WorldWideScience

Sample records for thermal wave imaging

  1. Quantitative subsurface analysis using frequency modulated thermal wave imaging

    Science.gov (United States)

    Subhani, S. K.; Suresh, B.; Ghali, V. S.

    2018-01-01

    Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.

  2. Research on Debonding Defects in Thermal Barrier Coatings Structure by Thermal-Wave Radar Imaging (TWRI)

    Science.gov (United States)

    Wang, Fei; Liu, Junyan; Mohummad, Oliullah; Wang, Yang

    2018-06-01

    In this paper, thermal-wave radar imaging (TWRI) is introduced to detect debonding defects in SiC-coated Ni-based superalloy plates. Linear frequency modulation signal (chirp) is used as the excitation signal which has a large time-bandwidth product. Artificial debonding defects in SiC coating are excited by the laser beam with the light intensity modulated by a chirp signal. Cross-correlation algorithm and chirp lock-in algorithm are introduced to extract the thermal-wave signal characteristic. The comparative experiment between TWRI reflection mode and transmission mode was carried out. Experiments are conducted to investigate the influence of laser power density, chirp period, and excitation frequency. Experimental results illustrate that chirp lock-in phase has a better detection capability than other characteristic parameters. TWRI can effectively detect simulated debonding defects of SiC-coated Ni-based superalloy plates.

  3. Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges.

    Science.gov (United States)

    Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas

    2018-04-01

    Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.

  4. Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges

    Science.gov (United States)

    Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas

    2018-04-01

    Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.

  5. Thermal Imaging Systems for Real-Time Applications in Smart Cities

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.; Nielsen, Søren Zebitz

    2016-01-01

    of thermal imaging in real-time Smart City applications. Thermal cameras operate independently of light and measure the radiated infrared waves representing the temperature of the scene. In order to showcase the possibilities, we present five different applications which use thermal imaging only...

  6. Simulation of Thermal Processes in Metamaterial MM-to-IR Converter for MM-wave Imager

    International Nuclear Information System (INIS)

    Zagubisalo, Peter S; Paulish, Andrey G; Kuznetsov, Sergey A

    2014-01-01

    The main characteristics of MM-wave image detector were simulated by means of accurate numerical modelling of thermophysical processes in a metamaterial MM-to-IR converter. The converter represents a multilayer structure consisting of an ultra thin resonant metamaterial absorber and a perfect emissive layer. The absorber consists of a dielectric self-supporting film that is metallized from both sides. A micro-pattern is fabricated from one side. Resonant absorption of the MM waves induces the converter heating that yields enhancement of IR emission from the emissive layer. IR emission is detected by IR camera. In this contribution an accurate numerical model for simulation of the thermal processes in the converter structure was created by using COMSOL Multiphysics software. The simulation results are in a good agreement with experimental results that validates the model. The simulation shows that the real time operation is provided for the converter thickness less than 3 micrometers and time response can be improved by decreasing of the converter thickness. The energy conversion efficiency of MM waves into IR radiation is over 80%. The converter temperature increase is a linear function of a MM-wave radiation power within three orders of the dynamic range. The blooming effect and ways of its reducing are also discussed. The model allows us to choose the ways of converter structure optimization and improvement of image detector parameters

  7. Laser-induced photo-thermal strain imaging

    Science.gov (United States)

    Choi, Changhoon; Ahn, Joongho; Jeon, Seungwan; Kim, Chulhong

    2018-02-01

    Vulnerable plaque is the one of the leading causes of cardiovascular disease occurrence. However, conventional intravascular imaging techniques suffer from difficulty in finding vulnerable plaque due to limitation such as lack of physiological information, imaging depth, and depth sensitivity. Therefore, new techniques are needed to help determine the vulnerability of plaque, Thermal strain imaging (TSI) is an imaging technique based on ultrasound (US) wave propagation speed that varies with temperature of medium. During temperature increase, strain occurs in the medium and its variation tendency is depending on the type of tissue, which makes it possible to use for tissue differentiation. Here, we demonstrate laser-induced photo-thermal strain imaging (pTSI) to differentiate tissue using an intravascular ultrasound (IVUS) catheter and a 1210-nm continuous-wave laser for heating lipids intensively. During heating, consecutive US images were obtained from a custom-made phantom made of porcine fat and gelatin. A cross correlation-based speckle-tracking algorithm was then applied to calculate the strain of US images. In the strain images, the positive strain produced in lipids (porcine fat) was clearly differentiated from water-bearing tissue (gelatin). This result shows that laser-induced pTSI could be a new method to distinguish lipids in the plaque and can help to differentiate vulnerability of plaque.

  8. Thermal gravitational waves in accelerating universe

    Directory of Open Access Journals (Sweden)

    B Ghayour

    2013-10-01

    Full Text Available Gravitational waves are considered in thermal vacuum state. The amplitude and spectral energy density of gravitational waves are found enhanced in thermal vacuum state compared to its zero temperature counterpart. Therefore, the allowed amount of enhancement depends on the upper bound of WMAP-5 and WMAP-7 for the amplitude and spectral energy density of gravitational waves. The enhancement of amplitude and spectral energy density of the waves in thermal vacuum state is consistent with current accelerating phase of the universe. The enhancement feature of amplitude and spectral energy density of the waves is independent of the expansion model of the universe and hence the thermal effect accounts for it. Therefore, existence of thermal gravitational waves is not ruled out

  9. Study on thermal wave based on the thermal mass theory

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The conservation equations for heat conduction are established based on the concept of thermal mass.We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass.The general law introduces a damped thermal wave equation.It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected,which indicates that the CV model only considers the temporal inertia of heat flux.Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory.For larger thermal perturbation,however,the physically impossible phenomenon pre-dicted by CV model,i.e.the negative temperature induced by the thermal wave superposition,is eliminated by the general heat conduction law,which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.

  10. Study on thermal wave based on the thermal mass theory

    Institute of Scientific and Technical Information of China (English)

    HU RuiFeng; CAO BingYang

    2009-01-01

    The conservation equations for heat conduction are established based on the concept of thermal mass. We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass. The general law introduces a damped thermal wave equation. It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected, which indicates that the CV model only considers the temporal inertia of heat flux. Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory. For larger thermal perturbation, however, the physically impossible phenomenon pre-dicted by CV model, i.e. the negative temperature induced by the thermal wave superposition, is eliminated by the general heat conduction law, which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.

  11. Detection and quantification of defects in composite material by using thermal wave method

    International Nuclear Information System (INIS)

    Ranjit, Shrestha; Kim, Won Tae

    2015-01-01

    This paper explored the results of experimental investigation on carbon fiber reinforced polymer (CFRP) composite sample with thermal wave technique. The thermal wave technique combines the advantages of both conventional thermal wave measurement and thermography using a commercial Infrared camera. The sample comprises the artificial inclusions of foreign material to simulate defects of different shape and size at different depths. Lock-in thermography is employed for the detection of defects. The temperature field of the front surface of sample was observed and analysed at several excitation frequencies ranging from 0.562 Hz down to 0.032 Hz. Four-point methodology was applied to extract the amplitude and phase of thermal wave's harmonic component. The phase images are analyzed to find qualitative and quantitative information about the defects

  12. Detection and quantification of defects in composite material by using thermal wave method

    Energy Technology Data Exchange (ETDEWEB)

    Ranjit, Shrestha; Kim, Won Tae [Dept. of Mechanical Engineering, Kongju National University, Cheonan (Korea, Republic of)

    2015-12-15

    This paper explored the results of experimental investigation on carbon fiber reinforced polymer (CFRP) composite sample with thermal wave technique. The thermal wave technique combines the advantages of both conventional thermal wave measurement and thermography using a commercial Infrared camera. The sample comprises the artificial inclusions of foreign material to simulate defects of different shape and size at different depths. Lock-in thermography is employed for the detection of defects. The temperature field of the front surface of sample was observed and analysed at several excitation frequencies ranging from 0.562 Hz down to 0.032 Hz. Four-point methodology was applied to extract the amplitude and phase of thermal wave's harmonic component. The phase images are analyzed to find qualitative and quantitative information about the defects.

  13. Terahertz wave reflective sensing and imaging

    Science.gov (United States)

    Zhong, Hua

    achieved. One of the most important industrialized applications of THz imaging technique---NDT of the space shuttle thermal-protection system is demonstrated the first time by using both pulsed and continuous wave (CW) THz radiation sources. Most defects with different types, sizes and locations are unambiguously identified and distinguished.

  14. Evolution of supernova remnants. III. Thermal waves

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1975-01-01

    The effect of heat conduction on the evolution of supernova remnants is investigated. A thermal wave, or electron conduction front, can travel more rapidly than a shock wave during the first thousand years of the remnant's evolution. A self-similar solution describing this phase has been found by Barenblatt. Numerical computations verify the solution and give the evolution past the thermal wave phase. While shell formation is not impeded, the interior density and temperature profiles are smoothed by the action of conduction

  15. Long-distance thermal temporal ghost imaging over optical fibers

    Science.gov (United States)

    Yao, Xin; Zhang, Wei; Li, Hao; You, Lixing; Wang, Zhen; Huang, Yidong

    2018-02-01

    A thermal ghost imaging scheme between two distant parties is proposed and experimentally demonstrated over long-distance optical fibers. In the scheme, the weak thermal light is split into two paths. Photons in one path are spatially diffused according to their frequencies by a spatial dispersion component, then illuminate the object and record its spatial transmission information. Photons in the other path are temporally diffused by a temporal dispersion component. By the coincidence measurement between photons of two paths, the object can be imaged in a way of ghost imaging, based on the frequency correlation between photons in the two paths. In the experiment, the weak thermal light source is prepared by the spontaneous four-wave mixing in a silicon waveguide. The temporal dispersion is introduced by single mode fibers of 50 km, which also could be looked as a fiber link. Experimental results show that this scheme can be realized over long-distance optical fibers.

  16. The impact of thermal wave characteristics on thermal dose distribution during thermal therapy: A numerical study

    International Nuclear Information System (INIS)

    Shih, T.-C.; Kou, H.-S.; Liauh, C.-T.; Lin, W.-L.

    2005-01-01

    The aim of this study was to investigate the effects of the propagation speed of a thermal wave in terms of the thermal relaxation time on the temperature/thermal dose distributions in living tissue during thermal therapies. The temperature field in tissue was solved by the finite difference method, and the thermal dose was calculated from the formulation proposed by Sapareto and Dewey [Int. J. Radiat. Oncol. Biol. Phys. 10, 787-800 (1984)]. Under the same total deposited energy, for a rapid heating process the time lagging behavior of the peak temperature became pronounced and the level of the peak temperature was decreased with increasing the thermal relaxation time. When the heating duration was longer than the thermal relaxation time of tissues, there was no significant difference between the thermal dose distributions with/without considering the effect of the thermal relaxation time. In other words, when the heating duration is comparable to or shorter than the thermal relaxation time of tissue, the results of the wave bioheat transfer equation (WBHTE) are fully different from that of the Pennes' bioheat transfer equation (PBHTE). Besides, for a rapid heating process the dimension of thermal lesion was still significantly affected by perfusion, because this is what is predicted by the WBHTE but not by the PBHTE, i.e., the wave feature of the temperature field cannot fully be predicted by the PBHTE

  17. Nonlinear ultrasonic imaging with X wave

    Science.gov (United States)

    Du, Hongwei; Lu, Wei; Feng, Huanqing

    2009-10-01

    X wave has a large depth of field and may have important application in ultrasonic imaging to provide high frame rate (HFR). However, the HFR system suffers from lower spatial resolution. In this paper, a study of nonlinear imaging with X wave is presented to improve the resolution. A theoretical description of realizable nonlinear X wave is reported. The nonlinear field is simulated by solving the KZK nonlinear wave equation with a time-domain difference method. The results show that the second harmonic field of X wave has narrower mainlobe and lower sidelobes than the fundamental field. In order to evaluate the imaging effect with X wave, an imaging model involving numerical calculation of the KZK equation, Rayleigh-Sommerfeld integral, band-pass filtering and envelope detection is constructed to obtain 2D fundamental and second harmonic images of scatters in tissue-like medium. The results indicate that if X wave is used, the harmonic image has higher spatial resolution throughout the entire imaging region than the fundamental image, but higher sidelobes occur as compared to conventional focus imaging. A HFR imaging method with higher spatial resolution is thus feasible provided an apodization method is used to suppress sidelobes.

  18. Advances in real-time millimeter-wave imaging radiometers for avionic synthetic vision

    Science.gov (United States)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.; Galliano, Joseph A., Jr.

    1995-06-01

    Millimeter-wave imaging has advantages over conventional visible or infrared imaging for many applications because millimeter-wave signals can travel through fog, snow, dust, and clouds with much less attenuation than infrared or visible light waves. Additionally, passive imaging systems avoid many problems associated with active radar imaging systems, such as radar clutter, glint, and multi-path return. ThermoTrex Corporation previously reported on its development of a passive imaging radiometer that uses an array of frequency-scanned antennas coupled to a multichannel acousto-optic spectrum analyzer (Bragg-cell) to form visible images of a scene through the acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output from the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. An application of this system is its incorporation as part of an enhanced vision system to provide pilots with a synthetic view of a runway in fog and during other adverse weather conditions. Ongoing improvements to a 94 GHz imaging system and examples of recent images taken with this system will be presented. Additionally, the development of dielectric antennas and an electro- optic-based processor for improved system performance, and the development of an `ultra- compact' 220 GHz imaging system will be discussed.

  19. Thermal imaging in medicine

    Directory of Open Access Journals (Sweden)

    Jaka Ogorevc

    2015-12-01

    Full Text Available AbstractIntroduction: Body temperature monitoring is one of the oldest and still one of the most basic diagnostic methods in medicine. In recent years thermal imaging has been increasingly used in measurements of body temperature for diagnostic purposes. Thermal imaging is non-invasive, non-contact method for measuring surface body temperature. Method is quick, painless and patient is not exposed to ionizing radiation or any other body burden.Application of thermal imaging in medicine: Pathological conditions can be indicated as hyper- or hypothermic patterns in many cases. Thermal imaging is presented as a diagnostic method, which can detect such thermal anomalies. This article provides an overview of the thermal imaging applications in various fields of medicine. Thermal imaging has proven to be a suitable method for human febrile temperature screening, for the detection of sites of fractures and infections, a reliable diagnostic tool in the detection of breast cancer and determining the type of skin cancer tumour. It is useful in monitoring the course of a therapy after spinal cord injury, in the detection of food allergies and detecting complications at hemodialysis and is also very effective at the course of treatment of breast reconstruction after mastectomy. With thermal imaging is possible to determine the degrees of burns and early detection of osteomyelitis in diabetic foot phenomenon. The most common and the oldest application of thermal imaging in medicine is the field of rheumatology.Recommendations for use and standards: Essential performance of a thermal imaging camera, measurement method, preparation of a patient and environmental conditions are very important for proper interpretation of measurement results in medical applications of thermal imaging. Standard for screening thermographs was formed for the human febrile temperature screening application.Conclusion: Based on presented examples it is shown that thermal imaging can

  20. Fluctuation and thermal energy balance for drift-wave turbulence

    International Nuclear Information System (INIS)

    Kim, Chang-Bae; Horton, W.

    1990-05-01

    Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. 16 refs., 1 tab

  1. Fluctuation and thermal energy balance for drift-wave turbulence

    International Nuclear Information System (INIS)

    Changbae Kim; Horton, W.

    1991-01-01

    Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. (author)

  2. Solitary wave and periodic wave solutions for the thermally forced gravity waves in atmosphere

    International Nuclear Information System (INIS)

    Li Ziliang

    2008-01-01

    By introducing a new transformation, a new direct and unified algebraic method for constructing multiple travelling wave solutions of general nonlinear evolution equations is presented and implemented in a computer algebraic system, which extends Fan's direct algebraic method to the case when r > 4. The solutions of a first-order nonlinear ordinary differential equation with a higher degree nonlinear term and Fan's direct algebraic method of obtaining exact solutions to nonlinear partial differential equations are applied to the combined KdV-mKdV-GKdV equation, which is derived from a simple incompressible non-hydrostatic Boussinesq equation with the influence of thermal forcing and is applied to investigate internal gravity waves in the atmosphere. As a result, by taking advantage of the new first-order nonlinear ordinary differential equation with a fifth-degree nonlinear term and an eighth-degree nonlinear term, periodic wave solutions associated with the Jacobin elliptic function and the bell and kink profile solitary wave solutions are obtained under the effect of thermal forcing. Most importantly, the mechanism of propagation and generation of the periodic waves and the solitary waves is analysed in detail according to the values of the heating parameter, which show that the effect of heating in atmosphere helps to excite westerly or easterly propagating periodic internal gravity waves and internal solitary waves in atmosphere, which are affected by the local excitation structures in atmosphere. In addition, as an illustrative sample, the properties of the solitary wave solution and Jacobin periodic solution are shown by some figures under the consideration of heating interaction

  3. Fast Plane Wave Imaging

    DEFF Research Database (Denmark)

    Jensen, Jonas

    This PhD project investigates and further develops methods for ultrasound plane wave imaging and blood flow estimation with the objective of overcoming some of the major limitations in conventional ultrasound systems, which are related to low frame rates and only estimation of velocities along...... the ultrasound beam. The first part of the contribution investigates the compromise between frame rate and plane wave image quality including the influence of grating lobes from a λ-pitch transducer. A method for optimizing the image quality is suggested, and it is shown that the frame rate can be increased...... healthy volunteers. Complex flow patterns were measured in an anthropomorphic flow phantom and showed good agreement with the velocity field simulated using computational fluid dynamics. The last part of the contribution investigates two clinical applications. Plane wave imaging was used for slow velocity...

  4. Assimilation of Wave Imaging Radar Observations for Real-Time Wave-by-Wave Forecasting

    Science.gov (United States)

    Haller, M. C.; Simpson, A. J.; Walker, D. T.; Lynett, P. J.; Pittman, R.; Honegger, D.

    2016-02-01

    It has been shown in various studies that a controls system can dramatically improve Wave Energy Converter (WEC) power production by tuning the device's oscillations to the incoming wave field, as well as protect WEC devices by decoupling them in extreme wave conditions. A requirement of the most efficient controls systems is a phase-resolved, "deterministic" surface elevation profile, alerting the device to what it will experience in the near future. The current study aims to demonstrate a deterministic method of wave forecasting through the pairing of an X-Band marine radar with a predictive Mild Slope Equation (MSE) wave model. Using the radar as a remote sensing technique, the wave field up to 1-4 km surrounding a WEC device can be resolved. Individual waves within the radar scan are imaged through the contrast between high intensity wave faces and low intensity wave troughs. Using a recently developed method, radar images are inverted into the radial component of surface slope, shown in the figure provided using radar data from Newport, Oregon. Then, resolved radial slope images are assimilated into the MSE wave model. This leads to a best-fit model hindcast of the waves within the domain. The hindcast is utilized as an initial condition for wave-by-wave forecasting with a target forecast horizon of 3-5 minutes (tens of wave periods). The methodology is currently being tested with synthetic data and comparisons with field data are imminent.

  5. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging

    International Nuclear Information System (INIS)

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Pernot, Mathieu; Tanter, Mickael; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan

    2015-01-01

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable.Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients.The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz −1 cm −1 ). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in

  6. Lamb Wave Assessment of Fatigue and Thermal Damage in Composites

    Science.gov (United States)

    Seale, Michael D.; Smith, Barry T.; Prosser, W. H.

    2004-01-01

    Among the various techniques available, ultrasonic Lamb waves offer a convenient method of evaluating composite materials. Since the Lamb wave velocity depends on the elastic properties of a structure, an effective tool exists to monitor damage in composites by measuring the velocity of these waves. Lamb wave measurements can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper describes two studies which monitor fatigue damage and two studies which monitor thermal damage in composites using Lamb waves. In the fatigue studies, the Lamb wave velocity is compared to modulus measurements obtained using strain gage measurements in the first experiment and the velocity is monitored along with the crack density in the second. In the thermal damage studies, one examines samples which were exposed to varying temperatures for a three minute duration and the second includes rapid thermal damage in composites by intense laser beams. In all studies, the Lamb wave velocity is demonstrated to be an excellent method to monitor damage in composites.

  7. Thermal imaging method to visualize a hidden painting thermally excited by far infrared radiations

    Science.gov (United States)

    Davin, T.; Wang, X.; Chabane, A.; Pawelko, R.; Guida, G.; Serio, B.; Hervé, P.

    2015-06-01

    The diagnosis of hidden painting is a major issue for cultural heritage. In this paper, a non-destructive active infrared thermographic technique was considered to reveal paintings covered by a lime layer. An extended infrared spectral range radiation was used as the excitation source. The external long wave infrared energy source delivered to the surface is then propagated through the material until it encounters a painting zone. Due to several thermal effects, the sample surface then presents non-uniformity patterns. Using a high sensitive infrared camera, the presence of covered pigments can thus be highlighted by the analysis of the non-stationary phenomena. Reconstituted thermal contrast images of mural samples covered by a lime layer are shown.

  8. Thermal-to-visible transducer (TVT) for thermal-IR imaging

    Science.gov (United States)

    Flusberg, Allen; Swartz, Stephen; Huff, Michael; Gross, Steven

    2008-04-01

    We have been developing a novel thermal-to-visible transducer (TVT), an uncooled thermal-IR imager that is based on a Fabry-Perot Interferometer (FPI). The FPI-based IR imager can convert a thermal-IR image to a video electronic image. IR radiation that is emitted by an object in the scene is imaged onto an IR-absorbing material that is located within an FPI. Temperature variations generated by the spatial variations in the IR image intensity cause variations in optical thickness, modulating the reflectivity seen by a probe laser beam. The reflected probe is imaged onto a visible array, producing a visible image of the IR scene. This technology can provide low-cost IR cameras with excellent sensitivity, low power consumption, and the potential for self-registered fusion of thermal-IR and visible images. We will describe characteristics of requisite pixelated arrays that we have fabricated.

  9. Simultaneous particle image velocimetry and infrared imagery of microscale breaking waves

    International Nuclear Information System (INIS)

    Siddiqui, M.H. Kamran; Loewen, Mark R.; Richardson, Christine; Asher, William E.; Jessup, Andrew T.

    2001-01-01

    We report the results from a laboratory investigation in which microscale breaking waves were detected using an infrared (IR) imager and two-dimensional (2-D) velocity fields were simultaneously measured using particle image velocimetry (PIV). In addition, the local heat transfer velocity was measured using the controlled flux technique. To the best of our knowledge these are the first measurements of the instantaneous 2-D velocity fields generated beneath microscale breaking waves. Careful measurements of the water surface profile enabled us to make accurate estimates of the near-surface velocities using PIV. Previous experiments have shown that behind the leading edge of a microscale breaker the cool skin layer is disrupted creating a thermal signature in the IR image [Jessup et al., J. Geophys. Res. 102, 23145 (1997)]. The simultaneously sampled IR images and PIV data enabled us to show that these disruptions or wakes are typically produced by a series of vortices that form behind the leading edge of the breaker. When the vortices are first formed they are very strong and coherent but as time passes, and they move from the crest region to the back face of the wave, they become weaker and less coherent. The near-surface vorticity was correlated with both the fractional area coverage of microscale breaking waves and the local heat transfer velocity. The strong correlations provide convincing evidence that the wakes produced by microscale breaking waves are regions of high near-surface vorticity that are in turn responsible for enhancing air-water heat transfer rates

  10. Thermal noise from optical coatings in gravitational wave detectors.

    Science.gov (United States)

    Harry, Gregory M; Armandula, Helena; Black, Eric; Crooks, D R M; Cagnoli, Gianpietro; Hough, Jim; Murray, Peter; Reid, Stuart; Rowan, Sheila; Sneddon, Peter; Fejer, Martin M; Route, Roger; Penn, Steven D

    2006-03-01

    Gravitational waves are a prediction of Einstein's general theory of relativity. These waves are created by massive objects, like neutron stars or black holes, oscillating at speeds appreciable to the speed of light. The detectable effect on the Earth of these waves is extremely small, however, creating strains of the order of 10(-21). There are a number of basic physics experiments around the world designed to detect these waves by using interferometers with very long arms, up to 4 km in length. The next-generation interferometers are currently being designed, and the thermal noise in the mirrors will set the sensitivity over much of the usable bandwidth. Thermal noise arising from mechanical loss in the optical coatings put on the mirrors will be a significant source of noise. Achieving higher sensitivity through lower mechanical loss coatings, while preserving the crucial optical and thermal properties, is an area of active research right now.

  11. Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers

    KAUST Repository

    Guo, Bowen

    2017-06-01

    Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, a WEMVA method using plane-wave CIGs is presented. Plane-wave CIGs reduce the computational cost and memory storage because they are directly calculated from prestack plane-wave migration, and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic datasets and a field dataset validate the efficiency and effectiveness of this method.

  12. Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Chung, Jae Hun; Hwang, Gwang Seok; Jung, Eui Han; Kwon, Oh Myoung [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.

  13. Measurement of through-thickness thermal diffusivity of thermoplastics using thermal wave method

    Science.gov (United States)

    Singh, R.; Mellinger, A.

    2015-04-01

    Thermo-physical properties, such as thermal conductivity, thermal diffusivity and specific heat are important quantities that are needed to interpret and characterize thermoplastic materials. Such characterization is necessary for many applications, ranging from aerospace engineering to food packaging, electrical and electronic industry and medical science. In this work, the thermal diffusivity of commercially available polymeric films is measured in the thickness direction at room temperature using thermal wave method. The results obtained with this method are in good agreement with theoretical and experimental values.

  14. Reflective all-sky thermal infrared cloud imager.

    Science.gov (United States)

    Redman, Brian J; Shaw, Joseph A; Nugent, Paul W; Clark, R Trevor; Piazzolla, Sabino

    2018-04-30

    A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference that is used to estimate and remove thermal emission from the metal sphere. Once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m 2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.

  15. Directional radiative cooling thermal compensation for gravitational wave interferometer mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Justin Kamp, Carl [Department of Chemical Reaction Engineering, Chalmers University of Technology, SE-412 96 Goteborg (Sweden)], E-mail: carl.kamp@chalmers.se; Kawamura, Hinata [Yokoyama Junior High School, Sanda, Hachioji, Tokyo 193-0832 (Japan); Passaquieti, Roberto [Dipartimento di Fisica ' Enrico Fermi' and INFN Sezione di Pisa, Universita' di Pisa, Largo Bruno Pontecorvo, I-56127 Pisa (Italy); DeSalvo, Riccardo [LIGO Observatories, California Institute of Technology, Pasadena, CA 91125 (United States)

    2009-08-21

    The concept of utilizing directional radiative cooling to correct the problem of thermal lensing in the mirrors of the LIGO/VIRGO gravitational wave detectors has been shown and has prospects for future use. Two different designs utilizing this concept, referred to as the baffled and parabolic mirror solutions, have been proposed with different means of controlling the cooling power. The technique takes advantage of the power naturally radiated by the mirror surfaces at room temperature to prevent their heating by the powerful stored laser beams. The baffled solution has been simulated via COMSOL Multiphysics as a design tool. Finally, the parabolic mirror concept was experimentally validated with the results falling in close agreement with theoretical cooling calculations. The technique of directional radiative thermal correction can be reversed to image heat rings on the mirrors periphery to remotely and dynamically correct their radius of curvature without subjecting the mirror to relevant perturbations.

  16. Thermal Cracking in Westerly Granite Monitored Using Direct Wave Velocity, Coda Wave Interferometry, and Acoustic Emissions

    Science.gov (United States)

    Griffiths, L.; Lengliné, O.; Heap, M. J.; Baud, P.; Schmittbuhl, J.

    2018-03-01

    To monitor both the permanent (thermal microcracking) and the nonpermanent (thermo-elastic) effects of temperature on Westerly Granite, we combine acoustic emission monitoring and ultrasonic velocity measurements at ambient pressure during three heating and cooling cycles to a maximum temperature of 450°C. For the velocity measurements we use both P wave direct traveltime and coda wave interferometry techniques, the latter being more sensitive to changes in S wave velocity. During the first cycle, we observe a high acoustic emission rate and large—and mostly permanent—apparent reductions in velocity with temperature (P wave velocity is reduced by 50% of the initial value at 450°C, and 40% upon cooling). Our measurements are indicative of extensive thermal microcracking during the first cycle, predominantly during the heating phase. During the second cycle we observe further—but reduced—microcracking, and less still during the third cycle, where the apparent decrease in velocity with temperature is near reversible (at 450°C, the P wave velocity is decreased by roughly 10% of the initial velocity). Our results, relevant for thermally dynamic environments such as geothermal reservoirs, highlight the value of performing measurements of rock properties under in situ temperature conditions.

  17. Industrial application of thermal image processing and thermal control

    Science.gov (United States)

    Kong, Lingxue

    2001-09-01

    Industrial application of infrared thermography is virtually boundless as it can be used in any situations where there are temperature differences. This technology has particularly been widely used in automotive industry for process evaluation and system design. In this work, thermal image processing technique will be introduced to quantitatively calculate the heat stored in a warm/hot object and consequently, a thermal control system will be proposed to accurately and actively manage the thermal distribution within the object in accordance with the heat calculated from the thermal images.

  18. Extending RTM Imaging With a Focus on Head Waves

    Science.gov (United States)

    Holicki, Max; Drijkoningen, Guy

    2016-04-01

    Conventional industry seismic imaging predominantly focuses on pre-critical reflections, muting post-critical arrivals in the process. This standard approach neglects a lot of information present in the recorded wave field. This negligence has been partially remedied with the inclusion of head waves in more advanced imaging techniques, like Full Waveform Inversion (FWI). We would like to see post-critical information leave the realm of labour-intensive travel-time picking and tomographic inversion towards full migration to improve subsurface imaging and parameter estimation. We present a novel seismic imaging approach aimed at exploiting post-critical information, using the constant travel path for head-waves between shots. To this end, we propose to generalize conventional Reverse Time Migration (RTM) to scenarios where the sources for the forward and backward propagated wave-fields are not coinciding. RTM functions on the principle that backward propagated receiver data, due to a source at some locations, must overlap with the forward propagated source wave field, from the same source location, at subsurface scatterers. Where the wave-fields overlap in the subsurface there is a peak at the zero-lag cross-correlation, and this peak is used for the imaging. For the inclusion of head waves, we propose to relax the condition of coincident sources. This means that wave-fields, from non-coincident-sources, will not overlap properly in the subsurface anymore. We can make the wave-fields overlap in the subsurface again, by time shifting either the forward or backward propagated wave-fields until the wave-fields overlap. This is the same as imaging at non-zero cross-correlation lags, where the lag is the travel time difference between the two wave-fields for a given event. This allows us to steer which arrivals we would like to use for imaging. In the simplest case we could use Eikonal travel-times to generate our migration image, or we exclusively image the subsurface

  19. Ultra Deep Wave Equation Imaging and Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Alexander M. Popovici; Sergey Fomel; Paul Sava; Sean Crawley; Yining Li; Cristian Lupascu

    2006-09-30

    In this project we developed and tested a novel technology, designed to enhance seismic resolution and imaging of ultra-deep complex geologic structures by using state-of-the-art wave-equation depth migration and wave-equation velocity model building technology for deeper data penetration and recovery, steeper dip and ultra-deep structure imaging, accurate velocity estimation for imaging and pore pressure prediction and accurate illumination and amplitude processing for extending the AVO prediction window. Ultra-deep wave-equation imaging provides greater resolution and accuracy under complex geologic structures where energy multipathing occurs, than what can be accomplished today with standard imaging technology. The objective of the research effort was to examine the feasibility of imaging ultra-deep structures onshore and offshore, by using (1) wave-equation migration, (2) angle-gathers velocity model building, and (3) wave-equation illumination and amplitude compensation. The effort consisted of answering critical technical questions that determine the feasibility of the proposed methodology, testing the theory on synthetic data, and finally applying the technology for imaging ultra-deep real data. Some of the questions answered by this research addressed: (1) the handling of true amplitudes in the downward continuation and imaging algorithm and the preservation of the amplitude with offset or amplitude with angle information required for AVO studies, (2) the effect of several imaging conditions on amplitudes, (3) non-elastic attenuation and approaches for recovering the amplitude and frequency, (4) the effect of aperture and illumination on imaging steep dips and on discriminating the velocities in the ultra-deep structures. All these effects were incorporated in the final imaging step of a real data set acquired specifically to address ultra-deep imaging issues, with large offsets (12,500 m) and long recording time (20 s).

  20. Spatial and temporal control of thermal waves by using DMDs for interference based crack detection

    Science.gov (United States)

    Thiel, Erik; Kreutzbruck, Marc; Ziegler, Mathias

    2016-02-01

    Active Thermography is a well-established non-destructive testing method and used to detect cracks, voids or material inhomogeneities. It is based on applying thermal energy to a samples' surface whereas inner defects alter the nonstationary heat flow. Conventional excitation of a sample is hereby done spatially, either planar (e.g. using a lamp) or local (e.g. using a focused laser) and temporally, either pulsed or periodical. In this work we combine a high power laser with a Digital Micromirror Device (DMD) allowing us to merge all degrees of freedom to a spatially and temporally controlled heat source. This enables us to exploit the possibilities of coherent thermal wave shaping. Exciting periodically while controlling at the same time phase and amplitude of the illumination source induces - via absorption at the sample's surface - a defined thermal wave propagation through a sample. That means thermal waves can be controlled almost like acoustical or optical waves. However, in contrast to optical or acoustical waves, thermal waves are highly damped due to the diffusive character of the thermal heat flow and therefore limited in penetration depth in relation to the achievable resolution. Nevertheless, the coherence length of thermal waves can be chosen in the mmrange for modulation frequencies below 10 Hz which is perfectly met by DMD technology. This approach gives us the opportunity to transfer known technologies from wave shaping techniques to thermography methods. We will present experiments on spatial and temporal wave shaping, demonstrating interference based crack detection.

  1. Spontaneous generation of electromagnetic waves in plasmas with electron thermal flux

    International Nuclear Information System (INIS)

    Okada, Toshio

    1977-01-01

    Spontaneous generation of propagating electromagnetic fields due to a microinstability is investigated for plasmas which convey electron thermal fluxes. The following two cases are examined: 1) Electromagnetic fields spontaneously excited by electrons in a velocity distribution of skewed Maxwellian type. 2) Electromagnetic waves generated by electrons in a velocity distribution which consists of a main part and a high energy part. In this case, the electron thermal flux can be very high. In both cases, induced electromagnetic waves with relatively low frequencies propagate parallel to the direction of Thermal flux. (auth.)

  2. Measurement of thermal conductivity of Bi2Te3 nanowire using high-vacuum scanning thermal wave microscopy

    Science.gov (United States)

    Park, Kyungbae; Hwang, Gwangseok; Kim, Hayeong; Kim, Jungwon; Kim, Woochul; Kim, Sungjin; Kwon, Ohmyoung

    2016-02-01

    With the increasing application of nanomaterials in the development of high-efficiency thermoelectric energy conversion materials and electronic devices, the measurement of the intrinsic thermal conductivity of nanomaterials in the form of nanowires and nanofilms has become very important. However, the current widely used methods for measuring thermal conductivity have difficulties in eliminating the influence of interfacial thermal resistance (ITR) during the measurement. In this study, by using high-vacuum scanning thermal wave microscopy (HV-STWM), we propose a quantitative method for measuring the thermal conductivity of nanomaterials. By measuring the local phase lag of high-frequency (>10 kHz) thermal waves passing through a nanomaterial in a high-vacuum environment, HV-STWM eliminates the measurement errors due to ITR and the distortion due to heat transfer through air. By using HV-STWM, we measure the thermal conductivity of a Bi2Te3 nanowire. Because HV-STWM is quantitatively accurate and its specimen preparation is easier than in the thermal bridge method, we believe that HV-STWM will be widely used for measuring the thermal properties of various types of nanomaterials.

  3. Real-time millimeter-wave imaging radiometer for avionic synthetic vision

    Science.gov (United States)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.

    1994-07-01

    ThermoTrex Corporation (TTC) has developed an imaging radiometer, the passive microwave camera (PMC), that uses an array of frequency-scanned antennas coupled to a multi-channel acousto-optic (Bragg cell) spectrum analyzer to form visible images of a scene through acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output of the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. One application of this system could be its incorporation into an enhanced vision system to provide pilots with a clear view of the runway during fog and other adverse weather conditions. The unique PMC system architecture will allow compact large-aperture implementations because of its flat antenna sensor. Other potential applications include air traffic control, all-weather area surveillance, fire detection, and security. This paper describes the architecture of the TTC PMC and shows examples of images acquired with the system.

  4. Research on the Compression Algorithm of the Infrared Thermal Image Sequence Based on Differential Evolution and Double Exponential Decay Model

    Science.gov (United States)

    Zhang, Jin-Yu; Meng, Xiang-Bing; Xu, Wei; Zhang, Wei; Zhang, Yong

    2014-01-01

    This paper has proposed a new thermal wave image sequence compression algorithm by combining double exponential decay fitting model and differential evolution algorithm. This study benchmarked fitting compression results and precision of the proposed method was benchmarked to that of the traditional methods via experiment; it investigated the fitting compression performance under the long time series and improved model and validated the algorithm by practical thermal image sequence compression and reconstruction. The results show that the proposed algorithm is a fast and highly precise infrared image data processing method. PMID:24696649

  5. Research on the Compression Algorithm of the Infrared Thermal Image Sequence Based on Differential Evolution and Double Exponential Decay Model

    Directory of Open Access Journals (Sweden)

    Jin-Yu Zhang

    2014-01-01

    Full Text Available This paper has proposed a new thermal wave image sequence compression algorithm by combining double exponential decay fitting model and differential evolution algorithm. This study benchmarked fitting compression results and precision of the proposed method was benchmarked to that of the traditional methods via experiment; it investigated the fitting compression performance under the long time series and improved model and validated the algorithm by practical thermal image sequence compression and reconstruction. The results show that the proposed algorithm is a fast and highly precise infrared image data processing method.

  6. Nondestructive Imaging of an Object Using the Compact Continuous-Wave Sub-Terahertz Imaging System

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Seok; Kwon, Il Bub; Yoon, Dong Jin; Seo, Dae Cheol [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2010-08-15

    This paper presented compact CW sub-THz imaging system using the terahertz transmitter(Tx) that generating 0.34 THz electromagnetic wave on based electronic device. Using 0.34 THz electromagnetic wave generated by Tx, we transmitted to sample by point by point scan method and measured transmitting terahertz wave magnitude and phase information respectively with terahertz receiver(Rx) based on sub harmonic mixer. This paper measured and compared images of several samples to obtain better imaging results by changing time delay and step distance of scanning stage which affect image resolution. Also, through the imaging measurement of various samples, we were able to assure possibility of application of terahertz wave

  7. Nondestructive Imaging of an Object Using the Compact Continuous-Wave Sub-Terahertz Imaging System

    International Nuclear Information System (INIS)

    Jang, Jin Seok; Kwon, Il Bub; Yoon, Dong Jin; Seo, Dae Cheol

    2010-01-01

    This paper presented compact CW sub-THz imaging system using the terahertz transmitter(Tx) that generating 0.34 THz electromagnetic wave on based electronic device. Using 0.34 THz electromagnetic wave generated by Tx, we transmitted to sample by point by point scan method and measured transmitting terahertz wave magnitude and phase information respectively with terahertz receiver(Rx) based on sub harmonic mixer. This paper measured and compared images of several samples to obtain better imaging results by changing time delay and step distance of scanning stage which affect image resolution. Also, through the imaging measurement of various samples, we were able to assure possibility of application of terahertz wave

  8. Lamb wave characterization of the effects of long-term thermal-mechanical aging on composite stiffness

    Science.gov (United States)

    Seale, M. D.; Madaras, E. I.

    1999-01-01

    Lamb waves offer a promising method of evaluating damage in composite materials. The Lamb wave velocity is directly related to the material parameters, so an effective tool exists to monitor damage in composites by measuring the velocity of these waves. The Lamb Wave Imager (LWI) uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. In this study, the time-of-flight as well as the elastic stiffnesses D11, D22, A44, and A55 for composite samples which have undergone combined thermal and mechanical aging are obtained. The samples examined include a baseline specimen with 0 cycles, specimens which have been aged 2350 and 3530 cycles at high strain levels, and one specimen aged 3530 cycles at low strain levels.

  9. Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Alexandra [Oregon State Univ., Corvallis, OR (United States); Haller, Merrick [Oregon State Univ., Corvallis, OR (United States). School of Civil & Construction Engineering; Walker, David [SRI International, Menlo Park, CA (United States); Lynett, Pat [Univ. of Southern California, Los Angeles, CA (United States)

    2017-08-29

    This project addressed Topic 3: “Wave Measurement Instrumentation for Feed Forward Controls” under the FOA number DE-FOA-0000971. The overall goal of the program was to develop a phase-resolving wave forecasting technique for application to the active control of Wave Energy Conversion (WEC) devices. We have developed an approach that couples a wave imaging marine radar with a phase-resolving linear wave model for real-time wave field reconstruction and forward propagation of the wave field in space and time. The scope of the project was to develop and assess the performance of this novel forecasting system. Specific project goals were as follows: Develop and verify a fast, GPU-based (Graphical Processing Unit) wave propagation model suitable for phase-resolved computation of nearshore wave transformation over variable bathymetry; Compare the accuracy and speed of performance of the wave model against a deep water model in their ability to predict wave field transformation in the intermediate water depths (50 to 70 m) typical of planned WEC sites; Develop and implement a variational assimilation algorithm that can ingest wave imaging radar observations and estimate the time-varying wave conditions offshore of the domain of interest such that the observed wave field is best reconstructed throughout the domain and then use this to produce model forecasts for a given WEC location; Collect wave-resolving marine radar data, along with relevant in situ wave data, at a suitable wave energy test site, apply the algorithm to the field data, assess performance, and identify any necessary improvements; and Develop a production cost estimate that addresses the affordability of the wave forecasting technology and include in the Final Report. The developed forecasting algorithm (“Wavecast”) was evaluated for both speed and accuracy against a substantial synthetic dataset. Early in the project, performance tests definitively demonstrated that the system was capable of

  10. Thermal diffusivity imaging with the thermal lens microscope.

    Science.gov (United States)

    Dada, Oluwatosin O; Feist, Peter E; Dovichi, Norman J

    2011-12-01

    A coaxial thermal lens microscope was used to generate images based on both the absorbance and thermal diffusivity of histological samples. A pump beam was modulated at frequencies ranging from 50 kHz to 5 MHz using an acousto-optic modulator. The pump and a CW probe beam were combined with a dichroic mirror, directed into an inverted microscope, and focused onto the specimen. The change in the transmitted probe beam's center intensity was detected with a photodiode. The photodiode's signal and a reference signal from the modulator were sent to a high-speed lock-in amplifier. The in-phase and quadrature signals were recorded as a sample was translated through the focused beams and used to generate images based on the amplitude and phase of the lock-in amplifier's signal. The amplitude is related to the absorbance and the phase is related to the thermal diffusivity of the sample. Thin sections of stained liver and bone tissues were imaged; the contrast and signal-to-noise ratio of the phase image was highest at frequencies from 0.1-1 MHz and dropped at higher frequencies. The spatial resolution was 2.5 μm for both amplitude and phase images, limited by the pump beam spot size. © 2011 Optical Society of America

  11. Periodic heat wave determination of thermal diffusivity of clays ...

    African Journals Online (AJOL)

    The responses of Ankaful, Tetegu (# 1 & 2) and Mamfe clays to periodic heat waves were analyzed to deter-mine the thermal diffusivity values. The temperature amplitude attenuated with depth of penetration, while the phase shift increased. The thermal diffusivity values ranged from 3.0 - 9.5 x 10P-7P mP2P/s by amplitude ...

  12. Thermal imaging cameras characteristics and performance

    CERN Document Server

    Williams, Thomas

    2009-01-01

    The ability to see through smoke and mist and the ability to use the variances in temperature to differentiate between targets and their backgrounds are invaluable in military applications and have become major motivators for the further development of thermal imagers. As the potential of thermal imaging is more clearly understood and the cost decreases, the number of industrial and civil applications being exploited is growing quickly. In order to evaluate the suitability of particular thermal imaging cameras for particular applications, it is important to have the means to specify and measur

  13. Using lamb waves tomonitor moisture absorption thermally fatigues composite laminates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sun; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-06-15

    Nondestructive evaluation for material health monitoring is important in aerospace industries. Composite laminates are exposed to heat cyclic loading and humid environment depending on flight conditions. Cyclic heat loading and moisture absorption may lead to material degradation such as matrix breaking, debonding, and delamination. In this paper, the moisture absorption ratio was investigated by measuring the Lamb wave velocity. The composite laminates were manufactured and subjected to different thermal aging cycles and moisture absorption. For various conditions of these cycles, not only changes in weight and also ultrasonic wave velocity were measured, and the Lamb wave velocity at various levels of moisture on a carbon-epoxy plate was investigated. Results from the experiment show a linear correlation between moisture absorption ratio and Lamb wave velocity at different thermal fatigue stages. The presented method can be applied as an alternative solution in the online monitoring of composite laminate moisture levels in commercial flights.

  14. Thermal and Driven Stochastic Growth of Langmuir Waves in the Solar Wind and Earth's Foreshock

    Science.gov (United States)

    Cairns, Iver H.; Robinson, P. A.; Anderson, R. R.

    2000-01-01

    Statistical distributions of Langmuir wave fields in the solar wind and the edge of Earth's foreshock are analyzed and compared with predictions for stochastic growth theory (SGT). SGT quantitatively explains the solar wind, edge, and deep foreshock data as pure thermal waves, driven thermal waves subject to net linear growth and stochastic effects, and as waves in a pure SGT state, respectively, plus radiation near the plasma frequency f(sub p). These changes are interpreted in terms of spatial variations in the beam instability's growth rate and evolution toward a pure SGT state. SGT analyses of field distributions are shown to provide a viable alternative to thermal noise spectroscopy for wave instruments with coarse frequency resolution, and to separate f(sub p) radiation from Langmuir waves.

  15. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran, E-mail: tigran@caltech.edu [Department of Physics, University of Illinois, 845 W Taylor Street, Chicago, IL 60607 (United States); Jet Propulsion Laboratory, 4800 Oak Grove Dr, M/S 298, Pasadena, CA 91109 (United States); Murchikova, Elena [TAPIR, California Institute of Technology, MC 350-17, Pasadena, CA 91125 (United States)

    2017-06-15

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium {sup 3}He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  16. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran; Murchikova, Elena

    2017-01-01

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium "3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  17. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    Directory of Open Access Journals (Sweden)

    Tigran Kalaydzhyan

    2017-06-01

    Full Text Available In certain circumstances, chiral (parity-violating medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium 3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves and transverse velocity (chiral Alfvén wave. We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  18. Ultrafast Ultrasound Imaging With Cascaded Dual-Polarity Waves.

    Science.gov (United States)

    Zhang, Yang; Guo, Yuexin; Lee, Wei-Ning

    2018-04-01

    Ultrafast ultrasound imaging using plane or diverging waves, instead of focused beams, has advanced greatly the development of novel ultrasound imaging methods for evaluating tissue functions beyond anatomical information. However, the sonographic signal-to-noise ratio (SNR) of ultrafast imaging remains limited due to the lack of transmission focusing, and thus insufficient acoustic energy delivery. We hereby propose a new ultrafast ultrasound imaging methodology with cascaded dual-polarity waves (CDWs), which consists of a pulse train with positive and negative polarities. A new coding scheme and a corresponding linear decoding process were thereby designed to obtain the recovered signals with increased amplitude, thus increasing the SNR without sacrificing the frame rate. The newly designed CDW ultrafast ultrasound imaging technique achieved higher quality B-mode images than coherent plane-wave compounding (CPWC) and multiplane wave (MW) imaging in a calibration phantom, ex vivo pork belly, and in vivo human back muscle. CDW imaging shows a significant improvement in the SNR (10.71 dB versus CPWC and 7.62 dB versus MW), penetration depth (36.94% versus CPWC and 35.14% versus MW), and contrast ratio in deep regions (5.97 dB versus CPWC and 5.05 dB versus MW) without compromising other image quality metrics, such as spatial resolution and frame rate. The enhanced image qualities and ultrafast frame rates offered by CDW imaging beget great potential for various novel imaging applications.

  19. Overcoming thermal noise in non-volatile spin wave logic

    Science.gov (United States)

    Dutta, Sourav; Nikonov, Dmitri; Manipatruni, Sasikanth; Young, Ian; Naeemi, Azad

    Spin waves are propagating disturbances in magnetically ordered materials. To compete as a promising candidate for beyond-CMOS application, the all-magnon based computing system must undergo the essential steps of careful selection of materials and demonstrate robustness with respect to thermal noise/variability. Here, we identify suitable materials and investigate two viable options for translating the theoretical idea of phase-dependent switching of the spin wave detector to a practical realization of a thermally reliable magnonic device by - (a) using the built-in strain in the ME cell, arising from the lattice mismatch and/or thermal expansion coefficient mismatch between the film and the substrate, for compensation of the demagnetization, and (b) using an exchange-spring structure that exhibits a strong exchange-coupling between the ME cell and PMA SWB and provides a modification of the energy landscape of the ME cell magnet. A high switching success and error-free logic functionality can be ensured if the amplitude of the detected spin wave () remains higher than a threshold value of around 6°C and the detected phase falls within the window from 280°C through 0 to 20°C or from 100°C to 200°C with a maximum allowable ϕ range of around 100°C.

  20. Image processing to optimize wave energy converters

    Science.gov (United States)

    Bailey, Kyle Marc-Anthony

    The world is turning to renewable energies as a means of ensuring the planet's future and well-being. There have been a few attempts in the past to utilize wave power as a means of generating electricity through the use of Wave Energy Converters (WEC), but only recently are they becoming a focal point in the renewable energy field. Over the past few years there has been a global drive to advance the efficiency of WEC. Placing a mechanical device either onshore or offshore that captures the energy within ocean surface waves to drive a mechanical device is how wave power is produced. This paper seeks to provide a novel and innovative way to estimate ocean wave frequency through the use of image processing. This will be achieved by applying a complex modulated lapped orthogonal transform filter bank to satellite images of ocean waves. The complex modulated lapped orthogonal transform filterbank provides an equal subband decomposition of the Nyquist bounded discrete time Fourier Transform spectrum. The maximum energy of the 2D complex modulated lapped transform subband is used to determine the horizontal and vertical frequency, which subsequently can be used to determine the wave frequency in the direction of the WEC by a simple trigonometric scaling. The robustness of the proposed method is provided by the applications to simulated and real satellite images where the frequency is known.

  1. Propagation of thermal and hydromagnetic waves in an ionizing-recombining hydrogen plasma

    International Nuclear Information System (INIS)

    Di Sigalotti, Leonardo G.; Sira, Eloy; Rendon, Otto; Tremola, Ciro; Mendoza-Briceno, Cesar A.

    2004-01-01

    The propagation of thermal and magnetohydrodynamic (MHD) waves in a heat-conducting, hydrogen plasma, threaded by an external uniform magnetic field (B) and in which photoionization and photorecombination [H + +e - H+hν(χ)] processes are progressing, is investigated here using linear analysis. The resulting dispersion equation is solved analytically for varied strength (β<<1 and ∼1) and orientation of the magnetic field, where β denotes the ratio of plasma to magnetic pressures. Application of this model to the interstellar medium shows that heat conduction governs the propagation of thermal waves only at relatively high frequencies regardless of the plasma temperature, strength, and orientation of the magnetic field. When the direction of wave propagation is held perpendicular to B (i.e., k perpendicular B), the magnetosonic phase velocity is closely Alfvenic for β<<1, while for β∼1 both the hydrostatic and magnetic pressures determine the wave velocity. As long as k parallel B, the fast (transverse) magnetosonic wave becomes an Alfven wave for all frequencies independent of the plasma temperature and field strength, while the slow (longitudinal) magnetosonic wave becomes a pure sound wave. Amplification of thermal and MHD waves always occur at low frequencies and preferentially at temperatures for which the plasma is either weakly or partially ionized. Compared to previous analysis for the same hydrogen plasma model with B=0, the presence of the magnetic field makes the functional dependence of the physical quantities span a longer range of frequencies, which becomes progressively longer as the field strength is increased

  2. Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers

    KAUST Repository

    Guo, Bowen; Schuster, Gerard T.

    2017-01-01

    Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images

  3. Plane-Wave Imaging Challenge in Medical Ultrasound

    DEFF Research Database (Denmark)

    Liebgott, Herve; Molares, Alfonso Rodriguez; Jensen, Jørgen Arendt

    2016-01-01

    for this effect, but comparing the different methods is difficult due to the lack of appropriate tools. PICMUS, the Plane-Wave Imaging Challenge in Medical Ultrasound aims to provide these tools. This paper describes the PICMUS challenge, its motivation, implementation, and metrics.......Plane-Wave imaging enables very high frame rates, up to several thousand frames per second. Unfortunately the lack of transmit focusing leads to reduced image quality, both in terms of resolution and contrast. Recently, numerous beamforming techniques have been proposed to compensate...

  4. Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides

    DEFF Research Database (Denmark)

    Pu, Minhao; Chen, Yaohui; Yvind, Kresten

    2014-01-01

    Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects.......Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects....

  5. Near-field millimeter - wave imaging of nonmetallic materials

    International Nuclear Information System (INIS)

    Gopalsami, N.; Bakhtiari, S.; Raptis, A.C.

    1996-01-01

    A near-field millimeter-wave (mm-wave) imaging system has been designed and built in the 94-GHz range for on-line inspection of nonmetallic (dielectric) materials. The imaging system consists of a transceiver block coupled to an antenna that scans the material to be imaged; a reflector plate is placed behind the material. A quadrature IF mixer in the transceiver block enables measurement of in-phase and quadrature-phase components of reflected signals with respect to the transmitted signal. All transceiver components, with the exception of the Gunn-diode oscillator and antenna, were fabricated in uniform blocks and integrated and packaged into a compact unit (12.7 x 10.2 x 2.5 cm). The objective of this work is to test the applicability of a near-field compact mm-wave sensor for on-line inspection of sheetlike materials such as paper, fabrics, and plastics. This paper presents initial near-field mm-wave images of paper and fabric samples containing known artifacts

  6. Numerical simulation of scattering wave imaging in a goaf

    Institute of Scientific and Technical Information of China (English)

    Li Juanjuan; Pan Dongming; Liao Taiping; Hu Mingshun; Wang Linlin

    2011-01-01

    Goafs are threats to safe mining. Their imaging effects or those of other complex geological bodies are often poor in conventional reflected wave images. Hence, accurate detection of goals has become an important problem, to be solved with a sense of urgency. Based on scattering theory, we used an equivalent offset method to extract Common Scattering Point gathers, in order to analyze different scattering wave characteristics between Common Scattering Point and Common Mid Point gathers and to compare stack and migration imaging effects. Our research results show that the scattering wave imaging method is more efficient than the conventional imaging method and is therefore a more effective imaging method for detecting goats and other complex geological bodies. It has important implications for safe mining procedures and infrastructures.

  7. Ghost imaging with third-order correlated thermal light

    International Nuclear Information System (INIS)

    Ou, L-H; Kuang, L-M

    2007-01-01

    In this paper, we propose a ghost imaging scheme with third-order correlated thermal light. We show that it is possible to produce the spatial information of an object at two different places in a nonlocal fashion by means of a third-order correlated imaging process with a third-order correlated thermal source and third-order correlation measurement. Concretely, we propose a protocol to create two ghost images at two different places from one object. This protocol involves two optical configurations. We derive the Gaussian thin lens equations and plot the geometrical optics of the ghost imaging processes for the two configurations. It is indicated that third-order correlated ghost imaging with thermal light exhibits richer correlated imaging effects than second-order correlated ghost imaging with thermal light

  8. Electromechanical wave imaging for arrhythmias

    International Nuclear Information System (INIS)

    Provost, Jean; Nguyen, Vu Thanh-Hieu; Legrand, Diégo; Okrasinski, Stan; Costet, Alexandre; Konofagou, Elisa E; Gambhir, Alok; Garan, Hasan

    2011-01-01

    Electromechanical wave imaging (EWI) is a novel ultrasound-based imaging modality for mapping of the electromechanical wave (EW), i.e. the transient deformations occurring in immediate response to the electrical activation. The correlation between the EW and the electrical activation has been established in prior studies. However, the methods used previously to map the EW required the reconstruction of images over multiple cardiac cycles, precluding the application of EWI for non-periodic arrhythmias such as fibrillation. In this study, new imaging sequences are developed and applied based on flash- and wide-beam emissions to image the entire heart at very high frame rates (2000 fps) during free breathing in a single heartbeat. The methods are first validated by imaging the heart of an open-chest canine while simultaneously mapping the electrical activation using a 64-electrode basket catheter. Feasibility is then assessed by imaging the atria and ventricles of closed-chest, conscious canines during sinus rhythm and during right-ventricular pacing following atrio-ventricular dissociation, i.e., during a non-periodic rhythm. The EW was validated against electrode measurements in the open-chest case, and followed the expected electrical propagation pattern in the closed-chest setting. These results indicate that EWI can be used for the characterization of non-periodic arrhythmias in conditions similar to the clinical setting, in a single heartbeat, and during free breathing. (fast track communication)

  9. Conjunction of standing wave and resonance in asymmetric nanowires: a mechanism for thermal rectification and remote energy accumulation.

    Science.gov (United States)

    Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2015-12-02

    As an important way to control and manage heat transport, thermal rectification has become an elementary issue in the field of phononics and plays a key role in the designing of thermal devices. Here we investigate systematically the standing wave and the accompanying resonance process in asymmetric nanowires to understand the standing wave itself and its great effect on thermal rectification. Results show that the standing wave is sensitive to both the structural and thermal properties of the material, and its great effect on enhancing the thermal rectification is realized not only by the energy-localization nature of the standing wave, but also by the resonance-caused large amplitude and high energy of the standing wave.

  10. Advanced microwave/millimeter-wave imaging technology

    International Nuclear Information System (INIS)

    Shen, Zuowei; Yang, Lu; Luhmann, N.C. Jr.

    2007-01-01

    Millimeter wave technology advances have made possible active and passive millimeter wave imaging for a variety of applications including advanced plasma diagnostics, radio astronomy, atmospheric radiometry, concealed weapon detection, all-weather aircraft landing, contraband goods detection, harbor navigation/surveillance in fog, highway traffic monitoring in fog, helicopter and automotive collision avoidance in fog, and environmental remote sensing data associated with weather, pollution, soil moisture, oil spill detection, and monitoring of forest fires, to name but a few. The primary focus of this paper is on technology advances which have made possible advanced imaging and visualization of magnetohydrodynamic (MHD) fluctuations and microturbulence in fusion plasmas. Topics of particular emphasis include frequency selective surfaces, planar Schottky diode mixer arrays, electronically controlled beam shaping/steering arrays, and high power millimeter wave local oscillator and probe sources. (author)

  11. Thermal infrared panoramic imaging sensor

    Science.gov (United States)

    Gutin, Mikhail; Tsui, Eddy K.; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey

    2006-05-01

    Panoramic cameras offer true real-time, 360-degree coverage of the surrounding area, valuable for a variety of defense and security applications, including force protection, asset protection, asset control, security including port security, perimeter security, video surveillance, border control, airport security, coastguard operations, search and rescue, intrusion detection, and many others. Automatic detection, location, and tracking of targets outside protected area ensures maximum protection and at the same time reduces the workload on personnel, increases reliability and confidence of target detection, and enables both man-in-the-loop and fully automated system operation. Thermal imaging provides the benefits of all-weather, 24-hour day/night operation with no downtime. In addition, thermal signatures of different target types facilitate better classification, beyond the limits set by camera's spatial resolution. The useful range of catadioptric panoramic cameras is affected by their limited resolution. In many existing systems the resolution is optics-limited. Reflectors customarily used in catadioptric imagers introduce aberrations that may become significant at large camera apertures, such as required in low-light and thermal imaging. Advantages of panoramic imagers with high image resolution include increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) combines the strengths of improved, high-resolution panoramic optics with thermal imaging in the 8 - 14 micron spectral range, leveraged by intelligent video processing for automated detection, location, and tracking of moving targets. The work in progress supports the Future Combat Systems (FCS) and the

  12. Significant wave height retrieval from synthetic radar images

    NARCIS (Netherlands)

    Wijaya, Andreas Parama; van Groesen, Embrecht W.C.

