WorldWideScience

Sample records for thermal transport property

  1. Effects of nanosized constriction on thermal transport properties of graphene

    Science.gov (United States)

    2014-01-01

    Thermal transport properties of graphene with nanosized constrictions are investigated using nonequilibrium molecular dynamics simulations. The results show that the nanosized constrictions have a significant influence on the thermal transport properties of graphene. The thermal resistance of the nanosized constrictions is on the order of 107 to 109 K/W at 150 K, which reduces the thermal conductivity by 7.7% to 90.4%. It is also found that the constriction resistance is inversely proportional to the width of the constriction and independent of the heat current. Moreover, we developed an analytical model for the ballistic thermal resistance of the nanosized constrictions in two-dimensional nanosystems. The theoretical prediction agrees well with the simulation results in this paper, which suggests that the thermal transport across the nanosized constrictions in two-dimensional nanosystems is ballistic in nature. PACS 65.80.CK; 61.48.Gh; 63.20.kp; 31.15.xv PMID:25232292

  2. Thermal transport properties of antimonene: an ab initio study.

    Science.gov (United States)

    Wang, Shudong; Wang, Wenhua; Zhao, Guojun

    2016-11-16

    Searching for low thermal conductivity materials is crucial for thermoelectric devices. Here we report on the phonon transport properties of recently fabricated single layer antimony, antimonene [Ares, et al., Adv. Mater., 2016, 28, 6332]. Ab initio calculations in combination with the Boltzmann transport equation (BTE) for phonons show that antimonene has a low lattice thermal conductivity (15.1 W m -1 K -1 at 300 K), indicating its potential thermoelectric applications. The low lattice thermal conductivity is due to its small group velocity, low Debye temperature and large buckling height. We also investigate in detail the mode contributions to total thermal conductivity and find at low frequency that the longitudinal acoustic (LA) branch dominates the thermal conductivity. Moreover, we show that the lattice thermal conductivity of antimonene can further be reduced by minimizing the sample size. Our findings open the field for thermoelectric applications based on antimonene.

  3. Thermal Transport Properties of Dry Spun Carbon Nanotube Sheets

    Directory of Open Access Journals (Sweden)

    Heath E. Misak

    2016-01-01

    Full Text Available The thermal properties of carbon nanotube- (CNT- sheet were explored and compared to copper in this study. The CNT-sheet was made from dry spinning CNTs into a nonwoven sheet. This nonwoven CNT-sheet has anisotropic properties in in-plane and out-of-plane directions. The in-plane direction has much higher thermal conductivity than the out-of-plane direction. The in-plane thermal conductivity was found by thermal flash analysis, and the out-of-plane thermal conductivity was found by a hot disk method. The thermal irradiative properties were examined and compared to thermal transport theory. The CNT-sheet was heated in the vacuum and the temperature was measured with an IR Camera. The heat flux of CNT-sheet was compared to that of copper, and it was found that the CNT-sheet has significantly higher specific heat transfer properties compared to those of copper. CNT-sheet is a potential candidate to replace copper in thermal transport applications where weight is a primary concern such as in the automobile, aircraft, and space industries.

  4. Electrical and thermal transport properties of uranium and plutonium carbides

    International Nuclear Information System (INIS)

    Lewis, H.D.; Kerrisk, J.F.

    1976-09-01

    Contributions of many authors are outlined with respect to the experimental measurement methods used and characteristics of the sample materials. Discussions treat the qualitative effects of sample material composition; oxygen, nitrogen, and nickel concentrations; porosity; microstructural variations; and the variability in transport property values obtained by the various investigators. Temperature-dependent values are suggested for the electrical resistivities and thermal conductivities of selected carbide compositions based on a comparative evaluation of the available data and the effects of variation in the characteristics of sample materials

  5. Comparison on thermal transport properties of graphene and phosphorene nanoribbons

    Science.gov (United States)

    Peng, Xiao-Fang; Chen, Ke-Qiu

    2015-01-01

    We investigate ballistic thermal transport at low temperatures in graphene and phosphorene nanoribbons (PNRS) modulated with a double-cavity quantum structure. A comparative analysis for thermal transport in these two kinds of nanomaterials is made. The results show that the thermal conductance in PNRS is greater than that in graphene nanoribbons (GNRS). The ratio kG/kP (kG is the thermal conductivity in GNRS and kP is the thermal conductivity in PNRS) decreases with lower temperature or for narrower nanoribbons, and increases with higher temperature or for wider nanoribbons. The greater thermal conductance and thermal conductivity in PNRS originate from the lower cutoff frequencies of the acoustic modes. PMID:26577958

  6. Synthesis, structure, thermal, transport and magnetic properties of VN ceramics

    Czech Academy of Sciences Publication Activity Database

    Huber, Š.; Jankovský, O.; Sedmidubský, D.; Luxa, J.; Klimová, K.; Hejtmánek, Jiří; Sofer, Z.

    2016-01-01

    Roč. 42, č. 16 (2016), s. 18779-18784 ISSN 0272-8842 R&D Projects: GA ČR GA13-20507S Institutional support: RVO:68378271 Keywords : vanadium mononitride * phase transition * electronic structure * heat capacity * transport properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.986, year: 2016

  7. Basic knowledge on radiative and transport properties to begin in thermal plasmas modelling

    International Nuclear Information System (INIS)

    Cressault, Y.

    2015-01-01

    This paper has for objectives to present the radiative and the transport properties for people beginning in thermal plasmas. The first section will briefly recall the equations defined in numerical models applied to thermal plasmas; the second section will particularly deal with the estimation of radiative losses; the third part will quickly present the thermodynamics properties; and the last part will concern the transport coefficients (thermal conductivity, viscosity and electrical conductivity of the gas or mixtures of gases). We shall conclude the paper with a discussion about the validity of these results the lack of data for some specific applications, and some perspectives concerning these properties for non-equilibrium thermal plasmas

  8. High-field thermal transports properties of REBCO coated conductors

    CERN Document Server

    Bonura, M

    2015-01-01

    The use of REBCO coated conductors is envisaged for many applications, extending from power cables to high-field magnets. Whatever the case, thermal properties of REBCO tapes play a key role for the stability of superconducting devices. In this work, we present the first study on the longitudinal thermal conductivity (k) of REBCO coated conductors in magnetic fields up to 19 T applied both parallelly and perpendicularly to the thermal-current direction. Copper-stabilized tapes from six industrial manufacturers have been investigated. We show that zero-field k of coated conductors can be calculated with an accuracy of ‡ 15% from the residual resistivity ratio of the stabilizer and the Cu/non-Cu ratio. Measurements performed at high fields have allowed us to evaluate the consistency of the procedures generally used for estimating in-field k in the framework of the Wiedemann-Franz law from an electrical characterization of the materials. In-field data are intended to provide primary ingredients for the ...

  9. Thermal transport properties of CaO-stabilized zirconia with varying amounts of stabilization

    International Nuclear Information System (INIS)

    Mirkovich, V.V.; Wheat, T.A.

    1985-01-01

    The thermal diffusivity of zirconia samples stabilized with 5.0, 7.6, 10.0, 15.0, 20.0 and 22.2 mol% CaO, and of a commercially available CaO-stabilized zirconia, was measured as a function of temperature. The thermal conductivity of samples with 7.5, 10.0, 15.0, and 20.0 mol% CaO was also measured as a function of temperature. The results have shown that the thermal transport properties for all compositions decrease with increasing temperature between 50 and 800 0 C. At lower temperatures (100-150 0 C), the transport properties depend principally on the CaO content of the specimen. Both thermal diffusivity and thermal conductivity show a minimum at 15.0 mol% CaO content. The grain size of the specimens appears to have no effect on these transport properties. (author)

  10. Thermal properties evaluation of insulation in overpack containers for UF6 transport

    International Nuclear Information System (INIS)

    Frazier, J.L.

    1989-01-01

    Two types of insulation are currently in use in overpacks utilized to protect UF 6 during transport. Phenolic foam has been used in the family of UF 6 overpacks under US Department of Transportation Specifications. Recently new generation overpacks have been developed which utilize polyurethane foam. A comparative analysis was made of the thermal characteristics of the phenolic foam with that of polyurethane in two different densities. Thermal properties of materials vary with temperature with the relationship being a complex interaction of basic materials properties, processing variables, and environmental conditions. Typically, the thermal conductivity of a material increases with increasing temperature, and adequate thermal models of materials systems or structures require temperature dependent thermal properties such as conductivity. In the event of an overpack container exposed to a fire as a heat source, the thermal properties of the materials of construction will vary with temperature which varies with time. Environmental interactions will result in material properties changes which will be reflected in changes in thermal properties. The need to incorporate temperature dependent thermal properties into analytical finite element codes led to an experimental program to measure thermal properties, principally thermal conductivity, for the 21PF-1 overpack phenolic foam. The thermal conductivity-temperature relationship for this insulator has been measured from room temperature to over 1000F. An alternate UF 6 product cylinder overpack container has recently entered service; an overpack design incorporating polyurethane as the primary thermal resistance in place of the phenolic foam in a 2 1/2 ton cylinder overpack. Elevated temperature thermal properties measurements for the polyurethane material system are presented

  11. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects.

    Science.gov (United States)

    Shao, Cheng; Bao, Hua

    2016-06-06

    The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring.

  12. Tailoring thermal transport properties of graphene by nitrogen doping

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tingting; Li, Jianhua; Cao, Yuwei; Zhu, Liyan, E-mail: lyzhu@hytc.edu.cn; Chen, Guibin, E-mail: gbchen@hytc.edu.cn [Huaiyin Normal University, School of Physics and Electronic & Electrical Engineering (China)

    2017-02-15

    The influence of two different nitrogen doping configurations, graphite-like and pyridinic-like nitrogen doping (denoted as graphite-N and pyridinic-N hereafter, respectively), on the thermal conduction of graphene is carefully studied via non-equilibrium molecular dynamic (NEMD) simulations. The thermal conductivity is more strongly suppressed in the pyridinic-N-doped graphene than that in the graphite-N-doped sample, which can be well understood from the changes in bond strength between nitrogen and carbon atoms, phonon group velocities, phonon density of states, participation ratio, and phonon transmission. Our study indicates that the pyridinic-N doping is an efficient method to tune the thermal conduction in graphene, especially for the situation where low thermal conductivity is requested, e.g., thermoelectric applications and thermal shielding.

  13. First-principles calculations of thermal, electrical, and thermoelectric transport properties of semiconductors

    Science.gov (United States)

    Zhou, Jiawei; Liao, Bolin; Chen, Gang

    2016-04-01

    The transport properties of semiconductors are key to the performance of many solid-state devices (transistors, data storage, thermoelectric cooling and power generation devices, etc). An understanding of the transport details can lead to material designs with better performances. In recent years simulation tools based on first-principles calculations have been greatly improved, being able to obtain the fundamental ground-state properties of materials (such as band structure and phonon dispersion) accurately. Accordingly, methods have been developed to calculate the transport properties based on an ab initio approach. In this review we focus on the thermal, electrical, and thermoelectric transport properties of semiconductors, which represent the basic transport characteristics of the two degrees of freedom in solids—electronic and lattice degrees of freedom. Starting from the coupled electron-phonon Boltzmann transport equations, we illustrate different scattering mechanisms that change the transport features and review the first-principles approaches that solve the transport equations. We then present the first-principles results on the thermal and electrical transport properties of semiconductors. The discussions are grouped based on different scattering mechanisms including phonon-phonon scattering, phonon scattering by equilibrium electrons, carrier scattering by equilibrium phonons, carrier scattering by polar optical phonons, scatterings due to impurities, alloying and doping, and the phonon drag effect. We show how the first-principles methods allow one to investigate transport properties with unprecedented detail and also offer new insights into the electron and phonon transport. The current status of the simulation is mentioned when appropriate and some of the future directions are also discussed.

  14. Thermal Transport in Phosphorene.

    Science.gov (United States)

    Qin, Guangzhao; Hu, Ming

    2018-02-02

    Phosphorene, a novel elemental 2D semiconductor, possesses fascinating chemical and physical properties which are distinctively different from other 2D materials. The rapidly growing applications of phosphorene in nano/optoelectronics and thermoelectrics call for comprehensive studies of thermal transport properties. In this Review, based on the theoretical and experimental progresses, the thermal transport properties of single-layer phosphorene, multilayer phosphorene (nanofilms), and bulk black phosphorus are summarized to give a general view of the overall thermal conductivity trend from single-layer to bulk form. The mechanism underlying the discrepancy in the reported thermal conductivity of phosphorene is discussed by reviewing the effect of different functionals and cutoff distances on the thermal transport evaluations. This Review then provides fundamental insight into the thermal transport in phosphorene by reviewing the role of resonant bonding in driving giant phonon anharmonicity and long-range interactions. In addition, the extrinsic thermal conductivity of phosphorene is reviewed by discussing the effects of strain and substrate, together with phosphorene based heterostructures and nanoribbons. This Review summarizes the progress of thermal transport in phosphorene from both theoretical calculations and experimental measurements, which would be of significance to the design and development of efficient phosphorene based nanoelectronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe2.

    Science.gov (United States)

    Shafique, Aamir; Shin, Young-Han

    2017-12-06

    The effect of strain on the phonon properties such as phonon group velocity, phonon anharmonicity, phonon lifetime, and lattice thermal conductivity of monolayer 2H-MoTe 2 is studied by solving the Boltzmann transport equation based on first principles calculations. The phonon thermal transport properties of the unstrained monolayer 2H-MoTe 2 are compared to those of the strained case under different biaxial tensile strains. One of the common features of two-dimensional materials is the quadratic nature near the Γ point of the out-of-plane phonon flexural mode that disappears by applying tensile strain. We find that the lattice thermal conductivity of the monolayer 2H-MoTe 2 is very sensitive to strain, and the lattice thermal conductivity is reduced by approximately 2.5 times by applying 8% biaxial tensile strain due to the reduction in phonon group velocities and phonon lifetime. We also analyze how the contribution of each mode to lattice thermal conductivity changes with tensile strain. These results highlight that tensile strain is a key parameter in engineering phonon thermal transport properties in monolayer 2H-MoTe 2 .

  16. Thermal and electrical transport properties of ? single crystals

    Science.gov (United States)

    Gamal, G. A.; Nassary, M. M.; Nagat, A. T.; Abou-Alwafa, A. M.

    1996-04-01

    Electrical conductivity, Hall effect and thermoelectric power measurements are made for the compound 0268-1242/11/4/009/img2. This compound, which is a semiconductor grown in a single-crystal form, is studied over a wide range of temperature from 150 to 375 K. The crystal is grown by a modification of the Bridgman method. The combination of the electrical and thermal measurements in the present investigation makes it possible to find various physical parameters and to reveal the general behaviour of this semiconductor.

  17. Multi-wall effects on the thermal transport properties of nanotube structures

    International Nuclear Information System (INIS)

    Hata, Tomoyuki; Kawai, Hiroki; Jono, Ryota; Yamashita, Koichi

    2014-01-01

    Understanding the role of inter-layer interactions in multi-walled carbon nanotubes is one of the challenges in the design of potential materials because of their large impact on the physical properties of carbon nanotubes. We focused on the thermal properties of double-walled carbon nanotubes (DWCNTs), which are promising materials due to their high durability and thermal efficiency. We investigated the thermal conductance of DWCNTs by using the nonequilibrium Green’s function method, and found that the quadratic temperature dependence of the thermal conductance at low temperatures consisted of three regions with different tendencies. Based on analysis of the transmission coefficients and the distribution of the normal modes, the three nonuniform regions were attributed to the energy shifts of the normal modes at the low-energy region. We examined the mechanism of these energy shifts using the coupled vibration model with the parameters from our simulations, and elucidated the multi-wall effects on the thermal transport properties of the nanotube structures. The effects we found demonstrated the significance of tailoring thermal properties to obtain the desired applications. (papers)

  18. Thermal transport properties of halide solid solutions: Experiments vs equilibrium molecular dynamics.

    Science.gov (United States)

    Gheribi, Aïmen E; Salanne, Mathieu; Chartrand, Patrice

    2015-03-28

    The composition dependence of thermal transport properties of the (Na,K)Cl rocksalt solid solution is investigated through equilibrium molecular dynamics (EMD) simulations in the entire range of composition and the results are compared with experiments published in recent work [Gheribi et al., J. Chem. phys. 141, 104508 (2014)]. The thermal diffusivity of the (Na,K)Cl solid solution has been measured from 473 K to 823 K using the laser flash technique, and the thermal conductivity was deduced from critically assessed data of heat capacity and density. The thermal conductivity was also predicted at 900 K in the entire range of composition by a series of EMD simulations in both NPT and NVT statistical ensembles using the Green-Kubo theory. The aim of the present paper is to provide an objective analysis of the capability of EMD simulations in predicting the composition dependence of the thermal transport properties of halide solid solutions. According to the Klemens-Callaway [P. G. Klemens, Phys. Rev. 119, 507 (1960) and J. Callaway and H. C. von Bayer, Phys. Rev. 120, 1149 (1960)] theory, the thermal conductivity degradation of the solid solution is explained by mass and strain field fluctuations upon the phonon scattering cross section. A rigorous analysis of the consistency between the theoretical approach and the EMD simulations is discussed in detail.

  19. Strain-modulated electronic and thermal transport properties of two-dimensional O-silica

    Science.gov (United States)

    Han, Yang; Qin, Guangzhao; Jungemann, Christoph; Hu, Ming

    2016-07-01

    Silica is one of the most abundant materials in the Earth’s crust and is a remarkably versatile and important engineering material in various modern science and technology. Recently, freestanding and well-ordered two-dimensional (2D) silica monolayers with octahedral (O-silica) building blocks were found to be theoretically stable by (Wang G et al 2015 J. Phys. Chem. C 119 15654-60). In this paper, by performing first-principles calculations, we systematically investigated the electronic and thermal transport properties of 2D O-silica and also studied how these properties can be tuned by simple mechanical stretching. Unstrained 2D O-silica is an insulator with an indirect band gap of 6.536 eV. The band gap decreases considerably with bilateral strain up to 29%, at which point a semiconductor-metal transition occurs. More importantly, the in-plane thermal conductivity of freestanding 2D O-silica is found to be unusually high, which is around 40 to 50 times higher than that of bulk α-quartz and more than two orders of magnitude higher than that of amorphous silica. The thermal conductivity of O-silica decreases by almost two orders of magnitude when the bilateral stretching strain reaches 10%. By analyzing the mode-dependent phonon properties and phonon-scattering channel, the phonon lifetime is found to be the dominant factor that leads to the dramatic decrease of the lattice thermal conductivity under strain. The very sensitive response of both band gap and phonon transport properties to the external mechanical strain will enable 2D O-silica to easily adapt to the different environment of realistic applications. Our study is expected to stimulate experimental exploration of further physical and chemical properties of 2D silica systems, and offers perspectives on modulating the electronic and thermal properties of related low-dimensional structures for applications such as thermoelectric, photovoltaic, and optoelectronic devices.

  20. Impact of isotopic disorders on thermal transport properties of nanotubes and nanowires

    International Nuclear Information System (INIS)

    Sun, Tao; Kang, Wei; Wang, Jianxiang

    2015-01-01

    We present a one-dimensional lattice model to describe thermal transport in isotopically doped nanotubes and nanowires. The thermal conductivities thus predicted, as a function of isotopic concentration, agree well with recent experiments and other simulations. Our results display that for any given concentration of isotopic atoms in a lattice without sharp atomic interfaces, the maximum thermal conductivity is attained when isotopic atoms are placed regularly with an equal space, whereas the minimum is achieved when they are randomly inserted with a uniform distribution. Non-uniformity of disorder can further tune the thermal conductivity between the two values. Moreover, the dependence of the thermal conductivity on the nanoscale feature size becomes weak at low temperature when disorder exists. In addition, when self-consistent thermal reservoirs are included to describe diffusive nanomaterials, the thermal conductivities predicted by our model are in line with the results of macroscopic theories with an interfacial effect. Our results suggest that the disorder provides an additional freedom to tune the thermal properties of nanomaterials in many technological applications including nanoelectronics, solid-state lighting, energy conservation, and conversion

  1. Characterization of thermal, optical and carrier transport properties of porous silicon using the photoacoustic technique

    International Nuclear Information System (INIS)

    Sheng, Chan Kok; Mahmood Mat Yunus, W.; Yunus, Wan Md. Zin Wan; Abidin Talib, Zainal; Kassim, Anuar

    2008-01-01

    In this work, the porous silicon layer was prepared by the electrochemical anodization etching process on n-type and p-type silicon wafers. The formation of the porous layer has been identified by photoluminescence and SEM measurements. The optical absorption, energy gap, carrier transport and thermal properties of n-type and p-type porous silicon layers were investigated by analyzing the experimental data from photoacoustic measurements. The values of thermal diffusivity, energy gap and carrier transport properties have been found to be porosity-dependent. The energy band gap of n-type and p-type porous silicon layers was higher than the energy band gap obtained for silicon substrate (1.11 eV). In the range of porosity (50-76%) of the studies, our results found that the optical band-gap energy of p-type porous silicon (1.80-2.00 eV) was higher than that of the n-type porous silicon layer (1.70-1.86 eV). The thermal diffusivity value of the n-type porous layer was found to be higher than that of the p-type and both were observed to increase linearly with increasing layer porosity

  2. Nanoscale thermal transport

    Science.gov (United States)

    Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Merlin, Roberto; Phillpot, Simon R.

