical for the thermo-mechanical analysis are used to evaluate the thermal-lifetime of the mockup to determine the test conditions. Also, the Korea Heat Load Test facility with an Electron Beam (KoHLT-EB) will be used and its water cooling system is considered to perform the thermal-hydraulic analysis especially for considering the two-phase analysis with a higher heat flux conditions. Through the ITER blanket first wall (BFW) development project in Korea, the joining methods were developed with a beryllium (Be) layer as a plasma-facing material, a copper alloy (CuCrZr) layer as a heat sink, and type 316L austenitic stainless steel (SS316L) as a structural material. And joining methods were developed such as Be as an armor and FMS as a structural material, or W as an armor and FMS as a structural material were developed through the test blanket module (TBM) program. As a candidate of PFC for DEMO, a new W/FMS joining methods, W coating with plasma torch, have been developed. The HHF test conditions are found by performing a thermal-hydraulic and thermo-mechanical analysis with the conventional codes such as ANSYSCFX and .mechanical especially for considering the two-phase condition in cooling tube.

  13. A study on specific heat capacities of Li-ion cell components and their influence on thermal management

    Science.gov (United States)

    Loges, André; Herberger, Sabrina; Seegert, Philipp; Wetzel, Thomas

    2016-12-01

    Thermal models of Li-ion cells on various geometrical scales and with various complexity have been developed in the past to account for the temperature dependent behaviour of Li-ion cells. These models require accurate data on thermal material properties to offer reliable validation and interpretation of the results. In this context a thorough study on the specific heat capacities of Li-ion cells starting from raw materials and electrode coatings to representative unit cells of jelly rolls/electrode stacks with lumped values was conducted. The specific heat capacity is reported as a function of temperature and state of charge (SOC). Seven Li-ion cells from different manufactures with different cell chemistry, application and design were considered and generally applicable correlations were developed. A 2D thermal model of an automotive Li-ion cell for plug-in hybrid electric vehicle (PHEV) application illustrates the influence of specific heat capacity on the effectivity of cooling concepts and the temperature development of Li-ion cells.

  14. Wind: new wind markets

    International Nuclear Information System (INIS)

    Cameron, A.

    2005-01-01

    The June 2005 edition of 'Wind Force 12' suggests that wind could generate 12% of global electricity requirements by 2020. But what moves a potential market into an emerging one? Geographical factors include a good wind resource, plenty of open space and the ability to get the generated electricity to end-users. A country's political framework is equally important, with fixed price systems, renewable quota systems and political will all playing a part. Some potential wind markets around the world are thought to have the conditions necessary to become key players in the wind industry. The emerging markets in countries such as Australia, Brazil, Canada, France, Japan and the Philippines are highlighted as examples

  15. CALCULATED TEMPERATURE RISE AND THERMAL ELONGATION OF STRUCTURAL COMPONENTS, DEPENDING ON ACTION INTEGRAL OF INJECTED LIGHTNING CURRENTS

    DEFF Research Database (Denmark)

    Madsen, Søren Find

    2005-01-01

    expressions established, accounts for the geometry of the structure (round conductor, rectangular cross section, pipe, plane sheet, etc), the material properties (Aluminum, Copper, Carbon Fiber Composites, etc.), the frequency of the current (skin depth) and the Specific Energy (Action Integral). For linear...... structures (wires, bars etc.), the result is the resistance of the structure, the final temperature, and the thermal elongation depending on geometry and material properties. Regarding arc injection in the centre of plane specimens the equations enables calculation of the temperature as a function...

  16. An improved numerical model for the investigation of thermal hydraulic phenomena with applications to LMR reactor components

    International Nuclear Information System (INIS)

    Chan, B.C.; Kennett, R.J.; Van Tuyle, G.J.

    1992-01-01

    A basic limited scope, fast-running computer model is presented for the solution of single phase two-dimensional transients in thermally coupled incompressible fluid flow problems. The governing equations and the two-equation transport model (k-ε) of turbulence are reduced to a set of linear algebraic equations in an implicit finite difference scheme, based on the control volume approach. These equations are solved iteratively in a line-by-line procedure using the tri-diagonal matrix algorithm. The numerical formulation and general calculational procedure are described in detail. The calculations show good agreement when compared with experimental data and other independent analyses

  17. Development of thermal control methods for specialized components and scientific instruments at very low temperatures (follow-on)

    Science.gov (United States)

    Wright, J. P.; Wilson, D. E.

    1976-01-01

    Many payloads currently proposed to be flown by the space shuttle system require long-duration cooling in the 3 to 200 K temperature range. Common requirements also exist for certain DOD payloads. Parametric design and optimization studies are reported for multistage and diode heat pipe radiator systems designed to operate in this temperature range. Also optimized are ground test systems for two long-life passive thermal control concepts operating under specified space environmental conditions. The ground test systems evaluated are ultimately intended to evolve into flight test qualification prototypes for early shuttle flights.

  18. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data

    NARCIS (Netherlands)

    Romaguera, M.; Vaughan, R. G.; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F. D.

    This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of

  19. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data

    NARCIS (Netherlands)

    Romaguera, M.; Vaughan, R. G.; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F. D.

    2017-01-01

    This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of

  20. Report on Understanding and Predicting Effects of Thermal Aging on Microstructure and Tensile Properties of Grade 91 Steel for Structural Components

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Weiying [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    This report provides an update on understanding and predicting the effects of long-term thermal aging on microstructure and tensile properties of G91 to corroborate the ASME Code rules in strength reduction due to elevated temperature service. The research is to support the design and long-term operation of G91 structural components in sodium-cooled fast reactors (SFRs). The report is a Level 2 deliverable in FY17 (M2AT-17AN1602017), under the Work Package AT-17AN160201, “SFR Materials Testing” performed by the Argonne National Laboratory (ANL), as part of the Advanced Reactor Technologies Program.

  1. A Bayesian model to correct underestimated 3-D wind speeds from sonic anemometers increases turbulent components of the surface energy balance

    Science.gov (United States)

    John M. Frank; William J. Massman; Brent E. Ewers

    2016-01-01

    Sonic anemometers are the principal instruments in micrometeorological studies of turbulence and ecosystem fluxes. Common designs underestimate vertical wind measurements because they lack a correction for transducer shadowing, with no consensus on a suitable correction. We reanalyze a subset of data collected during field experiments in 2011 and 2013 featuring two or...

  2. Wind power in Norway

    International Nuclear Information System (INIS)

    1998-01-01

    This report analyses business costs and socio-economic costs in the development of wind power in Norway and policy instruments to encourage such a development. It is founded on an analysis of the development of wind power in other countries, notably U.S.A, Denmark, Germany, the Netherlands and Britain. The report describes the institutional background in each country, the policy instruments that have been used and still are and the results achieved. The various cost components in Norwegian wind power development and the expected market price of wind power are also discussed. The discussion of instruments distinguishes between investment oriented and production oriented instruments. 8 refs., 9 figs., 3 tabs

  3. Statistically based uncertainty analysis for ranking of component importance in the thermal-hydraulic safety analysis of the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    Wilson, G.E.

    1992-01-01

    The Analytic Hierarchy Process (AHP) has been used to help determine the importance of components and phenomena in thermal-hydraulic safety analyses of nuclear reactors. The AHP results are based, in part on expert opinion. Therefore, it is prudent to evaluate the uncertainty of the AHP ranks of importance. Prior applications have addressed uncertainty with experimental data comparisons and bounding sensitivity calculations. These methods work well when a sufficient experimental data base exists to justify the comparisons. However, in the case of limited or no experimental data the size of the uncertainty is normally made conservatively large. Accordingly, the author has taken another approach, that of performing a statistically based uncertainty analysis. The new work is based on prior evaluations of the importance of components and phenomena in the thermal-hydraulic safety analysis of the Advanced Neutron Source Reactor (ANSR), a new facility now in the design phase. The uncertainty during large break loss of coolant, and decay heat removal scenarios is estimated by assigning a probability distribution function (pdf) to the potential error in the initial expert estimates of pair-wise importance between the components. Using a Monte Carlo sampling technique, the error pdfs are propagated through the AHP software solutions to determine a pdf of uncertainty in the system wide importance of each component. To enhance the generality of the results, study of one other problem having different number of elements is reported, as are the effects of a larger assumed pdf error in the expert ranks. Validation of the Monte Carlo sample size and repeatability are also documented

  4. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  5. Thermal-Fatigue Analysis of W-joined Ferritic-Martensitic Steel Mockup for Fusion Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Kim, Suk Kwon; Park, Seong Dae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Moon, Se Yeon; Hong, Bong Guen [Chonbuk National University, Chonbuk (Korea, Republic of)

    2015-10-15

    Through the ITER blanket first wall (BFW) development project in Korea, the joining methods were developed with a beryllium (Be) layer as a plasma-facing material, a copper alloy (CuCrZr) layer as a heat sink, and type 316L austenitic stainless steel (SS316L) as a structural material. And joining methods were developed such as Be as an armor and FMS as a structural material, or W as an armor and FMS as a structural material were developed through the test blanket module (TBM) program. As a candidate of PFC for DEMO, W/FMS joining methods have been developed and a new Ti interlayer was applied differently from the previous work. In the present study, the W/FMS PFC development was introduced with the following procedure to apply to the PFCs for a fusion reactor: (1) Three W/FMS mockups were fabricated using the developed HIP followed by a post-HIP heat treatment (PHHT). (2) Because the High Heat Flux (HHF) test should be performed over the thermal lifetime of the mockup under the proper test conditions to confirm the joint's integrity, the test conditions were determined through a preliminary analysis. In this study, commercial ANSYS-CFX for thermalhydraulic analysis and ANSYS-mechanical for the thermo-mechanical analysis are used to evaluate the thermal-lifetime of the mockup to determine the test conditions. Also, the Korea Heat Load Test facility with an Electron Beam (KoHLT-EB) will be used and its water cooling system is considered to perform the thermal-hydraulic analysis especially for considering the two-phase analysis with a higher heat flux conditions. From the analysis, the heating and the cooling conditions were determined for 0.5- and 1.0-MW/m{sup 2} heat fluxes, respectively. Elastic-plastic analysis is performed to determine the lifetime and finally, the 1.0 MW/m{sup 2} heat flux conditions are determined up to 4,306 cycles. The test will be done in the near future and the measured temperatures will be compared with the present simulation results.

  6. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  7. HYDROTHEMAL ALTERATION MAPPING USING FEATURE-ORIENTED PRINCIPAL COMPONENT SELECTION (FPCS METHOD TO ASTER DATA:WIKKI AND MAWULGO THERMAL SPRINGS, YANKARI PARK, NIGERIA

    Directory of Open Access Journals (Sweden)

    A. J. Abubakar

    2017-10-01

    Full Text Available Geothermal systems are essentially associated with hydrothermal alteration mineral assemblages such as iron oxide/hydroxide, clay, sulfate, carbonate and silicate groups. Blind and fossilized geothermal systems are not characterized by obvious surface manifestations like hot springs, geysers and fumaroles, therefore, they could not be easily identifiable using conventional techniques. In this investigation, the applicability of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER were evaluated in discriminating hydrothermal alteration minerals associated with geothermal systems as a proxy in identifying subtle Geothermal systems at Yankari Park in northeastern Nigeria. The area is characterized by a number of thermal springs such as Wikki and Mawulgo. Feature-oriented Principal Component selection (FPCS was applied to ASTER data based on spectral characteristics of hydrothermal alteration minerals for a systematic and selective extraction of the information of interest. Application of FPCS analysis to bands 5, 6 and 8 and bands 1, 2, 3 and 4 datasets of ASTER was used for mapping clay and iron oxide/hydroxide minerals in the zones of Wikki and Mawulgo thermal springs in Yankari Park area. Field survey using GPS and laboratory analysis, including X-ray Diffractometer (XRD and Analytical Spectral Devices (ASD were carried out to verify the image processing results. The results indicate that ASTER dataset reliably and complementarily be used for reconnaissance stage of targeting subtle alteration mineral assemblages associated with geothermal systems.

  8. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part I: Theory and description of model capabilities

    Science.gov (United States)

    Raffray, A. René; Federici, Gianfranco

    1997-04-01

    RACLETTE (Rate Analysis Code for pLasma Energy Transfer Transient Evaluation), a comprehensive but relatively simple and versatile model, was developed to help in the design analysis of plasma facing components (PFCs) under 'slow' high power transients, such as those associated with plasma vertical displacement events. The model includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the PFC block thermal response and the coolant behaviour. This paper represents part I of two sister and complementary papers. It covers the model description, calibration and validation, and presents a number of parametric analyses shedding light on and identifying trends in the PFC armour block response to high plasma energy deposition transients. Parameters investigated include the plasma energy density and deposition time, the armour thickness and the presence of vapour shielding effects. Part II of the paper focuses on specific design analyses of ITER plasma facing components (divertor, limiter, primary first wall and baffle), including improvements in the thermal-hydraulic modeling required for better understanding the consequences of high energy deposition transients in particular for the ITER limiter case.

  9. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Pt. I. Theory and description of model capabilities

    International Nuclear Information System (INIS)

    Raffray, A.R.; Federici, G.

    1997-01-01

    For pt.II see ibid., p.101-30, 1997. RACLETTE (Rate Analysis Code for pLasma Energy Transfer Transient Evaluation), a comprehensive but relatively simple and versatile model, was developed to help in the design analysis of plasma facing components (PFCs) under 'slow' high power transients, such as those associated with plasma vertical displacement events. The model includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the PFC block thermal response and the coolant behaviour. This paper represents part I of two sister and complementary papers. It covers the model description, calibration and validation, and presents a number of parametric analyses shedding light on and identifying trends in the PFC armour block response to high plasma energy deposition transients. Parameters investigated include the plasma energy density and deposition time, the armour thickness and the presence of vapour shielding effects. Part II of the paper focuses on specific design analyses of ITER plasma facing components (divertor, limiter, primary first wall and baffle), including improvements in the thermal-hydraulic modeling required for better understanding the consequences of high energy deposition transients in particular for the ITER limiter case. (orig.)