    2014-01-01

    In many offshore activities radar imagery is used to observe and predict ocean waves. An important issue in analyzing the radar images is to resolve the significant wave height. Different from 3DFFT methods that use an estimate related to the square root of the signal-to-noise ratio of radar images,

  13. Quantitative one-dimensional thermal-wave cavity measurements of fluid thermophysical properties through equivalence studies with three-dimensional geometries

    International Nuclear Information System (INIS)

    Matvienko, Anna; Mandelis, Andreas

    2006-01-01

    The thermal-wave field in a photopyroelectric thermal-wave cavity was calculated with two theoretical approaches: a computationally straightforward, conventional, one-dimensional approach and a three-dimensional experimentally more realistic approach. The calculations show that the dimensionality of the thermal-wave field in the cavity depends on the lateral heat transfer boundary conditions and the relation between the beam size of the laser impinging on the thermal-wave generating metallic film and the diameter of the film itself. The theoretical calculations and the experimental data on the photopyroelectric signal in the cavity were compared. The study resulted in identifying ranges of heat transfer rates, beam sizes, and cavity radii for which accurate quantitative measurements of the thermal diffusivity of intracavity fluids can be made within the far simpler, but only approximate, one-dimensional approach conventionally adopted by users of thermal-wave cavities. It was shown that the major parameters affecting the dimensionality of thermal-wave cavities are the laser beam spot size and the Biot number of the medium comprising the sidewalls of the (cylindrical) cavity

  14. Sun glitter imaging analysis of submarine sand waves in HJ-1A/B satellite CCD images

    Science.gov (United States)

    Zhang, Huaguo; He, Xiekai; Yang, Kang; Fu, Bin; Guan, Weibing

    2014-11-01

    Submarine sand waves are a widespread bed-form in tidal environment. Submarine sand waves induce current convergence and divergence that affect sea surface roughness thus become visible in sun glitter images. These sun glitter images have been employed for mapping sand wave topography. However, there are lots of effect factors in sun glitter imaging of the submarine sand waves, such as the imaging geometry and dynamic environment condition. In this paper, several sun glitter images from HJ-1A/B in the Taiwan Banks are selected. These satellite sun glitter images are used to discuss sun glitter imaging characteristics in different sensor parameters and dynamic environment condition. To interpret the imaging characteristics, calculating the sun glitter radiance and analyzing its spatial characteristics of the sand wave in different images is the best way. In this study, a simulated model based on sun glitter radiation transmission is adopted to certify the imaging analysis in further. Some results are drawn based on the study. Firstly, the sun glitter radiation is mainly determined by sensor view angle. Second, the current is another key factor for the sun glitter. The opposite current direction will cause exchanging of bright stripes and dark stripes. Third, brightness reversal would happen at the critical angle. Therefore, when using sun glitter image to obtain depth inversion, one is advised to take advantage of image properties of sand waves and to pay attention to key dynamic environment condition and brightness reversal.

  15. Superresolution Near-field Imaging with Surface Waves

    KAUST Repository

    Fu, Lei; Liu, Zhaolun; Schuster, Gerard T.

    2017-01-01

    We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulas and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve

  16. Next generation thermal imaging

    International Nuclear Information System (INIS)

    Marche, P.P.

    1988-01-01

    The best design of high performance thermal imagers for the 1990s will use horizontal quasi-linear arrays with focal plane processing associated with a simple vertical mechanical scanner. These imagers will have performance that is greatly improved compared to that of present-day devices (50 to 100 percent range and resolution improvement). 5 references

  17. Strain Imaging Using Terahertz Waves and Metamaterials

    Science.gov (United States)

    2016-11-01

    predictions. 14. SUBJECT TERMS Birefringence, Terahertz Waves, Metamaterials 15. NUMBER OF PAGES 16 16. PRICE CODE 17. SECURITY...opaque objects by using the principles of strain-induced birefringence. 4 III. CONCEPT To overcome the inability of visual light to penetrate ...opaque objects, terahertz radiation was investigated. Longer wavelength EM waves, such as radio waves, have excellent penetration ability but low image

  18. Detection of thermal fatigue in composites by second harmonic Lamb waves

    International Nuclear Information System (INIS)

    Li, Weibin; Cho, Younho; Achenbach, Jan D

    2012-01-01

    Composite materials which are widely used in the aerospace industry, are usually subjected to frequent variation of temperature. Thermal cyclic loading may induce material degradation. Considering the long-term service of aircraft composites and the importance of safety in the aircraft industry, even a little damage that may be accumulative via thermal fatigue is often of great concern. Therefore, there is a demand to develop non-destructive approaches to evaluate thermal fatigue damage in an early stage. Due to the sensitivity of acoustic nonlinearity to micro-damage, the nonlinear ultrasonic technique has been explored as a promising tool for early detection of micro-damage. This paper investigates an experimental scheme for characterizing thermal fatigue damage in composite laminates using second harmonic Lamb waves. The present results show a monotonic increase of acoustic nonlinearity with respect to thermal fatigue cycles. The experimental observation of the correlation between the acoustic nonlinearity and thermal fatigue cycles in carbon/epoxy laminates verifies that nonlinear Lamb waves can be used to assess thermal fatigue damage rendering improved sensitivity over conventional linear feature based non-destructive evaluation techniques. Velocity and attenuation based ultrasonic studies are carried out for comparison with the nonlinear ultrasonic approach and it is found that nonlinear acoustic parameters are more promising indicators of thermal fatigue damage than linear ones. (paper)

  19. RESEARCH OF REGISTRATION APPROACHES OF THERMAL INFRARED IMAGES AND INTENSITY IMAGES OF POINT CLOUD

    Directory of Open Access Journals (Sweden)

    L. Liu

    2017-09-01

    Full Text Available In order to realize the analysis of thermal energy of the objects in 3D vision, the registration approach of thermal infrared images and TLS (Terrestrial Laser Scanner point cloud was studied. The original data was pre-processed. For the sake of making the scale and brightness contrast of the two kinds of data meet the needs of basic matching, the intensity image of point cloud was produced and projected to spherical coordinate system, histogram equalization processing was done for thermal infrared image.This paper focused on the research of registration approaches of thermal infrared images and intensity images of point cloud based on SIFT,EOH-SIFT and PIIFD operators. The latter of which is usually used for medical image matching with different spectral character. The comparison results of the experiments showed that PIIFD operator got much more accurate feature point correspondences compared to SIFT and EOH-SIFT operators. The thermal infrared image and intensity image also have ideal overlap results by quadratic polynomial transformation. Therefore, PIIFD can be used as the basic operator for the registration of thermal infrared images and intensity images, and the operator can also be further improved by incorporating the iteration method.

  20. Robust Imaging Methodology for Challenging Environments: Wave Equation Dispersion Inversion of Surface Waves

    KAUST Repository

    Li, Jing; Schuster, Gerard T.; Zeng, Zhaofa

    2017-01-01

    A robust imaging technology is reviewed that provide subsurface information in challenging environments: wave-equation dispersion inversion (WD) of surface waves for the shear velocity model. We demonstrate the benefits and liabilities of the method

  1. Thermal responses in a coronal loop maintained by wave heating mechanisms

    Science.gov (United States)

    Matsumoto, Takuma

    2018-05-01

    A full 3-dimensional compressible magnetohydrodynamic (MHD) simulation is conducted to investigate the thermal responses of a coronal loop to the dynamic dissipation processes of MHD waves. When the foot points of the loop are randomly and continuously forced, the MHD waves become excited and propagate upward. Then, 1-MK temperature corona is produced naturally as the wave energy dissipates. The excited wave packets become non-linear just above the magnetic canopy, and the wave energy cascades into smaller spatial scales. Moreover, collisions between counter-propagating Alfvén wave packets increase the heating rate, resulting in impulsive temperature increases. Our model demonstrates that the heating events in the wave-heated loops can be nanoflare-like in the sense that they are spatially localized and temporally intermittent.

  2. EVIDENCE OF THERMAL CONDUCTION SUPPRESSION IN A SOLAR FLARING LOOP BY CORONAL SEISMOLOGY OF SLOW-MODE WAVES

    International Nuclear Information System (INIS)

    Wang, Tongjiang; Ofman, Leon; Provornikova, Elena; Sun, Xudong; Davila, Joseph M.

    2015-01-01

    Analysis of a longitudinal wave event observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory is presented. A time sequence of 131 Å images reveals that a C-class flare occurred at one footpoint of a large loop and triggered an intensity disturbance (enhancement) propagating along it. The spatial features and temporal evolution suggest that a fundamental standing slow-mode wave could be set up quickly after meeting of two initial disturbances from the opposite footpoints. The oscillations have a period of ∼12 minutes and a decay time of ∼9 minutes. The measured phase speed of 500 ± 50 km s −1 matches the sound speed in the heated loop of ∼10 MK, confirming that the observed waves are of slow mode. We derive the time-dependent temperature and electron density wave signals from six AIA extreme-ultraviolet channels, and find that they are nearly in phase. The measured polytropic index from the temperature and density perturbations is 1.64 ± 0.08 close to the adiabatic index of 5/3 for an ideal monatomic gas. The interpretation based on a 1D linear MHD model suggests that the thermal conductivity is suppressed by at least a factor of 3 in the hot flare loop at 9 MK and above. The viscosity coefficient is determined by coronal seismology from the observed wave when only considering the compressive viscosity dissipation. We find that to interpret the rapid wave damping, the classical compressive viscosity coefficient needs to be enhanced by a factor of 15 as the upper limit

  3. A novel technique to monitor thermal discharges using thermal infrared imaging.

    Science.gov (United States)

    Muthulakshmi, A L; Natesan, Usha; Ferrer, Vincent A; Deepthi, K; Venugopalan, V P; Narasimhan, S V

    2013-09-01

    Coastal temperature is an important indicator of water quality, particularly in regions where delicate ecosystems sensitive to water temperature are present. Remote sensing methods are highly reliable for assessing the thermal dispersion. The plume dispersion from the thermal outfall of the nuclear power plant at Kalpakkam, on the southeast coast of India, was investigated from March to December 2011 using thermal infrared images along with field measurements. The absolute temperature as provided by the thermal infrared (TIR) images is used in the Arc GIS environment for generating a spatial pattern of the plume movement. Good correlation of the temperature measured by the TIR camera with the field data (r(2) = 0.89) make it a reliable method for the thermal monitoring of the power plant effluents. The study portrays that the remote sensing technique provides an effective means of monitoring the thermal distribution pattern in coastal waters.

  4. A Thermal Imaging Instrument with Uncooled Detectors

    Science.gov (United States)

    Joseph, A. T.; Barrentine, E. M.; Brown, A. D.

    2017-12-01

    In this work, we perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. The National Research Council's Committee on Implementation of a Sustained Land Imaging Program has identified the inclusion of a thermal imager as critical for both current and future land imaging missions. Such an imaging instrument operating in two bands located at approximately 11 and 12 microns (for example, in Landsat 8, and also Landsat 9 when launched) will provide essential information for furthering our hydrologic understanding at scales of human influence, and produce field-scale moisture information through accurate retrievals of evapotranspiration (ET). Landsat 9 is slated to recycle the TIRS-2 instrument launched with Landsat 8 that uses cooled quantum well infrared photodetectors (QWIPs), hence requiring expensive and massive cryocooler technology to achieve its required spectral and spatial accuracies. Our goal is to conceptualize and develop a thermal imaging instrument which leverages recent and imminent technology advances in uncooled detectors. Such detector technology will offer the benefit of greatly reduced instrument cost, mass, and power at the expense of some acceptable loss in detector sensitivity. It would also allow a thermal imaging instrument to be fielded on board a low-cost platform, e.g., a CubeSat. Sustained and enhanced land imaging is crucial for providing high-quality science data on change in land use, forest health, crop status, environment, and climate. Accurate satellite mapping of ET at the agricultural field scale (the finest spatial scale of the environmental processes of interest) requires high-quality thermal data to produce the corresponding accurate land surface temperature (LST) retrievals used to drive an ET model. Such an imaging instrument would provide important information on the following: 1) the relationship between land-use and land/water management practices and water use dynamics; 2) the

  5. Adapting Local Features for Face Detection in Thermal Image

    Directory of Open Access Journals (Sweden)

    Chao Ma

    2017-11-01

    Full Text Available A thermal camera captures the temperature distribution of a scene as a thermal image. In thermal images, facial appearances of different people under different lighting conditions are similar. This is because facial temperature distribution is generally constant and not affected by lighting condition. This similarity in face appearances is advantageous for face detection. To detect faces in thermal images, cascade classifiers with Haar-like features are generally used. However, there are few studies exploring the local features for face detection in thermal images. In this paper, we introduce two approaches relying on local features for face detection in thermal images. First, we create new feature types by extending Multi-Block LBP. We consider a margin around the reference and the generally constant distribution of facial temperature. In this way, we make the features more robust to image noise and more effective for face detection in thermal images. Second, we propose an AdaBoost-based training method to get cascade classifiers with multiple types of local features. These feature types have different advantages. In this way we enhance the description power of local features. We did a hold-out validation experiment and a field experiment. In the hold-out validation experiment, we captured a dataset from 20 participants, comprising 14 males and 6 females. For each participant, we captured 420 images with 10 variations in camera distance, 21 poses, and 2 appearances (participant with/without glasses. We compared the performance of cascade classifiers trained by different sets of the features. The experiment results showed that the proposed approaches effectively improve the performance of face detection in thermal images. In the field experiment, we compared the face detection performance in realistic scenes using thermal and RGB images, and gave discussion based on the results.

  6. Estimating envelope thermal characteristics from single point in time thermal images

    Science.gov (United States)

    Alshatshati, Salahaldin Faraj

    Energy efficiency programs implemented nationally in the U.S. by utilities have rendered savings which have cost on average 0.03/kWh. This cost is still well below generation costs. However, as the lowest cost energy efficiency measures are adopted, this the cost effectiveness of further investment declines. Thus there is a need to more effectively find the most opportunities for savings regionally and nationally, so that the greatest cost effectiveness in implementing energy efficiency can be achieved. Integral to this process. are at scale energy audits. However, on-site building energy audits process are expensive, in the range of US1.29/m2-$5.37/m2 and there are an insufficient number of professionals to perform the audits. Energy audits that can be conducted at-scale and at low cost are needed. Research is presented that addresses at community-wide scales characterization of building envelope thermal characteristics via drive-by and fly-over GPS linked thermal imaging. A central question drives this research: Can single point-in-time thermal images be used to infer U-values and thermal capacitances of walls and roofs? Previous efforts to use thermal images to estimate U-values have been limited to rare steady exterior weather conditions. The approaches posed here are based upon the development two models first is a dynamic model of a building envelope component with unknown U-value and thermal capacitance. The weather conditions prior to the thermal image are used as inputs to the model. The model is solved to determine the exterior surface temperature, ultimately predicted the temperature at the thermal measurement time. The model U-value and thermal capacitance are tuned in order to force the error between the predicted surface temperature and the measured surface temperature from thermal imaging to be near zero. This model is developed simply to show that such a model cannot be relied upon to accurately estimate the U-value. The second is a data

  7. Superresolution Near-field Imaging with Surface Waves

    KAUST Repository

    Fu, Lei

    2017-10-21

    We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulas and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve superresolution imaging of subwavelength scatterers if they are located less than about 1/2 of the shear wavelength from the source line. We also show that the TRM operation for a single frequency is equivalent to natural migration, which uses the recorded data to approximate the Green’s functions for migration, and only costs O(N4) algebraic operations for poststack migration compared to O(N6) operations for natural prestack migration. Here, we assume the sources and receivers are on an N × N grid and there are N2 trial image points on the free surface. Our theoretical predictions of superresolution are validated with tests on synthetic data. The field-data tests suggest that hidden faults at the near surface can be detected with subwavelength imaging of surface waves by using the TRM operation if they are no deeper than about 1/2 the dominant shear wavelength.

  8. Effect of Local Thermal Equilibrium Misbalance on Long-wavelength Slow Magnetoacoustic Waves

    Energy Technology Data Exchange (ETDEWEB)

    Nakariakov, V. M. [Centre for Fusion, Space and Astrophysics, Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Afanasyev, A. N. [Institute of Solar-Terrestrial Physics SB RAS, P.O. Box 291, Lermontov St. 126A, Irkutsk 664033 (Russian Federation); Kumar, S.; Moon, Y.-J., E-mail: V.Nakariakov@warwick.ac.uk [School of Space Research, Kyung Hee University, Yongin, 446-701, Gyeonggi (Korea, Republic of)

    2017-11-01

    Evolution of slow magnetoacoustic waves guided by a cylindrical magnetic flux tube that represents a coronal loop or plume, is modeled accounting for the effects of finite gas pressure, weak nonlinearity, dissipation by thermal conduction and viscosity, and the misbalance between the cooling by optically thin radiation and unspecified heating of the plasma. An evolutionary equation of the Burgers–Malthus type is derived. It is shown that the cooling/heating misbalance, determined by the derivatives of the combined radiative cooling and heating function, with respect to the density, temperature, and magnetic field at the thermal equilibrium affect the wave rather strongly. This effect may either cause additional damping, or counteract it, or lead to the gradual amplification of the wave. In the latter case, the coronal plasma acts as an active medium for the slow magnetoacoustic waves. The effect of the cooling/heating misbalance could be important for coronal slow waves, and could be responsible for certain discrepancies between theoretical results and observations, in particular, the increased or decreased damping lengths and times, detection of the waves at certain heights only, and excitation of compressive oscillations. The results obtained open up a possibility for the diagnostics of the coronal heating function by slow magnetoacoustic waves.

  9. Helicopter thermal imaging for detecting insect infested cadavers.

    Science.gov (United States)

    Amendt, Jens; Rodner, Sandra; Schuch, Claus-Peter; Sprenger, Heinz; Weidlich, Lars; Reckel, Frank

    2017-09-01

    One of the most common techniques applied for searching living and even dead persons is the FLIR (Forward Looking Infrared) system fixed on an aircraft like e.g. a helicopter, visualizing the thermal patterns emitted from objects in the long-infrared spectrum. However, as body temperature cools down to ambient values within approximately 24h after death, it is common sense that searching for deceased persons can be just applied the first day post-mortem. We postulated that the insect larval masses on a decomposing body generate a heat which can be considerably higher than ambient temperatures for a period of several weeks and that such heat signatures might be used for locating insect infested human remains. We examined the thermal history of two 70 and 90kg heavy pig cadavers for 21days in May and June 2014 in Germany. Adult and immature insects on the carcasses were sampled daily. Temperatures were measured on and inside the cadavers, in selected maggot masses and at the surroundings. Thermal imaging from a helicopter using the FLIR system was performed at three different altitudes up to 1500ft. during seven day-flights and one night-flight. Insect colonization was dominated by blow flies (Diptera: Calliphoridae) which occurred almost immediately after placement of the cadavers. Larvae were noted first on day 2 and infestation of both cadavers was enormous with several thousand larvae each. After day 14 a first wave of post-feeding larvae left the carcasses for pupation. Body temperature of both cadavers ranged between 15°C and 35°C during the first two weeks of the experiment, while body surface temperatures peaked at about 45°C. Maggot masses temperatures reached values up to almost 25°C above ambient temperature. Detection of both cadavers by thermal imaging was possible on seven of the eight helicopter flights until day 21. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  10. Thermal and ghost reflection modeling for a 180-deg. field-of-view long-wave infrared lens

    Science.gov (United States)

    Shi, Weimin; Couture, Michael E.

    2001-03-01

    Optics 1, Inc. has successfully designed and developed a 180 degree(s) field of view long wave infrared lens for USAF/AFRL under SBIR phase I and II funded projects in support of the multi-national Programmable Integrated Ordinance Suite (PIOS) program. In this paper, a procedure is presented on how to evaluate image degradation caused by asymmetric aerodynamic dome heating. In addition, a thermal gradient model is proposed to evaluate degradation caused by axial temperature gradient throughout the entire PIOS lens. Finally, a ghost reflection analysis is demonstrated with non-sequential model.

  11. BOOK REVIEW: Infrared Thermal Imaging: Fundamentals, Research and Applications Infrared Thermal Imaging: Fundamentals, Research and Applications

    Science.gov (United States)

    Planinsic, Gorazd

    2011-09-01

    Ten years ago, a book with a title like this would be interesting only to a narrow circle of specialists. Thanks to rapid advances in technology, the price of thermal imaging devices has dropped sharply, so they have, almost overnight, become accessible to a wide range of users. As the authors point out in the preface, the growth of this area has led to a paradoxical situation: now there are probably more infrared (IR) cameras sold worldwide than there are people who understand the basic physics behind them and know how to correctly interpret the colourful images that are obtained with these devices. My experience confirms this. When I started using the IR camera during lectures on the didactics of physics, I soon realized that I needed more knowledge, which I later found in this book. A wide range of potential readers and topical areas provides a good motive for writing a book such as this one, but it also represents a major challenge for authors, as compromises in the style of writing and choice of topics are required. The authors of this book have successfully achieved this, and indeed done an excellent job. This book addresses a wide range of readers, from engineers, technicians, and physics and science teachers in schools and universities, to researchers and specialists who are professionally active in the field. As technology in this area has made great progress in recent times, this book is also a valuable guide for those who opt to purchase an infrared camera. Chapters in this book could be divided into three areas: the fundamentals of IR thermal imaging and related physics (two chapters); IR imaging systems and methods (two chapters) and applications, including six chapters on pedagogical applications; IR imaging of buildings and infrastructure, industrial applications, microsystems, selected topics in research and industry, and selected applications from other fields. All chapters contain numerous colour pictures and diagrams, and a rich list of relevant

  12. Superresolution Imaging Using Resonant Multiples and Plane-wave Migration Velocity Analysis

    KAUST Repository

    Guo, Bowen

    2017-08-28

    Seismic imaging is a technique that uses seismic echoes to map and detect underground geological structures. The conventional seismic image has the resolution limit of λ/2, where λ is the wavelength associated with the seismic waves propagating in the subsurface. To exceed this resolution limit, this thesis develops a new imaging method using resonant multiples, which produces superresolution images with twice or even more the spatial resolution compared to the conventional primary reflection image. A resonant multiple is defined as a seismic reflection that revisits the same subsurface location along coincident reflection raypath. This reverberated raypath is the reason for superresolution imaging because it increases the differences in reflection times associated with subtle changes in the spatial location of the reflector. For the practical implementation of superresolution imaging, I develop a post-stack migration technique that first enhances the signal-to-noise ratios (SNRs) of resonant multiples by a moveout-correction stacking method, and then migrates the post-stacked resonant multiples with the associated Kirchhoff or wave-equation migration formula. I show with synthetic and field data examples that the first-order resonant multiple image has about twice the spatial resolution compared to the primary reflection image. Besides resolution, the correct estimate of the subsurface velocity is crucial for determining the correct depth of reflectors. Towards this goal, wave-equation migration velocity analysis (WEMVA) is an image-domain method which inverts for the velocity model that maximizes the similarity of common image gathers (CIGs). Conventional WEMVA based on subsurface-offset, angle domain or time-lag CIGs requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, I present a new WEMVA method using plane-wave CIGs. Plane-wave CIGs reduce the

  13. On the propagation of hydromagnetic waves in a plasma of thermal and suprathermal components

    Science.gov (United States)

    Kumar, Nagendra; Sikka, Himanshu

    2007-12-01

    The propagation of MHD waves is studied when two ideal fluids, thermal and suprathermal gases, coupled by magnetic field are moving with the steady flow velocity. The fluids move independently in a direction perpendicular to the magnetic field but gets coupled along the field. Due to the presence of flow in suprathermal and thermal fluids there appears forward and backward waves. All the forward and backward modes propagate in such a way that their rate of change of phase speed with the thermal Mach number is same. It is also found that besides the usual hydromagnetic modes there appears a suprathermal mode which propagates with faster speed. Surface waves are also examined on an interface formed with composite plasma (suprathermal and thermal gases) on one side and the other is a non-magnetized plasma. In this case, the modes obtained are two or three depending on whether the sound velocity in thermal gas is equal to or greater than the sound velocity in suprathermal gas. The results lead to the conclusion that the interaction of thermal and suprathermal components may lead to the occurrence of an additional mode called suprathermal mode whose phase velocity is higher than all the other modes.

  14. Thermal noise reduction for present and future gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Amico, P.; Bosi, L.; Gammaitoni, L.; Losurdo, G.; Marchesoni, F.; Mazzoni, M.; Punturo, M. E-mail: michele.punturo@pg.infn.it; Stanga, R.; Toncelli, A.; Tonelli, M.; Travasso, F.; Vetrano, F.; Vocca, H

    2004-02-01

    Thermal noise in mirror suspension is and will be the most severe fundamental limit to the low-frequency sensitivity of interferometric gravitational wave detectors currently under construction. The technical solutions, adopted in the Virgo detector, optimize the current suspension scheme, but new materials and new designs are needed to further reduce the suspension thermal noise. Silicon fibers are promising candidates both for room temperature advanced detectors and for future cryogenic interferometric detectors.

  15. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics.

    Science.gov (United States)

    Cardone, Daniela; Pinti, Paola; Merla, Arcangelo

    2015-01-01

    Thermal infrared imaging has been proposed as a potential system for the computational assessment of human autonomic nervous activity and psychophysiological states in a contactless and noninvasive way. Through bioheat modeling of facial thermal imagery, several vital signs can be extracted, including localized blood perfusion, cardiac pulse, breath rate, and sudomotor response, since all these parameters impact the cutaneous temperature. The obtained physiological information could then be used to draw inferences about a variety of psychophysiological or affective states, as proved by the increasing number of psychophysiological studies using thermal infrared imaging. This paper presents therefore a review of the principal achievements of thermal infrared imaging in computational physiology with regard to its capability of monitoring psychophysiological activity.

  16. Thermal wave interference with high-power VCSEL arrays for locating vertically oriented subsurface defects

    Science.gov (United States)

    Thiel, Erik; Kreutzbruck, Marc; Studemund, Taarna; Ziegler, Mathias

    2018-04-01

    Among the photothermal methods, full-field thermal imaging is used to characterize materials, to determine thicknesses of layers, or to find inhomogeneities such as voids or cracks. The use of classical light sources such as flash lamps (impulse heating) or halogen lamps (modulated heating) led to a variety of nondestructive testing methods, in particular, lock-in and flash-thermography. In vertical-cavity surface-emitting lasers (VCSELs), laser light is emitted perpendicularly to the surface with a symmetrical beam profile. Due to the vertical structure, they can be arranged in large arrays of many thousands of individual lasers, which allows power scaling into the kilowatt range. Recently, a high-power yet very compact version of such a VCSEL-array became available that offers both the fast timing behavior of a laser as well as the large illumination area of a lamp. Moreover, it allows a spatial and temporal control of the heating because individual parts of the array can be controlled arbitrarily in frequency, amplitude, and phase. In conjunction with a fast infrared camera, such structured heating opens up a field of novel thermal imaging and testing methods. As a first demonstration of this approach, we chose a testing problem very challenging to conventional thermal infrared testing: The detection of very thin subsurface defects perpendicularly oriented to the surface of metallic samples. First, we generate destructively interfering thermal wave fields, which are then affected by the presence of defects within their reach. It turned out that this technique allows highly sensitive detection of subsurface defects down to depths in excess of the usual thermographic rule of thumb, with no need for a reference or surface preparation.

  17. Thermal gravitational-wave background in the general pre-inflationary scenario

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Santos, Larissa; Zhao, Wen [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Xia, Jun-Qing, E-mail: ljwk@mail.ustc.edu.cn, E-mail: larissa@ustc.edu.cn, E-mail: xiajq@bnu.edu.cn, E-mail: wzhao7@ustc.edu.cn [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2017-01-01

    We investigate the primordial gravitational waves (PGWs) in the general scenario where the inflation is preceded by a pre-inflationary stage with the effective equation of state w . Comparing with the results in the usual inflationary models, the power spectrum of PGWs is modified in two aspects: one is the mixture of the perturbation modes caused by he presence of the pre-inflationary period, and the other is the thermal initial state formed at the Planck era of the early Universe. By investigating the observational imprints of these modifications on the B-mode polarization of cosmic microwave background (CMB) radiation, we obtain the constraints on the conformal temperature of the thermal gravitational-wave background T <5.01× 10{sup −4} Mpc{sup −1} and a tensor-to-scalar ratio r <0.084 (95% confident level), which follows the bounds on total number of e-folds N >63.5 for the model with w =1/3, and N >65.7 for that with w =1. By taking into account various noises and the foreground radiations, we forecast the detection possibility of the thermal gravitational-wave background by the future CMBPol mission, and find that if r >0.01, the detection is possible as long as T >1.5× 10{sup −4} Mpc{sup −1}. However, the effect of different w is quite small, and it seems impossible to determine its value from the potential observations of CMBPol mission.

  18. Millimeter-wave Imaging Systems with Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Löffler, Torsten; Krozer, Viktor; Zhurbenko, Vitaliy

    2010-01-01

    The paper describes development of a millimetre-wave imaging system using multi-element aperture filling techniques [1]. Such imaging systems are increasingly demonstrated for security applications and in particular standoff imaging of persons and bonding flaw and defect detection [2]. The major ...

  19. Method and apparatus for implementing material thermal property measurement by flash thermal imaging

    Science.gov (United States)

    Sun, Jiangang

    2017-11-14

    A method and apparatus are provided for implementing measurement of material thermal properties including measurement of thermal effusivity of a coating and/or film or a bulk material of uniform property. The test apparatus includes an infrared camera, a data acquisition and processing computer coupled to the infrared camera for acquiring and processing thermal image data, a flash lamp providing an input of heat onto the surface of a two-layer sample with an enhanced optical filter covering the flash lamp attenuating an entire infrared wavelength range with a series of thermal images is taken of the surface of the two-layer sample.

  20. Subsurface Profile Mapping using 3-D Compressive Wave Imaging

    Directory of Open Access Journals (Sweden)

    Hazreek Z A M

    2017-01-01

    Full Text Available Geotechnical site investigation related to subsurface profile mapping was commonly performed to provide valuable data for design and construction stage based on conventional drilling techniques. From past experience, drilling techniques particularly using borehole method suffer from limitations related to expensive, time consuming and limited data coverage. Hence, this study performs subsurface profile mapping using 3-D compressive wave imaging in order to minimize those conventional method constraints. Field measurement and data analysis of compressive wave (p-wave, vp was performed using seismic refraction survey (ABEM Terraloc MK 8, 7 kg of sledgehammer and 24 units of vertical geophone and OPTIM (SeisOpt@Picker & SeisOpt@2D software respectively. Then, 3-D compressive wave distribution of subsurface studied was obtained using analysis of SURFER software. Based on 3-D compressive wave image analyzed, it was found that subsurface profile studied consist of three main layers representing top soil (vp = 376 – 600 m/s, weathered material (vp = 900 – 2600 m/s and bedrock (vp > 3000 m/s. Thickness of each layer was varied from 0 – 2 m (first layer, 2 – 20 m (second layer and 20 m and over (third layer. Moreover, groundwater (vp = 1400 – 1600 m/s starts to be detected at 2.0 m depth from ground surface. This study has demonstrated that geotechnical site investigation data related to subsurface profiling was applicable to be obtained using 3-D compressive wave imaging. Furthermore, 3-D compressive wave imaging was performed based on non destructive principle in ground exploration thus consider economic, less time, large data coverage and sustainable to our environment.

  1. Speckle reduction in optical coherence tomography images based on wave atoms

    Science.gov (United States)

    Du, Yongzhao; Liu, Gangjun; Feng, Guoying; Chen, Zhongping

    2014-01-01

    Abstract. Optical coherence tomography (OCT) is an emerging noninvasive imaging technique, which is based on low-coherence interferometry. OCT images suffer from speckle noise, which reduces image contrast. A shrinkage filter based on wave atoms transform is proposed for speckle reduction in OCT images. Wave atoms transform is a new multiscale geometric analysis tool that offers sparser expansion and better representation for images containing oscillatory patterns and textures than other traditional transforms, such as wavelet and curvelet transforms. Cycle spinning-based technology is introduced to avoid visual artifacts, such as Gibbs-like phenomenon, and to develop a translation invariant wave atoms denoising scheme. The speckle suppression degree in the denoised images is controlled by an adjustable parameter that determines the threshold in the wave atoms domain. The experimental results show that the proposed method can effectively remove the speckle noise and improve the OCT image quality. The signal-to-noise ratio, contrast-to-noise ratio, average equivalent number of looks, and cross-correlation (XCOR) values are obtained, and the results are also compared with the wavelet and curvelet thresholding techniques. PMID:24825507

  2. Response of thermal ions to electromagnetic ion cyclotron waves

    Science.gov (United States)

    Anderson, B. J.; Fuselier, S. A.

    1994-01-01

    Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.

  3. Prospects for determination of thermal history after inflation with future gravitational wave detectors

    International Nuclear Information System (INIS)

    Kuroyanagi, Sachiko; Nakayama, Kazunori; Saito, Shun

    2011-01-01

    Thermal history of the Universe between inflation and big-bang nucleosynthesis has not yet been revealed observationally. It will be probed by the detection of primordial gravitational waves generated during inflation, which contain information on the reheating temperature as well as the equation of state of the Universe after inflation. Based on the Fisher information formalism, we examine how accurately the tensor-to-scalar ratio and reheating temperature after inflation can be simultaneously determined with space-based gravitational wave detectors such as the DECI-hertz Interferometer Gravitational-wave Observatory and the Big-Bang Observer. We show that the reheating temperature is best determined if it is around 10 7 GeV for tensor-to-scalar ratio of around 0.1, and explore the detectable parameter space. We also find that equation of state of the early Universe can be also determined accurately enough to distinguish different equation-of-state parameters if the inflationary gravitational waves are successfully detected. Thus, future gravitational wave detectors provide a unique and promising opportunity to reveal the thermal history of the Universe around 10 7 GeV.

  4. Pressure Wave Measurements from Thermal Cook-Off of an HMX Based High Explosive PBX 9501

    International Nuclear Information System (INIS)

    Garcia, F.; Forbes, J.W.; Tarver, C.M.; Urtiew, P.A.; Greenwood, D.W.; Vandersall, K.S.

    2001-01-01

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios

  5. Performance Evaluation Facility for Fire Fighting Thermal Imager

    International Nuclear Information System (INIS)

    Kim, Sung Chan; Amon, Francine; Hamins, Anthony

    2007-01-01

    The present study investigates the characteristics of obscuring media inside an optical smoke cell, which is a bench-scale testing facility for the evaluation of thermal imaging cameras used by fire fighters. Light extinction coefficient and visibility through the smoke cell is characterized by the measured laser transmittance. The laser transmittance along the axial direction of the smoke cell is relatively uniform at upper and lower part for various air/fuel volume flow rate. Contrast level based image quality of visible CCD camera through the smoke cell is compared with that of thermal imaging camera. The optical smoke cell can be used as well-controlled and effective laboratory-scale test apparatus to evaluate the performance of thermal imaging camera for fire fighting application

  6. Detecting breast microcalcifications using super-resolution and wave-equation ultrasound imaging: a numerical phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Simonetti, Francesco [IMPERIAL COLLEGE LONDON; Huthwaite, Peter [IMPERIAL COLLEGE LONDON; Rosenberg, Robert [UNM; Williamson, Michael [UNM

    2010-01-01

    Ultrasound image resolution and quality need to be significantly improved for breast microcalcification detection. Super-resolution imaging with the factorization method has recently been developed as a promising tool to break through the resolution limit of conventional imaging. In addition, wave-equation reflection imaging has become an effective method to reduce image speckles by properly handling ultrasound scattering/diffraction from breast heterogeneities during image reconstruction. We explore the capabilities of a novel super-resolution ultrasound imaging method and a wave-equation reflection imaging scheme for detecting breast microcalcifications. Super-resolution imaging uses the singular value decomposition and a factorization scheme to achieve an image resolution that is not possible for conventional ultrasound imaging. Wave-equation reflection imaging employs a solution to the acoustic-wave equation in heterogeneous media to backpropagate ultrasound scattering/diffraction waves to scatters and form images of heterogeneities. We construct numerical breast phantoms using in vivo breast images, and use a finite-difference wave-equation scheme to generate ultrasound data scattered from inclusions that mimic microcalcifications. We demonstrate that microcalcifications can be detected at full spatial resolution using the super-resolution ultrasound imaging and wave-equation reflection imaging methods.

  7. Quantitative assessment of pain-related thermal dysfunction through clinical digital infrared thermal imaging

    Directory of Open Access Journals (Sweden)

    Frize Monique

    2004-06-01

    Full Text Available Abstract Background The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Some nociceptive and most neuropathic pain pathologies are associated with an alteration of the thermal distribution of the human body. Since the dissipation of heat through the skin occurs for the most part in the form of infrared radiation, infrared thermography is the method of choice to study the physiology of thermoregulation and the thermal dysfunction associated with pain. Assessing thermograms is a complex and subjective task that can be greatly facilitated by computerised techniques. Methods This paper presents techniques for automated computerised assessment of thermal images of pain, in order to facilitate the physician's decision making. First, the thermal images are pre-processed to reduce the noise introduced during the initial acquisition and to extract the irrelevant background. Then, potential regions of interest are identified using fixed dermatomal subdivisions of the body, isothermal analysis and segmentation techniques. Finally, we assess the degree of asymmetry between contralateral regions of interest using statistical computations and distance measures between comparable regions. Results The wavelet domain-based Poisson noise removal techniques compared favourably against Wiener and other wavelet-based denoising methods, when qualitative criteria were used. It was shown to improve slightly the subsequent analysis. The automated background removal technique based on thresholding and morphological operations was successful for both noisy and denoised images with a correct removal rate of 85% of the images in the database. The automation of the regions of interest (ROIs delimitation process was achieved successfully for images with a good contralateral symmetry. Isothermal division complemented well the fixed ROIs division based on dermatomes, giving a more accurate map of potentially abnormal regions. The measure

  8. Multispectral thermal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P.G.; Bender, S.C.; Borel, C.C.; Clodius, W.B.; Smith, B.W. [Los Alamos National Lab., NM (United States). Space and Remote Sensing Sciences Group; Garrett, A.; Pendergast, M.M. [Westinghouse Savannah River Corp., Aiken, SC (United States). Savannah River Technology Center; Kay, R.R. [Sandia National Lab., Albuquerque, NM (United States). Monitoring Systems and Technology Center

    1998-12-01

    Many remote sensing applications rely on imaging spectrometry. Here the authors use imaging spectrometry for thermal and multispectral signatures measured from a satellite platform enhanced with a combination of accurate calibrations and on-board data for correcting atmospheric distortions. The approach is supported by physics-based end-to-end modeling and analysis, which permits a cost-effective balance between various hardware and software aspects. The goal is to develop and demonstrate advanced technologies and analysis tools toward meeting the needs of the customer; at the same time, the attributes of this system can address other applications in such areas as environmental change, agriculture, and volcanology.

  9. Optoacoustic detection of thermal lesions

    Science.gov (United States)

    Arsenault, Michel G.; Kolios, Michael C.; Whelan, William M.

    2009-02-01

    Minimally invasive thermal therapy is being investigated as an alternative cancer treatment. It involves heating tissues to greater than 55°C over a period of a few minutes, which results in tissue coagulation. Optoacoustic (OA) imaging is a new imaging technique that involves exposing tissues to pulsed light and detecting the acoustic waves that are generated. In this study, adult bovine liver tissue samples were heated using continuous wave laser energy for various times, then scanned using an optoacoustic imaging system. Large optoacoustic signal variability was observed in the native tissue prior to heating. OA signal amplitude increased with maximum tissue temperature achieved, characterized by a correlation coefficient of 0.63. In this study we show that there are detectable changes in optoacoustic signal strength that arise from tissue coagulation, which demonstrates the potential of optoacoustic technology for the monitoring of thermal therapy delivery.

  10. Thermal particle image velocity estimation of fire plume flow

    Science.gov (United States)

    Xiangyang Zhou; Lulu Sun; Shankar Mahalingam; David R. Weise

    2003-01-01

    For the purpose of studying wildfire spread in living vegetation such as chaparral in California, a thermal particle image velocity (TPIV) algorithm for nonintrusively measuring flame gas velocities through thermal infrared (IR) imagery was developed. By tracing thermal particles in successive digital IR images, the TPIV algorithm can estimate the velocity field in a...

  11. Thermal-wave balancing flow sensor with low-drift power feedback

    NARCIS (Netherlands)

    Dijkstra, Marcel; Lammerink, Theodorus S.J.; Pjetri, O.; de Boer, Meint J.; Berenschot, Johan W.; Wiegerink, Remco J.; Elwenspoek, Michael Curt

    2014-01-01

    A control system using a low-drift power-feedback signal was implemented applying thermal waves, giving a sensor output independent of resistance drift and thermo-electric offset voltages on interface wires. Kelvin-contact sensing and power control is used on heater resistors, thereby inhibiting the

  12. Characterization of 3 to 5 Micron Thermal Imagers and Analysis of Narrow Band Images

    National Research Council Canada - National Science Library

    Quek, Yew S

    2004-01-01

    ...) and the Minimum Resolvable Temperature (MRT). An available thermal imager, the Cincinnati Electronics IRRIS-256LN, and a newly purchased thermal imager, the Indigo Systems Merlin InSb Laboratory Camera, were investigated and compared...

  13. Characteristics of equatorial gravity waves derived from mesospheric airglow imaging observations

    Directory of Open Access Journals (Sweden)

    S. Suzuki

    2009-04-01

    Full Text Available We present the characteristics of small-scale (<100 km gravity waves in the equatorial mesopause region derived from OH airglow imaging observations at Kototabang (100.3° E, 0.2° S, Indonesia, from 2002 to 2005. We adopted a method that could automatically detect gravity waves in the airglow images using two-dimensional cross power spectra of gravity waves. The propagation directions of the waves were likely controlled by zonal filtering due to stratospheric mean winds that show a quasi-biennial oscillation (QBO and the presence of many wave sources in the troposphere.

  14. High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)

    Science.gov (United States)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

  15. Effects of vortex-like and non-thermal ion distributions on non-linear dust-acoustic waves

    International Nuclear Information System (INIS)

    Mamun, A.A.; Cairns, R.A.; Shukla, P.K.

    1996-01-01

    The effects of vortex-like and non-thermal ion distributions are incorporated in the study of nonlinear dust-acoustic waves in an unmagnetized dusty plasma. It is found that owing to the departure from the Boltzmann ion distribution to a vortex-like phase space distribution, the dynamics of small but finite amplitude dust-acoustic waves is governed by a modified Kortweg endash de Vries equation. The latter admits a stationary dust-acoustic solitary wave solution, which has larger amplitude, smaller width, and higher propagation velocity than that involving adiabatic ions. On the other hand, consideration of a non-thermal ion distribution provides the possibility of coexistence of large amplitude rarefactive as well as compressive dust-acoustic solitary waves, whereas these structures appear independently when the wave amplitudes become infinitely small. The present investigation should help us to understand the salient features of the non-linear dust-acoustic waves that have been observed in a recent numerical simulation study. copyright 1996 American Institute of Physics

  16. Automated thermal mapping techniques using chromatic image analysis

    Science.gov (United States)

    Buck, Gregory M.

    1989-01-01

    Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.

  17. Generation of narrowband elastic waves with a fiber laser and its application to the imaging of defects in a plate.

    Science.gov (United States)

    Hayashi, Takahiro; Ishihara, Ken

    2017-05-01

    Pulsed laser equipment can be used to generate elastic waves through the instantaneous reaction of thermal expansion or ablation of the material; however, we cannot control the waveform generated by the laser in the same manner that we can when piezoelectric transducers are used as exciters. This study investigates the generation of narrowband tone-burst waves using a fiber laser of the type that is widely used in laser beam machining. Fiber lasers can emit laser pulses with a high repetition rate on the order of MHz, and the laser pulses can be modulated to a burst train by external signals. As a consequence of the burst laser emission, a narrowband tone-burst elastic wave is generated. We experimentally confirmed that the elastic waves agreed well with the modulation signals in time domain waveforms and their frequency spectra, and that waveforms can be controlled by the generation technique. We also apply the generation technique to defect imaging with a scanning laser source. In the experiments, with small laser emission energy, we were not able to obtain defect images from the signal amplitude due to low signal-to-noise ratio, whereas using frequency spectrum peaks of the tone-burst signals gave clear defect images, which indicates that the signal-to-noise ratio is improved in the frequency domain by using this technique for the generation of narrowband elastic waves. Moreover, even for defect imaging at a single receiving point, defect images were enhanced by taking an average of distributions of frequency spectrum peaks at different frequencies. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Fourier diffraction theorem for diffusion-based thermal tomography

    International Nuclear Information System (INIS)

    Baddour, Natalie

    2006-01-01

    There has been much recent interest in thermal imaging as a method of non-destructive testing and for non-invasive medical imaging. The basic idea of applying heat or cold to an area and observing the resulting temperature change with an infrared camera has led to the development of rapid and relatively inexpensive inspection systems. However, the main drawback to date has been that such an approach provides mainly qualitative results. In order to advance the quantitative results that are possible via thermal imaging, there is interest in applying techniques and algorithms from conventional tomography. Many tomography algorithms are based on the Fourier diffraction theorem, which is inapplicable to thermal imaging without suitable modification to account for the attenuative nature of thermal waves. In this paper, the Fourier diffraction theorem for thermal tomography is derived and discussed. The intent is for this thermal-diffusion based Fourier diffraction theorem to form the basis of tomographic reconstruction algorithms for quantitative thermal imaging

  19. Thermal imaging for current D&S priorities

    Science.gov (United States)

    Craig, Robert; Parsons, John F.

    2012-11-01

    Supplying thermal imagers for today's operational needs requires flexibility, responsiveness and ever reducing costs. This paper will use the latest thermal imager development in the Catherine range from Thales UK to address the technical interactions with such issues as modularity, re-use, regions of deployment and supply chain management. All this is in the context of the increasingly public operations and the pressures on validating performance especially when weapon aiming is involved.

  20. Laser induced purely-thermal-wave interferometry (PTWI) using a novel photopyroelectric (PPE) instrument

    Science.gov (United States)

    Wang, Chinhua

    A novel purely thermal-wave interferometric technique and its applications to non-contact and non-destructive evaluation of Ti:sapphire laser crystals, high-precision measurement of thermal diffusivity of gases, and high- sensitivity gas (hydrogen) sensors have been successfully developed both theoretically and experimentally. A comprehensive theoretical and experimental analysis of the system noise and detectivity has been conducted to consolidate the basis of the technique. Unlike the conventional single-ended photopyroelectric(PPE) technique, different thermal-wave interference patterns can be obtained by adjusting two incident beams (relative intensity and phase shift) and two thermal-wave cavities on both sides of a pyroelectric detector. It is found that the large base-line signal and large optical noise, which are encountered in the single- ended PPE scheme, can be coherently and completely suppressed in the fully destructive interferometric measurement. Differential surface absorptance, differential and absolute bulk absorption coefficient of Ti:sapphire laser crystals have been separately measured using an extended PPE-interference (PPEI) theory. Unlike the single-ended PPE method, in which thermal contributions from several optical parameters are always coupled together, the destructive interferometric: method provides a unique method for extracting precise values of one of these coupled parameters, without the need of equally precise knowledge of the values of others. The comparison measurement of thermal diffusivity of air using the single-ended PPE method and the PPEI method shows that the PPEI method enhances the measuring precision by one significant figure when compared with the single-beam method. The conventionally used concept of ``thermal-wave reflection coefficient'' has been extended to a more general case that is sample- thickness dependent. A novel hydrogen gas sensor has been initialized and developed based on the PPEI technique. It is

  1. Formation of the image on the receiver of thermal radiation

    Science.gov (United States)

    Akimenko, Tatiana A.

    2018-04-01

    The formation of the thermal picture of the observed scene with the verification of the quality of the thermal images obtained is one of the important stages of the technological process that determine the quality of the thermal imaging observation system. In this article propose to consider a model for the formation of a thermal picture of a scene, which must take into account: the features of the object of observation as the source of the signal; signal transmission through the physical elements of the thermal imaging system that produce signal processing at the optical, photoelectronic and electronic stages, which determines the final parameters of the signal and its compliance with the requirements for thermal information and measurement systems.

  2. Thermal Conditions in the City of Poznań (Poland during Selected Heat Waves

    Directory of Open Access Journals (Sweden)

    Marek Półrolniczak

    2018-01-01

    Full Text Available The aim of the study was to characterise the occurrence of hot days and heat waves in Poznań in the 1966–2015 period, as well as to describe the thermal conditions in the city during selected heat waves between 2008 and 2015. The basis of the study was the daily maximum and minimum air temperature values for Poznań–Ławica station from 1966–2015 and the daily values of air temperature from eight measuring points located in the city in various land types from 2008 to 2015. A hot day was defined as a day with Tmax above the 95th annual percentile (from 1966 to 2015, while a heat wave was assumed to be at least five consecutive hot days. The research study conducted shows the increase of Tmax, number of hot days and frequency of heat waves in Poznań over the last 50 years. Across the area of the city (differentiation of urban area types according to Urban Atlas 2012, there was a great diversity of thermal conditions during the heat waves analysed.

  3. Development of a contrast phantom for active millimeter-wave imaging systems

    Science.gov (United States)

    Barber, Jeffrey; Weatherall, James C.; Brauer, Carolyn S.; Smith, Barry T.

    2011-06-01

    As the development of active millimeter wave imaging systems continues, it is necessary to validate materials that simulate the expected response of explosives. While physics-based models have been used to develop simulants, it is desirable to image both the explosive and simulant together in a controlled fashion in order to demonstrate success. To this end, a millimeter wave contrast phantom has been created to calibrate image grayscale while controlling the configuration of the explosive and simulant such that direct comparison of their respective returns can be performed. The physics of the phantom are described, with millimeter wave images presented to show successful development of the phantom and simulant validation at GHz frequencies.

  4. MR imaging of kidneys following extracorporeal shock wave lithotripsy

    International Nuclear Information System (INIS)

    Baumgartner, B.R.; Dickey, K.W.; Nelson, R.C.; Ambrose, S.S.; Walton, K.N.; Bernardino, M.E.

    1986-01-01

    MR images were obtained the day after extracorporeal shock wave lithotripsy (ESWL) therapy in 34 patients; the untreated kidneys served as controls. Five patients underwent ESWL of both kidneys before MR imaging. The kidneys were imaged with a spin-echo technique. Multisection coronal, sagittal, and axial images were obtained with T1-weighted pulse sequences. MR imaging studies of 39 kidneys after ESWL showed no abnormality in ten (25%) cases. The other kidneys (75%) had one or more of several findings. Small subcapsular or perinephric fluid collections were noted in ten (25%) patients. Generalized loss of corticomedullary junction (CMJ) was noted in eight (21%) cases and focal loss in 16 (24%). The more pronounced alterations in the CMJ correlated with increased numbers of shock waves received by the kidney

  5. THE EFFECT OF IMAGE ENHANCEMENT METHODS DURING FEATURE DETECTION AND MATCHING OF THERMAL IMAGES

    Directory of Open Access Journals (Sweden)

    O. Akcay

    2017-05-01

    Full Text Available A successful image matching is essential to provide an automatic photogrammetric process accurately. Feature detection, extraction and matching algorithms have performed on the high resolution images perfectly. However, images of cameras, which are equipped with low-resolution thermal sensors are problematic with the current algorithms. In this paper, some digital image processing techniques were applied to the low-resolution images taken with Optris PI 450 382 x 288 pixel optical resolution lightweight thermal camera to increase extraction and matching performance. Image enhancement methods that adjust low quality digital thermal images, were used to produce more suitable images for detection and extraction. Three main digital image process techniques: histogram equalization, high pass and low pass filters were considered to increase the signal-to-noise ratio, sharpen image, remove noise, respectively. Later on, the pre-processed images were evaluated using current image detection and feature extraction methods Maximally Stable Extremal Regions (MSER and Speeded Up Robust Features (SURF algorithms. Obtained results showed that some enhancement methods increased number of extracted features and decreased blunder errors during image matching. Consequently, the effects of different pre-process techniques were compared in the paper.

  6. Revisiting the thermal effect on shock wave propagation in weakly ionized plasmas

    International Nuclear Information System (INIS)

    Zhou, Qianhong; Dong, Zhiwei; Yang, Wei

    2016-01-01

    Many researchers have investigated shock propagation in weakly ionized plasmas and observed the following anomalous effects: shock acceleration, shock recovery, shock weakening, shock spreading, and splitting. It was generally accepted that the thermal effect can explain most of the experimental results. However, little attention was paid to the shock recovery. In this paper, the shock wave propagation in weakly ionized plasmas is studied by fluid simulation. It is found that the shock acceleration, weakening, and splitting appear after it enters the plasma (thermal) region. The shock splits into two parts right after it leaves the thermal region. The distance between the splitted shocks keeps decreasing until they recover to one. This paper can explain a whole set of features of the shock wave propagation in weakly ionized plasmas. It is also found that both the shock curvature and the splitting present the same photoacoustic deflection (PAD) signals, so they cannot be distinguished by the PAD experiments.

  7. The role played by thermal feedback in heated Farley-Buneman waves at high latitudes

    Directory of Open Access Journals (Sweden)

    J.-P. St.-Maurice

    2000-05-01

    Full Text Available It is becoming increasingly clear that electron thermal effects have to be taken into account when dealing with the theory of ionospheric instabilities in the high-latitude ionosphere. Unfortunately, the mathematical complexity often hides the physical processes at work. We follow the limiting cases of a complex but systematic generalized fluid approach to get to the heart of the thermal processes that affect the stability of E region waves during electron heating events. We try to show as simply as possible under what conditions thermal effects contribute to the destabilization of strongly field-aligned (zero aspect angle Farley-Buneman modes. We show that destabilization can arise from a combination of (1 a reduction in pressure gradients associated with temperature fluctuations that are out of phase with density fluctuations, and (2 thermal diffusion, which takes the electrons from regions of enhanced temperatures to regions of negative temperature fluctuations, and therefore enhanced densities. However, we also show that, contrary to what has been suggested in the past, for modes excited along the E0×B direction thermal feedback decreases the growth rate and raises the threshold speed of the Farley-Buneman instability. The increase in threshold speed appears to be important enough to explain the generation of `Type IV' waves in the high-latitude ionosphere.Key words: Ionosphere (auroral ionosphere; iono- spheric irregularities; plasma waves and instabilities

  8. Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2008-01-01

    In this paper, the adaptive, minimum variance (MV) beamformer is applied to medical ultrasound imaging. The Significant resolution and contrast gain provided by the adaptive, minimum variance (MV) beamformer, introduces the possibility of plane wave (PW) ultrasound imaging. Data is obtained using...

  9. Theoretical study of ghost imaging with cold atomic waves under the condition of partial coherence

    International Nuclear Information System (INIS)

    Chen, Jun; Liu, Yun-Xian

    2014-01-01

    A matter wave ghost imaging mechanism is proposed and demonstrated theoretically. This mechanism is based on the Talbot-Lau effect. Periodic gratings of matter wave density, which appear as a result of interference of atoms diffracted by pulses of an optical standing wave, are utilized to produce the reference wave and the signal wave simultaneously for the ghost imaging. An advantage of this mechanism is that during the imaging process, the beam-splitter is not needed, which highly simplifies the experimental setup and makes the ghost imaging possible in the field of matter wave

  10. ICRF Wave Propagation and Absorption in Plasmas with Non-thermal Populations

    International Nuclear Information System (INIS)

    Dumont, R.J.; Phillips, C.K.; Smithe, D.N.

    2002-01-01

    Some results obtained with the one dimensional, all orders, full wave code METS, which has been successfully employed in the past to describe a number of experiments, are reported. By using massively parallel computers, this code has been extended to handle non-thermal populations. Various physical situations, in which non-Maxwellian species are expected to be encountered, are studied, such as simultaneous neutral beam injection and high harmonic fast wave electron heating or ion cyclotron resonance heating in the presence of fusion products

  11. Updated thermal model using simplified short-wave radiosity calculations

    International Nuclear Information System (INIS)

    Smith, J.A.; Goltz, S.M.

    1994-01-01

    An extension to a forest canopy thermal radiance model is described that computes the short-wave energy flux absorbed within the canopy by solving simplified radiosity equations describing flux transfers between canopy ensemble classes partitioned by vegetation layer and leaf slope. Integrated short-wave reflectance and transmittance-factors obtained from measured leaf optical properties were found to be nearly equal for the canopy studied. Short-wave view factor matrices were approximated by combining the average leaf scattering coefficient with the long-wave view factor matrices already incorporated in the model. Both the updated and original models were evaluated for a dense spruce fir forest study site in Central Maine. Canopy short-wave absorption coefficients estimated from detailed Monte Carlo ray tracing calculations were 0.60, 0.04, and 0.03 for the top, middle, and lower canopy layers corresponding to leaf area indices of 4.0, 1.05, and 0.25. The simplified radiosity technique yielded analogous absorption values of 0.55, 0.03, and 0.01. The resulting root mean square error in modeled versus measured canopy temperatures for all layers was less than 1°C with either technique. Maximum error in predicted temperature using the simplified radiosity technique was approximately 2°C during peak solar heating. (author)

  12. Updated thermal model using simplified short-wave radiosity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J. A.; Goltz, S. M.

    1994-02-15

    An extension to a forest canopy thermal radiance model is described that computes the short-wave energy flux absorbed within the canopy by solving simplified radiosity equations describing flux transfers between canopy ensemble classes partitioned by vegetation layer and leaf slope. Integrated short-wave reflectance and transmittance-factors obtained from measured leaf optical properties were found to be nearly equal for the canopy studied. Short-wave view factor matrices were approximated by combining the average leaf scattering coefficient with the long-wave view factor matrices already incorporated in the model. Both the updated and original models were evaluated for a dense spruce fir forest study site in Central Maine. Canopy short-wave absorption coefficients estimated from detailed Monte Carlo ray tracing calculations were 0.60, 0.04, and 0.03 for the top, middle, and lower canopy layers corresponding to leaf area indices of 4.0, 1.05, and 0.25. The simplified radiosity technique yielded analogous absorption values of 0.55, 0.03, and 0.01. The resulting root mean square error in modeled versus measured canopy temperatures for all layers was less than 1°C with either technique. Maximum error in predicted temperature using the simplified radiosity technique was approximately 2°C during peak solar heating. (author)

  13. Shock wave collisions and thermalization in AdS5

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2011-01-01

    We study heavy ion collisions at strong 't Hooft coupling using AdS/CFT correspondence. According to the AdS/CFT dictionary heavy ion collisions correspond to gravitational shock wave collisions in AdS 5 . We construct the metric in the forward light cone after the collision perturbatively through expansion of Einstein equations in graviton exchanges. We obtain an analytic expression for the metric including all-order graviton exchanges with one shock wave, while keeping the exchanges with another shock wave at the lowest order. We read off the corresponding energy-momentum tensor of the produced medium. Unfortunately this energy-momentum tensor does not correspond to ideal hydrodynamics, indicating that higher order graviton exchanges are needed to construct the full solution of the problem. We also show that shock waves must completely stop almost immediately after the collision in AdS 5 , which, on the field theory side, corresponds to complete nuclear stopping due to strong coupling effects, likely leading to Landau hydrodynamics. Finally, we perform trapped surface analysis of the shock wave collisions demonstrating that a bulk black hole, corresponding to ideal hydrodynamics on the boundary, has to be created in such collisions, thus constructing a proof of thermalization in heavy ion collisions at strong coupling. (author)

  14. PHOTOGRAMMETRIC 3D BUILDING RECONSTRUCTION FROM THERMAL IMAGES

    Directory of Open Access Journals (Sweden)

    E. Maset

    2017-08-01

    Full Text Available This paper addresses the problem of 3D building reconstruction from thermal infrared (TIR images. We show that a commercial Computer Vision software can be used to automatically orient sequences of TIR images taken from an Unmanned Aerial Vehicle (UAV and to generate 3D point clouds, without requiring any GNSS/INS data about position and attitude of the images nor camera calibration parameters. Moreover, we propose a procedure based on Iterative Closest Point (ICP algorithm to create a model that combines high resolution and geometric accuracy of RGB images with the thermal information deriving from TIR images. The process can be carried out entirely by the aforesaid software in a simple and efficient way.