    2003-01-01

    Rapid progress in the synthesis and processing of materials with structure on nanometer length scales has created a demand for greater scientific understanding of thermal transport in nanoscale devices, individual nanostructures, and nanostructured materials. This review emphasizes developments in experiment, theory, and computation that have occurred in the past ten years and summarizes the present status of the field. Interfaces between materials become increasingly important on small length scales. The thermal conductance of many solid-solid interfaces have been studied experimentally but the range of observed interface properties is much smaller than predicted by simple theory. Classical molecular dynamics simulations are emerging as a powerful tool for calculations of thermal conductance and phonon scattering, and may provide for a lively interplay of experiment and theory in the near term. Fundamental issues remain concerning the correct definitions of temperature in nonequilibrium nanoscale systems. Modern Si microelectronics are now firmly in the nanoscale regime—experiments have demonstrated that the close proximity of interfaces and the extremely small volume of heat dissipation strongly modifies thermal transport, thereby aggravating problems of thermal management. Microelectronic devices are too large to yield to atomic-level simulation in the foreseeable future and, therefore, calculations of thermal transport must rely on solutions of the Boltzmann transport equation; microscopic phonon scattering rates needed for predictive models are, even for Si, poorly known. Low-dimensional nanostructures, such as carbon nanotubes, are predicted to have novel transport properties; the first quantitative experiments of the thermal conductivity of nanotubes have recently been achieved using microfabricated measurement systems. Nanoscale porosity decreases the permittivity of amorphous dielectrics but porosity also strongly decreases the thermal conductivity. The

  3. Thermodynamic properties and transport coefficients of two-temperature helium thermal plasmas

    Science.gov (United States)

    Guo, Xiaoxue; Murphy, Anthony B.; Li, Xingwen

    2017-03-01

    Helium thermal plasmas are in widespread use in arc welding and many other industrial applications. Simulation of these processes relies on accurate plasma property data, such as plasma composition, thermodynamic properties and transport coefficients. Departures from LTE (local thermodynamic equilibrium) generally occur in some regions of helium plasmas. In this paper, properties are calculated allowing for different values of the electron temperature, T e, and heavy-species temperature, T h, at atmospheric pressure from 300 K to 30 000 K. The plasma composition is first calculated using the mass action law, and the two-temperature thermodynamic properties are then derived. The viscosity, diffusion coefficients, electrical conductivity and thermal conductivity of the two-temperature helium thermal plasma are obtained using a recently-developed method that retains coupling between electrons and heavy species by including the electron-heavy-species collision term in the heavy-species Boltzmann equation. It is shown that the viscosity and the diffusion coefficients strongly depend on non-equilibrium ratio θ (θ ={{T}\\text{e}}/{{T}\\text{h}} ), through the plasma composition and the collision integrals. The electrical conductivity, which depends on the electron number density and ordinary diffusion coefficients, and the thermal conductivity have similar dependencies. The choice of definition of the Debye length is shown to affect the electrical conductivity significantly for θ  >  1. By comparing with literature data, it is shown that the coupling between electrons and heavy species has a significant influence on the electrical conductivity, but not on the viscosity. Plasma properties are tabulated in the supplementary data.

  4. A distinct correlation between the vibrational and thermal transport properties of group VA monolayer crystals.

    Science.gov (United States)

    Kocabaş, Tuğbey; Çakır, Deniz; Gülseren, Oğuz; Ay, Feridun; Kosku Perkgöz, Nihan; Sevik, Cem

    2018-04-17

    The investigation of thermal transport properties of novel two-dimensional materials is crucially important in order to assess their potential to be used in future technological applications, such as thermoelectric power generation. In this respect, the lattice thermal transport properties of the monolayer structures of group VA elements (P, As, Sb, Bi, PAs, PSb, PBi, AsSb, AsBi, SbBi, P3As1, P3Sb1, P1As3, and As3Sb1) with a black phosphorus like puckered structure were systematically investigated by first-principles calculations and an iterative solution of the phonon Boltzmann transport equation. Phosphorene was found to have the highest lattice thermal conductivity, κ, due to its low average atomic mass and strong interatomic bonding character. As a matter of course, anisotropic κ was obtained for all the considered materials, owing to anisotropy in frequency values and phonon group velocities calculated for these structures. However, the determined linear correlation between the anisotropy in the κ values of P, As, and Sb is significant. The results corresponding to the studied compound structures clearly point out that thermal (electronic) conductivity of pristine monolayers might be suppressed (improved) by alloying them with the same group elements. For instance, the room temperature κ of PBi along the armchair direction was predicted to be as low as 1.5 W m-1 K-1, whereas that of P was predicted to be 21 W m-1 K-1. In spite of the apparent differences in structural and vibrational properties, we peculiarly revealed an intriguing correlation between the κ values of all the considered materials as κ = c1 + c2/m2, in particular along the zigzag direction. Furthermore, our calculations on compound structures clearly showed that the thermoelectric potential of these materials can be improved by suppressing their thermal properties. The presence of ultra-low κ values and high electrical conductivity (especially along the armchair direction) makes this

  5. Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures

    Science.gov (United States)

    Savin, Alexander V.; Kosevich, Yuriy A.; Cantarero, Andres

    2012-08-01

    We present a detailed description of semiquantum molecular dynamics simulation of stochastic dynamics of a system of interacting particles. Within this approach, the dynamics of the system is described with the use of classical Newtonian equations of motion in which the effects of phonon quantum statistics are introduced through random Langevin-like forces with a specific power spectral density (the color noise). The color noise describes the interaction of the molecular system with the thermostat. We apply this technique to the simulation of thermal properties and heat transport in different low-dimensional nanostructures. We describe the determination of temperature in quantum lattice systems, to which the equipartition limit is not applied. We show that one can determine the temperature of such a system from the measured power spectrum and temperature- and relaxation-rate-independent density of vibrational (phonon) states. We simulate the specific heat and heat transport in carbon nanotubes, as well as the heat transport in molecular nanoribbons with perfect (atomically smooth) and rough (porous) edges, and in nanoribbons with strongly anharmonic periodic interatomic potentials. We show that the effects of quantum statistics of phonons are essential for the carbon nanotube in the whole temperature range T<500K, in which the values of the specific heat and thermal conductivity of the nanotube are considerably less than that obtained within the description based on classical statistics of phonons. This conclusion is also applicable to other carbon-based materials and systems with high Debye temperature like graphene, graphene nanoribbons, fullerene, diamond, diamond nanowires, etc. We show that the existence of rough edges and quantum statistics of phonons change drastically the low-temperature thermal conductivity of the nanoribbon in comparison with that of the nanoribbon with perfect edges and classical phonon dynamics and statistics. The semiquantum molecular

  6. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    Science.gov (United States)

    Zhang, Xiao-Ning; Li, He-Ping; Murphy, Anthony B.; Xia, Wei-Dong

    2013-03-01

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that me/mh ≪ 1, where me and mh are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  7. Mechanical and Thermal Transport Properties of Suspension Thermal-Sprayed Alumina-Zirconia Composite Coatings

    Czech Academy of Sciences Publication Activity Database

    Oberste-Berghaus, J.; Legoux, J.-G.; Moreau, C.; Tarasi, F.; Chráska, Tomáš

    2008-01-01

    Roč. 17, č. 1 (2008), s. 91-104 ISSN 1059-9630 Institutional research plan: CEZ:AV0Z20430508 Keywords : thermal spraying * nanocrystalline composites * wear Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.200, year: 2008

  8. Thermal properties

    Science.gov (United States)

    Roger M. Rowell

    2005-01-01

    The traditional question at the start of a class on thermal properties of wood is, “Does wood burn?” The students have all been warmed in front of a wood-burning fire before, so they are sure the answer is yes—but since the professor asked the question, there must be some hidden trick to the obvious answer. Going with their experience, their answer is “yes, wood burns...

  9. Transport, thermal, and magnetic properties in heavy-fermion superconductor Ce2CoIn8

    International Nuclear Information System (INIS)

    Yamashita, Tetsuro; Ohara, Shigeo; Sakamoto, Isao

    2011-01-01

    We have grown high purity single crystals of Ce 2 CoIn 8 . We investigated its transport, thermal, and magnetic properties. Ce 2 CoIn 8 has a superconducting ground state with a distinct non-Fermi liquid character. We propose one of the CEF level schemes of Ce 2 CoIn 8 . We have grown high purity single crystals of Ce 2 CoIn 8 using the self-flux technique, and have investigated its transport, thermal, and magnetic properties, including the anisotropic features. Single crystals of Ce 2 CoIn 8 were grown in the lower temperature region to avoid the formation of un-wanted phases such as CeCoIn 5 and CeIn 3 impurities. The results of the structural and physical measurements imply that the present single crystals have high purity. The electrical resistivity and specific heat measurements demonstrate that Ce 2 CoIn 8 has a superconducting ground state with a distinct non-Fermi liquid character. This indicates that the superconductivity in Ce 2 CoIn 8 arises out of the verge of the underlying quantum critical instability mediated by the antiferromagnetic correlations. Additionally, we investigate the crystalline electric field (CEF) energy scheme based on the temperature dependence of the specific heat and the anisotropic features in the susceptibility. We propose one of the CEF level schemes calculated on the basis of the CEF model that the first and second CEF states are located at Δ 1 = 82 K and Δ 2 = 102 K above the ground state doublet, respectively.

  10. Transition phenomena and thermal transport properties in LHD plasmas with an electron internal transport barrier

    International Nuclear Information System (INIS)

    Shimozuma, T.; Kubo, S.; Idei, H.; Inagaki, S.; Tamura, N.; Tokuzawa, T.; Morisaki, T.; Watanabe, K.Y.; Ida, K.; Yamada, I.; Narihara, K.; Muto, S.; Yokoyama, M.; Yoshimura, Y.; Notake, T.; Ohkubo, K.; Seki, T.; Saito, K.; Kumazawa, R.; Mutoh, T.; Watari, T.; Komori, A.

    2005-01-01

    Two types of improved core confinement were observed during centrally focused electron cyclotron heating (ECH) into plasmas sustained by counter (CNTR) and Co neutral beam injections (NBI) in the Large Helical Device. The CNTR NBI plasma displayed transition phenomena to the high-electron-temperature state and had a clear electron internal transport barrier, while the Co NBI plasma did not show a clear transition or an ECH power threshold but showed broad high temperature profiles with moderate temperature gradient. This indicated that the Co NBI plasma with additional ECH also had an improved core confinement. The electron heat transport characteristics of these plasmas were directly investigated using heat pulse propagation excited by modulated ECH. These effects appear to be related to the m/n = 2/1 rational surface or the island induced by NBI beam-driven current

  11. Crystallographic, Magnetic, Thermal, and Electric Transport Properties in UPtIn Single Crystal

    Science.gov (United States)

    Matsumoto, Yuji; Haga, Yoshinori; Tateiwa, Naoyuki; Yamamoto, Etsuji; Fisk, Zachary

    2018-02-01

    We have studied the crystallographic, magnetic, thermal, and electric transport properties in UPtIn, one of the UTX (T = transition metal, X = Al, Ga, In) families with the hexagonal ZrNiAl structure. A single crystal of UPtIn was prepared by the flux method for the first time. Crystallographic parameters are determined. UPtIn has strong Ising character, the magnetic easy axis being the c-axis. These results determined magnetic properties are consistent with the magnetic structure obtained by neutron scattering measurements. The residual resistivity of our single crystal is 27.9 µΩ cm which is one-third times smaller than that of polycrystalline sample. Specific heat (C) measurements show that the phase transition at 10.5 K, although the antiferromagnetic order takes place at 22 K prepared by arc melt and at 15 K prepared by solid reaction, indicating that the physical properties of UPtIn are dependent on the sample preparation. C/T deviates from T-linear behavior below 1.4 K, indicating that the electronic specific heat coefficient γ is much smaller than that of previous study. The resistivity is almost independent to the temperature below 3.7 K and A coefficient of the quadratic temperature dependence of electrical resistivity is small, indicating that the mass enhancement is small. These results indicate that UPtIn is not a heavy-fermion system.

  12. Thermal conductivity and heat transport properties of nitrogen-doped graphene.

    Science.gov (United States)

    Goharshadi, Elaheh K; Mahdizadeh, Sayyed Jalil

    2015-11-01

    In the present study, the thermal conductivity (TC) and heat transport properties of nitrogen doped graphene (N-graphene) were investigated as a function of temperature (107-400K) and N-doped concentration (0.0-7.0%) using equilibrium molecular dynamics simulation based on Green-Kubo method. According to the results, a drastic decline in TC of graphene observed at very low N-doped concentration (0.5 and 1.0%). Substitution of just 1.0% of carbon atoms with nitrogens causes a 77.2, 65.4, 59.2, and 53.7% reduction in TC at 107, 200, 300, and 400K, respectively. The values of TC of N-graphene at different temperatures approach to each other as N-doped concentration increases. The results also indicate that TC of N-graphene is much less sensitive to temperature compared with pristine graphene and the sensitivity decreases as N-doped concentration increases. The phonon-phonon scattering relaxation times and the phonon mean free path of phonons were also calculated. The contribution of high frequency optical phonons for pristine graphene and N-graphene with 7.0% N-doped concentration is 0-2% and 4-8%, respectively. These findings imply that it is potentially feasible to control heat transfer on the nanoscale when designing N-graphene based thermal devices. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Thermal and Transport Properties of Mafic and Ultramafic Rocks of Oman Ophiolite

    Directory of Open Access Journals (Sweden)

    Sayyadul Arafin

    2016-11-01

    Full Text Available Thermal and other physical properties of rocks and minerals are of considerable significance for deriving mineralogical and compositional models of the Earth's mantle. We have determined these properties for the mafic rock such as gabbro and ultramafic rock like harzburgite of the Oman ophiolite suite by utilizing the Debye characteristic property ,Θ-

  14. Interface-controlled thermal transport properties in nano-clustered phase change materials

    Science.gov (United States)

    Lee, Dongbok; Kang, Stephen Dongmin; Kim, Hyun-Mi; Kang, Dae-Hwan; Lyeo, Ho-Ki; Kim, Ki-Bum

    2012-04-01

    We measured the thermal conductivity of nano-clustered Ge2Sb2Te5(GST)-TiOx films in situ upon annealing from room temperature to 200 °C by the time-domain thermoreflectance method. The nano-clustered structure was found to significantly reduce the thermal conductivity of the crystallized GST-TiOx films. The reduction is attributed to the thermal resistance provided by the TiOx boundaries, of which the impact is identified by estimating the apparent interfacial thermal conductance of the embedded GST/TiOx interfaces. We suggest how to deal with the electronic contribution to thermal transport for this procedure. The apparent interfacial thermal conductance of the embedded GST/TiOx interfaces was found to tune closer to the intrinsic value 30 MW/m2 K as the microstructure of the films evolved into a distinctly clustered structure.

  15. Electrical and thermal transport properties of Cr-Si alloy single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Prinsloo, A R E; Alberts, H L; Strydom, A M, E-mail: alettap@uj.ac.z [Department of Physics, University of Johannesburg, PO Box 524, Auckland Park, 2006 (South Africa)

    2010-01-01

    Electrical resistivity ({rho}), Seebeck coefficient (S) and thermal conductivity ({kappa}) measurements on Cr{sub 1-x}Si{sub x} alloy single crystals with x = 0.005, 0.012 and 0.016 reveal novel features not previously detected in polycrystalline alloys. Our results prove thermal transport to be an experimental probe that is especially well disposed towards exposing spin-density-wave ordering in an itinerant system such as Cr-Si.

  16. Structural, magnetic and magneto-transport properties of thermally evaporated Fe/Cu multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bouziane, K.; Al-Busaidi, M.; Gismelseed, A.; Al-Rawas, A. [Physics Department, College of Science, Sultan Qabos University, P. O. Box 36, Postal Code 123, Al-Khodh, Muscat (Oman)

    2004-05-01

    Structural, magnetic and magneto-transport properties of thermally evaporated Fe/Cu multilayers (MLs) have been investigated. Although multilayered structure has been successfully obtained, a substantial interfacial roughness ranging from 0.6 nm to 1.2 nm has been determined. All Fe/Cu MLs were polycrystalline with an average grain size of about 10 nm. Fe was bcc and textured (110) whereas Cu was fcc(111). Transmission electron microscopy analysis showed that the fcc Cu layer was rather textured (110) and (100) at least in the first stage of growth of the Fe/Cu MLs. Conversion electron Moessbauer (CEMS) measurements indicated the existence of three phases. Two of them were magnetic with a dominant bcc Fe phase, followed by fcc Fe phase. The third phase was superparamagnetic. The CEMS results were explained in terms of the partial diffusion of Fe into Cu with three different zones. The small magnetoresistance (MR<0.2%) was correlated to Fe clusters located at Fe-Cu interfaces. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  17. Experimental determinations of the pre- and postirradiation thermal transport and thermal expansion properties of simulated fuel rods for an HTGR

    International Nuclear Information System (INIS)

    Moore, J.P.; Godfrey, T.G.; Graves, R.S.; Weaver, F.J.; Eatherly, W.P.

    1978-01-01

    The thermal conductivity, electrical resistivity, coefficient of thermal expansion, volume, and Seebeck coefficient of simulated fuel rods for a high-temperature gas-cooled reactor (HTGR) have been measured before and after neutron irradiations to 13.5 X 10 25 n/m 2 at nominal irradiation temperatures of 1220 K. These measurements were made as functions of volume particle loading, temperature, and neutron fluence. The thermal conductivities decrease with increasing particle loading at all measurement temperatures. The large difference between the properties of specimens from two fabrication processes (extrusion and slug injection) is attributed to the fact that the densities of the continuous phases within the elements differ by a factor of 2.6. Increases in the thermal conductivity with initial neutron fluence of some of the extruded specimens are attributed to partial ordering of carbonaceous material within the composites, but an unambiguous quantitative analysis is difficult. (Auth.)

  18. Thermal transport properties of graphene-based ferromagnetic/singlet superconductor/ferromagnetic junctions

    Science.gov (United States)

    Salehi, Morteza; Alidoust, Mohammad; Rahnavard, Yousef; Rashedi, Gholamreza

    2010-06-01

    We present an investigation of heat transport in gapless graphene-based ferromagnetic/singlet superconductor/ferromagnetic junctions. We find that unlike the uniform increase in the thermal conductance versus temperature, the thermal conductance exhibits intensive oscillatory behavior versus width of sandwiched s-wave superconducting region between the two ferromagnetic layers. This oscillatory form rises from interference of the massless Dirac fermions in graphene. Also we find that thermal conductance versus exchange field h displays a minimal value at h /Ef≃1 within the low temperature regime where this finding demonstrates that propagating modes of the Dirac fermions in this value reach to their minimum numbers and verify the previous results for electronic conductance. We find that for thin widths of superconducting region, the thermal conductance versus temperature shows linear increment, i.e., Γ ∝T. At last we propose an experimental setup to detect our predicted effects.

  19. Electrical and thermal transport properties of chromium in the neighbourhood of the neel temperature

    International Nuclear Information System (INIS)

    Mustaffa Haji Abdullah

    1989-01-01

    The electrical resistivity, thermal conductivity and Lorentz number of polycrystalline chromium have been measured by the methods of potential probe and longitudinal heat flow respectively in the temperature range of 280 - 360 K. The temperature variation of all transport data show anomalous behaviour in the form of a sharp discontinuity at the Neel temperature T N =311.7 K. The anomaly in the resistivity is well understood as due to the increase in the scattering of conduction electrons by the antiferromagnetic moments. The minimum in the total thermal conductivity is possibly attributed to the critical scattering of phonons by the spin fluctuations in the critical region. The minimum in the Lorentz number is in accordance with those of electrical and thermal conductivities. The values of Lorentz numbers are well above the Sommerfeld value. This is an evidence of a large lattice contribution to the thermal conductivity in chromium. (author)

  20. Anisotropic thermal transport property of defect-free GaN

    International Nuclear Information System (INIS)

    Ju, Wenjing; Zhou, Zhongyuan; Wei, Zhiyong

    2016-01-01

    Non-equilibrium molecular dynamics (MD) simulation is performed to calculate the thermal conductivity of defect-free GaN along three high-symmetry directions. It is found that the thermal conductivity along [001] direction is about 25% higher than that along [100] or [120] direction. The calculated phonon dispersion relation and iso-energy surface from lattice dynamics show that the difference of the sound speeds among the three high-symmetry directions is quite small for the same mode. However, the variation of phonon irradiation with direction is qualitatively consistent with that of the calculated thermal conductivity. Our results indicate that the anisotropic thermal conductivity may partly result from the phonons in the low-symmetry region of the first Brillouin zone due to phonon focus effects, even though the elastic properties along the three high-symmetry directions are nearly isotropic. Thus, the phonon irradiation is able to better describe the property of thermal conductivity as compared to the commonly used phonon dispersion relation. The present investigations uncover the physical origin of the anisotropic thermal conductivity in defect-free GaN, which would provide an important guide for optimizing the thermal management of GaN-based device.

  1. Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and aresnides

    Energy Technology Data Exchange (ETDEWEB)

    Das, Supriyo [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Oxide compounds containing the transition metal vanadium (V) have attracted a lot of attention in the field of condensed matter physics owing to their exhibition of interesting properties including metal-insulator transitons, structural transitions, ferromagnetic and an- tiferromagnetic orderings, and heavy fermion behavior. Binary vanadium oxides VnO2n-1 where 2 ≤ n ≤ 9 have triclinic structures and exhibit metal-insulator and antiferromagnetic transitions.[1–6] The only exception is V7O13 which remains metallic down to 4 K.[7] The ternary vanadium oxide LiV2O4 has the normal spinel structure, is metallic, does not un- dergo magnetic ordering and exhibits heavy fermion behavior below 10 K.[8] CaV2O4 has an orthorhombic structure[9, 10] with the vanadium spins forming zigzag chains and has been suggested to be a model system to study the gapless chiral phase.[11, 12] These provide great motivation for further investigation of some known vanadium compounds as well as to ex- plore new vanadium compounds in search of new physics. This thesis consists, in part, of experimental studies involving sample preparation and magnetic, transport, thermal, and x- ray measurements on some strongly correlated eletron systems containing the transition metal vanadium. The compounds studied are LiV2O4, YV4O8, and YbV4O8. The recent discovery of superconductivity in RFeAsO1-xFx (R = La, Ce, Pr, Gd, Tb, Dy, Sm, and Nd), and AFe2As2 (A = Ba, Sr, Ca, and Eu) doped with K, Na, or Cs at the A site with relatively high Tc has sparked tremendous activities in the condensed matter physics community and a renewed interest in the area of superconductivity as occurred following the discovery of the layered cuprate high Tc superconductors in 1986. To discover more supercon- ductors

  2. Properties of C4F7N–CO2 thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients

    Science.gov (United States)

    Wu, Yi; Wang, Chunlin; Sun, Hao; Murphy, Anthony B.; Rong, Mingzhe; Yang, Fei; Chen, Zhexin; Niu, Chunpin; Wang, Xiaohua

    2018-04-01

    The thermophysical properties, including composition, thermodynamic properties, transport coefficients and net emission coefficients, of thermal plasmas formed from pure iso-C4 perfluoronitrile C4F7N and C4F7N–CO2 mixtures are calculated for temperatures from 300 to 30 000 K and pressures from 0.1 to 20 atm. These gases have received much attention as alternatives to SF6 for use in circuit breakers, due to the low global warming potential and good dielectric properties of C4F7N. Since the parameters of the large molecules formed in the dissociation of C4F7N are unavailable, the partition function and enthalpy of formation were calculated using computational chemistry methods. From the equilibrium composition calculations, it was found that when C4F7N is mixed with CO2, CO2 can capture C atoms from C4F7N, producing CO, since the system consisting of small molecules such as CF4 and CO has lower energy at room temperature. This is in agreement with previous experimental results, which show that CO dominates the decomposition products of C4F7N–CO2 mixtures; it could limit the repeated breaking performance of C4F7N. From the point of view of chemical stability, the mixing ratio of CO2 should therefore be chosen carefully. Through comparison with common arc quenching gases (including SF6, CF3I and C5F10O), it is found that for the temperature range for which electrical conductivity remains low, pure C4F7N has similar ρC p (product of mass density and specific heat) properties to SF6, and higher radiative emission coefficient, properties that are correlated with good arc extinguishing capability. For C4F7N–CO2 mixtures, the electrical conductivity is very close to that of SF6 while the ρC p peak at 7000 K caused by decomposition of CO implies inferior interruption capability to that of SF6. The calculated properties will be useful in arc simulations.