  10. Concentrating solar thermal power.

    Science.gov (United States)

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.

  11. Numerical Investigation of AdBlue Droplet Evaporation and Thermal Decomposition in the Context of NOx-SCR Using a Multi-Component Evaporation Model

    Directory of Open Access Journals (Sweden)

    Kaushal Nishad

    2018-01-01

    Full Text Available To cope with the progressive tightening of the emission regulations, gasoline and diesel engines will continuously require highly improved exhaust after-treatment systems. In the case of diesel engines, the selective catalytic reduction (SCR appears as one of the widely adopted technologies to reduce NOx (nitrogen oxides emissions. Thereby, with the help of available heat from exhaust gas, the injected urea–water solution (UWS turns inside the exhaust port immediately into gaseous ammonia (NH3 by evaporation of mixture and thermal decomposition of urea. The reaction and conversion efficiency mostly depend upon the evaporation and subsequent mixing of the NH3 into the exhaust gas, which in turn depends upon the engine loading conditions. Up to now, the aggregation of urea after evaporation of water and during the thermal decomposition of urea is not clearly understood. Hence, various scenarios for the urea depletion in the gaseous phase that can be envisaged have to be appraised under SCR operating conditions relying on an appropriate evaporation description. The objective of the present paper is therefore fourfold. First, a reliable multi-component evaporation model that includes a proper binary diffusion coefficient is developed for the first time in the Euler–Lagrangian CFD (computational fluid dynamics framework to account properly for the distinct evaporation regimes of adBlue droplets under various operating conditions. Second, this model is extended for thermal decomposition of urea in the gaseous phase, where, depending on how the heat of thermal decomposition of urea is provided, different scenarios are considered. Third, since the evaporation model at and around the droplet surface is based on a gas film approach, how the material properties are evaluated in the film influences the process results is reported, also for the first time. Finally, the impact of various ambient temperatures on the adBlue droplet depletion characteristics

  12. Simulation model for wind energy storage systems. Volume I. Technical report. [SIMWEST code

    Energy Technology Data Exchange (ETDEWEB)

    Warren, A.W.; Edsinger, R.W.; Chan, Y.K.

    1977-08-01

    The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume I gives a brief overview of the SIMWEST program and describes the two NASA defined simulation studies.

  13. Index Bioclimatic "Wind-Chill"

    Directory of Open Access Journals (Sweden)

    Teodoreanu Elena

    2015-05-01

    Full Text Available This paper presents an important bioclimatic index which shows the influence of wind on the human body thermoregulation. When the air temperature is high, the wind increases thermal comfort. But more important for the body is the wind when the air temperature is low. When the air temperature is lower and wind speed higher, the human body is threatening to freeze faster. Cold wind index is used in Canada, USA, Russia (temperature "equivalent" to the facial skin etc., in the weather forecast every day in the cold season. The index can be used and for bioclimatic regionalization, in the form of skin temperature index.

  14. Mechanical thermal and electric measurements on materials and components of the main coils of the Milan superconducting cyclotron

    International Nuclear Information System (INIS)

    Acerbi, E.; Rossi, L.

    1988-01-01

    The coils of the Milan Superconducting Cyclotron are the largest superconducting devices built up to now in Italy and constitute the first superconducting magnet for accelerator in Europe. Because of the large stored energy (more than 40 MJ), of the high stresses and of of the need of reliability, a lot of measurements were carried out as well on materials used for the coils, both on superconducting cable and structural materials, as on the main components of the coils and on two double pancakes prototypes (wound with full copper cable). In this paper the results on these measurements are reported and the results of tests on the prototypes are discussed. The aim is to provide an easy source of data for superconducting coils useful to verify calculations or to improve the performances

  15. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  16. Implementation of wall film condensation model to two-fluid model in component thermal hydraulic analysis code CUPID - 15237

    International Nuclear Information System (INIS)

    Lee, J.H.; Park, G.C.; Cho, H.K.

    2015-01-01

    In the containment of a nuclear reactor, the wall condensation occurs when containment cooling system and structures remove the mass and energy release and this phenomenon is of great importance to ensure containment integrity. If the phenomenon occurs in the presence of non-condensable gases, their accumulation near the condensate film leads to significant reduction in heat transfer during the condensation. This study aims at simulating the wall film condensation in the presence of non-condensable gas using CUPID, a computational multi-fluid dynamics code, which is developed by the Korea Atomic Energy Research Institute (KAERI) for the analysis of transient two-phase flows in nuclear reactor components. In order to simulate the wall film condensation in containment, the code requires a proper wall condensation model and liquid film model applicable to the analysis of the large scale system. In the present study, the liquid film model and wall film condensation model were implemented in the two-fluid model of CUPID. For the condensation simulation, a wall function approach with heat and mass transfer analogy was applied in order to save computational time without considerable refinement for the boundary layer. This paper presents the implemented wall film condensation model and then, introduces the simulation result using CUPID with the model for a conceptual condensation problem in a large system. (authors)

  17. Influence of wind energy forecast in deterministic and probabilistic sizing of reserves

    Energy Technology Data Exchange (ETDEWEB)

    Gil, A.; Torre, M. de la; Dominguez, T.; Rivas, R. [Red Electrica de Espana (REE), Madrid (Spain). Dept. Centro de Control Electrico

    2010-07-01

    One of the challenges in large-scale wind energy integration in electrical systems is coping with wind forecast uncertainties at the time of sizing generation reserves. These reserves must be sized large enough so that they don't compromise security of supply or the balance of the system, but economic efficiency must be also kept in mind. This paper describes two methods of sizing spinning reserves taking into account wind forecast uncertainties, deterministic using a probabilistic wind forecast and probabilistic using stochastic variables. The deterministic method calculates the spinning reserve needed by adding components each of them in order to overcome one single uncertainty: demand errors, the biggest thermal generation loss and wind forecast errors. The probabilistic method assumes that demand forecast errors, short-term thermal group unavailability and wind forecast errors are independent stochastic variables and calculates the probability density function of the three variables combined. These methods are being used in the case of the Spanish peninsular system, in which wind energy accounted for 14% of the total electrical energy produced in the year 2009 and is one of the systems in the world with the highest wind penetration levels. (orig.)

  18. Extrapolating Satellite Winds to Turbine Operating Heights

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long...

  19. Wind energy statistics

    International Nuclear Information System (INIS)

    Holttinen, H.; Tammelin, B.; Hyvoenen, R.

    1997-01-01

    The recording, analyzing and publishing of statistics of wind energy production has been reorganized in cooperation of VTT Energy, Finnish Meteorological (FMI Energy) and Finnish Wind Energy Association (STY) and supported by the Ministry of Trade and Industry (KTM). VTT Energy has developed a database that contains both monthly data and information on the wind turbines, sites and operators involved. The monthly production figures together with component failure statistics are collected from the operators by VTT Energy, who produces the final wind energy statistics to be published in Tuulensilmae and reported to energy statistics in Finland and abroad (Statistics Finland, Eurostat, IEA). To be able to verify the annual and monthly wind energy potential with average wind energy climate a production index in adopted. The index gives the expected wind energy production at various areas in Finland calculated using real wind speed observations, air density and a power curve for a typical 500 kW-wind turbine. FMI Energy has produced the average figures for four weather stations using the data from 1985-1996, and produces the monthly figures. (orig.)

  20. Using SpaceClaimTD Direct for Modeling Components with Complex Geometries for the Thermal Desktop-Based Advanced Stirling Radioisotope Generator Model

    Science.gov (United States)

    Fabanich, William A., Jr.

    2014-01-01

    SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractor's thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces/solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing/repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the "mark-up" of that geometry. These so-called "mark-ups" control how finite element (FE) meshes are to be generated through the "tagging" of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. "Domain-tags" were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine the objects each time as one would if using TDMesher. The use of SpaceClaim/TD Direct helps simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It also saves time and effort in the subsequent analysis.

  1. Using SpaceClaim/TD Direct for Modeling Components with Complex Geometries for the Thermal Desktop-Based Advanced Stirling Radioisotope Generator Model

    Science.gov (United States)

    Fabanich, William

    2014-01-01

    SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractors thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the mark-up of that geometry. These so-called mark-ups control how finite element (FE) meshes were generated and allowed the tagging of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. Domain-tags were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine these objects each time as one would if using TD Mesher.The use of SpaceClaim/TD Direct has helped simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It has also saved time and effort in the subsequent analysis.

  2. Statement on Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    2010-01-15

    Wind power will grow in importance in future electricity supply. In the next few decades it will to some degree replace fossil power but it will, at the same time also depend on fossil-b beyond, when wind power is expected to have a substantial share of the electricity market, CO{sub 2} emission-free electricity plants that are well suited for balancing the wind intermittency will be required. Predictions of the future penetration of wind power into the electricity market are critically dependent on a number of policy measures and will be especially influenced by climate driven energy policies. Very large investments will also be necessary as is shown by the lEA's Blue Map Scenario which includes 5,000 TWh wind electricity by 2050 at a cost of USD 700 billion. This implies an average 8% increase of wind electricity per year energy system, i.e. an energy system so large that it affects the entire world. The Energy Committee's scenario for electricity production in the year 2050 includes 5,000 TWh wind electricity out of a total of 45,000 TWh. Wind electricity thus has a within presently reached penetration of wind energy in a single country and within the calculated future projections of its penetration. Future large continental and intercontinental power grids may enable higher penetrations of wind energy since contributions of wind power from a larger area will tend to reduce its intermittency. Also, large-scale storage systems (thermal storage as is intermittent power systems. These alternatives have been discussed from a technical point of view [3] but for the required large-scale systems, further studies on the social, environmental and economical implications are needed

  3. Stellar wind theory

    International Nuclear Information System (INIS)

    Summers, D.

    1980-01-01

    The theory of stellar winds as given by the equations of classical fluid dynamics is considered. The equations of momentum and energy describing a steady, spherically symmetric, heat-conducting, viscous stellar wind are cast in a dimensionless form which involves a thermal conduction parameter E and a viscosity parameter γ. An asymptotic analysis is carried out, for fixed γ, in the cases E→O and E→infinity (corresponding to small and large thermal conductivity, respectively), and it is found that it is possible to construct critical solutions for the wind velocity and temperature over the entire flow. The E→O solution represents a wind which emanates from the star at low, subsonic speeds, accelerates through a sonic point, and then approaches a constant asymptotic speed, with its temperature varying as r/sup -4/3/ at large distances r from the star; the E→infinity solution represents a wind which, after reaching an approximately constant speed, with temperature varying as r/sup -2/7/, decelerates through a diffuse shock and approaches a finite pressure at infinity. A categorization is made of all critical stellar wind solutions for given values of γ and E, and actual numerical examples are given. Numerical solutions are obtained by integrating upstream 'from infinity' from initial values of the flow parameters given by appropriate asymptotic expansions. The role of viscosity in stellar wind theory is discussed, viscous and inviscid stellar wind solutions are compared, and it is suggested that with certain limitations, the theory presented may be useful in analyzing winds from solar-type stars

  4. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  5. The Application of Principal Component Analysis Using Fixed Eigenvectors to the Infrared Thermographic Inspection of the Space Shuttle Thermal Protection System

    Science.gov (United States)

    Cramer, K. Elliott; Winfree, William P.

    2006-01-01

    The Nondestructive Evaluation Sciences Branch at NASA s Langley Research Center has been actively involved in the development of thermographic inspection techniques for more than 15 years. Since the Space Shuttle Columbia accident, NASA has focused on the improvement of advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter s wing leading edge. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can be used to inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Principal Component Analysis (PCA) has been shown effective for reducing thermographic NDE data. A typical implementation of PCA is when the eigenvectors are generated from the data set being analyzed. Although it is a powerful tool for enhancing the visibility of defects in thermal data, PCA can be computationally intense and time consuming when applied to the large data sets typical in thermography. Additionally, PCA can experience problems when very large defects are present (defects that dominate the field-of-view), since the calculation of the eigenvectors is now governed by the presence of the defect, not the good material. To increase the processing speed and to minimize the negative effects of large defects, an alternative method of PCA is being pursued when a fixed set of eigenvectors is used to process the thermal data from the RCC materials. These eigen vectors can be generated either from an analytic model of the thermal response of the material under examination, or from a large cross section of experimental data. This paper will provide the

  6. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  7. COASTING EXTERNAL SHOCK IN WIND MEDIUM: AN ORIGIN FOR THE X-RAY PLATEAU DECAY COMPONENT IN SWIFT GAMMA-RAY BURST AFTERGLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Shen Rongfeng; Matzner, Christopher D., E-mail: rfshen@astro.utoronto.ca, E-mail: matzner@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, Ontario M5S 3H4 (Canada)

    2012-01-01

    The plateaus observed in about one half of the early X-ray afterglows are the most puzzling feature in gamma-ray bursts (GRBs) detected by Swift. By analyzing the temporal and spectral indices of a large X-ray plateau sample, we find that 55% can be explained by external, forward shock synchrotron emission produced by a relativistic ejecta coasting in a {rho}{proportional_to}r{sup -2}, wind-like medium; no energy injection into the shock is needed. After the ejecta collects enough medium and transitions to the adiabatic, decelerating blast wave phase, it produces the post-plateau decay. For those bursts consistent with this model, we find an upper limit for the initial Lorentz factor of the ejecta, {Gamma}{sub 0} {<=} 46({epsilon}{sub e}/0.1){sup -0.24}({epsilon}{sub B}/0.01){sup 0.17}; the isotropic equivalent total ejecta energy is E{sub iso} {approx} 10{sup 53}({epsilon}{sub e}/0.1){sup -1.3}({epsilon}{sub B}/0.01){sup -0.09}(t{sub b} /10{sup 4} s) erg, where {epsilon}{sub e} and {epsilon}{sub B} are the fractions of the total energy at the shock downstream that are carried by electrons and the magnetic field, respectively, and t{sub b} is the end of the plateau. Our finding supports Wolf-Rayet stars as the progenitor stars of some GRBs. It raises intriguing questions about the origin of an intermediate-{Gamma}{sub 0} ejecta, which we speculate is connected to the GRB jet emergence from its host star. For the remaining 45% of the sample, the post-plateau decline is too rapid to be explained in the coasting-in-wind model, and energy injection appears to be required.