  15. Monocrystalline fibres for low thermal noise suspension in advanced gravitational wave detectors

    International Nuclear Information System (INIS)

    Amico, P; Bosi, L; Gammaitoni, L; Losurdo, G; Marchesoni, F; Mazzoni, M; Parisi, D; Punturo, M; Stanga, R; Toncelli, A; Tonelli, M; Travasso, F; Vetrano, F; Vocca, H

    2004-01-01

    Thermal noise in mirror suspension will be the most severe fundamental limit to the low-frequency sensitivity of future interferometric gravitational wave detectors. We propose a new type of materials to realize low thermal noise suspension in such detectors. Monocrystalline suspension fibres are good candidates both for cryogenic and for ambient temperature interferometers. Material characteristics and a production facility are described in this paper

  16. Monocrystalline fibres for low thermal noise suspension in advanced gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Amico, P [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Virgo Project, I-06100 Perugia (Italy); Bosi, L [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Virgo Project, I-06100 Perugia (Italy); Gammaitoni, L [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Virgo Project, I-06100 Perugia (Italy); Losurdo, G [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze/Urbino, Florence (Italy); Marchesoni, F [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Virgo Project, I-06100 Perugia (Italy); Mazzoni, M [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze/Urbino, Florence (Italy); Parisi, D [NEST-Dipartimento di Fisica, Universita di Pisa, Pisa (Italy); Punturo, M [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Virgo Project, I-06100 Perugia (Italy); Stanga, R [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze/Urbino, Florence (Italy); Toncelli, A [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa (Italy); Tonelli, M [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa (Italy); Travasso, F [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Virgo Project, I-06100 Perugia (Italy); Vetrano, F [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze/Urbino, Florence (Italy); Vocca, H [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Virgo Project, I-06100 Perugia (Italy)

    2004-03-07

    Thermal noise in mirror suspension will be the most severe fundamental limit to the low-frequency sensitivity of future interferometric gravitational wave detectors. We propose a new type of materials to realize low thermal noise suspension in such detectors. Monocrystalline suspension fibres are good candidates both for cryogenic and for ambient temperature interferometers. Material characteristics and a production facility are described in this paper.

  17. In-Vivo Synthetic Aperture and Plane Wave High Frame Rate Cardiac Imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Jensen, Jonas; Brandt, Andreas Hjelm

    2014-01-01

    A comparison of synthetic aperture imaging using spherical and plane waves with low number of emission events is presented. For both wave types, a 90 degree sector is insonified using 15 emission events giving a frame rate of 200 frames per second. Field II simulations of point targets show simil.......43 for spherical and 0.70 for plane waves. All measures are well within FDA limits for cardiac imaging. In-vivo images of the heart of a healthy 28-year old volunteer are shown....

  18. THERMAL AND VISIBLE SATELLITE IMAGE FUSION USING WAVELET IN REMOTE SENSING AND SATELLITE IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    A. H. Ahrari

    2017-09-01

    Full Text Available Multimodal remote sensing approach is based on merging different data in different portions of electromagnetic radiation that improves the accuracy in satellite image processing and interpretations. Remote Sensing Visible and thermal infrared bands independently contain valuable spatial and spectral information. Visible bands make enough information spatially and thermal makes more different radiometric and spectral information than visible. However low spatial resolution is the most important limitation in thermal infrared bands. Using satellite image fusion, it is possible to merge them as a single thermal image that contains high spectral and spatial information at the same time. The aim of this study is a performance assessment of thermal and visible image fusion quantitatively and qualitatively with wavelet transform and different filters. In this research, wavelet algorithm (Haar and different decomposition filters (mean.linear,ma,min and rand for thermal and panchromatic bands of Landast8 Satellite were applied as shortwave and longwave fusion method . Finally, quality assessment has been done with quantitative and qualitative approaches. Quantitative parameters such as Entropy, Standard Deviation, Cross Correlation, Q Factor and Mutual Information were used. For thermal and visible image fusion accuracy assessment, all parameters (quantitative and qualitative must be analysed with respect to each other. Among all relevant statistical factors, correlation has the most meaningful result and similarity to the qualitative assessment. Results showed that mean and linear filters make better fused images against the other filters in Haar algorithm. Linear and mean filters have same performance and there is not any difference between their qualitative and quantitative results.

  19. Increased Frame Rate for Plane Wave Imaging Without Loss of Image Quality

    DEFF Research Database (Denmark)

    Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2015-01-01

    Clinical applications of plane wave imaging necessitate the creation of high-quality images with the highest possible frame rate for improved blood flow tracking and anatomical imaging. However, linear array transducers create grating lobe artefacts, which degrade the image quality especially...... in the near field for λ-pitch transducers. Artefacts can only partly be suppressed by increasing the number of emissions, and this paper demonstrates how the frame rate can be increased without loss of image quality by using λ/2-pitch transducers. The number of emissions and steering angles are optimized...

  20. Optimal wave focusing for seismic source imaging

    Science.gov (United States)

    Bazargani, Farhad

    In both global and exploration seismology, studying seismic sources provides geophysicists with invaluable insight into the physics of earthquakes and faulting processes. One way to characterize the seismic source is to directly image it. Time-reversal (TR) focusing provides a simple and robust solution to the source imaging problem. However, for recovering a well- resolved image, TR requires a full-aperture receiver array that surrounds the source and adequately samples the wavefield. This requirement often cannot be realized in practice. In most source imaging experiments, the receiver geometry, due to the limited aperture and sparsity of the stations, does not allow adequate sampling of the source wavefield. Incomplete acquisition and imbalanced illumination of the imaging target limit the resolving power of the TR process. The main focus of this thesis is to offer an alternative approach to source imaging with the goal of mitigating the adverse effects of incomplete acquisition on the TR modeling. To this end, I propose a new method, named Backus-Gilbert (BG) source imaging, to optimally focus the wavefield onto the source position using a given receiver geometry. I first introduce BG as a method for focusing waves in acoustic media at a desired location and time. Then, by exploiting the source-receiver reciprocity of the Green function and the linearity of the problem, I show that BG focusing can be adapted and used as a source-imaging tool. Following this, I generalize the BG theory for elastic waves. Applying BG formalism for source imaging requires a model for the wave propagation properties of the earth and an estimate of the source location. Using numerical tests, I next examine the robustness and sensitivity of the proposed method with respect to errors in the earth model, uncertainty in the source location, and noise in data. The BG method can image extended sources as well as point sources. It can also retrieve the source mechanism. These features of

  1. Thermal error analysis and compensation for digital image/volume correlation

    Science.gov (United States)

    Pan, Bing

    2018-02-01

    Digital image/volume correlation (DIC/DVC) rely on the digital images acquired by digital cameras and x-ray CT scanners to extract the motion and deformation of test samples. Regrettably, these imaging devices are unstable optical systems, whose imaging geometry may undergo unavoidable slight and continual changes due to self-heating effect or ambient temperature variations. Changes in imaging geometry lead to both shift and expansion in the recorded 2D or 3D images, and finally manifest as systematic displacement and strain errors in DIC/DVC measurements. Since measurement accuracy is always the most important requirement in various experimental mechanics applications, these thermal-induced errors (referred to as thermal errors) should be given serious consideration in order to achieve high accuracy, reproducible DIC/DVC measurements. In this work, theoretical analyses are first given to understand the origin of thermal errors. Then real experiments are conducted to quantify thermal errors. Three solutions are suggested to mitigate or correct thermal errors. Among these solutions, a reference sample compensation approach is highly recommended because of its easy implementation, high accuracy and in-situ error correction capability. Most of the work has appeared in our previously published papers, thus its originality is not claimed. Instead, this paper aims to give a comprehensive overview and more insights of our work on thermal error analysis and compensation for DIC/DVC measurements.

  2. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (COSMIR) GCPEx dataset used the Conical Scanning Millimeter-wave Imaging Radiometer...

  3. Ground-based thermal imaging of stream surface temperatures: Technique and evaluation

    Science.gov (United States)

    Bonar, Scott A.; Petre, Sally J.

    2015-01-01

    We evaluated a ground-based handheld thermal imaging system for measuring water temperatures using data from eight southwestern USA streams and rivers. We found handheld thermal imagers could provide considerably more spatial information on water temperature (for our unit one image = 19,600 individual temperature measurements) than traditional methods could supply without a prohibitive amount of effort. Furthermore, they could provide measurements of stream surface temperature almost instantaneously compared with most traditional handheld thermometers (e.g., >20 s/reading). Spatial temperature analysis is important for measurement of subtle temperature differences across waterways, and identification of warm and cold groundwater inputs. Handheld thermal imaging is less expensive and equipment intensive than airborne thermal imaging methods and is useful under riparian canopies. Disadvantages of handheld thermal imagers include their current higher expense than thermometers, their susceptibility to interference when used incorrectly, and their slightly lower accuracy than traditional temperature measurement methods. Thermal imagers can only measure surface temperature, but this usually corresponds to subsurface temperatures in well-mixed streams and rivers. Using thermal imaging in select applications, such as where spatial investigations of water temperature are needed, or in conjunction with stationary temperature data loggers or handheld electronic or liquid-in-glass thermometers to characterize stream temperatures by both time and space, could provide valuable information on stream temperature dynamics. These tools will become increasingly important to fisheries biologists as costs continue to decline.

  4. Some selected quantitative methods of thermal image analysis in Matlab.

    Science.gov (United States)

    Koprowski, Robert

    2016-05-01

    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Recent progress in mesospheric gravity wave studies using nightglow imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Michael J.; Pendleton Junior, William R.; Pautet, Pierre-Dominique; Zhao, Yucheng; Olsen, Chris; Babu, Hema Karnam Surendra [Center for Atmospheric and Space Sciences, Utah State University, Logan, Utah (United States); Medeiros, Amauri F. [Universidade Federal de Campina Grande, Centro de Ciencias e Tecnologia, Unidade Academica de Fisica, Campina Grande, PB (Brazil); Takahashi, Hisao, E-mail: mtaylor@cc.usu.edu, E-mail: wpen@cc.usu.edu, E-mail: dominiquepautet@gmail.com, E-mail: yucheng@cc.usu.edu, E-mail: cmellob@gmail.com, E-mail: hema_sb@rediffmail.com, E-mail: afragoso@df.ufcg.edu.br, E-mail: hisaotak@laser.inpe.br [INPE, Sao Jose dos Campos, SP (Brazil)

    2007-07-01

    A variety of optical remote sensing techniques have now revealed a rich spectrum of wave activity in the upper atmosphere. Many of these perturbations, with periodicities ranging from {approx} 5 min to many hours and horizontal scales of a few tens of km to several thousands km, are due to freely propagating atmospheric gravity waves and forced tidal oscillations. Passive optical observations of the spatial and temporal characteristics of these waves in the mesosphere and lower thermosphere (MLT) region ( {approx} 80-100 km) are facilitated by several naturally occurring, vertically distinct nightglow layers. This paper describes the use of state-of-the-art ground-based CCD imaging techniques to detect these waves in intensity and temperature. All-sky (180 deg ) image measurements are used to illustrate the characteristics of small-scale, short period ( < 1 hour) waves and to investigate their seasonal propagation and momentum impact on the MLT region. These results are then contrasted with measurements of mesospheric temperature made using a new temperature mapping imaging system capable of determining induced temperature amplitudes of a large range of wave motions and investigating night-to-night and seasonal variability in mesospheric temperature. (author)

  6. Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture

    Science.gov (United States)

    Ishihara, Kunihiko; Ohashi, Keishi; Ikari, Tomofumi; Minamide, Hiroaki; Yokoyama, Hiroyuki; Shikata, Jun-ichi; Ito, Hiromasa

    2006-11-01

    We demonstrate the terahertz-wave near-field imaging with subwavelength resolution using a bow-tie shaped aperture surrounded by concentric periodic structures in a metal film. A subwavelength aperture with concentric periodic grooves, which are known as a bull's eye structure, shows extremely large enhanced transmission beyond the diffraction limit caused by the resonant excitation of surface waves. Additionally, a bow-tie aperture exhibits extraordinary field enhancement at the sharp tips of the metal, which enhances the transmission and the subwavelength spatial resolution. We introduced a bow-tie aperture to the bull's eye structure and achieved high spatial resolution (˜λ/17) in the near-field region. The terahertz-wave near-field image of the subwavelength metal pattern (pattern width=20μm) was obtained for the wavelength of 207μm.

  7. Nonlinear electron-acoustic rogue waves in electron-beam plasma system with non-thermal hot electrons

    Science.gov (United States)

    Elwakil, S. A.; El-hanbaly, A. M.; Elgarayh, A.; El-Shewy, E. K.; Kassem, A. I.

    2014-11-01

    The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, non-thermal hot electrons obeying a non-thermal distribution, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles on the electron beam and energetic population parameter are discussed. The results of the present investigation may be applicable in auroral zone plasma.

  8. GLOBAL SIMULATION OF AN EXTREME ULTRAVIOLET IMAGING TELESCOPE WAVE

    International Nuclear Information System (INIS)

    Schmidt, J. M.; Ofman, L.

    2010-01-01

    We use the observation of an Extreme Ultraviolet Imaging Telescope (EIT) wave in the lower solar corona, seen with the two Solar Terrestrial Relations Observatory (STEREO) spacecraft in extreme ultraviolet light on 2007 May 19, to model the same event with a three-dimensional (3D) time-depending magnetohydrodynamic (MHD) code that includes solar coronal magnetic fields derived with Wilcox Solar Observatory magnetogram data, and a solar wind outflow accelerated with empirical heating functions. The model includes a coronal mass ejection (CME) of Gibson and Low flux rope type above the reconstructed active region with parameters adapted from observations to excite the EIT wave. We trace the EIT wave running as circular velocity enhancement around the launching site of the CME in the direction tangential to the sphere produced by the wave front, and compute the phase velocities of the wave front. We find that the phase velocities are in good agreement with theoretical values for a fast magnetosonic wave, derived with the physical parameters of the model, and with observed phase speeds of an incident EIT wave reflected by a coronal hole and running at about the same location. We also produce in our 3D MHD model the observed reflection of the EIT wave at the coronal hole boundary, triggered by the magnetic pressure difference between the wave front hitting the hole and the boundary magnetic fields of the coronal hole, and the response of the coronal hole, which leads to the generation of secondary reflected EIT waves radiating away in different directions than the incident EIT wave. This is the first 3D MHD model of an EIT wave triggered by a CME that includes realistic solar magnetic field, with results comparing favorably to STEREO Extreme Ultraviolet Imager observations.

  9. Thermal wave propagation in the pulsed laser irradiation of media with thermal memory

    International Nuclear Information System (INIS)

    Galovic, S.; Kostoski, D.; Stamboliev, G.; Suljovrujic, E.

    2002-01-01

    Complete text of publication follows. If a sample is exposed to the influence of laser radiation part of its energy is absorbed and converted in heat. The heat generated in this way is transferred through the sample as heat waves, resulting in various effects (so called photothermal effects). A large number of nondestructive diagnostic methods are based on recording of these effects. It is necessary to create a good model in order to understand and correctly describe the measured results of heat transfer in different media. In a certain number of materials and structures, such as complex biological materials, polymers, metals excited by very short laser pulses etc., the property of thermal memory has been experimentally observed. Starting with the hyperbolic equation that describes heat transfer processes of such media, in this paper has been developed a model of laser-excited heat waves propagation in order to enable application of photothermal techniques in characterization of these media. The cases of optically opaque and transparent samples are considered. The influence of various backings on photothermal waves has also been analyzed. The results are compared to the previous models

  10. Analytical approximations of diving-wave imaging in constant-gradient medium

    KAUST Repository

    Stovas, Alexey

    2014-06-24

    Full-waveform inversion (FWI) in practical applications is currently used to invert the direct arrivals (diving waves, no reflections) using relatively long offsets. This is driven mainly by the high nonlinearity introduced to the inversion problem when reflection data are included, which in some cases require extremely low frequency for convergence. However, analytical insights into diving waves have lagged behind this sudden interest. We use analytical formulas that describe the diving wave’s behavior and traveltime in a constant-gradient medium to develop insights into the traveltime moveout of diving waves and the image (model) point dispersal (residual) when the wrong velocity is used. The explicit formulations that describe these phenomena reveal the high dependence of diving-wave imaging on the gradient and the initial velocity. The analytical image point residual equation can be further used to scan for the best-fit linear velocity model, which is now becoming a common sight as an initial velocity model for FWI. We determined the accuracy and versatility of these analytical formulas through numerical tests.

  11. Internal Ocean Waves

    Science.gov (United States)

    2006-01-01

    Internal waves are waves that travel within the interior of a fluid. The waves propagate at the interface or boundary between two layers with sharp density differences, such as temperature. They occur wherever strong tides or currents and stratification occur in the neighborhood of irregular topography. They can propagate for several hundred kilometers. The ASTER false-color VNIR image off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 60 by 120 kilometers (37.2 by 74.4 miles) Location: 34.6 degrees North latitude, 129.5 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 90

  12. Spin wave differential circuit for realization of thermally stable magnonic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Taichi, E-mail: goto@ee.tut.ac.jp; Kanazawa, Naoki; Buyandalai, Altansargai; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibari-Ga-Oka, Tempaku, Toyohashi, Aichi 441-8580 (Japan); Okajima, Shingo; Hasegawa, Takashi [Murata Manufacturing Co., Ltd., Kyoto 617-8555 (Japan); Granovsky, Alexander B. [Faculty of Physics, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Sekiguchi, Koji [Department of Physics, Keio University, Yokohama 223-8522 (Japan); JST-PRESTO, Kawaguchi, Saitama 332-0012 (Japan); Ross, Caroline A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)

    2015-03-30

    A magnetic-field sensor with a high sensitivity of 38 pT/Hz was demonstrated. By utilizing a spin-wave differential circuit (SWDC) using two yttrium iron garnet (YIG) films, the temperature sensitivity was suppressed, and the thermal stability of the phase of the spin waves was −0.0095° K{sup −1}, which is three orders of magnitude better than a simple YIG-based sensor, ∼20° K{sup −1}. The SWDC architecture opens the way to design YIG-based magnonic devices.

  13. Spin wave differential circuit for realization of thermally stable magnonic sensors

    International Nuclear Information System (INIS)

    Goto, Taichi; Kanazawa, Naoki; Buyandalai, Altansargai; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru; Okajima, Shingo; Hasegawa, Takashi; Granovsky, Alexander B.; Sekiguchi, Koji; Ross, Caroline A.

    2015-01-01

    A magnetic-field sensor with a high sensitivity of 38 pT/Hz was demonstrated. By utilizing a spin-wave differential circuit (SWDC) using two yttrium iron garnet (YIG) films, the temperature sensitivity was suppressed, and the thermal stability of the phase of the spin waves was −0.0095° K −1 , which is three orders of magnitude better than a simple YIG-based sensor, ∼20° K −1 . The SWDC architecture opens the way to design YIG-based magnonic devices

  14. Thermal properties and continuous-wave laser performance of Yb:LuVO4 crystal

    Science.gov (United States)

    Cheng, Y.; Zhang, H. J.; Yu, Y. G.; Wang, J. Y.; Tao, X. T.; Liu, J. H.; Petrov, V.; Ling, Z. C.; Xia, H. R.; Jiang, M. H.

    2007-03-01

    A laser crystal of Yb:LuVO4 with high optical quality was grown by the Czochralski technique. Its thermal properties including specific heat, thermal expansion coefficients, and thermal conductivities along the a- and c-axis have been measured for the first time. Continuous-wave laser output up to 3.5 W at 1031 nm was obtained at room temperature through end-pumping by a high-power diode laser. The corresponding optical conversion efficiency was 43% and the slope efficiency was 72%.

  15. Critical object recognition in millimeter-wave images with robustness to rotation and scale.

    Science.gov (United States)

    Mohammadzade, Hoda; Ghojogh, Benyamin; Faezi, Sina; Shabany, Mahdi

    2017-06-01

    Locating critical objects is crucial in various security applications and industries. For example, in security applications, such as in airports, these objects might be hidden or covered under shields or secret sheaths. Millimeter-wave images can be utilized to discover and recognize the critical objects out of the hidden cases without any health risk due to their non-ionizing features. However, millimeter-wave images usually have waves in and around the detected objects, making object recognition difficult. Thus, regular image processing and classification methods cannot be used for these images and additional pre-processings and classification methods should be introduced. This paper proposes a novel pre-processing method for canceling rotation and scale using principal component analysis. In addition, a two-layer classification method is introduced and utilized for recognition. Moreover, a large dataset of millimeter-wave images is collected and created for experiments. Experimental results show that a typical classification method such as support vector machines can recognize 45.5% of a type of critical objects at 34.2% false alarm rate (FAR), which is a drastically poor recognition. The same method within the proposed recognition framework achieves 92.9% recognition rate at 0.43% FAR, which indicates a highly significant improvement. The significant contribution of this work is to introduce a new method for analyzing millimeter-wave images based on machine vision and learning approaches, which is not yet widely noted in the field of millimeter-wave image analysis.

  16. Enhanced polarization of the cosmic microwave background radiation from thermal gravitational waves.

    Science.gov (United States)

    Bhattacharya, Kaushik; Mohanty, Subhendra; Nautiyal, Akhilesh

    2006-12-22

    If inflation was preceded by a radiation era, then at the time of inflation there will exist a decoupled thermal distribution of gravitons. Gravitational waves generated during inflation will be amplified by the process of stimulated emission into the existing thermal distribution of gravitons. Consequently, the usual zero temperature scale invariant tensor spectrum is modified by a temperature dependent factor. This thermal correction factor amplifies the B-mode polarization of the cosmic microwave background radiation by an order of magnitude at large angles, which may now be in the range of observability of the Wilkinson Microwave Anisotropy Probe.

  17. Security surveillance challenges and proven thermal imaging capabilities in real-world applications

    Science.gov (United States)

    Francisco, Glen L.; Roberts, Sharon

    2004-09-01

    Uncooled thermal imaging was first introduced to the public in early 1980's by Raytheon (legacy Texas Instruments Defense Segment Electronics Group) as a solution for military applications. Since the introduction of this technology, Raytheon has remained the leader in this market as well as introduced commercial versions of thermal imaging products specifically designed for security, law enforcement, fire fighting, automotive and industrial uses. Today, low cost thermal imaging for commercial use in security applications is a reality. Organizations of all types have begun to understand the advantages of using thermal imaging as a means to solve common surveillance problems where other popular technologies fall short. Thermal imaging has proven to be a successful solution for common security needs such as: ¸ vision at night where lighting is undesired and 24x7 surveillance is needed ¸ surveillance over waterways, lakes and ports where water and lighting options are impractical ¸ surveillance through challenging weather conditions where other technologies will be challenged by atmospheric particulates ¸ low maintenance requirements due to remote or difficult locations ¸ low cost over life of product Thermal imaging is now a common addition to the integrated security package. Companies are relying on thermal imaging for specific applications where no other technology can perform.

  18. Switching of the Spin-Density-Wave in CeCoIn5 probed by Thermal Conductivity

    Science.gov (United States)

    Kim, Duk Y.; Lin, Shi-Zeng; Weickert, Franziska; Bauer, Eric D.; Ronning, Filip; Thompson, Joe D.; Movshovich, Roman

    Unconventional superconductor CeCoIn5 orders magnetically in a spin-density-wave (SDW) in the low-temperature and high-field corner of the superconducting phase. Recent neutron scattering experiment revealed that the single-domain SDW's ordering vector Q depends strongly on the direction of the magnetic field, switching sharply as the field is rotated through the anti-nodal direction. This switching may be manifestation of a pair-density-wave (PDW) p-wave order parameter, which develops in addition to the well-established d-wave order parameter due to the SDW formation. We have investigated the hypersensitivity of the magnetic domain with a thermal conductivity measurement. The heat current (J) was applied along the [110] direction such that the Q vector is either perpendicular or parallel to J, depending on the magnetic field direction. A discontinuous change of the thermal conductivity was observed when the magnetic field is rotated around the [100] direction within 0 . 2° . The thermal conductivity with the Q parallel to the heat current (J ∥Q) is approximately 15% lager than that with the Q perpendicular to the heat current (J ⊥Q). This result is consistent with additional gapping of the nodal quasiparticle by the p-wave PDW coupled to SDW. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.

  19. Quantitative damage imaging using Lamb wave diffraction tomography

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Ruan Min; Zhu Wen-Fa; Chai Xiao-Dong

    2016-01-01

    In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb waves generated numerically. Finite element simulations are carried out to provide the scattered wave data. The validity of the finite element model is confirmed by the comparison of scattering directivity pattern (SDP) of circle blind hole damage between the finite element simulations and the analytical results. The imaging method is based on a theoretical relation between the one-dimensional (1D) Fourier transform of the scattered projection and two-dimensional (2D) spatial Fourier transform of the scattering object. A quantitative image of the damage is obtained by carrying out the 2D inverse Fourier transform of the scattering object. The proposed approach employs a circle transducer network containing forward and backward projections, which lead to so-called transmission mode (TMDT) and reflection mode diffraction tomography (RMDT), respectively. The reconstructed results of the two projections for a non-converted S0 scattered mode are investigated to illuminate the influence of the scattering field data. The results show that Lamb wave diffraction tomography using the combination of TMDT and RMDT improves the imaging effect compared with by using only the TMDT or RMDT. The scattered data of the converted A0 mode are also used to assess the performance of the diffraction tomography method. It is found that the circle and elliptical shaped damages can still be reasonably identified from the reconstructed images while the reconstructed results of other complex shaped damages like crisscross rectangles and racecourse are relatively poor. (special topics)

  20. Thermal neutron imaging in an active interrogation environment

    International Nuclear Information System (INIS)

    Vanier, P.E.; Forman, L.; Norman, D.R.

    2009-01-01

    We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of excitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutronemitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

  1. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    Science.gov (United States)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Santos, A. D.; Moraes, J. C. S.; Bento, A. C.

    2013-11-01

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (˜7 min) and with similar thermal expansion (˜12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10-3 cm2/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s0.5/cm2 K and volume heat capacity (5.2 ± 0.7) J/cm3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water).

  2. Propagation of sound and thermal waves in an ionizing-recombining hydrogen plasma: Revision of results

    International Nuclear Information System (INIS)

    Di Sigalotti, Leonardo G.; Sira, Eloy; Tremola, Ciro

    2002-01-01

    The propagation of acoustic and thermal waves in a heat conducting, hydrogen plasma, in which photoionization and photorecombination [H + +e - H+hν(χ)] processes are progressing, is re-examined here using linear analysis. The resulting dispersion equation is solved analytically and the results are compared with previous solutions for the same plasma model. In particular, it is found that wave propagation in a slightly and highly ionized hydrogen plasma is affected by crossing between acoustic and thermal modes. At temperatures where the plasma is partially ionized, waves of all frequencies propagate without the occurrence of mode crossing. These results disagree with those reported in previous work, thereby leading to a different physical interpretation of the propagation of small linear disturbances in a conducting, ionizing-recombining, hydrogen plasma

  3. Advanced Spectroscopic and Thermal Imaging Instrumentation for Shock Tube and Ballistic Range Facilities

    Science.gov (United States)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and Hypervelocity Free Flight Aerodynamic Facility (HFFAF, an aeroballistic range) at NASA Ames support basic research in aerothermodynamic phenomena of atmospheric entry, specifically shock layer radiation spectroscopy, convective and radiative heat transfer, and transition to turbulence. Innovative optical instrumentation has been developed and implemented to meet the challenges posed from obtaining such data in these impulse facilities. Spatially and spectrally resolved measurements of absolute radiance of a travelling shock wave in EAST are acquired using multiplexed, time-gated imaging spectrographs. Nearly complete spectral coverage from the vacuum ultraviolet to the near infrared is possible in a single experiment. Time-gated thermal imaging of ballistic range models in flight enables quantitative, global measurements of surface temperature. These images can be interpreted to determine convective heat transfer rates and reveal transition to turbulence due to isolated and distributed surface roughness at hypersonic velocities. The focus of this paper is a detailed description of the optical instrumentation currently in use in the EAST and HFFAF.

  4. A debugging method of the Quadrotor UAV based on infrared thermal imaging

    Science.gov (United States)

    Cui, Guangjie; Hao, Qian; Yang, Jianguo; Chen, Lizhi; Hu, Hongkang; Zhang, Lijun

    2018-01-01

    High-performance UAV has been popular and in great need in recent years. The paper introduces a new method in debugging Quadrotor UAVs. Based on the infrared thermal technology and heat transfer theory, a UAV is under debugging above a hot-wire grid which is composed of 14 heated nichrome wires. And the air flow propelled by the rotating rotors has an influence on the temperature distribution of the hot-wire grid. An infrared thermal imager below observes the distribution and gets thermal images of the hot-wire grid. With the assistance of mathematic model and some experiments, the paper discusses the relationship between thermal images and the speed of rotors. By means of getting debugged UAVs into test, the standard information and thermal images can be acquired. The paper demonstrates that comparing to the standard thermal images, a UAV being debugging in the same test can draw some critical data directly or after interpolation. The results are shown in the paper and the advantages are discussed.

  5. Ultrasonic phased array with surface acoustic wave for imaging cracks

    Directory of Open Access Journals (Sweden)

    Yoshikazu Ohara

    2017-06-01

    Full Text Available To accurately measure crack lengths, we developed a real-time surface imaging method (SAW PA combining an ultrasonic phased array (PA with a surface acoustic wave (SAW. SAW PA using a Rayleigh wave with a high sensitivity to surface defects was implemented for contact testing using a wedge with the third critical angle that allows the Rayleigh wave to be generated. Here, to realize high sensitivity imaging, SAW PA was optimized in terms of the wedge and the imaging area. The improved SAW PA was experimentally demonstrated using a fatigue crack specimen made of an aluminum alloy. For further verification in more realistic specimens, SAW PA was applied to stainless-steel specimens with a fatigue crack and stress corrosion cracks (SCCs. The fatigue crack was visualized with a high signal-to-noise ratio (SNR and its length was measured with a high accuracy of better than 1 mm. The SCCs generated in the heat-affected zones (HAZs of a weld were successfully visualized with a satisfactory SNR, although responses at coarse grains appeared throughout the imaging area. The SCC lengths were accurately measured. The imaging results also precisely showed complicated distributions of SCCs, which were in excellent agreement with the optically observed distributions.

  6. Extended common-image-point gathers for anisotropic wave-equation migration

    KAUST Repository

    Sava, Paul C.

    2010-01-01

    In regions characterized by complex subsurface structure, wave-equation depth migration is a powerful tool for accurately imaging the earth’s interior. The quality of the final image greatly depends on the quality of the model which includes anisotropy parameters (Gray et al., 2001). In particular, it is important to construct subsurface velocity models using techniques that are consistent with the methods used for imaging. Generally speaking, there are two possible strategies for velocity estimation from surface seismic data in the context of wavefield-based imaging (Sava et al., 2010). One possibility is to formulate an objective function in the data space, prior to migration, by matching the recorded data with simulated data. Techniques in this category are known by the name of waveform inversion. Another possibility is to formulate an objective function in the image space, after migration, by measuring and correcting image features that indicate model inaccuracies. Techniques in this category are known as wave-equation migration velocity analysis (MVA).

  7. Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.

    Science.gov (United States)

    Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S

    2018-04-01

    It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Status of thermal imaging technology as applied to conservation-update 1

    Energy Technology Data Exchange (ETDEWEB)

    Snow, F.J.; Wood, J.T.; Barthle, R.C.

    1980-07-01

    This document updates the 1978 report on the status of thermal imaging technology as applied to energy conservation in buildings. Thermal imaging technology is discussed in terms of airborne surveys, ground survey programs, and application needs such as standards development and lower cost equipment. Information on the various thermal imaging devices was obtained from manufacturer's standard product literature. Listings are provided of infrared projects of the DOE building diagnostics program, of aerial thermographic firms, and of aerial survey programs. (LCL)

  9. A novel algorithm for thermal image encryption.

    Science.gov (United States)

    Hussain, Iqtadar; Anees, Amir; Algarni, Abdulmohsen

    2018-04-16

    Thermal images play a vital character at nuclear plants, Power stations, Forensic labs biological research, and petroleum products extraction. Safety of thermal images is very important. Image data has some unique features such as intensity, contrast, homogeneity, entropy and correlation among pixels that is why somehow image encryption is trickier as compare to other encryptions. With conventional image encryption schemes it is normally hard to handle these features. Therefore, cryptographers have paid attention to some attractive properties of the chaotic maps such as randomness and sensitivity to build up novel cryptosystems. That is why, recently proposed image encryption techniques progressively more depends on the application of chaotic maps. This paper proposed an image encryption algorithm based on Chebyshev chaotic map and S8 Symmetric group of permutation based substitution boxes. Primarily, parameters of chaotic Chebyshev map are chosen as a secret key to mystify the primary image. Then, the plaintext image is encrypted by the method generated from the substitution boxes and Chebyshev map. By this process, we can get a cipher text image that is perfectly twisted and dispersed. The outcomes of renowned experiments, key sensitivity tests and statistical analysis confirm that the proposed algorithm offers a safe and efficient approach for real-time image encryption.

  10. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    Energy Technology Data Exchange (ETDEWEB)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C., E-mail: acbento@uem.br [Departamento de Física, Grupo de Espectroscopia Fotoacústica e Fototérmica, Universidade Estadual de Maringá – UEM, Av. Colombo 5790, 87020-900 Maringá, Paraná (Brazil); Santos, A. D.; Moraes, J. C. S. [Departamento de Física e Química, Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP, Av. Brasil 56, 15385-000 Ilha Solteira, SP (Brazil)

    2013-11-21

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10{sup −3} cm{sup 2}/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s{sup 0.5}/cm{sup 2} K and volume heat capacity (5.2 ± 0.7) J/cm{sup 3} K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)

  11. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    International Nuclear Information System (INIS)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C.; Santos, A. D.; Moraes, J. C. S.

    2013-01-01

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10 −3 cm 2 /s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s 0.5 /cm 2 K and volume heat capacity (5.2 ± 0.7) J/cm 3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)

  12. Use of a thermal imager for snow pit temperatures

    Directory of Open Access Journals (Sweden)

    C. Shea

    2012-03-01

    Full Text Available Weak snow of interest to avalanche forecasting often forms and changes as thin layers. Thermometers, the current field technology for measuring the temperature gradients across such layers – and for thus estimating the expected vapour flux and future type of crystal metamorphism – are difficult to use at distances shorter than 1 cm. In contrast, a thermal imager can provide thousands of simultaneous temperature measurements across small distances with better accuracy. However, a thermal imager only senses the exposed surface, complicating its methods for access and accuracy of buried temperatures. This paper presents methods for exposing buried layers on pit walls and using a thermal imager to measure temperatures on these walls, correct for lens effects with snow, adjust temperature gradients, adjust time exposed, and calculate temperature gradients over millimetre distances. We find lens error on temperature gradients to be on the order of 0.03 °C between image centre and corners. We find temperature gradient change over time to usually decrease – as expected with atmospheric equalization as a strong effect. Case studies including thermal images and visual macro photographs of crystals, collected during the 2010–2011 winter, demonstrate large temperature differences over millimetre-scale distances that are consistent with observed kinetic metamorphism. Further study is needed to use absolute temperatures independently of supporting gradient data.

  13. Conversion Between Sine Wave and Square Wave Spatial Frequency Response of an Imaging System

    National Research Council Canada - National Science Library

    Nill, Norman B

    2001-01-01

    ...), is a primary image quality metric that is commonly measured with a sine wave target. The FBI certification program for commercial fingerprint capture devices, which MITRE actively supports, has an MTF requirement...

  14. TH-A-207B-00: Shear-Wave Imaging and a QIBA US Biomarker Update

    International Nuclear Information System (INIS)

    2016-01-01

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging

  15. TH-A-207B-00: Shear-Wave Imaging and a QIBA US Biomarker Update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging

  16. Image processing techniques for thermal, x-rays and nuclear radiations

    International Nuclear Information System (INIS)

    Chadda, V.K.

    1998-01-01

    The paper describes image acquisition techniques for the non-visible range of electromagnetic spectrum especially thermal, x-rays and nuclear radiations. Thermal imaging systems are valuable tools used for applications ranging from PCB inspection, hot spot studies, fire identification, satellite imaging to defense applications. Penetrating radiations like x-rays and gamma rays are used in NDT, baggage inspection, CAT scan, cardiology, radiography, nuclear medicine etc. Neutron radiography compliments conventional x-rays and gamma radiography. For these applications, image processing and computed tomography are employed for 2-D and 3-D image interpretation respectively. The paper also covers main features of image processing systems for quantitative evaluation of gray level and binary images. (author)

  17. Robust reflective ghost imaging against different partially polarized thermal light

    Science.gov (United States)

    Li, Hong-Guo; Wang, Yan; Zhang, Rui-Xue; Zhang, De-Jian; Liu, Hong-Chao; Li, Zong-Guo; Xiong, Jun

    2018-03-01

    We theoretically study the influence of degree of polarization (DOP) of thermal light on the contrast-to-noise ratio (CNR) of the reflective ghost imaging (RGI), which is a novel and indirect imaging modality. An expression for the CNR of RGI with partially polarized thermal light is carefully derived, which suggests a weak dependence of CNR on the DOP, especially when the ratio of the object size to the speckle size of thermal light has a large value. Different from conventional imaging approaches, our work reveals that RGI is much more robust against the DOP of the light source, which thereby has advantages in practical applications, such as remote sensing.

  18. Multispectral Thermal Imager Optical Assembly Performance and Integration of the Flight Focal Plane Assembly

    International Nuclear Information System (INIS)

    Blake, Dick; Byrd, Don; Christensen, Wynn; Henson, Tammy; Krumel, Les; Rappoport, William; Shen, Gon-Yen

    1999-01-01

    The Multispectral Thermal Imager Optical Assembly (OA) has been fabricated, assembled, successfully performance tested, and integrated into the flight payload structure with the flight Focal Plane Assembly (FPA) integrated and aligned to it. This represents a major milestone achieved towards completion of this earth observing E-O imaging sensor that is to be operated in low earth orbit. The OA consists of an off-axis three mirror anastigmatic (TMA) telescope with a 36 cm unobscured clear aperture, a wide-field-of-view (WFOV) of 1.82 along the direction of spacecraft motion and 1.38 across the direction of spacecraft motion. It also contains a comprehensive on-board radiometric calibration system. The OA is part of a multispectral pushbroom imaging sensor which employs a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 to 10.7 m. The OA achieves near diffraction-limited performance from visible to the long-wave infrared (LWIR) wavelengths. The two major design drivers for the OA are 80% enpixeled energy in the visible bands and radiometric stability. Enpixeled energy in the visible bands also drove the alignment of the FPA detectors to the OA image plane to a requirement of less than 20 m over the entire visible detector field of view (FOV). Radiometric stability requirements mandated a cold Lyot stop for stray light rejection and thermal background reduction. The Lyot stop is part of the FPA assembly and acts as the aperture stop for the imaging system. The alignment of the Lyot stop to the OA drove the centering and to some extent the tilt alignment requirements of the FPA to the OA

  19. Micro and nano devices in passive millimetre wave imaging systems

    Science.gov (United States)

    Appleby, R.

    2013-06-01

    The impact of micro and nano technology on millimetre wave imaging from the post war years to the present day is reviewed. In the 1950s whisker contacted diodes in mixers and vacuum tubes were used to realise both radiometers and radars but required considerable skill to realise the performance needed. Development of planar semiconductor devices such as Gunn and Schottky diodes revolutionised mixer performance and provided considerable improvement. The next major breakthrough was high frequency transistors based on gallium arsenide which were initially used at intermediate frequencies but later after further development at millimeter wave frequencies. More recently Monolithic Microwave Integrated circuits(MMICs) offer exceptional performance and the opportunity for innovative design in passive imaging systems. In the future the use of micro and nano technology will continue to drive system performance and we can expect to see integration of antennae, millimetre wave and sub millimetre wave circuits and signal processing.

  20. Reconstructing Face Image from the Thermal Infrared Spectrum to the Visible Spectrum

    Directory of Open Access Journals (Sweden)

    Brahmastro Kresnaraman

    2016-04-01

    Full Text Available During the night or in poorly lit areas, thermal cameras are a better choice instead of normal cameras for security surveillance because they do not rely on illumination. A thermal camera is able to detect a person within its view, but identification from only thermal information is not an easy task. The purpose of this paper is to reconstruct the face image of a person from the thermal spectrum to the visible spectrum. After the reconstruction, further image processing can be employed, including identification/recognition. Concretely, we propose a two-step thermal-to-visible-spectrum reconstruction method based on Canonical Correlation Analysis (CCA. The reconstruction is done by utilizing the relationship between images in both thermal infrared and visible spectra obtained by CCA. The whole image is processed in the first step while the second step processes patches in an image. Results show that the proposed method gives satisfying results with the two-step approach and outperforms comparative methods in both quality and recognition evaluations.

  1. Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth

    Science.gov (United States)

    Tabatabaei, Nima; Mandelis, Andreas; Amaechi, Bennett Tochukwu

    2011-07-01

    As an extension of frequency-domain photothermal radiometry, a novel dental-imaging modality, thermophotonic lock-in imaging (TPLI), is introduced. This methodology uses photothermal wave principles and is capable of detecting early carious lesions and cracks on occlusal and approximal surfaces as well as early caries induced by artificial demineralizing solutions. The increased light scattering and absorption within early carious lesions increases the thermal-wave amplitude and shifts the thermal-wave centroid, producing contrast between the carious lesion and the intact enamel in both amplitude and phase images. Samples with artificial and natural occlusal and approximal caries were examined in this study. Thermophotonic effective detection depth is controlled by the modulation frequency according to the well-known concept of thermal diffusion length. TPLI phase images are emissivity normalized and therefore insensitive to the presence of stains. Amplitude images, on the other hand, provide integrated information from deeper enamel regions. It is concluded that the results of our noninvasive, noncontacting imaging methodology exhibit higher sensitivity to very early demineralization than dental radiographs and are in agreement with the destructive transverse microradiography mineral density profiles.

  2. Wave propagation in embedded inhomogeneous nanoscale plates incorporating thermal effects

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza; Dabbagh, Ali

    2018-04-01

    In this article, an analytical approach is developed to study the effects of thermal loading on the wave propagation characteristics of an embedded functionally graded (FG) nanoplate based on refined four-variable plate theory. The heat conduction equation is solved to derive the nonlinear temperature distribution across the thickness. Temperature-dependent material properties of nanoplate are graded using Mori-Tanaka model. The nonlocal elasticity theory of Eringen is introduced to consider small-scale effects. The governing equations are derived by the means of Hamilton's principle. Obtained frequencies are validated with those of previously published works. Effects of different parameters such as temperature distribution, foundation parameters, nonlocal parameter, and gradient index on the wave propagation response of size-dependent FG nanoplates have been investigated.

  3. Extended common-image-point gathers for anisotropic wave-equation migration

    KAUST Repository

    Sava, Paul C.; Alkhalifah, Tariq Ali

    2010-01-01

    In regions characterized by complex subsurface structure, wave-equation depth migration is a powerful tool for accurately imaging the earth’s interior. The quality of the final image greatly depends on the quality of the model which includes

  4. Plane wave fast color flow mode imaging

    DEFF Research Database (Denmark)

    Bolic, Ibrahim; Udesen, Jesper; Gran, Fredrik

    2006-01-01

    A new Plane wave fast color flow imaging method (PWM) has been investigated, and performance evaluation of the PWM based on experimental measurements has been made. The results show that it is possible to obtain a CFM image using only 8 echo-pulse emissions for beam to flow angles between 45...... degrees and 75 degrees. Compared to the conventional ultrasound imaging the frame rate is similar to 30 - 60 times higher. The bias, B-est of the velocity profile estimate, based on 8 pulse-echo emissions, is between 3.3% and 6.1% for beam to flow angles between 45 degrees and 75 degrees, and the standard...

  5. Control of propagation characteristics of spin wave pulses via elastic and thermal effects

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Arista, Ivan [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, CU, 04510 D.F., México (Mexico); Kolokoltsev, O., E-mail: oleg.kolokoltsev@ccadet.unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, CU, 04510 D.F., México (Mexico); Acevedo, A.; Qureshi, N. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, CU, 04510 D.F., México (Mexico); Ordóñez-Romero, César L. [Instituto de Física, Universidad Nacional Autónoma de México, CU, 04510 D.F., México (Mexico)

    2017-05-01

    A study of the magnetoelastic (ME) and thermal effects governing the phase (φ) and amplitude of magnetostatic surface spin wave (MSSW) pulses propagating in Ga:YIG/GGG and permalloy magnonic waveguides is presented. The ME effects were studied in a flexural configuration, under punctual mechanical force (F). Thermally induced ME and demagnetization phenomena were controlled by optically injected thermal power P{sub th}. It was determined that in an unclamped Ga:YIG waveguide, the force F that induces the phase shift Δφ=π, decreases by a quadratic law in the range from 1 mN to nN, and the P{sub th} at which Δφ=π decreases linearly from mW to μW as the waveguide volume decreases from mm{sup 3} to nm{sup 3}. For nano-volume waveguides the ME control energy (E{sub me}) can be of order of aJ, and the thermal control energy (ΔE{sub th}) can be as small as 50 fJ. The response time of these effects lies in the ns time scale. Both the mechanical and the thermo-magnetic forces provide an effective control of MSSW pulse amplitude, in addition to its phase shift. The thermo-magnetic effect allows one to realize variable delays of a MSSW pulse. - Highlights: • The Magneto-elastic (ME) and optically induced thermal effects governing the phase and amplitude of magnetostatic surface spin wave (MSSW) pulses propagating in Ga:YIG/GGG and permalloy magnonic waveguides are presented. • A mechanical force that causes phase shift Δφ=π for spin waves in the waveguides decreases by a quadratic law in the range from 1 mN to nN, and the optical power that induces the phase shift Δφ=π, decreases linearly from mW to μW as the waveguide volume decreases from mm{sup 3} to nm{sup 3}. • The response time of these effects can lie in the ns time scale.

  6. Multivariate image analysis of laser-induced photothermal imaging used for detection of caries tooth

    Science.gov (United States)

    El-Sherif, Ashraf F.; Abdel Aziz, Wessam M.; El-Sharkawy, Yasser H.

    2010-08-01

    Time-resolved photothermal imaging has been investigated to characterize tooth for the purpose of discriminating between normal and caries areas of the hard tissue using thermal camera. Ultrasonic thermoelastic waves were generated in hard tissue by the absorption of fiber-coupled Q-switched Nd:YAG laser pulses operating at 1064 nm in conjunction with a laser-induced photothermal technique used to detect the thermal radiation waves for diagnosis of human tooth. The concepts behind the use of photo-thermal techniques for off-line detection of caries tooth features were presented by our group in earlier work. This paper illustrates the application of multivariate image analysis (MIA) techniques to detect the presence of caries tooth. MIA is used to rapidly detect the presence and quantity of common caries tooth features as they scanned by the high resolution color (RGB) thermal cameras. Multivariate principal component analysis is used to decompose the acquired three-channel tooth images into a two dimensional principal components (PC) space. Masking score point clusters in the score space and highlighting corresponding pixels in the image space of the two dominant PCs enables isolation of caries defect pixels based on contrast and color information. The technique provides a qualitative result that can be used for early stage caries tooth detection. The proposed technique can potentially be used on-line or real-time resolved to prescreen the existence of caries through vision based systems like real-time thermal camera. Experimental results on the large number of extracted teeth as well as one of the thermal image panoramas of the human teeth voltanteer are investigated and presented.

  7. Suspension-thermal noise in spring–antispring systems for future gravitational-wave detectors

    Science.gov (United States)

    Harms, Jan; Mow-Lowry, Conor M.

    2018-01-01

    Spring–antispring systems have been investigated in the context of low-frequency seismic isolation in high-precision optical experiments. These systems provide the possibility to tune the fundamental resonance frequency to, in principle, arbitrarily low values, and at the same time maintain a compact design. It was argued though that thermal noise in spring–antispring systems would not be as small as one may naively expect from lowering the fundamental resonance frequency. In this paper, we present calculations of suspension-thermal noise for spring–antispring systems potentially relevant in future gravitational-wave detectors, i.e. the beam-balance tiltmeter, and the Roberts linkage. We find a concise expression of the suspension-thermal noise spectrum, which assumes a form very similar to the well-known expression for a simple pendulum. For systems such as the Roberts linkage foreseen as passive seismic isolation, we find that while they can provide strong seismic isolation due to a very low fundamental resonance frequency, their thermal noise is determined by the dimension of the system and is insensitive to fine-tunings of the geometry that can strongly influence the resonance frequency. By analogy, i.e. formal similarity of the equations of motion, this is true for all horizontal mechanical isolation systems with spring–antispring dynamics. This imposes strict requirements on mechanical spring–antispring systems for seismic isolation in potential future low-frequency gravitational-wave detectors as we discuss for the four main concepts, atom-interferometric, superconducting, torsion-bars, and conventional laser interferometer, and generally suggests that thermal noise needs to be evaluated carefully for high-precision experiments implementing spring–antispring dynamics.

  8. The Role of Higher-Order Modes on the Electromagnetic Whistler-Cyclotron Wave Fluctuations of Thermal and Non-Thermal Plasmas

    Science.gov (United States)

    Vinas, Adolfo F.; Moya, Pablo S.; Navarro, Roberto; Araneda, Jamie A.

    2014-01-01

    Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the beta(sub e) increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron-proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

  9. Thermal Imaging Performance of TIR Onboard the Hayabusa2 Spacecraft

    Science.gov (United States)

    Arai, Takehiko; Nakamura, Tomoki; Tanaka, Satoshi; Demura, Hirohide; Ogawa, Yoshiko; Sakatani, Naoya; Horikawa, Yamato; Senshu, Hiroki; Fukuhara, Tetsuya; Okada, Tatsuaki

    2017-07-01

    The thermal infrared imager (TIR) is a thermal infrared camera onboard the Hayabusa2 spacecraft. TIR will perform thermography of a C-type asteroid, 162173 Ryugu (1999 JU3), and estimate its surface physical properties, such as surface thermal emissivity ɛ , surface roughness, and thermal inertia Γ, through remote in-situ observations in 2018 and 2019. In prelaunch tests of TIR, detector calibrations and evaluations, along with imaging demonstrations, were performed. The present paper introduces the experimental results of a prelaunch test conducted using a large-aperture collimator in conjunction with TIR under atmospheric conditions. A blackbody source, controlled at constant temperature, was measured using TIR in order to construct a calibration curve for obtaining temperatures from observed digital data. As a known thermal emissivity target, a sandblasted black almite plate warmed from the back using a flexible heater was measured by TIR in order to evaluate the accuracy of the calibration curve. As an analog target of a C-type asteroid, carbonaceous chondrites (50 mm × 2 mm in thickness) were also warmed from the back and measured using TIR in order to clarify the imaging performance of TIR. The calibration curve, which was fitted by a specific model of the Planck function, allowed for conversion to the target temperature within an error of 1°C (3σ standard deviation) for the temperature range of 30 to 100°C. The observed temperature of the black almite plate was consistent with the temperature measured using K-type thermocouples, within the accuracy of temperature conversion using the calibration curve when the temperature variation exhibited a random error of 0.3 °C (1σ ) for each pixel at a target temperature of 50°C. TIR can resolve the fine surface structure of meteorites, including cracks and pits with the specified field of view of 0.051°C (328 × 248 pixels). There were spatial distributions with a temperature variation of 3°C at the setting

  10. Thermal Aging Evaluation of Mod. 9Cr-1Mo Steel using Nonlinear Rayleigh Waves

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young-Sang; Kim, Hoe-Woong; Kim, Jong-Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Marino, Daniel; Kim, Jin-Yeon; Jacobs, L.J [Georgia Institute of Technology, Atlanta (United States); Ruiz, Alberto [UMSNH, Morelia (Mexico)

    2014-10-15

    Thermal aging can pose a high risk to decreases in the mechanical properties such as strength or creep resistance. This can lead to an unexpected failure during long term operation. Nonlinear NDE techniques are preferred over conventional NDE techniques (linear ultrasonic measurements) because nonlinear ultrasonic techniques have shown their capability to detect a microstructural damage in the structures undergoing fatigue and creep. These nonlinear ultrasonic techniques make use of the fact that the dislocation density increases, which will create a nonlinear distortion of an ultrasonic wave; this damage causes the generation of measurable higher harmonic components in an initially mono-chromatic ultrasonic signal. This study investigates the recently developed non-contact nonlinear ultrasonic technique to detect the microstructural damage of mod. 9Cr-1Mo steel based on nonlinear Rayleigh wave with varying propagation distances. Nonlinear Rayleigh surface wave measurements using a non-contact, air-coupled ultrasonic transducer have been applied for the thermal aging evaluation of modified 9Cr-1Mo ferritic-martensitic steel. Thermal aging for various heat treatment times of mod.. 9Cr-1Mo steel specimens is performed to obtain the nucleation and growth of precipitated particles in specimens. The amplitudes of the first and second harmonics are measured along the propagation distance and the relative nonlinearity parameter is obtained from these amplitudes. The relative nonlinearity parameter shows a similar trend with the Rockwell C hardness.

  11. Online thermal imaging: a simple approach

    Science.gov (United States)

    Senior, Mark; Hollock, Steve; Sandhu, Sat; Coy, Joanne; Parkin, Rob

    2003-04-01

    Continuous monitoring of plant and processes is widely practised but the use of thermal imagers in such systems has always been restricted by camera cost. A radiometric thermal imager can be regarded as equivalent to multiple single point radiometers or a matrix of thermocouples but with the advantages of far denser coverage, non-contact measurement, simpler installation and data processing; in addition several of the advantages of conventional machine vision systems such as shape and position recognition can be provided. IRISYS has developed a multipoint radiometer utilising its low-cost infrared array technology. This unit provides continuous real-time temperature monitoring of 256 data points at an affordable price; it is housed in a small, light-weight, sealed and robust metal case and generates RS232 or Ethernet data output. This paper reviews the radiometer technology and its application to single and multi-camera systems.

  12. Detection of large-scale concentric gravity waves from a Chinese airglow imager network

    Science.gov (United States)

    Lai, Chang; Yue, Jia; Xu, Jiyao; Yuan, Wei; Li, Qinzeng; Liu, Xiao

    2018-06-01

    Concentric gravity waves (CGWs) contain a broad spectrum of horizontal wavelengths and periods due to their instantaneous localized sources (e.g., deep convection, volcanic eruptions, or earthquake, etc.). However, it is difficult to observe large-scale gravity waves of >100 km wavelength from the ground for the limited field of view of a single camera and local bad weather. Previously, complete large-scale CGW imagery could only be captured by satellite observations. In the present study, we developed a novel method that uses assembling separate images and applying low-pass filtering to obtain temporal and spatial information about complete large-scale CGWs from a network of all-sky airglow imagers. Coordinated observations from five all-sky airglow imagers in Northern China were assembled and processed to study large-scale CGWs over a wide area (1800 km × 1 400 km), focusing on the same two CGW events as Xu et al. (2015). Our algorithms yielded images of large-scale CGWs by filtering out the small-scale CGWs. The wavelengths, wave speeds, and periods of CGWs were measured from a sequence of consecutive assembled images. Overall, the assembling and low-pass filtering algorithms can expand the airglow imager network to its full capacity regarding the detection of large-scale gravity waves.

  13. Elastic Wave Imaging of in-Situ Bio-Alterations in a Contaminated Aquifer

    Science.gov (United States)

    Jaiswal, P.; Raj, R.; Atekwana, E. A.; Briand, B.; Alam, I.

    2014-12-01

    We present a pioneering report on the utility of seismic methods in imaging bio-induced elastic property changes within a contaminated aquifer. To understand physical properties of contaminated soil, we acquired 48 meters long multichannel seismic profile over the Norman landfill leachate plume in Norman Oklahoma, USA. We estimated both the P- and S- wave velocities respectively using full-waveform inversion of the transmission and the ground-roll coda. The resulting S-wave model showed distinct velocity anomaly (~10% over background) within the water table fluctuation zone bounded by the historical minimum and maximum groundwater table. In comparison, the P-wave velocity anomaly within the same zone was negligible. The Environmental Scanning Electron Microscope (ESEM) images of samples from a core located along the seismic profile clearly shows presence of biofilms in the water table fluctuation zone and their absence both above and below the fluctuation zone. Elemental chemistry further indicates that the sediment composition throughout the core is fairly constant. We conclude that the velocity anomaly in S-wave is due to biofilms. As a next step, we develop mechanistic modeling to gain insights into the petro-physical behavior of biofilm-bearing sediments. Preliminary results suggest that a plausible model could be biofilms acting as contact cement between sediment grains. The biofilm cement can be placed in two ways - (i) superficial non-contact deposition on sediment grains, and (ii) deposition at grain contacts. Both models explain P- and S- wave velocity structure at reasonable (~5-10%) biofilm saturation and are equivocally supported by the ESEM images. Ongoing attenuation modeling from full-waveform inversion and its mechanistic realization, may be able to further discriminate between the two cement models. Our study strongly suggests that as opposed to the traditional P-wave seismic, S-wave acquisition and imaging can be a more powerful tool for in

  14. Application of optical character recognition in thermal image processing

    Science.gov (United States)

    Chan, W. T.; Sim, K. S.; Tso, C. P.

    2011-07-01

    This paper presents the results of a study on the reliability of the thermal imager compared to other devices that are used in preventive maintenance. Several case studies are used to facilitate the comparisons. When any device is found to perform unsatisfactorily where there is a suspected fault, its short-fall is determined so that the other devices may compensate, if possible. This study discovered that the thermal imager is not suitable or efficient enough for systems that happen to have little contrast in temperature between its parts or small but important parts that have their heat signatures obscured by those from other parts. The thermal imager is also found to be useful for preliminary examinations of certain systems, after which other more economical devices are suitable substitutes for further examinations. The findings of this research will be useful to the design and planning of preventive maintenance routines for industrial benefits.

  15. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (COSMIR) MC3E dataset used the Conical Scanning Millimeter-wave Imaging Radiometer...

  16. Nondestructive millimeter wave imaging and spectroscopy using dielectric focusing probes

    International Nuclear Information System (INIS)

    Hejase, Jose A.; Shane, Steven S.; Park, Kyoung Y.; Chahal, Premjeet

    2014-01-01

    A tool for interrogating objects over a wide band of frequencies with subwavelength resolution at small standoff distances (near field region) in the transmission mode using a single source and detector measurement setup in the millimeter wave band is presented. The design utilizes optics like principles for guiding electromagnetic millimeter waves from large cross-sectional areas to considerably smaller sub-wavelength areas. While plano-convex lenses can be used to focus waves to a fine resolution, they usually require a large stand-off distance thus resulting in alignment and spacing issues. The design procedure and simulation analysis of the focusing probes are presented in this study along with experimental verification of performance and imaging and spectroscopy examples. Nondestructive evaluation will find benefit from such an apparatus including biological tissue imaging, electronic package integrity testing, composite dielectric structure evaluation for defects and microfluidic sensing

  17. Nondestructive millimeter wave imaging and spectroscopy using dielectric focusing probes

    Energy Technology Data Exchange (ETDEWEB)

    Hejase, Jose A.; Shane, Steven S.; Park, Kyoung Y.; Chahal, Premjeet [Terahertz Systems Laboratory (TeSLa) - Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48823 (United States)

    2014-02-18

    A tool for interrogating objects over a wide band of frequencies with subwavelength resolution at small standoff distances (near field region) in the transmission mode using a single source and detector measurement setup in the millimeter wave band is presented. The design utilizes optics like principles for guiding electromagnetic millimeter waves from large cross-sectional areas to considerably smaller sub-wavelength areas. While plano-convex lenses can be used to focus waves to a fine resolution, they usually require a large stand-off distance thus resulting in alignment and spacing issues. The design procedure and simulation analysis of the focusing probes are presented in this study along with experimental verification of performance and imaging and spectroscopy examples. Nondestructive evaluation will find benefit from such an apparatus including biological tissue imaging, electronic package integrity testing, composite dielectric structure evaluation for defects and microfluidic sensing.

  18. Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging

    International Nuclear Information System (INIS)

    O'Sullivan, Malcolm N.; Chan, Kam Wai Clifford; Boyd, Robert W.

    2010-01-01

    We present a theoretical comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging. We first calculate the signal-to-noise ratio of each process in terms of its controllable experimental conditions. We show that a key distinction is that a thermal ghost image always resides on top of a large background; the fluctuations in this background constitutes an intrinsic noise source for thermal ghost imaging. In contrast, there is a negligible intrinsic background to a quantum ghost image. However, for practical reasons involving achievable illumination levels, acquisition times for thermal ghost images are often much shorter than those for quantum ghost images. We provide quantitative predictions for the conditions under which each process provides superior performance. Our conclusion is that each process can provide useful functionality, although under complementary conditions.