  3. Solitonic Josephson Thermal Transport

    Science.gov (United States)

    Guarcello, Claudio; Solinas, Paolo; Braggio, Alessandro; Giazotto, Francesco

    2018-03-01

    We explore the coherent thermal transport sustained by solitons through a long Josephson junction as a thermal gradient across the system is established. We observe that a soliton causes the heat current through the system to increase. Correspondingly, the junction warms up in conjunction with the soliton, with temperature peaks up to, e.g., approximately 56 mK for a realistic Nb-based proposed setup at a bath temperature Tbath=4.2 K . The thermal effects on the dynamics of the soliton are also discussed. Markedly, this system inherits the topological robustness of the solitons. In view of these results, the proposed device can effectively find an application as a superconducting thermal router in which the thermal transport can be locally mastered through solitonic excitations, whose positions can be externally controlled through a magnetic field and a bias current.

  4. THERMLIB: a material property data library for thermal analysis of radioactive material transport casks

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    The paper describes an heat conduction data library and graphical program for analysis of radioactive material transport casks. More than 1000 of material data are compiled in the data library which was produced by Lawrence Livermore Laboratory. Thermal data such as, density, thermal conductivity, specific heat, phase-change or solid-state, transition temperature and latent heat have been tabulated. Using this data library, a data library processing program THERMLIB for thermal analysis has been developed. Main features of THERMLIB are as follows: (1) data have been tabulated against temperature, (2) more than 1000 material data are available, (3) it is capable of graphical representations for thermal data and (4) not only main frame computer but also work stations (OS UNIX) and personal computer (OS Windows) are available for use of THERMLIB. In the paper, brief illustration of data library is presented in the first section. The second section presents descriptions of structural data. The third section provides an user`s guide for computer program and input data for THERMLIB. (author)

  5. Assessing factors affecting the thermal properties of a passive thermal refuge using three-dimensional hydrodynamic flow and transport modeling

    Science.gov (United States)

    Decker, Jeremy D.; Swain, Eric D.; Stith, Bradley M.; Langtimm, Catherine A.

    2013-01-01

    Everglades restoration activities may cause changes to temperature and salinity stratification at the Port of the Islands (POI) marina, which could affect its suitability as a cold weather refuge for manatees. To better understand how the Picayune Strand Restoration Project (PSRP) may alter this important resource in Collier County in southwestern Florida, the USGS has developed a three-dimensional hydrodynamic model for the marina and canal system at POI. Empirical data suggest that manatees aggregate at the site during winter because of thermal inversions that provide warmer water near the bottom that appears to only occur in the presence of salinity stratification. To study these phenomena, the environmental fluid dynamics code simulator was used to represent temperature and salinity transport within POI. Boundary inputs were generated using a larger two-dimensional model constructed with the flow and transport in a linked overland-aquifer density-dependent system simulator. Model results for a representative winter period match observed trends in salinity and temperature fluctuations and produce temperature inversions similar to observed values. Modified boundary conditions, representing proposed PSRP alterations, were also tested to examine the possible effect on the salinity stratification and temperature inversion within POI. Results show that during some periods, salinity stratification is reduced resulting in a subsequent reduction in temperature inversion compared with the existing conditions simulation. This may have an effect on POI’s suitability as a passive thermal refuge for manatees and other temperature-sensitive species. Additional testing was completed to determine the important physical relationships affecting POI’s suitability as a refuge.

  6. Laser-Based Ignition for a Gunfire Simulator (GUFS): Thermal Transport Properties for Candidate Igniter Materials

    National Research Council Canada - National Science Library

    McQuaid, M

    1999-01-01

    ...) the technique developed by Miller and Kotlar ("Technique for Measuring Thermal Diffusivity/Conductivity of Small Thermal Insulator Specimens," Review of Scientific instruments, vol. 64, p. 2954, 1993) and (2...

  7. Thermalization through parton transport

    International Nuclear Information System (INIS)

    Zhang Bin

    2010-01-01

    A radiative transport model is used to study kinetic equilibration during the early stage of a relativistic heavy ion collision. The parton system is found to be able to overcome expansion and move toward thermalization via parton collisions. Scaling behaviors show up in both the pressure anisotropy and the energy density evolutions. In particular, the pressure anisotropy evolution shows an approximate α s scaling when radiative processes are included. It approaches an asymptotic time evolution on a time scale of 1 to 2 fm/c. The energy density evolution shows an asymptotic time evolution that decreases slower than the ideal hydro evolution. These observations indicate that partial thermalization can be achieved and viscosity is important for the evolution during the early longitudinal expansion stage of a relativistic heavy ion collision.

  8. Thermally treated polyaniline/polybenzimidazole blend membranes: structural changes and gas transport properties

    Czech Academy of Sciences Publication Activity Database

    Giel, Verena; Morávková, Zuzana; Peter, Jakub; Trchová, Miroslava

    2017-01-01

    Roč. 537, 1 September (2017), s. 315-322 ISSN 0376-7388 R&D Projects: GA MŠk(CZ) LO1507; GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : polybenzimidazole * polyaniline * thermal treatment Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 6.035, year: 2016

  9. Transport properties of N2 gas at cryogenic temperatures. [computation of viscosity and thermal conductivity

    Science.gov (United States)

    Pearson, W. E.

    1974-01-01

    The viscosity and thermal conductivity of nitrogen gas for the temperature range 5 K - 135 K have been computed from the second Chapman-Enskog approximation. Quantum effects, which become appreciable at the lower temperatures, are included by utilizing collision integrals based on quantum theory. A Lennard-Jones (12-6) potential was assumed. The computations yield viscosities about 20 percent lower than those predicted for the high end of this temperature range by the method of corresponding states, but the agreement is excellent when the computed values are compared with existing experimental data.

  10. The effects of thermal annealing on the structure and the electrical transport properties of ultrathin gadolinia-doped ceria films grown by pulsed laser deposition

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Heiroth, S.; Pryds, Nini

    2011-01-01

    show high density within the thickness probed in the X-ray reflectivity experiments. Thermally activated grain growth, density decrease, and film surface roughening, which may result in the formation of incoherent CGO10 islands by dewetting below a critical film thickness, are observed upon heat...... templates for the moderate temperature growth of thick solid electrolyte films with improved oxygen transport properties....

  11. Ultrafast Thermal Transport at Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, David [Univ. of Illinois, Champaign, IL (United States); Murphy, Catherine [Univ. of Illinois, Champaign, IL (United States); Martin, Lane [Univ. of Illinois, Champaign, IL (United States)

    2014-10-21

    Our research program on Ultrafast Thermal Transport at Interfaces advanced understanding of the mesoscale science of heat conduction. At the length and time scales of atoms and atomic motions, energy is transported by interactions between single-particle and collective excitations. At macroscopic scales, entropy, temperature, and heat are the governing concepts. Key gaps in fundamental knowledge appear at the transitions between these two regimes. The transport of thermal energy at interfaces plays a pivotal role in these scientific issues. Measurements of heat transport with ultrafast time resolution are needed because picoseconds are the fundamental scales where the lack of equilibrium between various thermal excitations becomes a important factor in the transport physics. A critical aspect of our work has been the development of experimental methods and model systems that enabled more precise and sensitive investigations of nanoscale thermal transport.

  12. TRANSPORT PROPERTIES FOR REFRIGERANT MIXTURES

    Directory of Open Access Journals (Sweden)

    V. Geller

    2014-06-01

    Full Text Available A set of models to predict viscosity and thermal conductivity of refrigerant mixtures is developed. A general model for viscosity and thermal conductivity use the three contributions sum form (the dilute-gas terms, the residual terms, and the liquid terms. The corresponding states model is recommended to predict the dense gas transport properties over a range of reduced density from 0 to 2. It is shown that the RHS model provides the most reliable results for the saturated-liquid and the compressed-liquid transport properties over a range of given temperatures from 0,5 to 0,95.

  13. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    Science.gov (United States)

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.

    1989-01-01

    Reaction rate coefficients and thermodynamic and transport properties are provided for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in such environments.

  14. Thermal Properties Measurement Report

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, Jon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Braase, Lori [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hurley, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonks, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gofryk, Krzysztof [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fielding, Randy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Knight, Collin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Meyer, Mitch [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  15. Thermal transport in fractal systems

    DEFF Research Database (Denmark)

    Kjems, Jørgen

    1992-01-01

    Recent experiments on the thermal transport in systems with partial fractal geometry, silica aerogels, are reviewed. The individual contributions from phonons, fractons and particle modes, respectively, have been identified and can be described by quantitative models consistent with heat capacity...

  16. Subcontinuum thermal transport in tip-based thermal engineering

    Science.gov (United States)

    Hamian, Sina

    For the past two decades, tip-based thermal engineering has made remarkable advances to realize unprecedented nanoscale thermal applications, such as thermomechanical data storage, thermophysical/chemical property characterization of materials in nanometer scale, and scanning thermal imaging and analysis. All these applications involve localized heating with elevated temperature, generally in the order of mean free paths of heat carriers, thus necessitates fundamental understanding of sub-continuum thermal transport across point constrictions and within thin films. Considering the demands, this dissertation is divided into three main scopes providing: (1) a numerical model that provides insight onto nanoscale thermal transport, (2) an electrothermal characterization of a heated microcantilever as a localized heating source, and (3) qualitative measurement of tip-substrate thermal transport using high resolution nanothermometer/heater. This dissertation starts with a literature review on the three aforementioned scopes followed by a numerical model for two-dimensional transient ballistic-diffusive heat transfer combining finite element analysis with discrete ordinate method (DOM-FEA), seeking to provide insight on subcontinuum thermal transport. The phonon Boltzmann transport equation (BTE) under grey relaxation time approximation is solved for different Knudsen numbers. Next, a thermal microcantilever, as one of the main tools in tip-based thermal engineering, is characterized under periodic heating operation in air and vacuum using 3o technique. A three-dimensional FEA simulation of a thermal microcantilever is used to model heat transfer in frequency domain resulting in good agreement with the experiment. Next, quantitative thermal transport is measured by a home-built nanothermometer fabricated using combination of electron-beam lithography and photolithography. An atomic force microscope (AFM) cantilever is used to scan over the sensing probe of the

  17. Thermal Properties of Metallic Nanowires: Modeling & Experiment

    Science.gov (United States)

    Stojanovic, Nenad; Berg, Jordan; Maithripala, Sanjeeva; Holtz, Mark

    2009-10-01

    Effects such as surface and grain boundary scattering significantly influence electrical and thermal properties of nanoscale materials with important practical implications for current and future electronics and photonics. Conventional wisdom for metals holds that thermal transport is predominantly by electrons and transport by phonons is negligible. This assumption is used to justify the use of the Wiedemann-Franz law to infer thermal conductivity based on measurements of electrical resistivity. Recently experiments suggest a breakdown of the Wiedemann-Franz law at the nanoscale. This talk will examine the assumption that thermal transport by phonons can be neglected. The electrical resistivities and thermal conductivities of aluminum nanowires of various sizes are directly measured. These values are used in conjunction with the Boltzmann transport equation to conclude that the Wiedemann-Franz law describes the electronic component of thermal conductivity, but that the phonon term must also be considered. A novel experimental device is described for the direct thermal conductivity measurements.

  18. Nanoscale thermal transport: Theoretical method and application

    Science.gov (United States)

    Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2018-03-01

    With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).

  19. Transport properties of fission product vapors

    International Nuclear Information System (INIS)

    Im, K.H.; Ahluwalia, R.K.

    1983-07-01

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors

  20. Electronic transport properties

    International Nuclear Information System (INIS)

    Young, W.H.

    1985-01-01

    The theory of the electron transport properties of liquid alkali metals is described. Conductivity coefficients, Boltzmann theory, Ziman theory, alkali form factors, Ziman theory and alkalis, Faber-Ziman alloy theory, Faber-Ziman theory and alkali-alkali methods, status of Ziman theory, and other transport properties, are all discussed. (UK)

  1. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    Science.gov (United States)

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.; Lee, Kam-Pui

    1990-01-01

    Reaction rate coefficients and thermodynamic and transport properties are reviewed and supplemented for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium up to temperatures of 3000 K. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Curve fits are given for the various species properties for their efficient computation in flowfield codes. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in a high energy environment. Limitations of the approximate mixing laws are discussed for a mixture of ionized species. An electron number-density correction for the transport properties of the charged species is obtained. This correction has been generally ignored in the literature.

  2. Thermal ionization and plasma state of high temperature vapor of UO2, Cs, and Na: Effect on the heat and radiation transport properties of the vapor phase

    International Nuclear Information System (INIS)

    Karow, H.U.

    1979-01-01

    The paper deals with the question how far the thermophysical state and the convective and radiative heat transport properties of vaporized reactor core materials are affected by the thermal ionization existing in the actual vapor state. The materials under consideration here are: nuclear oxide fuel (UO 2 ), Na (as the LMFBR coolant material), and Cs (alkaline fission product, partly retained in the fuel of the core zone). (orig./RW) [de

  3. Nonequilibrium generalised Langevin equation for the calculation of heat transport properties in model 1D atomic chains coupled to two 3D thermal baths.

    Science.gov (United States)

    Ness, H; Stella, L; Lorenz, C D; Kantorovich, L

    2017-04-28

    We use a generalised Langevin equation scheme to study the thermal transport of low dimensional systems. In this approach, the central classical region is connected to two realistic thermal baths kept at two different temperatures [H. Ness et al., Phys. Rev. B 93, 174303 (2016)]. We consider model Al systems, i.e., one-dimensional atomic chains connected to three-dimensional baths. The thermal transport properties are studied as a function of the chain length N and the temperature difference ΔT between the baths. We calculate the transport properties both in the linear response regime and in the non-linear regime. Two different laws are obtained for the linear conductance versus the length of the chains. For large temperatures (T≳500 K) and temperature differences (ΔT≳500 K), the chains, with N>18 atoms, present a diffusive transport regime with the presence of a temperature gradient across the system. For lower temperatures (T≲500 K) and temperature differences (ΔT≲400 K), a regime similar to the ballistic regime is observed. Such a ballistic-like regime is also obtained for shorter chains (N≤15). Our detailed analysis suggests that the behaviour at higher temperatures and temperature differences is mainly due to anharmonic effects within the long chains.

  4. Thermal energy storage and transport

    Science.gov (United States)

    Hausz, W.

    1980-01-01

    The extraction of thermal energy from large LWR and coal fired plants for long distance transport to industrial and residential/commercial users is analyzed. Transport of thermal energy as high temperature water is shown to be considerably cheaper than transport as steam, hot oil, or molten salt over a wide temperature range. The delivered heat is competitive with user-generated heat from oil, coal, or electrode boilers at distances well over 50 km when the pipeline operates at high capacity factor. Results indicate that thermal energy storage makes meeting of even very low capacity factor heat demands economic and feasible and gives the utility flexibility to meet coincident electricity and heat demands effectively.

  5. Transport properties of liquids

    International Nuclear Information System (INIS)

    Rajagopal, K.

    1976-07-01

    The transport coefficients, self diffusivity, dinamical viscosity,total viscosity (i.e., the first and second viscosity coefficient) and thermal conductivity, are calculated at several temperatures and saturation pressures for the Argon, Krypton and Xenon liquids, from the Mie otential and the hard sphere theory. (L.C.) [pt

  6. Nanoscale hotspots due to nonequilibrium thermal transport

    International Nuclear Information System (INIS)

    Sinha, Sanjiv; Goodson, Kenneth E.

    2004-01-01

    Recent experimental and modeling efforts have been directed towards the issue of temperature localization and hotspot formation in the vicinity of nanoscale heat generating devices. The nonequilibrium transport conditions which develop around these nanoscale devices results in elevated temperatures near the heat source which can not be predicted by continuum diffusion theory. Efforts to determine the severity of this temperature localization phenomena in silicon devices near and above room temperature are of technological importance to the development of microelectronics and other nanotechnologies. In this work, we have developed a new modeling tool in order to explore the magnitude of the additional thermal resistance which forms around nanoscale hotspots from temperatures of 100-1000K. The models are based on a two fluid approximation in which thermal energy is transferred between ''stationary'' optical phonons and fast propagating acoustic phonon modes. The results of the model have shown excellent agreement with experimental results of localized hotspots in silicon at lower temperatures. The model predicts that the effect of added thermal resistance due to the nonequilibrium phonon distribution is greatest at lower temperatures, but is maintained out to temperatures of 1000K. The resistance predicted by the numerical code can be easily integrated with continuum models in order to predict the temperature distribution around nanoscale heat sources with improved accuracy. Additional research efforts also focused on the measurements of the thermal resistance of silicon thin films at higher temperatures, with a focus on polycrystalline silicon. This work was intended to provide much needed experimental data on the thermal transport properties for micro and nanoscale devices built with this material. Initial experiments have shown that the exposure of polycrystalline silicon to high temperatures may induce recrystallization and radically increase the thermal

  7. Computational Study of the Vibrational, Thermal and Transport Properties of the Type II Tin Clathrate Compounds CsxSn136 (x = 12, 16, 20)

    Science.gov (United States)

    Xue, Dong; Myles, Charles

    2014-03-01

    The Type II clathrates AxB136 (A = alkali atom; B = Si, Ge, Sn) are interesting because of their low lattice thermal conductivity and thermoelectric properties. Their low thermal conductivity is due to the low-frequency vibrational modes produced by the alkali guests in the host lattice cages. Heat transport theory predicts that such modes will scatter with the acoustic phonons of the host, reducing the lattice thermal conductivity. To understand this effect for the Type II Sn clathrates, we have performed a first principles computational study of the vibrational, thermal, and transport properties of CsxSn136 (x = 12,16,20). Our calculations use the VASP and PHONOPY codes to calculate the vibrational modes. We present results for the phonon modes, the heat capacity, and the Gruneisen parameter in CsxSn136. Our calculated Cs modes are in the range 8-15 cm-1 and we find that these frequencies decrease as x increases. Our results for the vibrational contribution to the heat capacity predict that it weakly depends on x, and that it increases smoothly with temperature T, approaching the Dulong-Petit value at T = 600 K. Our calculations of the Gruneisen parameter predict that it has a weak x dependence, it increases with increasing T for 160 K <= T <= 300 K and it has a weak dependence on T for 300 K <= T <= 550 K. We have used these results to calculate the lattice thermal conductivity in CsxSn136 within the kinetic theory approximation. The results of these calculations are also presented and discussed.

  8. Dataset on the electronic and thermal transport properties of quaternary compounds of (PbTe0.95−x(PbSex(PbS0.05

    Directory of Open Access Journals (Sweden)

    Dianta Ginting

    2017-08-01

    Full Text Available The data presented in this article are related to the research article entitled “High thermoelectric performance in pseudo quaternary compounds of (PbTe0.95−x(PbSex(PbS0.05 by simultaneous band convergence and nano precipitation” (Ginting et al., 2017 [1]. We measured electrical and thermal transport properties such as temperature-dependent Hall carrier density nH, Hall mobility μH, thermal diffusivity D, heat capacity Cp, and power factor S2σ in (PbTe0.95−x(PbSex(PbS0.05 (x=0.0, 0.05, 0.10, 0.15, 0.20, 0.35, and 0.95 compounds with other related compounds from references. From the theoretical fitting of thermal conductivity κ, we found that the temperature-dependent thermal conductivity follows nano-structure model as well as alloy scattering. Transmission electron microscopy images shows that there are numerous nano-scale precipitates in a matrix. Owing to the low thermal conductivity and high power factor, we report high thermoelectric performances such as the high ZT, engineering ZTeng, efficiency η.

  9. Dataset on the electronic and thermal transport properties of quaternary compounds of (PbTe)0.95-x(PbSe)x(PbS)0.05.

    Science.gov (United States)

    Ginting, Dianta; Lin, Chan-Chieh; Rathnam, Lydia; Hwang, Junpil; Kim, Woochul; Al Orabi, Rabih Al Rahal; Rhyee, Jong-Soo

    2017-08-01

    The data presented in this article are related to the research article entitled "High thermoelectric performance in pseudo quaternary compounds of (PbTe) 0.95- x (PbSe) x (PbS) 0.05 by simultaneous band convergence and nano precipitation" (Ginting et al., 2017) [1]. We measured electrical and thermal transport properties such as temperature-dependent Hall carrier density n H , Hall mobility μ H , thermal diffusivity D , heat capacity C p , and power factor S 2 σ in (PbTe) 0.95- x (PbSe) x (PbS) 0.05 ( x =0.0, 0.05, 0.10, 0.15, 0.20, 0.35, and 0.95) compounds with other related compounds from references. From the theoretical fitting of thermal conductivity κ , we found that the temperature-dependent thermal conductivity follows nano-structure model as well as alloy scattering. Transmission electron microscopy images shows that there are numerous nano-scale precipitates in a matrix. Owing to the low thermal conductivity and high power factor, we report high thermoelectric performances such as the high ZT , engineering ZT eng , efficiency η .

  10. Atomic transport properties

    International Nuclear Information System (INIS)

    Freyss, M.