  8. Wind-energy storage

    Science.gov (United States)

    Gordon, L. H.

    1980-01-01

    Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.

  9. Renewable Energy Essentials: Wind

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Subjects for further research, specific to wind energy technology, include more refined resource assessment; materials with higher strength to mass ratios; advanced grid integration and power quality and control technologies; standardisation and certification; development of low-wind regime turbines; improved forecasting; increased fatigue resistance of major components such as gearboxes; better models for aerodynamics and aeroelasticity; generators based on superconductor technology; deep-offshore foundations; and high-altitude 'kite' concepts.

  10. Reliability Assessment Of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2014-01-01

    Reduction of cost of energy for wind turbines are very important in order to make wind energy competitive compared to other energy sources. Therefore the turbine components should be designed to have sufficient reliability but also not be too costly (and safe). This paper presents models...... for uncertainty modeling and reliability assessment of especially the structural components such as tower, blades, substructure and foundation. But since the function of a wind turbine is highly dependent on many electrical and mechanical components as well as a control system also reliability aspects...... of these components are discussed and it is described how there reliability influences the reliability of the structural components. Two illustrative examples are presented considering uncertainty modeling, reliability assessment and calibration of partial safety factors for structural wind turbine components exposed...

  11. Linear wind generator

    International Nuclear Information System (INIS)

    Kozarov, A.; Petrov, O.; Antonov, J.; Sotirova, S.; Petrova, B.

    2006-01-01

    The purpose of the linear wind-power generator described in this article is to decrease the following disadvantages of the common wind-powered turbine: 1) large bending and twisting moments to the blades and the shaft, especially when strong winds and turbulence exist; 2) significant values of the natural oscillation period of the construction result in the possibility of occurrence of destroying resonance oscillations; 3) high velocity of the peripheral parts of the rotor creating a danger for birds; 4) difficulties, connected with the installation and the operation on the mountain ridges and passages where the wind energy potential is the largest. The working surfaces of the generator in questions driven by the wind are not connected with a joint shaft but each moves along a railway track with few oscillations. So the sizes of each component are small and their number can be rather large. The mechanical trajectory is not a circle but a closed outline in a vertical plain, which consists of two rectilinear sectors, one above the other, connected in their ends by semi-circumferences. The mechanical energy of each component turns into electrical on the principle of the linear electrical generator. A regulation is provided when the direction of the wind is perpendicular to the route. A possibility of effectiveness is shown through aiming of additional quantities of air to the movable components by static barriers

  12. Guide to commercially available wind machines

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-03

    Wind Energy Conversion Systems (WECS) commercially available in the United States are described. The terms used to describe these wind systems are defined and their significance discussed. Lists of manufacturers and distributors, subsystem components and suppliers, and references are provided.

  13. Estimation of Energy Balance Components over a Drip-Irrigated Olive Orchard Using Thermal and Multispectral Cameras Placed on a Helicopter-Based Unmanned Aerial Vehicle (UAV

    Directory of Open Access Journals (Sweden)

    Samuel Ortega-Farías

    2016-08-01

    Full Text Available A field experiment was carried out to implement a remote sensing energy balance (RSEB algorithm for estimating the incoming solar radiation (Rsi, net radiation (Rn, sensible heat flux (H, soil heat flux (G and latent heat flux (LE over a drip-irrigated olive (cv. Arbequina orchard located in the Pencahue Valley, Maule Region, Chile (35°25′S; 71°44′W; 90 m above sea level. For this study, a helicopter-based unmanned aerial vehicle (UAV was equipped with multispectral and infrared thermal cameras to obtain simultaneously the normalized difference vegetation index (NDVI and surface temperature (Tsurface at very high resolution (6 cm × 6 cm. Meteorological variables and surface energy balance components were measured at the time of the UAV overpass (near solar noon. The performance of the RSEB algorithm was evaluated using measurements of H and LE obtained from an eddy correlation system. In addition, estimated values of Rsi and Rn were compared with ground-truth measurements from a four-way net radiometer while those of G were compared with soil heat flux based on flux plates. Results indicated that RSEB algorithm estimated LE and H with errors of 7% and 5%, respectively. Values of the root mean squared error (RMSE and mean absolute error (MAE for LE were 50 and 43 W m−2 while those for H were 56 and 46 W m−2, respectively. Finally, the RSEB algorithm computed Rsi, Rn and G with error less than 5% and with values of RMSE and MAE less than 38 W m−2. Results demonstrated that multispectral and thermal cameras placed on an UAV could provide an excellent tool to evaluate the intra-orchard spatial variability of Rn, G, H, LE, NDVI and Tsurface over the tree canopy and soil surface between rows.

  14. Operation of Power Grids with High Penetration of Wind Power

    Science.gov (United States)

    Al-Awami, Ali Taleb

    The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus

  15. Method and apparatus for wind turbine braking

    Science.gov (United States)

    Barbu, Corneliu [Laguna Hills, CA; Teichmann, Ralph [Nishkayuna, NY; Avagliano, Aaron [Houston, TX; Kammer, Leonardo Cesar [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Pesetsky, David Samuel [Greenville, SC; Gauchel, Peter [Muenster, DE

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  16. Estimation of Rotor Effective Wind Speed: A Comparison

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Knudsen, Torben; Svenstrup, Mikael

    2013-01-01

    Modern wind turbine controllers use wind speed information to improve power production and reduce loads on the turbine components. The turbine top wind speed measurement is unfortunately imprecise and not a good representative of the rotor effective wind speed. Consequently, many different model...... aero-servo-elastic turbine simulations and real turbine field experiments in different wind scenarios....

  17. An MHD simulation of the effects of the interplanetary magnetic field By component on the interaction of the solar wind with the earth's magnetosphere during southward interplanetary magnetic field

    Science.gov (United States)

    Ogino, T.; Walker, R. J.; Ashour-Abdalla, M.; Dawson, J. M.

    1986-01-01

    The interaction between the solar wind and the earth's magnetosphere has been studied by using a time-dependent three-dimensional MHD model in which the IMF pointed in several directions between dawnward and southward. When the IMF is dawnward, the dayside cusp and the tail lobes shift toward the morningside in the northern magnetosphere. The plasma sheet rotates toward the north on the dawnside of the tail and toward the south on the duskside. For an increasing southward IMF component, the plasma sheet becomes thinner and subsequently wavy because of patchy or localized tail reconnection. At the same time, the tail field-aligned currents have a filamentary layered structure. When projected onto the northern polar cap, the filamentary field-aligned currents are located in the same area as the region 1 currents, with a pattern similar to that associated with auroral surges. Magnetic reconnection also occurs on the dayside magnetopause for southward IMF.

  18. Wind energy

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Wind is not only free, it is inexhaustible. Wind energy has come a very long way since the prototypes of just 20 years ago. today's wind turbines are state-of-the-art technology - modular and quick to install anywhere where there is sufficient wind potential to provide secure, centralised or distributed generation. It is a global phenomenon, the world's fastest growing energy sector, a clean and effective modern technology that completely avoids pollution and thus reducing the 'green house' effect. (Original)

  19. Analysis of the spontaneous variations in wind power and necessary continuous regulation of hydro-electric and thermal power, related to a future Swedish power system

    Energy Technology Data Exchange (ETDEWEB)

    Holm, J O; Lindstrom, P O

    1982-09-01

    Wind power is unlike conventional electric power generation, since the output fluctuates uncontrollably. These fluctuations must be balanced by controlled generation from other power sources. This will create new and interesting demands on the reserves in the power system. The short-term fluctuations have a low simultaneity factor and must be balanced by an automatic frequency control reserve. In Sweden, this consists of automatically controlled hydro-electric power. The report contains calculations of the amount by which the demand on reserves will increase when wind power is introduced.

  20. Research and development for solar thermal energy system. Research on advanced solar component; Taiyonetsu energy system no kenkyu kaihatsu. Kiki no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T; Doi, T; Takashima, T; Ando, Y; Masuda, T; Fujii, T [Electrotechnical Laboratory, Tsukuba (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for research on advanced solar components as part of research and development of solar thermal energy. The catalyst for liquid-film reactions is prepared, and the flask tests are conducted as the preliminary experiments for development of the reactor in which 2-propanol is fallen in liquid film over the catalyst dispersed to accelerate its decomposition. It is decomposable when fallen in liquid film even in the presence of 35% of acetone. The catalyst of ruthenium carried by activated coal is used to produce 2-propanol under an exothermic condition from acetone and hydrogen. Diisopropyl ether and 4-methyl-2-pentanone are produced as by-products, when the reactor tube is kept at 140 to 200{degree}C at the external wall, diminishing as temperature is increased. There is a temperature differential of 20 to 30{degree}C in the reactor tube between the center axis and external wall. 3 figs.

  1. Introduction to wind energy systems

    Science.gov (United States)

    Wagner, H.-J.

    2017-07-01

    This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.

  2. Calculations of air cooler for new subsonic wind tunnel

    Science.gov (United States)

    Rtishcheva, A. S.

    2017-10-01

    As part of the component development of TsAGI’s new subsonic wind tunnel where the air flow velocity in the closed test section is up to 160 m/sec hydraulic and thermal characteristics of air cooler are calculated. The air cooler is one of the most important components due to its highest hydraulic resistance in the whole wind tunnel design. It is important to minimize its hydraulic resistance to ensure the energy efficiency of wind tunnel fans and the cost-cutting of tests. On the other hand the air cooler is to assure the efficient cooling of air flow in such a manner as to maintain the temperature below 40 °C for seamless operation of measuring equipment. Therefore the relevance of this project is driven by the need to develop the air cooler that would demonstrate low hydraulic resistance of air and high thermal effectiveness of heat exchanging surfaces; insofar as the cooling section must be given up per unit time with the amount of heat Q=30 MW according to preliminary evaluations. On basis of calculation research some variants of air cooler designs are proposed including elliptical tubes, round tubes, and lateral plate-like fins. These designs differ by the number of tubes and plates, geometrical characteristics and the material of finned surfaces (aluminium or cooper). Due to the choice of component configurations a high thermal effectiveness is achieved for finned surfaces. The obtained results form the basis of R&D support in designing the new subsonic wind tunnel.

  3. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    including combined RF-acoustic antenna installed coaxially with the gondola of the wind power turbine. The work of the technique is synchronized with rotation of blades to eliminate their shielding action. Dangerous in terms of dynamic strength is the wind load pulse, the rise time which is comparable with the period of the natural frequency of the wind turbine elements (blade, tower, rotor, etc.). The amplitude decay of resonant vibrations at critical values of the speed of rotation can be realized through the use of mechanical elastic supports with nonlinear artificial dampers. They have a high coefficient of resistance, but may cause self-excited oscillations. We propose the way to deal with raised vibration of wind turbine elements at the expense of short-term increase of damping in the range of critical rotary axis speeds or during impulsive effects of wind loadings (wind gusts). This is possible through the use of non-linear electromagnetic dampers or active magnetic bearings. Their feature is the possibility of varying the mechanical stiffness and damping properties by changing the electrical parameters of electromagnets. The controlling of these parameters is carried out by the control system (CS) with the information feedback on the spatial-temporal structure of the wind field obtained from IRASS. In the composition of the CS can also be included the rotational speed sensor of the WPT rotor. This approach to the adaptation of wind turbines will allow to reduce vibration and to perform early compensation of the load on their components, which arise under the wind gusts. In addition, corrections about the wind field obtained with IRASS, would increase the mean power of WPT.

  4. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...

  5. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  6. thermal power stations' reliability evaluation in a hydrothermal system

    African Journals Online (AJOL)

    Dr Obe

    A quantitative tool for the evaluation of thermal power stations reliability in a hydrothermal system is presented. ... (solar power); wind (wind power) and the rest, thermal power and ... probability of a system performing its function adequately for ...

  7. Quantitative defects detection in wind turbine blade using optical infrared thermography

    Energy Technology Data Exchange (ETDEWEB)

    Kwaon, Koo Ahn [School of Aerospace System Engineering, UST, Daejeon (Korea, Republic of); Choi, Man Yong; Park, Hee Sang; Park, Jeong Hak; Huh, Yong Hak; Choi, Won Jai [Safety Measurement Center, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2015-02-15

    A wind turbine blade is an important component in wind-power generation, and is generally exposed to harsh environmental conditions. Ultrasonic inspection is mainly used to inspect such blades, but it has been difficult to quantify defect sizes in complicated composite structures. Recently, active infrared thermography has been widely studied for inspecting composite structures, in which thermal energy is applied to an object, and an infrared camera detects the energy emitted from it. In this paper, a calibration method for active optical lock-in thermography is proposed to quantify the size. Inclusion, debonding and wrinkle defects, created in a wind blade for 100 kW wind power generation, were all successfully detected using this method. In particular, a 50.0 mm debonding defect was sized with 98.0% accuracy.