  19. Thermal analysis of dry eye subjects and the thermal impulse perturbation model of ocular surface.

    Science.gov (United States)

    Zhang, Aizhong; Maki, Kara L; Salahura, Gheorghe; Kottaiyan, Ranjini; Yoon, Geunyoung; Hindman, Holly B; Aquavella, James V; Zavislan, James M

    2015-03-01

    In this study, we explore the usage of ocular surface temperature (OST) decay patterns to distinguished between dry eye patients with aqueous deficient dry eye (ADDE) and meibomian gland dysfunction (MGD). The OST profiles of 20 dry eye subjects were measured by a long-wave infrared thermal camera in a standardized environment (24 °C, and relative humidity (RH) 40%). The subjects were instructed to blink every 5 s after 20 ∼ 25 min acclimation. Exponential decay curves were fit to the average temperature within a region of the central cornea. We find the MGD subjects have both a higher initial temperature (p model, referred to as the thermal impulse perturbation (TIP) model. We conclude that long-wave-infrared thermal imaging is a plausible tool in assisting with the classification of dry eye patient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Determination of gravity wave parameters in the airglow combining photometer and imager data

    Science.gov (United States)

    Nyassor, Prosper K.; Arlen Buriti, Ricardo; Paulino, Igo; Medeiros, Amauri F.; Takahashi, Hisao; Wrasse, Cristiano M.; Gobbi, Delano

    2018-05-01

    Mesospheric airglow measurements of two or three layers were used to characterize both vertical and horizontal parameters of gravity waves. The data set was acquired coincidentally from a multi-channel filter (Multi-3) photometer and an all-sky imager located at São João do Cariri (7.4° S, 36.5° W) in the equatorial region from 2001 to 2007. Using a least-square fitting and wavelet analysis technique, the phase and amplitude of each observed wave were determined, as well as the amplitude growth. Using the dispersion relation of gravity waves, the vertical and horizontal wavelengths were estimated and compared to the horizontal wavelength obtained from the keogram analysis of the images observed by an all-sky imager. The results show that both horizontal and vertical wavelengths, obtained from the dispersion relation and keogram analysis, agree very well for the waves observed on the nights of 14 October and 18 December 2006. The determined parameters showed that the observed wave on the night of 18 December 2006 had a period of ˜ 43.8 ± 2.19 min, with the horizontal wavelength of 235.66 ± 11.78 km having a downward phase propagation, whereas that of 14 October 2006 propagated with a period of ˜ 36.00 ± 1.80 min with a horizontal wavelength of ˜ 195 ± 9.80 km, and with an upward phase propagation. The observation of a wave taken by a photometer and an all-sky imager allowed us to conclude that the same wave could be observed by both instruments, permitting the investigation of the two-dimensional wave parameter.

  1. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    Science.gov (United States)

    Renaud, G.; Bosch, J. G.; ten Kate, G. L.; Shamdasani, V.; Entrekin, R.; de Jong, N.; van der Steen, A. F. W.

    2012-11-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image.

  2. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    International Nuclear Information System (INIS)

    Renaud, G; Bosch, J G; Ten Kate, G L; De Jong, N; Van der Steen, A F W; Shamdasani, V; Entrekin, R

    2012-01-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image. (fast track communication)

  3. Definition imaging of anomalous geologic structure with radio waves

    International Nuclear Information System (INIS)

    Stolarczyk, L.G.

    1990-01-01

    Diamond core drilling from the surface and access drifts are routinely used in acquiring subsurface geologic data. Examination of core from a constellation of drillholes enables the characterization of the prevailing geology in the deposit. Similar geologic members in adjacent drillholes suggest that layered rock continuity exists between drillholes. Mineralogical and physical examination of core along with computer generated stratigraphic cross sections graphically represents the correlation and classification of the rock in the deposit. CW radio waves propagating on ray paths between drillholes have been used to validate the stratigraphic cross section and image anomalous geologic structure between drillholes. This paper compares the crosshole radio wave tomography images of faults in a nuclear waste repository site and a coal seam with the in-mine mapping results

  4. A Thermal Imaging Instrument with Uncooled Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed work, we will perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. We will define the science and...

  5. Lamb Wave Stiffness Characterization of Composites Undergoing Thermal-Mechanical Aging

    Science.gov (United States)

    Seale, Michael D.; Madaras, Eric I.

    2004-01-01

    The introduction of new, advanced composite materials into aviation systems requires a thorough understanding of the long term effects of combined thermal and mechanical loading upon those materials. Analytical methods investigating the effects of intense thermal heating combined with mechanical loading have been investigated. The damage mechanisms and fatigue lives were dependent on test parameters as well as stress levels. Castelli, et al. identified matrix dominated failure modes for out-of-phase cycling and fiber dominated damage modes for in-phase cycling. In recent years, ultrasonic methods have been developed that can measure the mechanical stiffness of composites. To help evaluate the effect of aging, a suitably designed Lamb wave measurement system is being used to obtain bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system works by exciting an antisymmetric Lamb wave and calculating the velocity at each frequency from the known transducer separation and the measured time-of-flight. The same peak in the waveforms received at various distances is used to measure the time difference between the signals. The velocity measurements are accurate and repeatable to within 1% resulting in reconstructed stiffness values repeatable to within 4%. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. A mechanical scanner is used to move the sensors over the surface to map the time-of-flight, velocity, or stiffnesses of the entire specimen. Access to only one side of the material is required and no immersion or couplants are required because the sensors are dry coupled to the surface of the plate. In this study, the elastic stiffnesses D(sub 11), D(sub 22), A(sub 44), and A(sub 55) as well as time-of-flight measurements for composite samples that have undergone combined thermal and mechanical aging for

  6. Effect of humid-thermal environment on wave dispersion characteristics of single-layered graphene sheets

    Science.gov (United States)

    Ebrahimi, Farzad; Dabbagh, Ali

    2018-04-01

    In the present article, the hygro-thermal wave propagation properties of single-layered graphene sheets (SLGSs) are investigated for the first time employing a nonlocal strain gradient theory. A refined higher-order two-variable plate theory is utilized to derive the kinematic relations of graphene sheets. Here, nonlocal strain gradient theory is used to achieve a more precise analysis of small-scale plates. In the framework of the Hamilton's principle, the final governing equations are developed. Moreover, these obtained equations are deemed to be solved analytically and the wave frequency values are achieved. Some parametric studies are organized to investigate the influence of different variants such as nonlocal parameter, length scale parameter, wave number, temperature gradient and moisture concentration on the wave frequency of graphene sheets.

  7. Imaging moving objects from multiply scattered waves and multiple sensors

    International Nuclear Information System (INIS)

    Miranda, Analee; Cheney, Margaret

    2013-01-01

    In this paper, we develop a linearized imaging theory that combines the spatial, temporal and spectral components of multiply scattered waves as they scatter from moving objects. In particular, we consider the case of multiple fixed sensors transmitting and receiving information from multiply scattered waves. We use a priori information about the multipath background. We use a simple model for multiple scattering, namely scattering from a fixed, perfectly reflecting (mirror) plane. We base our image reconstruction and velocity estimation technique on a modification of a filtered backprojection method that produces a phase-space image. We plot examples of point-spread functions for different geometries and waveforms, and from these plots, we estimate the resolution in space and velocity. Through this analysis, we are able to identify how the imaging system depends on parameters such as bandwidth and number of sensors. We ultimately show that enhanced phase-space resolution for a distribution of moving and stationary targets in a multipath environment may be achieved using multiple sensors. (paper)

  8. Thermal imaging of spin Peltier effect

    Science.gov (United States)

    Daimon, Shunsuke; Iguchi, Ryo; Hioki, Tomosato; Saitoh, Eiji; Uchida, Ken-Ichi

    2016-12-01

    The Peltier effect modulates the temperature of a junction comprising two different conductors in response to charge currents across the junction, which is used in solid-state heat pumps and temperature controllers in electronics. Recently, in spintronics, a spin counterpart of the Peltier effect was observed. The `spin Peltier effect' modulates the temperature of a magnetic junction in response to spin currents. Here we report thermal imaging of the spin Peltier effect; using active thermography technique, we visualize the temperature modulation induced by spin currents injected into a magnetic insulator from an adjacent metal. The thermal images reveal characteristic distribution of spin-current-induced heat sources, resulting in the temperature change confined only in the vicinity of the metal/insulator interface. This finding allows us to estimate the actual magnitude of the temperature modulation induced by the spin Peltier effect, which is more than one order of magnitude greater than previously believed.

  9. Occupancy Analysis of Sports Arenas Using Thermal Imaging

    DEFF Research Database (Denmark)

    Gade, Rikke; Jørgensen, Anders; Moeslund, Thomas B.

    2012-01-01

    This paper presents a system for automatic analysis of the occupancy of sports arenas. By using a thermal camera for image capturing the number of persons and their location on the court are found without violating any privacy issues. The images are binarised with an automatic threshold method...

  10. Imaging electron wave functions inside open quantum rings.

    Science.gov (United States)

    Martins, F; Hackens, B; Pala, M G; Ouisse, T; Sellier, H; Wallart, X; Bollaert, S; Cappy, A; Chevrier, J; Bayot, V; Huant, S

    2007-09-28

    Combining scanning gate microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of the electron probability density |Psi|(2)(x,y) in embedded mesoscopic quantum rings. The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wave function interferences. Simulations of both |Psi|(2)(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to |Psi|(2)(x,y).

  11. Robust Imaging Methodology for Challenging Environments: Wave Equation Dispersion Inversion of Surface Waves

    KAUST Repository

    Li, Jing

    2017-12-22

    A robust imaging technology is reviewed that provide subsurface information in challenging environments: wave-equation dispersion inversion (WD) of surface waves for the shear velocity model. We demonstrate the benefits and liabilities of the method with synthetic seismograms and field data. The benefits of WD are that 1) there is no layered medium assumption, as there is in conventional inversion of dispersion curves, so that the 2D or 3D S-velocity model can be reliably obtained with seismic surveys over rugged topography, and 2) WD mostly avoids getting stuck in local minima. The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic media and the inversion of dispersion curves associated with Love wave. The liability is that is almost as expensive as FWI and only recovers the Vs distribution to a depth no deeper than about 1/2~1/3 wavelength.

  12. Reliability of a novel thermal imaging system for temperature assessment of healthy feet.

    Science.gov (United States)

    Petrova, N L; Whittam, A; MacDonald, A; Ainarkar, S; Donaldson, A N; Bevans, J; Allen, J; Plassmann, P; Kluwe, B; Ring, F; Rogers, L; Simpson, R; Machin, G; Edmonds, M E

    2018-01-01

    Thermal imaging is a useful modality for identifying preulcerative lesions ("hot spots") in diabetic foot patients. Despite its recognised potential, at present, there is no readily available instrument for routine podiatric assessment of patients at risk. To address this need, a novel thermal imaging system was recently developed. This paper reports the reliability of this device for temperature assessment of healthy feet. Plantar skin foot temperatures were measured with the novel thermal imaging device (Diabetic Foot Ulcer Prevention System (DFUPS), constructed by Photometrix Imaging Ltd) and also with a hand-held infrared spot thermometer (Thermofocus® 01500A3, Tecnimed, Italy) after 20 min of barefoot resting with legs supported and extended in 105 subjects (52 males and 53 females; age range 18 to 69 years) as part of a multicentre clinical trial. The temperature differences between the right and left foot at five regions of interest (ROIs), including 1st and 4th toes, 1st, 3rd and 5th metatarsal heads were calculated. The intra-instrument agreement (three repeated measures) and the inter-instrument agreement (hand-held thermometer and thermal imaging device) were quantified using intra-class correlation coefficients (ICCs) and the 95% confidence intervals (CI). Both devices showed almost perfect agreement in replication by instrument. The intra-instrument ICCs for the thermal imaging device at all five ROIs ranged from 0.95 to 0.97 and the intra-instrument ICCs for the hand-held-thermometer ranged from 0.94 to 0.97. There was substantial to perfect inter-instrument agreement between the hand-held thermometer and the thermal imaging device and the ICCs at all five ROIs ranged between 0.94 and 0.97. This study reports the performance of a novel thermal imaging device in the assessment of foot temperatures in healthy volunteers in comparison with a hand-held infrared thermometer. The newly developed thermal imaging device showed very good agreement in

  13. The general optics structure of millimeter-wave imaging diagnostic on TOKAMAK

    International Nuclear Information System (INIS)

    Zhu, Y.; Xie, J.; Liu, W.D.; Luo, C.; Zhao, Z.; Chen, D.; Domier, C.W.; Luhmann, N.C. Jr.; Chen, M.; Hu, X.

    2016-01-01

    Advanced imaging optics techniques have significantly improved the performance of millimeter-wave imaging diagnostics, such as Electron Cyclotron Emission imaging and Microwave Imaging of Reflectometry. The fundamental functions of millimeter-wave imaging optics are focusing, collecting the emission or reflected microwave signal from the target area in the plasma and focusing the emitted (reflected) signal on the detector array. The location of the observation area can be changed using the focus lens. Another important function of the imaging optics is zooming. The size of the observation area in poloidal direction can be adjusted by the zoom lenses and the poloidal spatial resolution is determined by the level of zoom. The field curvature adjustment lenses are employed to adjust the shape of the image plane in the poloidal direction to reduce crosstalk between neighboring channels. The incident angle on each channel is controlled using the specific surface type of the front-side lenses to increase the signal-to-noise ratio. All functions are decoupled with the minimum number of lenses. Successful applications are given

  14. Thermal imaging in screening of joint inflammation and rheumatoid arthritis in children

    International Nuclear Information System (INIS)

    Lasanen, R; Julkunen, P; Töyräs, J; Piippo-Savolainen, E; Remes-Pakarinen, T; Kröger, L; Heikkilä, A; Karhu, J

    2015-01-01

    Potential of modern thermal imaging for screening and differentiation of joint inflammation has not been assessed in child and juvenile patient populations, typically demanding groups in diagnostics of musculoskeletal disorders. We hypothesize that thermal imaging can detect joint inflammation in patients with juvenile idiopathic arthritis or autoimmune disease with arthritis such as systemic lupus erythematosus. To evaluate the hypothesis, we studied 58 children exhibiting symptoms of joint inflammation. First, the patients’ joints were examined along clinical procedure supplemented with ultrasound imaging when deemed necessary by the clinician. Second, thermal images were acquired from patients’ knees and ankles. Results of thermal imaging were compared to clinical evaluations in knee and ankle. The temperatures were significantly (p max = 0.044, p mean  < 0.001) higher in inflamed ankle joints, but not in inflamed knee joints. No significant difference was found between the skin surface temperatures of medial and lateral aspects of ankle joints. In knee joints the mean temperatures of medial and lateral aspect differed significantly (p = 0.004). We have demonstrated that thermal imaging may have potential for detecting joint inflammation in ankle joints of children. For knee joints our results are inconclusive and further research is warranted. (paper)

  15. Electron thermal conductivity from heat wave propagation in Wendelstein 7-AS

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L.; Erckmann, V; Gasparino, U; Hartfuss, H J; Kuehner, G; Maassberg, H; Stroth, U; Tutter, M [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); W7-AS Team; ECRH Group IPF Stuttgart; Gyrotron Group KFK Karlsruhe

    1992-11-01

    Heat wave propagation experiments have been carried out on the Wendelstein 7-AS stellarator. The deposition of electron cyclotron resonance heating power is highly localized in the plasma centre, so that power modulation produces heat waves which propagate away from the deposition volume. Radiometry of the electron cyclotron emission is used to measure the generated temperature perturbation. The propagation time delay of the temperature perturbation as a function of distance to the power deposition region is used to determine the electron thermal conductivity [chi][sub e]. This value is then compared with the value determined by global power balance. In contrast to sawtooth propagation experiments in tokamaks, it is found that the value of [chi][sub e] from heat wave propagation is comparable to that calculated by power balance. In addition, inward propagating waves were produced by choosing a power deposition region away from the plasma centre. Experiments were carried out at 70 GHz in the ordinary mode and at 140 GHz in the extraordinary mode. Variations of the modulation power amplitude have demonstrated that the inferred value of [chi][sub e] is independent of the amplitude of the induced temperature perturbations. (author). 29 refs, 11 figs, 5 tabs.

  16. Visualization and measurement by image processing of thermal hydraulic phenomena by neutron radiography

    International Nuclear Information System (INIS)

    Takenaka, Nobuyuki

    1996-01-01

    Neutron Radiography was applied to visualization of thermal hydraulic phenomena and measurement was carried out by image processing the visualized images. Since attenuation of thermal neutron rays is high in ordinary liquids like water and organic fluid while it is low in most of metals, liquid flow behaviors can be visualized through a metallic wall by neutron radiography. Measurement of void fraction and flow vector field which is important to study thermal hydraulic phenomena can be carried out by image processing the images obtained by the visualization. Various two-phase and liquid metal flows were visualized by a JRR-3M thermal neutron radiography system in the present study. Multi-dimensional void fraction distributions in two-phase flows and flow vector fields in liquid metals, which are difficult to measure by the other methods, were successfully measured by image processing. It was shown that neutron radiography was efficiently applicable to study thermal hydraulic phenomena. (author)

  17. An Automated Algorithm for Identifying and Tracking Transverse Waves in Solar Images

    Science.gov (United States)

    Weberg, Micah J.; Morton, Richard J.; McLaughlin, James A.

    2018-01-01

    Recent instrumentation has demonstrated that the solar atmosphere supports omnipresent transverse waves, which could play a key role in energizing the solar corona. Large-scale studies are required in order to build up an understanding of the general properties of these transverse waves. To help facilitate this, we present an automated algorithm for identifying and tracking features in solar images and extracting the wave properties of any observed transverse oscillations. We test and calibrate our algorithm using a set of synthetic data, which includes noise and rotational effects. The results indicate an accuracy of 1%–2% for displacement amplitudes and 4%–10% for wave periods and velocity amplitudes. We also apply the algorithm to data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and find good agreement with previous studies. Of note, we find that 35%–41% of the observed plumes exhibit multiple wave signatures, which indicates either the superposition of waves or multiple independent wave packets observed at different times within a single structure. The automated methods described in this paper represent a significant improvement on the speed and quality of direct measurements of transverse waves within the solar atmosphere. This algorithm unlocks a wide range of statistical studies that were previously impractical.

  18. STUDY ON SHADOW EFFECTS OF VARIOUS FEATURES ON CLOSE RANGE THERMAL IMAGES

    Directory of Open Access Journals (Sweden)

    C. L. Liao

    2012-07-01

    Full Text Available Thermal infrared data become more popular in remote sensing investigation, for it could be acquired both in day and night. The change of temperature has special characteristic in natural environment, so the thermal infrared images could be used in monitoring volcanic landform, the urban development, and disaster prevention. Heat shadow is formed by reflecting radiating capacity which followed the objects. Because of poor spatial resolution of thermal infrared images in satellite sensor, shadow effects were usually ignored. This research focus on discussing the shadow effects of various features, which include metals and nonmetallic materials. An area-based thermal sensor, FLIR-T360 was selected to acquire thermal images. Various features with different emissivity were chosen as reflective surface to obtain thermal shadow in normal atmospheric temperature. Experiments found that the shadow effects depend on the distance between sensors and features, depression angle, object temperature and emissivity of reflective surface. The causes of shadow effects have been altered in the experiment for analyzing the variance in thermal infrared images. The result shows that there were quite different impacts by shadow effects between metals and nonmetallic materials. The further research would be produced a math model to describe the shadow effects of different features in the future work.

  19. Superresolution Imaging Using Resonant Multiples and Plane-wave Migration Velocity Analysis

    KAUST Repository

    Guo, Bowen

    2017-01-01

    Seismic imaging is a technique that uses seismic echoes to map and detect underground geological structures. The conventional seismic image has the resolution limit of λ/2, where λ is the wavelength associated with the seismic waves propagating

  20. Thermal effects on parallel-propagating electron cyclotron waves

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1987-01-01

    Thermal effects on the dispersion of right-handed electron cyclotron waves propagating parallel to a uniform, ambient magnetic field are investigated in the strictly non-relativistic ('classical') and weakly relativistic approximations for real frequency and complex wave vector. In each approximation, the two branches of the RH mode reconnect near the cyclotron frequency as the plasma temperature is increased or the density is lowered. This reconnection occurs in a manner different from that previously assumed at parallel propagation and from that at perpendicular propagation, giving rise to a new mode near the cold plasma cut-off frequency ωsub(xC). For both parallel and perpendicular propagation, it is noted that reconnection occurs approximately when the cyclotron linewidth equals the width of the stop-band in the cold plasma dispersion relation. Inclusion of weakly relativistic effects is found to be necessary for quantitative calculations and for an accurate treatment of the new mode near ωsub(xC). Weakly relativistic effects also modify the analytic properties of the dispersion relation so as to introduce a new family of weakly damped and undamped solutions. (author)

  1. The link between tissue elasticity and thermal dose in vivo

    International Nuclear Information System (INIS)

    Sapin-de Brosses, Emilie; Pernot, Mathieu; Tanter, Mickaël

    2011-01-01

    The objective of this study was to investigate in vivo the relationship between stiffness and thermal dose. For this purpose, shear wave elastography (SWE)—a novel ultrasound-based technique for real-time mapping of the stiffness of biological soft tissues—is performed in temperature-controlled experiments. Experiments were conducted on nine anesthetized rats. Their right leg was put in a thermo-regulated waterbath. The right leg of each animal was heated at one particular temperature between 38 °C and 48.5 °C for 15 min to 3 h. Shear waves were generated in the muscle using the acoustic radiation force induced by a linear ultrasonic probe. The shear wave propagation was imaged in real time by the probe using an ultrafast scanner prototype (10 000 frames s −1 ). The local tissue stiffness was derived from the shear wave speed. Two optical fiber sensors were inserted into the muscle to measure in situ the temperature. Stiffness was found to increase strongly during the experiments. When expressed as a function of the thermal dose, the stiffness curves were found to be the same for all experiments. A thermal dose threshold was found at 202 min for an eightfold stiffness increase. Finally, the time–temperature relationship was established for different stiffness ratios. The slope of the time–temperature relationship based on stiffness measurements was found identical to the one obtained for cell death in the seminal paper on the thermal dose by Sapareto and Dewey in 1984 (Int. J. Radiat. Oncol. Biol. Phys. 10 787–800). The present results highlight the stiffness increase as a good indicator of thermal necrosis. SWE imaging can be used in vivo for necrosis threshold determination in thermal therapy.

  2. Imaging near-surface heterogeneities by natural migration of backscattered surface waves

    KAUST Repository

    AlTheyab, Abdullah

    2016-02-01

    We present a migration method that does not require a velocity model to migrate backscattered surface waves to their projected locations on the surface. This migration method, denoted as natural migration, uses recorded Green\\'s functions along the surface instead of simulated Green\\'s functions. The key assumptions are that the scattering bodies are within the depth interrogated by the surface waves, and the Green\\'s functions are recorded with dense receiver sampling along the free surface. This natural migration takes into account all orders of multiples, mode conversions and non-linear effects of surface waves in the data. The natural imaging formulae are derived for both active source and ambient-noise data, and computer simulations show that natural migration can effectively image near-surface heterogeneities with typical ambient-noise sources and geophone distributions.

  3. Enhance wound healing monitoring through a thermal imaging based smartphone app

    Science.gov (United States)

    Yi, Steven; Lu, Minta; Yee, Adam; Harmon, John; Meng, Frank; Hinduja, Saurabh

    2018-03-01

    In this paper, we present a thermal imaging based app to augment traditional appearance based wound growth monitoring. Accurate diagnose and track of wound healing enables physicians to effectively assess, document, and individualize the treatment plan given to each wound patient. Currently, wounds are primarily examined by physicians through visual appearance and wound area. However, visual information alone cannot present a complete picture on a wound's condition. In this paper, we use a smartphone attached thermal imager and evaluate its effectiveness on augmenting visual appearance based wound diagnosis. Instead of only monitoring wound temperature changes on a wound, our app presents physicians a comprehensive measurements including relative temperature, wound healing thermal index, and wound blood flow. Through the rat wound experiments and by monitoring the integrated thermal measurements over 3 weeks of time frame, our app is able to show the underlying healing process through the blood flow. The implied significance of our app design and experiment includes: (a) It is possible to use a low cost smartphone attached thermal imager for added value on wound assessment, tracking, and treatment; and (b) Thermal mobile app can be used for remote wound healing assessment for mobile health based solution.

  4. High-precision terahertz frequency modulated continuous wave imaging method using continuous wavelet transform

    Science.gov (United States)

    Zhou, Yu; Wang, Tianyi; Dai, Bing; Li, Wenjun; Wang, Wei; You, Chengwu; Wang, Kejia; Liu, Jinsong; Wang, Shenglie; Yang, Zhengang

    2018-02-01

    Inspired by the extensive application of terahertz (THz) imaging technologies in the field of aerospace, we exploit a THz frequency modulated continuous-wave imaging method with continuous wavelet transform (CWT) algorithm to detect a multilayer heat shield made of special materials. This method uses the frequency modulation continuous-wave system to catch the reflected THz signal and then process the image data by the CWT with different basis functions. By calculating the sizes of the defects area in the final images and then comparing the results with real samples, a practical high-precision THz imaging method is demonstrated. Our method can be an effective tool for the THz nondestructive testing of composites, drugs, and some cultural heritages.

  5. Fourier-transform ghost imaging with pure far-field correlated thermal light

    International Nuclear Information System (INIS)

    Liu Honglin; Shen Xia; Han Shensheng; Zhu Daming

    2007-01-01

    Pure far-field correlated thermal light beams are created with phase grating, and Fourier-transform ghost imaging depending only on the far-field correlation is demonstrated experimentally. Theoretical analysis and the results of experimental investigation of this pure far-field correlated thermal light are presented. Applications which may be exploited with this imaging scheme are discussed

  6. Thermal conductivity profile determination in proton-irradiated ZrC by spatial and frequency scanning thermal wave methods

    International Nuclear Information System (INIS)

    Jensen, C.; Chirtoc, M.; Horny, N.; Antoniow, J. S.; Pron, H.; Ban, H.

    2013-01-01

    Using complementary thermal wave methods, the irradiation damaged region of zirconium carbide (ZrC) is characterized by quantifiably profiling the thermophysical property degradation. The ZrC sample was irradiated by a 2.6 MeV proton beam at 600 °C to a dose of 1.75 displacements per atom. Spatial scanning techniques including scanning thermal microscopy (SThM), lock-in infrared thermography (lock-in IRT), and photothermal radiometry (PTR) were used to directly map the in-depth profile of thermal conductivity on a cross section of the ZrC sample. The advantages and limitations of each system are discussed and compared, finding consistent results from all techniques. SThM provides the best resolution finding a very uniform thermal conductivity envelope in the damaged region measuring ∼52 ± 2 μm deep. Frequency-based scanning PTR provides quantification of the thermal parameters of the sample using the SThM measured profile to provide validation of a heating model. Measured irradiated and virgin thermal conductivities are found to be 11.9 ± 0.5 W m −1 K −1 and 26.7 ±1 W m −1 K −1 , respectively. A thermal resistance evidenced in the frequency spectra of the PTR results was calculated to be (1.58 ± 0.1) × 10 −6 m 2 K W −1 . The measured thermal conductivity values compare well with the thermal conductivity extracted from the SThM calibrated signal and the spatially scanned PTR. Combined spatial and frequency scanning techniques are shown to provide a valuable, complementary combination for thermal property characterization of proton-irradiated ZrC. Such methodology could be useful for other studies of ion-irradiated materials

  7. Simulation of millimeter-wave body images and its application to biometric recognition

    Science.gov (United States)

    Moreno-Moreno, Miriam; Fierrez, Julian; Vera-Rodriguez, Ruben; Parron, Josep

    2012-06-01

    One of the emerging applications of the millimeter-wave imaging technology is its use in biometric recognition. This is mainly due to some properties of the millimeter-waves such as their ability to penetrate through clothing and other occlusions, their low obtrusiveness when collecting the image and the fact that they are harmless to health. In this work we first describe the generation of a database comprising 1200 synthetic images at 94 GHz obtained from the body of 50 people. Then we extract a small set of distance-based features from each image and select the best feature subsets for person recognition using the SFFS feature selection algorithm. Finally these features are used in body geometry authentication obtaining promising results.

  8. A time reversal damage imaging method for structure health monitoring using Lamb waves

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Cao Ya-Ping; Sun Xiu-Li; Chen Xian-Hua; Yu Jian-Bo

    2010-01-01

    This paper investigates the Lamb wave imaging method combining time reversal for health monitoring of a metallic plate structure. The temporal focusing effect of the time reversal Lamb waves is investigated theoretically. It demonstrates that the focusing effect is related to the frequency dependency of the time reversal operation. Numerical simulations are conducted to study the time reversal behaviour of Lamb wave modes under broadband and narrowband excitations. The results show that the reconstructed time reversed wave exhibits close similarity to the reversed narrowband tone burst signal validating the theoretical model. To enhance the similarity, the cycle number of the excited signal should be increased. Experiments combining finite element model are then conducted to study the imaging method in the presence of damage like hole in the plate structure. In this work, the time reversal technique is used for the recompression of Lamb wave signals. Damage imaging results with time reversal using broadband and narrowband excitations are compared to those without time reversal. It suggests that the narrowband excitation combined time reversal can locate and determine the size of structural damage more precisely, but the cycle number of the excited signal should be chosen reasonably

  9. Two-dimensional fruit ripeness estimation using thermal imaging

    Science.gov (United States)

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana

    2013-06-01

    Some green fruits do not change their color from green to yellow when being ripe. As a result, ripeness estimation via color and fluorescent analytical approaches cannot be applied. In this article, we propose and show for the first time how a thermal imaging camera can be used to two-dimensionally classify fruits into different ripeness levels. Our key idea relies on the fact that the mature fruits have higher heat capacity than the immature ones and therefore the change in surface temperature overtime is slower. Our experimental proof of concept using a thermal imaging camera shows a promising result in non-destructively identifying three different ripeness levels of mangoes Mangifera indica L.

  10. Design and development of a very high resolution thermal imager

    Science.gov (United States)

    Kuerbitz, Gunther; Duchateau, Ruediger

    1998-10-01

    The design goal of this project was to develop a thermal imaging system with ultimate geometrical resolution without sacrificing thermal sensitivity. It was necessary to fulfil the criteria for a future advanced video standard. This video standard is the so-called HDTV standard (HDTV High Definition TeleVision). The thermal imaging system is a parallel scanning system working in the 7...11 micrometer spectral region. The detector for that system has to have 576 X n (n number of TDI stages) detector elements taking into account a twofold interlace. It must be carefully optimized in terms of range performance and size of optics entrance pupil as well as producibility and yield. This was done in strong interaction with the detector manufacturer. The 16:9 aspect ratio of the HDTV standard together with the high number of 1920 pixels/line impose high demands on the scanner design in terms of scan efficiency and linearity. As an advanced second generation thermal imager the system has an internal thermal reference. The electronics is fully digitized and comprises circuits for Non Uniformity Correction (NUC), scan conversion, electronic zoom, auto gain and level, edge enhancement, up/down and left/right reversion etc. It can be completely remote-controlled via a serial interface.

  11. The effective reflection of a pulse sequence from a four-wave mirror with thermal nonlinearity under parametric feedback

    Science.gov (United States)

    Barashkov, M. S.; Bel'Diugin, I. M.; Zolotarev, M. V.; Kruzhilin, Iu. I.; Krymskii, M. I.

    1989-04-01

    A four-wave mirror with thermal nonlinearity has been experimentally realized with the interaction of corunning waves under parametric feedback with a nonreciprocal element. The effective reflection of a sequence of pulses with duration of about 300 ns from a neodymium-glass laser with maximal reflection coefficients greater than 30 has been demonstrated. The quality of the radiation reflected from the mirror is studied. A significant reduction in the steady-state lasing threshold has been shown with thermal nonlinearity at small angles of the interacting beam convergence, compared to the case of counterrunning convergence.

  12. Utilizing Structure-from-Motion Photogrammetry with Airborne Visual and Thermal Images to Monitor Thermal Areas in Yellowstone National Park

    Science.gov (United States)

    Carr, B. B.; Vaughan, R. G.

    2017-12-01

    The thermal areas in Yellowstone National Park (Wyoming, USA) are constantly changing. Persistent monitoring of these areas is necessary to better understand the behavior and potential hazards of both the thermal features and the deeper hydrothermal system driving the observed surface activity. As part of the Park's monitoring program, thousands of visual and thermal infrared (TIR) images have been acquired from a variety of airborne platforms over the past decade. We have used structure-from-motion (SfM) photogrammetry techniques to generate a variety of data products from these images, including orthomosaics, temperature maps, and digital elevation models (DEMs). Temperature maps were generated for Upper Geyser Basin and Norris Geyser Basin for the years 2009-2015, by applying SfM to nighttime TIR images collected from an aircraft-mounted forward-looking infrared (FLIR) camera. Temperature data were preserved through the SfM processing by applying a uniform linear stretch over the entire image set to convert between temperature and a 16-bit digital number. Mosaicked temperature maps were compared to the original FLIR image frames and to ground-based temperature data to constrain the accuracy of the method. Due to pixel averaging and resampling, among other issues, the derived temperature values are typically within 5-10 ° of the values of the un-resampled image frame. We also created sub-meter resolution DEMs from airborne daytime visual images of individual thermal areas. These DEMs can be used for resource and hazard management, and in cases where multiple DEMs exist from different times, for measuring topographic change, including change due to thermal activity. For example, we examined the sensitivity of the DEMs to topographic change by comparing DEMs of the travertine terraces at Mammoth Hot Springs, which can grow at > 1 m per year. These methods are generally applicable to images from airborne platforms, including planes, helicopters, and unmanned aerial

  13. Thickness measurement by two-sided step-heating thermal imaging

    Science.gov (United States)

    Li, Xiaoli; Tao, Ning; Sun, J. G.; Zhang, Cunlin; Zhao, Yuejin

    2018-01-01

    Infrared thermal imaging is a promising nondestructive technique for thickness prediction. However, it is usually thought to be only appropriate for testing the thickness of thin objects or near-surface structures. In this study, we present a new two-sided step-heating thermal imaging method which employed a low-cost portable halogen lamp as the heating source and verified it with two stainless steel step wedges with thicknesses ranging from 5 mm to 24 mm. We first derived the one-dimensional step-heating thermography theory with the consideration of warm-up time of the lamp, and then applied the nonlinear regression method to fit the experimental data by the derived function to determine the thickness. After evaluating the reliability and accuracy of the experimental results, we concluded that this method is capable of testing thick objects. In addition, we provided the criterions for both the required data length and the applicable thickness range of the testing material. It is evident that this method will broaden the thermal imaging application for thickness measurement.

  14. Surface thermal analysis of North Brabant cities and neighbourhoods during heat waves

    Directory of Open Access Journals (Sweden)

    Leyre Echevarria Icaza

    2016-03-01

    Full Text Available The urban heat island effect is often associated with large metropolises. However, in the Netherlands even small cities will be affected by the phenomenon in the future (Hove et al., 2011, due to the dispersed or mosaic urbanisation patterns in particularly the southern part of the country: the province of North Brabant. This study analyses the average night time land surface temperature (LST of 21 North-Brabant urban areas through 22 satellite images retrieved by Modis 11A1 during the 2006 heat wave and uses Landsat 5 Thematic Mapper to map albedo and normalized difference temperature index (NDVI values. Albedo, NDVI and imperviousness are found to play the most relevant role in the increase of night-time LST. The surface cover cluster analysis of these three parameters reveals that the 12 “urban living environment” categories used in the region of North Brabant can actually be reduced to 7 categories, which simplifies the design guidelines to improve the surface thermal behaviour of the different neighbourhoods thus reducing the Urban Heat Island (UHI effect in existing medium size cities and future developments adjacent to those cities.

  15. An analysis of fusion algorithms for LWIR and visual images

    CSIR Research Space (South Africa)

    De Villiers, J

    2013-12-01

    Full Text Available This paper presents a comparison of methods to fuse pre-registered colour visual and long wave infra-red images to create a new image containing both visual and thermal cues. Three methods of creating the artificially coloured fused images...

  16. Development and Short-Range Testing of a 100 kW Side-Illuminated Millimeter-Wave Thermal Rocket

    Science.gov (United States)

    Bruccoleri, Alexander; Eilers, James A.; Lambot, Thomas; Parkin, Kevin

    2015-01-01

    The objective of the phase described here of the Millimeter-Wave Thermal Launch System (MTLS) Project was to launch a small thermal rocket into the air using millimeter waves. The preliminary results of the first MTLS flight vehicle launches are presented in this work. The design and construction of a small thermal rocket with a planar ceramic heat exchanger mounted along the axis of the rocket is described. The heat exchanger was illuminated from the side by a millimeter-wave beam and fed propellant from above via a small tank containing high pressure argon or nitrogen. Short-range tests where the rocket was launched, tracked, and heated with the beam are described. The rockets were approximately 1.5 meters in length and 65 millimeters in diameter, with a liftoff mass of 1.8 kilograms. The rocket airframes were coated in aluminum and had a parachute recovery system activated via a timer and Pyrodex. At the rocket heat exchanger, the beam distance was 40 meters with a peak power intensity of 77 watts per square centimeter. and a total power of 32 kilowatts in a 30 centimeter diameter circle. An altitude of approximately 10 meters was achieved. Recommendations for improvements are discussed.

  17. Probing thermal evanescent waves with a scattering-type near-field microscope

    International Nuclear Information System (INIS)

    Kajihara, Y; Kosaka, K; Komiyama, S

    2011-01-01

    Long wavelength infrared (LWIR) waves contain many important spectra of matters like molecular motions. Thus, probing spontaneous LWIR radiation without external illumination would reveal detailed mesoscopic phenomena that cannot be probed by any other measurement methods. Here we developed a scattering-type scanning near-field optical microscope (s-SNOM) and demonstrated passive near-field microscopy at 14.5 µm wavelength. Our s-SNOM consists of an atomic force microscope and a confocal microscope equipped with a highly sensitive LWIR detector, called a charge-sensitive infrared phototransistor (CSIP). In our s-SNOM, photons scattered by a tungsten probe are collected by an objective of the confocal LWIR microscope and are finally detected by the CSIP. To suppress the far-field background, we vertically modulated the probe and demodulated the signal with a lock-in amplifier. With the s-SNOM, a clear passive image of 3 µm pitch Au/SiC gratings was successfully obtained and the spatial resolution was estimated to be 60 nm (λ/240). The radiation from Au and GaAs was suggested to be due to thermally excited charge/current fluctuations and surface phonons, respectively. This s-SNOM has the potential to observe mesoscopic phenomena such as molecular motions, biomolecular protein interactions and semiconductor conditions in the future

  18. Polarization characterization of PZT disks and of embedded PZT plates by thermal wave methods

    International Nuclear Information System (INIS)

    Eydam, Agnes; Suchaneck, Gunnar; Gerlach, Gerald; Esslinger, Sophia; Schönecker, Andreas; Neumeister, Peter

    2014-01-01

    In this work, the thermal wave method was applied to characterize PZT disks and embedded PZT plates with regard to the polarization magnitude and spatial homogeneity. The samples were exposed to periodic heating by means of a laser beam and the pyroelectric response was determined. Thermal relaxation times (single time constants or distributions of time constants) describe the heat losses of the PZT samples to the environment. The resulting pyroelectric current spectrum was fitted to the superposition of thermal relaxation processes. The pyroelectric coefficient gives insight in the polarization distribution. For PZT disks, the polarization distribution in the surface region showed a characteristic decrease towards the electrodes

  19. Millimeter-wave radiation from a Teflon dielectric probe and its imaging application

    International Nuclear Information System (INIS)

    Kume, Eiji; Sakai, Shigeki

    2008-01-01

    The beam profile of a millimeter wave radiated from the tip of a Teflon dielectric probe was characterized experimentally by using a three-dimensional scanning dielectric probe and numerically by using the finite difference time domain (FDTD) method. The measured intensity distribution and polarization of the millimeter wave radiated from the tip of the probe was in good agreement with those of the FDTD simulation. A reflection type of a millimeter- wave imaging system using this dielectric probe was constructed. The resolution of the imaging system was as small as 1 mm, which was slightly smaller than a half wavelength, 1.6 mm, of the radiation wave. Translucent measurement of a commercially manufactured IC card which consists of an IC chip and a leaf-shaped antenna coil was demonstrated. Not only the internal two-dimensional structures but also the vertical information of the card could be provided

  20. Geophysical imaging of near-surface structure using electromagnetic and seismic waves

    Science.gov (United States)

    Chen, Yongping

    This thesis includes three different studies of geophysical imaging: (1) inference of plume moments from tomograms with cross-hole radar; (2) simulated annealing inversion for near-surface shear-wave velocity structure with microtremor measurements; and (3) time-lapse GPR imaging of water movement in the vadose zone. Although these studies involve different geophysical approaches, they are linked by a common theme---using geophysical imaging to understand hydrologic phenomena or subsurface structure. My first study in this thesis is concerned with the identification of plume moments from geophysical tomograms. Previously geophysical imaging has been applied to characterize contaminant plume migration in groundwater, and to determine plume mass, extent, velocity, and shape. Although tomograms have been used for quantitative inference of plume moments, the reliability of these inferred moments is poorly understood. In general, tomograms represent blurry and blunted images of subsurface properties, as a consequence of limited data acquisition geometry, measurement error, and the effects of regularization. In this thesis, I investigated the effect of tomographic resolution on the inference of plume moments from tomograms. I presented a new approach to quantify the resolution of inferred moments, drawing on concepts from conventional geophysical image appraisal, and also image reconstruction from orthogonal moments. This new approach is demonstrated by synthetic examples in radar tomography. My results indicated that moments calculated from tomograms are subject to substantial error and bias. For example, for many practical survey geometries, crosshole radar tomography (1) is incapable of resolving the lateral center of mass, and (2) severely underpredicts total mass. The degree of bias and error varies spatially over the tomogram, in a complicated manner, as a result of spatially variable resolution. These findings have important implications for the quantitative use

  1. Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation

    International Nuclear Information System (INIS)

    Liu Yingchuan; Kuang Leman

    2011-01-01

    In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that the visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.

  2. A Baseline-Free Defect Imaging Technique in Plates Using Time Reversal of Lamb Waves

    International Nuclear Information System (INIS)

    Jeong, Hyunjo; Cho, Sungjong; Wei, Wei

    2011-01-01

    We present an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A 0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional sidebands that contain the time-of-flight information on the defect location. One of the side-band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free imaging of a defect. (fundamental areas of phenomenology(including applications))

  3. Matrix Approach of Seismic Wave Imaging: Application to Erebus Volcano

    Science.gov (United States)

    Blondel, T.; Chaput, J.; Derode, A.; Campillo, M.; Aubry, A.

    2017-12-01

    This work aims at extending to seismic imaging a matrix approach of wave propagation in heterogeneous media, previously developed in acoustics and optics. More specifically, we will apply this approach to the imaging of the Erebus volcano in Antarctica. Volcanoes are actually among the most challenging media to explore seismically in light of highly localized and abrupt variations in density and wave velocity, extreme topography, extensive fractures, and the presence of magma. In this strongly scattering regime, conventional imaging methods suffer from the multiple scattering of waves. Our approach experimentally relies on the measurement of a reflection matrix associated with an array of geophones located at the surface of the volcano. Although these sensors are purely passive, a set of Green's functions can be measured between all pairs of geophones from ice-quake coda cross-correlations (1-10 Hz) and forms the reflection matrix. A set of matrix operations can then be applied for imaging purposes. First, the reflection matrix is projected, at each time of flight, in the ballistic focal plane by applying adaptive focusing at emission and reception. It yields a response matrix associated with an array of virtual geophones located at the ballistic depth. This basis allows us to get rid of most of the multiple scattering contribution by applying a confocal filter to seismic data. Iterative time reversal is then applied to detect and image the strongest scatterers. Mathematically, it consists in performing a singular value decomposition of the reflection matrix. The presence of a potential target is assessed from a statistical analysis of the singular values, while the corresponding eigenvectors yield the corresponding target images. When stacked, the results obtained at each depth give a three-dimensional image of the volcano. While conventional imaging methods lead to a speckle image with no connection to the actual medium's reflectivity, our method enables to

  4. Digital Enhancement of Night Vision and Thermal Images

    National Research Council Canada - National Science Library

    Teo, Chek

    2003-01-01

    .... This thesis explores the effect of the Contrast Limited Adaptive Histogram Equalization (CLAHE) process on night vision and thermal images With better contrast, target detection and discrimination can be improved...

  5. Method and apparatus for enhancing radiometric imaging

    International Nuclear Information System (INIS)

    Logan, R. H.; Paradish, F. J.

    1985-01-01

    Disclosed is a method and apparatus for enhancing target detection, particularly in the millimeter wave frequency range, through the utilization of an imaging radiometer. The radiometer, which is a passive thermal receiver, detects the reflected and emitted thermal radiation of targets within a predetermined antenna/receiver beamwidth. By scanning the radiometer over a target area, a thermal image is created. At millimeter wave frequencies, the received emissions from the target area are highly dependent on the emissivity of the target of interest. Foliage will appear ''hot'' due to its high emissivity and metals will appear cold due to their low emissivities. A noise power illuminator is periodically actuated to illuminate the target of interest. When the illuminator is actuated, the role of emissivity is reversed, namely poorly emissive targets will generally be good reflectors which in the presence of an illuminator will appear ''hot''. The highly emissive targets (such as foliage and dirt) which absorb most of the transmitted energy will appear almost the same as in a nonilluminated, passive image. Using a data processor, the intensity of the passive image is subtracted from the intensity of the illuminated, active image which thereby cancels the background foliage, dirt, etc. and the reflective metallic targets are enhanced

  6. Geant4 Analysis of a Thermal Neutron Real-Time Imaging System

    Science.gov (United States)

    Datta, Arka; Hawari, Ayman I.

    2017-07-01

    Thermal neutron imaging is a technique for nondestructive testing providing complementary information to X-ray imaging for a wide range of applications in science and engineering. Advancement of electronic imaging systems makes it possible to obtain neutron radiographs in real time. This method requires a scintillator to convert neutrons to optical photons and a charge-coupled device (CCD) camera to detect those photons. Alongside, a well collimated beam which reduces geometrical blurriness, the use of a thin scintillator can improve the spatial resolution significantly. A representative scintillator that has been applied widely for thermal neutron imaging is 6LiF:ZnS (Ag). In this paper, a multiphysics simulation approach for designing thermal neutron imaging system is investigated. The Geant4 code is used to investigate the performance of a thermal neutron imaging system starting with a neutron source and including the production of charged particles and optical photons in the scintillator and their transport for image formation in the detector. The simulation geometry includes the neutron beam collimator and sapphire filter. The 6LiF:ZnS (Ag) scintillator is modeled along with a pixelated detector for image recording. The spatial resolution of the system was obtained as the thickness of the scintillator screen was varied between 50 and 400 μm. The results of the simulation were compared to experimental results, including measurements performed using the PULSTAR nuclear reactor imaging beam, showing good agreement. Using the established model, further examination showed that the resolution contribution of the scintillator screen is correlated with its thickness and the range of the neutron absorption reaction products (i.e., the alpha and triton particles). Consequently, thinner screens exhibit improved spatial resolution. However, this will compromise detection efficiency due to the reduced probability of neutron absorption.

  7. Thermal analysis of gyrotron traveling-wave tube collector

    International Nuclear Information System (INIS)

    Zheng Zhiqing; Luo Yong; Jiang Wei; Tang Yong

    2013-01-01

    In order to solve cooling problem of the gyrotron traveling-wave tube(TWT) collector and guarantee the gyrotron TWT's reliability and stability, the electron trajectories in the gyrotron TWT are simulated using CST electron simulation software. Thermal analysis of the collector with finite element software ANSYS is performed. The ways of applying boundary that affects the distribution of collector temperature are compared. The influence of the water temperature and flow rate on collector temperature distribution under actual heat fluxes (boundary condition) is researched. The size and number of collector fins are optimized, and a relatively perfect structure is obtained finally. The result estimated by simulation is consistent with the experiment and proves that the model and method employed in this work are suitable. (authors)

  8. Numerical analysis for thermal waves in gas generated by impulsive heating of a boundary surface

    International Nuclear Information System (INIS)

    Utsumi, Takayuki; Kunugi, Tomoaki

    1996-01-01

    Thermal wave in gas generated by an impulsive heating of a solid boundary was analyzed numerically by the Differential Algebraic CIP (Cubic Interpolated Propagation) scheme. Numerical results for the ordinary heat conduction equation were obtained with a high accuracy. As for the hyperbolic thermal fluid dynamics equation, the fundamental feature of the experimental results by Brown and Churchill with regard to thermoacoustic convection was qualitatively reproduced by the DA-CIP scheme. (author)

  9. Upper mantle compositional variations and discontinuity topography imaged beneath Australia from Bayesian inversion of surface-wave phase velocities and thermochemical modeling

    DEFF Research Database (Denmark)

    Khan, A.; Zunino, Andrea; Deschamps, F.

    2013-01-01

    Here we discuss the nature of velocity heterogeneities seen in seismic tomography images of Earth's mantle whose origins and relation to thermochemical variations are yet to be understood. We illustrate this by inverting fundamental-mode and higher-order surface-wave phase velocities for radial....../Fe and Mg/Si values relative to surrounding mantle. Correlated herewith are thermal variations that closely follow surface tectonics. We also observe a strong contribution to lateral variations in structure and topography across the “410 km” seismic discontinuity from thermochemically induced phase......-wave tomography models with other regional models is encouraging. Radial anisotropy is strongest at 150/200 km depth beneath oceanic/continental areas, respectively, and appears weak and homogeneous below. Finally, geoid anomalies are computed for a subset of sampled model and compared to observations....

  10. Object localization in handheld thermal images for fireground understanding

    Science.gov (United States)

    Vandecasteele, Florian; Merci, Bart; Jalalvand, Azarakhsh; Verstockt, Steven

    2017-05-01

    Despite the broad application of the handheld thermal imaging cameras in firefighting, its usage is mostly limited to subjective interpretation by the person carrying the device. As remedies to overcome this limitation, object localization and classification mechanisms could assist the fireground understanding and help with the automated localization, characterization and spatio-temporal (spreading) analysis of the fire. An automated understanding of thermal images can enrich the conventional knowledge-based firefighting techniques by providing the information from the data and sensing-driven approaches. In this work, transfer learning is applied on multi-labeling convolutional neural network architectures for object localization and recognition in monocular visual, infrared and multispectral dynamic images. Furthermore, the possibility of analyzing fire scene images is studied and their current limitations are discussed. Finally, the understanding of the room configuration (i.e., objects location) for indoor localization in reduced visibility environments and the linking with Building Information Models (BIM) are investigated.

  11. Theory and practice of near-field thermal probes for microscopy and thermal analysis

    International Nuclear Information System (INIS)

    Hodges, C.S.

    1999-03-01

    Bacterial mats called biofilms that form on the surfaces of industrial steel pipes can cause corrosion of the pipe. Examining the steel surface of the corroded pipe usually involves removal of the biofilm using acid. This acid can also cause corrosion of the pipe so that the observed corrosion cracks and pits are the result of both the acid and the biofilm. It was thought that non-invasive examination of the corrosion caused by the biofilm may be obtained by using a thin wire bent into a loop that acts as both a heat source a nd a detector of heat, measuring the changes in heat flow out of the wire as the wire passes over the steel with the biofilm still present. This technique of using a heated probe to scan samples on a microscopic scale is called Scanning Thermal Microscopy (SThM) and uses an alternating current to produce a.c. thermal waves that emanate from the probe tip into the sample. The alternating current allows better signal-to-noise ratios and also selective depth imaging of the sample since the thermal wave penetrates into the sample a distance inversely proportional to the applied current frequency. Reversal in the contrast of SThM images on biofilms and subsequently all samples was observed as either the frequency or the amplitude of the temperature waves was altered. Whilst changing the time constant of the feedback circuit attached to the SThM probe did go some way to explain this effect, a full explanation is still wanting. Despite many efforts to image the biofilm/steel interface with the biofilm still present, often the biofilm was either too thick or too complicated to do this. A simpler thermal test sample is required to calibrate the thermal probe. In addition to SThM, one may select a point on a sample surface and ramp the temperature of the probe to obtain a Localised Thermal Analysis (LTA) temperature scan looking for melts, recrystallisations, glass transitions of the part of the sample in contact with the probe. This technique is a

  12. Magnetic fluctuations due to thermally excited Alfven waves

    International Nuclear Information System (INIS)

    Agim, Y.Z.; Prager, S.C.

    1990-01-01

    Magnetic fluctuations due to the thermally excited MHD waves are investigated using fluid and kinetic models to describe a stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities which are roughly Lorentzian, exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10 -10 . Physical mechanisms to obtain decay profiles of the spectra with increasing wavenumber due to dispersion and/or different forms of damping are investigated analytically in a cold fluid approximation and numerically, with a kinetic model. The mode dispersion due to the finite ion-gyrofrequency is identified as the leading effect determining the spectral profile shapes. It is found that the amplitude of fluctuations may be within a factor of the value suggested by the cold plasma model. The results from both models are presented and compared in low- and high-β regimes. 21 refs., 6 figs

  13. Measurements of oil spill spreading in a wave tank using digital image processing

    International Nuclear Information System (INIS)

    Flores, H.; Saavedra, I.; Andreatta, A.; Llona, G.

    1998-01-01

    In this work, an experimental study of spreading of crude oil is carried out in a wave tank. The tests are performed by spilling different volumes and types of crude oil on the water surface. An experimental measurement technique was developed based on digital processing of video images. The acquisition and processing of such images is carried out by using a video camera and inexpensive microcomputer hardware and software. Processing is carried out by first performing a digital image filter, then edge detection is performed on the filtered image data. The final result is a file that contains the coordinates of a polygon that encloses the observed slick for each time step. Different types of filters are actually used in order to adequately separate the color intensifies corresponding to each of the elements in the image. Postprocessing of the vectorized images provides accurate measurements of the slick edge, thus obtaining a complete geometric representation, which is significantly different from simplified considerations of radially symmetric spreading. The spreading of the oil slick was recorded for each of the tests. Results of the experimental study are presented for each spreading regime, and analyzed in terms of the wave parameters such as period and wave height. (author)

  14. Evaluation of the AN/SAY-1 Thermal Imaging Sensor System

    National Research Council Canada - National Science Library

    Smith, John G; Middlebrook, Christopher T

    2002-01-01

    The AN/SAY-1 Thermal Imaging Sensor System "TISS" was developed to provide surface ships with a day/night imaging capability to detect low radar reflective, small cross-sectional area targets such as floating mines...

  15. High Temperature Fiberoptic Thermal Imaging System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will fabricate and demonstrate a small diameter single fiber endoscope that can perform high temperature thermal imaging in a jet engine...

  16. Stream temperature estimated in situ from thermal-infrared images: best estimate and uncertainty

    International Nuclear Information System (INIS)

    Iezzi, F; Todisco, M T

    2015-01-01

    The paper aims to show a technique to estimate in situ the stream temperature from thermal-infrared images deepening its best estimate and uncertainty. Stream temperature is an important indicator of water quality and nowadays its assessment is important particularly for thermal pollution monitoring in water bodies. Stream temperature changes are especially due to the anthropogenic heat input from urban wastewater and from water used as a coolant by power plants and industrial manufacturers. The stream temperatures assessment using ordinary techniques (e.g. appropriate thermometers) is limited by sparse sampling in space due to a spatial discretization necessarily punctual. Latest and most advanced techniques assess the stream temperature using thermal-infrared remote sensing based on thermal imagers placed usually on aircrafts or using satellite images. These techniques assess only the surface water temperature and they are suitable to detect the temperature of vast water bodies but do not allow a detailed and precise surface water temperature assessment in limited areas of the water body. The technique shown in this research is based on the assessment of thermal-infrared images obtained in situ via portable thermal imager. As in all thermographic techniques, also in this technique, it is possible to estimate only the surface water temperature. A stream with the presence of a discharge of urban wastewater is proposed as case study to validate the technique and to show its application limits. Since the technique analyzes limited areas in extension of the water body, it allows a detailed and precise assessment of the water temperature. In general, the punctual and average stream temperatures are respectively uncorrected and corrected. An appropriate statistical method that minimizes the errors in the average stream temperature is proposed. The correct measurement of this temperature through the assessment of thermal- infrared images obtained in situ via portable

  17. The research of Digital Holographic Object Wave Field Reconstruction in Image and Object Space

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Chang; PENG Zu-Jie; FU Yun-Chang

    2011-01-01

    @@ For conveniently detecting objects of different sizes using digital holography, usual measurements employ the object wave transformed by an optical system with different magnifications to fit charge coupled devices (CCDs), then the object field reconstruction involves the diffraction calculation of the optic wave passing through the optical system.We propose two methods to reconstruct the object field.The one is that, when the object is imaging in an image space in which we reconstruct the image of the object field, the object field can be expressed according to the object-image relationship.The other is that, when the object field reaching CCD is imaged in an object space in which we reconstruct the object field, the optical system is described by introducing matrix optics in this paper.The reconstruction formulae which easily use classic diffraction integral are derived.Finally, experimental verifications are also accomplished.%For conveniently detecting objects of different sizes using digital holography, usual measurements employ the object wave transformed by an optical system with different magnifications to fit charge coupled devices (CCDs), then the object Reid reconstruction involves the diffraction calculation of the optic wave passing through the optical system. We propose two methods to reconstruct the object field. The one is that, when the object is imaging in an image space in which we reconstruct the image of the object field, the object field can be expressed according to the object-image relationship. The other is that, when the object field reaching CCD is imaged in an object space in which we reconstruct the object field, the optical system is described by introducing matrix optics in this paper. The reconstruction formulae which easily use classic diffraction integral are derived. Finally, experimental verifications are also accomplished.

  18. All-optoelectronic continuous wave THz imaging for biomedical applications

    International Nuclear Information System (INIS)

    Siebert, Karsten J; Loeffler, Torsten; Quast, Holger; Thomson, Mark; Bauer, Tobias; Leonhardt, Rainer; Czasch, Stephanie; Roskos, Hartmut G

    2002-01-01

    We present an all-optoelectronic THz imaging system for ex vivo biomedical applications based on photomixing of two continuous-wave laser beams using photoconductive antennas. The application of hyperboloidal lenses is discussed. They allow for f-numbers less than 1/2 permitting better focusing and higher spatial resolution compared to off-axis paraboloidal mirrors whose f-numbers for practical reasons must be larger than 1/2. For a specific histological sample, an analysis of image noise is discussed

  19. Exploring the use of thermal infrared imaging in human stress research.

    Directory of Open Access Journals (Sweden)

    Veronika Engert

    Full Text Available High resolution thermal infrared imaging is a pioneering method giving indices of sympathetic activity via the contact-free recording of facial tissues (thermal imprints. Compared to established stress markers, the great advantage of this method is its non-invasiveness. The goal of our study was to pilot the use of thermal infrared imaging in the classical setting of human stress research. Thermal imprints were compared to established stress markers (heart rate, heart rate variability, finger temperature, alpha-amylase and cortisol in 15 participants undergoing anticipation, stress and recovery phases of two laboratory stress tests, the Cold Pressor Test and the Trier Social Stress Test. The majority of the thermal imprints proved to be change-sensitive in both tests. While correlations between the thermal imprints and established stress markers were mostly non-significant, the thermal imprints (but not the established stress makers did correlate with stress-induced mood changes. Multivariate pattern analysis revealed that in contrast to the established stress markers the thermal imprints could not disambiguate anticipation, stress and recovery phases of both tests. Overall, these results suggest that thermal infrared imaging is a valuable method for the estimation of sympathetic activity in the stress laboratory setting. The use of this non-invasive method may be particularly beneficial for covert recordings, in the study of special populations showing difficulties in complying with the standard instruments of data collection and in the domain of psychophysiological covariance research. Meanwhile, the established stress markers seem to be superior when it comes to the characterization of complex physiological states during the different phases of the stress cycle.

  20. Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective.

    Science.gov (United States)

    Gao, C; Kuklane, K; Wang, F; Holmér, I

    2012-12-01

    The impact of heat waves arising from climate change on human health is predicted to be profound. It is important to be prepared with various preventive measures for such impacts on society. The objective of this study was to investigate whether personal cooling with phase change materials (PCM) could improve thermal comfort in simulated office work at 34°C. Cooling vests with PCM were measured on a thermal manikin before studies on human subjects. Eight male subjects participated in the study in a climatic chamber (T(a) = 34°C, RH = 60%, and ν(a) = 0.4 m/s). Results showed that the cooling effect on the manikin torso was 29.1 W/m(2) in the isothermal condition. The results on the manikin using a constant heating power mode reflect directly the local cooling effect on subjects. The results on the subjects showed that the torso skin temperature decreased by about 2-3°C and remained at 33.3°C. Both whole body and torso thermal sensations were improved. The findings indicate that the personal cooling with PCM can be used as an option to improve thermal comfort for office workers without air conditioning and may be used for vulnerable groups, such as elderly people, when confronted with heat waves. Wearable personal cooling integrated with phase change materials has the advantage of cooling human body's micro-environment in contrast to stationary personalized cooling and entire room or building cooling, thus providing greater mobility and helping to save energy. In places where air conditioning is not usually used, this personal cooling method can be used as a preventive measure when confronted with heat waves for office workers, vulnerable populations such as the elderly and disabled people, people with chronic diseases, and for use at home. © 2012 John Wiley & Sons A/S.