    2015-01-01

    As presented in the first chapter of this book, atomic transport properties govern a large panel of nuclear fuel properties, from its microstructure after fabrication to its behaviour under irradiation: grain growth, oxidation, fission product release, gas bubble nucleation. The modelling of the atomic transport properties is therefore the key to understanding and predicting the material behaviour under irradiation or in storage conditions. In particular, it is noteworthy that many modelling techniques within the so-called multi-scale modelling scheme of materials make use of atomic transport data as input parameters: activation energies of diffusion, diffusion coefficients, diffusion mechanisms, all of which are then required to be known accurately. Modelling approaches that are readily used or which could be used to determine atomic transport properties of nuclear materials are reviewed here. They comprise, on the one hand, static atomistic calculations, in which the migration mechanism is fixed and the corresponding migration energy barrier is calculated, and, on the other hand, molecular dynamics calculations and kinetic Monte-Carlo simulations, for which the time evolution of the system is explicitly calculated. (author)

  11. Thermal Properties of oil sand

    Science.gov (United States)

    LEE, Y.; Lee, H.; Kwon, Y.; Kim, J.

    2013-12-01

    Thermal recovery methods such as Cyclic Steam Injection or Steam Assisted Gravity Drainage (SAGD) are the effective methods for producing heavy oil or bitumen. In any thermal recovery methods, thermal properties (e.g., thermal conductivity, thermal diffusivity, and volumetric heat capacity) are closely related to the formation and expansion of steam chamber within a reservoir, which is key factors to control efficiency of thermal recovery. However, thermal properties of heavy oil or bitumen have not been well-studied despite their importance in thermal recovery methods. We measured thermal conductivity, thermal diffusivity, and volumetric heat capacity of 43 oil sand samples from Athabasca, Canada, using a transient thermal property measurement instrument. Thermal conductivity of 43 oil sand samples varies from 0.74 W/mK to 1.57 W/mK with the mean thermal conductivity of 1.09 W/mK. The mean thermal diffusivity is 5.7×10-7 m2/s with the minimum value of 4.2×10-7 m2/s and the maximum value of 8.0×10-7 m2/s. Volumetric heat capacity varies from 1.5×106 J/m3K to 2.11×106 J/m3K with the mean volumetric heat capacity of 1.91×106 J/m3K. In addition, physical and chemical properties (e.g., bitumen content, electric resistivity, porosity, gamma ray and so on) of oil sand samples have been measured by geophysical logging and in the laboratory. We are now proceeding to investigate the relationship between thermal properties and physical/chemical properties of oil sand.

  12. Thermal Transport in Soft PAAm Hydrogels

    Directory of Open Access Journals (Sweden)

    Ni Tang

    2017-12-01

    Full Text Available As the interface between human and machine becomes blurred, hydrogel incorporated electronics and devices have emerged to be a new class of flexible/stretchable electronic and ionic devices due to their extraordinary properties, such as softness, mechanically robustness, and biocompatibility. However, heat dissipation in these devices could be a critical issue and remains unexplored. Here, we report the experimental measurements and equilibrium molecular dynamics simulations of thermal conduction in polyacrylamide (PAAm hydrogels. The thermal conductivity of PAAm hydrogels can be modulated by both the effective crosslinking density and water content in hydrogels. The effective crosslinking density dependent thermal conductivity in hydrogels varies from 0.33 to 0.51 Wm−1K−1, giving a 54% enhancement. We attribute the crosslinking effect to the competition between the increased conduction pathways and the enhanced phonon scattering effect. Moreover, water content can act as filler in polymers which leads to nearly 40% enhancement in thermal conductivity in PAAm hydrogels with water content vary from 23 to 88 wt %. Furthermore, we find the thermal conductivity of PAAm hydrogel is insensitive to temperature in the range of 25–40 °C. Our study offers fundamental understanding of thermal transport in soft materials and provides design guidance for hydrogel-based devices.

  13. Transport Properties for Combustion Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J.; Bastein, L.; Price, P.N.

    2010-02-19

    ) performing more transport property measurements for mixtures that include radical species, an important but neglected area; (5) using the TRANLIB approach for treating polar molecules and (6) performing more accurate measurements of the molecular parameters used to evaluate the molecular heat capacity, since it affects thermal conductivity, which is important in predicting flame development.

  14. Study of Thermal Properties of Cast Metal- Ceramic Composite Foams

    OpenAIRE

    Gawdzińska K.; Chybowski L.; Przetakiewicz W.

    2017-01-01

    Owing to its properties, metallic foams can be used as insulation material. Thermal properties of cast metal-ceramic composite foams have applications in transport vehicles and can act as fire resistant and acoustic insulators of bulkheads. This paper presents basic thermal properties of cast and foamed aluminum, the values of thermal conductivity coefficient of selected gases used in foaming composites and thermal capabilities of composite foams (AlSi11/SiC). A certificate of non-combustibil...

  15. Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells

    KAUST Repository

    Elafandy, Rami T.

    2016-11-23

    Knowledge of materials\\' thermal-transport properties, conductivity and diffusivity, is crucial for several applications within areas of biology, material science and engineering. Specifically, a microsized, flexible, biologically integrated thermal transport sensor is beneficial to a plethora of applications, ranging across plants physiological ecology and thermal imaging and treatment of cancerous cells, to thermal dissipation in flexible semiconductors and thermoelectrics. Living cells pose extra challenges, due to their small volumes and irregular curvilinear shapes. Here a novel approach of simultaneously measuring thermal conductivity and diffusivity of different materials and its applicability to single cells is demonstrated. This technique is based on increasing phonon-boundary-scattering rate in nanomembranes, having extremely low flexural rigidities, to induce a considerable spectral dependence of the bandgap-emission over excitation-laser intensity. It is demonstrated that once in contact with organic or inorganic materials, the nanomembranes\\' emission spectrally shift based on the material\\'s thermal diffusivity and conductivity. This NM-based technique is further applied to differentiate between different types and subtypes of cancer cells, based on their thermal-transport properties. It is anticipated that this novel technique to enable an efficient single-cell thermal targeting, allow better modeling of cellular thermal distribution and enable novel diagnostic techniques based on variations of single-cell thermal-transport properties.

  16. Vesta surface thermal properties map

    Science.gov (United States)

    Capria, Maria Teresa; Tosi, F.; De Santis, Maria Cristina; Capaccioni, F.; Ammannito, E.; Frigeri, A.; Zambon, F; Fonte, S.; Palomba, E.; Turrini, D.; Titus, T.N.; Schroder, S.E.; Toplis, M.J.; Liu, J.Y.; Combe, J.-P.; Raymond, C.A.; Russell, C.T.

    2014-01-01

    The first ever regional thermal properties map of Vesta has been derived from the temperatures retrieved by infrared data by the mission Dawn. The low average value of thermal inertia, 30 ± 10 J m−2 s−0.5 K−1, indicates a surface covered by a fine regolith. A range of thermal inertia values suggesting terrains with different physical properties has been determined. The lower thermal inertia of the regions north of the equator suggests that they are covered by an older, more processed surface. A few specific areas have higher than average thermal inertia values, indicative of a more compact material. The highest thermal inertia value has been determined on the Marcia crater, known for its pitted terrain and the presence of hydroxyl in the ejecta. Our results suggest that this type of terrain can be the result of soil compaction following the degassing of a local subsurface reservoir of volatiles.

  17. Thermal Transport in Diamond Films for Electronics Thermal Management

    Science.gov (United States)

    2018-03-01

    Advanced Research Projects Agency EBSD Electron Backscatter Diffraction EELS Electron Energy Loss Spectroscopy EOM electro-optic modulator ERT...AFRL-RY-WP-TR-2017-0219 THERMAL TRANSPORT IN DIAMOND FILMS FOR ELECTRONICS THERMAL MANAGEMENT Samuel Graham Georgia Institute of Technology MARCH...TYPE 3. DATES COVERED (From - To) March 2018 Final 5 December 2014 – 30 September 2017 4. TITLE AND SUBTITLE THERMAL TRANSPORT IN DIAMOND FILMS FOR

  18. Thermal and thermoelectric properties of graphene.

    Science.gov (United States)

    Xu, Yong; Li, Zuanyi; Duan, Wenhui

    2014-06-12

    The subject of thermal transport at the mesoscopic scale and in low-dimensional systems is interesting for both fundamental research and practical applications. As the first example of truly two-dimensional materials, graphene has exceptionally high thermal conductivity, and thus provides an ideal platform for the research. Here we review recent studies on thermal and thermoelectric properties of graphene, with an emphasis on experimental progresses. A general physical picture based on the Landauer transport formalism is introduced to understand underlying mechanisms. We show that the superior thermal conductivity of graphene is contributed not only by large ballistic thermal conductance but also by very long phonon mean free path (MFP). The long phonon MFP, explained by the low-dimensional nature and high sample purity of graphene, results in important isotope effects and size effects on thermal conduction. In terms of various scattering mechanisms in graphene, several approaches are suggested to control thermal conductivity. Among them, introducing rough boundaries and weakly-coupled interfaces are promising ways to suppress thermal conduction effectively. We also discuss the Seebeck effect of graphene. Graphene itself might not be a good thermoelectric material. However, the concepts developed by graphene research might be applied to improve thermoelectric performance of other materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Thermal Transport in Carbon Nanotubes

    Science.gov (United States)

    Christman, Jeremy; Moore, Andrew; Khatun, Mahfuza

    2011-10-01

    Recent advances in nanostructure technology have made it possible to create small devices at the nanoscale. Carbon nanotubes (CNT's) are among the most exciting building blocks of nanotechnology. Their versatility and extremely desirable properties for electronic and other devices have driven intense research and development efforts in recent years. A review of electrical and thermal conduction of the structures will be presented. The theoretical investigation is mainly based on molecular dynamics. Green Kubo relation is used for the study of thermal conductivity. Results include kinetic energy, potential energy, heat flux autocorrelation function, and heat conduction of various CNT structures. Most of the computation and simulation has been conducted on the Beowulf cluster at Ball State University. Various software packages and tools such as Visual Molecular Dynamics (VMD), Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), and NanoHUB, the open online resource at Purdue University have been used for the research. The work has been supported by the Indiana Academy of Science Research Fund, 2010-2011.

  20. Nanoscale studies of thermal transport: R-matrix theory and thermal transport in strained graphene nanoribbons

    Science.gov (United States)

    Gunawardana, K. G. S. H.

    The rapid development of nanotechnology has enabled the fabrication of structures much smaller than the mean free path of electrons and phonons. In modern electronics, miniaturization is desired to increase the transistor density and the clock speed. Electronic transport on the nanoscale has been studied for over three decades and fascinating quantum effects have been observed. Phonon transport on this scale is of significant interest because of the increased power dissipation in nanoelectronics, which undermines the correct functionality of devices and limits their lifetime. Apart from the effort to minimize heat generation, an efficient heat management scheme is necessary. Historically, thermal transport in bulk materials was described by the Fourier's law, in which the thermal conductivity is an intrinsic property of the material. Later a more descriptive model, the Boltzmann approach for thermal transport, was developed and could explain the thermal conductivity down to a 100 nm length scale at high temperatures. At low temperatures and in structures smaller than roughly 100 nm, thermal transport is described by the fully quantum mechanical Landauer- Butticker formalism. In this context, accurate calculation of phonon transmission probabilities is very important. In this dissertation, I develop a continuum model to calculate phonon transmission probabilities between media, which have high contrast in the elastic properties. In this work, we include an interface transition layer between the two media and look for interface properties that improve thermal transport. Secondly, I develop a new theoretical tool based on the R-Matrix theory to calculate phonon transmission probabilities on the atomic scale. R-matrix theory is a well developed theoretical approach commonly used in nuclear and atomic physics to solve scattering problems. Recently, this approach has been successfully developed to calculate electronic scattering in mesoscopic quantum devices. The key

  1. Transport properties of organic liquids

    CERN Document Server

    Latini, G; Passerini, G

    2006-01-01

    The liquid state is possibly the most difficult and intriguing state of matter to model. Organic liquids are required, mainly as working fluids, in almost all industrial activities and in most appliances (e.g. in air conditioning). Transport properties (namely dynamic viscosity and thermal conductivity) are possibly the most important properties for the design of devices and appliances. The aim of this book is to present both theoretical approaches and the latest experimental advances on the issue, and to merge them into a wider approach. It concentrates on applicability of models.This book is organized into five chapters plus a data collection. The chapters discuss the following topics: the liquid state and some well-know theories able to explain the behaviour of liquids; a rather complete review of models, based on theoretical assumptions and/or upon physical paradigms, to evaluate heat transfer in organic liquids; a review of several well-known semi-empirical methods to predict the thermal conductivity coe...

  2. Magnetic, thermal, and transport properties of layered arsenides BaRu2As2 and SrRu2As2

    Science.gov (United States)

    Nath, R.; Singh, Yogesh; Johnston, D. C.

    2009-05-01

    The magnetic, thermal, and transport properties of polycrystalline BaRu2As2 and SrRu2As2 samples with the ThCr2Si2 structure were investigated by means of magnetic susceptibility χ(T) , electrical resistivity ρ(T) , and heat capacity Cp(T) measurements. The temperature (T) dependence of ρ indicates metallic character for both compounds with residual resistivity ratios ρ(310K)/ρ(2K) of 17 and 5 for the Ba and Sr compounds, respectively. The Cp(T) results reveal a low- T Sommerfeld coefficient γ=4.9(1) and 4.1(1)mJ/molK2 and Debye temperature ΘD=271(7) and 271(4) K for the Ba and Sr compounds, respectively. The χ(T) was found to be diamagnetic with a small absolute value for both compounds. No transitions were found for BaRu2As2 above 1.8 K. The χ(T) data for SrRu2As2 exhibit a cusp at ˜200K , possibly an indication of a structural and/or magnetic transition. We discuss the properties of BaRu2As2 and SrRu2As2 in the context of other ThCr2Si2 -type and ZrCuSiAs-type transition metal pnictides.

  3. Thermal properties of tetrahedral compounds

    International Nuclear Information System (INIS)

    Kagaya, H.M.; Soma, T.

    1987-01-01

    The thermal properties of tetrahedral compounds are studied theoretically from first principle using the lattice dynamical method recently developed. Numerical calculations about the specific heat are performed for AlP, AlAs, AlSb and about the thermal expansion coefficient for AlP, AlAs, AlSb, ZnS, ZnSe, ZnTe, and CdTe. (author)

  4. Aspects of the thermal and transport properties of crystalline salt in designing radioactive waste storages in halogen formations

    Science.gov (United States)

    Nikitin, A. N.; Pocheptsova, O. A.; Matthies, S.

    2010-05-01

    Some of the properties of natural rock salt are described. This rock is of great practical interest, because, along with its conventional applications in the chemical and food industries, it is promising for use in engineering underground radioactive waste storages and natural gas reservoirs. The results of structural and texture studies of rock salt by neutron diffraction are discussed. The nature of the salt permeability under temperature and stress gradients is theoretically estimated.

  5. Phenomena in thermal transport in fuels

    International Nuclear Information System (INIS)

    Chernatynskiy, A.; Tulenko, J.S.; Phillpot, S.R.; El-Azab, A.

    2015-01-01

    Thermal transport in nuclear fuels is a key performance metric that affects not only the power output, but is also an important consideration in potential accident situations. While the fundamental theory of the thermal transport in crystalline solids was extensively developed in the 1950's and 1960's, the pertinent analytic approaches contained significant simplifications of the physical processes. While these approaches enabled estimates of the thermal conductivity in bulk materials with microstructure, they were not comprehensive enough to provide the detailed guidance needed for the in-pile fuel performance. Rather, this guidance has come from data painfully accumulated over 50 years of experiments on irradiated uranium dioxide, the most widely used nuclear fuel. At this point, a fundamental theoretical understanding of the interplay between the microstructure and thermal conductivity of irradiated uranium dioxide fuel is still lacking. In this chapter, recent advances are summarised in the modelling approaches for thermal transport of uranium dioxide fuel. Being computational in nature, these modelling approaches can, at least in principle, describe in detail virtually all mechanisms affecting thermal transport at the atomistic level, while permitting the coupling of the atomistic-level simulations to the mesoscale continuum theory and thus enable the capture of the impact of microstructural evolution in fuel on thermal transport. While the subject of current studies is uranium dioxide, potential applications of the methods described in this chapter extend to the thermal performance of other fuel forms. (authors)

  6. Thermal transport phenomena in nanoparticle suspensions

    International Nuclear Information System (INIS)

    Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications. (topical review)

  7. Thermal transport phenomena in nanoparticle suspensions

    Science.gov (United States)

    Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-12-01

    Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications.

  8. Quantum Thermal Transport in Semiconductor Nanostructures

    Science.gov (United States)

    Miao, Kai

    Modern semiconductor devices scale down to the nanometer range. Heat dissipation becomes a critical issue in the chip design. From a different perspective, energy conservation has attracted much of attention from researchers. The essence of heat dissipation and energy conservation is the heat transport. Thermal properties of semiconductors have been under intense investigation in recent decades. Classical models fail to consider the quantum effects in devices on the scale of nanometers. First-principle methods only can deal with small devices and is computationally intensive. Instead, a modified valence force field (VFF) model is applied to reproduce the phonon properties of different materials and devices. Phonon transport is explored using the Green's functions. The concept of a Buttiker probe model is first used to mimic the scattering mechanisms in phonon transport. This energy conservation model is straightforward and efficient in describing scattering. In the quasiparticle approximation, phonon scattering will cause a phonon energy shift. This energy shift is represented by the scattering self-energy in a retarded Green's function. Phonon lifetime is extracted from the scattering self-energy expression. Different relaxation time approximation (RTA) models are studied and coupled with the phonon Green's function method for the first time. We prove that the widely used and proven RTA models in the Boltzmann transport equation (BTE) survive in the atomistic Green's function method. This method can give accurate thermal properties agreeing closely with the experimental results for bulk devices. This atomistic method can also consider quantum confinement effects at the nanoscale. The heat transport across a Si/Ge interface is introduced in this work as an example for this application. The heat transfer across metal/semiconductor (MS) interfaces is investigated as well. Relaxation at the interface can be done in two different ways. Using VFF model to relax the

  9. Magnetic, thermal, and transport properties of the mixed-valent vanadium oxides LuV4O8 and YV4O8

    Science.gov (United States)

    Das, S.; Niazi, A.; Mudryk, Y.; Pecharsky, V. K.; Johnston, D. C.

    2010-03-01

    LV4O8(L=Yb,Y,Lu) compounds are reported to crystallize in a structure similar to that of the orthorhombic CaFe2O4 structure type and contain four inequivalent V sites arranged in zigzag chains. We confirm the structure and report the magnetic, thermal, and transport properties of polycrystalline YV4O8 and LuV4O8 . A first-order-like phase transition is observed at 50 K in both YV4O8 and LuV4O8 . The symmetry remains the same with the lattice parameters changing discontinuously. The structural transition in YV4O8 leads to partial dimerization of the V atoms resulting in a sudden sharp drop in the magnetic susceptibility. The V spins that do not form dimers order in a canted antiferromagnetic state. The magnetic susceptibility of LuV4O8 shows a sharp peak at ˜50K . The magnetic entropies calculated from heat capacity versus temperature measurements indicate bulk magnetic transitions below 90 K for both YV4O8 and LuV4O8 .

  10. Transport properties of alumina nanofluids

    International Nuclear Information System (INIS)

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-01-01

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 deg. C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m -1 K -1 was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 deg. C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at various

  11. Transport properties of alumina nanofluids.

    Science.gov (United States)

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-08-27

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 °C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m(-1) K(-1) was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 °C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at

  12. Magnetic, transport and thermal properties of ternary indides R2CoIn8 (R = rare earths and Y)

    International Nuclear Information System (INIS)

    Joshi, Devang A; Tomy, C V; Malik, S K

    2007-01-01

    The magnetic properties of the R 2 CoIn 8 series of compounds are studied. Y 2 CoIn 8 shows a Pauli paramagnetic behaviour. Ce 2 CoIn 8 shows a heavy fermion and Kondo behaviour. Pr 2 CoIn 8 shows a dominating crystal field effect. The compounds with other magnetic rare earths (R = Sm, Nd, Gd, Tb, Dy and Ho) show antiferromagnetic ordering at low temperatures with T N = 12, 10, 33.5, 30, 17.4 and 7.6 K, respectively. Dy 2 CoIn 8 , Ho 2 CoIn 8 and Nd 2 CoIn 8 show metamagnetic transitions and a field-induced ferromagnetic transition at 2 K and above ∼82, 54 and 85 kOe respectively. Gd 2 CoIn 8 is a strong antiferromagnet. Sm 2 CoIn 8 shows a dominating antiferromagnetic behaviour with a ferromagnetic component at low temperatures. Tb 2 CoIn 8 shows a ferromagnetic component at low temperatures with the possibility of superconducting behaviour below 2.5 K. The compound also shows metamagnetic transitions in the magnetic isotherm and the possibility of complicated magnetic structure below the transition temperature

  13. Nanoscale thermal transport. II. 2003–2012

    International Nuclear Information System (INIS)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-01-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ∼1 nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and

  14. Plasma thermal energy transport: theory and experiments

    International Nuclear Information System (INIS)

    Coppi, B.

    Experiments on the transport across the magnetic field of electron thermal energy are reviewed (Alcator, Frascati Torus). In order to explain the experimental results, a transport model is described that reconfirmed the need to have an expression for the local diffusion coefficient with a negative exponent of the electron temperature

  15. Nonequilibrium Distribution of the Microscopic Thermal Current in Steady Thermal Transport Systems

    KAUST Repository

    Yukawa, Satoshi

    2010-01-01

    Nonequilibrium distribution of the microscopic thermal current is investigated by direct molecular dynamics simulations. The microscopic thermal current in this study is defined by a flow of kinetic energy carried by a single particle. Asymptotic parallel and antiparallel tails of the nonequilibrium distribution to an average thermal current are identical to ones of equilibrium distribution with different temperatures. These temperatures characterizing the tails are dependent on a characteristic length in which a memory of dynamics is completely erased by several particle collisions. This property of the tails of nonequilibrium distribution is confirmed in other thermal transport systems. In addition, statistical properties of a particle trapped by a harmonic potential in a steady thermal conducting state are also studied. This particle feels a finite force parallel to the average thermal current as a consequence of the skewness of the distribution of the current. This force is interpreted as the microscopic origin of thermophoresis.