  8. ANALISIS PERMIBILITAS KERUANGAN DAN DINAMIKA FLUIDA ANGIN DAN SUHU KAWASAN PERMUKIMAN TROPIS SUNGAI DI BANJARMASIN, INDONESIA (An Analysis on Spatial Permeability and Fluid Dynamics of Wind and Thermal in Tropical Riverside Residential Areas

    Directory of Open Access Journals (Sweden)

    Budi Prayitno

    2013-07-01

    architecture and infrastructure, which are based on land and water. Problems occurring in these areas are density, less interconnectivity, poor accessibility, and very low intelligibility. In addition, the areas’ thermal comfort is very low – poor wind circulation, high humidity, and uncomfortable temperatures. In the study the researcher conducted an experiment based on permeability approach to solve the challenges and problems related to spatial and thermal comfort by using a spatial analysis method, space syntax, and a thermal comfort analysis method, Envimet. This study compared the existing condition with a model architecture of a city block kampung settlement, which was based on local vernacular architecture of Banjarmasin river banks. The research concluded that the intelligibility performance of spatial permeability approach could be improved. This approach resulted in a symbiosis between spatial configuration of land and water and the regional architecture. However, in terms of thermal comfort no significant improvement of performance occurred because the morphology of the area was relatively flat and the proportion of the average height of buildings was low. Consequently, wind path as ventilation was not formed and area thermal comfort was not created.

  9. Wind energy technology developments

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Hansen, Morten Hartvig; Pedersen, Niels Leergaard

    2014-01-01

    turbine blades and towers are very large series-produced components, which costs and quality are strongly dependent on the manufacturing methods. The industrial wind energy sector is well developed in Denmark, and the competitive advantage of the Danish sector and the potential for job creation...

  10. Heating of Solar Wind Ions via Cyclotron Resonance

    Science.gov (United States)

    Navarro, R.; Moya, P. S.; Figueroa-Vinas, A.; Munoz, V.; Valdivia, J. A.

    2017-12-01

    Remote and in situ observations in the solar wind show that ion and electron velocity distributions persistently deviate from thermal equilibrium in the form of relative streaming between species components, temperature anisotropy, etc. These non-thermal features represent a source of free energy for the excitation of kinetic instabilities and fluctuations in the plasma. In this regard, it is believed that plasma particles can be heated, through a second order Fermi acceleration process, by multiple resonances with unstable counter-propagating field-aligned Ion-cyclotron waves. For multi-species plasmas, several collective wave modes participate in this process. In this work, we test this model by studying the percentage of ions that resonate with the waves modes described by the proper kinetic multi-species dispersion relation in a solar-wind-like plasma composed of electrons, protons, and alpha particles. Numerical results are compared with WIND spacecraft data to test its relevance for the existence of thresholds for the preferential perpendicular heating of He+2 ions as observed in the solar wind fast streams.

  11. ewec 2007 - Europe's premier wind energy event

    International Nuclear Information System (INIS)

    Chaviaropoulos, T.

    2007-01-01

    This online collection of papers - the ewec 2007 proceedings - reflects the various sessions and lectures presented at the ewec wind-energy convention held in Milan in 2007. The first day's sessions looked at the following topics: Renewable Energy Roadmap, the changing structure of the wind industry, politics and programmes, aerodynamics and innovation in turbine design, wind resources and site characterisation (2 sessions), energy scenarios, harmonisation of incentive schemes, structural design and materials, forecasting, integration studies, integrating wind into electricity markets, wind-turbine electrical systems and components, as well as loads, noise and wakes. The second day included sessions on offshore: developments and prospects, extreme wind conditions and forecasting techniques, small wind turbines, distributed generation and autonomous systems cost effectiveness, cost effectiveness of wind energy, financing wind energy concepts, wind and turbulence, wind power plants and grid integration, offshore technology, global challenges and opportunities, aero-elasticity, loads and control, operations and maintenance, carbon trading and the emission trading schemes, investment strategies of power producers, wind power plants and grid integration, wind turbine electrical systems and components, and wakes. The third day offered sessions on environmental issues, condition monitoring, operation and maintenance, structural design and materials, the Up-Wind workshop, winning hearts and minds, offshore technology, advances in measuring methods and advancing drive-train reliability. In a closing session the conference was summarised, awards for poster contributions were made and the Poul la Cour Prize was presented

  12. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  13. Simulation model for wind energy storage systems. Volume II. Operation manual. [SIMWEST code

    Energy Technology Data Exchange (ETDEWEB)

    Warren, A.W.; Edsinger, R.W.; Burroughs, J.D.

    1977-08-01

    The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume II, the SIMWEST operation manual, describes the usage of the SIMWEST program, the design of the library components, and a number of simple example simulations intended to familiarize the user with the program's operation. Volume II also contains a listing of each SIMWEST library subroutine.

  14. Challenges in wind farm optimization

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.

    To achieve the optimal economic output from a wind farm over its lifetime, an optimal balance between capital costs, operation and maintenance costs, fatigue lifetime consumption of turbine components and power production is to be determined on a rational basis. This has implications both...... for the wind turbine modeling, where aeroelastic models are required, and for the wind farm flow field description, where in-stationary flow field modeling is needed to capture the complicated mixture of atmospheric boundary layer (ABL) flows and upstream emitted meandering wind turbine wakes, which together...... dictates the fatigue loading of the individual wind turbines. Within an optimization context, the basic challenge in describing the in-stationary wind farm flow field is computational speed. The Dynamic Wake Meandering (DWM) model includes the basic features of a CFD Large Eddy Simulation approach...

  15. Ultimate loading of wind turbines

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Ronold, K.; Ejsing Jørgensen, Hans

    1999-01-01

    An extreme loading study has been conducted comprising a general wind climate analysis as well as a wind turbine reliability study. In the wind climate analysis, the distribution of the (horizontal) turbulence standard deviation, conditioned on the meanwind speed, has been approximated by fitting......, a design turbulence intensity for off-shore application is proposed which, in the IEC code framework, is applicable for extreme as well as for fatigue loaddetermination. In order to establish a rational method to analyse wind turbine components with respect to failure in ultimate loading, and in addition...... a three parameter Weibull distribution to the measured on-shore and off-shore data for wind speed variations. Specific recommendations on off-shore design turbulence intensities are lacking in the presentIEC-code. Based on the present analysis of the off-shore wind climate on two shallow water sites...

  16. A Dynamic Wind Generation Model for Power Systems Studies

    OpenAIRE

    Estanqueiro, Ana

    2007-01-01

    In this paper, a wind park dynamic model is presented together with a base methodology for its application to power system studies. This detailed wind generation model addresses the wind turbine components and phenomena more relevant to characterize the power quality of a grid connected wind park, as well as the wind park response to the grid fast perturbations, e.g., low voltage ride through fault. The developed model was applied to the operating conditions of the selected sets of wind turbi...

  17. Kinetic Properties of the Neutral Solar Wind

    International Nuclear Information System (INIS)

    Florinski, V.; Heerikhuisen, J.

    2017-01-01

    Charge-exchange collisions between the solar wind protons and interstellar hydrogen produce a distinctive population of neutral hydrogen streaming radially at nearly the solar-wind speed. This tenuous population, known as the neutral solar wind (NSW) is thought to play a key role in the appearance of the Interplanetary Boundary EXplorer ribbon, a bright circular band in the sky that is the source of neutral hydrogen with energies near 1 keV. According to the leading model of the ribbon, the velocity distribution of NSW hydrogen is imparted on the pickup ions (PUIs) generated via charge exchange with the interstellar protons beyond the heliopause, and in this way controls the stability of the resulting ring distribution of PUIs against hydromagnetic wave generation. In this paper, we examine the velocity distributions of the NSW atoms in the heliosphere and the outer heliosheath regions by following the phase-space trajectories of the Boltzmann equation. It is demonstrated that these distributions are highly anisotropic, with the parallel (radial) temperature greatly exceeding the perpendicular temperature. Ions picked up near 90° from the anisotropic NSW would form a stable ring distribution capable of generating the ribbon flux. We also discuss a second population of neutrals born in charge transfer collisions with interstellar PUIs, the so-called neutralized pickup ion (NPI) component. Their high thermal velocities translate into large parallel velocity spread of the daughter ribbon PUIs, which would adversely affect plasma stability in local interstellar space.

  18. Kinetic Properties of the Neutral Solar Wind

    Science.gov (United States)

    Florinski, V.; Heerikhuisen, J.

    2017-03-01

    Charge-exchange collisions between the solar wind protons and interstellar hydrogen produce a distinctive population of neutral hydrogen streaming radially at nearly the solar-wind speed. This tenuous population, known as the neutral solar wind (NSW) is thought to play a key role in the appearance of the Interplanetary Boundary EXplorer ribbon, a bright circular band in the sky that is the source of neutral hydrogen with energies near 1 keV. According to the leading model of the ribbon, the velocity distribution of NSW hydrogen is imparted on the pickup ions (PUIs) generated via charge exchange with the interstellar protons beyond the heliopause, and in this way controls the stability of the resulting ring distribution of PUIs against hydromagnetic wave generation. In this paper, we examine the velocity distributions of the NSW atoms in the heliosphere and the outer heliosheath regions by following the phase-space trajectories of the Boltzmann equation. It is demonstrated that these distributions are highly anisotropic, with the parallel (radial) temperature greatly exceeding the perpendicular temperature. Ions picked up near 90° from the anisotropic NSW would form a stable ring distribution capable of generating the ribbon flux. We also discuss a second population of neutrals born in charge transfer collisions with interstellar PUIs, the so-called neutralized pickup ion (NPI) component. Their high thermal velocities translate into large parallel velocity spread of the daughter ribbon PUIs, which would adversely affect plasma stability in local interstellar space.

  19. On the Fatigue Analysis of Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Herbert J.

    1999-06-01

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  20. Wind turbine storage systems

    International Nuclear Information System (INIS)

    Ibrahim, H.; Ilinca, A.; Perron, J.

    2005-01-01

    Electric power is often produced in locations far from the point of utilization which creates a challenge in stabilizing power grids, particularly since electricity cannot be stored. The production of decentralized electricity by renewable energy sources offers a greater security of supply while protecting the environment. Wind power holds the greatest promise in terms of environmental protection, competitiveness and possible applications. It is known that wind energy production is not always in phase with power needs because of the uncertainty of wind. For that reason, energy storage is the key for the widespread integration of wind energy into the power grids. This paper proposed various energy storage methods that can be used in combination with decentralized wind energy production where an imbalance exists between electricity production and consumption. Energy storage can play an essential role in bringing value to wind energy, particularly if electricity is to be delivered during peak hours. Various types of energy storage are already in use or are being developed. This paper identified the main characteristics of various electricity storage techniques and their applications. They include stationary or embarked storage for long or short term applications. A comparison of characteristics made it possible to determine which types of electricity storage are best suited for wind energy. These include gravity energy; thermal energy; compressed air energy; coupled storage with natural gas; coupled storage with liquefied gas; hydrogen storage for fuel cells; chemical energy storage; storage in REDOX batteries; storage by superconductive inductance; storage in supercondensers; and, storage as kinetic energy. 21 refs., 21 figs

  1. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  2. Marine renewable energies. When researchers consider the ocean as an energy source. Offshore wind power. The thermal energy of seas, a solar resource to be no longer neglected. Lipid biofuels production by micro-algae

    International Nuclear Information System (INIS)

    Ruer, J.; Gauthier, M.; Zaharia, R.; Cadoret, J.P.

    2008-01-01

    In the present day context of search for renewable energy sources, it is surprising that the oceans energy, potentially enormous, is poorly taken into consideration with respect to the other renewable energy sources, while France has been a pioneer in this domain with the construction of the Rance tidal power plant in the 1960's, and still in operation today. However, the scientific community, and in particular the IFREMER institute in France, is developing R and D programs on marine energy technologies. On the other hand, the development of wind power is growing up rapidly with a worldwide installed capacity exceeding today 94000 MW and supplying 3% of the electricity consumed in Europe. The development of offshore wind farms represents today 1122 MW and should grow up very fast in the coming years. The ocean is also a huge reservoir of thermal energy which can be exploited to generate electricity and desalinated water. Finally, the cultivation of micro-algae for the enhanced production of lipids may be a more ecological alternative to the terrestrial production of biofuels, strongly criticized today for its long term environmental impacts. (J.S.)

  3. Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland

    DEFF Research Database (Denmark)

    Turconi, Roberto; O'Dwyer, C.; Flynn, D.

    2014-01-01

    demand. The environmental impacts related to potential future energy systems in Ireland for 2025 with high shares of wind power were evaluated using life cycle assessment (LCA), focusing on cycling emissions (due to part-load operation and start-ups) from dispatchable generators. Part-load operations...... significantly affect the average power plant efficiency, with all units seeing an average yearly efficiency noticeably less than optimal. In particular, load following units, on average, saw an 11% reduction. Given that production technologies are typically modeled assuming steady-state operation at full load...

  4. SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    BERNDT,M.L.

    2004-06-01

    The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1

  5. Wind energy.

    Science.gov (United States)

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented.

  6. Converter Structure-Based Power Loss and Static Thermal Modeling of The Press-Pack IGBT Three-Level ANPC VSC Applied to Multi-MW Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig

    2011-01-01

    performance, the converter structure-based power loss and thermal models are developed in this study for the medium-voltage (MV) three-level active neutral-point-clamped voltage source converter (3L-ANPC-VSC) utilizing 4500 V-1800 A press-pack insulated-gate bipolar transistor-diode pairs and interfacing a 6...