  1. On Special Optical Modes and Thermal Issues in Advanced Gravitational Wave Interferometric Detectors

    Directory of Open Access Journals (Sweden)

    Vinet Jean-Yves

    2009-07-01

    Full Text Available The sensitivity of present ground-based gravitational wave antennas is too low to detect many events per year. It has, therefore, been planned for years to build advanced detectors allowing actual astrophysical observations and investigations. In such advanced detectors, one major issue is to increase the laser power in order to reduce shot noise. However, this is useless if the thermal noise remains at the current level in the 100 Hz spectral region, where mirrors are the main contributors. Moreover, increasing the laser power gives rise to various spurious thermal effects in the same mirrors. The main goal of the present study is to discuss these issues versus the transverse structure of the readout beam, in order to allow comparison. A number of theoretical studies and experiments have been carried out, regarding thermal noise and thermal effects. We do not discuss experimental problems, but rather focus on some theoretical results in this context about arbitrary order Laguerre–Gauss beams, and other “exotic” beams.

  2. SAR Imaging of Wave Tails: Recognition of Second Mode Internal Wave Patterns and Some Mechanisms of their Formation

    Science.gov (United States)

    da Silva, Jose C. B.; Magalhaes, J. M.; Buijsman, M. C.; Garcia, C. A. E.

    2016-08-01

    Mode-2 internal waves are usually not as energetic as larger mode-1 Internal Solitary Waves (ISWs), but they have attracted a great deal of attention in recent years because they have been identified as playing a significant role in mixing shelf waters [1]. This mixing is particularly effective for mode-2 ISWs because the location of these waves in the middle of the pycnocline plays an important role in eroding the barrier between the base of the surface mixed layer and the stratified deep layer below. An urgent problem in physical oceanography is therefore to account for the magnitude and distribution of ISW-driven mixing, including mode-2 ISWs. Several generation mechanisms of mode-2 ISWs have been identified. These include: (1) mode-1 ISWs propagating onshore (shoaling) and entering the breaking instability stage, or propagating over a steep sill; (2) a mode-1 ISW propagating offshore (antishoaling) over steep slopes of the shelf break, and undergoing modal transformation; (3) intrusion of the whole head of a gravity current into a three-layer fluid; (4) impingement of an internal tidal beam on the pycnocline, itself emanating from critical bathymetry; (5) nonlinear disintegration of internal tide modes; (6) lee wave mechanism. In this paper we provide methods to identify internal wave features denominated "Wave Tails" in SAR images of the ocean surface, which are many times associated with second mode internal waves. The SAR case studies that are presented portray evidence of the aforementioned generation mechanisms, and we further discuss possible methods to discriminate between the various types of mode-2 ISWs in SAR images, that emerge from these physical mechanisms. Some of the SAR images correspond to numerical simulations with the MITgcm in fully nonlinear and nonhydrostatic mode and in a 2D configuration with realistic stratification, bathymetry and other environmental conditions.Results of a global survey with some of these observations are presented

  3. Thermal analysis of a transmission line for Traveling Wave Tube TWT

    International Nuclear Information System (INIS)

    Chbiki, Mounir; Laraqi, Najib; Jarno, Jean-François; Herrewyn, Jacques; Silva Botelho, Tony da

    2012-01-01

    A new analytical method has been developed to study the delay line of Traveling Waves Tubes (TWT). Our study is focused on the analysis of the hot lines shrinking phenomenon. In the studied case, unlike brazed configuration, the contact areas are not perfect, resulting in a diminution of the heat transfer process. In this work, we highlight the influence of the macro-constriction on the heat transfer rate in the various parts of a TWT the geometry of which is also relatively complex. We propose in this work an analytical study of the thermal behavior of a transmission line in established regime. First, we determine the individual thermal resistance of each component. Secondly, we estimate the global resistance of the device according to the geometrical parameters and the respective conductivities of the various elements of this line. In this analytical model, we proceed to parametric studies in order to determine the geometrical configurations that will provide the lowest global thermal resistance. We will emphasize the potential gain according to the used materials and the increase of contact areas.

  4. Detection of Thermal Erosion Gullies from High-Resolution Images Using Deep Learning

    Science.gov (United States)

    Huang, L.; Liu, L.; Jiang, L.; Zhang, T.; Sun, Y.

    2017-12-01

    Thermal erosion gullies, one type of thermokarst landforms, develop due to thawing of ice-rich permafrost. Mapping the location and extent of thermal erosion gullies can help understand the spatial distribution of thermokarst landforms and their temporal evolution. Remote sensing images provide an effective way for mapping thermokarst landforms, especially thermokarst lakes. However, thermal erosion gullies are challenging to map from remote sensing images due to their small sizes and significant variations in geometric/radiometric properties. It is feasible to manually identify these features, as a few previous studies have carried out. However manual methods are labor-intensive, therefore, cannot be used for a large study area. In this work, we conduct automatic mapping of thermal erosion gullies from high-resolution images by using Deep Learning. Our study area is located in Eboling Mountain (Qinghai, China). Within a 6 km2 peatland area underlain by ice-rich permafrost, at least 20 thermal erosional gullies are well developed. The image used is a 15-cm-resolution Digital Orthophoto Map (DOM) generated in July 2016. First, we extracted 14 gully patches and ten non-gully patches as training data. And we performed image augmentation. Next, we fine-tuned the pre-trained model of DeepLab, a deep-learning algorithm for semantic image segmentation based on Deep Convolutional Neural Networks. Then, we performed inference on the whole DOM and obtained intermediate results in forms of polygons for all identified gullies. At last, we removed misidentified polygons based on a few pre-set criteria on the size and shape of each polygon. Our final results include 42 polygons. Validated against field measurements using GPS, most of the gullies are detected correctly. There are 20 false detections due to the small number and low quality of training images. We also found three new gullies that missed in the field observations. This study shows that (1) despite a challenging

  5. Performance of a thermal neutron radiographic system using imaging plates

    International Nuclear Information System (INIS)

    Silvani, Maria Ines; Almeida, Gevaldo L. de; Furieri, Rosanne; Lopes, Ricardo T.

    2009-01-01

    A performance evaluation of a neutron radiographic system equipped with a thermal neutron sensitive imaging plate has been undertaken. It includes the assessment of spatial resolution, linearity, dynamic range and the response to exposure time, as well as a comparison of these parameters with the equivalent ones for neutron radiography employing conventional films and a gadolinium foil as converter. The evaluation and comparison between the radiographic systems have been performed at the Instituto de Engenharia Nuclear - CNEN, using the Argonauta Reactor as source of thermal neutrons and a commercially available imaging plate reader. (author)

  6. Quantitative shear wave imaging optical coherence tomography for noncontact mechanical characterization of myocardium

    Science.gov (United States)

    Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.

    2015-03-01

    Optical coherence elastography (OCE) is an emerging low-coherence imaging technique that provides noninvasive assessment of tissue biomechanics with high spatial resolution. Among various OCE methods, the capability of quantitative measurement of tissue elasticity is of great importance for tissue characterization and pathology detection across different samples. Here we report a quantitative OCE technique, termed quantitative shear wave imaging optical coherence tomography (Q-SWI-OCT), which enables noncontact measurement of tissue Young's modulus based on the ultra-fast imaging of the shear wave propagation inside the sample. A focused air-puff device is used to interrogate the tissue with a low-pressure short-duration air stream that stimulates a localized displacement with the scale at micron level. The propagation of this tissue deformation in the form of shear wave is captured by a phase-sensitive OCT system running with the scan of the M-mode imaging over the path of the wave propagation. The temporal characteristics of the shear wave is quantified based on the cross-correlation of the tissue deformation profiles at all the measurement locations, and linear regression is utilized to fit the data plotted in the domain of time delay versus wave propagation distance. The wave group velocity is thus calculated, which results in the quantitative measurement of the Young's modulus. As the feasibility demonstration, experiments are performed on tissuemimicking phantoms with different agar concentrations and the quantified elasticity values with Q-SWI-OCT agree well with the uniaxial compression tests. For functional characterization of myocardium with this OCE technique, we perform our pilot experiments on ex vivo mouse cardiac muscle tissues with two studies, including 1) elasticity difference of cardiac muscle under relaxation and contract conditions and 2) mechanical heterogeneity of the heart introduced by the muscle fiber orientation. Our results suggest the

  7. A stability investigation of two-dimensional surface waves on evaporating, isothermal or condensing liquid films - Part I, Thermal non-equilibrium effects on wave velocity

    International Nuclear Information System (INIS)

    Chunxi, L.; Xuemin, Y.

    2004-01-01

    The temporal stability equation of the two-dimensional traveling waves of evaporating or condensing liquid films falling down on an inclined wall is established based on the Prandtl boundary layer theory and complete boundary conditions. The model indicates that the wave velocity is related to the effects of evaporating, isothermal and condensing states, thermo-capillarity, Reynolds number, fluid property and inclined angle, and the effects of above factors are distinctly different under different Reynolds numbers. The theoretical studies show that evaporation process induces the wave velocity to increase slightly compared with the isothermal case, and condensation process induces the wave velocity to decrease slightly. Furthermore, the wave velocity decreases because of the effects of thermo-capillarity under evaporation and increases because of the effects of thermo-capillarity under condensation. The effects of thermal non-equilibrium conditions have relatively obvious effects under lower Reynolds numbers and little effects under higher Reynolds numbers

  8. Modeling and Experimental Validation for 3D mm-wave Radar Imaging

    Science.gov (United States)

    Ghazi, Galia

    As the problem of identifying suicide bombers wearing explosives concealed under clothing becomes increasingly important, it becomes essential to detect suspicious individuals at a distance. Systems which employ multiple sensors to determine the presence of explosives on people are being developed. Their functions include observing and following individuals with intelligent video, identifying explosives residues or heat signatures on the outer surface of their clothing, and characterizing explosives using penetrating X-rays, terahertz waves, neutron analysis, or nuclear quadrupole resonance. At present, mm-wave radar is the only modality that can both penetrate and sense beneath clothing at a distance of 2 to 50 meters without causing physical harm. Unfortunately, current mm-wave radar systems capable of performing high-resolution, real-time imaging require using arrays with a large number of transmitting and receiving modules; therefore, these systems present undesired large size, weight and power consumption, as well as extremely complex hardware architecture. The overarching goal of this thesis is the development and experimental validation of a next generation inexpensive, high-resolution radar system that can distinguish security threats hidden on individuals located at 2-10 meters range. In pursuit of this goal, this thesis proposes the following contributions: (1) Development and experimental validation of a new current-based, high-frequency computational method to model large scattering problems (hundreds of wavelengths) involving lossy, penetrable and multi-layered dielectric and conductive structures, which is needed for an accurate characterization of the wave-matter interaction and EM scattering in the target region; (2) Development of combined Norm-1, Norm-2 regularized imaging algorithms, which are needed for enhancing the resolution of the images while using a minimum number of transmitting and receiving antennas; (3) Implementation and experimental

  9. Thermal-grating contributions to degenerate four-wave mixing in nitric oxide

    International Nuclear Information System (INIS)

    Danehy, P.M.; Paul, P.H.; Farrow, R.L.

    1995-01-01

    We report investigations of degenerate four-wave mixing (DFWM) line intensities in the A 2 Σ + left-arrow X 2 Π electronic transitions of nitric oxide. Contributions from population gratings (spatially varying perturbations in the level populations of absorbing species) and thermal gratings (spatially varying perturbations in the overall density) were distinguished and compared by several experimental and analytical techniques. For small quantities of nitric oxide in a strongly quenching buffer gas (carbon dioxide), we found that thermal-grating contributions dominated at room temperature for gas pressures of ∼0.5 atm and higher. In a nearly nonquenching buffer (nitrogen) the population-grating mechanism dominated at pressures of ∼1.0 atm and lower. At higher temperatures in an atmospheric-pressure methane/air flame, population gratings of nitric oxide also dominated. We propose a simple model for the ratio of thermal- to population-grating scattering intensities that varies as P 4 T -4.4 . Preliminary investigations of the temperature dependence and detailed studies of the pressure dependence are in agreement with this model. Measurements of the temporal evolution and the peak intensity of isolated thermal-grating signals are in detailed agreement with calculations based on a linearized hydrodynamic model [J. Opt. Soc. Am. B 12, 384 (1995)]. copyright 1995 Optical Society of America

  10. Diagnosis of the three-phase induction motor using thermal imaging

    Science.gov (United States)

    Glowacz, Adam; Glowacz, Zygfryd

    2017-03-01

    Three-phase induction motors are used in the industry commonly for example woodworking machines, blowers, pumps, conveyors, elevators, compressors, mining industry, automotive industry, chemical industry and railway applications. Diagnosis of faults is essential for proper maintenance. Faults may damage a motor and damaged motors generate economic losses caused by breakdowns in production lines. In this paper the authors develop fault diagnostic techniques of the three-phase induction motor. The described techniques are based on the analysis of thermal images of three-phase induction motor. The authors analyse thermal images of 3 states of the three-phase induction motor: healthy three-phase induction motor, three-phase induction motor with 2 broken bars, three-phase induction motor with faulty ring of squirrel-cage. In this paper the authors develop an original method of the feature extraction of thermal images MoASoID (Method of Areas Selection of Image Differences). This method compares many training sets together and it selects the areas with the biggest changes for the recognition process. Feature vectors are obtained with the use of mentioned MoASoID and image histogram. Next 3 methods of classification are used: NN (the Nearest Neighbour classifier), K-means, BNN (the back-propagation neural network). The described fault diagnostic techniques are useful for protection of three-phase induction motor and other types of rotating electrical motors such as: DC motors, generators, synchronous motors.

  11. Guided-wave tomography imaging plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Pil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Pusan (Korea, Republic of)

    2014-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  12. Automatic detection of diseased tomato plants using thermal and stereo visible light images.

    Directory of Open Access Journals (Sweden)

    Shan-e-Ahmed Raza

    Full Text Available Accurate and timely detection of plant diseases can help mitigate the worldwide losses experienced by the horticulture and agriculture industries each year. Thermal imaging provides a fast and non-destructive way of scanning plants for diseased regions and has been used by various researchers to study the effect of disease on the thermal profile of a plant. However, thermal image of a plant affected by disease has been known to be affected by environmental conditions which include leaf angles and depth of the canopy areas accessible to the thermal imaging camera. In this paper, we combine thermal and visible light image data with depth information and develop a machine learning system to remotely detect plants infected with the tomato powdery mildew fungus Oidium neolycopersici. We extract a novel feature set from the image data using local and global statistics and show that by combining these with the depth information, we can considerably improve the accuracy of detection of the diseased plants. In addition, we show that our novel feature set is capable of identifying plants which were not originally inoculated with the fungus at the start of the experiment but which subsequently developed disease through natural transmission.

  13. Fully Noncontact Wave Propagation Imaging in an Immersed Metallic Plate with a Crack

    Directory of Open Access Journals (Sweden)

    Jung-Ryul Lee

    2014-01-01

    Full Text Available This study presents a noncontact sensing technique with ultrasonic wave propagation imaging algorithm, for damage visualization of liquid-immersed structures. An aluminum plate specimen (400 mm × 400 mm × 3 mm with a 12 mm slit was immersed in water and in glycerin. A 532 nm Q-switched continuous wave laser is used at an energy level of 1.2 mJ to scan an area of 100 mm × 100 mm. A laser Doppler vibrometer is used as a noncontact ultrasonic sensor, which measures guided wave displacement at a fixed point. The tests are performed with two different cases of specimen: without water and filled with water and with glycerin. Lamb wave dispersion curves for the respective cases are calculated, to investigate the velocity-frequency relationship of each wave mode. Experimental propagation velocities of Lamb waves for different cases are compared with the theoretical dispersion curves. This study shows that the dispersion and attenuation of the Lamb wave is affected by the surrounding liquid, and the comparative experimental results are presented to verify it. In addition, it is demonstrated that the developed fully noncontact ultrasonic propagation imaging system is capable of damage sizing in submerged structures.

  14. Multiscale Vision Model Highlights Spontaneous Glial Calcium Waves Recorded by 2-Photon Imaging in Brain Tissue

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Mathiesen, Claus; Lauritzen, Martin

    2013-01-01

    Intercellular glial calcium waves constitute a signaling pathway which can be visualized by fluorescence imaging of cytosolic Ca2+ changes. However, there is a lack of procedures for sensitive and reliable detection of calcium waves in noisy multiphoton imaging data. Here we extend multiscale...

  15. Hot Shoes in the Room: Authentication of Thermal Imaging for Quantitative Forensic Analysis

    Directory of Open Access Journals (Sweden)

    Justin H. J. Chua

    2018-01-01

    Full Text Available Thermal imaging has been a mainstay of military applications and diagnostic engineering. However, there is currently no formalised procedure for the use of thermal imaging capable of standing up to judicial scrutiny. Using a scientifically sound characterisation method, we describe the cooling function of three common shoe types at an ambient room temperature of 22 °C (295 K based on the digital output of a consumer-grade FLIR i50 thermal imager. Our method allows the reliable estimation of cooling time from pixel intensity values within a time interval of 3 to 25 min after shoes have been removed. We found a significant linear relationship between pixel intensity level and temperature. The calibration method allows the replicable determination of independent thermal cooling profiles for objects without the need for emissivity values associated with non-ideal black-body thermal radiation or system noise functions. The method has potential applications for law enforcement and forensic research, such as cross-validating statements about time spent by a person in a room. The use of thermal images can thus provide forensic scientists, law enforcement officials, and legislative bodies with an efficient and cost-effective tool for obtaining and interpreting time-based evidence.

  16. Numerical Analysis on Thermal Non-Equilibrium Process of Laser-Supported Detonation Wave in Axisymmetric Nozzle

    International Nuclear Information System (INIS)

    Shiraishi, Hiroyuki

    2008-01-01

    Numerical Analyses on Laser-Supported Plasma (LSP) have been performed for researching the mechanism of laser absorption occurring in the laser propulsion system. Above all, Laser-Supported Detonation (LSD), categorized as one type of LSP, is considered as one of the most important phenomena because it can generate high pressure and high temperature for performing highly effective propulsion. For simulating generation and propagation of LSD wave, I have performed thermal non-equilibrium analyses by Navier-stokes equations, using a CO 2 gasdynamic laser into an inert gas, where the most important laser absorption mechanism for LSD propagation is Inverse Bremsstrahlung. As a numerical method, TVD scheme taken into account of real gas effects and thermal non-equilibrium effects by using a 2-temperature model, is applied. In this study, I analyze a LSD wave propagating through a conical nozzle, where an inner space of an actual laser propulsion system is simplified

  17. Measurement and imaging of infragravity waves in sea ice using InSAR

    Science.gov (United States)

    Mahoney, Andrew R.; Dammann, Dyre O.; Johnson, Mark A.; Eicken, Hajo; Meyer, Franz J.

    2016-06-01

    Using short-temporal baseline interferometric synthetic aperture radar, we capture instantaneous images of a persistent field of infragravity waves propagating through sea ice near Barrow, Alaska, during January 2015. We estimate wave amplitudes to be between 1.2 and 1.8 mm. Curvature of wavefronts is consistent with refraction of waves entering shallow water from a source region north of Barrow. A shallow water wave model indicates that the geometry of the wavefronts is relatively insensitive to the source location, but other evidence suggests the waves may have originated in the North Atlantic, making this perhaps the longest observed propagation path for waves through ice. We also note that steepening of the waves entering shallow water can increase the peak strain by an order of magnitude, suggesting that infragravity waves may play a role in determining the location of the landfast ice edge with respect to water depth.

  18. RF Performance of Layer-Structured Broadband Passive Millimeter-Wave Imaging System

    Directory of Open Access Journals (Sweden)

    Kunio Sakakibara

    2016-01-01

    Full Text Available Low profile and simple configuration are advantageous for RF module in passive millimeter-wave imaging system. High sensitivity over broad operation bandwidth is also necessary to detect right information from weak signal. We propose a broadband layer-structured module with low profile, simple structure, and ease of manufacture. This module is composed of a lens antenna and a detector module that consists of a detector circuit and a broadband microstrip-to-waveguide transition. The module forms a layer structure as a printed substrate with detector circuit is fixed between two metal plates with horn antennas and back-short waveguides. We developed a broadband passive millimeter-wave imaging module composed of a lens antenna and a detector module in this work. The gain and the antenna efficiency were measured, and the broadband operation was observed for the lens antenna. For the detector module, peak sensitivity was 8100 V/W. Furthermore, the detector module recognized a difference in the absorber’s temperature. The designs of the lens antenna and the detector module are presented and the RF performances of these components are reported. Finally, passive millimeter-wave imaging of a car, a human, and a metal plate in clothes is demonstrated in this paper.

  19. Detecting thermal phase transitions in corneal stroma by fluorescence micro-imaging analysis

    Science.gov (United States)

    Matteini, P.; Rossi, F.; Ratto, F.; Bruno, I.; Nesi, P.; Pini, R.

    2008-02-01

    Thermal modifications induced in corneal stroma were investigated by the use of fluorescence microscopy. Freshly extracted porcine corneas were immersed for 5 minutes in a water bath at temperatures in the 35-90°C range and stored in formalin. The samples were then sliced in 200-μm-thick transversal sections and analyzed under a stereomicroscope to assess corneal shrinkage. Fluorescence images of the thermally treated corneal samples were acquired using a slow-scan cooled CCD camera, after staining the slices with Indocyanine Green (ICG) fluorescent dye which allowed to detect fluorescence signal from the whole tissue. All measurements were performed using an inverted epifluorescence microscope equipped with a mercury lamp. The thermally-induced modifications to the corneal specimens were evaluated by studying the grey level distribution in the fluorescence images. For each acquired image, Discrete Fourier Transform (DFT) and entropy analyses were performed. The spatial distribution of DFT absolute value indicated the spatial orientation of the lamellar planes, while entropy was used to study the image texture, correlated to the stromal structural transitions. As a result, it was possible to indicate a temperature threshold value (62°C) for high thermal damage, resulting in a disorganization of the lamellar planes and in full agreement with the measured temperature for corneal shrinkage onset. Analysis of the image entropy evidenced five strong modifications in stromal architecture at temperatures of ~45°C, 53°C, 57°C, 66°C, 75°C. The proposed procedure proved to be an effective micro-imaging method capable of detecting subtle changes in corneal tissue subjected to thermal treatment.

  20. Imaging near-surface heterogeneities by natural migration of surface waves

    KAUST Repository

    Liu, Zhaolun; AlTheyab, Abdullah; Hanafy, Sherif M.; Schuster, Gerard T.

    2016-01-01

    We demonstrate that near-surface heterogeneities can be imaged by natural migration of backscattered surface waves in common shot gathers. No velocity model is required because the data are migrated onto surface points with the virtual Green

  1. Analytical approximations of diving-wave imaging in constant-gradient medium

    KAUST Repository

    Stovas, Alexey; Alkhalifah, Tariq Ali

    2014-01-01

    behavior and traveltime in a constant-gradient medium to develop insights into the traveltime moveout of diving waves and the image (model) point dispersal (residual) when the wrong velocity is used. The explicit formulations that describe these phenomena

  2. Human emotions detection based on a smart-thermal system of thermographic images

    Science.gov (United States)

    Cruz-Albarran, Irving A.; Benitez-Rangel, Juan P.; Osornio-Rios, Roque A.; Morales-Hernandez, Luis A.

    2017-03-01

    This work presents a noninvasive methodology to obtain biomedical thermal imaging which provide relevant information that may assist in the diagnosis of emotions. Biomedical thermal images of the facial expressions of 44 subjects were captured experiencing joy, disgust, anger, fear and sadness. The analysis of these thermograms was carried out through its thermal value not with its intensity value. Regions of interest were obtained through image processing techniques that allow to differentiate between the subject and the background, having only the subject, the centers of each region of interest were obtained in order to get the same region of the face for each subject. Through the thermal analysis a biomarker for each region of interest was obtained, these biomarkers can diagnose when an emotion takes place. Because each subject tends to react differently to the same stimuli, a self-calibration phase is proposed, its function is to have the same thermal trend for each subject in order to make a decision so that the five emotions can be correctly diagnosed through a top-down hierarchical classifier. As a final result, a smart-thermal system that diagnose emotions was obtained and it was tested on twenty-five subjects (625 thermograms). The results of this test were 89.9% successful.

  3. Segmentation techniques for extracting humans from thermal images

    CSIR Research Space (South Africa)

    Dickens, JS

    2011-11-01

    Full Text Available A pedestrian detection system for underground mine vehicles is being developed that requires the segmentation of people from thermal images in underground mine tunnels. A number of thresholding techniques are outlined and their performance on a...

  4. Imaging near-surface heterogeneities by natural migration of surface waves

    KAUST Repository

    Liu, Zhaolun

    2016-09-06

    We demonstrate that near-surface heterogeneities can be imaged by natural migration of backscattered surface waves in common shot gathers. No velocity model is required because the data are migrated onto surface points with the virtual Green\\'s functions computed from the shot gathers. Migrating shot gathers recorded by 2D and 3D land surveys validates the effectiveness of detecting nearsurface heterogeneities by natural migration. The implication is that more accurate hazard maps can be created by migrating surface waves in land surveys.

  5. The analysis and rationale behind the upgrading of existing standard definition thermal imagers to high definition

    Science.gov (United States)

    Goss, Tristan M.

    2016-05-01

    With 640x512 pixel format IR detector arrays having been on the market for the past decade, Standard Definition (SD) thermal imaging sensors have been developed and deployed across the world. Now with 1280x1024 pixel format IR detector arrays becoming readily available designers of thermal imager systems face new challenges as pixel sizes reduce and the demand and applications for High Definition (HD) thermal imaging sensors increases. In many instances the upgrading of existing under-sampled SD thermal imaging sensors into more optimally sampled or oversampled HD thermal imaging sensors provides a more cost effective and reduced time to market option than to design and develop a completely new sensor. This paper presents the analysis and rationale behind the selection of the best suited HD pixel format MWIR detector for the upgrade of an existing SD thermal imaging sensor to a higher performing HD thermal imaging sensor. Several commercially available and "soon to be" commercially available HD small pixel IR detector options are included as part of the analysis and are considered for this upgrade. The impact the proposed detectors have on the sensor's overall sensitivity, noise and resolution is analyzed, and the improved range performance is predicted. Furthermore with reduced dark currents due to the smaller pixel sizes, the candidate HD MWIR detectors are operated at higher temperatures when compared to their SD predecessors. Therefore, as an additional constraint and as a design goal, the feasibility of achieving upgraded performance without any increase in the size, weight and power consumption of the thermal imager is discussed herein.

  6. Use of Guided Acoustic Waves to Assess the Effects of Thermal-Mechanical Cycling on Composite Stiffness

    Science.gov (United States)

    Seale, Michael D.; Madaras, Eric I.

    2000-01-01

    The introduction of new, advanced composite materials into aviation systems requires it thorough understanding of the long-term effects of combined thermal and mechanical loading. As part of a study to evaluate the effects of thermal-mechanical cycling, it guided acoustic (Lamb) wave measurement system was used to measure the bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the velocity dispersion curve. A series of 16 and 32-ply composite laminates were subjected to it thermal-mechanical loading profile in load frames equipped with special environmental chambers. The composite systems studied were it graphite fiber reinforced amorphous thermoplastic polyimide and it graphite fiber reinforced bismaleimide thermoset. The samples were exposed to both high and low temperature extremes its well as high and low strain profiles. The bending and out-of-plane stiffnesses for composite sample that have undergone over 6,000 cycles of thermal-mechanical loading are reported. The Lamb wave generated elastic stiffness results have shown decreases of up to 20% at 4,936 loading cycles for the graphite/thermoplastic samples and up to 64% at 4,706 loading cycles for the graphite/thermoset samples.

  7. Crust and Upper Mantle Structure from Joint Inversion of Body Wave and Gravity Data (Postprint). Annual Report 1

    Science.gov (United States)

    2012-05-10

    Basin, China , the crust and subduction zone beneath western Colombia, and a thermally active region within Utah in the central United States...Burlacu, R., Rowe, C., and Y. Yang (2009). Joint geophysical imaging of the geothermal sites in the Utah area using seismic body waves, surface waves and

  8. TH-A-207B-01: Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity

    International Nuclear Information System (INIS)

    Chen, S.

    2016-01-01

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging

  9. TH-A-207B-01: Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S. [Mayo Clinic (United States)

    2016-06-15

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging

  10. Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves

    International Nuclear Information System (INIS)

    Zhou, Guobing; Yang, Yongping; Wang, Xin; Cheng, Jinming

    2010-01-01

    Thermal characteristics of shape-stabilized phase change material (SSPCM) wallboard with sinusoidal temperature wave on the outer surface were investigated numerically and compared with traditional building materials such as brick, foam concrete and expanded polystyrene (EPS). One-dimensional enthalpy equation under convective boundary conditions was solved using fully implicit finite-difference scheme. The simulation results showed that the SSPCM wallboard presents distinct characteristics from other ordinary building materials. Phase transition keeping time of inner surface and decrement factor were applied to analyze the effects of PCM thermophysical properties (melting temperature, heat of fusion, phase transition zone and thermal conductivity), inner surface convective heat transfer coefficient and thickness of SSPCM wallboard. It was found that melting temperature is one important factor which influences both the phase transition keeping time and the decrement factor; for a certain outside temperature wave, there exist critical values of latent heat of fusion and thickness of SSPCM above which the phase transition keeping time or the decrement factor are scarcely influenced; thermal conductivity of PCM and inner surface convective coefficient have little effect on the phase transition keeping time but significantly influence the decrement factor; and the phase transition zone leads to small fluctuations of the original flat segment of inner surface temperature line. The results aim to be useful for the selection of SSPCMs and their applications in passive solar buildings.

  11. Imaging off-plane shear waves with a two-dimensional phononic crystal lens

    International Nuclear Information System (INIS)

    Chiang Chenyu; Luan Pigang

    2010-01-01

    A two-dimensional flat phononic crystal (PC) lens for focusing off-plane shear waves is proposed. The lens consists of a triangular lattice hole-array, embedded in a solid matrix. The self-collimation effect is employed to guide the shear waves propagating through the lens along specific directions. The Dirichlet-to-Neumann maps (DtN) method is employed to calculate the band structure of the PC, which can avoid the problems of bad convergence and fake bands automatically in the void-solid PC structure. When the lens is illuminated by the off-plane shear waves emanating from a point source, a subwavelength image appears in the far-field zone. The imaging characteristics are investigated by calculating the displacement fields explicitly using the multiple scattering method, and the results are in good agreement with the ray-trace predictions. Our results may provide insights for designing new phononic devices.

  12. Infrared thermal imaging for automated detection of diabetic foot complications

    NARCIS (Netherlands)

    van Netten, Jaap J.; van Baal, Jeff G.; Liu, C.; van der Heijden, Ferdinand; Bus, Sicco A.

    Background: Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the

  13. Infrared thermal imaging for automated detection of diabetic foot complications

    NARCIS (Netherlands)

    van Netten, Jaap J.; van Baal, Jeff G.; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A.

    2013-01-01

    Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability

  14. Human ear detection in the thermal infrared spectrum

    Science.gov (United States)

    Abaza, Ayman; Bourlai, Thirimachos

    2012-06-01

    In this paper the problem of human ear detection in the thermal infrared (IR) spectrum is studied in order to illustrate the advantages and limitations of the most important steps of ear-based biometrics that can operate in day and night time environments. The main contributions of this work are two-fold: First, a dual-band database is assembled that consists of visible and thermal profile face images. The thermal data was collected using a high definition middle-wave infrared (3-5 microns) camera that is capable of acquiring thermal imprints of human skin. Second, a fully automated, thermal imaging based ear detection method is developed for real-time segmentation of human ears in either day or night time environments. The proposed method is based on Haar features forming a cascaded AdaBoost classifier (our modified version of the original Viola-Jones approach1 that was designed to be applied mainly in visible band images). The main advantage of the proposed method, applied on our profile face image data set collected in the thermal-band, is that it is designed to reduce the learning time required by the original Viola-Jones method from several weeks to several hours. Unlike other approaches reported in the literature, which have been tested but not designed to operate in the thermal band, our method yields a high detection accuracy that reaches ~ 91.5%. Further analysis on our data set yielded that: (a) photometric normalization techniques do not directly improve ear detection performance. However, when using a certain photometric normalization technique (CLAHE) on falsely detected images, the detection rate improved by ~ 4%; (b) the high detection accuracy of our method did not degrade when we lowered down the original spatial resolution of thermal ear images. For example, even after using one third of the original spatial resolution (i.e. ~ 20% of the original computational time) of the thermal profile face images, the high ear detection accuracy of our method

  15. BRIEF COMMUNICATIONS: Strong reflection of a series of pulses from a four-wave mirror with thermal nonlinearity under parametric feedback conditions

    Science.gov (United States)

    Barashkov, M. S.; Bel'dyugin, Igor'M.; Zolotarev, M. V.; Kruzhilin, Yu I.; Krymskiĭ, M. I.; Oshkin, S. P.; Starkov, G. S.; Umnov, A. F.; Kharchenko, M. A.

    1989-04-01

    A four-wave mirror exhibiting a thermal nonlinearity was used in a study of the interaction of concurrent waves under parametric feedback conditions in the presence of a nonreciprocal element. Strong reflection of a series of pulses of ~ 300 ns duration from a neodymium glass laser was demonstrated: the maximum reflection coefficient was in excess of 30. An analysis was made of the quality of the radiation reflected from this four-mirror parametric feedback system. A considerable reduction was observed in the steady-state threshold for the operation of this mirror with a thermal nonlinearity when the angles of convergence of the interacting beams were small compared with the case of head-on collision of the waves.

  16. Teaching physics and understanding infrared thermal imaging

    Science.gov (United States)

    Vollmer, Michael; Möllmann, Klaus-Peter

    2017-08-01

    Infrared thermal imaging is a very rapidly evolving field. The latest trends are small smartphone IR camera accessories, making infrared imaging a widespread and well-known consumer product. Applications range from medical diagnosis methods via building inspections and industrial predictive maintenance etc. also to visualization in the natural sciences. Infrared cameras do allow qualitative imaging and visualization but also quantitative measurements of the surface temperatures of objects. On the one hand, they are a particularly suitable tool to teach optics and radiation physics and many selected topics in different fields of physics, on the other hand there is an increasing need of engineers and physicists who understand these complex state of the art photonics systems. Therefore students must also learn and understand the physics underlying these systems.

  17. Sun glitter imaging of submarine sand waves on the Taiwan Banks: Determination of the relaxation rate of short waves

    Science.gov (United States)

    Shao, Hao; Li, Yan; Li, Li

    2011-06-01

    Above sand waves on the seafloor, surface short waves, which are responsible for the radiance distribution in remote sensing imagery, are modulated gradually by the submarine topography. The relaxation rate μr characterizes the rate at which the short waves reach their saturation range after being disturbed. It is a key parameter in the weak hydrodynamic interaction theory and is also a most important parameter in the imaging mechanism used for mapping submarine bottom topography. In this study, a robust expression containing intensity and phase (advection effect) modulations of the perturbed action spectrum of short waves was deduced, by using the first-order weak hydrodynamic interaction theory. On the basis of the phase modulation, a method was developed to determine the relaxation rate in the Sun glitter imaging mechanism. The relaxation rates were estimated using in situ data measured on a cruise over the sand waves of the Taiwan Banks, a sea area between the East China Sea and the South China Sea, on 28-29 August 2006. Results showed that, under a wind speed of 5.0 m s-1, the relaxation rate of short waves was about 0.055 s-1 in response to current variations and about 0.025 s-1 equivalently in response to sea bottom topographic variations. The former value could be applied to interpret the amplitude of submarine topography by using satellite imagery, while the latter one (equivalent relaxation rate μ'r) could help to more accurately calibrate the spatial position of the retrieved sea bottom topography.

  18. Thermal decomposition of solder flux activators under simulated wave soldering conditions

    DEFF Research Database (Denmark)

    Piotrowska, Kamila; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-01-01

    /methodology/approach: Changes in the chemical structure of the activators were studied using Fourier transform infrared spectroscopy technique and were correlated to the exposure temperatures within the range of wave soldering process. The amount of residue left on the surface was estimated using standardized acid-base...... titration method as a function of temperature, time of exposure and the substrate material used. Findings: The study shows that there is a possibility of anhydride-like species formation during the thermal treatment of fluxes containing weak organic acids (WOAs) as activators (succinic and DL...

  19. Simultaneous measurement of thermal conductivity and heat capacity by flash thermal imaging methods

    Science.gov (United States)

    Tao, N.; Li, X. L.; Sun, J. G.

    2017-06-01

    Thermal properties are important for material applications involved with temperature. Although many measurement methods are available, they may not be convenient to use or have not been demonstrated suitable for testing of a wide range of materials. To address this issue, we developed a new method for the nondestructive measurement of the thermal effusivity of bulk materials with uniform property. This method is based on the pulsed thermal imaging-multilayer analysis (PTI-MLA) method that has been commonly used for testing of coating materials. Because the test sample for PTI-MLA has to be in a two-layer configuration, we have found a commonly used commercial tape to construct such test samples with the tape as the first-layer material and the bulk material as the substrate. This method was evaluated for testing of six selected solid materials with a wide range of thermal properties covering most engineering materials. To determine both thermal conductivity and heat capacity, we also measured the thermal diffusivity of these six materials by the well-established flash method using the same experimental instruments with a different system setup. This paper provides a description of these methods, presents detailed experimental tests and data analyses, and discusses measurement results and their comparison with literature values.

  20. Molecular dynamics of shock waves in one-dimensional chains. II. Thermalization

    International Nuclear Information System (INIS)

    Straub, G.K.; Holian, B.L.; Petschek, R.G.

    1979-01-01

    The thermalization behavior behind a shock front in one-dimensional chains has been studied in a series of molecular-dynamics computer experiments. We have found that a shock wave generated in a chain initially at finite temperature has essentially the same characteristics as in a chain initially at zero temperature. We also find that the final velocity distribution function for particles behind the shock front is not the Maxwell-Boltzmann distribution for an equilibrium system of classical particles. For times long after the shock has passed, we propose a nonequilibrium velocity distribution which is based upon behavior in the harmonic and hard-rod limits and agrees with our numerical results. Temperature profiles for both harmonic and anharmonic chains are found to exhibit a long-time tail that decays inversely with time. Finally, we have run a computer experiment to generate what qualitatively resembles solitons in Toda chains by means of shock waves

  1. An intelligent approach for cooling radiator fault diagnosis based on infrared thermal image processing technique

    International Nuclear Information System (INIS)

    Taheri-Garavand, Amin; Ahmadi, Hojjat; Omid, Mahmoud; Mohtasebi, Seyed Saeid; Mollazade, Kaveh; Russell Smith, Alan John; Carlomagno, Giovanni Maria

    2015-01-01

    This research presents a new intelligent fault diagnosis and condition monitoring system for classification of different conditions of cooling radiator using infrared thermal images. The system was adopted to classify six types of cooling radiator faults; radiator tubes blockage, radiator fins blockage, loose connection between fins and tubes, radiator door failure, coolant leakage, and normal conditions. The proposed system consists of several distinct procedures including thermal image acquisition, image pre-processing, image processing, two-dimensional discrete wavelet transform (2D-DWT), feature extraction, feature selection using a genetic algorithm (GA), and finally classification by artificial neural networks (ANNs). The 2D-DWT is implemented to decompose the thermal images. Subsequently, statistical texture features are extracted from the original images and are decomposed into thermal images. The significant selected features are used to enhance the performance of the designed ANN classifier for the 6 types of cooling radiator conditions (output layer) in the next stage. For the tested system, the input layer consisted of 16 neurons based on the feature selection operation. The best performance of ANN was obtained with a 16-6-6 topology. The classification results demonstrated that this system can be employed satisfactorily as an intelligent condition monitoring and fault diagnosis for a class of cooling radiator. - Highlights: • Intelligent fault diagnosis of cooling radiator using thermal image processing. • Thermal image processing in a multiscale representation structure by 2D-DWT. • Selection features based on a hybrid system that uses both GA and ANN. • Application of ANN as classifier. • Classification accuracy of fault detection up to 93.83%

  2. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y. L.; Xie, J. L., E-mail: jlxie@ustc.edu.cn; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C. [School of Physics, University of Science and Technology of China, Anhui 230026 (China); Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X. [University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-11-15

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This “4th generation” MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy “general optics structure” has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.

  3. Confirmation of Thermal Images and Vibration Signals for Intelligent Machine Fault Diagnostics

    Directory of Open Access Journals (Sweden)

    Achmad Widodo

    2012-01-01

    Full Text Available This paper deals with the maintenance technique for industrial machinery using the artificial neural network so-called self-organizing map (SOM. The aim of this work is to develop intelligent maintenance system for machinery based on an alternative way, namely, thermal images instead of vibration signals. SOM is selected due to its simplicity and is categorized as an unsupervised algorithm. Following the SOM training, machine fault diagnostics is performed by using the pattern recognition technique of machine conditions. The data used in this work are thermal images and vibration signals, which were acquired from machine fault simulator (MFS. It is a reliable tool and is able to simulate several conditions of faulty machine such as unbalance, misalignment, looseness, and rolling element bearing faults (outer race, inner race, ball, and cage defects. Data acquisition were conducted simultaneously by infrared thermography camera and vibration sensors installed in the MFS. The experimental data are presented as thermal image and vibration signal in the time domain. Feature extraction was carried out to obtain salient features sensitive to machine conditions from thermal images and vibration signals. These features are then used to train the SOM for intelligent machine diagnostics process. The results show that SOM can perform intelligent fault diagnostics with plausible accuracies.

  4. A New Method to Extract CSP Gather of Topography for Scattered Wave Imaging

    Directory of Open Access Journals (Sweden)

    Zhao Pan

    2017-01-01

    Full Text Available The seismic method is one of the major geophysical tools to study the structure of the earth. The extraction of the common scatter point (CSP gather is a critical step to accomplish the seismic imaging with a scattered wave. Conventionally, the CSP gather is obtained with the assumption that the earth surface is horizontal. However, errors are introduced to the final imaging result if the seismic traces obtained at the rugged surface are processed using the conventional method. Hence, we propose the method of the extraction of the CSP gather for the seismic data collected at the rugged surface. The proposed method is validated by two numerical examples and expected to reduce the effect of the topography on the scattered wave imaging.

  5. Retrieval of the ocean wave spectrum in open and thin ice covered ocean waters from ERS Synthetic Aperture Radar images

    International Nuclear Information System (INIS)

    De Carolis, G.

    2001-01-01

    This paper concerns with the task of retrieving ocean wave spectra form imagery provided by space-borne SAR systems such as that on board ERS satellite. SAR imagery of surface wave fields travelling into open ocean and into thin sea ice covers composed of frazil and pancake icefields is considered. The major purpose is to gain insight on how the spectral changes can be related to sea ice properties of geophysical interest such as the thickness. Starting from SAR image cross spectra computed from Single Look Complex (SLC) SAR images, the ocean wave spectrum is retrieved using an inversion procedure based on the gradient descent algorithm. The capability of this method when applied to satellite SAR sensors is investigated. Interest in the SAR image cross spectrum exploitation is twofold: first, the directional properties of the ocean wave spectra are retained; second, external wave information needed to initialize the inversion procedure may be greatly reduced using only information included in the SAR image cross spectrum itself. The main drawback is that the wind waves spectrum could be partly lost and its spectral peak wave number underestimated. An ERS-SAR SLC image acquired on April 10, 1993 over the Greenland Sea was selected as test image. A pair of windows that include open-sea only and sea ice cover, respectively, were selected. The inversions were carried out using different guess wave spectra taken from SAR image cross spectra. Moreover, care was taken to properly handle negative values eventually occurring during the inversion runs. This results in a modification of the gradient descending the technique that is required if a non-negative solution of the wave spectrum is searched for. Results are discussed in view of the possibility of SAR data to detect ocean wave dispersion as a means for the retrieval of ice thickness

  6. Guided-wave tomographic imaging of plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  7. Negative refraction imaging of solid acoustic waves by two-dimensional three-component phononic crystal

    International Nuclear Information System (INIS)

    Li Jing; Liu Zhengyou; Qiu Chunyin

    2008-01-01

    By using of the multiple scattering methods, we study the negative refraction imaging effect of solid acoustic waves by two-dimensional three-component phononic crystals composed of coated solid inclusions placed in solid matrix. We show that localized resonance mechanism brings on a group of flat single-mode bands in low-frequency region, which provides two equivalent frequency surfaces (EFS) close to circular. The two constant frequency surfaces correspond to two Bloch modes, a right-handed and a left-handed, whose leading mode are respectively transverse (T) and longitudinal (L) modes. The negative refraction behaviors of the two kinds of modes have been demonstrated by simulation of a Gaussian beam through a finite system. High-quality far-field imaging by a planar lens for transverse or longitudinal waves has been realized separately. This three-component phononic crystal may thus serve as a mode selector in negative refraction imaging of solid acoustic waves

  8. Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited

    Directory of Open Access Journals (Sweden)

    Necdet Onur Urs

    2016-05-01

    Full Text Available Recent developments in the observation of magnetic domains and domain walls by wide-field optical microscopy based on the magneto-optical Kerr, Faraday, Voigt, and Gradient effect are reviewed. Emphasis is given to the existence of higher order magneto-optical effects for advanced magnetic imaging. Fundamental concepts and advances in methodology are discussed that allow for imaging of magnetic domains on various length and time scales. Time-resolved imaging of electric field induced domain wall rotation is shown. Visualization of magnetization dynamics down to picosecond temporal resolution for the imaging of spin-waves and magneto-optical multi-effect domain imaging techniques for obtaining vectorial information are demonstrated. Beyond conventional domain imaging, the use of a magneto-optical indicator technique for local temperature sensing is shown.

  9. Registering Active and Passive IMAGE RPI Datasets with the Virtual Wave Observatory

    Science.gov (United States)

    Galkin, I. A.; Fung, S.; King, T. A.; Reinisch, B. W.

    2008-12-01

    Development of the Virtual Wave Observatory (VWO) for acquired active/passive plasma wave and radiation datasets will be a significant step forward for the Heliophysics community in its efforts to make wave-specific science data searchable, understandable, and usable. The first phase of the VWO project commenced in September 2008 with the goal of converting existing custom database storing wave data acquired by the Radio Plasma Imager (RPI) on the NASA IMAGE satellite into the VxO realm and, specifically, the SPASE Data Model. The RPI dataset comprises 1.2 million active and 0.8 million passive stepped-frequency measurements whose exploration incurs substantial expense of data search and expert interpretation. Our attention is drawn to the ability of the VWO not only to organize numeric and display data records in the SPASE-compatible manner, but most importantly, provide the essential means to capture the wave research community knowledge in accompanying metadata so as to let users understand the VWO data collections and search them by phenomena and context conditions. To that end, we pursue to extend the SPASE model to include wave-relevant terms and to develop a VWO annotation service to provide searchable data interpretations to the scientists who may not be a wave expert. The SPASE Data Model provides several means to describe data sets in a unified manner, forging them together in a three large categories, (1) numeric data, (2) display data, and (3) catalogs. Whereas numeric data resources simply point to the instrument data, the other two categories refer to the presentation of derived and interpreted information. We consider images of the RPI data as derived products that required investment in time and effort to create, especially if their author provided interpretation of visible signatures and optimized the visualization settings to highlight the signatures. When such interpretations are available, they can be used to further group RPI data in categories

  10. The effect of compressive viscosity and thermal conduction on the longitudinal MHD waves

    Science.gov (United States)

    Bahari, K.; Shahhosaini, N.

    2018-05-01

    longitudinal Magnetohydrodynamic (MHD) oscillations have been studied in a slowly cooling coronal loop, in the presence of thermal conduction and compressive viscosity, in the linear MHD approximation. WKB method has been used to solve the governing equations. In the leading order approximation the dispersion relation has been obtained, and using the first order approximation the time dependent amplitude has been determined. Cooling causes the oscillations to amplify and damping mechanisms are more efficient in hot loops. In cool loops the oscillation amplitude increases with time but in hot loops the oscillation amplitude decreases with time. Our conclusion is that in hot loops the efficiency of the compressive viscosity in damping longitudinal waves is comparable to that of the thermal conduction.

  11. Lock-in thermal imaging for the early-stage detection of cutaneous melanoma: a feasibility study.

    Science.gov (United States)

    Bonmarin, Mathias; Le Gal, Frédérique-Anne

    2014-04-01

    This paper theoretically evaluates lock-in thermal imaging for the early-stage detection of cutaneous melanoma. Lock-in thermal imaging is based on the periodic thermal excitation of the specimen under test. Resulting surface temperature oscillations are recorded with an infrared camera and allow the detection of variations of the sample's thermophysical properties under the surface. In this paper, the steady-state and transient skin surface temperatures are numerically derived for a different stage of development of the melanoma lesion using a two-dimensional axisymmetric multilayer heat-transfer model. The transient skin surface temperature signals are demodulated according to the digital lock-in principle to compute both a phase and an amplitude image of the lesions. The phase image can be advantageously used to accurately detect cutaneous melanoma at an early stage of development while the maximal phase shift can give precious information about the lesion invasion depth. The ability of lock-in thermal imaging to suppress disturbing subcutaneous thermal signals is demonstrated. The method is compared with the previously proposed pulse-based approaches, and the influence of the modulation frequency is further discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Particle image velocimetry investigation of a finite amplitude pressure wave

    Science.gov (United States)

    Thornhill, D.; Currie, T.; Fleck, R.; Chatfield, G.

    2006-03-01

    Particle image velocimetry is used to study the motion of gas within a duct subject to the passage of a finite amplitude pressure wave. The wave is representative of the pressure waves found in the exhaust systems of internal combustion engines. Gas particles are accelerated from stationary to 150 m/s and then back to stationary in 8 ms. It is demonstrated that gas particles at the head of the wave travel at the same velocity across the duct cross section at a given point in time. Towards the tail of the wave viscous effects are plainly evident causing the flow profile to tend towards parabolic. However, the instantaneous mean particle velocity across the section is shown to match well with the velocity calculated from a corresponding measured pressure history using 1D gas dynamic theory. The measured pressure history at a point in the duct was acquired using a high speed pressure transducer of the type typically used for engine research in intake and exhaust systems. It is demonstrated that these are unable to follow the rapid changes in pressure accurately and that they are prone to resonate under certain circumstances.

  13. Reactive thermal waves in energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Larry G [Los Alamos National Laboratory

    2009-01-01

    Reactive thermal waves (RTWs) arise in several energetic material applications, including self-propagating high-temperature synthesis (SHS), high explosive cookoff, and the detonation of heterogeneous explosives. In this paper I exmaine ideal RTWs, by which I mean that (1) material motion is neglected, (2) the state dependence of reaction is Arrhenius in the temperature, and (3) the reaction rate is modulated by an arbitrary mass-fraction-based reaction progress function. Numerical simulations demonstrate that one's natural intuition, which is based mainly upon experience with inert materials and which leads one to expect diffusion processes to become relatively slow after a short time period, is invalid for high energy, state-sensitive reactive systems. Instead, theory predicts that RTWs can propagate at very high speeds. This result agrees with estimates for detonating heterogeneous explosives, which indicate that RTWs must spread from hot-spot nucleation sites at rates comparable to the detonation speed in order to produce experimentally-observed reaction zone thicknesses. Using dimensionless scaling and further invoking the high activation energy approximation, I obtain an analytic formula for the steady plane RTW speed from numerical calculations. I then compute the RTW speed for real explosives, and discuss aspects of their behavior.

  14. THERMAL EFFECTS ON CAMERA FOCAL LENGTH IN MESSENGER STAR CALIBRATION AND ORBITAL IMAGING

    Directory of Open Access Journals (Sweden)

    S. Burmeister

    2018-04-01

    Full Text Available We analyse images taken by the MErcury Surface, Space ENviorment, GEochemistry, and Ranging (MESSENGER spacecraft for the camera’s thermal response in the harsh thermal environment near Mercury. Specifically, we study thermally induced variations in focal length of the Mercury Dual Imaging System (MDIS. Within the several hundreds of images of star fields, the Wide Angle Camera (WAC typically captures up to 250 stars in one frame of the panchromatic channel. We measure star positions and relate these to the known star coordinates taken from the Tycho-2 catalogue. We solve for camera pointing, the focal length parameter and two non-symmetrical distortion parameters for each image. Using data from the temperature sensors on the camera focal plane we model a linear focal length function in the form of f(T = A0 + A1 T. Next, we use images from MESSENGER’s orbital mapping mission. We deal with large image blocks, typically used for the production of a high-resolution digital terrain models (DTM. We analyzed images from the combined quadrangles H03 and H07, a selected region, covered by approx. 10,600 images, in which we identified about 83,900 tiepoints. Using bundle block adjustments, we solved for the unknown coordinates of the control points, the pointing of the camera – as well as the camera’s focal length. We then fit the above linear function with respect to the focal plane temperature. As a result, we find a complex response of the camera to thermal conditions of the spacecraft. To first order, we see a linear increase by approx. 0.0107 mm per degree temperature for the Narrow-Angle Camera (NAC. This is in agreement with the observed thermal response seen in images of the panchromatic channel of the WAC. Unfortunately, further comparisons of results from the two methods, both of which use different portions of the available image data, are limited. If leaving uncorrected, these effects may pose significant difficulties in

  15. Multi-Wave and Hybrid Imaging Techniques: A New Direction for Nondestructive Testing and Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Yuhua Cheng

    2013-11-01

    Full Text Available In this article, the state-of-the-art multi-wave and hybrid imaging techniques in the field of nondestructive evaluation and structural health monitoring were comprehensively reviewed. A new direction for assessment and health monitoring of various structures by capitalizing the advantages of those imaging methods was discussed. Although sharing similar system configurations, the imaging physics and principles of multi-wave phenomena and hybrid imaging methods are inherently different. After a brief introduction of nondestructive evaluation (NDE , structure health monitoring (SHM and their related challenges, several recent advances that have significantly extended imaging methods from laboratory development into practical applications were summarized, followed by conclusions and discussion on future directions.

  16. REVIEW OF METHODS FOR THE SURVEILLANCE AND ACCESS CONTROL USING THE THERMAL IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mate Krišto

    2016-12-01

    Full Text Available This paper presents methods for human detection for application in the field of national security in the context of state border surveillance. Except in the context of state border security, the presented methods can be applied to monitor other protected object and infrastructure such as ports and airports, power plants, water supply systems, oil pipelines, etc. Presented methods are based on use of thermal imaging systems for the human detection, recognition and identification. In addition to methods for the detection of persons, are presented and methods for face recognition and identification of the person. The use of such systems has special significance in the context of national security in the domain of timely detection of illegal crossing of state border or illegal movement near buildings, which are of special importance for national security such as traffic infrastructure facilities, power plants, military bases, especially in mountain or forests areas. In this context, thermal imaging has significant advantages over the optical camera surveillance systems because thermal imaging is robust to weather conditions and due to such an infrared thermal system can successfully applied in any weather conditions, or the periods of the day. Featured are procedures that has human detection results as well as a brief survey of specific implementation in terms of the use of infrared thermal imagers mounted on autonomous vehicles (AV and unmanned aerial vehicles (UAV. In addition to the above in this paper are described techniques and methods of face detection and human identification based on thermal image (thermogram.

  17. MR imaging and histopathologic correlations of thermal injuries induced by interstitial laser applications

    International Nuclear Information System (INIS)

    Anzai, Y.; Lufkin, R.B.; Castro, D.J.; Farahani, K.; Chen, H.W.; Hirchowiz, S.

    1991-01-01

    Interstitial laser phototherapy for deep-seated tumors may become an attractive therapeutic modality when a noninvasive, accurate monitoring system is developed. In this paper, to devaluate the ability of MR imaging to differentiate reversible and irreversible thermal injuries induced by laser therapy, the precise correlation of MR and histopathologic findings are investigated in the in vivo model. Nd:YAG lasers were applied to normal musculature of rabbits, and MR examinations were performed immediately after laser exposure and followed up for up to 10 weeks. The sequential MR images were correlated with histopathologic findings. T2-weighted MR imaging clearly showed laser-induced thermal injuries on any postoperative day. MR imaging of acute thermal injuries showed a central cavity, low-signal zone of coagulative necrosis and a peripheral high-signal layer of interstitial edema. The infiltration of neutrophils followed by fibrovascular response was identified on the marginal edema layer after 6 postoperative days

  18. Combining a thermal-imaging diagnostic with an existing imaging VISAR diagnostic at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Robert M, Malone; John R, Celesteb; Peter M, Celliers; Brent C, Froggeta; Robert L, Guyton; Morris I, Kaufman; Tony L, Lee; Brian J, MacGowan; Edmund W, Ng; Imants P, Reinbachs; Ronald B, Robinson; Lynn G, Seppala; Tom W, Tunnell; Phillip W, Watts

    2005-01-01

    Optical diagnostics are currently being designed to analyze high-energy density physics experiments at the National Ignition Facility (NIF). Two independent line-imaging Velocity Interferometer System for Any Reflector (VISAR) interferometers have been fielded to measure shock velocities, breakout times, and emission of targets having sizes of 1-5 mm. An 8-inch-diameter, fused silica triplet lens collects light at f/3 inside the 30-foot-diameter NIF vacuum chamber. VISAR recordings use a 659.5-nm probe laser. By adding a specially coated beam splitter to the interferometer table, light at wavelengths from 540 to 645 nm is spilt into a thermal-imaging diagnostic. Because fused silica lenses are used in the first triplet relay, the intermediate image planes for different wavelengths separate by considerable distances. A corrector lens on the interferometer table reunites these separated wavelength planes to provide a good image. Thermal imaging collects light at f/5 from a 2-mm object placed at Target Chamber Center (TCC). Streak cameras perform VISAR and thermal-imaging recording. All optical lenses are on kinematic mounts so that pointing accuracy of the optical axis may be checked. Counter-propagating laser beams (orange and red) are used to align both diagnostics. The red alignment laser is selected to be at the 50 percent reflection point of the beam splitter. This alignment laser is introduced at the recording streak cameras for both diagnostics and passes through this special beam splitter on its way into the NIF vacuum chamber

  19. Modulation instability of ion thermal waves in a pair-ion plasma containing charged dust impurities

    International Nuclear Information System (INIS)

    Sabry, R.

    2008-01-01

    Modulation instability of ion thermal waves (ITWs) is investigated in a plasma composed of positive and negative ions as well as a fraction of stationary charged (positive or negative) dust impurities. For this purpose, a linear dispersion relation and a nonlinear Schroedinger equation are derived. The latter admits localized envelope solitary wave solutions of bright (pulses) and dark (holes, voids) type. The envelope soliton depends on the intrinsic plasma parameters. It is found that modulation instability of ITWs is significantly affected by the presence of positively/negatively charged dust grains. The findings of this investigation should be useful in understanding the stable electrostatic wave packet acceleration mechanisms in pair-ion plasma, and also enhances our knowledge on the occurrence of instability associated to the existence of charged dust impurities in pair-ion plasmas. Our results should be of relevance for laboratory plasmas.

  20. Analysis of pulse thermography using similarities between wave and diffusion propagation

    Science.gov (United States)

    Gershenson, M.

    2017-05-01

    Pulse thermography or thermal wave imaging are commonly used as nondestructive evaluation (NDE) method. While the technical aspect has evolve with time, theoretical interpretation is lagging. Interpretation is still using curved fitting on a log log scale. A new approach based directly on the governing differential equation is introduced. By using relationships between wave propagation and the diffusive propagation of thermal excitation, it is shown that one can transform from solutions in one type of propagation to the other. The method is based on the similarities between the Laplace transforms of the diffusion equation and the wave equation. For diffusive propagation we have the Laplace variable s to the first power, while for the wave propagation similar equations occur with s2. For discrete time the transformation between the domains is performed by multiplying the temperature data vector by a matrix. The transform is local. The performance of the techniques is tested on synthetic data. The application of common back projection techniques used in the processing of wave data is also demonstrated. The combined use of the transform and back projection makes it possible to improve both depth and lateral resolution of transient thermography.

  1. Problems of thermal IR-imaging in evaluation of burn wounds

    International Nuclear Information System (INIS)

    Nowakowski, A.

    2009-01-01

    Results of the research devoted to application of thermal IR-imaging in diagnostics of burn wounds are discussed. The main aim of the work was to develop an effective method for quantitative evaluation of the depth of a burn wound and for classification of regions for surgical treatment. The criterion of determination the area of the wound to be treated surgically is the time, which should not exceed three weeks for natural healing of a burn wound. Prediction that the healing process may last longer is concluded by immediate surgical intervention. We concentrate on using for this purpose QIRT - NDT TI methods (Quantitative Infra-Red Thermography - Non-Destructive Testing Thermal Imaging); especially - active dynamic thermography - ADT. In this work both, classical thermography using a high quality thermal camera as well as ADT are applied and the results of analysis are joined, allowing multimodality diagnostic approach and improved classification of burns requiring surgical treatment. Now our work in application of thermal imaging in determination of burns is continued for around 10 years, as the first publication showing our methodology was presented in 1999. In 2001, during the Thermosense conference, we have been awarded the Andronicos Kantsios Award for the work on Medical applications of model based dynamic thermography. Important reports of our experience in classical as well as ADT thermography are already published. Now we concentrate on practical aspects of the problem, trying to construct a measuring set to be operative even by not experienced staff and meeting all of necessary requirements for clinical applications. (author)

  2. Modelling of classical ghost images obtained using scattered light

    International Nuclear Information System (INIS)

    Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A

    2007-01-01

    The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres

  3. Modelling of classical ghost images obtained using scattered light

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A [School of Physics, University of Melbourne, Victoria, 3010 (Australia)

    2007-08-15

    The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres.