  16. Thermal insulation properties of walls

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2014-05-01

    Full Text Available Heat-protective qualities of building structures are determined by the qualities of the used materials, adequate design solutions and construction and installation work of high quality. This rule refers both to the structures made of materials similar in their structure and nature and mixed, combined by a construction system. The necessity to ecaluate thermal conductivity is important for a product and for a construction. Methods for evaluating the thermal protection of walls are based on the methods of calculation, on full-scale tests in a laboratory or on objects. At the same time there is a reason to believe that even deep and detailed calculation may cause deviation of the values from real data. Using finite difference method can improve accuracy of the results, but it doesn’t solve all problems. The article discusses new approaches to evaluating thermal insulation properties of walls. The authors propose technique of accurate measurement of thermal insulation properties in single blocks and fragments of walls and structures.

  17. Transport Properties of Liquid Metals

    International Nuclear Information System (INIS)

    Kart, H.H.

    2004-01-01

    Transport properties of Pd, Ag pure metals and their binary alloys are investigated by using molecular dynamics simulation. Quantum Sutton-Chen (Q-SC) many-body potential is used to define the interactions between the atoms. The effects of temperature and concentration on the transport properties such as diffusion and viscosity of the metals are analysed. The simulation results are in good agreement with the experimental and theoretical values

  18. Thermal Properties of FOX-7

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A K; Weese, R K; Wang, R; Kwok, Q M; Jones, D G

    2005-03-30

    Much effort has been devoted to an ongoing search for more powerful, safer and environmentally friendly explosives. Since it was developed in the late 1990s, 1,1-diamino-2,2-dinitroethene (FOX-7), with lower sensitivity and comparable performance to RDX, has received increasing interest. Preliminary results on the physical and chemical characterization of FOX-7 have shown that it possesses good thermal and chemical stability. It is expected that FOX-7 will be a new important explosive ingredient in high performance, insensitive munition (IM) explosives. One of the major focuses in research on this novel energetic material is a study of its thermal properties. Oestmark et al have reported that DSC curves exhibit two minor endothermic peaks as well as two major exothermic peaks. Two endothermic peaks at {approx}116 and {approx}158 C suggest the presence of two solid-solid phase transitions. A third phase change below 100 C has also been reported based on a X-ray powder diffraction (XPD) study. The shapes, areas and observed temperatures of the two decomposition peaks at {approx}235 C and {approx}280 C vary with different batches and sources of the sample, and occasionally these two peaks are merged into one. The factors leading to this variation and a more complete investigation are in progress. Our laboratories have been interested in the thermal properties of energetic materials characterized by means of various thermal analysis techniques. This paper will present our results for the thermal behavior of FOX-7 including the phase changes, decomposition, kinetic analysis and the decomposition products using DSC, TG, ARC (Accelerating Rate Calorimetry), HFC (Heat Flow Calorimetry) and simultaneous TGDTA-FTIR (Fourier Transform Infrared Spectroscopy) Spectroscopy-MS (Mass) measurements.

  19. Thermal and electrical transport in multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Yang, D.J.; Wang, S.G.; Zhang, Q.; Sellin, P.J.; Chen, G.

    2004-01-01

    Thermal and electrical transport properties of multi-walled carbon nanotubes (MWNTs), which were prepared by microwave plasma chemical vapor deposition technique, were investigated using pulsed photothermal reflectance and the two-terminal I-V methods. The effective thermal conductivity in the nanotube axis direction was around 200 W/mK at room temperature, and it was independent on the nanotube length. By comparing the thermal conductivity with the electrical conductivity, heat transport was found to be dominated by phonons instead of electrons. On the other hand, the electrical conductivity of the MWNT films exhibited anisotropic characteristics with respect to the nanotube axis and the electron transport was diffusive rather than ballistic

  20. Thermal model of spent fuel transport cask

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.; Sultan, G.F.; Khalil, E.E.

    1996-01-01

    The investigation provides a theoretical model to represent the thermal behaviour of the spent fuel elements when transported in a dry shipping cask under normal transport conditions. The heat transfer process in the spent fuel elements and within the cask are modeled which include the radiant heat transfer within the cask and the heat transfer by thermal conduction within the spent fuel element. The model considers the net radiant method for radiant heat transfer process from the inner most heated element to the surrounding spent elements. The heat conduction through fuel interior, fuel-clad interface and on clad surface are also presented. (author) 6 figs., 9 refs

  1. Parallel thermal radiation transport in two dimensions

    International Nuclear Information System (INIS)

    Smedley-Stevenson, R.P.; Ball, S.R.

    2003-01-01

    This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)

  2. Thermal properties of an erythritol derivative

    Science.gov (United States)

    Trhlikova, Lucie; Prikryl, Radek; Zmeskal, Oldrich

    2016-06-01

    Erythritol (C4H10O4) is a sugar alcohol (or polyol) that is commonly used in the food industry. Its molar mass is 122.12 g.mol-1 and mass density 1450 kg.m-3. Erythritol, an odorless crystalline powder, can also be characterized by other physical parameters like melting temperature (121 °C) and boiling temperature (329 °C). The substance can be used for the accumulation of energy in heat exchangers based on various oils or water. The PlusICE A118 product manufactured by the PCM Products Ltd. company (melting temperature Θ = 118 °C, specific heat capacity cp = 2.70 kJ.K-1.kg-1, mass density 1450 kg.m-3, latent heat capacity 340 kJ.kg-1, volumetric heat capacity 493 MJ.m-3) is based on an erythritol-type medium. Thermal properties of the PlusICE A118 product in both solid and liquid phase were investigated for this purpose in terms of potential applications. Temperature dependences of its thermal parameters (thermal diffusivity, thermal conductivity, and specific heat) were determined using a transient (step-wise) method. A fractal model of heat transport was used for determination of the above thermal parameters. This model is independent of geometry and type of sample heating. Moreover, it also considers heat losses. The experiment confirmed the formerly declared value of phase change temperature, about 120 °C.

  3. Thermal properties of cesium molybdate

    International Nuclear Information System (INIS)

    Minato, Kazuo; Fukuda, Kousaku; Takano, Masahide; Sato, Seichi; Ohashi, Hiroshi

    1996-01-01

    Cesium is one of the most important fission products to aid in the understanding and prediction of the behavior of oxide nuclear fuels because of its high mobility, chemical reactivity, and large yield. In postirradiation examinations of the Phoenix reactor fuel pins, the accumulation of cesium and molybdenum between the fuel pellet and cladding was observed, though the chemical form was not determined. In the thermodynamic analyses of chemical states of fission products, Cs 2 MoO 4 was often predicted to exist as a stable compound in oxide fuels. The Cs 2 MoO 4 compound is thermodynamically stable under the conditions of light water reactors, fast breeder reactors, and high-temperature gas-cooled reactors. In the Cs-Mo-O system several phases have been found, and the structural and thermodynamic properties were studied. At room temperature, Cs 2 MoO 4 has an orthorhombic structure and a phase transition occurs at 841 K to a hexagonal structure. Both structures are expected to exist in the fuel, depending on the fuel temperature. However, no data has been available on the thermal properties of CS 2 MoO 4 . In the current work, the thermal expansion and thermal conductivity of Cs 2 MoO 4 were determined, which are the basic data needed to understand and predict the fuel/clad mechanical interaction and fuel temperature

  4. Thermal transport in cuprates, cobaltates, and manganites

    Energy Technology Data Exchange (ETDEWEB)

    Berggold, K.

    2006-09-15

    The subject of this thesis is the investigation of the thermal transport properties of three classes of transition-metal oxides: Cuprates, cobaltates, and manganites. The layered cuprates R{sub 2}CuO{sub 4} with R=La, Pr, Nd, Sm, Eu, and Gd show an anomalous thermal conductivity {kappa}. Two maxima of {kappa} are observed as a function of temperature for a heat current within the CuO{sub 2} planes, whereas for a heat current perpendicular to the CuO{sub 2} planes only a conventional phononic low-temperature maximum of {kappa} is present. Evidence is provided that the high-temperature maximum is caused by heat-carrying excitations on the CuO{sub 2} square lattice. Moreover, it is shown that the complex low-temperature and magnetic-field behavior of {kappa} in Nd{sub 2}CuO{sub 4} is most likely caused by additional phonon scattering rather than by heat-carrying Nd magnons, as it was proposed in the literature. In the cobaltates RCoO{sub 3} with R=La, Pr, Nd, and Eu, a temperature-induced spin-state transition of the Co{sup 3+} ions occurs. It is shown that the additional lattice disorder caused by the random distribution of populated higher spin states causes a large suppression of the thermal conductivity of LaCoO{sub 3} for T>25 K. The effect is much weaker in PrCoO{sub 3} and NdCoO{sub 3} due to the increased spin gap. A quantitative analysis of the responsible mechanisms based on EuCoO{sub 3} as a reference compound is provided. A main result is that the static disorder is sufficient to explain the suppression of {kappa}. No dynamical Jahn-Teller distortion, as proposed in the literature, is necessary to enhance the scattering strength. Below 25 K, k is mainly determined by resonant phonon scattering on paramagnetic impurity levels, e.g. caused by oxygen non-stoichiometry. Such a suppression of the thermal conductivity by resonant scattering processes is e.g. known from Holmium ethylsulfate. This effect is most pronounced in LaCoO{sub 3}, presumably due to

  5. Thermal transport in cuprates, cobaltates, and manganites

    International Nuclear Information System (INIS)

    Berggold, K.

    2006-09-01

    The subject of this thesis is the investigation of the thermal transport properties of three classes of transition-metal oxides: Cuprates, cobaltates, and manganites. The layered cuprates R 2 CuO 4 with R=La, Pr, Nd, Sm, Eu, and Gd show an anomalous thermal conductivity κ. Two maxima of κ are observed as a function of temperature for a heat current within the CuO 2 planes, whereas for a heat current perpendicular to the CuO 2 planes only a conventional phononic low-temperature maximum of κ is present. Evidence is provided that the high-temperature maximum is caused by heat-carrying excitations on the CuO 2 square lattice. Moreover, it is shown that the complex low-temperature and magnetic-field behavior of κ in Nd 2 CuO 4 is most likely caused by additional phonon scattering rather than by heat-carrying Nd magnons, as it was proposed in the literature. In the cobaltates RCoO 3 with R=La, Pr, Nd, and Eu, a temperature-induced spin-state transition of the Co 3+ ions occurs. It is shown that the additional lattice disorder caused by the random distribution of populated higher spin states causes a large suppression of the thermal conductivity of LaCoO 3 for T>25 K. The effect is much weaker in PrCoO 3 and NdCoO 3 due to the increased spin gap. A quantitative analysis of the responsible mechanisms based on EuCoO 3 as a reference compound is provided. A main result is that the static disorder is sufficient to explain the suppression of κ. No dynamical Jahn-Teller distortion, as proposed in the literature, is necessary to enhance the scattering strength. Below 25 K, k is mainly determined by resonant phonon scattering on paramagnetic impurity levels, e.g. caused by oxygen non-stoichiometry. Such a suppression of the thermal conductivity by resonant scattering processes is e.g. known from Holmium ethylsulfate. This effect is most pronounced in LaCoO 3 , presumably due to magnetic polaron formation. In the doped compounds La 1-x Sr x CoO 3 with 0≤x≤0.25, a large

  6. Computing Thermodynamic And Transport Properties

    Science.gov (United States)

    Mcbride, B.; Gordon, Sanford

    1993-01-01

    CET89 calculates compositions in chemical equilibrium and properties of mixtures of any chemical system for which thermodynamic data available. Provides following options: obtains chemical-equilibrium compositions and corresponding thermodynamic mixture properties for assigned thermodynamic states; calculates dilute-gas transport properties of complex chemical mixtures; obtains Chapman-Jouguet detonation properties for gaseous mixtures; calculates properties of incident and reflected shocks in terms of assigned velocities; and calculates theoretical performance of rocket for both equilibrium and frozen compositions during expansion. Rocket performance based on optional models of finite or infinite area combustor.

  7. Time-Dependent Thermal Transport Theory.

    Science.gov (United States)

    Biele, Robert; D'Agosta, Roberto; Rubio, Angel

    2015-07-31

    Understanding thermal transport in nanoscale systems presents important challenges to both theory and experiment. In particular, the concept of local temperature at the nanoscale appears difficult to justify. Here, we propose a theoretical approach where we replace the temperature gradient with controllable external blackbody radiations. The theory recovers known physical results, for example, the linear relation between the thermal current and the temperature difference of two blackbodies. Furthermore, our theory is not limited to the linear regime and goes beyond accounting for nonlinear effects and transient phenomena. Since the present theory is general and can be adapted to describe both electron and phonon dynamics, it provides a first step toward a unified formalism for investigating thermal and electronic transport.

  8. Thermal properties of two-dimensional materials

    International Nuclear Information System (INIS)

    Zhang Gang; Zhang Yong-Wei

    2017-01-01

    Two-dimensional (2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides (e.g., MoS 2 and WS 2 ), have attracted a great deal of attention recently due to their extraordinary structural, mechanical, and physical properties. In particular, 2D materials have shown great potential for thermal management and thermoelectric energy generation. In this article, we review the recent advances in the study of thermal properties of 2D materials. We first review some important aspects in thermal conductivity of graphene and discuss the possibility to enhance the ultra-high thermal conductivity of graphene. Next, we discuss thermal conductivity of MoS 2 and the new strategy for thermal management of MoS 2 device. Subsequently, we discuss the anisotropic thermal properties of phosphorene. Finally, we review the application of 2D materials in thermal devices, including thermal rectifier and thermal modulator. (topical reviews)

  9. Thermal transport in semicrystalline polyethylene by molecular dynamics simulation

    Science.gov (United States)

    Lu, Tingyu; Kim, Kyunghoon; Li, Xiaobo; Zhou, Jun; Chen, Gang; Liu, Jun

    2018-01-01

    Recent research has highlighted the potential to achieve high-thermal-conductivity polymers by aligning their molecular chains. Combined with other merits, such as low-cost, corrosion resistance, and light weight, such polymers are attractive for heat transfer applications. Due to their quasi-one-dimensional structural nature, the understanding on the thermal transport in those ultra-drawn semicrystalline polymer fibers or films is still lacking. In this paper, we built the ideal repeating units of semicrystalline polyethylene and studied their dependence of thermal conductivity on different crystallinity and interlamellar topology using the molecular dynamics simulations. We found that the conventional models, such as the Choy-Young's model, the series model, and Takayanagi's model, cannot accurately predict the thermal conductivity of the quasi-one-dimensional semicrystalline polyethylene. A modified Takayanagi's model was proposed to explain the dependence of thermal conductivity on the bridge number at intermediate and high crystallinity. We also analyzed the heat transfer pathways and demonstrated the substantial role of interlamellar bridges in the thermal transport in the semicrystalline polyethylene. Our work could contribute to the understanding of the structure-property relationship in semicrystalline polymers and shed some light on the development of plastic heat sinks and thermal management in flexible electronics.

  10. Transport Optical and Magnetic Properties of Solids.

    Science.gov (United States)

    Solid state physics, Band theory of solids, Semiconductors, Strontium compounds, Superconductors, Magnetic properties, Chalcogens, Transport properties, Optical properties, Bibliographies, Scientific research, Magnons

  11. Effects of Pressure on the Microstructure and Simultaneous Optimization of the Electrical and Thermal Transport Properties of Yb0.5Ba7.5Ga16Ge30.

    Science.gov (United States)

    Sun, Bing; Jia, Xiaopeng; Zhao, Jiaqiang; Li, Yingde; Liu, Haiqiang; Ma, Hongan

    2018-03-19

    The thermoelectric (TE) properties of n-type polycrystalline Yb 0.5 Ba 7.5 Ga 16 Ge 30 bulks can be optimized by high-pressure and high-temperature (HPHT) sintering. After HPHT sintering, abundant nanograins are randomly distributed in the sample. Grains are refined by HPHT, with the grains being smaller with higher pressure. In comparison with the arc-melted sample, the samples obtained by quenching under high pressure possess a great number of nanograins and lattice structural disorders. Lower thermal conductivity is benefited by our deliberately engineered microstructures via HPHT, and the minimum thermal conductivity is 0.86 W m -1 K -1 at 773 K. The thermal conductivity and electrical properties are optimized simultaneously by raising the reactive sintering pressure. In comparison with the arc-melted sample (0.56), a maximum zT value of 1.13 at 773 K is obtained for the Yb 0.5 Ba 7.5 Ga 16 Ge 30 sample fabricated at 5 GPa. This demonstrates that HPHT provides an effective strategy to improve TE performance through simultaneously enhancing electrical and thermal transport properties and should be applicable to other thermoelectric materials.

  12. Thermal insulation materials for inside applications: Hygric and thermal properties

    Science.gov (United States)

    Jerman, Miloš; Černý, Robert

    2017-11-01

    Two thermal insulation materials suitable for the application on the interior side of historical building envelopes, namely calcium silicate and polyurethane-based foam are studied. Moisture diffusivity and thermal conductivity of both materials, as fundamental moisture and heat transport parameters, are measured in a dependence on moisture content. The measured data will be used as input parameters in computer simulation studies which will provide moisture and temperature fields necessary for an appropriate design of interior thermal insulation systems.

  13. Thermal Transport in Carbon Nanotubes using Molecular Dynamics

    Science.gov (United States)

    Moore, Andrew; Khatun, Mahfuza

    2011-10-01

    We will present results of thermal transport phenomena in Carbon Nanotube (CNT) structures. CNTs have many interesting physical properties, and have the potential for device applications. Specifically, CNTs are robust materials with high thermal conductance and excellent electrical conduction properties. A review of electrical and thermal conduction of the structures will be discussed. The research requires analytical analysis as well as simulation. The major thrust of this study is the usage of the molecular dynamics (MD) simulator, LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). A significant investigation using the LAMMPS code is conducted on the existing Beowulf Computing Cluster at BSU. NanoHUB, an open online resource to the entire nanotechnology community developed by the researchers of Purdue University, is used for further supplementary resources. Results will include the time-dependence of temperature, kinetic energy, potential energy, heat flux correlation, and heat conduction.

  14. Existence of negative differential thermal conductance in one-dimensional diffusive thermal transport

    Science.gov (United States)

    Hu, Jiuning; Chen, Yong P.

    2013-06-01

    We show that in a finite one-dimensional (1D) system with diffusive thermal transport described by the Fourier's law, negative differential thermal conductance (NDTC) cannot occur when the temperature at one end is fixed and there are no abrupt junctions. We demonstrate that NDTC in this case requires the presence of junction(s) with temperature-dependent thermal contact resistance (TCR). We derive a necessary and sufficient condition for the existence of NDTC in terms of the properties of the TCR for systems with a single junction. We show that under certain circumstances we even could have infinite (negative or positive) differential thermal conductance in the presence of the TCR. Our predictions provide theoretical basis for constructing NDTC-based devices, such as thermal amplifiers, oscillators, and logic devices.

  15. Contribution to the thermal properties of selected steels

    Directory of Open Access Journals (Sweden)

    P. Jonšta

    2015-01-01

    Full Text Available The paper deals with the influence of structural changes on heat transport phenomena of steels samples. Three samples of 10GN2MFA steel were thermally treated at quenching temperatures equal to 900 °C, 1 000 °C and 1 100 °C, and temperature of the tempering was 670 °C. Both thermal diffusivity and thermal conductivity increase with the quenching temperature. Specific heat capacity of steel samples after thermal treatment does not change significantly. Further three different high manganese steels were measured. Maximal content of Mn and C was 27 and 0,5 mass percent. From results of thermophysical properties after ageing, one can see the increase of thermal diffusivity up to 20 percent, thermal conductivity up to 15 percent, decrease of specific heat capacity is not significant. All measured values of thermophysical properties are in good agreement with literary data (before ageing.

  16. Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications.

    Science.gov (United States)

    Fox, Douglas M; Rodriguez, Rebeca S; Devilbiss, Mackenzie N; Woodcock, Jeremiah; Davis, Chelsea S; Sinko, Robert; Keten, Sinan; Gilman, Jeffrey W

    2016-10-12

    Cellulose nanocrystals (CNCs) have great potential as sustainable reinforcing materials for polymers, but there are a number of obstacles to commercialization that must first be overcome. High levels of water absorption, low thermal stabilities, poor miscibility with nonpolar polymers, and irreversible aggregation of the dried CNCs are among the greatest challenges to producing cellulose nanocrystal-polymer nanocomposites. A simple, scalable technique to modify sulfated cellulose nanocrystals (Na-CNCs) has been developed to address all of these issues. By using an ion exchange process to replace Na + with imidazolium or phosphonium cations, the surface energy is altered, the thermal stability is increased, and the miscibility of dried CNCs with a nonpolar polymer (epoxy and polystyrene) is enhanced. Characterization of the resulting ion exchanged CNCs (IE-CNCs) using potentiometry, inverse gas chromatography, dynamic vapor sorption, and laser scanning confocal microscopy reveals that the IE-CNCs have lower surface energies, adsorb less water, and have thermal stabilities of up to 100 °C higher than those of prepared protonated cellulose nanocrystals (H-CNCs) and 40 °C higher than that of neutralized Na-CNC. Methyl(triphenyl)phosphonium exchanged cellulose nanocrystals (MePh 3 P-CNC) adsorbed 30% less water than Na-CNC, retained less water during desorption, and were used to prepare well-dispersed epoxy composites without the aid of a solvent and well-dispersed polystyrene nanocomposites using a melt blending technique at 195 °C. Predictions of dispersion quality and glass transition temperatures from molecular modeling experiments match experimental observations. These fiber-reinforced polymers can be used as lightweight composites in transportation, infrastructure, and renewable energy applications.

  17. Thermal properties of methyltrimethoxysilane aerogel thin films

    Directory of Open Access Journals (Sweden)

    Leandro N. Acquaroli

    2016-10-01

    Full Text Available Aerogels are light and porous solids whose properties, largely determined by their nanostructure, are useful in a wide range of applications, e.g., thermal insulation. In this work, as-deposited and thermally treated air-filled silica aerogel thin films synthesized using the sol-gel method were studied for their thermal properties using the 3-omega technique, at ambient conditions. The thermal conductivity and diffusivity were found to increase as the porosity of the aerogel decreased. Thermally treated films show a clear reduction in thermal conductivity compared with that of as-deposited films, likely due to an increase of porosity. The smallest thermal conductivity and diffusivity found for our aerogels were 0.019 W m−1 K−1 and 9.8 × 10-9 m2 s−1. A model was used to identify the components (solid, gaseous and radiative of the total thermal conductivity of the aerogel.