  7. Simultaneous prediction of internal and external aerodynamic and thermal flow fields of a natural-draft cooling tower in a cross-wind

    International Nuclear Information System (INIS)

    Radosavljevic, D.; Spalding, D.B.

    1989-01-01

    The quantitative simulation of cooling-tower performance is useful to designers, enabling them to make optimal choices regarding: the type, volume and shape of the packing (i.e. fill); and the shape and size of the tower. In order to simulate performance realistically, non-uniformities of distribution of water and air mass-flow rates across the tower radius must be taken into account. This necessitates at least 2D modeling; and in order to establish the influence of a cross-wind, boundary conditions must be far away from the tower inlet and outlet, and 3D modeling must be performed. This paper is concerned with large wet natural-draught cooling towers of the type used in many steam power stations for cooling large quantities of water by direct contact with the atmosphere. The aim of the present work has been to improve the procedures of calculation by using numerical integration of the heat and mass transfer equations, and to connect internal and external aerodynamics thus enabling wind influence to be studied. It permits predicting the performance of a proposed design of the tower over a range of operating conditions. PHOENICS, a general-purpose computer code for fluid-flow simulation, is used to provide numerical solutions to governing differential equations

  8. Component for the manufacture of sound and thermally insulating shell for walls, ceilings or floors. Baueelement fuer die Herstellung einer schall- und/oder waermedaemmenden Vorsatzschale fuer Waende, Decken und Boeden

    Energy Technology Data Exchange (ETDEWEB)

    Muehldorfer, H

    1977-07-04

    The invention concerns a component for the manufacture of a sound and/or thermally insulating shell for walls, ceilings or floors, which can be connected to these and is used directly to carry the cover plates or the plaster as an ouside shell. The problem is solved by having the component consisting of two spring loaded connected profiles, whose free ends, as seen in cross section, overlap with play in the operating position. There is a pin to connect the two profiles, which passes through openings in the free ends of the profiles and is elastically supported in them. The profiles may be made of metal, wood or plastic material. Compared with the well known ''swinging timbers'', the component is distinguished by the fact that the whole cladding can be covered with fibrous feld, instead of the strips of fibrous felt between the rows of swinging timbers, and the component can therefore be fixed to the wall.

  9. Three-dimensional density and compressible magnetic structure in solar wind turbulence

    Science.gov (United States)

    Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe

    2018-03-01

    The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂ ≫ P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed.

  10. Hot gas path component

    Science.gov (United States)

    Lacy, Benjamin Paul; Kottilingam, Srikanth Chandrudu; Porter, Christopher Donald; Schick, David Edward

    2017-09-12

    Various embodiments of the disclosure include a turbomachine component. and methods of forming such a component. Some embodiments include a turbomachine component including: a first portion including at least one of a stainless steel or an alloy steel; and a second portion joined with the first portion, the second portion including a nickel alloy including an arced cooling feature extending therethrough, the second portion having a thermal expansion coefficient substantially similar to a thermal expansion coefficient of the first portion, wherein the arced cooling feature is located within the second portion to direct a portion of a coolant to a leakage area of the turbomachine component.

  11. Grid Integration of Offshore Wind | Wind | NREL

    Science.gov (United States)

    Grid Integration of Offshore Wind Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Integration and

  12. CHANDRA DETECTION OF A NEW DIFFUSE X-RAY COMPONENT FROM THE GLOBULAR CLUSTER 47 TUCANAE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, E. M. H.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Hui, C. Y. [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Kong, A. K. H.; Tam, P. H. T. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Dogiel, V. A., E-mail: cyhui@cnu.ac.kr [I. E. Tamm Theoretical Physics Division of P. N. Lebedev Institute of Physics, Leninskii pr. 53, 119991 Moscow (Russian Federation)

    2014-06-20

    In re-analyzing the archival Chandra data of the globular cluster 47 Tucanae, we have detected a new diffuse X-ray emission feature within the half-mass radius of the cluster. The spectrum of the diffuse emission can be described by a power-law model plus a plasma component with photon index Γ ∼ 1.0 and plasma temperature kT ∼ 0.2 keV. While the thermal component is apparently uniform, the non-thermal contribution falls off exponentially from the core. The observed properties could possibly be explained in the context of multiple shocks resulting from the collisions among the stellar wind in the cluster and the inverse Compton scattering between the pulsar wind and the relic photons.

  13. Research status and trend of wind turbine aerodynamic noise?

    Institute of Scientific and Technical Information of China (English)

    Xiaodong LI; Baohong BAI; Yingbo XU; Min JIANG

    2016-01-01

    The main components of the wind turbine aerodynamic noise are introduced. A detailed review is given on the theoretical prediction, experimental measurement, and numerical simulation methods of wind turbine noise, with speci?c attention to appli-cations. Furthermore, suppression techniques of wind turbine aerodynamic noise are discussed. The perspective of future research on the wind turbine aerodynamic noise is presented.

  14. Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, H.J.M. [SET Analysis, Kievitlaan 26, 1742 AD Schagen (Netherlands); Brand, A.J. [Energy research Centre of the Netherlands ECN, Unit Wind Energy, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2013-02-15

    Over the years, wind energy has become a major source of renewable energy worldwide. The present chapter addresses the wind resource, which is available for exploitation for large-scale electricity production, and its specific physical properties. Furthermore, the technical options available to convert the energy of the air flow into mechanical energy and electricity are described. Specific problems of large-scale integration of wind energy into the grid as well as the present and future market developments are described in this chapter. Finally, environmental aspects are discussed briefly.

  15. A Comparison of Simple Methods to Incorporate Material Temperature Dependency in the Green's Function Method for Estimating Transient Thermal Stresses in Thick-Walled Power Plant Components.

    Science.gov (United States)

    Rouse, James; Hyde, Christopher

    2016-01-06

    The threat of thermal fatigue is an increasing concern for thermal power plant operators due to the increasing tendency to adopt "two-shifting" operating procedures. Thermal plants are likely to remain part of the energy portfolio for the foreseeable future and are under societal pressures to generate in a highly flexible and efficient manner. The Green's function method offers a flexible approach to determine reference elastic solutions for transient thermal stress problems. In order to simplify integration, it is often assumed that Green's functions (derived from finite element unit temperature step solutions) are temperature independent (this is not the case due to the temperature dependency of material parameters). The present work offers a simple method to approximate a material's temperature dependency using multiple reference unit solutions and an interpolation procedure. Thermal stress histories are predicted and compared for realistic temperature cycles using distinct techniques. The proposed interpolation method generally performs as well as (if not better) than the optimum single Green's function or the previously-suggested weighting function technique (particularly for large temperature increments). Coefficients of determination are typically above 0 . 96 , and peak stress differences between true and predicted datasets are always less than 10 MPa.

  16. Wind energy and social acceptability

    International Nuclear Information System (INIS)

    Feurtey, E.

    2008-01-01

    This document was prepared as part of a decentralized collaboration between Quebec and France to share knowledge regarding strategies and best practices in wind power development. It reviewed the social acceptance of Quebec's wind power industry, particularly at the municipal level. The wind industry is growing rapidly in Quebec, and this growth has generated many reactions ranging from positive to negative. The purpose of this joint effort was to describe decision making steps to developing a wind turbine array. The history of wind development in Quebec was discussed along with the various hardware components required in a wind turbine and different types of installations. The key element in implementing wind turbine arrays is to establish public acceptance of the project, followed by a good regulatory framework to define the roles and responsibilities of participants. The production of electricity from wind turbines constitutes a clean and renewable source of energy. Although it is associated with a reduction in greenhouse gas emissions, this form of energy can also have negative environmental impacts, including noise. The revenues generated by wind parks are important factors in the decision making process. Two case studies in Quebec were presented. refs., tabs., figs.

  17. Grid Integration of Wind Farms

    Science.gov (United States)

    Giæver Tande, John Olav

    2003-07-01

    This article gives an overview of grid integration of wind farms with respect to impact on voltage quality and power system stability. The recommended procedure for assessing the impact of wind turbines on voltage quality in distribution grids is presented. The procedure uses the power quality characteristic data of wind turbines to determine the impact on slow voltage variations, flicker, voltage dips and harmonics. The detailed assessment allows for substantially more wind power in distribution grids compared with previously used rule-of-thumb guidelines. Power system stability is a concern in conjunction with large wind farms or very weak grids. Assessment requires the use of power system simulation tools, and wind farm models for inclusion in such tools are presently being developed. A fixed-speed wind turbine model is described. The model may be considered a good starting point for development of more advanced models, hereunder the concept of variable-speed wind turbines with a doubly fed induction generator is briefly explained. The use of dynamic wind farm models as part of power system simulation tools allows for detailed studies and development of innovative grid integration techniques. It is demonstrated that the use of reactive compensation may relax the short-term voltage stability limit and allow integration of significantly more wind power, and that application of automatic generation control technology may be an efficient means to circumvent thermal transmission capacity constraints. The continuous development of analysis tools and technology for cost-effective and secure grid integration is an important aid to ensure the increasing use of wind energy. A key factor for success, however, is the communication of results and gained experience, and in this regard it is hoped that this article may contribute.

  18. Design parameters of a non-air-conditioned cinema hall for thermal comfort under arid-zone climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, G.N. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies); Lugani, N. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies); Singh, A.K. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies)

    1993-01-01

    In this communication, a design of a cinema hall suitable for climatic conditions in an arid zone has been presented. The various cooling techniques, namely evaporative cooling, wind tower, ventilation/infiltration and natural cooling, have been incorporated in the design to achieve thermal comfort during the period of operation. The design parameters have been optimized on the basis of numerical computations after establishing an energy balance for each component of a cinema hall. It is observed that cooling treatment, i.e., a wind tower with a cooling pool on the roof provides reasonable thermal comfort inside the enclosure. (orig.)

  19. Added damping of a wind turbine rotor : Two-dimensional discretization expressing the nonlinear wind-force dependency

    NARCIS (Netherlands)

    Van der Male, P.; Van Dalen, K.N.; Metrikine, A.

    2014-01-01

    In determining wind forces on wind turbine blades, and subsequently on the tower and the foundation, the blade response velocity cannot be neglected. This velocity alters the wind force, which depends on the wind velocity relative to that of the blades This blade response velocity component of the

  20. Vector wind and vector wind shear models 0 to 27 km altitude for Cape Kennedy, Florida, and Vandenberg AFB, California

    Science.gov (United States)

    Smith, O. E.

    1976-01-01

    The techniques are presented to derive several statistical wind models. The techniques are from the properties of the multivariate normal probability function. Assuming that the winds can be considered as bivariate normally distributed, then (1) the wind components and conditional wind components are univariate normally distributed, (2) the wind speed is Rayleigh distributed, (3) the conditional distribution of wind speed given a wind direction is Rayleigh distributed, and (4) the frequency of wind direction can be derived. All of these distributions are derived from the 5-sample parameter of wind for the bivariate normal distribution. By further assuming that the winds at two altitudes are quadravariate normally distributed, then the vector wind shear is bivariate normally distributed and the modulus of the vector wind shear is Rayleigh distributed. The conditional probability of wind component shears given a wind component is normally distributed. Examples of these and other properties of the multivariate normal probability distribution function as applied to Cape Kennedy, Florida, and Vandenberg AFB, California, wind data samples are given. A technique to develop a synthetic vector wind profile model of interest to aerospace vehicle applications is presented.

  1. Commercial wind power

    International Nuclear Information System (INIS)

    Braun, G.W.; Smith, D.R.

    1992-01-01

    In 1990 the 23,000 wind turbines in the world connected to utility grids were rated at a total of 2200 MW and produced 3,353,000,000 kWh of electricity. This represents the residential use of a city with population of 1,000,000 at US energy use rates, or 2,000,000 at European rates. Denmark produced about 2% of its electricity from the wind, while California and Hawaii produced about 1% of theirs. California wind farms produced 76% of the world total, and Pacific Gas and Electric Company (PG and E) received nearly half of this. In addition to these grid-connected turbines, more than 50,000 smaller turbines (averaging about 100 watts each) supplied electricity to remote areas, such as Mongolia. Such non-grid-connected turbines can be components of hybrid generation systems when combined with energy storage and/or complementary power sources. However, the emphasis of this paper is on utility-connected wind turbines. Wind also supplies mechanical energy, such as for water pumping

  2. Guest Editorial Modeling and Advanced Control of Wind Turbines/Wind Farms

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.; Hou, Y.; Zhu, Z.; Xu, D.; Xu, D.; Muljadi, E.; Liu, F.; Iwanski, G.; Geng, H.; Erlich, I.; Wen, J.; Harnefors, L.; Fan, L.; El Moursi, M. S.; Kjaer, P. C.; Nelson, R. J.; Cardenas, R.; Feng, S.; Islam, S.; Qiao, W.; Yuan, X.

    2017-09-01

    The papers in this special section brings together papers focused on the recent advancements and breakthroughs in the technology of modeling and enhanced active/reactive power control of wind power conversion systems, ranging from components of wind turbines to wind farms.

  3. Degradation tests for C 32/40 concrete used for perimetral wall, reactor base and components of Cernavoda NPP containment, under thermal stress conditions and liner degradation

    International Nuclear Information System (INIS)

    Carlan, P.; Paraschiv, I.; Dinu, A.; Stanciulescu, M.; Olteanu, A. M.; Voica, I.; Stelian, R.; Buc, G.