  4. Imaging the square of the correlated two-electron wave function of a hydrogen molecule.

    Science.gov (United States)

    Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R

    2017-12-22

    The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.

  5. Observation of interaction of shock wave with gas bubble by image converter camera

    Science.gov (United States)

    Yoshii, M.; Tada, M.; Tsuji, T.; Isuzugawa, Kohji

    1995-05-01

    When a spark discharge occurs at the first focal point of a semiellipsoid or a reflector located in water, a spherical shock wave is produced. A part of the wave spreads without reflecting on the reflector and is called direct wave in this paper. Another part reflects on the semiellipsoid and converges near the second focal point, that is named the focusing wave, and locally produces a high pressure. This phenomenon is applied to disintegrators of kidney stone. But it is concerned that cavitation bubbles induced in the body by the expansion wave following the focusing wave will injure human tissue around kidney stone. In this paper, in order to examine what happens when shock waves strike bubbles on human tissue, the aspect that an air bubble is truck by the spherical shock wave or its behavior is visualized by the schlieren system and its photographs are taken using an image converter camera. Besides,the variation of the pressure amplitude caused by the shock wave and the flow of water around the bubble is measured with a pressure probe.

  6. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo [Tokyo Institute of Technology (Japan)

    1995-09-01

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.

  7. Millimeter-Wave Thermal Analysis Development and Application to GEN IV Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wosko, Paul; Sundram, S. K.

    2012-10-16

    New millimeter-wave thermal analysis instrumentation has been developed and studied for characterization of materials required for diverse fuel and structural needs in high temperature reactor environments such as the Next Generation Nuclear Plant (NGNP). A two-receiver 137 GHz system with orthogonal polarizations for anisotropic resolution of material properties has been implemented at MIT. The system was tested with graphite and silicon carbide specimens at temperatures up to 1300 ºC inside an electric furnace. The analytic and hardware basis for active millimeter-wave radiometry of reactor materials at high temperature has been established. Real-time, non contact measurement sensitivity to anisotropic surface emissivity and submillimeter surface displacement was demonstrated. The 137 GHz emissivity of reactor grade graphite (NBG17) from SGL Group was found to be low, ~ 5 %, in the 500 – 1200 °C range and increases by a factor of 2 to 4 with small linear grooves simulating fracturing. The low graphite emissivity would make millimeter-wave active radiometry a sensitive diagnostic of graphite changes due to environmentally induced stress fracturing, swelling, or corrosion. The silicon carbide tested from Ortek, Inc. was found to have a much higher emissivity at 137 GHz of ~90% Thin coatings of silicon carbide on reactor grade graphite supplied by SGL Group were found to be mostly transparent to millimeter-waves, increasing the 137 GHz emissivity of the coated reactor grade graphite to about ~14% at 1250 ºC.

  8. Estimation of directional sea wave spectra from radar images. A Mediterranean Sea case study

    International Nuclear Information System (INIS)

    Corsini, G.; Grasso, R.; Manara, G.; Monorchio, A.

    2001-01-01

    An inversion technique for estimating sea wave directional spectra from Synthetic Aperture Radar (SAR) images is applied to a set of ERS-1 data relevant to selected Mediterranean areas. The approach followed is based on the analytical definition of the transform which maps the sea wave spectrum onto the corresponding SAR image spectrum. The solution of the inverse problem is determined through a numerical procedure which minimises a proper functional. A suitable iterative scheme is adopted, involving the use of the above transform. Although widely applied to the ocean case, the method has not been yet extensively tested widely applied to the ocean case, the method has not been yet extensively tested in smaller scale basins, as for instance the Mediterranean sea. The results obtained demonstrate the effectiveness of the numerical procedure discussed for retrieving the sea wave spectrum from SAR images. This work provides new experimental data relevant to the Mediterranean Sea, discusses the results obtained by the above inversion technique and compares them with buoy derived sea truth measurements

  9. Thermal imaging as a smartphone application: exploring and implementing a new concept

    Science.gov (United States)

    Yanai, Omer

    2014-06-01

    Today's world is going mobile. Smartphone devices have become an important part of everyday life for billions of people around the globe. Thermal imaging cameras have been around for half a century and are now making their way into our daily lives. Originally built for military applications, thermal cameras are starting to be considered for personal use, enabling enhanced vision and temperature mapping for different groups of professional individuals. Through a revolutionary concept that turns smartphones into fully functional thermal cameras, we have explored how these two worlds can converge by utilizing the best of each technology. We will present the thought process, design considerations and outcome of our development process, resulting in a low-power, high resolution, lightweight USB thermal imaging device that turns Android smartphones into thermal cameras. We will discuss the technological challenges that we faced during the development of the product, and what are the system design decisions taken during the implementation. We will provide some insights we came across during this development process. Finally, we will discuss the opportunities that this innovative technology brings to the market.

  10. Continuous wave terahertz reflection imaging of human colorectal tissue

    Science.gov (United States)

    Doradla, Pallavi; Alavi, Karim; Joseph, Cecil S.; Giles, Robert H.

    2013-03-01

    Continuous wave terahertz (THz) imaging has the potential to offer a safe, non-ionizing, and nondestructive medical imaging modality for delineating colorectal cancer. Fresh excisions of normal colon tissue were obtained from surgeries performed at the University of Massachusetts Medical School, Worcester. Reflection measurements of thick sections of colorectal tissues, mounted in an aluminum sample holder, were obtained for both fresh and formalin fixed tissues. The two-dimensional reflection images were acquired by using an optically pumped far-infrared molecular gas laser operating at 584 GHz with liquid Helium cooled silicon bolometer detector. Using polarizers in the experiment both co-polarized and cross-polarized remittance form the samples was collected. Analysis of the images showed the importance of understanding the effects of formalin fixation while determining reflectance level of tissue response. The resulting co- and cross-polarized images of both normal and formalin fixed tissues showed uniform terahertz response over the entire sample area. Initial measurements indicated a co-polarized reflectance of 16%, and a cross-polarized reflectance of 0.55% from fresh excisions of normal colonic tissues.

  11. Mathematical Foundation Based Inter-Connectivity modelling of Thermal Image processing technique for Fire Protection

    Directory of Open Access Journals (Sweden)

    Sayantan Nath

    2015-09-01

    Full Text Available In this paper, integration between multiple functions of image processing and its statistical parameters for intelligent alarming series based fire detection system is presented. The proper inter-connectivity mapping between processing elements of imagery based on classification factor for temperature monitoring and multilevel intelligent alarm sequence is introduced by abstractive canonical approach. The flow of image processing components between core implementation of intelligent alarming system with temperature wise area segmentation as well as boundary detection technique is not yet fully explored in the present era of thermal imaging. In the light of analytical perspective of convolutive functionalism in thermal imaging, the abstract algebra based inter-mapping model between event-calculus supported DAGSVM classification for step-by-step generation of alarm series with gradual monitoring technique and segmentation of regions with its affected boundaries in thermographic image of coal with respect to temperature distinctions is discussed. The connectedness of the multifunctional operations of image processing based compatible fire protection system with proper monitoring sequence is presently investigated here. The mathematical models representing the relation between the temperature affected areas and its boundary in the obtained thermal image defined in partial derivative fashion is the core contribution of this study. The thermal image of coal sample is obtained in real-life scenario by self-assembled thermographic camera in this study. The amalgamation between area segmentation, boundary detection and alarm series are described in abstract algebra. The principal objective of this paper is to understand the dependency pattern and the principles of working of image processing components and structure an inter-connected modelling technique also for those components with the help of mathematical foundation.

  12. Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL.

    Science.gov (United States)

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G; Beckwith, Martha A; Collins, Gilbert W; Higginbotham, Andrew; Wark, Justin S; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B; Schroer, Christian G

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.

  13. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Jaffry Syed [Hamdard University, Karachi (Pakistan); Abbas, Syed Haider; Lee, Jung Ryul [Dept. of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kang, Dong Hoon [Advanced Materials Research Team, Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-12-15

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm{sup 2} with 0.5 mm interval) to 87.5% (scanning of 200x200mm{sup 2} with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection.

  14. Using field programmable gate array hardware for the performance improvement of ultrasonic wave propagation imaging system

    International Nuclear Information System (INIS)

    Shan, Jaffry Syed; Abbas, Syed Haider; Lee, Jung Ryul; Kang, Dong Hoon

    2015-01-01

    Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of 100x100mm 2 with 0.5 mm interval) to 87.5% (scanning of 200x200mm 2 with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection

  15. Measurement of thermally ablated lesions in sonoelastographic images using level set methods

    Science.gov (United States)

    Castaneda, Benjamin; Tamez-Pena, Jose Gerardo; Zhang, Man; Hoyt, Kenneth; Bylund, Kevin; Christensen, Jared; Saad, Wael; Strang, John; Rubens, Deborah J.; Parker, Kevin J.

    2008-03-01

    The capability of sonoelastography to detect lesions based on elasticity contrast can be applied to monitor the creation of thermally ablated lesion. Currently, segmentation of lesions depicted in sonoelastographic images is performed manually which can be a time consuming process and prone to significant intra- and inter-observer variability. This work presents a semi-automated segmentation algorithm for sonoelastographic data. The user starts by planting a seed in the perceived center of the lesion. Fast marching methods use this information to create an initial estimate of the lesion. Subsequently, level set methods refine its final shape by attaching the segmented contour to edges in the image while maintaining smoothness. The algorithm is applied to in vivo sonoelastographic images from twenty five thermal ablated lesions created in porcine livers. The estimated area is compared to results from manual segmentation and gross pathology images. Results show that the algorithm outperforms manual segmentation in accuracy, inter- and intra-observer variability. The processing time per image is significantly reduced.

  16. Measurement of tissue-radiation dosage using a thermal steady-state elastic shear wave.

    Science.gov (United States)

    Chang, Sheng-Yi; Hsieh, Tung-Sheng; Chen, Wei-Ru; Chen, Jin-Chung; Chou, Chien

    2017-08-01

    A biodosimeter based on thermal-induced elastic shear wave (TIESW) in silicone acellular porcine dermis (SAPD) at thermal steady state has been proposed and demonstrated. A square slab SAPD treated with ionizing radiation was tested. The SAPD becomes a continuous homogeneous and isotropic viscoelastic medium due to the generation of randomly coiled collagen fibers formed from their bundle-like structure in the dermis. A harmonic TIESW then propagates on the surface of the SAPD as measured by a nanometer-scaled strain-stress response under thermal equilibrium conditions at room temperature. TIESW oscillation frequency was noninvasively measured in real time by monitoring the transverse displacement of the TIESW on the SAPD surface. Because the elastic shear modulus is highly sensitive to absorbed doses of ionizing radiation, this proposed biodosimeter can become a highly sensitive and noninvasive method for quantitatively determining tissue-absorbed dosage in terms of TIESW’s oscillation frequency. Detection sensitivity at 1 cGy and dynamic ranges covering 1 to 40 cGy and 80 to 500 cGy were demonstrated.

  17. Magneto-thermal-acoustic differential-frequency imaging of magnetic nanoparticle with magnetic spatial localization: a theoretical prediction

    Science.gov (United States)

    Piao, Daqing

    2017-02-01

    The magneto-thermo-acoustic effect that we predicted in 2013 refers to the generation of acoustic-pressure wave from magnetic nanoparticle (MNP) when thermally mediated under an alternating magnetic field (AMF) at a pulsed or frequency-chirped application. Several independent experimental studies have since validated magneto-thermoacoustic effect, and a latest report has discovered acoustic-wave generation from MNP at the second-harmonic frequency of the AMF when operating continuously. We propose that applying two AMFs with differing frequencies to MNP will produce acoustic-pressure wave at the summation and difference of the two frequencies, in addition to the two second-harmonic frequencies. Analysis of the specific absorption dynamics of the MNP when exposed to two AMFs of differing frequencies has shown some interesting patterns of acoustic-intensity at the multiple frequency components. The ratio of the acoustic-intensity at the summation-frequency over that of the difference-frequency is determined by the frequency-ratio of the two AMFs, but remains independent of the AMF strengths. The ratio of the acoustic-intensity at the summation- or difference-frequency over that at each of the two second-harmonic frequencies is determined by both the frequency-ratio and the field-strength-ratio of the two AMFs. The results indicate a potential strategy for localization of the source of a continuous-wave magneto-thermalacoustic signal by examining the frequency spectrum of full-field non-differentiating acoustic detection, with the field-strength ratio changed continuously at a fixed frequency-ratio. The practicalities and challenges of this magnetic spatial localization approach for magneto-thermo-acoustic imaging using a simple envisioned set of two AMFs arranged in parallel to each other are discussed.

  18. Experimental Investigation of Quality of Lensless Ghost Imaging with Pseudo-Thermal Light

    International Nuclear Information System (INIS)

    Xia, Shen; Yan-Feng, Bai; Tao, Qin; Shen-Sheng, Han

    2008-01-01

    Factors influencing the quality of lensless ghost imaging are investigated. According to the experimental results, we find that the imaging quality is determined by the number of independent sub light sources on the imaging plane of the reference arm. A qualitative picture based on advanced wave optics is presented to explain the physics behind the experimental phenomena. The present results will be helpful to provide a basis for improving the quality of ghost imaging systems in future works. (fundamental areas of phenomenology(including applications))

  19. Images in pediatrics: the thymic sail sign and thymic wave sign.

    Science.gov (United States)

    Alves, Nuno D; Sousa, Marta

    2013-01-01

    The authors present a radiographic image portraying the "thymic sail sign" and the "thymic wave sign," both normal findings in infant radiographs and present a short description of these signs. These are distinguished from pathologic findings such as the "spinnaker-sail sign" in pneumomediastinum.

  20. Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.

    Science.gov (United States)

    McAleavey, Stephen

    2011-01-01

    We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.

  1. Real-Time Monitoring of Occupants’ Thermal Comfort through Infrared Imaging: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Boris Pavlin

    2017-02-01

    Full Text Available Thermally comfortable indoor environments are of great importance, as modern lifestyles often require people to spend more than 20 h per day indoors. Since most of the thermal comfort models use a variety of different environmental and personal factors that need to be measured or estimated, real-time and continuous assessment of thermal comfort is often not practically feasible. This work presents a cheap and non-invasive approach based on infrared imaging for monitoring the occupants’ thermal sensation and comfort in real time. Thanks to a mechatronic device developed by the authors, the imaging is performed on the forehead skin, selected because it is always exposed to the environment and, thus, facilitating the monitoring activity in a non-invasive manner. Tests have been performed in controlled conditions on ten subjects to assess the hypothesis that the forehead temperature is correlated with subjects’ thermal sensation. This allows the exploitation of this quantity as a base for a simple monitoring of thermal comfort, which could later be tuned with an extensive experimental campaign.

  2. Guided wave imaging of oblique reflecting interfaces in pipes using common-source synthetic focusing

    Science.gov (United States)

    Sun, Zeqing; Sun, Anyu; Ju, Bing-Feng

    2018-04-01

    Cross-mode-family mode conversion and secondary reflection of guided waves in pipes complicate the processing of guided waves signals, and can cause false detection. In this paper, filters operating in the spectral domain of wavenumber, circumferential order and frequency are designed to suppress the signal components of unwanted mode-family and unwanted traveling direction. Common-source synthetic focusing is used to reconstruct defect images from the guided wave signals. Simulations of the reflections from linear oblique defects and a semicircle defect are separately implemented. Defect images, which are reconstructed from the simulation results under different excitation conditions, are comparatively studied in terms of axial resolution, reflection amplitude, detectable oblique angle and so on. Further, the proposed method is experimentally validated by detecting linear cracks with various oblique angles (10-40°). The proposed method relies on the guided wave signals that are captured during 2-D scanning of a cylindrical area on the pipe. The redundancy of the signals is analyzed to reduce the time-consumption of the scanning process and to enhance the practicability of the proposed method.

  3. Imaging of propagation dynamics of optically-excited spin waves in a garnet film

    International Nuclear Information System (INIS)

    Hashimoto, Yusuke; Saitoh, Eiji

    2016-01-01

    We demonstrate the direct imaging of the propagation dynamics of the optically-excited spin waves in a garnet film observed with an all-optical pump-and-probe magneto-optical imaging technique having sub-pico second time-resolution, sub-micrometer spatial resolution, and milli-degrees of accuracy in the rotation angle of the light polarization. (author)

  4. Studies on anti-tumor effect of electromagnetic waves

    International Nuclear Information System (INIS)

    Kadota, Ikuhito; Wakabayashi, Toshio; Ogoshi, Kyoji; Kamijo, Akemi

    1995-01-01

    Hyperthermia have treated cancer with thermal effect of electromagnetic waves for biological systems, but the expected effect is not shown. Also non-thermal effect of electromagnetic waves is out of consideration. If irradiation conditions of electromagnetic waves with non-thermal anti-tumor effect are obtained, we can expect newly spread in cancer therapy. We had in vivo experiments that electromagnetic waves were irradiated to mice. In some irradiation conditions, the non-thermal anti-tumor effect of electromagnetic waves showed. In order to specify the irradiation conditions, we had in vitro experiments. We found that activity ratio of tumor cells which was measured by MTT method depended on irradiation time and power of electromagnetic waves. These results are useful for the cancer therapy. (author)

  5. Wave front sensing for next generation earth observation telescope

    Science.gov (United States)

    Delvit, J.-M.; Thiebaut, C.; Latry, C.; Blanchet, G.

    2017-09-01

    High resolution observations systems are highly dependent on optics quality and are usually designed to be nearly diffraction limited. Such a performance allows to set a Nyquist frequency closer to the cut off frequency, or equivalently to minimize the pupil diameter for a given ground sampling distance target. Up to now, defocus is the only aberration that is allowed to evolve slowly and that may be inflight corrected, using an open loop correction based upon ground estimation and refocusing command upload. For instance, Pleiades satellites defocus is assessed from star acquisitions and refocusing is done with a thermal actuation of the M2 mirror. Next generation systems under study at CNES should include active optics in order to allow evolving aberrations not only limited to defocus, due for instance to in orbit thermal variable conditions. Active optics relies on aberration estimations through an onboard Wave Front Sensor (WFS). One option is using a Shack Hartmann. The Shack-Hartmann wave-front sensor could be used on extended scenes (unknown landscapes). A wave-front computation algorithm should then be implemented on-board the satellite to provide the control loop wave-front error measure. In the worst case scenario, this measure should be computed before each image acquisition. A robust and fast shift estimation algorithm between Shack-Hartmann images is then needed to fulfill this last requirement. A fast gradient-based algorithm using optical flows with a Lucas-Kanade method has been studied and implemented on an electronic device developed by CNES. Measurement accuracy depends on the Wave Front Error (WFE), the landscape frequency content, the number of searched aberrations, the a priori knowledge of high order aberrations and the characteristics of the sensor. CNES has realized a full scale sensitivity analysis on the whole parameter set with our internally developed algorithm.

  6. Nearshore Processes, Currents and Directional Wave Spectra Monitoring Using Coherent and Non-coherent Imaging Radars

    Science.gov (United States)

    Trizna, D.; Hathaway, K.

    2007-05-01

    Two new radar systems have been developed for real-time measurement of near-shore processes, and results are presented for measurements of ocean wave spectra, near-shore sand bar structure, and ocean currents. The first is a non-coherent radar based on a modified version of the Sitex radar family, with a data acquisition system designed around an ISR digital receiver card. The card operates in a PC computer with inputs from a Sitex radar modified for extraction of analogue signals for digitization. Using a 9' antenna and 25 kW transmit power system, data were collected during 2007 at the U.S. Army Corps of Engineers Field Research Facility (FRF), Duck, NC during winter and spring of 2007. The directional wave spectrum measurements made are based on using a sequence of 64 to 640 antenna rotations to form a snapshot series of radar images of propagating waves. A square window is extracted from each image, typically 64 x 64 pixels at 3-m resolution. Then ten sets of 64 windows are submitted to a three-dimensional Fast Fourier Transform process to generate radar image spectra in the frequency-wavenumber space. The relation between the radar image spectral intensity and wave spectral intensity derived from the FRF pressure gauge array was used for a test set of data, in order to establish a modulation transfer function (MTF) for each frequency component. For 640 rotations, 10 of such spectra are averaged for improved statistics. The wave spectrum so generated was compared for extended data sets beyond those used to establish the MTF, and those results are presented here. Some differences between the radar and pressure sensor data that are observed are found to be due to the influence of the wind field, as the radar echo image weakens for light winds. A model is developed to account for such an effect to improve the radar estimate of the directional wave spectrum. The radar ocean wave imagery is severely influenced only by extremely heavy rain-fall rates, so that

  7. An Efficient Algorithm for Server Thermal Fault Diagnosis Based on Infrared Image

    Science.gov (United States)

    Liu, Hang; Xie, Ting; Ran, Jian; Gao, Shan

    2017-10-01

    It is essential for a data center to maintain server security and stability. Long-time overload operation or high room temperature may cause service disruption even a server crash, which would result in great economic loss for business. Currently, the methods to avoid server outages are monitoring and forecasting. Thermal camera can provide fine texture information for monitoring and intelligent thermal management in large data center. This paper presents an efficient method for server thermal fault monitoring and diagnosis based on infrared image. Initially thermal distribution of server is standardized and the interest regions of the image are segmented manually. Then the texture feature, Hu moments feature as well as modified entropy feature are extracted from the segmented regions. These characteristics are applied to analyze and classify thermal faults, and then make efficient energy-saving thermal management decisions such as job migration. For the larger feature space, the principal component analysis is employed to reduce the feature dimensions, and guarantee high processing speed without losing the fault feature information. Finally, different feature vectors are taken as input for SVM training, and do the thermal fault diagnosis after getting the optimized SVM classifier. This method supports suggestions for optimizing data center management, it can improve air conditioning efficiency and reduce the energy consumption of the data center. The experimental results show that the maximum detection accuracy is 81.5%.

  8. Pulse wave imaging in normal, hypertensive and aneurysmal human aortas in vivo: a feasibility study

    International Nuclear Information System (INIS)

    Li, Ronny X; Luo, Jianwen; Shahmirzadi, Danial; Konofagou, Elisa E; Balaram, Sandhya K; Chaudhry, Farooq A

    2013-01-01

    Arterial stiffness is a well-established biomarker for cardiovascular risk, especially in the case of hypertension. The progressive stages of an abdominal aortic aneurysm (AAA) have also been associated with varying arterial stiffness. Pulse wave imaging (PWI) is a noninvasive, ultrasound imaging-based technique that uses the pulse wave-induced arterial wall motion to map the propagation of the pulse wave and measure the regional pulse wave velocity (PWV) as an index of arterial stiffness. In this study, the clinical feasibility of PWI was evaluated in normal, hypertensive, and aneurysmal human aortas. Radiofrequency-based speckle tracking was used to estimate the pulse wave-induced displacements in the abdominal aortic walls of normal (N = 15, mean age 32.5 ± 10.2 years), hypertensive (N = 13, mean age 60.8 ± 15.8 years), and aneurysmal (N = 5, mean age 71.6 ± 11.8 years) human subjects. Linear regression of the spatio-temporal variation of the displacement waveform in the anterior aortic wall over a single cardiac cycle yielded the slope as the PWV and the coefficient of determination r 2 as an approximate measure of the pulse wave propagation uniformity. The aortic PWV measurements in all normal, hypertensive, and AAA subjects were 6.03 ± 1.68, 6.69 ± 2.80, and 10.54 ± 6.52 m s −1 , respectively. There was no significant difference (p = 0.15) between the PWVs of the normal and hypertensive subjects while the PWVs of the AAA subjects were significantly higher (p 2 in the AAA subjects was significantly lower (p 2 ) obtained using PWI, in addition to the PWI images and spatio-temporal maps that provide qualitative visualization of the pulse wave, may potentially provide valuable information for the clinical characterization of aneurysms and other vascular pathologies that regionally alter the arterial wall mechanics. (paper)

  9. Impact induced damage assessment by means of Lamb wave image processing

    Science.gov (United States)

    Kudela, Pawel; Radzienski, Maciej; Ostachowicz, Wieslaw

    2018-03-01

    The aim of this research is an analysis of full wavefield Lamb wave interaction with impact-induced damage at various impact energies in order to find out the limitation of the wavenumber adaptive image filtering method. In other words, the relation between impact energy and damage detectability will be shown. A numerical model based on the time domain spectral element method is used for modeling of Lamb wave propagation and interaction with barely visible impact damage in a carbon-epoxy laminate. Numerical studies are followed by experimental research on the same material with an impact damage induced by various energy and also a Teflon insert simulating delamination. Wavenumber adaptive image filtering and signal processing are used for damage visualization and assessment for both numerical and experimental full wavefield data. It is shown that it is possible to visualize and assess the impact damage location, size and to some extent severity by using the proposed technique.

  10. Whole body traveling wave magnetic resonance imaging at high field strength: homogeneity, efficiency, and energy deposition as compared with traditional excitation mechanisms.

    Science.gov (United States)

    Zhang, Bei; Sodickson, Daniel K; Lattanzi, Riccardo; Duan, Qi; Stoeckel, Bernd; Wiggins, Graham C

    2012-04-01

    In 7 T traveling wave imaging, waveguide modes supported by the scanner radiofrequency shield are used to excite an MR signal in samples or tissue which may be several meters away from the antenna used to drive radiofrequency power into the system. To explore the potential merits of traveling wave excitation for whole-body imaging at 7 T, we compare numerical simulations of traveling wave and TEM systems, and juxtapose full-wave electrodynamic simulations using a human body model with in vivo human traveling wave imaging at multiple stations covering the entire body. The simulated and in vivo traveling wave results correspond well, with strong signal at the periphery of the body and weak signal deep in the torso. These numerical results also illustrate the complicated wave behavior that emerges when a body is present. The TEM resonator simulation allowed comparison of traveling wave excitation with standard quadrature excitation, showing that while the traveling wave B +1 per unit drive voltage is much less than that of the TEM system, the square of the average B +1 compared to peak specific absorption rate (SAR) values can be comparable in certain imaging planes. Both systems produce highly inhomogeneous excitation of MR signal in the torso, suggesting that B(1) shimming or other parallel transmission methods are necessary for 7 T whole body imaging. Copyright © 2011 Wiley-Liss, Inc.

  11. Protection Heater Design Validation for the LARP Magnets Using Thermal Imaging

    CERN Document Server

    Marchevsky, M; Cheng, D W; Felice, H; Sabbi, G; Salmi, T; Stenvall, A; Chlachidze, G; Ambrosio, G; Ferracin, P; Izquierdo Bermudez, S; Perez, J C; Todesco, E

    2016-01-01

    Protection heaters are essential elements of a quench protection scheme for high-field accelerator magnets. Various heater designs fabricated by LARP and CERN have been already tested in the LARP high-field quadrupole HQ and presently being built into the coils of the high-field quadrupole MQXF. In order to compare the heat flow characteristics and thermal diffusion timescales of different heater designs, we powered heaters of two different geometries in ambient conditions and imaged the resulting thermal distributions using a high-sensitivity thermal video camera. We observed a peculiar spatial periodicity in the temperature distribution maps potentially linked to the structure of the underlying cable. Two-dimensional numerical simulation of heat diffusion and spatial heat distribution have been conducted, and the results of simulation and experiment have been compared. Imaging revealed hot spots due to a current concentration around high curvature points of heater strip of varying cross sections and visuali...

  12. Video imaging measurement of interfacial wave velocity in air-water flow through a horizontal elbow

    Science.gov (United States)

    Al-Wazzan, Amir; Than, Cheok F.; Moghavvemi, Mahmoud; Yew, Chia W.

    2001-10-01

    Two-phase flow in pipelines containing elbows represents a common situation in the oil and gas industries. This study deals with the stratified flow regime between the gas and liquid phase through an elbow. It is of interest to study the change in wave characteristics by measuring the wave velocity and wavelength at the inlet and outlet of the elbow. The experiments were performed under concurrent air-water stratified flow in a horizontal transparent polycarbonate pipe of 0.05m diameter and superficial air and water velocities up to 8.97 and 0.0778 m/s respectively. A non-intrusive video imaging technique was applied to capture the waves. For image analysis, a frame by frame direct overlapping method was used to detect for pulsating flow and a pixel shifting method based on the detection of minimum values in the overlap function was used to determine wave velocity and wavelength. Under superficial gas velocity of less than 4.44 m/s, the results suggest a regular pulsating outflow produced by the elbow. At higher gas velocities, more random pulsation was found and the emergence of localized interfacial waves was detected. Wave velocities measured by this technique were found to produce satisfactory agreement with direct measurements.

  13. Thermal imaging experiments on ANACONDA ion beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weihua; Yatsui, Kiyoshi [Nagaoka University of Technology (Japan). Lab. of Beam Technology; Olson, C J; Davis, H A [Los Alamos National Laboratory, Los Alamos, NM (United States)

    1997-12-31

    The thermal imaging technique was used in two experimental measurements. First, the ion intensity distribution on the anode surface was observed from different angles by using a multi-pinhole camera. Second, the plume from a target intercepting the beam was visualized by observing the distribution of temperature increase on a thin plate hit by the plume. (author). 6 figs., 4 refs.

  14. A Novel, Aqueous Surface Treatment To Thermally Stabilize High Resolution Positive Photoresist Images*

    Science.gov (United States)

    Grunwald, John J.; Spencer, Allen C.

    1986-07-01

    The paper describes a new approach to thermally stabilize the already imaged profile of high resolution positive photoresists such as ULTRAMAC" PR-914. ***XD-4000, an aqueous emulsion of a blend of fluorine-bearing compounds is spun on top of the developed, positive photoresist-imaged wafer, and baked. This allows the photoresist to withstand temperatures up to at least 175 deg. C. while essentially maintaining vertical edge profiles. Also, adverse effects of "outgassing" in harsh environments, ie., plasma and ion implant are greatly minimized by allowing the high resolution imaged photoresist to be post-baked at "elevated" temperatures. Another type of product that accomplishes the same effect is ***XD-4005, an aqueous emulsion of a high temperature-resistant polymer. While the exact mechanism is yet to be identified, it is postulated that absorption of the "polymeric" species into the "skin" of the imaged resist forms a temperature resistant "envelope", thereby allowing high resolution photoresists to also serve in a "high temperature" mode, without reticulation, or other adverse effects due to thermal degradation. SEM's are presented showing imaged ULTRAMAC" PR-914 and ULTRAMAC" **EPA-914 geometries coated with XD-4000 or XD-4005 and followed by plasma etched oxide,polysilicon and aluminum. Selectivity ratios are compared with and without the novel treatment and are shown to be significantly better with the treatment. The surface-treated photoresist for thermal resistance remains easily strippable in solvent-based or plasma media, unlike photoresists that have undergone "PRIST" or other gaseous thermal stabilization methods.

  15. Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium

    Science.gov (United States)

    Mongiovì, Maria Stella; Jou, David; Sciacca, Michele

    2018-01-01

    ballistic regimes, from isotropic to anisotropic situations, are analyzed, thus providing a wide range of practical applications. Besides the steady-state effective thermal conductivity, the propagation of harmonic waves is also studied, motivated by the fact that vortex line density is experimentally detected via the attenuation of second sound and because it provides dynamical information on heat transport and thermal waves which complement the static information of the thermal conductivity.

  16. Experimental investigation on the caries characteristic of dental tissues by photothermal radiometry scanning imaging

    Science.gov (United States)

    Wang, Fei; Liu, Jun-yan; Wang, Xiao-chun; Wang, Yang

    2018-03-01

    In this paper, a one-dimensional (1D) thermal-wave model coupled diffuse-photon-density-wave for three-layer dental tissues using modulated laser stimulation was employed to illustrate the relationship between dental caries characteristic (i.e. caries layer thickness, optical absorption coefficient and optical scattering coefficient) and photothermal radiometry (PTR) signal. Experimental investigation of artificial caries was carried out using PTR scanning imaging. The PTR amplitude and phase delay were increased with dental demineralized treatment. The local caries characteristic parameters were obtained by the best-fitting method based on the 1D thermal-wave model. The PTR scanning imaging measurements illustrated that the optical absorption coefficient and scattering coefficient of caries region were much higher than those of the healthy enamel area. The demineralization thickness of caries region was measured by PTR scanning imaging and its average value shows in good agreement with the digital microscope. Experimental results show that PTR scanning imaging has the merits of high contrast for local inhomogeneity of dental caries; furthermore, this method is an allowance to provide a flexibility for non-contact quantitative evaluation of dental caries.

  17. Machine-Learning-Based Future Received Signal Strength Prediction Using Depth Images for mmWave Communications

    OpenAIRE

    Okamoto, Hironao; Nishio, Takayuki; Nakashima, Kota; Koda, Yusuke; Yamamoto, Koji; Morikura, Masahiro; Asai, Yusuke; Miyatake, Ryo

    2018-01-01

    This paper discusses a machine-learning (ML)-based future received signal strength (RSS) prediction scheme using depth camera images for millimeter-wave (mmWave) networks. The scheme provides the future RSS prediction of any mmWave links within the camera's view, including links where nodes are not transmitting frames. This enables network controllers to conduct network operations before line-of-sight path blockages degrade the RSS. Using the ML techniques, the prediction scheme automatically...

  18. Experimental Study On Thermal Wave Type Adsorption Refrigeration System Working On A Pair Of Activated Carbon And Methanol

    Directory of Open Access Journals (Sweden)

    Grzebielec Andrzej

    2015-12-01

    Full Text Available The aim of the study was to examine the efficiency of the thermal wave type adsorption refrigerating equipment working on a pair of activated carbon and methanol. Adsorption units can work in trigeneration systems and in applications driven by waste heat. They can be built also as a part of hybrid sorption-compressor systems, and they are very popular in solar refrigeration systems and energy storage units. The device examined in this study operates in a special mode called thermal wave. This mode allows to achieve higher efficiency rates than the normal mode of operation, as a significant contributor to transport heat from one to the other adsorber. To carry out the experiment a test bench was built, consisting of two cylindrical adsorbers filled with activated carbon, condenser, evaporator, oil heater and two oil coolers. Thermal oil circulation was responsible for providing and receiving heat from adsorbers. In order to perform the correct action a special control algorithm device was developed and implemented to keep the temperature in the evaporator at a preset level. The experimental results show the operating parameters changes in both adsorbers. Obtained COP (coefficient of performance for the cycle was 0.13.

  19. Near-IR imaging of thermal changes in enamel during laser ablation

    Science.gov (United States)

    Maung, Linn H.; Lee, Chulsung; Fried, Daniel

    2010-02-01

    The objective of this work was to observe the various thermal-induced optical changes that occur in the near-infrared (NIR) during drilling in dentin and enamel with the laser and the high-speed dental handpiece. Tooth sections of ~ 3 mm-thickness were prepared from extracted human incisors (N=60). Samples were ablated with a mechanically scanned CO2 laser operating at a wavelength of 9.3-μm, a 300-Hz laser pulse repetition rate, and a laser pulse duration of 10-20 μs. An InGaAs imaging camera was used to acquire real-time NIR images at 1300-nm of thermal and mechanical changes (cracks). Enamel was rapidly removed by the CO2 laser without peripheral thermal damage by mechanically scanning the laser beam while a water spray was used to cool the sample. Comparison of the peripheral thermal and mechanical changes produced while cutting with the laser and the high-speed hand-piece suggest that enamel and dentin can be removed at high speed by the CO2 laser without excessive peripheral thermal or mechanical damage. Only 2 of the 15 samples ablated with the laser showed the formation of small cracks while 9 out of 15 samples exhibited crack formation with the dental hand-piece. The first indication of thermal change is a decrease in transparency due to loss of the mobile water from pores in the enamel which increase lightscattering. To test the hypothesis that peripheral thermal changes were caused by loss of mobile water in the enamel, thermal changes were intentionally induced by heating the surface. The mean attenuation coefficient of enamel increased significantly from 2.12 +/- 0.82 to 5.08 +/- 0.98 with loss of mobile water due to heating.

  20. Radiation-induced thermoacoustic imaging

    International Nuclear Information System (INIS)

    Bowen, T.

    1984-01-01

    This invention provides a new technique for obtaining information non-invasively on the composition and structures of a material or body by detecting radiation-induced thermoacoustic image features. This is accomplished by utilizing the acoustic wave generated by sudden thermal stress. The sudden thermal stress is induced by a pulse of radiation which deposits energy causing a rapid, but very small, rise of temperature (typically, ΔT approximately 10sup(-6) - 10sup(-5) deg C). The radiation may be ionizing radiation, such as high energy electrons, photons (x-rays), neutrons, or other charged particles or it may be non-ionizing radiation, such as R.F. and microwave electromagnetic radiation and ultrasonic radiation. The choice of radiation depends on the nature of the body to be imaged and the type of information desired

  1. Pest damage assessment in fruits and vegetables using thermal imaging

    Science.gov (United States)

    Vadakkapattu Canthadai, Badrinath; Muthuraju, M. Esakki; Pachava, Vengalrao; Sengupta, Dipankar

    2015-05-01

    In some fruits and vegetables, it is difficult to visually identify the ones which are pest infested. This particular aspect is important for quarantine and commercial operations. In this article, we propose to present the results of a novel technique using thermal imaging camera to detect the nature and extent of pest damage in fruits and vegetables, besides indicating the level of maturity and often the presence of the pest. Our key idea relies on the fact that there is a difference in the heat capacity of normal and damaged ones and also observed the change in surface temperature over time that is slower in damaged ones. This paper presents the concept of non-destructive evaluation using thermal imaging technique for identifying pest damage levels of fruits and vegetables based on investigations carried out on random samples collected from a local market.

  2. Enabling real-time ultrasound imaging of soft tissue mechanical properties by simplification of the shear wave motion equation.

    Science.gov (United States)

    Engel, Aaron J; Bashford, Gregory R

    2015-08-01

    Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.

  3. Diagnosis of Fibrosis and Activity by a Combined Use of Strain and Shear Wave Imaging in Patients with Liver Disease.

    Science.gov (United States)

    Yada, Norihisa; Tamaki, Nobuhura; Koizumi, Yohei; Hirooka, Masashi; Nakashima, Osamu; Hiasa, Yoichi; Izumi, Namiki; Kudo, Masatoshi

    2017-01-01

    Performing shear wave imaging is simple, but can be difficult when inflammation, jaundice, and congestion are present. Therefore, the correct diagnosis of liver fibrosis using shear wave imaging alone might be difficult in mild-to-moderate fibrosis cases. Strain imaging can diagnose liver fibrosis without the influence of inflammation. Therefore, the combined use of strain and shear wave imaging (combinational elastography) for cases without jaundice and congestion might be useful for evaluating fibrosis and inflammation. We enrolled consecutive patients with liver disease, without jaundice or liver congestion. Strain and shear wave imaging, blood tests, and liver biopsy were performed on the same day. The liver fibrosis index (LF index) was calculated by strain imaging; real-time tissue elastography, and the shear wave velocity (Vs) was calculated by shear wave imaging. Fibrosis index (F index) and activity index (A index) were calculated as a multiple regression equation for determining hepatic fibrosis and inflammation using histopathological diagnosis as the gold standard. The diagnostic ability of F index for fibrosis and A index for inflammation were compared using LF index and Vs. The total number of enrolled cases was 388. The area under the receiver operating characteristic (AUROC) was 0.87, 0.80, 0.83, and 0.80, at diagnosis of fibrosis stage with an F index of F1 or higher, F2 or higher, F3 or higher, and F4, respectively. The AUROC was 0.94, 0.74, and 0.76 at diagnosis of activity grade with an A index of A1 or higher, A2 or higher, and A3, respectively. The diagnostic ability of F index for liver fibrosis and A index for inflammation was higher than for other conventional diagnostic values. The combined use of strain and shear wave imaging (combinational elastography) might increase the positive diagnosis of liver fibrosis and inflammation. © 2017 S. Karger AG, Basel.

  4. A Novel Passive Millimeter Imager for Broad-Area Search - Final Report on Project PL09-NPMI-PD07 (PNNL-55180)

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Jonathan R.; Bernacki, Bruce E.; Kelly, James F.; Sheen, David M.; Harris, Robert V.; Hall, Thomas E.; Hatchell, Brian K.; Knopik, Clint D.; Lechelt, Wayne M.; McMakin, Douglas L.; Mendoza, Albert; Severtsen, Ronald H.; Valdez, Patrick LJ

    2011-12-31

    This report describes research and development efforts toward a novel passive millimeter-wave (mm-wave) electromagnetic imaging device for broad-area search. It addresses the technical challenge of detecting anomalies that occupy a small fraction of a pixel. The purpose of the imager is to pinpoint suspicious locations for cuing subsequent higher-resolution imaging. The technical basis for the approach is to exploit thermal and polarization anomalies that distinguish man-made features from natural features.

  5. Night vision imaging system design, integration and verification in spacecraft vacuum thermal test

    Science.gov (United States)

    Shang, Yonghong; Wang, Jing; Gong, Zhe; Li, Xiyuan; Pei, Yifei; Bai, Tingzhu; Zhen, Haijing

    2015-08-01

    The purposes of spacecraft vacuum thermal test are to characterize the thermal control systems of the spacecraft and its component in its cruise configuration and to allow for early retirement of risks associated with mission-specific and novel thermal designs. The orbit heat flux is simulating by infrared lamp, infrared cage or electric heater. As infrared cage and electric heater do not emit visible light, or infrared lamp just emits limited visible light test, ordinary camera could not operate due to low luminous density in test. Moreover, some special instruments such as satellite-borne infrared sensors are sensitive to visible light and it couldn't compensate light during test. For improving the ability of fine monitoring on spacecraft and exhibition of test progress in condition of ultra-low luminous density, night vision imaging system is designed and integrated by BISEE. System is consist of high-gain image intensifier ICCD camera, assistant luminance system, glare protect system, thermal control system and computer control system. The multi-frame accumulation target detect technology is adopted for high quality image recognition in captive test. Optical system, mechanical system and electrical system are designed and integrated highly adaptable to vacuum environment. Molybdenum/Polyimide thin film electrical heater controls the temperature of ICCD camera. The results of performance validation test shown that system could operate under vacuum thermal environment of 1.33×10-3Pa vacuum degree and 100K shroud temperature in the space environment simulator, and its working temperature is maintains at 5° during two-day test. The night vision imaging system could obtain video quality of 60lp/mm resolving power.

  6. Thermal fluctuation based study of aqueous deficient dry eyes by non-invasive thermal imaging.

    Science.gov (United States)

    Azharuddin, Mohammad; Bera, Sumanta Kr; Datta, Himadri; Dasgupta, Anjan Kr

    2014-03-01

    In this paper we have studied the thermal fluctuation patterns occurring at the ocular surface of the left and right eyes for aqueous deficient dry eye (ADDE) patients and control subjects by thermal imaging. We conducted our experiment on 42 patients (84 eyes) with aqueous deficient dry eyes and compared with 36 healthy volunteers (72 eyes) without any history of ocular surface disorder. Schirmer's test, Tear Break-up Time, tear Meniscus height and fluorescein staining tests were conducted. Ocular surface temperature measurement was done, using an FL-IR thermal camera and thermal fluctuation in left and right eyes was calculated and analyzed using MATLAB. The time series containing the sum of squares of the temperature fluctuation on the ocular surface were compared for aqueous deficient dry eye and control subjects. Significant statistical difference between the fluctuation patterns for control and ADDE was observed (p eyes are significantly correlated in controls but not in ADDE subjects. The possible origin of such correlation in control and lack of correlation in the ADDE subjects is discussed in the text. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Image system analysis of human eye wave-front aberration on the basis of HSS

    Science.gov (United States)

    Xu, Ancheng

    2017-07-01

    Hartmann-Shack sensor (HSS) has been used in objective measurement of human eye wave-front aberration, but the research on the effects of sampling point size on the accuracy of the result has not been reported. In this paper, point spread function (PSF) of the whole system mathematical model was obtained via measuring the optical imaging system structure of human eye wave-front aberration measurement. The impact of Airy spot size on the accuracy of system was analyzed. Statistics study show that the geometry of Airy spot size of the ideal light source sent from eye retina formed on the surface of HSS is far smaller than the size of the HSS sample point image used in the experiment. Therefore, the effect of Airy spot on the precision of the system can be ignored. This study theoretically and experimentally justifies the reliability and accuracy of human eye wave-front aberration measurement based on HSS.

  8. Electromechanical wave imaging and electromechanical wave velocity estimation in a large animal model of myocardial infarction

    Science.gov (United States)

    Costet, Alexandre; Melki, Lea; Sayseng, Vincent; Hamid, Nadira; Nakanishi, Koki; Wan, Elaine; Hahn, Rebecca; Homma, Shunichi; Konofagou, Elisa

    2017-12-01

    Echocardiography is often used in the clinic for detection and characterization of myocardial infarction. Electromechanical wave imaging (EWI) is a non-invasive ultrasound-based imaging technique based on time-domain incremental motion and strain estimation that can evaluate changes in contractility in the heart. In this study, electromechanical activation is assessed in infarcted heart to determine whether EWI is capable of detecting and monitoring infarct formation. Additionally, methods for estimating electromechanical wave (EW) velocity are presented, and changes in the EW propagation velocity after infarct formation are studied. Five (n  =  5) adult mongrels were used in this study. Successful infarct formation was achieved in three animals by ligation of the left anterior descending (LAD) coronary artery. Dogs were survived for a few days after LAD ligation and monitored daily with EWI. At the end of the survival period, dogs were sacrificed and TTC (tetrazolium chloride) staining confirmed the formation and location of the infarct. In all three dogs, as soon as day 1 EWI was capable of detecting late-activated and non-activated regions, which grew over the next few days. On final day images, the extent of these regions corresponded to the location of infarct as confirmed by staining. EW velocities in border zones of infarct were significantly lower post-infarct formation when compared to baseline, whereas velocities in healthy tissues were not. These results indicate that EWI and EW velocity might help with the detection of infarcts and their border zones, which may be useful for characterizing arrhythmogenic substrate.

  9. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    Science.gov (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  10. Microwave Thermal Propulsion

    Science.gov (United States)

    Parkin, Kevin L. G.; Lambot, Thomas

    2017-01-01

    We have conducted research in microwave thermal propulsion as part of the space exploration access technologies (SEAT) research program, a cooperative agreement (NNX09AF52A) between NASA and Carnegie Mellon University. The SEAT program commenced on the 19th of February 2009 and concluded on the 30th of September 2015. The DARPA/NASA Millimeter-wave Thermal Launch System (MTLS) project subsumed the SEAT program from May 2012 to March 2014 and one of us (Parkin) served as its principal investigator and chief engineer. The MTLS project had no final report of its own, so we have included the MTLS work in this report and incorporate its conclusions here. In the six years from 2009 until 2015 there has been significant progress in millimeter-wave thermal rocketry (a subset of microwave thermal rocketry), most of which has been made under the auspices of the SEAT and MTLS programs. This final report is intended for multiple audiences. For researchers, we present techniques that we have developed to simplify and quantify the performance of thermal rockets and their constituent technologies. For program managers, we detail the facilities that we have built and the outcomes of experiments that were conducted using them. We also include incomplete and unfruitful lines of research. For decision-makers, we introduce the millimeter-wave thermal rocket in historical context. Considering the economic significance of space launch, we present a brief but significant cost-benefit analysis, for the first time showing that there is a compelling economic case for replacing conventional rockets with millimeter-wave thermal rockets.

  11. A universal mirror wave-mode threshold condition for non-thermal space plasma environments

    Directory of Open Access Journals (Sweden)

    M. P. Leubner

    2002-01-01

    Full Text Available Magnetic fluctuations are recognized in a large variety of space plasmas by increasingly high resolution, in situ observations as mirror wave mode structures. A typical requirement for the excitation of mirror modes is a dominant perpendicular pressure in a high-beta plasma environment. Contrary, we demonstrate from a realistic kinetic analysis how details of the velocity space distributions are of considerable significance for the instability threshold. Introducing the most common characteristics of observed ion and electron distributions by a mixed suprathermal-loss-cone, we derive a universal mirror instability criterion from an energy principle for collisionless plasmas. As a result, the transition from two temperature Maxwellians to realistic non-thermal features provides a strong source for the generation of mirror wave mode activity, reducing drastically the instability threshold. In particular, a number of space-related examples illuminate how the specific structure of the velocity space distribution dominates as a regulating excitation mechanism over the effects related to changes in the plasma parameters.

  12. Joseph F. Keithley Award For Advances in Measurement Science Lecture: Thermophotonic and Photoacoustic Radar Imaging Methods for Biomedical and Dental Imaging

    Science.gov (United States)

    Mandelis, Andreas

    2012-02-01

    In the first part of this presentation I will introduce thermophotonic radar imaging principles and techniques using chirped or binary-phase-coded modulation, methods which can break through the maximum detection depth/depth resolution limitations of conventional photothermal waves. Using matched-filter principles, a methodology enabling parabolic diffusion-wave energy fields to exhibit energy localization akin to propagating hyperbolic wave-fields has been developed. It allows for deconvolution of individual responses of superposed axially discrete sources, opening a new field: depth-resolved thermal coherence tomography. Several examples from dental enamel caries diagnostic imaging to metal subsurface defect thermographic imaging will be discussed. The second part will introduce the field of photoacoustic radar (or sonar) biomedical imaging. I will report the development of a novel biomedical imaging system that utilizes a continuous-wave laser source with a custom intensity modulation pattern, ultrasonic phased array for signal detection and processing coupled with a beamforming algorithm for reconstruction of photoacoustic correlation images. Utilization of specific chirped modulation waveforms (``waveform engineering'') achieves dramatic signal-to-noise-ratio increase and improved axial resolution over pulsed laser photoacoustics. The talk will conclude with aspects of instrumental sensitivity of the PA Radar to optical contrast using cancerous breast tissue-mimicking phantoms, super paramagnetic iron oxide nanoparticles as contrast enhancement agents and in-vivo tissue samples.

  13. Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various sources of bathymetric information

    Science.gov (United States)

    Legleiter, Carl; Kinzel, Paul J.; Nelson, Jonathan M.

    2017-01-01

    Although river discharge is a fundamental hydrologic quantity, conventional methods of streamgaging are impractical, expensive, and potentially dangerous in remote locations. This study evaluated the potential for measuring discharge via various forms of remote sensing, primarily thermal imaging of flow velocities but also spectrally-based depth retrieval from passive optical image data. We acquired thermal image time series from bridges spanning five streams in Alaska and observed strong agreement between velocities measured in situ and those inferred by Particle Image Velocimetry (PIV), which quantified advection of thermal features by the flow. The resulting surface velocities were converted to depth-averaged velocities by applying site-specific, calibrated velocity indices. Field spectra from three clear-flowing streams provided strong relationships between depth and reflectance, suggesting that, under favorable conditions, spectrally-based bathymetric mapping could complement thermal PIV in a hybrid approach to remote sensing of river discharge; this strategy would not be applicable to larger, more turbid rivers, however. A more flexible and efficient alternative might involve inferring depth from thermal data based on relationships between depth and integral length scales of turbulent fluctuations in temperature, captured as variations in image brightness. We observed moderately strong correlations for a site-aggregated data set that reduced station-to-station variability but encompassed a broad range of depths. Discharges calculated using thermal PIV-derived velocities were within 15% of in situ measurements when combined with depths measured directly in the field or estimated from field spectra and within 40% when the depth information also was derived from thermal images. The results of this initial, proof-of-concept investigation suggest that remote sensing techniques could facilitate measurement of river discharge.

  14. Wave Height Estimation from Shadowing Based on the Acquired X-Band Marine Radar Images in Coastal Area

    Directory of Open Access Journals (Sweden)

    Yanbo Wei

    2017-08-01

    Full Text Available In this paper, the retrieving significant wave height from X-band marine radar images based on shadow statistics is investigated, since the retrieving accuracy can not be seriously affected by environmental factors and the method has the advantage of without any external reference to calibrate. However, the accuracy of the significant wave height estimated from the radar image acquired at the near-shore area is not ideal. To solve this problem, the effect of water depth is considered in the theoretical derivation of estimated wave height based on the sea surface slope. And then, an improved retrieving algorithm which is suitable for both in deep water area and shallow water area is developed. In addition, the radar data are sparsely processed in advance in order to achieve high quality edge image for the requirement of shadow statistic algorithm, since the high resolution radar images will lead to angle-blurred for the image edge detection and time-consuming in the estimation of sea surface slope. The data acquired from Pingtan Test Base in Fujian Province were used to verify the effectiveness of the proposed algorithm. The experimental results demonstrate that the improved method which takes into account the water depth is more efficient and effective and has better performance for retrieving significant wave height in the shallow water area, compared to the in situ buoy data as the ground truth and that of the existing shadow statistic method.

  15. TIRCIS: A Thermal Infrared, Compact Imaging Spectrometer for Small Satellite Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will demonstrate how hyperspectral thermal infrared (TIR; 8-14 microns) image data, with a spectral resolution of up to 8 wavenumbers, can be acquired...

  16. Registering parameters and granules of wave observations: IMAGE RPI success story

    Science.gov (United States)

    Galkin, I. A.; Charisi, A.; Fung, S. F.; Benson, R. F.; Reinisch, B. W.

    2015-12-01

    Modern metadata systems strive to help scientists locate data relevant to their research and then retrieve them quickly. Success of this mission depends on the organization and completeness of metadata. Each relevant data resource has to be registered; each content has to be described; each data file has to be accessible. Ultimately, data discoverability is about the practical ability to describe data content and location. Correspondingly, data registration has a "Parameter" level, at which content is specified by listing available observed properties (parameters), and a "Granule" level, at which download links are given to data records (granules). Until recently, both parameter- and granule-level data registrations were accomplished at NASA Virtual System Observatory easily by listing provided parameters and building Granule documents with URLs to the datafile locations, usually those at NASA CDAWeb data warehouse. With the introduction of the Virtual Wave Observatory (VWO), however, the parameter/granule concept faced a scalability challenge. The wave phenomenon content is rich with descriptors of the wave generation, propagation, interaction with propagation media, and observation processes. Additionally, the wave phenomenon content varies from record to record, reflecting changes in the constituent processes, making it necessary to generate granule documents at sub-minute resolution. We will present the first success story of registering 234,178 records of IMAGE Radio Plasma Imager (RPI) plasmagram data and Level 2 derived data products in ESPAS (near-Earth Space Data Infrastructure for e-Science), using the VWO-inspired wave ontology. The granules are arranged in overlapping display and numerical data collections. Display data include (a) auto-prospected plasmagrams of potential interest, (b) interesting plasmagrams annotated by human analysts or software, and (c) spectacular plasmagrams annotated by analysts as publication-quality examples of the RPI science

  17. Kalman filtered MR temperature imaging for laser induced thermal therapies.

    Science.gov (United States)

    Fuentes, D; Yung, J; Hazle, J D; Weinberg, J S; Stafford, R J

    2012-04-01

    The feasibility of using a stochastic form of Pennes bioheat model within a 3-D finite element based Kalman filter (KF) algorithm is critically evaluated for the ability to provide temperature field estimates in the event of magnetic resonance temperature imaging (MRTI) data loss during laser induced thermal therapy (LITT). The ability to recover missing MRTI data was analyzed by systematically removing spatiotemporal information from a clinical MR-guided LITT procedure in human brain and comparing predictions in these regions to the original measurements. Performance was quantitatively evaluated in terms of a dimensionless L(2) (RMS) norm of the temperature error weighted by acquisition uncertainty. During periods of no data corruption, observed error histories demonstrate that the Kalman algorithm does not alter the high quality temperature measurement provided by MR thermal imaging. The KF-MRTI implementation considered is seen to predict the bioheat transfer with RMS error 10 sec.

  18. Space-based gravitational-wave detectors can determine the thermal history of the early Universe

    International Nuclear Information System (INIS)

    Nakayama, Kazunori; Saito, Shun; Suwa, Yudai; Yokoyama, Jun'ichi

    2008-01-01

    It is shown that space-based gravitational-wave detectors such as DECIGO and/or the Big Bang Observer will provide us with invaluable information on the cosmic thermal history after inflation, and they will be able to determine the reheat temperature T R provided that it lies in the range preferred by the cosmological gravitino problem, T R ∼10 5-9 GeV. Therefore it is strongly desired that they will be put into practice as soon as possible

  19. Multi-material classification of dry recyclables from municipal solid waste based on thermal imaging.

    Science.gov (United States)

    Gundupalli, Sathish Paulraj; Hait, Subrata; Thakur, Atul

    2017-12-01

    There has been a significant rise in municipal solid waste (MSW) generation in the last few decades due to rapid urbanization and industrialization. Due to the lack of source segregation practice, a need for automated segregation of recyclables from MSW exists in the developing countries. This paper reports a thermal imaging based system for classifying useful recyclables from simulated MSW sample. Experimental results have demonstrated the possibility to use thermal imaging technique for classification and a robotic system for sorting of recyclables in a single process step. The reported classification system yields an accuracy in the range of 85-96% and is comparable with the existing single-material recyclable classification techniques. We believe that the reported thermal imaging based system can emerge as a viable and inexpensive large-scale classification-cum-sorting technology in recycling plants for processing MSW in developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Improving the analysis of biogeochemical patterns associated with internal waves in the strait of Gibraltar using remote sensing images

    Science.gov (United States)

    Navarro, Gabriel; Vicent, Jorge; Caballero, Isabel; Gómez-Enri, Jesús; Morris, Edward P.; Sabater, Neus; Macías, Diego; Bolado-Penagos, Marina; Gomiz, Juan Jesús; Bruno, Miguel; Caldeira, Rui; Vázquez, Águeda

    2018-05-01

    High Amplitude Internal Waves (HAIWs) are physical processes observed in the Strait of Gibraltar (the narrow channel between the Atlantic Ocean and the Mediterranean Sea). These internal waves are generated over the Camarinal Sill (western side of the strait) during the tidal outflow (toward the Atlantic Ocean) when critical hydraulic conditions are established. HAIWs remain over the sill for up to 4 h until the outflow slackens, being then released (mostly) towards the Mediterranean Sea. These have been previously observed using Synthetic Aperture Radar (SAR), which captures variations in surface water roughness. However, in this work we use high resolution optical remote sensing, with the aim of examining the influence of HAIWs on biogeochemical processes. We used hyperspectral images from the Hyperspectral Imager for the Coastal Ocean (HICO) and high spatial resolution (10 m) images from the MultiSpectral Instrument (MSI) onboard the Sentinel-2A satellite. This work represents the first attempt to examine the relation between internal wave generation and the water constituents of the Camarinal Sill using hyperspectral and high spatial resolution remote sensing images. This enhanced spatial and spectral resolution revealed the detailed biogeochemical patterns associated with the internal waves and suggests local enhancements of productivity associated with internal waves trains.