  18. Laboratory measurements of rock thermal properties

    DEFF Research Database (Denmark)

    Bording, Thue Sylvester; Balling, N.; Nielsen, S.B.

    The thermal properties of rocks are key elements in understanding and modelling the temperature field of the subsurface. Thermal conductivity and thermal diffusivity can be measured in the laboratory if rock samples can be provided. We have introduced improvements to the divided bar and needle...... probe methods to be able to measure both thermal conductivity and thermal diffusivity. The improvements we implement include, for both methods, a combination of fast numerical finite element forward modelling and a Markov Chain Monte Carlo inversion scheme for estimating rock thermal parameters...

  19. Thermal properties of defective fullerene

    Science.gov (United States)

    Li, Jian; Zheng, Dong-Qin; Zhong, Wei-Rong

    2016-09-01

    We have investigated the thermal conductivity of defective fullerene (C60) by using the nonequilibrium molecular dynamics (MD) method. It is found that the thermal conductivity of C60 with one defect is lower than the thermal conductivity of perfect C60. However, double defects in C60 have either positive or negative influence on the thermal conductivity, which depends on the positions of the defects. The phonon spectra of perfect and defective C60 are also provided to give corresponding supports. Our results can be extended to long C60 chains, which is helpful for the thermal management of C60.

  20. Anisotropic thermal transport in phosphorene: effects of crystal orientation.

    Science.gov (United States)

    Liu, Te-Huan; Chang, Chien-Cheng

    2015-06-28

    As an intrinsic thermally anisotropic material, the thermal properties of phosphorene must vary with respect to the crystal chirality. Nevertheless, previous studies of heat transfer in phosphorene have been limited to the 0.0° (zigzag, ZZ) and 90.0° (armchair, AC) chiralities. In this study, we investigate the orientation-dependent thermal transport in phosphorene sheets with a complete set of crystal chirality ranging from 0.0° to 90.0° using the Boltzmann transport equation (BTE) associated with the first-principles calculations. It was found that in the phosphorene sheets, the intrinsic thermal conductivity is a smooth monotonic decreasing function of the crystal chirality, which exhibits sinusoidal behavior bounded by the two terminated values 48.9 (0.0°) and 27.8 (90.0°) W m(-1) K(-1). The optical modes have unusually large contributions to heat transfer, which account for almost 30% of the total thermal conductivity of phosphorene sheets. This is because the optical phonons have comparable group velocities and relaxation times to the acoustic phonons.

  1. THERMAL COMPOSITE COATINGS IMPROVING QUALITY OF TECHNICAL MEANS OF TRANSPORT

    Directory of Open Access Journals (Sweden)

    Andrzej POSMYK

    2015-06-01

    Full Text Available The paper presents the thermal properties of composite insulating material designed for producing of technical means of transport. This material can be coated on most of engineering materials. The matrix of this material is an acrylic resin ant non porous ceramic microspheres made of alumina are the reinforcing phase. Thanks to that into the spheres almost vacuum (0,13 Pa dominants and a big amount of spheres pro thickness unit is it possible to achieve low thermal conductivity. Usage of these coatings for producing of cooling cabins on vehicles let us to reduce of fuel for maintain of given temperature. Usage of these coatings in planes flying on high altitudes (temperature up to -60 allows to reduce of fuel consumption for heating. It has an important influence on transport quality and quality costs.

  2. Investigation of anisotropic thermal transport in cross-linked polymers

    Science.gov (United States)

    Simavilla, David Nieto

    -induced crystallization as the possible causes explaining our observations and evaluate their contribution making use of classical rubber elasticity results. Finally, we study of the role of evaporation-induced thermal effects in the well-know phenomena of the tears of wine. We develop a transport model and support its predictions by experimentally measuring the temperature gradient present in wine and cognac films using IRT. Our results demonstrate that the Marangoni flow responsible for wine tears results from both composition and temperature gradients, whose relative contribution strongly depends on the thermodynamic properties of ethanol-water mixtures. The methods developed here can be used to obtain a deeper understanding of Marangoni flows, which are ubiquitous in nature and modern technology.

  3. Thermal properties of heterogeneous fuels

    International Nuclear Information System (INIS)

    Staicu, D.; Beauvy, M.

    1998-01-01

    Fresh or irradiated nuclear fuels are composites or solid solutions more or less heterogeneous, and their thermal conductivities are strongly dependent on the microstructure. The effective thermal conductivities of these heterogeneous solids must be determined for the modelling of the behaviour under irradiation. Different methods (analytical or numerical) published in the literature can be used for the calculation of this effective thermal conductivity. They are analysed and discussed, but finally only few of them are really useful because the assumptions selected are often not compatible with the complex microstructures observed in the fuels. Numerical calculations of the effective thermal conductivity of various fuels based on the microstructure information provided in our laboratory by optical microscopy or electron micro-probe analysis images, have been done for the validation of these methods. The conditions necessary for accurate results on effective thermal conductivity through these numerical calculations are discussed. (author)

  4. Engineering of CH 3 NH 3 PbI 3 Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties

    KAUST Repository

    Peng, Wei

    2016-07-28

    The number of studies on organic–inorganic hybrid perovskites has soared in recent years. However, the majority of hybrid perovskites under investigation are based on a limited number of organic cations of suitable sizes, such as methylammonium and formamidinium. These small cations easily fit into the perovskite\\'s three-dimensional (3D) lead halide framework to produce semiconductors with excellent charge transport properties. Until now, larger cations, such as ethylammonium, have been found to form 2D crystals with lead halide. Here we show for the first time that ethylammonium can in fact be incorporated coordinately with methylammonium in the lattice of a 3D perovskite thanks to a balance of opposite lattice distortion strains. This inclusion results in higher crystal symmetry, improved material stability, and markedly enhanced charge carrier lifetime. This crystal engineering strategy of balancing opposite lattice distortion effects vastly increases the number of potential choices of organic cations for 3D perovskites, opening up new degrees of freedom to tailor their optoelectronic and environmental properties.

  5. Magnetothermoelectric transport properties in phosphorene

    Science.gov (United States)

    Ma, R.; Liu, S. W.; Deng, M. X.; Sheng, L.; Xing, D. Y.; Sheng, D. N.

    2018-02-01

    We numerically study the electrical and thermoelectric transport properties in phosphorene in the presence of both a magnetic field and disorder. The quantized Hall conductivity is similar to that of a conventional two-dimensional electron gas, but the positions of all the Hall plateaus shift to the left due to the spectral asymmetry, in agreement with the experimental observations. The thermoelectric conductivity and Nernst signal exhibit remarkable anisotropy, and the thermopower is nearly isotropic. When a bias voltage is applied between top and bottom layers of phosphorene, both thermopower and Nernst signal are enhanced and their peak values become large.

  6. Thermal-electrical transport of high purity, melt impregnated, polycrystalline MgB2

    International Nuclear Information System (INIS)

    Young, E A; Kulak, A; Yang, Y

    2011-01-01

    In the polycrystalline superconductor MgB 2 the fraction of cross section that carries electrical current was previously shown to be obtained from the normal state electrical resistivity. The latest single crystal measurements show the thermal transport properties of MgB 2 to be dominated by electrical transport. For the first time we apply the electrical cross section to the thermal conductivity of three polycrystalline samples with different grain size and porosity. It is found that the results can be readily discussed in the context of granular thermal-electrical properties consisting of common temperature dependent transport properties independent of grain size and porosity. The result gives an alternative interpretation to the temperature dependent thermal transport than given in previous publications.

  7. Thermally stimulated properties of amber

    International Nuclear Information System (INIS)

    Bowlt, C.

    1983-01-01

    Thermoelectrets yielded thermally stimulated currents but radioelectrets could not be produced even following exposures of 16000 R of ionising radiation. It is concluded that the thermally stimulated currents are due to the depolarisation of dipoles, with activation energy of 1.4 +- 0.1 eV, rather than to discharge of trapped charge carriers. Amber exhibits thermal luminescence following exposure to light of lambda < 500 nm but not to ionising radiation after exposures up to 5500 R, indicating localised impurity/trap/recombination complexes in the specimen surface, with a trap depth of 1.5 +- 0.1 eV. (author)

  8. Computer program for calculation of complex chemical equilibrium compositions and applications. Supplement 1: Transport properties

    Science.gov (United States)

    Gordon, S.; Mcbride, B.; Zeleznik, F. J.

    1984-01-01

    An addition to the computer program of NASA SP-273 is given that permits transport property calculations for the gaseous phase. Approximate mixture formulas are used to obtain viscosity and frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as in NASA TN D-7056. Transport properties for 154 gaseous species were selected for use with the program.

  9. Thermal Properties of Polymethyl Methacrylate Composite Containing Copper Nanoparticles.

    Science.gov (United States)

    Yu, Wei; Xie, Huaqing; Xin, Sha; Yin, Junshan; Jiang, Yitong; Wang, Mingzhu

    2015-04-01

    Thermal functional Materials have wide applications in thermal management fields, and inserting highly thermal conductive materials is effective in enhancing thermal conductivity of matrix. In this paper, copper nanoparticles were selected as the additive to prepare polymethyl methacrylate (PMMA) based nanocomposite with enhanced thermal properties. Uniform copper nanoparticles with pure face-centered lattice were prepared by liquid phase reduction method. Then, they were added into PMMA/N, N-Dimethylmethanamide (DMF) solution according to the different mass fraction for uniform dispersion. After DMF was evaporated, Cu-PMMA nanocomposites were gained. The thermal analysis measurement results showed that the decomposition temperature of nanocomposites decreased gradually with the increasing particle loadings. The thermal conductivity of the Cu-PMMA nanocomposites rose with the increasing contents of copper nanoparticles. With a 20 vol.% addition, the thermal conductivity was up to 1.2 W/m · K, a 380.5% increase compared to the pure PMMA. The results demonstrate that copper nanoparticles have great potential in enhancing thermal transport properties of polymer.

  10. Electron thermal transport in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Konings, J.A.

    1994-11-30

    The process of fusion of small nuclei thereby releasing energy, as it occurs continuously in the sun, is essential for the existence of mankind. The same process applied in a controlled way on earth would provide a clean and an abundant energy source, and be the long term solution of the energy problem. Nuclear fusion requires an extremely hot (10{sup 8} K) ionized gas, a plasma, that can only be maintained if it is kept insulated from any material wall. In the so called `tokamak` this is achieved by using magnetic fields. The termal insulation, which is essential if one wants to keep the plasma at the high `fusion` temperature, can be predicted using basic plasma therory. A comparison with experiments in tokamaks, however, showed that the electron enery losses are ten to hundred times larger than this theory predicts. This `anomalous transport` of thermal energy implies that, to reach the condition for nuclear fusion, a fusion reactor must have very large dimensions. This may put the economic feasibility of fusion power in jeopardy. Therefore, in a worldwide collaboration, physicists study tokamak plasmas in an attempt to understand and control the energy losses. From a scientific point of view, the mechanisms driving anomalous transport are one of the challenges in fudamental plasma physics. In Nieuwegein, a tokamak experiment (the Rijnhuizen Tokamak Project, RTP) is dedicated to the study of anomalous transport, in an international collaboration with other laboratories. (orig./WL).

  11. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.

    Science.gov (United States)

    Kang, Joon Sang; Wu, Huan; Hu, Yongjie

    2017-12-13

    Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of

  12. Synthesis, mechanical, thermal and chemical properties of ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol. C V MYTHILI, A MALAR RETNA and S GOPALAKRISHNAN*. Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, India. MS received 28 August 2003; revised 19 February 2004.

  13. Thermal to electricity conversion using thermal magnetic properties

    Science.gov (United States)

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  14. Facilitation of Nanoscale Thermal Transport by Hydrogen Bonds

    OpenAIRE

    Zhang, Lin

    2017-01-01

    Thermal transport performance at the nanoscale and/or of biomaterials is essential to the success of many new technologies including nanoelectronics, biomedical devices, and various nanocomposites. Due to complicated microstructures and chemical bonding, thermal transport process in these materials has not been well understood yet. In terms of chemical bonding, it is well known that the strength of atomic bonding can significantly affect thermal transport across materials or across interfaces...

  15. Thermal properties of the Cobourg Limestone

    Science.gov (United States)

    Pitts, Michelle

    The underground storage of used nuclear fuel in Deep Geologic Repositories (DGRs) has been a subject of research in Canada for decades. One important technical aspect of repository design is the accommodation of the mechanical impacts of thermal inputs (heating) from the fuel as it goes through the remainder of its life cycle. Placement room spacing, a major factor in project cost, will be determined by the ability of the host rock to dissipate heat. The thermal conductivity and linear thermal expansion will determine the evolution of the temperature and thermally-induced stress fields. Thermal processes must be well understood to design a successful DGR. This thesis examines the thermal properties of rocks, how they are influenced by factors such as temperature, pressure, mineralogy, porosity, and saturation; and common methods for calculating and/or measuring these properties. A brief overview of thermal and thermally-coupled processes in the context of DGRs demonstrates the degree to which they would impact design, construction, and operation of these critical structures. Several case histories of major in situ heating experiments are reviewed to determine how the lessons learned could be applied to a Canadian Underground Demonstration Facility (UDF). A mineralogy investigation using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) examines samples of the Cobourg Limestone from the Bowmanville and Bruce sites, and demonstrates geographical variability within the Cobourg Formation. The thermal properties of samples from the Bowmanville site are determined. A divided bar apparatus was constructed and used to measure thermal conductivity. The temperature measurement component of the divided bar apparatus was used to measure linear thermal expansion. Finally, the past investigations into the thermal impact of a DGR are reviewed, and the implications of the laboratory testing results on similar analyses are discussed.

  16. Thermal Properties of Alaskan North Slope Soils.

    Science.gov (United States)

    Overduin, P. P.; Kane, D. L.

    2002-12-01

    Climatic processes important to permafrost formation, maintenance and degradation have an annual to millennial timescale. The thin active layer, vegetation and snow above the permafrost can exert considerable influence on permafrost stability and react more rapidly than permafrost to climatic shifts. The thermal properties of this layer are thus important for the interpretation of permafrost data. We seek to predict bulk properties of a porous multiphase media based on state variables, bulk material properties and spatial phase densities. In this study, our objectives are: 1) to test thermal diffusivity probes in the field for the assessment of phase density, in particular of volumetric ice content and 2) to corroborate field studies with laboratory determinations of phase density and thermal diffusivity. We measure thermal properties and phase densities of a range of soils from the Alaskan North Slope, including high organic content and fine-grained mineral soils. Liquid water content is measured using time domain reflectometry to constrain the composition of the multiphase soil. Additional measurements of the soil's state are made using thermistors, heat flux plates and radial heat dissipation probes. The latter are thin films with embedded heat pulse wire and thermopiles to measure the radial thermal gradient response to temperature change. We report changes in thermal conductivity and diffusivity during freezing and thawing, and at different moisture contents and temperatures. The results for thermal conductivity and diffusivity as a function of phase density under field conditions are compared to those measured in the lab and to those calculated using empirical models.

  17. Anisotropy Enhancement of Thermal Energy Transport in Supported Black Phosphorene.

    Science.gov (United States)

    Chen, Jige; Chen, Shunda; Gao, Yi

    2016-07-07

    Thermal anisotropy along the basal plane of materials possesses both theoretical importance and application value in thermal transport and thermoelectricity. Though common two-dimensional materials may exhibit in-plane thermal anisotropy when suspended, thermal anisotropy would often disappear when supported on a substrate. In this Letter, we find a strong anisotropy enhancement of thermal energy transport in supported black phosphorene. The chiral preference of energy transport in the zigzag rather than the armchair direction is greatly enhanced by coupling to the substrate, up to a factor of approximately 2-fold compared to the suspended one. The enhancement originates from its puckered lattice structure, where the nonplanar armchair energy transport relies on the out-of-plane corrugation and thus would be hindered by the flexural suppression due to the substrate, while the planar zigzag energy transport is not. As a result, thermal conductivity of supported black phosphorene shows a consistent anisotropy enhancement under different temperatures and substrate coupling strengths.

  18. Graphene Thermal Properties: Applications in Thermal Management and Energy Storage

    Directory of Open Access Journals (Sweden)

    Jackie D. Renteria

    2014-11-01

    Full Text Available We review the thermal properties of graphene, few-layer graphene and graphene nanoribbons, and discuss practical applications of graphene in thermal management and energy storage. The first part of the review describes the state-of-the-art in the graphene thermal field focusing on recently reported experimental and theoretical data for heat conduction in graphene and graphene nanoribbons. The effects of the sample size, shape, quality, strain distribution, isotope composition, and point-defect concentration are included in the summary. The second part of the review outlines thermal properties of graphene-enhanced phase change materials used in energy storage. It is shown that the use of liquid-phase-exfoliated graphene as filler material in phase change materials is promising for thermal management of high-power-density battery parks. The reported experimental and modeling results indicate that graphene has the potential to outperform metal nanoparticles, carbon nanotubes, and other carbon allotropes as filler in thermal management materials.

  19. Thermal properties of compacted pharmaceutical excipients.

    Science.gov (United States)

    Krok, Alexander; Vitorino, Nuno; Zhang, Jianyi; Frade, Jorge Ribeiro; Wu, Chuan-Yu

    2017-12-20

    Thermal properties of powders are critical material attributes that control temperature rise during tableting and roll compaction. In this study, various analytical methods were used to measure the thermal properties of widely used pharmaceutical excipients including microcrystalline cellulose (MCC) of three different grades (Avicel PH 101; Avicel PH 102 and Avicel DG), lactose and mannitol. The effect of relative density on the measured thermal properties was investigated by compressing the powders into specimen of different relative densities. Differential thermal analysis (DTA) was employed to explore endothermic or exothermic events in the temperature range endured during typical pharmaceutical manufacturing processes, such as tabletting and roll compaction. Thermogravimetric analysis (TGA) was performed to analyse the water/solvent content, either in the form as solvates or as loosely bound molecules on the particle surface. Thermal conductivity analysis (TCA) was conducted to measure thermal conductivity and volumetric heat capacity. It is shown that, for the MCC powders, almost no changes in morphology or structural changes were observed during heating to temperatures up to 200°C. An increase in relative density or temperature leads to a high thermal conductivity and the volumetric heat capacity. Among all MCC powders considered, Avicel DG showed the highest increase in thermal conductivity and the volumetric heat capacity, but this heat capacity was not sensitive to the measurement temperature. For lactose and mannitol, some endothermic events occurred during heating. The thermal conductivity increased with the increase in temperature and relative density. A model was also developed to describe the variation of the thermal conductivity and the volumetric heat capacity with the relative density and the temperature. It was shown that the empirical model can well predict the dependency of the thermal conductivity and the volumetric heat capacity on the

  20. Interfacial Thermal Transport via One-Dimensional Atomic Junction Model

    Directory of Open Access Journals (Sweden)

    Guohuan Xiong

    2018-03-01

    Full Text Available In modern information technology, as integration density increases rapidly and the dimension of materials reduces to nanoscale, interfacial thermal transport (ITT has attracted widespread attention of scientists. This review introduces the latest theoretical development in ITT through one-dimensional (1D atomic junction model to address the thermal transport across an interface. With full consideration of the atomic structures in interfaces, people can apply the 1D atomic junction model to investigate many properties of ITT, such as interfacial (Kapitza resistance, nonlinear interface, interfacial rectification, and phonon interference, and so on. For the ballistic ITT, both the scattering boundary method (SBM and the non-equilibrium Green’s function (NEGF method can be applied, which are exact since atomic details of actual interfaces are considered. For interfacial coupling case, explicit analytical expression of transmission coefficient can be obtained and it is found that the thermal conductance maximizes at certain interfacial coupling (harmonic mean of the spring constants of the two leads and the transmission coefficient is not a monotonic decreasing function of phonon frequency. With nonlinear interaction—phonon–phonon interaction or electron–phonon interaction at interface, the NEGF method provides an efficient way to study the ITT. It is found that at weak linear interfacial coupling, the nonlinearity can improve the ITT, but it depresses the ITT in the case of strong-linear coupling. In addition, the nonlinear interfacial coupling can induce thermal rectification effect. For interfacial materials case which can be simulated by a two-junction atomic chain, phonons show interference effect, and an optimized thermal coupler can be obtained by tuning its spring constant and atomic mass.

  1. Molecular shape and thermophysical properties of liquids. II. Thermal properties

    International Nuclear Information System (INIS)

    Adamenko, Yi.Yi.; Grigor'jev, A.M.; Kuzovkov, Yu.G.; Mironenko, O.K.

    2009-01-01

    Isobaric and isochoric heat capacities, thermal expansion coefficient and enthalpy of soft dumb-bell fluids were determined in Monte Carlo simulations in a wide range of reduced densities and pressures. Molecular nonsphericity influence on pressure dependencies of elastic thermal properties was analyzed.

  2. Thermal and physical properties of bakery products.

    Science.gov (United States)

    Baik, O D; Marcotte, M; Sablani, S S; Castaigne, F

    2001-07-01

    This article reviews the measurement techniques, prediction models, and data on thermo-physical properties of bakery products: specific heat, thermal conductivity, thermal diffusivity, and density. Over the last decade, investigation has focused more on thermo-physical properties of nonbread bakery products. Both commonly used and new measurement techniques for thermo-physical properties reported in the publication are presented with directions for their proper use. Data and prediction models are tabulated for the range of moisture content and temperature of the bakery products.

  3. Thermal properties of selected cheeses samples

    Directory of Open Access Journals (Sweden)

    Monika BOŽIKOVÁ

    2016-02-01

    Full Text Available The thermophysical parameters of selected cheeses (processed cheese and half hard cheese are presented in the article. Cheese is a generic term for a diverse group of milk-based food products. Cheese is produced throughout the world in wide-ranging flavors, textures, and forms. Cheese goes during processing through the thermal and mechanical manipulation, so thermal properties are one of the most important. Knowledge about thermal parameters of cheeses could be used in the process of quality evaluation. Based on the presented facts thermal properties of selected cheeses which are produced by Slovak producers were measured. Theoretical part of article contains description of cheese and description of plane source method which was used for thermal parameters detection. Thermophysical parameters as thermal conductivity, thermal diffusivity and volume specific heat were measured during the temperature stabilisation. The results are presented as relations of thermophysical parameters to the temperature in temperature range from 13.5°C to 24°C. Every point of graphic relation was obtained as arithmetic average from measured values for the same temperature. Obtained results were statistically processed. Presented graphical relations were chosen according to the results of statistical evaluation and also according to the coefficients of determination for every relation. The results of thermal parameters are in good agreement with values measured by other authors for similar types of cheeses.