    2016-01-01

    In order to evaluate the effect of thermal degradation on C 32/40 concrete used in nuclear constructions at Cernavoda NPP, continuous thermal stress tests were performed at 65, 80 and 100°C and cyclic thermal stress tests at 65°C in dry conditions. This paper presents the macroscopic properties of concrete, obtained after these treatments and also the microstructural changes that occur in the cement paste from the concrete composition, which has been tested in the same conditions as the concrete samples. Determinations performed for macroscopic properties of concrete included: compressive strength, loss of density, permeability and modulus of elasticity. Cement paste samples were analysed by XRD (for mineralogical composition) and SEM (for morphology). The obtained results shown an appropriate behaviour of the concrete used in this study; changes are insignificant and follow the normal evolution process of concrete, proving that concrete will preserve its safety functions, as part of the containment structure. (authors)

  4. AND THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Alduhov Oleg Aleksandrovich

    2012-10-01

    Full Text Available Investigation of the atmospheric dispersion as part of the process of selection of sites to accommodate nuclear and thermal power plants is performed to identify concentration fields of emissions and to assess the anthropogenic impact produced on the landscape components and human beings. Scattering properties of the atmospheric boundary layer are mainly determined by the turbulence intensity and the wind field. In its turn, the turbulence intensity is associated with the thermal stratification of the boundary layer. Therefore, research of the atmospheric dispersion is reduced to the study of temperature and wind patterns of the boundary layer. Statistical processing and analysis of the upper-air data involves the input of the data collected by upper-air stations. Until recently, the upper-air data covering the standard period between 1961 and 1970 were applied for these purposes, although these data cannot assure sufficient reliability of assessments in terms of the properties of the atmospheric dispersion. However, recent scientific and technological developments make it possible to substantially increase the data coverage by adding the upper-air data collected within the period between 1964 and 2010. The article has a brief overview of BL_PROGS, a specialized software package designated for the processing of the above data. The software package analyzes the principal properties of the atmospheric dispersion. The use of the proposed software package requires preliminary development of a database that has the information collected by an upper-air station. The software package is noteworthy for the absence of any substantial limitations imposed onto the amount of the input data that may go up in proportion to the amount of the upper-air data collected by upper-air stations.

  5. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  6. Wind power

    International Nuclear Information System (INIS)

    2009-01-01

    At the end of 2008,the European wind power capacity had risen to 65,247 MW which is a 15,1% increase on 2007. The financial crisis does not appear to have any real consequences of the wind power sector's activity in 2008. At the end of 2008 the European Union accommodated 53,9% of the world's wind power capacity. The top ten countries in terms of installed wind capacities are: 1) Usa with 25,388 MW, 2) Germany with 23,903 MW, 3) Spain with 16,740 MW, 4) China with 12,200 MW, 5) India with 9,645 MW, 6) Italy with 3,736 MW, 7) France with 3,542 MW, 8) U.K. with 3,406 MW, 9) Denmark with 3,166 MW and 10) Portugal with 2,862 MW. (A.C.)

  7. Wind power

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This publication describes some of the technical, economic, safety and institutional considerations involved in the selection, installation and evaluation of a wind generation system. This information is presented, where possible, in practical, non-technical terms. The first four sections provide background information, theory, and general knowledge, while the remaining six sections are of a more specific nature to assist the prospective owner of a wind generator in his calculations and selections. Meteorological information is provided relating to the wind regime in Nova Scotia. The section on cost analysis discusses some of the factors and considerations which must be examined in order to provide a logical comparison between the alternatives of electricity produced from other sources. The final two sections are brief summaries of the regulations and hazards pertaining to the use of wind generators. The cost of wind-generated electricity is high compared to present Nova Scotia Power Corporation rates, even on Sable Island, Nova Scotia's highest wind area. However, it may be observed that Sable Island is one of the areas of Nova Scotia which is not presently supplied through the power grid and, particularly if there was a significant increase in the price of diesel oil, wind-generated electricity may well be the most economical alternative in that area. Generally speaking, however, where a consumer can purchase electricity at the normal domestic rate, wind generators are not economical, and they will not become economical unless there is a great reduction in their cost, an great increase in electricity rates, or both. Includes glossary. 23 figs., 11 tabs.

  8. A statistical study on the correlations between plasma sheet and solar wind based on DSP explorations

    Directory of Open Access Journals (Sweden)

    G. Q. Yan

    2005-11-01

    Full Text Available By using the data of two spacecraft, TC-1 and ACE (Advanced Composition Explorer, a statistical study on the correlations between plasma sheet and solar wind has been carried out. The results obtained show that the plasma sheet at geocentric distances of about 9~13.4 Re has an apparent driving relationship with the solar wind. It is found that (1 there is a positive correlation between the duskward component of the interplanetary magnetic field (IMF and the duskward component of the geomagnetic field in the plasma sheet, with a proportionality constant of about 1.09. It indicates that the duskward component of the IMF can effectively penetrate into the near-Earth plasma sheet, and can be amplified by sunward convection in the corresponding region at geocentric distances of about 9~13.4 Re; (2 the increase in the density or the dynamic pressure of the solar wind will generally lead to the increase in the density of the plasma sheet; (3 the ion thermal pressure in the near-Earth plasma sheet is significantly controlled by the dynamic pressure of solar wind; (4 under the northward IMF condition, the ion temperature and ion thermal pressure in the plasma sheet decrease as the solar wind speed increases. This feature indicates that plasmas in the near-Earth plasma sheet can come from the magnetosheath through the LLBL. Northward IMF is one important condition for the transport of the cold plasmas of the magnetosheath into the plasma sheet through the LLBL, and fast solar wind will enhance such a transport process.

  9. Dynamic thermal environment and thermal comfort.

    Science.gov (United States)

    Zhu, Y; Ouyang, Q; Cao, B; Zhou, X; Yu, J

    2016-02-01

    Research has shown that a stable thermal environment with tight temperature control cannot bring occupants more thermal comfort. Instead, such an environment will incur higher energy costs and produce greater CO2 emissions. Furthermore, this may lead to the degeneration of occupants' inherent ability to combat thermal stress, thereby weakening thermal adaptability. Measured data from many field investigations have shown that the human body has a higher acceptance to the thermal environment in free-running buildings than to that in air-conditioned buildings with similar average parameters. In naturally ventilated environments, occupants have reported superior thermal comfort votes and much greater thermal comfort temperature ranges compared to air-conditioned environments. This phenomenon is an integral part of the adaptive thermal comfort model. In addition, climate chamber experiments have proven that people prefer natural wind to mechanical wind in warm conditions; in other words, dynamic airflow can provide a superior cooling effect. However, these findings also indicate that significant questions related to thermal comfort remain unanswered. For example, what is the cause of these phenomena? How we can build a comfortable and healthy indoor environment for human beings? This article summarizes a series of research achievements in recent decades, tries to address some of these unanswered questions, and attempts to summarize certain problems for future research. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Wind reconstruction algorithm for Viking Lander 1

    Science.gov (United States)

    Kynkäänniemi, Tuomas; Kemppinen, Osku; Harri, Ari-Matti; Schmidt, Walter

    2017-06-01

    The wind measurement sensors of Viking Lander 1 (VL1) were only fully operational for the first 45 sols of the mission. We have developed an algorithm for reconstructing the wind measurement data after the wind measurement sensor failures. The algorithm for wind reconstruction enables the processing of wind data during the complete VL1 mission. The heater element of the quadrant sensor, which provided auxiliary measurement for wind direction, failed during the 45th sol of the VL1 mission. Additionally, one of the wind sensors of VL1 broke down during sol 378. Regardless of the failures, it was still possible to reconstruct the wind measurement data, because the failed components of the sensors did not prevent the determination of the wind direction and speed, as some of the components of the wind measurement setup remained intact for the complete mission. This article concentrates on presenting the wind reconstruction algorithm and methods for validating the operation of the algorithm. The algorithm enables the reconstruction of wind measurements for the complete VL1 mission. The amount of available sols is extended from 350 to 2245 sols.

  11. Wind reconstruction algorithm for Viking Lander 1

    Directory of Open Access Journals (Sweden)

    T. Kynkäänniemi

    2017-06-01

    Full Text Available The wind measurement sensors of Viking Lander 1 (VL1 were only fully operational for the first 45 sols of the mission. We have developed an algorithm for reconstructing the wind measurement data after the wind measurement sensor failures. The algorithm for wind reconstruction enables the processing of wind data during the complete VL1 mission. The heater element of the quadrant sensor, which provided auxiliary measurement for wind direction, failed during the 45th sol of the VL1 mission. Additionally, one of the wind sensors of VL1 broke down during sol 378. Regardless of the failures, it was still possible to reconstruct the wind measurement data, because the failed components of the sensors did not prevent the determination of the wind direction and speed, as some of the components of the wind measurement setup remained intact for the complete mission. This article concentrates on presenting the wind reconstruction algorithm and methods for validating the operation of the algorithm. The algorithm enables the reconstruction of wind measurements for the complete VL1 mission. The amount of available sols is extended from 350 to 2245 sols.

  12. Wind resource analysis. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, D. M.

    1978-12-01

    FY78 results of the Wind Resource Analyses task of the ERAB are described. Initial steps were taken to acquire modern atmosphere models of near-surface wind flow and primary data sets used in previous studies of national and regional wind resources. Because numerous assumptions are necessary to interpret available data in terms of wind energy potential, conclusions of previous studies differ considerably. These data analyses may be improved by future SERI research. State-of-the-art atmosphere models are a necessary component of the SERI wind resource analyses capacity. However, these methods also need to be tested and verified in diverse applications. The primary data sets and principal features of the models are discussed.

  13. Winds in cataclysmic variable stars

    International Nuclear Information System (INIS)

    Cordova, F.A.; Ladd, E.F.; Mason, K.O.

    1984-01-01

    Ultraviolet spectrophotometry of two dwarf novae, CN Ori and RX And, at various phases of their outburst cycles confirms that the far uv flux increases dramatically about 1-2 days after the optical outburst begins. At this time the uv spectral line profiles indicate the presence of a high velocity wind. The detectability of the wind depends more on the steepness of the spectrum, and thus on the flux in the extreme ultraviolet, than on the absolute value of the far uv luminosity. The uv continuum during outburst consists of (at least) two components, the most luminous of which is located behind the wind and is completely absorbed by the wind at the line frequencies. Several pieces of evidence suggest that the uv emission lines that are observed in many cataclysmic variables during quiescence have a different location in the binary than the wind, and are affected very little by the outburst

  14. Investigation of the thermal stability of 210 deg. C TL peak of quartz and dating the components of terrazzo from the monastery church of Tegernsee

    International Nuclear Information System (INIS)

    Goeksu, H.Y.; Schwenk, P.; Semiochkina, N.

    2001-01-01

    The lifetime of the thermoluminescence (TL) peak of quartz observed at 210 deg. C using 5 deg. C/s heating rate is assessed using well-dated thermally isolated bricks from a monastery and exposed bricks from warmer climatic zones by comparing the absorbed dose obtained using the 210 deg. C TL peak with those obtained from 310 deg. C TL peak. The lifetimes of the 210 deg. C TL peak calculated for samples collected from thermally isolated excavations and exposed buildings are found to be clustered around 8000-10000 and 600-800 years, respectively. The results proved that 210 deg. C TL peak could be used for dating of samples younger than 1000 years without thermal correction if the samples are thermally isolated from their environment. TL ages are obtained using quartz, polyminerals from brick pieces as well as flint splinters, and other quartz inclusions extracted from the mortar of the terrazzo floor of the monastery church. The measured TL ages and the consistency of the results are discussed. The fine grains in the mortar, which contained calcite/aragonite, could not be dated using thermoluminescence due to presence of a very strong non-radiation induced TL glow

  15. Examination of applicability of thermoelectric power measurement for thermal aging evaluation of cast duplex stainless steel to real components in nuclear power plants

    International Nuclear Information System (INIS)

    Joubouji, Katsuo

    2006-01-01

    It is known the mechanical properties of cast duplex stainless steel, which is used for main coolant pipes of pressurized water reactor type nuclear power plants, change due to thermal aging. Non-destructive evaluation method for thermal aging using thermoelectric power measurement has been studied in INSS. And it has been found that there was some relation between mechanical properties and thermoelectric power in the case of accelerated aging sample and change in thermoelectric power was caused by change in microstructure due to thermal aging. In this study, n-site measurement of thermoelectric power of a main coolant pipe with the measurement device which has been used in a laboratory was carried out. As a result, thermoelectric power of the main coolant pipe was almost measured within the range from -2.2 to -2μ V/degC, and that was corresponding to the relation of accelerated aging samples between thermoelectric power and the product of ferrite content and aging parameter considering the standard error. Moreover, applying the measured thermoelectric power to the relation of accelerated aging samples between thermoelectric power and impact value, change in the impact value of the pipe seemed to be corresponding to about 40% of the maximum change assumed by thermal aging. (author)

  16. Establishing a Comprehensive Wind Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, Sanford [Purdue University

    2012-09-30

    This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

  17. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    Science.gov (United States)

    Mikkelsen, T.; Sjöholm, M.; Angelou, N.; Mann, J.

    2017-12-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated measurements of the entire wind and turbulence fields, of all three wind components scanned in 3D space. Although primarily developed for research related to on- and offshore wind turbines and wind farms, the facility is also well suited for scanning turbulent wind fields around buildings, bridges, aviation structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation of flow pattern and dynamical loads from turbines, building structures and bridges and in relation to optimization of the location of, for example, wind farms and suspension bridges. This paper presents our achievements to date and reviews briefly the state-of-the-art of the WindScanner measurement technology with examples of uses for wind engineering applications.