  1. Geometrical Reasoning in Wave Situations: The Case of Light Diffraction and Coherent Illumination Optical Imaging

    Science.gov (United States)

    Maurines, Laurence

    2010-01-01

    This particular study is part of a research programme on the difficulties encountered by students when learning about wave phenomena in a three-dimensional medium in the absence or presence of obstacles. It focuses on how students reason in situations in which wave optics need to be used: diffraction of light by an aperture, imaging in the…

  2. Contribution of thermal infrared images on the understanding of the subsurface/atmosphere exchanges on Earth.

    Science.gov (United States)

    Lopez, Teodolina; Antoine, Raphaël; Baratoux, David; Rabinowicz, Michel

    2017-04-01

    High temporal resolution of space-based thermal infrared images (METEOSAT, MODIS) and the development of field thermal cameras have permitted the development of thermal remote sensing in Earth Sciences. Thermal images are influenced by many factors such as atmosphere, solar radiation, topography and physico-chemical properties of the surface. However, considering these limitations, we have discovered that thermal images can be used in order to better understand subsurface hydrology. In order to reduce as much as possible the impact of these perturbing factors, our approach combine 1) field observations and 2) numerical modelling of surface/subsurface thermal processes. Thermal images of the Piton de la Fournaise volcano (Réunion Island), acquired by hand, show that the Formica Leo inactive scoria cone and some fractures close to the Bory-Dolomieu caldera are always warmer, inducing a thermal difference with the surrounding of at least 5°C and a Self-Potential anomaly [1, 2]. Topography cannot explain this thermal behaviour, but Piton de la Fournaise is known as highly permeable. This fact allows the development of an air convection within the whole permeable structure volcanic edifice [2]. Cold air enters the base of the volcano, and exits warmer upslope, as the air is warmed by the geothermal flow [1,2]. Then, we have decided to understand the interaction between subsurface hydrogeological flows and the humidity in the atmosphere. In the Lake Chad basin, regions on both sides of Lake Chad present a different thermal behaviour during the diurnal cycle and between seasons [3]. We propose that this thermal behaviour can only be explained by lateral variations of the surface permeability that directly impact the process of evaporation/condensation cycle. These studies bring new highlights on the understanding of the exchanges between subsurface and the atmosphere, as the presence of a very permeable media and/or variations of the surface permeability may enhance or

  3. Assessment of health risks related to the use of a millimetre wave body scanner Eqo. Anses opinion. Collective expertise report

    International Nuclear Information System (INIS)

    Agnani, Jean-Benoit; Dore, Jean-Francois; Ducimetiere, Pierre; Behar-Cohen, Francine; Le Drean, Yves; Letertre, Thierry; Ndagijimana, Fabien; Hours, Martine; Bertho, Jean-Marc; Cesarini, Jean-Pierre; Couturier, Frederic; El Khatib, Aicha; Feltin, Nicolas; Flahaut, Emmanuel; Gaffet, Eric; Muzet, Alain; Lafaye, Murielle; Lepoutre, Philippe; Martinsons, Christophe; Mouneyrac, Catherine; Sicard, Yves; Soyez, Alain; Toppila, Esko; Yardin, Catherine; Fite, Johanna; Saddoki, Sophia; Merckel, Olivier

    2012-07-01

    The Eqo is a body scanner which allows images of the whole body to be obtained for safety purposes, without any exposure to ionising radiations, in a reliable and non-intrusive way in comparison with pat-down searching. Its technology is based on the use of so-called 'millimetre' waves. This expertise report is an answer to a public body request for an assessment of health risks related to the use of such a device. The authors first present the context of this investigation, and the Eqo gantry (operation, physical parameters, obtained image, control capacity, gantry usage). They report the assessment of electromagnetic field levels emitted by the Eqo gantry (measurement conditions, measurements), and the assessment of exposure to millimetre waves in relationship with the use of the Eqo gantry as far as passengers, airport workers and flight crews, operators, and testers are concerned. After a presentation of the potential health and biological effects of waves with a frequency higher than 1 GHz, the authors also report an assessment of health risks related to the use of Eqo (depth of penetration of waves into the body, issue of potential thermal and non thermal effects). Some recommendations are made

  4. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU).

    Science.gov (United States)

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E

    2015-11-03

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging.

  5. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.

    Science.gov (United States)

    Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H

    2014-11-01

    Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. An efficient method for facial component detection in thermal images

    Science.gov (United States)

    Paul, Michael; Blanik, Nikolai; Blazek, Vladimir; Leonhardt, Steffen

    2015-04-01

    A method to detect certain regions in thermal images of human faces is presented. In this approach, the following steps are necessary to locate the periorbital and the nose regions: First, the face is segmented from the background by thresholding and morphological filtering. Subsequently, a search region within the face, around its center of mass, is evaluated. Automatically computed temperature thresholds are used per subject and image or image sequence to generate binary images, in which the periorbital regions are located by integral projections. Then, the located positions are used to approximate the nose position. It is possible to track features in the located regions. Therefore, these regions are interesting for different applications like human-machine interaction, biometrics and biomedical imaging. The method is easy to implement and does not rely on any training images or templates. Furthermore, the approach saves processing resources due to simple computations and restricted search regions.

  7. Ultrasound elastographic imaging of thermal lesions and temperature profiles during radiofrequency ablation

    Science.gov (United States)

    Techavipoo, Udomchai

    Manual palpation to sense variations in tissue stiffness for disease diagnosis has been regularly performed by clinicians for centuries. However, it is generally limited to large and superficial structures and the ability of the physician performing the palpation. Imaging of tissue stiffness or elastic properties via the aid of modern imaging such as ultrasound and magnetic resonance imaging, referred to as elastography, enhances the capability for disease diagnosis. In addition, elastography could be used for monitoring tissue response to minimally invasive ablative therapies, which are performed percutaneously to destruct tumors with minimum damage to surrounding tissue. Monitoring tissue temperature during ablation is another approach to estimate tissue damage. The ultimate goal of this dissertation is to improve the image quality of elastograms and temperature profiles for visualizing thermal lesions during and after ablative therapies. Elastographic imaging of thermal lesions is evaluated by comparison of sizes, shapes, and volumes with the results obtained using gross pathology. Semiautomated segmentation of lesion boundaries on elastograms is also developed. It provides comparable results to those with manual segmentation. Elastograms imaged during radiofrequency ablation in vitro show that the impact of gas bubbles during ablation on the ability to delineate the thermal lesion is small. Two novel methods to reduce noise artifacts in elastograms, and an accurate estimation of displacement vectors are proposed. The first method applies wavelet-denoising algorithms to the displacement estimates. The second method utilizes angular compounding of the elastograms generated using ultrasound signal frames acquired from different insonification angles. These angular frames are also utilized to estimate all tissue displacement vector components in response to a deformation. These enable the generation of normal and shear strain elastograms and Poisson's ratio

  8. Imaging radar observations of Farley Buneman waves during the JOULE II experiment

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2008-07-01

    Full Text Available Vector electric fields and associated E×B drifts measured by a sounding rocket in the auroral zone during the NASA JOULE II experiment in January 2007, are compared with coherent scatter spectra measured by a 30 MHz radar imager in a common volume. Radar imaging permits precise collocation of the spectra with the background electric field. The Doppler shifts and spectral widths appear to be governed by the cosine and sine of the convection flow angle, respectively, and also proportional to the presumptive ion acoustic speed. The neutral wind also contributes to the Doppler shifts. These findings are consistent with those from the JOULE I experiment and also with recent numerical simulations of Farley Buneman waves and instabilities carried out by Oppenheim et al. (2008. Simple linear analysis of the waves offers some insights into the spectral moments. A formula relating the spectral width to the flow angle, ion acoustic speed, and other ionospheric parameters is derived.

  9. Passive millimeter wave imaging and spectroscopy system for terrestrial remote sensing

    Science.gov (United States)

    Gopalsami, Nachappa; Liao, Shaolin; Koehl, Eugene R.; Elmer, Thomas W.; Heifetz, Alexander; Chien, Hual-Te; Raptis, Apostolos C.

    2010-04-01

    We have built a passive millimeter wave imaging and spectroscopy system with a 15-channel filter bank in the 146-154 GHz band for terrestrial remote sensing. We had built the spectroscopy system first and have now retrofitted an imaging element to it as a single pixel imager. The imaging element consisted of a 15-cm-diameter imaging lens fed to a corrugated scalar horn. Image acquisition is carried out by scanning the lens with a 2-axis translation stage. A LabVIEW-based software program integrates the imaging and spectroscopy systems with online display of spectroscopic information while the system scans each pixel position. The software also allows for integrating the image intensity of all 15 channels to increase the signal-to-noise ratio by a factor of ~4 relative to single channel image. The integrated imaging and spectroscopy system produces essentially 4-D data in which spatial data are along 2 dimensions, spectral data are in the 3rd dimension, and time is the 4th dimension. The system performance was tested by collecting imaging and spectral data with a 7.5-cm-diameter and 1m long gas cell in which test chemicals were introduced against a liquid nitrogen background.

  10. Full-wave Simulations of LH Wave Propagation in Toroidal Plasma with non-Maxwellian Electron Distributions

    International Nuclear Information System (INIS)

    Valeo, E.J.; Phillips, C.K.; Bonoli, P.T.; Wright, J.C.; Brambilla, M.

    2007-01-01

    The generation of energetic tails in the electron distribution function is intrinsic to lower-hybrid (LH) heating and current drive in weakly collisional magnetically confined plasma. The effects of these deformations on the RF deposition profile have previously been examined within the ray approximation. Recently, the calculation of full-wave propagation of LH waves in a thermal plasma has been accomplished using an adaptation of the TORIC code. Here, initial results are presented from TORIC simulations of LH propagation in a toroidal plasma with non-thermal electrons. The required efficient computation of the hot plasma dielectric tensor is accomplished using a technique previously demonstrated in full-wave simulations of ICRF propagation in plasma with non-thermal ions

  11. Mid-infrared thermal imaging for an effective mapping of surface materials and sub-surface detachments in mural paintings: integration of thermography and thermal quasi-reflectography

    Science.gov (United States)

    Daffara, C.; Parisotto, S.; Mariotti, P. I.

    2015-06-01

    Cultural Heritage is discovering how precious is thermal analysis as a tool to improve the restoration, thanks to its ability to inspect hidden details. In this work a novel dual mode imaging approach, based on the integration of thermography and thermal quasi-reflectography (TQR) in the mid-IR is demonstrated for an effective mapping of surface materials and of sub-surface detachments in mural painting. The tool was validated through a unique application: the "Monocromo" by Leonardo da Vinci in Italy. The dual mode acquisition provided two spatially aligned dataset: the TQR image and the thermal sequence. Main steps of the workflow included: 1) TQR analysis to map surface features and 2) to estimate the emissivity; 3) projection of the TQR frame on reference orthophoto and TQR mosaicking; 4) thermography analysis to map detachments; 5) use TQR to solve spatial referencing and mosaicking for the thermal-processed frames. Referencing of thermal images in the visible is a difficult aspect of the thermography technique that the dual mode approach allows to solve in effective way. We finally obtained the TQR and the thermal maps spatially referenced to the mural painting, thus providing the restorer a valuable tool for the restoration of the detachments.

  12. Apple detection using infrared thermal image, 3: Real-time temperature measurement of apple tree

    International Nuclear Information System (INIS)

    Zhang, S.H.; Takahashi, T.; Fukuchi, H.; Sun, M.; Terao, H.

    1998-01-01

    In Part 1, we reported the thermal distribution characteristics and the identification methods of apples, leaves and branches by using the infrared thermal image at the specific time. This paper reports the temperature changing characteristics and the relationships among apples, leaves and air temperature based on the information measured by the infrared thermal image equipment in the real-time for 24 hours. As a result, it was confirmed that the average temperature of apples was 1 degree C or more higher than the one of the leaves, and the average temperature of the leaves was almost same as the air temperature within daytime and about 3 hours period after sunset. It was also clarified for a remarkable temperature difference not to exist for midnight and the early morning between the apples and the leaves, and both became almost as well as the air temperature. Moreover, a binary image was easily obtained and the apples could be detected by using this temperature difference informat

  13. The use of thermal imaging to monitoring skin temperature during cryotherapy: A systematic review

    Science.gov (United States)

    Matos, Filipe; Neves, Eduardo Borba; Norte, Marco; Rosa, Claudio; Reis, Victor Machado; Vilaça-Alves, José

    2015-11-01

    Cryotherapy has been applied on clinical injuries and as a method for exercise recovery. It is aimed to reduce edema, nervous conduction velocity, and tissue metabolism, as well as to accelerate the recovery process of the muscle injury induced by exercise. Objective: This review aim to investigate the applicability of thermal imaging as a method for monitoring skin temperature during cryotherapy. Method: Search the Web of Science database using the terms "Cryotherapy", "Thermography", "Thermal Image" and "Cooling". Results: Nineteen studies met the inclusion criteria and pass the PEDro scale quality evaluation. Evidence support the use of thermal imaging as a method for monitoring the skin temperature during cryotherapy, and it is superior to other contact methods and subjective methods of assessing skin temperature. Conclusion: Thermography seems to be an efficient, trustworthy and secure method in order to monitoring skin temperature during cryotherapy application. Evidence supports the use of thermography in detriment of contact methods as well as other subjective ones.

  14. Parallel image-acquisition in continuous-wave electron paramagnetic resonance imaging with a surface coil array: Proof-of-concept experiments

    Science.gov (United States)

    Enomoto, Ayano; Hirata, Hiroshi

    2014-02-01

    This article describes a feasibility study of parallel image-acquisition using a two-channel surface coil array in continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Parallel EPR imaging was performed by multiplexing of EPR detection in the frequency domain. The parallel acquisition system consists of two surface coil resonators and radiofrequency (RF) bridges for EPR detection. To demonstrate the feasibility of this method of parallel image-acquisition with a surface coil array, three-dimensional EPR imaging was carried out using a tube phantom. Technical issues in the multiplexing method of EPR detection were also clarified. We found that degradation in the signal-to-noise ratio due to the interference of RF carriers is a key problem to be solved.

  15. Imaging of Rabbit VX-2 Hepatic Cancer by Cold and Thermal Neutron Radiography

    Science.gov (United States)

    Tsuchiya, Yoshinori; Matsubayashi, Masahito; Takeda, Tohoru; Lwin, Thet Thet; Wu, Jin; Yoneyama, Akio; Matsumura, Akira; Hori, Tomiei; Itai, Yuji

    2003-11-01

    Neutron radiography is based on differences in neutron mass attenuation coefficients among the elements and is a non-destructive imaging method. To investigate biomedical applications of neutron radiography, imaging of rabbit VX-2 liver cancer was performed using thermal and cold neutron radiography with a neutron imaging plate. Hepatic vessels and VX-2 tumor were clearly observed by neutron radiography, especially by cold neutron imaging. The image contrast of this modality was better than that of absorption-contrast X-ray radiography.

  16. Exploiting Microwave Imaging Methods for Real-Time Monitoring of Thermal Ablation

    Directory of Open Access Journals (Sweden)

    Rosa Scapaticci

    2017-01-01

    Full Text Available Microwave thermal ablation is a cancer treatment that exploits local heating caused by a microwave electromagnetic field to induce coagulative necrosis of tumor cells. Recently, such a technique has significantly progressed in the clinical practice. However, its effectiveness would dramatically improve if paired with a noninvasive system for the real-time monitoring of the evolving dimension and shape of the thermally ablated area. In this respect, microwave imaging can be a potential candidate to monitor the overall treatment evolution in a noninvasive way, as it takes direct advantage from the dependence of the electromagnetic properties of biological tissues from temperature. This paper explores such a possibility by presenting a proof of concept validation based on accurate simulated imaging experiments, run with respect to a scenario that mimics an ex vivo experimental setup. In particular, two model-based inversion algorithms are exploited to tackle the imaging task. These methods provide independent results in real-time and their integration improves the quality of the overall tracking of the variations occurring in the target and surrounding regions.

  17. Measurements of ion cyclotron range of frequencies mode converted wave intensity with phase contrast imaging in Alcator C-Mod and comparison with full-wave simulations

    International Nuclear Information System (INIS)

    Tsujii, N.; Porkolab, M.; Bonoli, P. T.; Lin, Y.; Wright, J. C.; Wukitch, S. J.; Jaeger, E. F.; Green, D. L.; Harvey, R. W.

    2012-01-01

    Radio frequency waves in the ion cyclotron range of frequencies (ICRF) are widely used to heat tokamak plasmas. In ICRF heating schemes involving multiple ion species, the launched fast waves convert to ion cyclotron waves or ion Bernstein waves at the two-ion hybrid resonances. Mode converted waves are of interest as actuators to optimise plasma performance through current drive and flow drive. In order to describe these processes accurately in a realistic tokamak geometry, numerical simulations are essential, and it is important that these codes be validated against experiment. In this study, the mode converted waves were measured using a phase contrast imaging technique in D-H and D- 3 He plasmas. The measured mode converted wave intensity in the D- 3 He mode conversion regime was found to be a factor of ∼50 weaker than the full-wave predictions. The discrepancy was reduced in the hydrogen minority heating regime, where mode conversion is weaker.

  18. Introducing Thermal Wave Transport Analysis (TWTA): A Thermal Technique for Dopamine Detection by Screen-Printed Electrodes Functionalized with Molecularly Imprinted Polymer (MIP) Particles.

    Science.gov (United States)

    Peeters, Marloes M; van Grinsven, Bart; Foster, Christopher W; Cleij, Thomas J; Banks, Craig E

    2016-04-26

    A novel procedure is developed for producing bulk modified Molecularly Imprinted Polymer (MIP) screen-printed electrodes (SPEs), which involves the direct mixing of the polymer particles within the screen-printed ink. This allowed reduction of the sample preparation time from 45 min to 1 min, and resulted in higher reproducibility of the electrodes. The samples are measured with a novel detection method, namely, thermal wave transport analysis (TWTA), relying on the analysis of thermal waves through a functional interface. As a first proof-of-principle, MIPs for dopamine are developed and successfully incorporated within a bulk modified MIP SPE. The detection limits of dopamine within buffer solutions for the MIP SPEs are determined via three independent techniques. With cyclic voltammetry this was determined to be 4.7 × 10(-6) M, whereas by using the heat-transfer method (HTM) 0.35 × 10(-6) M was obtained, and with the novel TWTA concept 0.26 × 10(-6) M is possible. This TWTA technique is measured simultaneously with HTM and has the benefits of reducing measurement time to less than 5 min and increasing effect size by nearly a factor of two. The two thermal methods are able to enhance dopamine detection by one order of magnitude compared to the electrochemical method. In previous research, it was not possible to measure neurotransmitters in complex samples with HTM, but with the improved signal-to-noise of TWTA for the first time, spiked dopamine concentrations were determined in a relevant food sample. In summary, novel concepts are presented for both the sensor functionalization side by employing screen-printing technology, and on the sensing side, the novel TWTA thermal technique is reported. The developed bio-sensing platform is cost-effective and suitable for mass-production due to the nature of screen-printing technology, which makes it very interesting for neurotransmitter detection in clinical diagnostic applications.

  19. The Short Wave Aerostat-Mounted Imager (SWAMI): A novel platform for acquiring remotely sensed data from a tethered balloon

    Science.gov (United States)

    Vierling, L.A.; Fersdahl, M.; Chen, X.; Li, Z.; Zimmerman, P.

    2006-01-01

    We describe a new remote sensing system called the Short Wave Aerostat-Mounted Imager (SWAMI). The SWAMI is designed to acquire co-located video imagery and hyperspectral data to study basic remote sensing questions and to link landscape level trace gas fluxes with spatially and temporally appropriate spectral observations. The SWAMI can fly at altitudes up to 2 km above ground level to bridge the spatial gap between radiometric measurements collected near the surface and those acquired by other aircraft or satellites. The SWAMI platform consists of a dual channel hyperspectral spectroradiometer, video camera, GPS, thermal infrared sensor, and several meteorological and control sensors. All SWAMI functions (e.g. data acquisition and sensor pointing) can be controlled from the ground via wireless transmission. Sample data from the sampling platform are presented, along with several potential scientific applications of SWAMI data.

  20. Nanoscale thermal imaging of dissipation in quantum systems and in encapsulated graphene

    Science.gov (United States)

    Halbertal, Dorri

    Energy dissipation is a fundamental process governing the dynamics of physical systems. In condensed matter physics, in particular, scattering mechanisms, loss of quantum information, or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Despite its vital importance the microscopic behavior of a system is usually not formulated in terms of dissipation because the latter is not a readily measureable quantity on the microscale. While the motivation is clear, existing thermal imaging methods lack the necessary sensitivity and are unsuitable for low temperature operation required for the study of quantum systems. We developed a superconducting quantum interference nano thermometer device with sub 50 nm diameter that resides at the apex of a sharp pipette and provides scanning cryogenic thermal sensing with four orders of magnitude improved thermal sensitivity of below 1 uK/sqrtHz. The noncontact noninvasive thermometry allows thermal imaging of very low nanoscale energy dissipation down to the fundamental Landauer limitý of 40 fW for continuous readout of a single qubit at 1 GHz at 4.2 K. These advances enable observation of dissipation due to single electron charging of individual quantum dots in carbon nanotubes, opening the door to direct imaging of nanoscale dissipation processes in quantum matter. In this talk I will describe the technique and present a study of hBN encapsulated graphene which reveals a novel dissipation mechanism due to atomic-scale resonant localized states at the edges of graphene. These results provide a direct valuable glimpse into the electron thermalization process in systems with weak electron-phonon interactions. Funded by European Research Council (ERC) under the European Union's Horizon 2020 programme (Grant No. 655416), Minerva Foundation with funding from the Federal German Ministry of Education and Research, Rosa and Emilio Segré Research Award, and the MISTI.

  1. Stereoscopic radiographic images with thermal neutrons

    Science.gov (United States)

    Silvani, M. I.; Almeida, G. L.; Rogers, J. D.; Lopes, R. T.

    2011-10-01

    Spatial structure of an object can be perceived by the stereoscopic vision provided by eyes or by the parallax produced by movement of the object with regard to the observer. For an opaque object, a technique to render it transparent should be used, in order to make visible the spatial distribution of its inner structure, for any of the two approaches used. In this work, a beam of thermal neutrons at the main port of the Argonauta research reactor of the Instituto de Engenharia Nuclear in Rio de Janeiro/Brazil has been used as radiation to render the inspected objects partially transparent. A neutron sensitive Imaging Plate has been employed as a detector and after exposure it has been developed by a reader using a 0.5 μm laser beam, which defines the finest achievable spatial resolution of the acquired digital image. This image, a radiographic attenuation map of the object, does not represent any specific cross-section but a convoluted projection for each specific attitude of the object with regard to the detector. After taking two of these projections at different object attitudes, they are properly processed and the final image is viewed by a red and green eyeglass. For monochromatic images this processing involves transformation of black and white radiographies into red and white and green and white ones, which are afterwards merged to yield a single image. All the processes are carried out with the software ImageJ. Divergence of the neutron beam unfortunately spoils both spatial and contrast resolutions, which become poorer as object-detector distance increases. Therefore, in order to evaluate the range of spatial resolution corresponding to the 3D image being observed, a curve expressing spatial resolution against object-detector gap has been deduced from the Modulation Transfer Functions experimentally. Typical exposure times, under a reactor power of 170 W, were 6 min for both quantitative and qualitative measurements. In spite of its intrinsic constraints

  2. Stereoscopic radiographic images with thermal neutrons

    International Nuclear Information System (INIS)

    Silvani, M.I.; Almeida, G.L.; Rogers, J.D.; Lopes, R.T.

    2011-01-01

    Spatial structure of an object can be perceived by the stereoscopic vision provided by eyes or by the parallax produced by movement of the object with regard to the observer. For an opaque object, a technique to render it transparent should be used, in order to make visible the spatial distribution of its inner structure, for any of the two approaches used. In this work, a beam of thermal neutrons at the main port of the Argonauta research reactor of the Instituto de Engenharia Nuclear in Rio de Janeiro/Brazil has been used as radiation to render the inspected objects partially transparent. A neutron sensitive Imaging Plate has been employed as a detector and after exposure it has been developed by a reader using a 0.5 μm laser beam, which defines the finest achievable spatial resolution of the acquired digital image. This image, a radiographic attenuation map of the object, does not represent any specific cross-section but a convoluted projection for each specific attitude of the object with regard to the detector. After taking two of these projections at different object attitudes, they are properly processed and the final image is viewed by a red and green eyeglass. For monochromatic images this processing involves transformation of black and white radiographies into red and white and green and white ones, which are afterwards merged to yield a single image. All the processes are carried out with the software ImageJ. Divergence of the neutron beam unfortunately spoils both spatial and contrast resolutions, which become poorer as object-detector distance increases. Therefore, in order to evaluate the range of spatial resolution corresponding to the 3D image being observed, a curve expressing spatial resolution against object-detector gap has been deduced from the Modulation Transfer Functions experimentally. Typical exposure times, under a reactor power of 170 W, were 6 min for both quantitative and qualitative measurements. In spite of its intrinsic constraints

  3. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images

    Science.gov (United States)

    Yothers, Mitchell P.; Browder, Aaron E.; Bumm, Lloyd A.

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  4. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images.

    Science.gov (United States)

    Yothers, Mitchell P; Browder, Aaron E; Bumm, Lloyd A

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  5. 3-D FDTD simulation of shear waves for evaluation of complex modulus imaging.

    Science.gov (United States)

    Orescanin, Marko; Wang, Yue; Insana, Michael

    2011-02-01

    The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogeneous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.

  6. FIRST SIMULTANEOUS OBSERVATION OF AN H{alpha} MORETON WAVE, EUV WAVE, AND FILAMENT/PROMINENCE OSCILLATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Ayumi; Isobe, Hiroaki [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Ishii, Takako T.; Kitai, Reizaburo; Ichimoto, Kiyoshi; UeNo, Satoru; Nagata, Shin' ichi; Morita, Satoshi; Nishida, Keisuke; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Shiota, Daikou [Advanced Science Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Oi, Akihito [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Akioka, Maki, E-mail: asai@kwasan.kyoto-u.ac.jp [Hiraiso Solar Observatory, National Institute of Information and Communications Technology, Hitachinaka, Ibaraki 311-1202 (Japan)

    2012-02-15

    We report on the first simultaneous observation of an H{alpha} Moreton wave, the corresponding EUV fast coronal waves, and a slow and bright EUV wave (typical EIT wave). We observed a Moreton wave, associated with an X6.9 flare that occurred on 2011 August 9 at the active region NOAA 11263, in the H{alpha} images taken by the Solar Magnetic Activity Research Telescope at Hida Observatory of Kyoto University. In the EUV images obtained by the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory we found not only the corresponding EUV fast 'bright' coronal wave, but also the EUV fast 'faint' wave that is not associated with the H{alpha} Moreton wave. We also found a slow EUV wave, which corresponds to a typical EIT wave. Furthermore, we observed, for the first time, the oscillations of a prominence and a filament, simultaneously, both in the H{alpha} and EUV images. To trigger the oscillations by the flare-associated coronal disturbance, we expect a coronal wave as fast as the fast-mode MHD wave with the velocity of about 570-800 km s{sup -1}. These velocities are consistent with those of the observed Moreton wave and the EUV fast coronal wave.

  7. Estimation of the anisotropy parameters from imaging moveout of diving wave in a factorized anisotropic medium

    KAUST Repository

    Xu, Shibo

    2016-06-10

    The importance of diving waves is being realized because they provide long-wavelength model information, which can be used to help invert for the reflection information in full-waveform inversion. The factorized model is defined here as a combination of vertical heterogeneity and constant anisotropy, and it admits closed-form description of the traveltime. We have used these resulting analytical formulas to describe the behavior of diving waves in a factorized anisotropic medium, and we used an approximate imaging moveout formulation (residual moveout after imaging) to update the velocity model when the wrong model parameters (isotropic assumption) were used for imaging. We then used these analytical representations of the image moveout to establish a semblance analysis framework to search for the optimal anisotropic parameters. We have also discussed different parameterizations of the factorized medium to find the one that gave the best accuracy in anisotropy parameters estimation.

  8. Estimation of the anisotropy parameters from imaging moveout of diving wave in a factorized anisotropic medium

    KAUST Repository

    Xu, Shibo; Stovas, Alexey; Alkhalifah, Tariq Ali

    2016-01-01

    The importance of diving waves is being realized because they provide long-wavelength model information, which can be used to help invert for the reflection information in full-waveform inversion. The factorized model is defined here as a combination of vertical heterogeneity and constant anisotropy, and it admits closed-form description of the traveltime. We have used these resulting analytical formulas to describe the behavior of diving waves in a factorized anisotropic medium, and we used an approximate imaging moveout formulation (residual moveout after imaging) to update the velocity model when the wrong model parameters (isotropic assumption) were used for imaging. We then used these analytical representations of the image moveout to establish a semblance analysis framework to search for the optimal anisotropic parameters. We have also discussed different parameterizations of the factorized medium to find the one that gave the best accuracy in anisotropy parameters estimation.

  9. Mid-wave Infrared Hyperspectral Imaging of Kilauea's Active Halema'uma'u Pit Crater

    Science.gov (United States)

    Honniball, C. I.; Wright, R.; Lucey, P. G.

    2017-12-01

    The Mid-Wave InfraRed (MWIR) from 3 to 5 microns carries a wealth of information for both earth and planetary science applications. Molecules like methane and carbon dioxide exhibit prominent spectral features in the MWIR allowing us to detect their presences in the atmosphere after being released from volcanic vents, industrial gas leaks or biomass burning events. Energy released by wildfires at 4 μm is an important measurement for quantifying fire radiative power (FRP); an important climate variable that allows estimates of the amount of carbon liberated into the Earth's atmosphere during a burning event. FRP can also be used to estimate lava flow cooling rates and forecasting lava flow hazards. This spectral region also allows the derivation of temperatures from hot spots like the ones on Jupiter's moon Io, which provide important insights into the formation and evolution of Io. In the MWIR region there is limited signal available to measure for low temperature targets. This presents technical challenges on achieving high signal-to-noise ratios (SNR); therefore, acquiring adequate data in the MWIR is difficult without cryogenically cooling the instrument. Recent improvements to microbolometer technology and emerging interferometric techniques have allowed us to acquire good thermal infrared (TIR) data without the need for cooling. By coupling an uncooled microbolometer with a Sagnac interferometer we have demonstrated in the TIR that high SNR's can be obtained for hyperspectral imaging. To explore if this imaging technique holds in the MWIR, with funding from NASA, we have built, tested and compared two MWIR hyperspectral instruments, an uncooled microbolometer version and a liquid nitrogen cooled photon detector version with the same optical design. We demonstrate that using the aforementioned imaging technique we can achieve good SNR's for hyperspectral MWIR imaging using an uncooled instrument for targets 20°C above ambient. In late July 2017, we field

  10. Thermal conductivity of molten KNO3-NaNO2 mixtures measured with wave-front shearing interferometry

    International Nuclear Information System (INIS)

    Iwadate, Yasuhiko; Kawamura, Kazutaka; Okada, Isao.

    1982-01-01

    The thermal conductivities are estimated from data obtained by wave-front shearing interferomety using available data on the density and the heat capacity. The thermal diffusivities and the thermal conductivities of molten KNO 3 -NaNO 2 mixtures increase and decrease slightly with a rise of temperature depending on the molar ratio of KNO 3 to NaNO 2 . They are expressed as linear functions of temperature as shown in Table 3. The results suggest that the ionic melts containing the ions of smaller mass have the larger thermal conductivities. The thermal conductivities of the mixture melts deviate negatively from the additivity. The validity of the proposed theories to the KNO 3 -NaNO 2 system has been studied in which the effects of mass, melting point, and density on thermal conductivity are taken into account. The formula of heat transfer proposed by Rao is best applicable to the thermal conductivity of the mixture. Our result is well expressed by the following formula, K = 2742.T sub(m)sup(1/2).rho sub(m)sup(2/3)/M sup(7/6), where K is the thermal conductivity, T sub(m) the molting point, rho sub(m) the density at T sub(m), and M the mean mass (averaged molecular weight), while the constant is 2742 instead of 2090 according to Rao. Whereas the thermal conductivity of pure alkali nitrate correlates linearly with the ultrasonic sound velocity, this relation does not hold in the molten KNO 3 -NaNO 2 mixture. The additivity rule can be applied to the sound velocity, but not to the thermal conductivity owing to its excess conductivity. (author)

  11. Pedestrian detection from thermal images: A sparse representation based approach

    Science.gov (United States)

    Qi, Bin; John, Vijay; Liu, Zheng; Mita, Seiichi

    2016-05-01

    Pedestrian detection, a key technology in computer vision, plays a paramount role in the applications of advanced driver assistant systems (ADASs) and autonomous vehicles. The objective of pedestrian detection is to identify and locate people in a dynamic environment so that accidents can be avoided. With significant variations introduced by illumination, occlusion, articulated pose, and complex background, pedestrian detection is a challenging task for visual perception. Different from visible images, thermal images are captured and presented with intensity maps based objects' emissivity, and thus have an enhanced spectral range to make human beings perceptible from the cool background. In this study, a sparse representation based approach is proposed for pedestrian detection from thermal images. We first adopted the histogram of sparse code to represent image features and then detect pedestrian with the extracted features in an unimodal and a multimodal framework respectively. In the unimodal framework, two types of dictionaries, i.e. joint dictionary and individual dictionary, are built by learning from prepared training samples. In the multimodal framework, a weighted fusion scheme is proposed to further highlight the contributions from features with higher separability. To validate the proposed approach, experiments were conducted to compare with three widely used features: Haar wavelets (HWs), histogram of oriented gradients (HOG), and histogram of phase congruency (HPC) as well as two classification methods, i.e. AdaBoost and support vector machine (SVM). Experimental results on a publicly available data set demonstrate the superiority of the proposed approach.

  12. Portable concealed weapon detection using millimeter-wave FMCW radar imaging

    Science.gov (United States)

    Johnson, Michael A.; Chang, Yu-Wen

    2001-02-01

    Unobtrusive detection of concealed weapons on persons or in abandoned bags would provide law enforcement a powerful tool to focus resources and increase traffic throughput in high- risk situations. We have developed a fast image scanning 94 GHz radar system that is suitable for portable operation and remote viewing of radar data. This system includes a novel fast image-scanning antenna that allows for the acquisition of medium resolution 3D millimeter wave images of stationary targets with frame times on order of one second. The 3D radar data allows for potential isolation of concealed weapons from body and environmental clutter such as nearby furniture or other people. The radar is an active system so image quality is not affected indoors, emitted power is however very low so there are no health concerns for operator or targets. The low power operation is still sufficient to penetrate heavy clothing or material. Small system size allows for easy transport and rapid deployment of the system as well as an easy migration path to future hand held systems.

  13. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    Science.gov (United States)

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  14. Thermal expansion coefficient determination of polylactic acid using digital image correlation

    Directory of Open Access Journals (Sweden)

    Botean Adrian - Ioan

    2018-01-01

    Full Text Available This paper aims determining the linear thermal expansion coefficient (CTE of polylactic acid (PLA using an optical method for measuring deformations called digital image correlation method (DIC. Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE for the copper cylinder on the surface of which are placed the two discs of PLA.

  15. Thermal expansion coefficient determination of polylactic acid using digital image correlation

    Science.gov (United States)

    Botean, Adrian-Ioan

    2018-02-01

    This paper aims determining the linear thermal expansion coefficient (CTE) of polylactic acid (PLA) using an optical method for measuring deformations called digital image correlation method (DIC). Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE) for the copper cylinder on the surface of which are placed the two discs of PLA.

  16. Sound wave generation by a spherically symmetric outburst and AGN feedback in galaxy clusters II: impact of thermal conduction.

    Science.gov (United States)

    Tang, Xiaping; Churazov, Eugene

    2018-04-01

    We analyze the impact of thermal conduction on the appearance of a shock-heated gas shell which is produced when a spherically symmetric outburst of a supermassive black hole inflates bubbles of relativistic plasma at the center of a galaxy cluster. The presence of the hot and low-density shell can be used as an ancillary indicator for a high rate of energy release during the outburst, which is required to drive strong shocks into the gas. Here we show that conduction can effectively erase such shell, unless the diffusion of electrons is heavily suppressed. We conclude that a more robust proxy to the energy release rate is the ratio between the shock radius and bubble radius. We also revisited the issue of sound waves dissipation induced by thermal conduction in a scenario, where characteristic wavelength of the sound wave is set by the total energy of the outburst. For a fiducial short outburst model, the dissipation length does not exceed the cooling radius in a typical cluster, provided that the conduction is suppressed by a factor not larger than ˜100. For quasi-continuous energy injection neither the shock-heated shell nor the outgoing sound wave are important and the role of conduction is subdominant.

  17. Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS). ATTIREOIS sensor payload consists of two sets of...

  18. Landsat 8 Operational Land Imager (OLI)_Thermal Infared Sensor (TIRS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract:The Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) are instruments onboard the Landsat 8 satellite, which was launched in February of...

  19. A method to implement the reservoir-wave hypothesis using phase-contrast magnetic resonance imaging

    OpenAIRE

    Gray, Robert D.M.; Parker, Kim H.; Quail, Michael A.; Taylor, Andrew M.; Biglino, Giovanni

    2016-01-01

    The reservoir-wave hypothesis states that the blood pressure waveform can be usefully divided into a “reservoir pressure” related to the global compliance and resistance of the arterial system, and an “excess pressure” that depends on local conditions. The formulation of the reservoir-wave hypothesis applied to the area waveform is shown, and the analysis is applied to area and velocity data from high-resolution phase-contrast cardiovascular magnetic resonance (CMR) imaging. A validation stud...

  20. Radio Spectral Imaging of Reflective MHD Waves during the Impulsive Phase of a Solar Flare

    Science.gov (United States)

    Yu, S.; Chen, B.; Reeves, K.

    2017-12-01

    We report a new type of coherent radio bursts observed by the Karl G. Jansky Very Large Array (VLA) in 1-2 GHz during the impulsive phase of a two-ribbon flare on 2014 November 1, which we interpret as MHD waves reflected near the footpoint of flaring loops. In the dynamic spectrum, this burst starts with a positive frequency drift toward higher frequencies until it slows down near its highest-frequency boundary. Then it turns over and drifts toward lower frequencies. The frequency drift rate in its descending and ascending branch is between 50-150 MHz/s, which is much slower than type III radio bursts associated with fast electron beams but close to the well-known intermediate drift bursts, or fiber bursts, which are usually attributed to propagating whistler or Alfvenic waves. Thanks to VLA's unique capability of imaging with spectrometer-like temporal and spectral resolution (50 ms and 2 MHz), we are able to obtain an image of the radio source at every time and frequency in the dynamic spectrum where the burst is present and trace its spatial evolution. From the imaging results, we find that the radio source firstly moves downward toward one of the flaring ribbons before it "bounces off" at the lowest height (corresponding to the turnover frequency in the dynamic spectrum) and moves upward again. The measured speed in projection is at the order of 1-2 Mm/s, which is characteristic of Alfvenic or fast-mode MHD waves in the low corona. We conclude that the radio burst is emitted by trapped nonthermal electrons in the flaring loop carried along by a large-scale MHD wave. The waves are probably launched during the eruption of a magnetic flux rope in the flare impulsive phase.

  1. The stability of second sound waves in a rotating Darcy–Brinkman porous layer in local thermal non-equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Eltayeb, I A; Elbashir, T B A, E-mail: ieltayeb@squ.edu.om, E-mail: elbashir@squ.edu.om [Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, Muscat 123 (Oman)

    2017-08-15

    The linear and nonlinear stabilities of second sound waves in a rotating porous Darcy–Brinkman layer in local thermal non-equilibrium are studied when the heat flux in the solid obeys the Cattaneo law. The simultaneous action of the Brinkman effect (effective viscosity) and rotation is shown to destabilise the layer, as compared to either of them acting alone, for both stationary and overstable modes. The effective viscosity tends to favour overstable modes while rotation tends to favour stationary convection. Rapid rotation invokes a negative viscosity effect that suppresses the stabilising effect of porosity so that the stability characteristics resemble those of the classical rotating Benard layer. A formal weakly nonlinear analysis yields evolution equations of the Landau–Stuart type governing the slow time development of the amplitudes of the unstable waves. The equilibrium points of the evolution equations are analysed and the overall development of the amplitudes is examined. Both overstable and stationary modes can exhibit supercritical stability; supercritical instability, subcritical instability and stability are not possible. The dependence of the supercritical stability on the relative values of the six dimensionless parameters representing thermal non-equilibrium, rotation, porosity, relaxation time, thermal diffusivities and Brinkman effect is illustrated as regions in regime diagrams in the parameter space. The dependence of the heat transfer and the mean heat flux on the parameters of the problem is also discussed. (paper)

  2. High-resolution imaging of the low velocity layer in Alaskan subduction zone with scattered waves and interferometry

    Science.gov (United States)

    Kim, D.; Keranen, K. M.; Abers, G. A.; Kim, Y.; Li, J.; Shillington, D. J.; Brown, L. D.

    2017-12-01

    The physical factors that control the rupture process of great earthquakes at convergent plate boundaries remain incompletely understood. While recent developments in imaging using the teleseismic wavefield have led to marked advances at wavelengths of a couple kilometers to tens of kilometers, higher resolution imaging of the rupture zone would improve the resolution of imaging and thus provide improved parameter estimation, as the teleseismic wavefield is fundamentally limited by its low frequency content. This study compares and evaluates two seismic imaging techniques using the high-frequency signals from teleseismic coda versus earthquake scattered waves to image the subducting Yakutat oceanic plateau in the Alaska subduction zone. We use earthquakes recorded by the MOOS PASSCAL broadband deployment in southern Alaska. In our first method, we select local earthquakes that lie directly beneath and laterally near the recording array for imaging, and extract body wave information via a simple autocorrelation and stacking. Profiles analogous to seismic reflection profile are constructed using the near-vertically travelling waves. In our second method, we compute teleseismic receiver functions within the 0.02-1.0 Hz frequency band. Both results image interfaces that we associate with the subducting oceanic plate in Alaska-Aleutian system, with greater resolution than commonly used methods with teleseismic sources. Structural details from our results can further our understanding of the conditions and materials that characterize the subduction megathrusts, and the techniques can be employed in other regions along the Alaska-Aleutian system and at other convergent margins with suitable seismic arrays.

  3. Assessment of health risks related to the use of a millimetre wave body scanner ProVision 100. Collective expertise report

    International Nuclear Information System (INIS)

    Azoulay, Alain; Debouzy, Jean-Claude; DORe, Jean-Francois; Hours, Martine; Vecchia, Paolo; Fite, Johanna; Saddoki, Sophia; Merckel, Olivier; Telle Lamberton, Maylis

    2010-02-01

    The ProVision 100 is a body scanner which allows images of the whole body to be obtained for safety purposes, without any exposure to ionising radiations, in a reliable and non-intrusive way in comparison with pat-down searching. Its technology is based on the use of so-called 'millimetre' waves, between 24 and 30 GHz. This expertise report is an answer to a public body request for an assessment of health risks related to the use of such a device. The authors first present the context of this investigation, and then present various aspects of waves with a frequency greater than 1 GHz (physical properties, exposure sources, biological effects, health effects, regulation related to public exposure to electromagnetic waves). The ProVision 100 is then presented: operation parameters, emitted power, control capacity, gantry operation, obtained image, gantry usages, other technologies for body scanners). They report the assessment of the exposure of persons scanned by the Provision 100 gantry (assessment of electromagnetic field levels, assessment of exposure to millimetre waves), and the assessment of health risks related to the use of ProVision 100 (depth of penetration of waves into the body, issue of potential thermal and non thermal effects, and of interaction with medical devices). Issues related to privacy and human rights in relationship with the use of body scanners are then briefly discussed

  4. Resolution limits for wave equation imaging

    KAUST Repository

    Huang, Yunsong

    2014-08-01

    Formulas are derived for the resolution limits of migration-data kernels associated with diving waves, primary reflections, diffractions, and multiple reflections. They are applicable to images formed by reverse time migration (RTM), least squares migration (LSM), and full waveform inversion (FWI), and suggest a multiscale approach to iterative FWI based on multiscale physics. That is, at the early stages of the inversion, events that only generate low-wavenumber resolution should be emphasized relative to the high-wavenumber resolution events. As the iterations proceed, the higher-resolution events should be emphasized. The formulas also suggest that inverting multiples can provide some low- and intermediate-wavenumber components of the velocity model not available in the primaries. Finally, diffractions can provide twice or better the resolution than specular reflections for comparable depths of the reflector and diffractor. The width of the diffraction-transmission wavepath is approximately λ at the diffractor location for the diffraction-transmission wavepath. © 2014 Elsevier B.V.

  5. CONTOURS BASED APPROACH FOR THERMAL IMAGE AND TERRESTRIAL POINT CLOUD REGISTRATION

    Directory of Open Access Journals (Sweden)

    A. Bennis

    2013-07-01

    Full Text Available Building energetic performances strongly depend on the thermal insulation. However the performance of the insulation materials tends to decrease over time which necessitates the continuous monitoring of the building in order to detect and repair the anomalous zones. In this paper, it is proposed to couple 2D infrared images representing the surface temperature of the building with 3D point clouds acquired with Terrestrial Laser Scanner (TLS resulting in a semi-automatic approach allowing the texturation of TLS data with infrared image of buildings. A contour-based algorithm is proposed whose main features are : 1 the extraction of high level primitive is not required 2 the use of projective transform allows to handle perspective effects 3 a point matching refinement procedure allows to cope with approximate control point selection. The procedure is applied to test modules aiming at investigating the thermal properties of material.

  6. Thermal mapping of mountain slopes on Mars by application of a Differential Apparent Thermal Inertia technique

    Science.gov (United States)

    Kubiak, Marta; Mège, Daniel; Gurgurewicz, Joanna; Ciazela, Jakub

    2015-04-01

    Thermal inertia (P) is an important property of geologic surfaces that essentially describes the resistance to temperature (T) change as heat is added. Most remote sensing data describe the surface only. P is a volume property that is sensitive to the composition of the subsurface, down to a depth reached by the diurnal heating wave. As direct measurement of P is not possible on Mars, thermal inertia models (Fergason et al., 2006) and deductive methods (the Apparent Thermal Inertia: ATI and Differential Apparent Thermal Inertia: DATI) are used to estimate it. ATI is computed as (1 - A) / (Tday - Tnight), where A is albedo. Due to the lack of the thermal daytime images with maximum land surface temperature (LST) and nighttime images with minimum LST in Valles Marineris region, the ATI method is difficult to apply. Instead, we have explored the DATI technique (Sabol et al., 2006). DATI is calculated based on shorter time (t) intervals with a high |ΔT/Δt| gradient (in the morning or in the afternoon) and is proportional to the day/night temperature difference (ATI), and hence P. Mars, which exhibits exceptionally high |ΔT/Δt| gradients due to the lack of vegetation and thin atmosphere, is especially suitable for the DATI approach. Here we present a new deductive method for high-resolution differential apparent thermal inertia (DATI) mapping for areas of highly contrasted relief (e.g., Valles Marineris). Contrary to the thermal inertia models, our method takes local relief characteristics (slopes and aspects) into account. This is crucial as topography highly influences A and ΔT measurements. In spite of the different approach, DATI values in the flat areas are in the same range as the values obtained by Fergason et al. (2006). They provide, however, more accurate information for geological interpretations of hilly or mountainous terrains. Sabol, D. E., Gillespie, A. R., McDonald, E., and Danilina, I., 2006. Differential Thermal Inertia of Geological Surfaces. In

  7. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr [Graduate school, School of Mechanical Engineering, Pusan National University (Korea, Republic of); Cho, Younho [School of Mechanical Engineering, Pusan National University (Korea, Republic of); Krishnaswamy, Sridhar [Center for Quality Engineering and Failure Prevention, Northwestern University, Evanston, IL (United States)

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actual defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.

  8. Numerically Calculated 3D Space-Weighting Functions to Image Crustal Volcanic Structures Using Diffuse Coda Waves

    Directory of Open Access Journals (Sweden)

    Edoardo Del Pezzo

    2018-05-01

    Full Text Available Seismic coda measurements retrieve parameters linked to the physical characteristics of rock volumes illuminated by high frequency scattered waves. Space weighting functions (SWF and kernels are different tools that model the spatial sensitivity of coda envelopes to scattering and absorption anomalies in these rock matrices, allowing coda-wave attenuation ( Q c o d a imaging. This note clarifies the difference between SWF and sensitivity kernels developed for coda wave imaging. It extends the SWF previously developed in 2D to the third dimension by using radiative transfer and the diffusion equation, based on the assumption that variations of Q c o d a depend solely on variations of the extinction length. When applied to active data (Deception Island, Antarctica, 3D SWF images strongly resemble 2D images, making this 3D extension redundant. On the other hand, diffusion does not efficiently model coda waveforms when using earthquake datasets spanning depths between 0 and 20 km, such as at Mount St. Helens volcano. In this setting, scattering attenuation and absorption suffer tradeoffs and cannot be separated by fitting a single seismogram energy envelope for SWF imaging. We propose that an approximate analytical 3D SWF, similar in shape to the common coda kernels used in literature, can still be used in a space weighted back-projection approach. While Q c o d a is not a physical parameter of the propagation medium, its spatially-dependent modeling allows improved reconstruction of crustal-scale tectonic and geological features. It is even more efficient as a velocity independent imaging tool for magma and fluid storage when applied to deep volcanism.

  9. Submillimetre wave imaging and security: imaging performance and prediction

    Science.gov (United States)

    Appleby, R.; Ferguson, S.

    2016-10-01

    Within the European Commission Seventh Framework Programme (FP7), CONSORTIS (Concealed Object Stand-Off Real-Time Imaging for Security) has designed and is fabricating a stand-off system operating at sub-millimetre wave frequencies for the detection of objects concealed on people. This system scans people as they walk by the sensor. This paper presents the top level system design which brings together both passive and active sensors to provide good performance. The passive system operates in two bands between 100 and 600GHz and is based on a cryogen free cooled focal plane array sensor whilst the active system is a solid-state 340GHz radar. A modified version of OpenFX was used for modelling the passive system. This model was recently modified to include realistic location-specific skin temperature and to accept animated characters wearing up to three layers of clothing that move dynamically, such as those typically found in cinematography. Targets under clothing have been modelled and the performance simulated. The strengths and weaknesses of this modelling approach are discussed.

  10. Imaging near-surface heterogeneities by natural migration of backscattered surface waves: Field data test

    KAUST Repository

    Liu, Zhaolun; AlTheyab, Abdullah; Hanafy, Sherif M.; Schuster, Gerard T.

    2017-01-01

    We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength λ of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third λ. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half λ.

  11. Imaging near-surface heterogeneities by natural migration of backscattered surface waves: Field data test

    KAUST Repository

    Liu, Zhaolun

    2017-03-06

    We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength λ of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third λ. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half λ.

  12. Restoration of s-polarized evanescent waves and subwavelength imaging by a single dielectric slab

    International Nuclear Information System (INIS)

    El Gawhary, Omar; Schilder, Nick J; Costa Assafrao, Alberto da; Pereira, Silvania F; Paul Urbach, H

    2012-01-01

    It was predicted a few years ago that a medium with negative index of refraction would allow for perfect imaging. Although no material has been found so far that behaves as a perfect lens, some experiments confirmed the theoretical predictions in the near-field, or quasi-static, regime where the behaviour of a negative index medium can be mimicked by a thin layer of noble metal, such as silver. These results are normally attributed to the excitation of surface plasmons in the metal, which only leads to the restoration of p-polarized evanescent waves. In this work, we show that the restoration of s-polarized evanescent waves and, correspondingly, sub-wavelength imaging by a single dielectric slab are possible. Specifically, we show that at λ = 632 nm a thin layer of GaAs behaves as a superlens for s-polarized waves. Replacing the single-metal slab by a dielectric is not only convenient from a technical point of view, it being much easier to deposit and control the thickness and flatness of dielectric films than metal ones, but also invites us to re-think the connection between surface plasmon excitation and the theory of negative refraction. (paper)

  13. The history of passive millimetre-wave imaging at QinetiQ

    Science.gov (United States)

    Appleby, R.

    2008-10-01

    A review of the equipments developed between 1950 and 2008 is given. In the 1950s the first airborne 35 GHz radiometer was flight tested on a Lincoln bomber. Initial results were encouraging but radar and thermal imaging were becoming established and offered more general utility. The technology was based on valves and the equipment occupied a large part of the rear of the aircraft. As semiconductor technology matured and gave rise to low noise mixers and amplifiers, new equipments were developed. In 1992, MITRE, a 94 GHz data collection system based on superheterodyne receivers, provided non real time high quality imagery and stimulated interest in both surveillance and security, with images through fog and clothing being demonstrated. More recently real time imaging based on a folded conically scanned Schmidt camera has been developed for helicopter pilotage and surveillance.

  14. Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom

    Energy Technology Data Exchange (ETDEWEB)

    Solis-Najera, S. E., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Neria-Pérez, J. A., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Medina, L., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF 04510 (Mexico); Garipov, R., E-mail: ruslan.garipov@mrsolutions.co.uk [MR Solutions Ltd, Surrey (United Kingdom); Rodríguez, A. O., E-mail: arog@xanum.uam.mx [Departamento Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, México, DF 09340 (Mexico)

    2014-11-07

    Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot’s model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot’s waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.

  15. Wave propagation in fluid-conveying viscoelastic carbon nanotubes under longitudinal magnetic field with thermal and surface effect via nonlocal strain gradient theory

    Science.gov (United States)

    Zhen, Yaxin; Zhou, Lin

    2017-03-01

    Based on nonlocal strain gradient theory, wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes (SWCNTs) is studied in this paper. With consideration of thermal effect and surface effect, wave equation is derived for fluid-conveying viscoelastic SWCNTs under longitudinal magnetic field utilizing Euler-Bernoulli beam theory. The closed-form expressions are derived for the frequency and phase velocity of the wave motion. The influences of fluid flow velocity, structural damping coefficient, temperature change, magnetic flux and surface effect are discussed in detail. SWCNTs’ viscoelasticity reduces the wave frequency of the system and the influence gets remarkable with the increase of wave number. The fluid in SWCNTs decreases the frequency of wave propagation to a certain extent. The frequency (phase velocity) gets larger due to the existence of surface effect, especially when the diameters of SWCNTs and the wave number decrease. The wave frequency increases with the increase of the longitudinal magnetic field, while decreases with the increase of the temperature change. The results may be helpful for better understanding the potential applications of SWCNTs in nanotechnology.

  16. Assessment of radicular dentin permeability after irradiation with CO2 laser and endodontic irrigation treatments with thermal imaging

    Science.gov (United States)

    Cho, Heajin; Lee, Robert C.; Chan, Kenneth H.; Fried, Daniel

    2017-02-01

    Previous studies have demonstrated that the permeability changes due to the surface modification of dentin can be quantified via thermal imaging during dehydration. The CO2 laser has been shown to remove the smear layer and disinfect root canals. Moreover, thermal modification via CO2 laser irradiation can be used to convert dentin into a highly mineralized enamel-like mineral. The purpose of this study is to evaluate the radicular dentin surface modification after CO2 laser irradiation by measuring the permeability with thermal imaging. Human molar specimens (n=12) were sectioned into 4 axial walls of the pulp chamber and treated with either 10% NaClO for 1 minute, 5% EDTA for 1 minute, CO2 laser or none. The CO2 laser was operated at 9.4 μm with a pulse duration of 26 μs, pulse repetition rate of 300 Hz and a fluence of 13 J/cm2. The samples were dehydrated using an air spray for 60 seconds and imaged using a thermal camera. The resulting surface morphological changes were assessed using 3D digital microscopy. The images from digital microscopy confirmed melting of the mineral phase of dentin. The area enclosed by the time-temperature curve during dehydration, ▵Q, measured with thermal imaging increased significantly with treatments with EDTA and the CO2 laser (Ptreatment increases permeability of radicular dentin.

  17. Seismic interferometry of railroad induced ground motions: body and surface wave imaging

    Science.gov (United States)

    Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon

    2016-04-01

    Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.

  18. Detection of relic gravitational waves in thermal case by using Adv.LIGO data of GW150914

    International Nuclear Information System (INIS)

    Ghayour, Basem; Khodagholizadeh, Jafar

    2017-01-01

    The thermal spectrum of relic gravitational waves enhances the usual spectrum. Our analysis shows that there exist some chances for detection of the thermal spectrum in addition to the usual spectrum by comparison with sensitivity of Adv.LIGO of GW150914 and detector based on the maser light. The behavior of the inflation and reheating stages are often known as power law expansion like S(η) ∝ η"1"+"β, S(η) ∝ η"1"+"β"_s, respectively, with constraints 1 + β 0. The β and β_s have an unique effect on the shape of the spectrum. We find some values of the β and β_s by considering the mentioned comparison. As obtained, the results give us more information as regards the evolution of inflation and reheating stages. (orig.)

  19. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Lavers, C; Franklin, P; Franklin, P; Plowman, A; Sayers, G; Bol, J; Shepard, D; Fields, D, E-mail: brnc-radarcomms1@nrta.mod.u [Sensors Team, Plymouth University at Britannia Royal Naval College, Dartmouth, Devon (United Kingdom) and Paignton Zoological Park, Paignton, Devon (United Kingdom); Thermal Wave Imaging, Inc., 845 Livernoise St, Ferndale, MI (United States); Buckfast Butterfly and Otter Sanctuary, Buckfast, Devon (United Kingdom)

    2009-07-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  20. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    International Nuclear Information System (INIS)

    Lavers, C; Franklin, P; Franklin, P; Plowman, A; Sayers, G; Bol, J; Shepard, D; Fields, D

    2009-01-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  1. Effect of the environmental stimuli upon the human body in winter outdoor thermal environment

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Kondo, Emi; Ishii, Jin

    2013-01-01

    the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses...... of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation....... The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect...

  2. High frequency ion sound waves associated with Langmuir waves in type III radio burst source regions

    Directory of Open Access Journals (Sweden)

    G. Thejappa

    2004-01-01

    Full Text Available Short wavelength ion sound waves (2-4kHz are detected in association with the Langmuir waves (~15-30kHz in the source regions of several local type III radio bursts. They are most probably not due to any resonant wave-wave interactions such as the electrostatic decay instability because their wavelengths are much shorter than those of Langmuir waves. The Langmuir waves occur as coherent field structures with peak intensities exceeding the Langmuir collapse thresholds. Their scale sizes are of the order of the wavelength of an ion sound wave. These Langmuir wave field characteristics indicate that the observed short wavelength ion sound waves are most probably generated during the thermalization of the burnt-out cavitons left behind by the Langmuir collapse. Moreover, the peak intensities of the observed short wavelength ion sound waves are comparable to the expected intensities of those ion sound waves radiated by the burnt-out cavitons. However, the speeds of the electron beams derived from the frequency drift of type III radio bursts are too slow to satisfy the needed adiabatic ion approximation. Therefore, some non-linear process such as the induced scattering on thermal ions most probably pumps the beam excited Langmuir waves towards the lower wavenumbers, where the adiabatic ion approximation is justified.

  3. Capillary waves in slow motion

    International Nuclear Information System (INIS)

    Seydel, Tilo; Tolan, Metin; Press, Werner; Madsen, Anders; Gruebel, Gerhard

    2001-01-01

    Capillary wave dynamics on glycerol surfaces has been investigated by means of x-ray photon correlation spectroscopy performed at grazing angles. The measurements show that thermally activated capillary wave motion is slowed down exponentially when the sample is cooled below 273 K. This finding directly reflects the freezing of the surface waves. The wave-number dependence of the measured time constants is in quantitative agreement with theoretical predictions for overdamped capillary waves

  4. Breast cancer diagnosis by thermal imaging in the fields of medical and artificial intelligence sciences: review article

    Directory of Open Access Journals (Sweden)

    Hossein Ghayoumi Zadeh

    2016-09-01

    Full Text Available Breast cancer is the most common cancer in women and one of the leading of death among them. The high and increasing incidence of the disease and its difficult treatment specifically in advanced stages, imposes hard situations for different countries’ health systems. Body temperature is a natural criteria for the diagnosis of diseases. In recent decades extensive research has been conducted to increase the use of thermal cameras and obtain a close relationship between heat and temperature of the skin's physiology. Thermal imaging (thermography applies infrared method which is fast, non-invasive, non-contact and flexibile to monitor the temperature of the human body. This paper investigates highly diversified studies implemented before and after the year 2000. And it emphasizes mostly on the newely published articles including: performance and evaluation of thermal imaging, the various aspects of imaging as well as The available technology in this field and its disadvantages in the diagnosis of breast cancer. Thermal imaging has been adopted by researchers in the fields of medicine and biomedical engineering for the diagnosis of breast cancer. With the advent of modern infrared cameras, data acquisition and processing techniques, it is now possible to have real time high resolution thermographic images, which is likely to surge further research in this field.  Thermography does not provide information on the structures of the breast morphology, but it provides performance information of temperature and breast tissue vessels. It is assumed that the functional changes occured before the start of the structural changes which is the result of disease or cancer. These days, thermal imaging method has not been established as an applicative method for screening or diagnosing purposes in academic centers. But there are different centers that adopt this method for the diognosis and examining purposes. Thermal imaging is an effective method which is

  5. Thermal imagers: from ancient analog video output to state-of-the-art video streaming

    Science.gov (United States)

    Haan, Hubertus; Feuchter, Timo; Münzberg, Mario; Fritze, Jörg; Schlemmer, Harry

    2013-06-01

    The video output of thermal imagers stayed constant over almost two decades. When the famous Common Modules were employed a thermal image at first was presented to the observer in the eye piece only. In the early 1990s TV cameras were attached and the standard output was CCIR. In the civil camera market output standards changed to digital formats a decade ago with digital video streaming being nowadays state-of-the-art. The reasons why the output technique in the thermal world stayed unchanged over such a long time are: the very conservative view of the military community, long planning and turn-around times of programs and a slower growth of pixel number of TIs in comparison to consumer cameras. With megapixel detectors the CCIR output format is not sufficient any longer. The paper discusses the state-of-the-art compression and streaming solutions for TIs.