  4. Transport properties of chiral fermions

    Energy Technology Data Exchange (ETDEWEB)

    Puhr, Matthias

    2017-04-26

    Anomalous transport phenomena have their origin in the chiral anomaly, the anomalous non-conservation of the axial charge, and can arise in systems with chiral fermions. The anomalous transport properties of free fermions are well understood, but little is known about possible corrections to the anomalous transport coefficients that can occur if the fermions are strongly interacting. The main goal of this thesis is to study anomalous transport effects in media with strongly interacting fermions. In particular, we investigate the Chiral Magnetic Effect (CME) in a Weyl Semimetal (WSM) and the Chiral Separation Effect (CSE) in finite-density Quantum Chromodynamics (QCD). The recently discovered WSMs are solid state crystals with low-energy excitations that behave like Weyl fermions. The inter-electron interaction in WSMs is typically very strong and non-perturbative calculations are needed to connect theory and experiment. To realistically model an interacting, parity-breaking WSM we use a tight-binding lattice Hamiltonian with Wilson-Dirac fermions. This model features a non-trivial phase diagram and has a phase (Aoki phase/axionic insulator phase) with spontaneously broken CP symmetry, corresponding to the phase with spontaneously broken chiral symmetry for interacting continuum Dirac fermions. We use a mean-field ansatz to study the CME in spatially modulated magnetic fields and find that it vanishes in the Aoki phase. Moreover, our calculations show that outside of the Aoki phase the electron interaction has only a minor influence on the CME. We observe no enhancement of the magnitude of the CME current. For our non-perturbative study of the CSE in QCD we use the framework of lattice QCD with overlap fermions. We work in the quenched approximation to avoid the sign problem that comes with introducing a finite chemical potential on the lattice. The overlap operator calls for the evaluation of the sign function of a matrix with a dimension proportional to the volume

  5. Thermal properties of polymers below 4 K.

    Science.gov (United States)

    Salinger, G. L.

    1972-01-01

    Obtained measurement data on the Debye contribution to the specific heat, the specific heat, and the thermal conductivity in polymers below 4 deg K are discussed. The results obtained suggest that impurities are responsible for the apparent thermal properties of polymers and glasses at low temperatures. In order to determine the intrinsic behavior of amorphous solids, measurements must be made at temperatures low enough to freeze out the local modes.

  6. Thermal entanglement properties of small spin clusters

    OpenAIRE

    Bose, Indrani; Tribedi, Amit

    2005-01-01

    Exchange interactions in spin systems can give rise to quantum entanglement in the ground and thermal states of the systems. In this paper, we consider a spin tetramer, with spins of magnitude 1/2, in which the spins interact via nearest-neighbour, diagonal and four-spin interactions of strength J1, J2 and K respectively. The ground and thermal state entanglement properties of the tetramer are calculated analytically in the various limiting cases. Signatures of quantum phase transition (QPT) ...

  7. Vibrational and Thermal Properties of Oxyanionic Crystals

    Science.gov (United States)

    Korabel'nikov, D. V.

    2018-03-01

    The vibrational and thermal properties of dolomite and alkali chlorates and perchlorates were studied in the gradient approximation of density functional theory using the method of a linear combination of atomic orbitals (LCAO). Long-wave vibration frequencies, IR and Raman spectra, and mode Gruneisen parameters were calculated. Equation-of-state parameters, thermodynamic potentials, entropy, heat capacity, and thermal expansion coefficient were also determined. The thermal expansion coefficient of dolomite was established to be much lower than for chlorates and perchlorates. The temperature dependence of the heat capacity at T > 200 K was shown to be generally governed by intramolecular vibrations.

  8. Thermal transport in oblique finned microminichannels

    CERN Document Server

    Fan, Yan; Singh, Pawan Kumar; Lee, Yong Jiun

    2015-01-01

    The main aim of this book is to introduce and give an overview of a novel, easy, and highly effective heat transfer augmentation technique for single-phase micro/minichannel heat sink. The specific objectives of the volume are to: Introduce a novel planar oblique fin microchannel and cylindrical oblique fin minichannel heat sink design using passive heat transfer enhancement techniques  Investigate the thermal transport in both planar and cylindrical oblique fin structures through numerical simulation and systematic experimental studies. Evaluate the feasibility of employing the proposed solution in cooling non-uniform heat fluxes and hotspot suppression Conduct the similarity analysis and parametric study to obtain empirical correlations to evaluate the total heat transfer rate of the oblique fin heat sink Investigate the flow mechanism and optimize the dimensions of cylindrical oblique fin heat sink Investigate the influence of edge effect on flow and temperature uniformity in these oblique fin chan...

  9. Single well thermal tracer test, a new experimental set up for characterizing thermal transport in fractured media

    Science.gov (United States)

    de La Bernardie, Jérôme; Bour, Olivier; Guihéneuf, Nicolas; Chatton, Eliot; Labasque, Thierry; Longuevergne, Laurent; Le Lay, Hugo; Koch, Floriant; Gerard, Marie-Françoise; Le Borgne, Tanguy

    2017-04-01

    Thermal transport in fractured media depends on the hydrological properties of fractures and thermal characteristics of rock. Tracer tests using heat as tracer can thus be a good alternative to characterize fractured media for shallow geothermal needs. This study investigates the possibility of implementing a new thermal tracer test set up, the single well thermal tracer test, to characterize hydraulic and thermal transport properties of fractured crystalline rock. The experimental setup is based on injecting hot water in a fracture isolated by a double straddle packer in the borehole while pumping and monitoring the temperature in a fracture crossing the same borehole at greater elevation. One difficulty comes from the fact that injection and withdrawal are achieved in the same borehole involving thermal losses along the injection tube that may disturb the heat recovery signal. To be able to well localize the heat influx, we implemented a Fiber-Optic Distributed Temperature Sensing (FO-DTS) which allows the temperature monitoring with high spatial and temporal resolution (29 centimeters and 30 seconds respectively). Several tests, at different pumping and injection rates, were performed in a crystalline rock aquifer at the experimental site of Ploemeur (H+ observatory network). We show through signal processing how the thermal breakthrough may be extracted thanks to Fiber-Optic distributed temperature measurements. In particular, we demonstrate how detailed distributed temperature measurements were useful to identify different inflows and to estimate how much heat was transported and stored within the fractures network. Thermal breakthrough curves of single well thermal tracer tests were then interpreted with a simple analytical model to characterize hydraulic and thermal characteristics of the fractured media. We finally discuss the advantages of these tests compared to cross-borehole thermal tracer tests.

  10. Thermal remediation alters soil properties - a review.

    Science.gov (United States)

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Khan, Eakalak; Wick, Abbey F

    2018-01-15

    Contaminated soils pose a risk to human and ecological health, and thermal remediation is an efficient and reliable way to reduce soil contaminant concentration in a range of situations. A primary benefit of thermal treatment is the speed at which remediation can occur, allowing the return of treated soils to a desired land use as quickly as possible. However, this treatment also alters many soil properties that affect the capacity of the soil to function. While extensive research addresses contaminant reduction, the range and magnitude of effects to soil properties have not been explored. Understanding the effects of thermal remediation on soil properties is vital to successful reclamation, as drastic effects may preclude certain post-treatment land uses. This review highlights thermal remediation studies that have quantified alterations to soil properties, and it supplements that information with laboratory heating studies to further elucidate the effects of thermal treatment of soil. Notably, both heating temperature and heating time affect i) soil organic matter; ii) soil texture and mineralogy; iii) soil pH; iv) plant available nutrients and heavy metals; v) soil biological communities; and iv) the ability of the soil to sustain vegetation. Broadly, increasing either temperature or time results in greater contaminant reduction efficiency, but it also causes more severe impacts to soil characteristics. Thus, project managers must balance the need for contaminant reduction with the deterioration of soil function for each specific remediation project. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Investigation of electronic transport properties of some liquid transition metals

    Science.gov (United States)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.

    2018-04-01

    We investigated electronic transport properties of some liquid transition metals (V, Cr, Mn, Fe, Co and Pt) using Ziman formalism. Our parameter free model potential which is realized on ionic and atomic radius has been incorporated with the Hard Sphere Yukawa (HSY) reference system to study the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q). The screening effect on aforesaid properties has been studied by using different screening functions. The correlations of our results and others data with in addition experimental values are profoundly promising to the researchers working in this field. Also, we conclude that our newly constructed parameter free model potential is capable to explain the aforesaid electronic transport properties.

  12. Study of Thermal Properties of Cast Metal- Ceramic Composite Foams

    Directory of Open Access Journals (Sweden)

    Gawdzińska K.

    2017-12-01

    Full Text Available Owing to its properties, metallic foams can be used as insulation material. Thermal properties of cast metal-ceramic composite foams have applications in transport vehicles and can act as fire resistant and acoustic insulators of bulkheads. This paper presents basic thermal properties of cast and foamed aluminum, the values of thermal conductivity coefficient of selected gases used in foaming composites and thermal capabilities of composite foams (AlSi11/SiC. A certificate of non-combustibility test of cast aluminum-ceramic foam for marine applications was included inside the paper. The composite foam was prepared by the gas injection method, consisting in direct injection of gas into liquid metal. Foams with closed and open cells were examined. The foams were foaming with foaming gas consisting of nitrogen or air. This work is one of elements of researches connected with description of properties of composite foams. In author's other works acoustic properties of these materials will be presented.

  13. Thermal properties of FOX-7

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.K.; Weese, R.K. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Wang, R.; Kwok, Q.S.M.; Jones, D.E.G. [Natural Resources Canada, CANMET Canadian Explosives Research Laboratory, Ottawa, ON (Canada)

    2005-04-01

    FOX-7 refers to 1,1-diamino-2,2-dinitroethene, a new explosive ingredient used in high-performance, insensitive munition (IM) explosives. It was developed in the late 1990s in response to the need for a more powerful, safer and environmentally sound explosive. This paper presents the results of laboratory studies which examined the thermal behaviour of FOX-7 including phase changes, kinetic analysis and the decomposition products using differential scanning calorimetry (DSC), thermogravimetry (TG), accelerating rate calorimetry (ARC), heat flow calorimetry (HFC) and simultaneous TG-DTA-FTIR-MS measurements. This paper outlined the experimental procedures and summarized the 3 solid-solid phase transitions prior to chemical decomposition. The study showed that the total energy released from the 2-stage decomposition measured by DSC decreases somewhat as the heating rate increases. However, the more pronounced effect is the large reduction in the fraction of heat released in the first peak as the heating rate increases. Test results also suggest that pressure may be a controlling factor in the decomposition process of FOX-7. The results from the isothermal experiments were found to be in good agreement with results from the nonisothermal experiments. 11 refs., 4 tabs., 11 figs.

  14. Thermal Properties of Aliphatic Polypeptoids

    KAUST Repository

    Fetsch, Corinna

    2013-01-29

    A series of polypeptoid homopolymers bearing short (C1-C5) side chains of degrees of polymerization of 10-100 are studied with respect to thermal stability, glass transition and melting points. Thermogravimetric analysis of polypeptoids suggests stability to >200 °C. The study of the glass transition temperatures by differential scanning calorimetry revealed two dependencies. On the one hand an extension of the side chain by constant degree of polymerization decrease the glass transition temperatures (Tg) and on the other hand a raise of the degree of polymerization by constant side chain length leads to an increase of the Tg to a constant value. Melting points were observed for polypeptoids with a side chain comprising not less than three methyl carbon atoms. X-ray diffraction of polysarcosine and poly(N-ethylglycine) corroborates the observed lack of melting points and thus, their amorphous nature. Diffractograms of the other investigated polypeptoids imply that crystalline domains exist in the polymer powder. © 2013 by the authors.

  15. Electronic and Thermal Properties of Graphene and Carbon Structures

    Science.gov (United States)

    Anthony, Gilmore; Khatun, Mahfuza

    2011-10-01

    We will present the general properties of carbon structures. The research involves the study of carbon structures: Graphene, Graphene nanoribbons (GNRs), and Carbon Nanotubes (CNTs). A review of electrical and thermal conduction phenomena of the structures will be discussed. Particularly carbon nanoribbons and CNTs have many interesting physical properties, and have the potential for device applications. Our research interests include the study of electronic structures, electrical and thermal transport properties of the carbon structures. Results are produced analytically as well as by simulation. The numerical simulations are conducted using various tools such as Visual Molecular Dynamics (VMD), Large Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), NanoHub at Purdue University and the Beowulf Cluster at Ball State University.

  16. Normal conditions of transport thermal analysis and testing of a Type B drum package

    International Nuclear Information System (INIS)

    Jerrell, J.W.; Alstine, M.N. van; Gromada, R.J.

    1995-01-01

    Increasing the content limits of radioactive material packagings can save money and increase transportation safety by decreasing the total number of shipments required to transport large quantities of material. The contents of drum packages can be limited by unacceptable containment vessel pressures and temperatures due to the thermal properties of the insulation. The purpose of this work is to understand and predict the effects of insulation properties on containment system performance. The type B shipping container used in the study is a double containment fiberboard drum package. The package is primarily used to transport uranium and plutonium metals and oxides. A normal condition of transport (NCT) thermal test was performed to benchmark an NCT analysis of the package. A 21 W heater was placed in an instrumented package to simulate the maximum source decay heat. The package reached thermal equilibrium 120 hours after the heater was turned on. Testing took place indoors to minimize ambient temperature fluctuations. The thermal analysis of the package used fiberboard properties reported in the literature and resulted in temperature significantly greater than those measured during the test. Details of the NCT test will be described and transient temperatures at key thermocouple locations within the package will be presented. Analytical results using nominal fiberboard properties will be presented. Explanations of the results and the attempt to benchmark the analysis will be presented. The discovery that fiberboard has an anisotropic thermal conductivity and its effect on thermal performance will also be discussed

  17. Shear flow effects on ion thermal transport in tokamaks

    International Nuclear Information System (INIS)

    Tajima, T.; Horton, W.; Dong, J.Q.; Kishimoto, Y.

    1995-03-01

    From various laboratory and numerical experiments, there is clear evidence that under certain conditions the presence of sheared flows in a tokamak plasma can significantly reduce the ion thermal transport. In the presence of plasma fluctuations driven by the ion temperature gradient, the flows of energy and momentum parallel and perpendicular to the magnetic field are coupled with each other. This coupling manifests itself as significant off-diagonal coupling coefficients that give rise to new terms for anomalous transport. The authors derive from the gyrokinetic equation a set of velocity moment equations that describe the interaction among plasma turbulent fluctuations, the temperature gradient, the toroidal velocity shear, and the poloidal flow in a tokamak plasma. Four coupled equations for the amplitudes of the state variables radially extended over the transport region by toroidicity induced coupling are derived. The equations show bifurcations from the low confinement mode without sheared flows to high confinement mode with substantially reduced transport due to strong shear flows. Also discussed is the reduced version with three state variables. In the presence of sheared flows, the radially extended coupled toroidal modes driven by the ion temperature gradient disintegrate into smaller, less elongated vortices. Such a transition to smaller spatial correlation lengths changes the transport from Bohm-like to gyrobohm-like. The properties of these equations are analyzed. The conditions for the improved confined regime are obtained as a function of the momentum-energy deposition rates and profiles. The appearance of a transport barrier is a consequence of the present theory

  18. Thermal performance and heat transport in aquifer thermal energy storage

    NARCIS (Netherlands)

    Sommer, W.T.; Doornenbal, P.J.; Drijver, B.C.; Gaans, van P.F.M.; Leusbrock, I.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as

  19. GASP: A computer code for calculating the thermodynamic and transport properties for ten fluids: Parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. [enthalpy, entropy, thermal conductivity, and specific heat

    Science.gov (United States)

    Hendricks, R. C.; Baron, A. K.; Peller, I. C.

    1975-01-01

    A FORTRAN IV subprogram called GASP is discussed which calculates the thermodynamic and transport properties for 10 pure fluids: parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. The pressure range is generally from 0.1 to 400 atmospheres (to 100 atm for helium and to 1000 atm for hydrogen). The temperature ranges are from the triple point to 300 K for neon; to 500 K for carbon monoxide, oxygen, and fluorine; to 600 K for methane and nitrogen; to 1000 K for argon and carbon dioxide; to 2000 K for hydrogen; and from 6 to 500 K for helium. GASP accepts any two of pressure, temperature and density as input conditions along with pressure, and either entropy or enthalpy. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, and surface tension. The subprogram design is modular so that the user can choose only those subroutines necessary to the calculations.

  20. Investigating hydraulic transport and disposal of coal ash at the Gacko thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, D.; Grbovic, M.; Petrovic, M.

    1986-01-01

    This paper discusses ash transport difficulties at the Gacko thermal power station. Designed dumper transport failed due to violent thermal reactions in water-sprayed ash during transport. An system was designed by the Institute for Ore Processing of Belgrade. Large-scale investigation of ash properties and slurry consolidation were conducted prior to hydraulic transport testing. A semi-industrial hydraulic transport was built and tested for ash disposal. It was found that Gacko power station ash may be safely transported by pipeline and disposed in layers 10 cm thick without danger of operation breaks due to ash caking within the pipeline. A sketch of the hydraulic transport system is presented. 4 refs.

  1. Review on thermal properties of nanofluids: Recent developments.

    Science.gov (United States)

    Angayarkanni, S A; Philip, John

    2015-11-01

    Nanofluids are dispersions of nanomaterials (e.g. nanoparticles, nanofibers, nanotubes, nanowires, nanorods, nanosheet, or droplets) in base fluids. Nanofluids have been a topic of great interest during the last one decade primarily due to the initial reports of anomalous thermal conductivity (k) enhancement in nanofluids with a small percentage of nanoparticles. This field has been quite controversial, with multiple reports of anomalous enhancement in thermal conductivity and many other reports of the thermal conductivity increase within the classical Maxwell mixing model. Several mechanisms have been proposed for explaining the observed enhancement in thermal conductivity. The role of Brownian motion, interfacial resistance, morphology of suspended nanoparticles and aggregating behavior is investigated both experimentally and theoretically. As the understanding of specific heat capacity of nanofluids is a prerequisite for their effective utilization in heat transfer applications, it is also investigated by many researchers. From the initial focus on thermophysical properties of nanofluids, the attention is now shifted to tailoring of novel nanofluids with large thermal conductivities. Further, to overcome the limitations of traditional heat transfer media, phase change materials (PCMs) and hybrid nanofluids are being developed as effective media for thermal energy storage. This review focuses the recent progress in nanofluids research from a heat transfer perspective. Emphasis is given for the latest work on thermal properties of nanofluids, phase change materials and hybrid nanofluids. The preparation of nanofluids by various techniques, methods of stabilization, stability measurement techniques, thermal conductivity and heat capacity studies, proposed mechanisms of heat transport, theoretical models on thermal conductivity, factors influencing k and the effect of nanoinclusions in PCM are discussed in this review. Sufficient background information is also

  2. Structural, thermal and spectroscopic properties of supramolecular ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 6. Structural, thermal and spectroscopic properties of supramolecular coordination solids ... trans-[M(NC5H4--CO2)2(OH2)4], participate in exhaustive hydrogen-bond formation among themselves to lead to a robust 3D supramolecular network in the solid ...

  3. Transport properties site descriptive model. Guidelines for evaluation and modelling

    International Nuclear Information System (INIS)

    Berglund, Sten; Selroos, Jan-Olof

    2004-04-01

    This report describes a strategy for the development of Transport Properties Site Descriptive Models within the SKB Site Investigation programme. Similar reports have been produced for the other disciplines in the site descriptive modelling (Geology, Hydrogeology, Hydrogeochemistry, Rock mechanics, Thermal properties, and Surface ecosystems). These reports are intended to guide the site descriptive modelling, but also to provide the authorities with an overview of modelling work that will be performed. The site descriptive modelling of transport properties is presented in this report and in the associated 'Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock', which describes laboratory measurements and data evaluations. Specifically, the objectives of the present report are to: Present a description that gives an overview of the strategy for developing Site Descriptive Models, and which sets the transport modelling into this general context. Provide a structure for developing Transport Properties Site Descriptive Models that facilitates efficient modelling and comparisons between different sites. Provide guidelines on specific modelling issues where methodological consistency is judged to be of special importance, or where there is no general consensus on the modelling approach. The objectives of the site descriptive modelling process and the resulting Transport Properties Site Descriptive Models are to: Provide transport parameters for Safety Assessment. Describe the geoscientific basis for the transport model, including the qualitative and quantitative data that are of importance for the assessment of uncertainties and confidence in the transport description, and for the understanding of the processes at the sites. Provide transport parameters for use within other discipline-specific programmes. Contribute to the integrated evaluation of the investigated sites. The site descriptive modelling of

  4. Investigation of thermal energy transport interface of hybrid graphene-carbon nanotube/polyethylene nanocomposites.

    Science.gov (United States)

    Liu, Feng; Liu, Xuyang; Hu, Ning; Ning, Huiming; Atobe, Satoshi; Yan, Cheng; Mo, Fuhao; Fu, Shaoyun; Zhang, Jianyu; Wang, Yu; Mu, Xiaojing

    2017-10-31

    It is well known the thermal properties of three-dimensional (3-D) hybrid graphene (GR)-carbon nanotube (CNT) structures are not superior to that of the individual GR and CNT, however, the 3-D hybrid GR-CNT structures can effectively improve the thermal properties of polymer matrix. Therefore, understanding the thermal energy transport in the interface between polymer matrix and 3-D hybrid GR-CNT structure is essential. Here, the enhancement mechanism of interfacial thermal transport of hybrid GR-CNT structure was explored by applying non-equilibrium molecular dynamics (NEMD) simulations. Three different types of hybrid GR-CNT structures were built. The influences of CNT radius and CNT type for the hybrid GR-CNT on the interfacial thermal properties were also analyzed. Computational results show that among the three different types of hybrid GR-CNT structures, the Model-I, i.e., the covalent bond hybrid GR-CNT structures are of the best interfacial thermal properties. Meanwhile, the CNT radius of hybrid GR-CNT structure has a great influence on the interfacial thermal properties.