  18. Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  19. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-13

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  20. Failure analysis of collector circuits associated with wind farms

    Directory of Open Access Journals (Sweden)

    Clifton Ashley P.

    2017-01-01

    Full Text Available Wind farm collector circuits generally comprise several wind turbine generators (WTG’s. WTG’s are connected in parallel to a substation. This connection acts as the point-of-connection to the national electricity grid. The electrical load in these circuits is close to component (power cables and accessories ratings. The objective of this paper is to identify cable joint failure paths; and, develop an understanding of specific contributing factors. All findings presented were established from literature review involving data analysis and discussion with industry experts working across the wind industry. Application of forces, inadequate workmanship, incorrect thermal resistance or other contributing factors, all contribute to high conductor operating temperatures. High conductor operating temperatures highlight issues including insufficient environmental heat transfer due to the use of inadequate cable trenching materials. This in turn results in the imbalanced application of force, experienced at the cable joint, as a direct result of frequent thermal expansion and contraction. For most cable joint failures, the root cause is insulation breakdown due to sustained deterioration of the cross-linked polyethylene insulation. This is a direct result from excessive operating temperatures.

  1. Dynamics of Intense Currents in the Solar Wind

    Science.gov (United States)

    Artemyev, Anton V.; Angelopoulos, Vassilis; Halekas, Jasper S.; Vinogradov, Alexander A.; Vasko, Ivan Y.; Zelenyi, Lev M.

    2018-06-01

    Transient currents in the solar wind are carried by various magnetic field discontinuities that contribute significantly to the magnetic field fluctuation spectrum. Internal instabilities and dynamics of these discontinuities are believed to be responsible for magnetic field energy dissipation and corresponding charged particle acceleration and heating. Accurate modeling of these phenomena requires detailed investigation of transient current formation and evolution. By examining such evolution using a unique data set compiled from observations of the same solar wind flow by two spacecraft at Earth’s and Mars’s orbits, we show that it consists of several processes: discontinuity thinning (decrease in thickness normalized by the ion inertial length), intensification of currents normalized to the proton thermal current (i.e., the product of proton charge, density, and thermal velocity), and increase in the compressional component of magnetic field variations across discontinuities. The significant proton temperature variation around most observed discontinuities indicates possible proton heating. Plasma velocity jumps across the discontinuities are well correlated with Alfvén velocity changes. We discuss possible explanations of the observed discontinuity evolution. We also compare the observed evolution with predictions of models describing discontinuity formation due to Alfvén wave steepening. Our results show that discontinuity modeling likely requires taking into account both the effects of nonlinear Alfvén wave dynamics and solar wind expansion.

  2. WIND VARIABILITY IN BZ CAMELOPARDALIS

    International Nuclear Information System (INIS)

    Honeycutt, R. K.; Kafka, S.; Robertson, J. W.

    2013-01-01

    Sequences of spectra of the nova-like cataclysmic variable (CV) BZ Cam were acquired on nine nights in 2005-2006 in order to study the time development of episodes of wind activity known to occur frequently in this star. We confirm the results of Ringwald and Naylor that the P-Cygni absorption components of the lines mostly evolve from higher expansion velocity to lower velocity as an episode progresses. We also commonly find blueshifted emission components in the Hα line profile, whose velocities and durations strongly suggest that they are also due to the wind. Curiously, Ringwald and Naylor reported common occurrences of redshifted Hα emission components in their BZ Cam spectra. We have attributed these emission components in Hα to occasions when gas concentrations in the bipolar wind (both front side and back side) become manifested as emission lines as they move beyond the disk's outer edge. We also suggest, based on changes in the P-Cygni profiles during an episode, that the progression from larger to smaller expansion velocities is due to the higher velocity portions of a wind concentration moving beyond the edge of the continuum light of the disk first, leaving a net redward shift of the remaining absorption profile. We derive a new orbital ephemeris for BZ Cam, using the radial velocity of the core of the He I λ5876 line, finding P = 0.15353(4). Using this period, the wind episodes in BZ Cam are found to be concentrated near the inferior conjunction of the emission line source. This result helps confirm that the winds in nova-like CVs are often phase dependent, in spite of the puzzling implication that such winds lack axisymmetry. We argue that the radiation-driven wind in BZ Cam receives an initial boost by acting on gas that has been lifted above the disk by the interaction of the accretion stream with the disk, thereby imposing flickering timescales onto the wind events, as well as leading to an orbital modulation of the wind due to the non

  3. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... and uncertainties are quantified. Further, estimation of annual failure probability for structural components taking into account possible faults in electrical or mechanical systems is considered. For a representative structural failure mode, a probabilistic model is developed that incorporates grid loss failures...

  4. Perspectives of China's wind energy development

    Institute of Scientific and Technical Information of China (English)

    He Dexin; Wang Zhongying

    2009-01-01

    Wind energy is a kind of clean renewable energy, which is also relatively mature in technology, with large-scale development conditions and prospect for the commercialization. The development of wind energy is a systematic project, involving policy, law, technology, economy, society, environment, education and other aspects. The relation-ship among all the aspects should be well treated and coordinated. This paper has discussed the following relationships which should be well coordinated: relationship between wind resources and wind energy development, relationship be-tween the wind turbine generator system and the components, relationship between wind energy technology and wind en-ergy industry, relationship between off-grid wind power and grid-connected wind power, relationship between wind farm and the power grid, relationship between onshore wind power and offshore wind power, relationship between wind energy and other energies, relationship between technology introduction and self-innovation, relationship among foreign-funded, joint ventured and domestic-funded enterprises and relationship between the government guidance and the market regula-tion, as well as giving out some suggestions.

  5. tavgM_3d_udt_Cp: MERRA 3D IAU Tendency, Wind Components, Monthly Mean 1.25 x 1.25 degree V5.2.0 (MATMCPUDT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MATMCPUDT or tavgM_3d_udt_Cp data product is the MERRA Data Assimilation System 3-Dimensional eastward wind tendencies that is time averaged on pressure levels...

  6. Transient stability of wind turbines connected to a power grid

    Energy Technology Data Exchange (ETDEWEB)

    Counan, C.; Juston, P.; Testud, G.

    1986-09-01

    A wind turbine generator model has been adapted for digital simulation using the E.D.F. transient stability program. Component models of the wind generator are described and computed results are provided.

  7. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  8. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-55-005, QF07-56-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains...

  9. Simulation model for wind energy storage systems. Volume III. Program descriptions. [SIMWEST CODE

    Energy Technology Data Exchange (ETDEWEB)

    Warren, A.W.; Edsinger, R.W.; Burroughs, J.D.

    1977-08-01

    The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume III, the SIMWEST program description contains program descriptions, flow charts and program listings for the SIMWEST Model Generation Program, the Simulation program, the File Maintenance program and the Printer Plotter program. Volume III generally would not be required by SIMWEST user.

  10. Remote Sensing Wind and Wind Shear System.

    Science.gov (United States)

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  11. Increasing the competitiveness of wind energy. New technologies for advanced wind predictability

    International Nuclear Information System (INIS)

    Bertolotti, Fabio

    2013-01-01

    The performance of thermal and nuclear power plants is assessed routinely and precisely, whereas the performance assessment of wind turbines is lagging far behind. This increases operational costs, reduces energy capture, and makes wind energy less competitive. The paper presents a technology and system with improved 24-h power forecasting, as well as condition monitoring of the rotor blades. The system can be employed by any wind power plant and offers potentials to increase the competitiveness of the power industry. (orig.)

  12. Study and implementation of a thermal acceleration test for the improvement of the quality and reliability of components and systems; Estudo e implementacao de um teste de aceleracao termica para a melhoria da qualidade e confiabilidade de componentes e sistemas

    Energy Technology Data Exchange (ETDEWEB)

    Leao, Felippe Carneiro

    1993-09-01

    The objective of this work is to introduce the application of the burn-in test (test of thermal acceleration) in electronic products, using the practical example of this test in a power supply and to do an analysis of the application of this test in a production line showing the advantages and disadvantages of its implementation. For that it is made an abbreviation presentation of the basic concepts of quality and reliability. Starting from these concepts are presented the statistical models used in reliability, that describe the behavior of life of products and components. Besides showing, from the speed chemical reaction model , the influence of the temperature about this reliability.

  13. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    Science.gov (United States)

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  14. Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings

    Science.gov (United States)

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851

  15. Wind hazard assessment for Point Lepreau Generating Station

    International Nuclear Information System (INIS)

    Mullin, D.; Moland, M.; Sciaudone, J.C.; Twisdale, L.A.; Vickery, P.J.; Mizzen, D.R.

    2015-01-01

    In response to the CNSC Fukushima Action Plan, NB Power has embarked on a wind hazard assessment for the Point Lepreau Generating Station site that incorporates the latest up to date wind information and modeling. The objective was to provide characterization of the wind hazard from all potential sources and estimate wind-driven missile fragilities and wind pressure fragilities for various structures, systems and components that would provide input to a possible high wind Probabilistic Safety Assessment. The paper will discuss the overall methodology used to assess hazards related to tornadoes, hurricanes and straight-line winds, and site walk-down and hazard/fragility results. (author)

  16. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  17. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  18. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  19. Wind energy systems

    Science.gov (United States)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  20. Energy management and grid stability aspects of wind energy integration

    International Nuclear Information System (INIS)

    Saulnier, B.; Krau, S.; Gagnon, R.

    2002-01-01

    Wind energy management on power grids was discussed with reference to a wind integration study in Vermont and new projects at Hydro-Quebec's electricity research institute (IREQ (Recherche en Electricite du Quebec)). Modeling concepts for wind integration were presented for hydro/wind systems and for thermal/wind systems. A large scale wind power integration study for the Quebec/Labrador area has shown that large wind power capacity can be integrated in the existing power system without special investment. The Canadian Wind Energy Association's goal of integrating 10,000 MW of wind in Canadian grids appears realistic from a technical point of view. The Vermont thermal system type project involves the integration of wind and biomass. The project objective is to evaluate the impacts, by 2010, of high penetration levels of renewable energy on the Vermont grid. The study showed that wind power can represent a large portion of Vermont's total generation because transmission capacities to get to other regions are large, plus Vermont has ties with other power systems. The Hydro-Quebec load and Vermont wind are well correlated, meaning that Hydro-Quebec's peak is driven by winter electric space heating demand, and Vermont's best wind resource period is also in the winter. Model results show an economic benefit of adding wind power in the Vermont Power system when it is managed with Quebec's generation assets. The impact that this would have on the transmission system was also discussed. 1 tab., 13 figs

  1. Reactive power control methods for improved reliability of wind power inverters under wind speed variations

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2012-01-01

    method to relieve the thermal cycling of power switching devices under severe wind speed variations, by circulating reactive power among the parallel power converters in a WTS or among the WTS's in a wind park. The amount of reactive power is adjusted to limit the junction temperature fluctuation...

  2. Aggregated wind power plant models consisting of IEC wind turbine models

    DEFF Research Database (Denmark)

    Altin, Müfit; Göksu, Ömer; Hansen, Anca Daniela

    2015-01-01

    The common practice regarding the modelling of large generation components has been to make use of models representing the performance of the individual components with a required level of accuracy and details. Owing to the rapid increase of wind power plants comprising large number of wind...... turbines, parameters and models to represent each individual wind turbine in detail makes it necessary to develop aggregated wind power plant models considering the simulation time for power system stability studies. In this paper, aggregated wind power plant models consisting of the IEC 61400-27 variable...... speed wind turbine models (type 3 and type 4) with a power plant controller is presented. The performance of the detailed benchmark wind power plant model and the aggregated model are compared by means of simulations for the specified test cases. Consequently, the results are summarized and discussed...

  3. The Economics of Wind Energy

    International Nuclear Information System (INIS)

    Krohn, S.; Morthorst, P.E.; Awerbuch, S.

    2009-03-01

    This report is the result of an effort by the European Wind Energy Association (EWEA) to assemble a team of professional economists to assess the costs, benefits and risks associated with wind power generation. In particular, the authors were asked to evaluate the costs and benefits to society of wind energy compared to other forms of electricity production. In the present context of increasing energy import dependency in industrialised countries as well as the volatility of fuel prices and their impact on GDP, the aspects of energy security and energy diversification have to be given particular weight in such an analysis. Chapter 1 examines the basic (riskless) cost components of wind energy, as it leaves the wind farm, including some international comparisons and a distinction between onshore and offshore technologies. Chapter 2 illustrates other costs, mainly risks that are also part of the investment and thus have to be incorporated in the final price at which electricity coming from wind can be sold in the markets. The chapter discusses why the electricity market for renewable energy sources (RES) is regulated and how different support systems and institutional settings affect the final cost (and hence, price) of wind power. Chapter 3 discusses how the integration of wind energy is modifying the characteristics and management of the electrical system including grids, and how such modifications can affect the global price of electricity. Chapter 4 analyses how the external benefits of wind energy, such as its lower environmental impact and the lower social risk it entails can be incorporated into its valuation. Chapter 5 develops a methodology for the correct economic comparison of electricity costs coming from wind and from fuel-intensive coal and gas power generation. Chapter 5 uses as a starting point the methodology currently applied by the International Energy Agency (IEA) and improves it by incorporating some of the elements described in the previous

  4. Protection by high velocity thermal spraying coatings on thick walled permanent and interim store components for the diminution of repairs, corrosion and costs 'SHARK'. Overview at the end of the project

    International Nuclear Information System (INIS)

    Behrens, Sabine; Hassel, Thomas; Bach, Friedrich-Wilhelm

    2012-01-01

    The corrosion protection of the internal space of thick-walled interim and permanent storage facility components, such as Castor copyright containers, are ensured nowadays by a galvanic nickel layer. The method has proved itself and protects the base material of the containers at the underwater loading in the Nuclear power station from a corrosive attack. Although, the galvanic nickel plating is a relatively time consuming method, it lasts for several days for each container, and is with a layer thickness of 1,000 μm also expensive. To develop an alternative, faster and more economical method, a BMBF research project named - 'SHARK - protection by high velocity thermal spraying layers on thick-walled permanent and interim store components for the diminution of repairs, corrosion and costs' in cooperation between Siempelkamp Nukleartechnik GmbH and the Institute of Materials Science of the Leibniz University of Hanover was established to investigate the suitability of the high velocity oxy fuel spraying technology (HVOF) for the corrosion protective coating of thickwalled interim and permanent storage facility components. Since the permanent storage depot components are manufactured from cast iron with globular graphite, this material was exclusively used as a base material in this project. The evaluation of the economical features of the application of different nickel base spraying materials on cast iron substratum was in focus, as well as the scientific characterization of the coating systems with regard to the corrosion protective properties. Furthermore, the feasibility of the transfer of the laboratory results on a large industrial setup as well as a general suitability of the coating process for a required repair procedure was to be investigated. The preliminary examination program identified chromium containing spraying materials as successful. Results of the preliminary examination program have been used for investigations with the CASOIK demonstration

  5. 3-D thermal analysis using finite difference technique with finite element model for improved design of components of rocket engine turbomachines for Space Shuttle Main Engine SSME

    Science.gov (United States)

    Sohn, Kiho D.; Ip, Shek-Se P.