  6. A review on the application of medical infrared thermal imaging in hands

    Science.gov (United States)

    Sousa, Elsa; Vardasca, Ricardo; Teixeira, Sérgio; Seixas, Adérito; Mendes, Joaquim; Costa-Ferreira, António

    2017-09-01

    Infrared Thermal (IRT) imaging is a medical imaging modality to study skin temperature in real time, providing physiological information about the underlining structures. One of the most accessible body sites to be investigated using such imaging method is the hands, which can reflect valuable information about conditions affecting the upper limbs. The aim of this review is to acquaint the successful applications of IRT in the hands with a medical scope, opening horizons for future applications based in the achieved results. A systematic literature review was performed in order to assess in which applications medical IRT imaging was applied to the hands. The literature search was conducted in the reference databases: PubMed, Scopus and ISI Web of Science, making use of keywords (hand, thermography, infrared imaging, thermal imaging) combination that were present at the title and abstract. No temporal restriction was made. As a result, 4260 articles were identified, after removal of duplicates, 3224 articles remained and from first title and abstract filtering, a total of 388 articles were considered. After application of exclusion criteria (non-availability, non-clinical applications, reviews, case studies, written in other languages than English and using liquid crystal thermography), 146 articles were considered for this review. It can be verified that thermography provides useful diagnostic and monitoring information of conditions that directly or indirectly related to hands, as well as aiding in the treatment assessment. Trends and future challenges for IRT applications on hands are provided to stimulate researchers and clinicians to explore and address them.

  7. Millimeter Wave Imaging System Using Monopole Antenna with Cylindrical Reflector and Silicon Lens

    Science.gov (United States)

    Mizuno, Maya; Fukunaga, Kaori; Suzuki, Masaki; Saito, Shingo; Fujii, Katsumi; Hosako, Iwao; Yamanaka, Yukio

    2011-04-01

    We built a reflection imaging system that uses a monopole antenna with a cylindrical reflector and silicon semi-spherical lens for millimeter waves to identify detachments of alabaster from support material such as wood and stone, which can be subject to painting deterioration. Based on the electric field property near the monopole antenna in the system and the lens effect, the system was able to clearly image a test sample made of 2-mm width aluminium tape, which was placed within a range of approximately 10 mm from the lens. In practical imaging testing using a detachment model, which consists of alabaster and wood plating, the result also showed the possibility of observing slight detachment of the alabaster from the wood more easily than an imaging with large numerical aperture.

  8. Monitoring dynamic reactions of red blood cells to UHF electromagnetic waves radiation using a novel micro-imaging technology.

    Science.gov (United States)

    Ruan, Ping; Yong, Junguang; Shen, Hongtao; Zheng, Xianrong

    2012-12-01

    Multiple state-of-the-art techniques, such as multi-dimensional micro-imaging, fast multi-channel micro-spetrophotometry, and dynamic micro-imaging analysis, were used to dynamically investigate various effects of cell under the 900 MHz electromagnetic radiation. Cell changes in shape, size, and parameters of Hb absorption spectrum under different power density electromagnetic waves radiation were presented in this article. Experimental results indicated that the isolated human red blood cells (RBCs) do not have obviously real-time responses to the ultra-low density (15 μW/cm(2), 31 μW/cm(2)) electromagnetic wave radiation when the radiation time is not more than 30 min; however, the cells do have significant reactions in shape, size, and the like, to the electromagnetic waves radiation with power densities of 1 mW/cm(2) and 5 mW/cm(2). The data also reveal the possible influences and statistical relationships among living human cell functions, radiation amount, and exposure time with high-frequency electromagnetic waves. The results of this study may be significant on protection of human being and other living organisms against possible radiation affections of the high-frequency electromagnetic waves.

  9. 2D full wave simulation on electromagnetic wave propagation in toroidal plasma

    International Nuclear Information System (INIS)

    Hojo, Hitoshi; Uruta, Go; Nakayama, Kazunori; Mase, Atsushi

    2002-01-01

    Global full-wave simulation on electromagnetic wave propagation in toroidal plasma with an external magnetic field imaging a tokamak configuration is performed in two dimensions. The temporal behavior of an electromagnetic wave launched into plasma from a wave-guiding region is obtained. (author)

  10. Detection of leaks in buried rural water pipelines using thermal infrared images

    Science.gov (United States)

    Eidenshink, Jeffery C.

    1985-01-01

    Leakage is a major problem in many pipelines. Minor leaks called 'seeper leaks', which generally range from 2 to 10 m3 per day, are common and are difficult to detect using conventional ground surveys. The objective of this research was to determine whether airborne thermal-infrared remote sensing could be used in detecting leaks and monitoring rural water pipelines. This study indicates that such leaks can be detected using low-altitude 8.7- to 11.5. micrometer wavelength, thermal infrared images collected under proper conditions.

  11. Excitation of plasma waves by unstable photoelectron and thermal electron populations on closed magnetic field lines in the Martian ionosphere

    Directory of Open Access Journals (Sweden)

    N. Borisov

    2005-06-01

    Full Text Available It is argued that anisotropic electron pitch angle distributions in the closed magnetic field regions of the Martian ionosphere gives rise to excitation of plasma instabilities. We discuss two types of instabilities that are excited by two different populations of electrons. First, the generation of Langmuir waves by photoelectrons with energies of the order of 10eV is investigated. It is predicted that the measured anisotropy of their pitch angle distribution at the heights z≈400km causes excitation of waves with frequencies f~30kHz and wavelengths λ~30m. Near the terminators the instability of the electrostatic waves with frequencies of the order of or less than the electron gyrofrequency exited by thermal electrons is predicted. The typical frequencies of these waves depend on the local magnitude of the magnetic field and can achieve values f~3-5kHz above strong crustal magnetic fields.

  12. ICRF Mode Conversion Studies with Phase Contrast Imaging and Comparisons with Full-Wave Simulations

    International Nuclear Information System (INIS)

    Tsujii, N.; Bonoli, P. T.; Lin, Y.; Wright, J. C.; Wukitch, S. J.; Porkolab, M.; Jaeger, E. F.; Harvey, R. W.

    2011-01-01

    Waves in the ion cyclotron range of frequencies (ICRF) are widely used to heat toka-mak plasmas. In a multi-ion-species plasma, the FW converts to ion cyclotron waves (ICW) and ion Bernstein waves (IBW) around the ion-ion hybrid resonance (mode conversion). The mode converted wave is of interest as an actuator to optimise plasma performance through flow drive and current drive. Numerical simulations are essential to describe these processes accurately, and it is important that these simulation codes be validated. On Alcator C-Mod, direct measurements of the mode converted waves have been performed using Phase Contrast Imaging (PCI), which measures the line-integrated electron density fluctuations. The results were compared to full-wave simulations AORSA and TORIC. AORSA is coupled to a Fokker-Planck code CQL3D for self-consistent simulation of the wave electric field and the minority distribution function. The simulation results are compared to PCI measurements using synthetic diagnostic. The experiments were performed in D-H and D- 3 He plasmas over a wide range of ion species concentrations. The simulations agreed well with the measurements in the strong absorption regime. However, the measured fluctuation intensity was smaller by 1-2 orders of magnitudes in the weakly abosorbing regime, and a realistic description of the plasma edge including dissipation and antenna geometry may be required in these cases.

  13. Intelligent MRTD testing for thermal imaging system using ANN

    Science.gov (United States)

    Sun, Junyue; Ma, Dongmei

    2006-01-01

    The Minimum Resolvable Temperature Difference (MRTD) is the most widely accepted figure for describing the performance of a thermal imaging system. Many models have been proposed to predict it. The MRTD testing is a psychophysical task, for which biases are unavoidable. It requires laboratory conditions such as normal air condition and a constant temperature. It also needs expensive measuring equipments and takes a considerable period of time. Especially when measuring imagers of the same type, the test is time consuming. So an automated and intelligent measurement method should be discussed. This paper adopts the concept of automated MRTD testing using boundary contour system and fuzzy ARTMAP, but uses different methods. It describes an Automated MRTD Testing procedure basing on Back-Propagation Network. Firstly, we use frame grabber to capture the 4-bar target image data. Then according to image gray scale, we segment the image to get 4-bar place and extract feature vector representing the image characteristic and human detection ability. These feature sets, along with known target visibility, are used to train the ANN (Artificial Neural Networks). Actually it is a nonlinear classification (of input dimensions) of the image series using ANN. Our task is to justify if image is resolvable or uncertainty. Then the trained ANN will emulate observer performance in determining MRTD. This method can reduce the uncertainties between observers and long time dependent factors by standardization. This paper will introduce the feature extraction algorithm, demonstrate the feasibility of the whole process and give the accuracy of MRTD measurement.

  14. The impact of heat waves on surface urban heat island and local economy in Cluj-Napoca city, Romania

    Science.gov (United States)

    Herbel, Ioana; Croitoru, Adina-Eliza; Rus, Adina Viorica; Roşca, Cristina Florina; Harpa, Gabriela Victoria; Ciupertea, Antoniu-Flavius; Rus, Ionuţ

    2017-07-01

    The association between heat waves and the urban heat island effect can increase the impact on environment and society inducing biophysical hazards. Heat stress and their associated public health problems are among the most frequent. This paper explores the heat waves impact on surface urban heat island and on the local economy loss during three heat periods in Cluj-Napoca city in the summer of 2015. The heat wave events were identified based on daily maximum temperature, and they were divided into three classes considering the intensity threshold: moderate heat waves (daily maximum temperature exceeding the 90th percentile), severe heat waves (daily maximum temperature over the 95th percentile), and extremely severe heat waves (daily maximum temperature exceeding the 98th percentile). The minimum length of an event was of minimum three consecutive days. The surface urban heat island was detected based on land surface temperature derived from Landsat 8 thermal infrared data, while the economic impact was estimated based on data on work force structure and work productivity in Cluj-Napoca derived from the data released by Eurostat, National Bank of Romania, and National Institute of Statistics. The results indicate that the intensity and spatial extension of surface urban heat island could be governed by the magnitude of the heat wave event, but due to the low number of satellite images available, we should consider this information only as preliminary results. Thermal infrared remote sensing has proven to be a very efficient method to study surface urban heat island, due to the fact that the synoptic conditions associated with heat wave events usually favor cloud free image. The resolution of the OLI_TIRS sensor provided good results for a mid-extension city, but the low revisiting time is still a drawback. The potential economic loss was calculated for the working days during heat waves and the estimated loss reached more than 2.5 mil. EUR for each heat wave day

  15. Detection of relic gravitational waves in thermal case by using Adv.LIGO data of GW150914

    Energy Technology Data Exchange (ETDEWEB)

    Ghayour, Basem [University of Hyderabad, School of Physics, Hyderabad (India); Khodagholizadeh, Jafar [Farhangian University, Tehran (Iran, Islamic Republic of)

    2017-08-15

    The thermal spectrum of relic gravitational waves enhances the usual spectrum. Our analysis shows that there exist some chances for detection of the thermal spectrum in addition to the usual spectrum by comparison with sensitivity of Adv.LIGO of GW150914 and detector based on the maser light. The behavior of the inflation and reheating stages are often known as power law expansion like S(η) ∝ η{sup 1+β}, S(η) ∝ η{sup 1+β{sub s}}, respectively, with constraints 1 + β < 0, 1 + β{sub s} > 0. The β and β{sub s} have an unique effect on the shape of the spectrum. We find some values of the β and β{sub s} by considering the mentioned comparison. As obtained, the results give us more information as regards the evolution of inflation and reheating stages. (orig.)

  16. ULF waves associated with enhanced subauroral proton precipitation

    Science.gov (United States)

    Immel, Thomas J.; Mende, S. B.; Frey, H. U.; Patel, J.; Bonnell, J. W.; Engebretson, M. J.; Fuselier, S. A.

    Several types of sub-auroral proton precipitation events have been identified using the Spectrographic Imager (SI) onboard the NASA-IMAGE satellite, including dayside subauroral proton flashes and detached proton arcs in the dusk sector. These have been observed at various levels of geomagnetic activity and solar wind conditions and the mechanism driving the precipitation has often been assumed to be scattering of protons into the loss cone by enhancement of ion-cyclotron waves in the interaction of the thermal plasmaspheric populations and more energetic ring current particles. Indeed, recent investigation of the detached arcs using the MPA instruments aboard the LANL geosynchronous satellites has shown there are nearly always heightened densities of cold plasma on high-altitude field lines which map down directly to the sub-auroral precipitation. If the ion-cyclotron instability is a causative mechanism, the enhancement of wave activity at ion-cyclotron frequencies should be measurable. It is here reported that magnetic pulsations in the Pc1 range occur in the vicinity of each of 4 detached arcs observed in 2000-2002, though with widely varying signatures. Additionally, longer period pulsations in the Pc5 ranges are also observed in the vicinity of the arcs, leading to the conclusion that a bounce-resonance of ring-current protons with the azimuthal Pc5 wave structure may also contribute to the detached precipitation.

  17. Self-excited hydrothermal waves in evaporating sessile drops

    OpenAIRE

    Sefiane K.; Moffat J.R.; Matar O.K.; Craster R.V.

    2008-01-01

    Pattern formation driven by the spontaneous evaporation of sessile drops of methanol, ethanol, and FC-72 using infrared thermography is observed and, in certain cases, interpreted in terms of hydrothermal waves. Both methanol and ethanol drops exhibit thermal wave trains, whose wave number depends strongly on the liquid volatililty and substrate thermal conductivity. The FC- 72 drops develop cellular structures whose size is proportional to the local thickness. Prior to this work, hydrotherma...

  18. The relationship between wave and geometrical optics models of coded aperture type x-ray phase contrast imaging systems.

    Science.gov (United States)

    Munro, Peter R T; Ignatyev, Konstantin; Speller, Robert D; Olivo, Alessandro

    2010-03-01

    X-ray phase contrast imaging is a very promising technique which may lead to significant advancements in medical imaging. One of the impediments to the clinical implementation of the technique is the general requirement to have an x-ray source of high coherence. The radiation physics group at UCL is currently developing an x-ray phase contrast imaging technique which works with laboratory x-ray sources. Validation of the system requires extensive modelling of relatively large samples of tissue. To aid this, we have undertaken a study of when geometrical optics may be employed to model the system in order to avoid the need to perform a computationally expensive wave optics calculation. In this paper, we derive the relationship between the geometrical and wave optics model for our system imaging an infinite cylinder. From this model we are able to draw conclusions regarding the general applicability of the geometrical optics approximation.

  19. Bernstein instability driven by thermal ring distribution

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Peter H., E-mail: yoonp@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Hadi, Fazal; Qamar, Anisa [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan)

    2014-07-15

    The classic Bernstein waves may be intimately related to banded emissions detected in laboratory plasmas, terrestrial, and other planetary magnetospheres. However, the customary discussion of the Bernstein wave is based upon isotropic thermal velocity distribution function. In order to understand how such waves can be excited, one needs an emission mechanism, i.e., an instability. In non-relativistic collision-less plasmas, the only known Bernstein wave instability is that associated with a cold perpendicular velocity ring distribution function. However, cold ring distribution is highly idealized. The present Brief Communication generalizes the cold ring distribution model to include thermal spread, so that the Bernstein-ring instability is described by a more realistic electron distribution function, with which the stabilization by thermal spread associated with the ring distribution is demonstrated. The present findings imply that the excitation of Bernstein waves requires a sufficiently high perpendicular velocity gradient associated with the electron distribution function.

  20. Bernstein instability driven by thermal ring distribution

    International Nuclear Information System (INIS)

    Yoon, Peter H.; Hadi, Fazal; Qamar, Anisa

    2014-01-01

    The classic Bernstein waves may be intimately related to banded emissions detected in laboratory plasmas, terrestrial, and other planetary magnetospheres. However, the customary discussion of the Bernstein wave is based upon isotropic thermal velocity distribution function. In order to understand how such waves can be excited, one needs an emission mechanism, i.e., an instability. In non-relativistic collision-less plasmas, the only known Bernstein wave instability is that associated with a cold perpendicular velocity ring distribution function. However, cold ring distribution is highly idealized. The present Brief Communication generalizes the cold ring distribution model to include thermal spread, so that the Bernstein-ring instability is described by a more realistic electron distribution function, with which the stabilization by thermal spread associated with the ring distribution is demonstrated. The present findings imply that the excitation of Bernstein waves requires a sufficiently high perpendicular velocity gradient associated with the electron distribution function

  1. Thermal imaging of solid oxide fuel cell anode processes

    Energy Technology Data Exchange (ETDEWEB)

    Pomfret, Michael B.; Kidwell, David A.; Owrutsky, Jeffrey C. [Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Steinhurst, Daniel A. [Nova Research Inc., Alexandria, VA 22308 (United States)

    2010-01-01

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H{sub 2} and carbon deposition lead to the fragment cooling by 5 {+-} 2 C and 16 {+-} 1 C, respectively. When air is flowed over the fragments, the temperature rises 24 {+-} 1 C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 {+-} 0.1 C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a {delta}T of +2.2 {+-} 0.2 C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial ({proportional_to}0.1 mm) and temperature ({proportional_to}0.1 C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs. (author)

  2. Thermal imaging of solid oxide fuel cell anode processes

    Science.gov (United States)

    Pomfret, Michael B.; Steinhurst, Daniel A.; Kidwell, David A.; Owrutsky, Jeffrey C.

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H 2 and carbon deposition lead to the fragment cooling by 5 ± 2 °C and 16 ± 1 °C, respectively. When air is flowed over the fragments, the temperature rises 24 ± 1 °C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 ± 0.1 °C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a Δ T of +2.2 ± 0.2 °C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial (∼0.1 mm) and temperature (∼0.1 °C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs.

  3. Vibrations and waves

    CERN Document Server

    Kaliski, S

    2013-01-01

    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  4. Heat transfer through the thermal skin of a cooling pond with waves

    International Nuclear Information System (INIS)

    Wesely, M.L.

    1979-01-01

    The temperature drop measured across the cool skin of a cooling pond is examined for 64 10-min data collection periods taken with wind speeds of 3--8.5 m s -1 (effectively at a height of 10 m) and surface temperatures of 18 0 --37.5 0 C. The total heat transfer through the skin is found with the use of bulk aerodynamic estimates of the latent and sensible heat flux densities and empirical expressions for the long-wave radiation exchange at the surface. Although it is questionable to describe the characteristics of a surface with waves by use of formulae derived partially on the assumption that a rigid boundary exists at the air-water interface, the parameterizations that result seem on the average to perform quite well. For example, values of the numerical proportionally coefficient lambda [Saunders, 1967], which relates the total heat transfer to the temperature drop, increase slightly from 6 to 7 as water temperature increases; these values are near those reported previously. No variation of lambda with wind speed is detected. If lambda is replaced by a numerical coefficient that also takes into account the difference of the thicknesses of the thermal and viscous sublayers, the new coefficient Λapprox. =lambdaPr/sup 1/3/, where Pr is the Prandtl number, does not vary significantly with temperature of the surface skin

  5. TADIR-production version: El-Op's high-resolution 480x4 TDI thermal imaging system

    Science.gov (United States)

    Sarusi, Gabby; Ziv, Natan; Zioni, O.; Gaber, J.; Shechterman, Mark S.; Lerner, M.

    1999-07-01

    Efforts invested at El-Op during the last four years have led to the development of TADIR - engineering model thermal imager, demonstrated in 1998, and eventually to the final production version of TADIR to be demonstrated in full operation during 1999. Both versions take advantage of the high resolution and high sensitivity obtained by the 480 X 4 TDI MCT detector as well as many more features implemented in the system to obtain a state of the art high- end thermal imager. The production version of TADIR uses a 480 X 6 TDI HgCdTe detector made by the SCD Israeli company. In this paper, we will present the main features of the production version of TADIR.

  6. In-situ changes in the elastic wave velocity of rock with increasing temperature using high-resolution coda wave interferometry

    Science.gov (United States)

    Griffiths, Luke; Heap, Michael; Lengliné, Olivier; Schmittbuhl, Jean; Baud, Patrick

    2017-04-01

    Rock undergoes fluctuations in temperature in various settings in Earth's crust, including areas of volcanic or geothermal activity, or industrial environments such as hydrocarbon or geothermal reservoirs. Changes in temperature can cause thermal stresses that can result in the formation of microcracks, which affect the mechanical, physical, and transport properties of rocks. Of the affected physical properties, the elastic wave velocity of rock is particularly sensitive to microcracking. Monitoring the evolution of elastic wave velocity during the thermal stressing of rock therefore provides valuable insight into thermal cracking processes. One monitoring technique is Coda Wave Interferometry (CWI), which infers high-resolution changes in the medium from changes in multiple-scattered elastic waves. We have designed a new experimental setup to perform CWI whilst cyclically heating and cooling samples of granite (cylinders of 20 mm diameter and 40 mm length). In our setup, the samples are held between two pistons within a tube furnace and are heated and cooled at a rate of 1 °C/min to temperatures of up to 300 °C. Two high temperature piezo-transducers are each in contact with an opposing face of the rock sample. The servo-controlled uniaxial press compensates for the thermal expansion and contraction of the pistons and the sample, keeping the coupling between the transducers and the sample, and the axial force acting on the sample, constant throughout. Our setup is designed for simultaneous acoustic emission monitoring (AE is commonly used as a proxy for microcracking), and so we can follow thermal microcracking precisely by combining the AE and CWI techniques. We find that during the first heating/cooling cycle, the onset of thermal microcracking occurs at a relatively low temperature of around 65 °C. The CWI shows that elastic wave velocity decreases with increasing temperature and increases during cooling. Upon cooling, back to room temperature, there is an

  7. Development of mirror coatings for gravitational-wave detectors

    Science.gov (United States)

    Steinlechner, J.

    2018-05-01

    Gravitational waves are detected by measuring length changes between mirrors in the arms of kilometre-long Michelson interferometers. Brownian thermal noise arising from thermal vibrations of the mirrors can limit the sensitivity to distance changes between the mirrors, and, therefore, the ability to measure gravitational-wave signals. Thermal noise arising from the highly reflective mirror coatings will limit the sensitivity both of current detectors (when they reach design performance) and of planned future detectors. Therefore, the development of coatings with low thermal noise, which at the same time meet strict optical requirements, is of great importance. This article gives an overview of the current status of coatings and of the different approaches for coating improvement. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  8. Plane-wave least-squares reverse-time migration

    KAUST Repository

    Dai, Wei

    2013-06-03

    A plane-wave least-squares reverse-time migration (LSRTM) is formulated with a new parameterization, where the migration image of each shot gather is updated separately and an ensemble of prestack images is produced along with common image gathers. The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase-shift encoding is applied to hundreds of shot gathers to produce dozens of plane waves. Unlike phase-shift encoding with random time shifts applied to each shot gather, plane-wave encoding can be effectively applied to data with a marine streamer geometry. (3) Plane-wave prestack LSRTM can provide higher-quality images than standard reverse-time migration. Numerical tests on the Marmousi2 model and a marine field data set are performed to illustrate the benefits of plane-wave LSRTM. Empirical results show that LSRTM in the plane-wave domain, compared to standard reversetime migration, produces images efficiently with fewer artifacts and better spatial resolution. Moreover, the prestack image ensemble accommodates more unknowns to makes it more robust than conventional least-squares migration in the presence of migration velocity errors. © 2013 Society of Exploration Geophysicists.

  9. Thermal conductivity of molten KNO/sub 3/-NaNO/sub 2/ mixtures measured with wave-front shearing interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Iwadate, Yasuhiko; Kawamura, Kazutaka [Tokyo Inst. of Tech. (Japan). Research Lab. of Nuclear Reactor; Okada, Isao

    1982-06-01

    The thermal conductivities are estimated from data obtained by wave-front shearing interferomety using available data on the density and the heat capacity. The thermal diffusivities and the thermal conductivities of molten KNO/sub 3/-NaNO/sub 2/ mixtures increase and decrease slightly with a rise of temperature depending on the molar ratio of KNO/sub 3/ to NaNO/sub 2/. They are expressed as linear functions of temperature as shown in Table 3. The results suggest that the ionic melts containing the ions of smaller mass have the larger thermal conductivities. The thermal conductivities of the mixture melts deviate negatively from the additivity. The validity of the proposed theories to the KNO/sub 3/-NaNO/sub 2/ system has been studied in which the effects of mass, melting point, and density on thermal conductivity are taken into account. The formula of heat transfer proposed by Rao is best applicable to the thermal conductivity of the mixture. Our result is well expressed by the following formula, K = 2742.T sub(m)sup(1/2).rho sub(m)sup(2/3)/M sup(7/6), where K is the thermal conductivity, T sub(m) the molting point, rho sub(m) the density at T sub(m), and M the mean mass (averaged molecular weight), while the constant is 2742 instead of 2090 according to Rao. Whereas the thermal conductivity of pure alkali nitrate correlates linearly with the ultrasonic sound velocity, this relation does not hold in the molten KNO/sub 3/-NaNO/sub 2/ mixture. The additivity rule can be applied to the sound velocity, but not to the thermal conductivity owing to its excess conductivity.

  10. Vineyard water status assessment using on-the-go thermal imaging and machine learning.

    Directory of Open Access Journals (Sweden)

    Salvador Gutiérrez

    Full Text Available The high impact of irrigation in crop quality and yield in grapevine makes the development of plant water status monitoring systems an essential issue in the context of sustainable viticulture. This study presents an on-the-go approach for the estimation of vineyard water status using thermal imaging and machine learning. The experiments were conducted during seven different weeks from July to September in season 2016. A thermal camera was embedded on an all-terrain vehicle moving at 5 km/h to take on-the-go thermal images of the vineyard canopy at 1.2 m of distance and 1.0 m from the ground. The two sides of the canopy were measured for the development of side-specific and global models. Stem water potential was acquired and used as reference method. Additionally, reference temperatures Tdry and Twet were determined for the calculation of two thermal indices: the crop water stress index (CWSI and the Jones index (Ig. Prediction models were built with and without considering the reference temperatures as input of the training algorithms. When using the reference temperatures, the best models casted determination coefficients R2 of 0.61 and 0.58 for cross validation and prediction (RMSE values of 0.190 MPa and 0.204 MPa, respectively. Nevertheless, when the reference temperatures were not considered in the training of the models, their performance statistics responded in the same way, returning R2 values up to 0.62 and 0.65 for cross validation and prediction (RMSE values of 0.190 MPa and 0.184 MPa, respectively. The outcomes provided by the machine learning algorithms support the use of thermal imaging for fast, reliable estimation of a vineyard water status, even suppressing the necessity of supervised acquisition of reference temperatures. The new developed on-the-go method can be very useful in the grape and wine industry for assessing and mapping vineyard water status.

  11. Vineyard water status assessment using on-the-go thermal imaging and machine learning.

    Science.gov (United States)

    Gutiérrez, Salvador; Diago, María P; Fernández-Novales, Juan; Tardaguila, Javier

    2018-01-01

    The high impact of irrigation in crop quality and yield in grapevine makes the development of plant water status monitoring systems an essential issue in the context of sustainable viticulture. This study presents an on-the-go approach for the estimation of vineyard water status using thermal imaging and machine learning. The experiments were conducted during seven different weeks from July to September in season 2016. A thermal camera was embedded on an all-terrain vehicle moving at 5 km/h to take on-the-go thermal images of the vineyard canopy at 1.2 m of distance and 1.0 m from the ground. The two sides of the canopy were measured for the development of side-specific and global models. Stem water potential was acquired and used as reference method. Additionally, reference temperatures Tdry and Twet were determined for the calculation of two thermal indices: the crop water stress index (CWSI) and the Jones index (Ig). Prediction models were built with and without considering the reference temperatures as input of the training algorithms. When using the reference temperatures, the best models casted determination coefficients R2 of 0.61 and 0.58 for cross validation and prediction (RMSE values of 0.190 MPa and 0.204 MPa), respectively. Nevertheless, when the reference temperatures were not considered in the training of the models, their performance statistics responded in the same way, returning R2 values up to 0.62 and 0.65 for cross validation and prediction (RMSE values of 0.190 MPa and 0.184 MPa), respectively. The outcomes provided by the machine learning algorithms support the use of thermal imaging for fast, reliable estimation of a vineyard water status, even suppressing the necessity of supervised acquisition of reference temperatures. The new developed on-the-go method can be very useful in the grape and wine industry for assessing and mapping vineyard water status.

  12. Infrared thermal imaging for automated detection of diabetic foot complications.

    Science.gov (United States)

    van Netten, Jaap J; van Baal, Jeff G; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A

    2013-09-01

    Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability of high-resolution infrared thermal imaging for noninvasive automated detection of signs of diabetic foot disease. The plantar foot surfaces of 15 diabetes patients were imaged with an infrared camera (resolution, 1.2 mm/pixel): 5 patients had no visible signs of foot complications, 5 patients had local complications (e.g., abundant callus or neuropathic ulcer), and 5 patients had diffuse complications (e.g., Charcot foot, infected ulcer, or critical ischemia). Foot temperature was calculated as mean temperature across pixels for the whole foot and for specified regions of interest (ROIs). No differences in mean temperature >1.5 °C between the ipsilateral and the contralateral foot were found in patients without complications. In patients with local complications, mean temperatures of the ipsilateral and the contralateral foot were similar, but temperature at the ROI was >2 °C higher compared with the corresponding region in the contralateral foot and to the mean of the whole ipsilateral foot. In patients with diffuse complications, mean temperature differences of >3 °C between ipsilateral and contralateral foot were found. With an algorithm based on parameters that can be captured and analyzed with a high-resolution infrared camera and a computer, it is possible to detect signs of diabetic foot disease and to discriminate between no, local, or diffuse diabetic foot complications. As such, an intelligent telemedicine monitoring system for noninvasive automated detection of signs of diabetic foot disease is one step closer. Future studies are essential to confirm and extend these promising early findings. © 2013 Diabetes Technology Society.

  13. Stress-dependent permeability and wave dispersion in tight cracked rocks: Experimental validation of simple effective medium models

    Science.gov (United States)

    Sarout, Joel; Cazes, Emilie; Delle Piane, Claudio; Arena, Alessio; Esteban, Lionel

    2017-08-01

    We experimentally assess the impact of microstructure, pore fluid, and frequency on wave velocity, wave dispersion, and permeability in thermally cracked Carrara marble under effective pressure up to 50 MPa. The cracked rock is isotropic, and we observe that (1) P and S wave velocities at 500 kHz and the low-strain (S waves and 9% for P waves at 1 MPa, and (4) wave dispersion virtually vanishes above 30 MPa. Assuming no interactions between the cracks, effective medium theory is used to model the rock's elastic response and its permeability. P and S wave velocity data are jointly inverted to recover the crack density and effective aspect ratio. The permeability data are inverted to recover the cracks' effective radius. These parameters lead to a good agreement between predicted and measured wave velocities, dispersion and permeability up to 50 MPa, and up to a crack density of 0.5. The evolution of the crack parameters suggests that three deformation regimes exist: (1) contact between cracks' surface asperities up to 10 MPa, (2) progressive crack closure between 10 and 30 MPa, and (3) crack closure effectively complete above 30 MPa. The derived crack parameters differ significantly from those obtained by analysis of 2-D electron microscope images of thin sections or 3-D X-ray microtomographic images of millimeter-size specimens.

  14. Thermal neutron imaging through XRQA2 GAFCHROMIC films coupled with a cadmium radiator

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, D. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); INAIL – DIT, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy); Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Bortot, D. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Palomba, M. [ENEA Casaccia, Via Anguillarese, 301, S. Maria di Galeria, 00123 Roma (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Introini, M.V.; Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); Gentile, A. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Strigari, L. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Pressello, C. [Department of Medical Physics, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, 00152 Roma (Italy); Soriani, A. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Gómez-Ros, J.M. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain)

    2015-10-21

    A simple and inexpensive method to perform passive thermal neutron imaging on large areas was developed on the basis of XRQA2 GAFCHROMIC films, commonly employed for quality assurance in radiology. To enhance their thermal neutron response, the sensitive face of film was coupled with a 1 mm thick cadmium radiator, forming a sandwich. By exchanging the order of Cd filter and sensitive film with respect to the incident neutron beam direction, two different configurations (beam-Cd-film and beam-film-Cd) were identified. These configurations were tested at thermal neutrons fluence values in the range 10{sup 9}–10{sup 10} cm{sup −2}, using the ex-core radial thermal neutron column of the ENEA Casaccia – TRIGA reactor. The results are presented in this work.

  15. Imaging of THz waves in 2D photonic crystal structures embedded in a slab waveguide

    International Nuclear Information System (INIS)

    Peier, P; Merbold, H; Feurer, T; Pahinin, V; Nelson, K A

    2010-01-01

    We present space- and time-resolved simulations and measurements of single-cycle terahertz (THz) waves propagating through two-dimensional (2D) photonic crystal structures embedded in a slab waveguide. Specifically, we use a plane wave expansion technique to calculate the band structure and a time-dependent finite-element method to simulate the temporal evolution of the THz waves. Experimentally, we measure the space-time evolution of the THz waves through a coherent time-resolved imaging method. Three different structures are laser machined in LiNbO 3 crystal slabs and analyzing the transmitted as well as the reflected THz waveforms allows determination of the bandgaps. Comparing the results with the calculated band diagrams and the time-dependent simulations shows that the experiments are consistent with 3D simulations, which include the slab waveguide geometry, the birefringence of the material, and a careful analysis of the excited modes within the band diagrams.

  16. Temperature waves and the Boltzmann kinetic equation for phonons

    International Nuclear Information System (INIS)

    Urushev, D.; Borisov, M.; Vavrek, A.

    1988-01-01

    The ordinary parabolic equation for thermal conduction based on the Fourier empiric law as well as the generalized thermal conduction equation based on the Maxwell law have been derived from the Boltzmann equation for the phonons within the relaxation time approximation. The temperature waves of the so-called second sound in crystals at low temperatures are transformed into Fourier waves at low frequencies with respect to the characteristic frequency of the U-processes. These waves are transformed into temperature waves similar to the second sound waves in He II at frequences higher than the U-processes characteristic. 1 fig., 19 refs

  17. Near-real-time feedback control system for liver thermal ablations based on self-referenced temperature imaging

    International Nuclear Information System (INIS)

    Keserci, Bilgin M.; Kokuryo, Daisuke; Suzuki, Kyohei; Kumamoto, Etsuko; Okada, Atsuya; Khankan, Azzam A.; Kuroda, Kagayaki

    2006-01-01

    Our challenge was to design and implement a dedicated temperature imaging feedback control system to guide and assist in a thermal liver ablation procedure in a double-donut 0.5T open MR scanner. This system has near-real-time feedback capability based on a newly developed 'self-referenced' temperature imaging method using 'moving-slab' and complex-field-fitting techniques. Two phantom validation studies and one ex vivo experiment were performed to compare the newly developed self-referenced method with the conventional subtraction method and evaluate the ability of the feedback control system in the same MR scanner. The near-real-time feedback system was achieved by integrating the following primary functions: (1) imaging of the moving organ temperature; (2) on-line needle tip tracking; (3) automatic turn-on/off the heating devices; (4) a Windows operating system-based novel user-interfaces. In the first part of the validation studies, microwave heating was applied in an agar phantom using a fast spoiled gradient recalled echo in a steady state sequence. In the second part of the validation and ex vivo study, target visualization, treatment planning and monitoring, and temperature and thermal dose visualization with the graphical user interface of the thermal ablation software were demonstrated. Furthermore, MR imaging with the 'self-referenced' temperature imaging method has the ability to localize the hot spot in the heated region and measure temperature elevation during the experiment. In conclusion, we have demonstrated an interactively controllable feedback control system that offers a new method for the guidance of liver thermal ablation procedures, as well as improving the ability to assist ablation procedures in an open MR scanner

  18. Kinetic Alfven Waves and the Depletion of the Thermal Population in Extragalactic Jets

    Science.gov (United States)

    Jafelice, L. C.; Opher, R.

    1990-11-01

    evident that both problems are intimately related to one another. Jafe- lice and Opher (1987a)(Astrophys. Space Sci. 137, 303)showed that an abundant generation of kinetic Alfven waves (KAw) within EJ and ERS is expected. In the present work we study the chain of processes: a) KAW accelerate thermal electrons along the background magnetic field producing suprathermal runaway electrons; b) which generate Langmuir waves and c) which in turn further accelerate a fraction of the runaway electrons to moderately relativistic energies. We show that assuming that there is no other source of a thermal population but the original one, the above sequence of processes can account for the consumption of thermal electrons in a time scale the source lifetime. Key o : GALAXIES-JETS - HYDROMAGNETICS

  19. Role of magnetic resonance imaging in guiding thermal therapies. A brief technical review

    International Nuclear Information System (INIS)

    Kuroda, Kagayaki

    2007-01-01

    For a number of reasons, Magnetic Resonance Imaging (MRI) is a unique tool for interventional use. It has a spatial resolution which is independent of the wavelength of the electromagnetic field used for imaging, has various imaging parameters which are related to the physical properties of the subject; provides a superior soft-tissue contrast; provides freedom in determining the slicing or viewing angle; and it utilizes non-ionizing radiation. This technology offers assistance in therapeutic applications such as lesion identification, treatment planning, device tracking, temperature imaging and treatment evaluation. In this article, the role of MRI in assisting thermal therapy is briefly reviewed from a technical point of view. (author)

  20. Studies of renal parenchymal impairments with extracorporeal shock wave lithotripsy (ESWL) by diagnostic imaging methods

    Energy Technology Data Exchange (ETDEWEB)

    Ohishi, Yukihiko; Machida, Toyohei; Tashiro, Kazuya; Wada, Tetsuro; Mochizuki, Atsushi; Torii, Shinichiro; Yoshigoe, Fukuo; Kawashima, Yoshio; Asano, Koji (Jikei Univ., Tokyo (Japan). School of Medicine)

    1989-05-01

    Renal parenchymal impairments with extracorporeal shock wave lithotripsy (ESWL) were studied by diagnostic imaging methods. The subjects were 25 patients with renal stones, and EDAP LT-01 (piezoelectric system) was used for the equipment of ESWL. The examination by MRI, X-ray CT and /sup 99m/Tc-DMSA scintigraphy using SPECT were performed before and after ESWL. To the 24 kidneys of 12 adult dogs, shock waves were fired in order to examine the experimental renal parenchymal impairments. After the treatment with ESWL, renal abnormal findings were obtained with MRI in 6 patients out of 11 (54.5%), with X-ray CT in 1 patient out of 12 (8.3%), and with the /sup 99m/Tc-DMSA renal scintigraphy in 4 patients out of 6 (66.7%). In the inspections with X-ray CT and renal scintigraphy conducted in 4 weeks, it was noted that the conditions of patients were recovered to the states before ESWL was performed. Using the therapeutic doses of shock wave for humans, the renal parenchymal impairments in the kidney in dogs were normalized in 7 days. Although it has been considered that the degree of renal parenchymal impairments with ESWL treatment may be influenced by the kind of the equipment, frequency of shock waves and their strength, the extent of impairments were rather mild, and it was presumed that the impairments might be recovered on the images in 3 to 4 weeks at the latest. (author).

  1. Studies of renal parenchymal impairments with extracorporeal shock wave lithotripsy (ESWL) by diagnostic imaging methods

    International Nuclear Information System (INIS)

    Ohishi, Yukihiko; Machida, Toyohei; Tashiro, Kazuya; Wada, Tetsuro; Mochizuki, Atsushi; Torii, Shinichiro; Yoshigoe, Fukuo; Kawashima, Yoshio; Asano, Koji

    1989-01-01

    Renal parenchymal impairments with extracorporeal shock wave lithotripsy (ESWL) were studied by diagnostic imaging methods. The subjects were 25 patients with renal stones, and EDAP LT-01 (piezoelectric system) was used for the equipment of ESWL. The examination by MRI, X-ray CT and 99m Tc-DMSA scintigraphy using SPECT were performed before and after ESWL. To the 24 kidneys of 12 adult dogs, shock waves were fired in order to examine the experimental renal parenchymal impairments. After the treatment with ESWL, renal abnormal findings were obtained with MRI in 6 patients out of 11 (54.5%), with X-ray CT in 1 patient out of 12 (8.3%), and with the 99m Tc-DMSA renal scintigraphy in 4 patients out of 6 (66.7%). In the inspections with X-ray CT and renal scintigraphy conducted in 4 weeks, it was noted that the conditions of patients were recovered to the states before ESWL was performed. Using the therapeutic doses of shock wave for humans, the renal parenchymal impairments in the kidney in dogs were normalized in 7 days. Although it has been considered that the degree of renal parenchymal impairments with ESWL treatment may be influenced by the kind of the equipment, frequency of shock waves and their strength, the extent of impairments were rather mild, and it was presumed that the impairments might be recovered on the images in 3 to 4 weeks at the latest. (author)

  2. High precision automated face localization in thermal images: oral cancer dataset as test case

    Science.gov (United States)

    Chakraborty, M.; Raman, S. K.; Mukhopadhyay, S.; Patsa, S.; Anjum, N.; Ray, J. G.

    2017-02-01

    Automated face detection is the pivotal step in computer vision aided facial medical diagnosis and biometrics. This paper presents an automatic, subject adaptive framework for accurate face detection in the long infrared spectrum on our database for oral cancer detection consisting of malignant, precancerous and normal subjects of varied age group. Previous works on oral cancer detection using Digital Infrared Thermal Imaging(DITI) reveals that patients and normal subjects differ significantly in their facial thermal distribution. Therefore, it is a challenging task to formulate a completely adaptive framework to veraciously localize face from such a subject specific modality. Our model consists of first extracting the most probable facial regions by minimum error thresholding followed by ingenious adaptive methods to leverage the horizontal and vertical projections of the segmented thermal image. Additionally, the model incorporates our domain knowledge of exploiting temperature difference between strategic locations of the face. To our best knowledge, this is the pioneering work on detecting faces in thermal facial images comprising both patients and normal subjects. Previous works on face detection have not specifically targeted automated medical diagnosis; face bounding box returned by those algorithms are thus loose and not apt for further medical automation. Our algorithm significantly outperforms contemporary face detection algorithms in terms of commonly used metrics for evaluating face detection accuracy. Since our method has been tested on challenging dataset consisting of both patients and normal subjects of diverse age groups, it can be seamlessly adapted in any DITI guided facial healthcare or biometric applications.

  3. Lamb-Wave-Based Tomographic Imaging Techniques for Hole-Edge Corrosion Monitoring in Plate Structures

    Directory of Open Access Journals (Sweden)

    Dengjiang Wang

    2016-11-01

    Full Text Available This study presents a novel monitoring method for hole-edge corrosion damage in plate structures based on Lamb wave tomographic imaging techniques. An experimental procedure with a cross-hole layout using 16 piezoelectric transducers (PZTs was designed. The A0 mode of the Lamb wave was selected, which is sensitive to thickness-loss damage. The iterative algebraic reconstruction technique (ART method was used to locate and quantify the corrosion damage at the edge of the hole. Hydrofluoric acid with a concentration of 20% was used to corrode the specimen artificially. To estimate the effectiveness of the proposed method, the real corrosion damage was compared with the predicted corrosion damage based on the tomographic method. The results show that the Lamb-wave-based tomographic method can be used to monitor the hole-edge corrosion damage accurately.

  4. The FLIR ONE thermal imager for the assessment of burn wounds: Reliability and validity study.

    Science.gov (United States)

    Jaspers, M E H; Carrière, M E; Meij-de Vries, A; Klaessens, J H G M; van Zuijlen, P P M

    2017-11-01

    Objective measurement tools may be of great value to provide early and reliable burn wound assessment. Thermal imaging is an easy, accessible and objective technique, which measures skin temperature as an indicator of tissue perfusion. These thermal images might be helpful in the assessment of burn wounds. However, before implementation of a novel measurement tool into clinical practice is considered, it is appropriate to test its clinimetric properties (i.e. reliability and validity). The objective of this study was to assess the reliability and validity of the recently introduced FLIR ONE thermal imager. Two observers obtained thermal images of burn wounds in adult patients at day 1-3, 4-7 and 8-10 after burn. Subsequently, temperature differences between the burn wound and healthy skin (ΔT) were calculated on an iPad mini containing the FLIR Tools app. To assess reliability, ΔT values of both observers were compared by calculating the intraclass correlation coefficient (ICC) and measurement error parameters. To assess validity, the ΔT values of the first observer were compared to the registered healing time of the burn wounds, which was specified into three categories: (I) ≤14 days, (II) 15-21 days and (III) >21 days. The ability of the FLIR ONE to discriminate between healing ≤21 days and >21 days was evaluated by means of a receiver operating characteristic curve and an optimal ΔT cut-off value. Reliability: ICCs were 0.99 for each time point, indicating excellent reliability up to 10 days after burn. The standard error of measurement varied between 0.17-0.22°C. the area under the curve was calculated at 0.69 (95% CI 0.54-0.84). A cut-off value of -1.15°C shows a moderate discrimination between burn wound healing ≤21 days and >21 days (46% sensitivity; 82% specificity). Our results show that the FLIR ONE thermal imager is highly reliable, but the moderate validity calls for additional research. However, the FLIR ONE is pre-eminently feasible

  5. Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment

    Directory of Open Access Journals (Sweden)

    Yoshihito Kurazumi

    2013-01-01

    Full Text Available In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach.

  6. Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment

    Science.gov (United States)

    Kurazumi, Yoshihito; Kondo, Emi; Ishii, Jin; Sakoi, Tomonori; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi

    2013-01-01

    In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach. PMID:23861691

  7. Experimental studies of thermal and non-thermal electron cyclotron phenomena in tokamaks

    International Nuclear Information System (INIS)

    McDermott, F.S.

    1984-12-01

    A direct measurement of wave absorption in the ISX-B tokamak at the second harmonic of the electron cyclotron frequency is reported. Measurements of the absorption of a wave polarized in the extraordinary mode and propagating perpendicular to the toroidal magnetic field are in agreement with the absorption predicted by the linearized Vlasov equation for a thermal plasma. Agreement is found both for an analytic approximation to the wave absorption and for a numerical simulation of ray propagation in toroidal geometry. Observations are also reported on a non-linear, three-wave interaction process occurring during high power electron cyclotron resonance heating in the Versator II tokamak. The measured spectra and the threshold power are consistent with a model in which the incident power in the extraordinary mode of polarization decays at the upper hybrid resonance layer into a lower hybrid wave and an electron Bernstein wave. Finally, measurements of non-thermal emission at the second harmonic of the electron cyclotron frequency and below the electron plasma frequency are reported from low density, non-Maxwellian plasma in the Versator II tokamak. The emission spectra are in agreement with a model in which waves are driven unstable at the anomalous Doppler resonance, while only weakly damped at the Cerenkov resonance

  8. Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures

    Science.gov (United States)

    Jia, Xianzhe; Kivelson, Margaret G.; Khurana, Krishan K.; Kurth, William S.

    2018-05-01

    The icy surface of Jupiter's moon, Europa, is thought to lie on top of a global ocean1-4. Signatures in some Hubble Space Telescope images have been associated with putative water plumes rising above Europa's surface5,6, providing support for the ocean theory. However, all telescopic detections reported were made at the limit of sensitivity of the data5-7, thereby calling for a search for plume signatures in in-situ measurements. Here, we report in-situ evidence of a plume on Europa from the magnetic field and plasma wave observations acquired on Galileo's closest encounter with the moon. During this flyby, which dropped below 400 km altitude, the magnetometer8 recorded an approximately 1,000-kilometre-scale field rotation and a decrease of over 200 nT in field magnitude, and the Plasma Wave Spectrometer9 registered intense localized wave emissions indicative of a brief but substantial increase in plasma density. We show that the location, duration and variations of the magnetic field and plasma wave measurements are consistent with the interaction of Jupiter's corotating plasma with Europa if a plume with characteristics inferred from Hubble images were erupting from the region of Europa's thermal anomalies. These results provide strong independent evidence of the presence of plumes at Europa.

  9. Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures

    Science.gov (United States)

    Jia, Xianzhe; Kivelson, Margaret G.; Khurana, Krishan K.; Kurth, William S.

    2018-06-01

    The icy surface of Jupiter's moon, Europa, is thought to lie on top of a global ocean1-4. Signatures in some Hubble Space Telescope images have been associated with putative water plumes rising above Europa's surface5,6, providing support for the ocean theory. However, all telescopic detections reported were made at the limit of sensitivity of the data5-7, thereby calling for a search for plume signatures in in-situ measurements. Here, we report in-situ evidence of a plume on Europa from the magnetic field and plasma wave observations acquired on Galileo's closest encounter with the moon. During this flyby, which dropped below 400 km altitude, the magnetometer8 recorded an approximately 1,000-kilometre-scale field rotation and a decrease of over 200 nT in field magnitude, and the Plasma Wave Spectrometer9 registered intense localized wave emissions indicative of a brief but substantial increase in plasma density. We show that the location, duration and variations of the magnetic field and plasma wave measurements are consistent with the interaction of Jupiter's corotating plasma with Europa if a plume with characteristics inferred from Hubble images were erupting from the region of Europa's thermal anomalies. These results provide strong independent evidence of the presence of plumes at Europa.

  10. Mapping submarine sand waves with multiband imaging radar - 2. Experimental results and model comparison

    NARCIS (Netherlands)

    Vogelzang, J.; Wensink, G.J.; Calkoen, C.J.; Kooij, M.W.A. van der

    1997-01-01

    On August 16, 1989, and on July 12, 1991, experiments were performed to study the mapping of submarine sand waves with the airborne imaging radar, a polarimetric (and, in 1991, interferometric) airborne P, L, and C band synthetic aperture radar system. The experiments took place in an area 30 km off

  11. Numerical study of remote detection outside the magnet with travelling wave Magnetic Resonance Imaging at 3T

    International Nuclear Information System (INIS)

    López, M; Vázquez, F; Solís-Nájera, S; Rodriguez, A O

    2015-01-01

    The use of the travelling wave approach for high magnetic field magnetic resonance imaging has been used recently with very promising results. This approach offer images one with greater field-of-view and a reasonable signal-to-noise ratio using a circular waveguide. This scheme has been proved to be successful at 7 T and 9.4 T with whole-body imager. Images have also been acquired with clinical magnetic resonance imaging systems whose resonant frequencies were 64 MHz and 128 MHz. These results motivated the use of remote detection of the magnetic resonance signal using a parallel-plate waveguide together with 3 T clinical scanners, to acquired human leg images. The cut-off frequency of this waveguide is zero for the principal mode, allowing us to overcome the barrier of transmitting waves at lower frequency than 300 MHz or 7 T for protons. These motivated the study of remote detection outside the actual magnet. We performed electromagnetic field simulations of a parallel-plate waveguide and a phantom. The signal transmission was done at 128 MHz and using a circular surface coil located almost 200 cm away for the magnet isocentre. Numerical simulations demonstrated that the magnetic field of the principal mode propagate inside a waveguide outside the magnet. Numerical results were compared with previous experimental-acquired image data under similar conditions

  12. Passive thermal infrared hyperspectral imaging for quantitative imaging of shale gas leaks

    Science.gov (United States)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Morton, Vince; Giroux, Jean; Chamberland, Martin

    2017-10-01

    There are many types of natural gas fields including shale formations that are common especially in the St-Lawrence Valley (Canada). Since methane (CH4), the major component of shale gas, is odorless, colorless and highly flammable, in addition to being a greenhouse gas, methane emanations and/or leaks are important to consider for both safety and environmental reasons. Telops recently launched on the market the Hyper-Cam Methane, a field-deployable thermal infrared hyperspectral camera specially tuned for detecting methane infrared spectral features under ambient conditions and over large distances. In order to illustrate the benefits of this novel research instrument for natural gas imaging, the instrument was brought on a site where shale gas leaks unexpectedly happened during a geological survey near the Enfant-Jesus hospital in Quebec City, Canada, during December 2014. Quantitative methane imaging was carried out based on methane's unique infrared spectral signature. Optical flow analysis was also carried out on the data to estimate the methane mass flow rate. The results show how this novel technique could be used for advanced research on shale gases.

  13. Angle gathers in wave-equation imaging for transversely isotropic media

    KAUST Repository

    Alkhalifah, Tariq Ali; Fomel, Sergey B.

    2010-01-01

    In recent years, wave-equation imaged data are often presented in common-image angle-domain gathers as a decomposition in the scattering angle at the reflector, which provide a natural access to analysing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-frequency planes into angle-frequency planes simultaneously with applying the imaging condition in a transversely isotropic with a vertical symmetry axis (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case of anisotropic media differs from its isotropic counterpart, with the difference depending mainly on the strength of anisotropy. Synthetic examples demonstrate the importance of including anisotropy in the angle gather generation as mapping of the energy is negatively altered otherwise. In the case of a titled axis of symmetry (TTI), the same VTI formulation is applicable but requires a rotation of the wavenumbers. © 2010 European Association of Geoscientists & Engineers.

  14. Angle gathers in wave-equation imaging for transversely isotropic media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-11-12

    In recent years, wave-equation imaged data are often presented in common-image angle-domain gathers as a decomposition in the scattering angle at the reflector, which provide a natural access to analysing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-frequency planes into angle-frequency planes simultaneously with applying the imaging condition in a transversely isotropic with a vertical symmetry axis (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case of anisotropic media differs from its isotropic counterpart, with the difference depending mainly on the strength of anisotropy. Synthetic examples demonstrate the importance of including anisotropy in the angle gather generation as mapping of the energy is negatively altered otherwise. In the case of a titled axis of symmetry (TTI), the same VTI formulation is applicable but requires a rotation of the wavenumbers. © 2010 European Association of Geoscientists & Engineers.

  15. Sound wave transmission (image)

    Science.gov (United States)

    When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...

  16. Evaluation of renal function with dynamic Gd-DTPA enhanced magnetic resonance imaging after shock wave lithotripsy

    International Nuclear Information System (INIS)

    Izumi, Hirokazu; Shiokawa, Hidefumi; Kurokawa, Jun; Murata, Koichiro; Mashimo, Setsuo; Koshiba, Ken.

    1992-01-01

    It has already been reported that MR imaging is a superior imaging technique to detect minute anatomical changes in the kidney after extracorporeal shock wave lithotripsy (ESWL). However, the morphological abnormalities found by MR imaging do not necessarily mean deterioration of the renal function. The purpose of this study is to assess the morphological changes in the kidney and changes in renal function after ESWL treatment by dynamic MR imaging. A total of 16 patients underwent axial MR imaging before and after ESWL. Dynamic MR was also performed on 11 patients of them within 24 hours after ESWL, and both before and after ESWL in the remaining 5 patients. Eight kidneys showed morphological abnormalities on T1-weighted images, and 4 of them showed loss of corticomedullary demarcation. Furthermore, the first MR imaging after injection of Gd-DTPA revealed focal areas of decreased signal intensity in only 2 of these 4 patients who showed loss of corticomedullary demarcation on previous MR images. However, the second MR imaging 6 months after ESWL showed no abnormality in either of them. The percent contrast of signal intensity increase to fat signal intensity was one minute after Gd-DTPA injection compared before and after ESWL in 5 of the 16 patients. The values before and after ESWL revealed no statistically significant difference, and no patient showed any remarkable decrease of signal intensity after ESWL. These results suggest that loss of corticomedullary demarcation after ESWL does not necessarily reflect damage to the renal function and that the shock-wave exposure causes no premanent damage to the renal function but only temporary impairment. (author)

  17. Evaluation of renal function with dynamic Gd-DTPA enhanced magnetic resonance imaging after shock wave lithotripsy

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Hirokazu; Shiokawa, Hidefumi; Kurokawa, Jun; Murata, Koichiro (Kitasato Inst., Saitama (Japan). Medical Center Hospital); Mashimo, Setsuo; Koshiba, Ken

    1992-03-01

    It has already been reported that MR imaging is a superior imaging technique to detect minute anatomical changes in the kidney after extracorporeal shock wave lithotripsy (ESWL). However, the morphological abnormalities found by MR imaging do not necessarily mean deterioration of the renal function. The purpose of this study is to assess the morphological changes in the kidney and changes in renal function after ESWL treatment by dynamic MR imaging. A total of 16 patients underwent axial MR imaging before and after ESWL. Dynamic MR was also performed on 11 patients of them within 24 hours after ESWL, and both before and after ESWL in the remaining 5 patients. Eight kidneys showed morphological abnormalities on T1-weighted images, and 4 of them showed loss of corticomedullary demarcation. Furthermore, the first MR imaging after injection of Gd-DTPA revealed focal areas of decreased signal intensity in only 2 of these 4 patients who showed loss of corticomedullary demarcation on previous MR images. However, the second MR imaging 6 months after ESWL showed no abnormality in either of them. The percent contrast of signal intensity increase to fat signal intensity was one minute after Gd-DTPA injection compared before and after ESWL in 5 of the 16 patients. The values before and after ESWL revealed no statistically significant difference, and no patient showed any remarkable decrease of signal intensity after ESWL. These results suggest that loss of corticomedullary demarcation after ESWL does not necessarily reflect damage to the renal function and that the shock-wave exposure causes no premanent damage to the renal function but only temporary impairment. (author).

  18. Macroscopic dynamics of thermal nuclear excitations

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Deak, F.; Kiss, A.; Seres, Z.

    1989-11-01

    The concept of kinetic temperature as a local dynamical variable of thermal nuclear collective motion is formulated using long-mean-free-path approach based on the Landau-Vlasov kinetic equation. In the Fermi drop model the thermal fluid dynamics of the spherical nucleus is analyzed. It is shown that in a compressible Fermi liquid the temperature pulses propagate in the form of spherical wave in phase with the acoustic wave. The thermal and compressional excitations are caused by the isotropic harmonic oscillations of the Fermi sphere in momentum space. (author) 25 refs.; 2 figs

  19. REFLECTION OF PROPAGATING SLOW MAGNETO-ACOUSTIC WAVES IN HOT CORONAL LOOPS: MULTI-INSTRUMENT OBSERVATIONS AND NUMERICAL MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sudip; Banerjee, Dipankar; Pant, Vaibhav [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Yuan, Ding; Fang, Xia; Doorsselaere, Tom Van, E-mail: sudip@iiap.res.in, E-mail: xia.fang@wis.kuleuven.be [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, bus 2400, 3001, Leuven (Belgium)

    2016-09-10

    Slow MHD waves are important tools for understanding coronal structures and dynamics. In this paper, we report a number of observations from the X-Ray Telescope (XRT) on board HINODE and Solar Dynamic Observatory /Atmospheric Imaging Assembly (AIA) of reflecting longitudinal waves in hot coronal loops. To our knowledge, this is the first report of this kind as seen from the XRT and simultaneously with the AIA. The wave appears after a micro-flare occurs at one of the footpoints. We estimate the density and temperature of the loop plasma by performing differential emission measure (DEM) analysis on the AIA image sequence. The estimated speed of propagation is comparable to or lower than the local sound speed, suggesting it to be a propagating slow wave. The intensity perturbation amplitude, in every case, falls very rapidly as the perturbation moves along the loop and eventually vanishes after one or more reflections. To check the consistency of such reflection signatures with the obtained loop parameters, we perform a 2.5D MHD simulation, which uses the parameters obtained from our observation as inputs, and perform forward modeling to synthesize AIA 94 Å images. Analyzing the synthesized images, we obtain the same properties of the observables as for the real observation. From the analysis we conclude that a footpoint heating can generate a slow wave which then reflects back and forth in the coronal loop before fading. Our analysis of the simulated data shows that the main agent for this damping is anisotropic thermal conduction.

  20. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.

    Science.gov (United States)

    Liang, Hai-Dong; Zhou, Li-Xia; Wells, Peter N T; Halliwell, Michael

    2009-05-01

    Over the years, there has been a substantial increase in acoustic exposure in diagnostic ultrasound as new imaging modalities with higher intensities and frame rates have been introduced; and more electronic components have been packed into the probe head, so that there is a tendency for it to become hotter. With respect to potential thermal effects, including those which may be hazardous occurring during ultrasound scanning, there is a correspondingly growing need for in vivo techniques to guide the operator as to the actual temperature rise occurring in the examined tissues. Therefore, an in vivo temperature estimator would be of considerable practical value. The commonly-used method of tissue thermal index (TI) measurement with a hydrophone in water could underestimate the actual value of TI (in one report by as much as 2.9 times). To obtain meaningful results, it is necessary to map the temperature elevation in 2-D (or 3-D) space. We present methodology, results and validation of a 2-D spatial and temporal thermal strain ultrasound temperature estimation technique in phantoms, and its apparently novel application in tracking the evolution of heat deposition at diagnostic exposure levels. The same ultrasound probe is used for both transmission and reception. The displacement and thermal strain estimation methods are similar to those used in high-intensity focused ultrasound thermal monitoring. The use of radiofrequency signals permits the application of cross correlation as a similarity measurement for tracking feature displacement. The displacement is used to calculate the thermal strain directly related to the temperature rise. Good agreement was observed between the temperature rise and the ultrasound power and scan duration. Thermal strain up to 1.4% was observed during 4000-s scan. Based on the results obtained for the temperature range studied in this work, the technique demonstrates potential for applicability in phantom (and possibly in vivo tissue