    1988-01-01

    Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.

  6. On the Unusual Homeoviscous Adaptation of the Membrane Fatty Acyl Components against the Thermal Stress in RhiΖobium meliloti

    International Nuclear Information System (INIS)

    Kang, Seb Yung; Jung, Seun Ho; Choi, Yong Hoon; Yang, Chul Hak; Kim, Hyun Won

    1999-01-01

    In order to maintain the optimal fluidity in membrane, microorganism genetically regulates the ratio of the unsaturated fatty acids (Ufos) to saturated ones of its biological membrane in response to external perturbing condition such as the change of temperature. The remodelling of fatty acyl chain composition is the most frequently observed response to altered growth temperature. It is reflected in the elevated proportions of unsaturated fatty acid (UFAs) at low temperature. Because cis double bonds, normally positioned at the middle of fatty acyl chains, introduce a kink of approximately 30 .deg. into acyl chain, UFAs pack less compactly and exhibit lower melting points than their saturated homologues. Thus, enrichment of membranes with UFAs offsets, to a significant degree, the increase in membrane order caused by a drop in temperature. This is so called homeoviscous adaptation of the membrane fatty acyl chains against thermal stress. Membrane maintains the optimal viscosity using homeoviscous adaptation.

  7. Noise immission from wind turbines

    International Nuclear Information System (INIS)

    1999-01-01

    The project has dealt with practical ways to reduce the influence of background noise caused by wind acting on the measuring microphones. The uncertainty of measured noise emission (source strength) has been investigated. The main activity was a Round Robin Test involving measurements by five laboratories at the same wind turbine. Each laboratory brought its own instrumentation and performed the measurements and analyses according to their interpretation. The tonality of wind turbine noise is an essential component of the noise impact on the environment. In the present project the uncertainty in the newest existing methods for assessing tonality was investigated. The project included noise propagation measurements in different weather conditions around wind turbines situated in different types of terrain. The results were used to validate a noise propagation model developed in the project. Finally, the project also included a study with listeners evaluating recordings of wind turbine noise. The results are intended as guidance for wind turbine manufacturers in identifying the aspects of wind turbine noise most important to annoyance. (author)

  8. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...

  9. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...... to one third of the total cost of energy. Reduction of Operation & Maintenance costs will result in significant cost savings and result in cheaper electricity production. Operation & Maintenance processes mainly involve actions related to replacements or repair. Identifying the right times when...

  10. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  11. Wind model for low frequency power fluctuations in offshore wind farms

    DEFF Research Database (Denmark)

    Vigueras-Rodríguez, A.; Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio

    2010-01-01

    of hours, taking into account the spectral correlation between different wind turbines. The modelling is supported by measurements from two large wind farms, namely Nysted and Horns Rev. Measurements from individual wind turbines and meteorological masts are used. Finally, the models are integrated......This paper investigates the correlation between the frequency components of the wind speed Power Spectral Density. The results extend an already existing power fluctuation model that can simulate power fluctuations of wind power on areas up to several kilometers and for time scales up to a couple...

  12. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  13. 20% wind by 2030: Overcoming the challenge - U.S. wind supply chain bottlenecks

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Meghan

    2010-09-15

    The U.S. Department of Energy (DOE) provided PowerAdvocate with funding to evaluate the challenges facing the supply chain and provide strategic solutions to overcoming the short and long term supply chain challenges. PowerAdvocate conducted market research and interviews with wind developers, turbine and component suppliers and offshore wind development experts. PowerAdvocate created a comprehensive model. The model includes labor statistics, wind facility cost forecasting, and component supplier manufacturing investments in order to estimate the total cost to build a supply chain that supports the DOE's 20% by 2030 wind installation goal.

  14. Probabilistic analysis of extreme wind events

    Energy Technology Data Exchange (ETDEWEB)

    Chaviaropoulos, P.K. [Center for Renewable Energy Sources (CRES), Pikermi Attikis (Greece)

    1997-12-31

    A vital task in wind engineering and meterology is to understand, measure, analyse and forecast extreme wind conditions, due to their significant effects on human activities and installations like buildings, bridges or wind turbines. The latest version of the IEC standard (1996) pays particular attention to the extreme wind events that have to be taken into account when designing or certifying a wind generator. Actually, the extreme wind events within a 50 year period are those which determine the ``static`` design of most of the wind turbine components. The extremes which are important for the safety of wind generators are those associated with the so-called ``survival wind speed``, the extreme operating gusts and the extreme wind direction changes. A probabilistic approach for the analysis of these events is proposed in this paper. Emphasis is put on establishing the relation between extreme values and physically meaningful ``site calibration`` parameters, like probability distribution of the annual wind speed, turbulence intensity and power spectra properties. (Author)

  15. Self-Assembly of Chip-Size Components with Cavity Structures: High-Precision Alignment and Direct Bonding without Thermal Compression for Hetero Integration

    Directory of Open Access Journals (Sweden)

    Mitsumasa Koyanagi

    2011-02-01

    Full Text Available New surface mounting and packaging technologies, using self-assembly with chips having cavity structures, were investigated for three-dimensional (3D and hetero integration of complementary metal-oxide semiconductors (CMOS and microelectromechanical systems (MEMS. By the surface tension of small droplets of 0.5 wt% hydrogen fluoride (HF aqueous solution, the cavity chips, with a side length of 3 mm, were precisely aligned to hydrophilic bonding regions on the surface of plateaus formed on Si substrates. The plateaus have micro-channels to readily evaporate and fully remove the liquid from the cavities. The average alignment accuracy of the chips with a 1 mm square cavity was found to be 0.4 mm. The alignment accuracy depends, not only on the area of the bonding regions on the substrates and the length of chip periphery without the widths of channels in the plateaus, but also the area wetted by the liquid on the bonding regions. The precisely aligned chips were then directly bonded to the substrates at room temperature without thermal compression, resulting in a high shear bonding strength of more than 10 MPa.

  16. Wind Observatory 2017. Analysis of the wind power market, wind jobs and future of the wind industry in France

    International Nuclear Information System (INIS)

    2017-09-01

    Two years after the enactment of the Energy Transition for Green Growth Act, wind power capacity continues to grow in France, exceeding 12 GWatt the end of 2016 and soon to account for 5% of France's electric power consumption. This vitality, which is set to continue in 2017, will help France achieve its objectives of an installed capacity of 15,000 MW in onshore wind by 2018 and 21,800 to 26,000 MW by 2023. The current pace will nevertheless have to be accelerated in order to reach the realistic objective of 26 GW by 2023 mentioned in the multi-annual energy plan (PPE). With 1,400 jobs created in one year and more than 3,300 over the last two years, the relevance of wind power as a driving force of sustainable job creation throughout the country is unequivocally confirmed: the increase in wind power capacity continues to contribute to the growth in employment in the country. Prepared in collaboration with the consulting firm BearingPoint, the 2017 edition of the Observatory aims to give the reader an overview of employment in the wind industry and the wind power market over the period under consideration. Any changes from the three previous editions are highlighted. It is based on a comprehensive census of all market participants on three themes: employment, the market and the future of wind power. The Observatory gives an accurate picture of how the wind energy industry is structured, thereby presenting a precise overview of the wind energy industry and all its components

  17. Thermal conductivity of technetium

    International Nuclear Information System (INIS)

    Minato, K.; Serizawa, H.; Fukuda, K.

    1998-01-01

    The thermal diffusivity of technetium was measured on a disk sample of 5 mm in diameter and 1 mm in thickness by the laser flash method from room temperature to 1173 K, and the thermal conductivity was determined by the measured thermal diffusivity and density, and the reported specific heat capacity. The thermal diffusivity of technetium decreases with increasing temperature though it is almost constant above 600 K. The thermal conductivity of technetium shows a minimum around 400 K, above which the thermal conductivity increases with temperature. The electronic and phonon components of the thermal conductivity were evaluated approximately. The increase in the thermal conductivity of technetium with temperature is due to the increase in the electronic component. (orig.)

  18. Chromatographic studies on thermal and radiolytic degradation of n-dodecane-HNO3 two components system and its purification employing silica gel treatment

    International Nuclear Information System (INIS)

    Kadam, Prashant; Kaushik, C.P.; Ozarde, P.D.; Bindu, M.; Tripathi, S.C.; Jambunathan, U.; Pandit, G.G.

    2005-01-01

    This paper describes the studies carried out to examine the extent of degradation of n-dodecane at elevated temperature for different time periods and the effect of gamma radiolysis at different absorbed dose, in n-dodecane- nitric acid two components system. The studies also involved the identification of the degradation products formed during above process using GC-MS. A large number of degradation products were observed. Formation of degradation products increases with absorbed dose and time of heating. Further purification of degraded dodecane was carried out with silica gel crystals as an adsorbent. Treated dodecane samples were subjected to GC/GC-MS analysis, to confirm the extent of removal degradation products. (author)

  19. A LINGERING NON-THERMAL COMPONENT IN THE GAMMA-RAY BURST PROMPT EMISSION: PREDICTING GeV EMISSION FROM THE MeV SPECTRUM

    International Nuclear Information System (INIS)

    Basak, Rupal; Rao, A. R.

    2013-01-01

    The high-energy GeV emission of gamma-ray bursts (GRBs) detected by Fermi/LAT has a significantly different morphology compared to the lower energy MeV emission detected by Fermi/GBM. Though the late-time GeV emission is believed to be synchrotron radiation produced via an external shock, this emission as early as the prompt phase is puzzling. A meaningful connection between these two emissions can be drawn only by an accurate description of the prompt MeV spectrum. We perform a time-resolved spectroscopy of the Gamma-ray Burst Monitor (GBM) data of long GRBs with significant GeV emission, using a model consisting of two blackbodies and a power law. We examine in detail the evolution of the spectral components and find that GRBs with high GeV emission (GRB 090902B and GRB 090926A) have a delayed onset of the power-law component in the GBM spectrum, which lingers at the later part of the prompt emission. This behavior mimics the flux evolution in the Large Area Telescope (LAT). In contrast, bright GBM GRBs with an order of magnitude lower GeV emission (GRB 100724B and GRB 091003) show a coupled variability of the total and the power-law flux. Further, by analyzing the data for a set of 17 GRBs, we find a strong correlation between the power-law fluence in the MeV and the LAT fluence (Pearson correlation: r = 0.88 and Spearman correlation: ρ = 0.81). We demonstrate that this correlation is not influenced by the correlation between the total and the power-law fluences at a confidence level of 2.3σ. We speculate the possible radiation mechanisms responsible for the correlation

  20. Cost optimization of wind turbines for large-scale offshore wind farms

    International Nuclear Information System (INIS)

    Fuglsang, P.; Thomsen, K.

    1998-02-01

    This report contains a preliminary investigation of site specific design of off-shore wind turbines for a large off-shore wind farm project at Roedsand that is currently being proposed by ELKRAFT/SEAS. The results were found using a design tool for wind turbines that involve numerical optimization and aeroelastic calculations of response. The wind climate was modeled in detail and a cost function was used to estimate costs from manufacture and installation. Cost of energy is higher for off-shore installations. A comparison of an off-shore wind farm site with a typical stand alone on-shore site showed an increase of the annual production of 28% due to the difference in wind climate. Extreme loads and blade fatigue loads were nearly identical, however,fatigue loads on other main components increased significantly. Optimizations were carried out to find the optimum overall off-shore wind turbine design. A wind turbine for the off-shore wind farm should be different compared with a stand-alone on-shore wind turbine. The overall design changed were increased swept area and rated power combined with reduced rotor speed and tower height. Cost was reduced by 12% for the final 5D/14D off-shore wind turbine from 0.306 DKr/kWh to 0.270 DKr/kWh. These figures include capital costs from manufacture and installation but not on-going costs from maintenance. These results make off-shore wind farms more competitive and comparable to the reference on-shore stand-alone wind turbine. A corresponding reduction of cost of energy could not be found for the stand alone on-shore wind turbine. Furthermore the fatigue loads on wind turbines in on-shore wind farms will increase and cost of energy will increase in favor of off-shore wind farms. (au) EFP-95; EU-JOULE-3; 21 tabs., 7 ills., 8 refs