  5. Thermal analysis on NAC-STC spent fuel transport cask under different transport conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yumei [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Yang, Jian, E-mail: zdhjkz@zju.edu.cn [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Xu, Chao; Wang, Weiping [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Ma, Zhijun [Department of Material Engineering, South China University of Technology, Guangzhou (China)

    2013-12-15

    Highlights: • Spent fuel cask was investigated as a whole instead of fuel assembly alone. • The cask was successfully modeled and meshed after several simplifications. • Equivalence method was used to calculate the properties of parts. • Both the integral thermal field and peak values are captured to verify safety. • The temperature variations of key parts were also plotted. - Abstract: Transport casks used for conveying spent nuclear fuel are inseparably related to the safety of the whole reprocessing system for spent nuclear fuel. Thus they must be designed according to rigorous safety standards including thermal analysis. In this paper, for NAC-STC cask, a finite element model is established based on some proper simplifications on configurations and the heat transfer mechanisms. Considering the complex components and gaps, the equivalence method is presented to define their material properties. Then an equivalent convection coefficient is introduced to define boundary conditions. Finally, the temperature field is captured and analyzed under both normal and accident transport conditions by using ANSYS software. The validity of numerical calculation is given by comparing its results with theoretical calculation. Obtaining the integral distribution laws of temperature and peak temperature values of all vital components, the security of the cask can be evaluated and verified.

  6. Thermal Properties of Zeolite-Containing Composites.

    Science.gov (United States)

    Shimonosono, Taro; Hirata, Yoshihiro; Nishikawa, Kyohei; Sameshima, Soichiro; Sodeyama, Kenichi; Masunaga, Takuro; Yoshimura, Yukio

    2018-03-13

    A zeolite (mordenite)-pore-phenol resin composite and a zeolite-pore-shirasu glass composite were fabricated by hot-pressing. Their thermal conductivities were measured by a laser flash method to determine the thermal conductivity of the monolithic zeolite with the proposed mixing rule. The analysis using composites is useful for a zeolite powder with no sinterability to clarify its thermal properties. At a low porosity thermal conductivity of the composite was in excellent agreement with the calculated value for the structure with phenol resin or shirasu glass continuous phase. At a higher porosity above 40%, the measured value approached the calculated value for the structure with pore continuous phase. The thermal conductivity of the monolithic mordenite was evaluated to be 3.63 W/mK and 1.70-2.07 W/mK at room temperature for the zeolite-pore-phenol resin composite and the zeolite-pore-shirasu glass composite, respectively. The analyzed thermal conductivities of monolithic mordenite showed a minimum value of 1.23 W/mK at 400 °C and increased to 2.51 W/mK at 800 °C.

  7. Thermal Transport in Fullerene Derivatives Using Molecular Dynamics Simulations

    OpenAIRE

    Chen, Liang; Wang, Xiaojia; Kumar, Satish

    2015-01-01

    In order to study the effects of alkyl chain on the thermal properties of fullerene derivatives, we perform molecular dynamics (MD) simulations to predict the thermal conductivity of fullerene (C60) and its derivative phenyl-C61-butyric acid methyl ester (PCBM). The results of non-equilibrium MD simulations show a length-dependent thermal conductivity for C60 but not for PCBM. The thermal conductivity of C60, obtained from the linear extrapolation of inverse conductivity vs. inverse length cu...

  8. Thermal Transport and Magnetotransport Properties of CuCr1-xMgxO2 with a Spin-3/2 Antiferromagnetic Triangular Lattice

    Science.gov (United States)

    Okuda, Tetsuji; Oozono, Satoshi; Kihara, Takumi; Tokunaga, Masashi

    2013-01-01

    We have investigated the thermal conductivity (κ) and magnetoresistance (MR) of non-doped and hole-doped delafossite CuCrO2 with a spin-3/2 antiferromagnetic (AF) triangular sublattice. The phonon mean free path above the Néel temperature (TN) deduced from κ and lattice specific heat is almost identical to the magnetic correlation length, which indicates that, for both compounds, spin fluctuation enhanced in a geometrically frustrated lattice is strongly coupled with acoustic phonon above TN. κ below TN is significantly suppressed by Mg substitution, suggesting the introduction of some disorder into the 120° Néel state. For the hole-doped CuCr0.97Mg0.03O2, a negative MR is observed above TN, which is enhanced with a decrease in T toward TN, while a component of positive MR appears below TN and the residual negative MR component is observed in a high magnetic field, indicating that spin fluctuation coupled with electrical conductivity is critically enhanced above TN and remains below TN. These results evidence that the 120° Néel state is partially disordered by a doped itinerant hole coupled with spin fluctuation, although AF transition is certainly promoted. The dynamic partial disorder may stabilize the Néel order through an order-by-disorder mechanism.

  9. Thermal and Thermoelectric Properties of Nanostructured Materials and Interfaces

    Science.gov (United States)

    Liao, Hao-Hsiang

    Many modern technologies are enabled by the use of thin films and/or nanostructured composite materials. For example, many thermoelectric devices, solar cells, power electronics, thermal barrier coatings, and hard disk drives contain nanostructured materials where the thermal conductivity of the material is a critical parameter for the device performance. At the nanoscale, the mean free path and wavelength of heat carriers may become comparable to or smaller than the size of a nanostructured material and/or device. For nanostructured materials made from semiconductors and insulators, the additional phonon scattering mechanisms associated with the high density of interfaces and boundaries introduces additional resistances that can significantly change the thermal conductivity of the material as compared to a macroscale counterpart. Thus, better understanding and control of nanoscale heat conduction in solids is important scientifically and for the engineering applications mentioned above. In this dissertation, I discuss my work in two areas dealing with nanoscale thermal transport: (1) I describe my development and advancement of important thermal characterization tools for measurements of thermal and thermoelectric properties of a variety of materials from thin films to nanostructured bulk systems, and (2) I discuss my measurements on several materials systems done with these characterization tools. First, I describe the development, assembly, and modification of a time-domain thermoreflectance (TDTR) system that we use to measure the thermal conductivity and the interface thermal conductance of a variety of samples including nanocrystalline alloys of Ni-Fe and Co-P, bulk metallic glasses, and other thin films. Next, a unique thermoelectric measurement system was designed and assembled for measurements of electrical resistivity and thermopower of thermoelectric materials in the temperature range of 20 to 350 °C. Finally, a commercial Anter Flashline 3000 thermal

  10. Equilibrium Limit of Boundary Scattering in Carbon Nanostructures: Molecular Dynamics Calculations of Thermal Transport

    Science.gov (United States)

    Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir

    2012-01-01

    It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.

  11. Thermal analysis of transportation packaging for nuclear spent fuel

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi; Taniuchi, Hiroaki

    1989-01-01

    Safety analysis of transportation packaging for nuclear spent fuel comprises structural, thermal, containment, shielding and criticality factors, and the safety of a packaging is verified by these analyses. In thermal analysis, the temperature of each part of the packaging is calculated under normal and accident test conditions. As an example of thermal analysis, the temperature distribution of a packaging being subjected to a normal test was calculated by the TRUMP code and compared with measured data. (author)

  12. Modifying Thermal Transport in Colloidal Nanocrystal Solids with Surface Chemistry.

    Science.gov (United States)

    Liu, Minglu; Ma, Yuanyu; Wang, Robert Y

    2015-12-22

    We present a systematic study on the effect of surface chemistry on thermal transport in colloidal nanocrystal (NC) solids. Using PbS NCs as a model system, we vary ligand binding group (thiol, amine, and atomic halides), ligand length (ethanedithiol, butanedithiol, hexanedithiol, and octanedithiol), and NC diameter (3.3-8.2 nm). Our experiments reveal several findings: (i) The ligand choice can vary the NC solid thermal conductivity by up to a factor of 2.5. (ii) The ligand binding strength to the NC core does not significantly impact thermal conductivity. (iii) Reducing the ligand length can decrease the interparticle distance, which increases thermal conductivity. (iv) Increasing the NC diameter increases thermal conductivity. (v) The effect of surface chemistry can exceed the effect of NC diameter and becomes more pronounced as NC diameter decreases. By combining these trends, we demonstrate that the thermal conductivity of NC solids can be varied by an overall factor of 4, from ∼0.1-0.4 W/m-K. We complement these findings with effective medium approximation modeling and identify thermal transport in the ligand matrix as the rate-limiter for thermal transport. By combining these modeling results with our experimental observations, we conclude that future efforts to increase thermal conductivity in NC solids should focus on the ligand-ligand interface between neighboring NCs.

  13. The Thermal Properties of CM Carbonaceous Chondrites

    Science.gov (United States)

    Britt, D. T.; Opeil, C.

    2017-12-01

    The physical properties of asteroid exploration targets are fundamental parameters for developing models, planning observations, mission operations, reducing operational risk, and interpreting mission results. Until we have returned samples, meteorites represent our "ground truth" for the geological material we expect to interact with, sample, and interpret on the surfaces of asteroids. The physical properties of the volatile-rich carbonaceous chondrites (CI, C2, CM, and CR groups) are of particular interest because of their high resource potential. We have measured the thermal conductivity, heat capacity and thermal expansion of five CM carbonaceous chondrites (Murchison, Murray, Cold Bokkeveld, NWA 7309, Jbilet Winselwan) at low temperatures (5-300 K) to mimic the conditions in the asteroid belt. The mineralogy of these meteorites are dominated by abundant hydrous phyllosilicates, but also contain anhydrous minerals such as olivine and pyroxene found in chondrules. The thermal expansion measurements for all these CMs indicate a substantial increase in meteorite volume as temperature decreases from 230 - 210 K followed by linear contraction below 210 K. Such transitions were unexpected and are not typical for anhydrous carbonaceous chondrites or ordinary chondrites. Our thermal diffusivity results compare well with previous estimates for similar meteorites, where conductivity was derived from diffusivity measurements and modeled heat capacities; our new values are of a higher precision and cover a wider range of temperatures.

  14. Adsorption properties of thermally sputtered calcein film

    Science.gov (United States)

    Kruglenko, I.; Burlachenko, J.; Kravchenko, S.; Savchenko, A.; Slabkovska, M.; Shirshov, Yu.

    2014-05-01

    High humidity environments are often found in such areas as biotechnology, food chemistry, plant physiology etc. The controlling of parameters of such ambiences is vitally important. Thermally deposited calcein films have extremely high adsorptivity at exposure to water vapor of high concentration. This feature makes calcein a promising material for humidity sensing applications. The aim of this work is to explain high sensitivity and selectivity of calcein film to high humidity. Quartz crystal microbalance sensor, AFM and ellipsometry were used for calcein film characterization and adsorption properties investigation. The proposed model takes into account both the molecular properties of calcein (the presence of several functional groups capable of forming hydrogen bonds, and their arrangement) and the features of structure of thermally deposited calcein film (film restructuring due to the switching of bonds "calcein-calcein" to "calcein-water" in the course of water adsorption).

  15. Thermal radiation properties of PTFE plasma

    Science.gov (United States)

    Liu, Xiangyang; Wang, Siyu; Zhou, Yang; Wu, Zhiwen; Xie, Kan; Wang, Ningfei

    2017-06-01

    To illuminate the thermal transfer mechanism of devices adopting polytetrafluoroethylene (PTFE) as ablation materials, the thermal radiation properties of PTFE plasma are calculated and discussed based on local thermodynamic equilibrium (LTE) and optical thin assumptions. It is clarified that line radiation is the dominant mechanism of PTFE plasma. The emission coefficient shows an opposite trend for both wavelength regions divided by 550 nm at a temperature above 15 000 K. The emission coefficient increases with increasing temperature and pressure. Furthermore, it has a good log linear relation with pressure. Equivalent emissivity varies complexly with temperature, and has a critical point between 20 000 K to 25 000 K. The equivalent cross points of the average ionic valence and radiation property are about 10 000 K and 15 000 K for fully single ionization.

  16. Impact of vacancy ordering on thermal transport in crystalline phase-change materials

    International Nuclear Information System (INIS)

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Wuttig, M; Siegrist, T

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge–Sb–Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb 2 Te 3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more ‘crystal-like’ thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials. (key issues review)

  17. Impact of vacancy ordering on thermal transport in crystalline phase-change materials.

    Science.gov (United States)

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Siegrist, T; Wuttig, M

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more 'crystal-like' thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials.

  18. Thermal detection of trapped charge carriers in organic transport materials

    Science.gov (United States)

    von Malm, Norwin; Steiger, Juergen; Finnberg, Torsten; Schmechel, Roland; von Seggern, Heinz

    2003-03-01

    The effect of trap states on the transport and luminescence properties of organic light emitting diodes (OLEDs) is studied. For trap level detection energy resolved thermally stimulated current (TSC) measurements known as fractional glow are utilized to determine the density of occupied states (DOOS) in various organic semiconductors such as the small molecule systems Alq3 [aluminum tris(8-hydroxyquinoline)], 1-NaphDATA {4,4',4"-tris-[N-(1-naphtyl)-N-phenylamino]-triphenylamine} and α-NPD [N,N'-di-(1-naphthyl)-N,N'-diphenylbenzidine] and the polymeric semiconductor MDMO-PPV {poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene]}. Characteristic differences in the trap spectra are obtained and interpreted in terms of possible structural and compositional origins of the investigated materials. In order to judge the formation process of traps and their practical consequences on the charge carrier transport I-V and L-V characteristics of 1-NaphDATA doped α-NPD devices and α-NPD doped 1-NaphDATA devices were compared to respective non-doped samples. A clearly reduced current and luminescence was found only in the former case. It was possible to conclude that the detected electronic trap states either act as hole traps or as scattering centers. Furthermore, pulsed transport studies on ITO/α-NPD/Alq3/Al devices show thte critical influence of traps on the dynamical performance of the charge transport. In a two-pulse experiment the carrier injection and trap depletion can be separated.

  19. A comparative study of proton transport properties of zirconium (IV ...

    Indian Academy of Sciences (India)

    Keywords. Proton conductors; proton transport properties; solid electrolytes; ionic conductors; proton conduction in zirconium (IV) phosphonates; proton transport properties in Zr(IV) amino phosphonates.

  20. Characterizing Thermal Properties of Melting Te Semiconductor: Thermal Diffusivity Measurements and Simulation

    Science.gov (United States)

    Zhu, Shen; Su, Ching-Hua; Li, C.; Lin, B.; Ben, H.; Scripa, R. N.; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Tellurium is an element for many II-VI and I-III-VI(sub 2) compounds that are useful materials for fabricating many devises. In the melt growth techniques, the thermal properties of the molten phase are important parameter for controlling growth process to improve semiconducting crystal quality. In this study, thermal diffusivity of molten tellurium has been measured by a laser flash method in the temperature range from 500 C to 900 C. A pulsed laser with 1064 nm wavelength is focused on one side of the measured sample. The thermal diffusivity can be estimated from the temperature transient at the other side of the sample. A numerical simulation based on the thermal transport process has been also performed. By numerically fitting the experimental results, both the thermal conductivity and heat capacity can be derived. A relaxation phenomenon, which shows a slow drift of the measured thermal conductivity toward the equilibrium value after cooling of the sample, was observed for the first time. The error analysis and the comparison of the results to published data measured by other techniques will be discussed in the presentation.

  1. Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations

    Science.gov (United States)

    Qiu, L.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Yang, S. Y.; Hu, A. J.; Wang, L. L.; Li, S. S.

    2015-11-01

    Thermal transport in high-strength polymethacrylimide (PMI) foam insulations is described, with special emphasis on the density and temperature effects on the thermal transport performance. Measurements of the effective thermal conductivity are performed by a freestanding sensor-based 3ω method. A linear relationship between the density and the effective thermal conductivity is observed. Based on the analysis of the foam insulation morphological structures and the corresponding geometrical cell model, the quantitative contribution of the solid conductivity and the gas conductivity as well as the radiative conductivity to the total effective thermal conductivity as a function of the density and temperature is calculated. The agreement between the curves of the results from the developed model and experimental data indicate the model can be used for PMI foam insulating performance optimization.

  2. Determining the Thermal Properties of Space Lubricants

    Science.gov (United States)

    Maldonado, Christina M.

    2004-01-01

    Many mechanisms used in spacecrafts, such as satellites or the space shuttle, employ ball bearings or gears that need to be lubricated. Normally this is not a problem, but in outer space the regular lubricants that are used on Earth will not function properly. Regular lubricants will quickly vaporize in the near vacuum of space. A unique liquid called a perfluoropolyalkylether (PFPE) has an extremely low vapor pressure, around l0(exp -10) torr at 20 C, and has been used in numerous satellites and is currently used in the space shuttle. Many people refer to the PFPEs as "liquid Teflon". PFPE lubricants however, have a number of problems with them. Lubricants need many soluble additives, especially boundary and anti-wear additives, in them to function properly. All the regular known boundary additives are insoluble in PFPEs and so PFPEs lubricate poorly under highly loaded conditions leading to many malfunctioning ball bearings and gears. JAXA, the Japanese Space Agency, is designing and building a centrifuge rotor to be installed in the International Space Station. The centrifuge rotor is part of a biology lab module. They have selected a PFPE lubricant to lubricate the rotor s ball bearings and NASA bearing experts feel this is not a wise choice. An assessment of the centrifuge rotor design is being conducted by NASA and part of the assessment entails knowing the physical and thermal properties of the PFPE lubricant. One important property, the thermal diffusivity, is not known. An experimental apparatus was set up in order to measure the thermal diffusivity of the PFPE. The apparatus consists of a constant temperature heat source, cylindrical Pyrex glassware, a thermal couple and digital thermometer. The apparatus was tested and calibrated using water since the thermal diffusivity of water is known.

  3. Transport Properties of Earth's Core

    Science.gov (United States)

    Cohen, R. E.; Zhang, P.; Xu, J.

    2016-12-01

    One of the most important parameters governing the original heat that drives all processes in the Earth is the thermal conductivity of Earth's core. Heat is transferred through the core by convection and conduction, and the convective component provides energy to drive the geodynamo. Sha and Cohen (2011) found that the electrical conductivity of solid hcp-iron was much higher than had been assumed by geophysicists, based on electronic structure computations for electron-phonon scattering (e-p) within density functional theory [1]. Thermal conductivity is related to electrical conductivity through the empirical Wiedmann-Franz law of 1853 [2]. Pozzo et al. [3] found that the high electrical conductivity of liquid iron alloys was too high for conventional dynamo models to work—there simply is not enough energy, so O'Rourke and Stevenson proposed a model driven by participation of Mg from the core [4], supported by recent experients [5]. Recent measurements by Ohta et al. show even lower resistivities than predicted by DFT e-p, and invoked a saturation model to account for this, [6] whereas, Konopkova et al. found thermal conductivities consistent with earlier geophysical estimates. [7] We are using first-principles methods, including dynamical mean field theory for electron-electron scattering, and highly converged e-p computations, and find evidence for strong anisotropy in solid hcp-Fe that may help explain some experimental results. The current status of the field will be discussed along with our recent results. This work is supported by the ERC Advanced grant ToMCaT, the NSF, and the Carnegie Institution for Science.[1] X. Sha and R. E. Cohen, J.Phys.: Condens.Matter 23, 075401 (2011).[2] R. Franz and G. Wiedemann, Annalen Physik 165, 497 (1853).[3] M. Pozzo, C. Davies, D. Gubbins, and D. Alfe, Nature 485, 355 (2012).[4] J. G. O'Rourke and D. J. Stevenson, Nature 529, 387 (2016).[5] J. Badro, J. Siebert, and F. Nimmo, Nature (2016).[6] K. Ohta, Y. Kuwayama, K

  4. Hysteric behaviour of thermal properties on porous media

    International Nuclear Information System (INIS)

    Rubio, C. M.; Josa, R.; Cobos, D.; Campbell, C.; Ferrer, F.

    2009-01-01

    In order to partly fill the thermal soil properties studies, we focused this work in the relation between thermal and hydrodynamic soil properties for several soil textural classes. This study was divided in two different objective; (i) to determine and to analyze soil thermal and hydrodynamic properties, and (ii) to explore the impacts of hysteresis on soil thermal properties under experimental controlled conditions. Samples were obtained from Llobregat delta plain (Spain). To measure soil thermal properties, simple needle sensors were used. The samples were repacked in a soil column device. Volumetric water content and thermal conductivity were monitored continuously. The results allowed a rather complete understanding of the relation between thermal and hydrodynamic properties at laboratory scale for silt loam soils. Differences in thermal properties at a given water content were interpreted as a results of different hysteretic paths observed, arising in turn from different wetting and drying processes. (Author) 14 refs.

  5. Pulse thermal energy transport/storage system

    Science.gov (United States)

    Weislogel, Mark M.

    1992-07-07

    A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.

  6. Thermal power sludge – properties, treatment, utilization

    Directory of Open Access Journals (Sweden)

    Martin Sisol

    2005-11-01

    Full Text Available In this paper a knowledge about properties of thermal power sludge from coal combustion in smelting boilers is presented. The physical and technological properties of slag – granularity, density, specific, volume and pouring weight, hardness and decoupling – together with chemical properties influence its exploitation. The possibility of concentrating the Fe component by the mineral processing technologies (wet low-intenzity magnetic separation is verified. An industrial use of the slag in civil engineering, e.g. road construction, was realised. The slag-fly ashes are directly utilized in the cement production as a substitute of a part of natural raw materials. For the use of slag as the stoneware in the road construction, all the criteria are fulfilled.

  7. Biodegradable compounds: Rheological, mechanical and thermal properties

    Science.gov (United States)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  8. A non-destructive method to measure the thermal properties of frozen soils during phase transition

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2015-04-01

    Full Text Available Frozen soils cover about 40% of the land surface on the earth and are responsible for the global energy balances affecting the climate. Measurement of the thermal properties of frozen soils during phase transition is important for analyzing the thermal transport process. Due to the involvement of phase transition, the thermal properties of frozen soils are rather complex. This paper introduces the uses of a multifunctional instrument that integrates time domain reflectometry (TDR sensor and thermal pulse technology (TPT to measure the thermal properties of soil during phase transition. With this method, the extent of phase transition (freezing/thawing was measured with the TDR module; and the corresponding thermal properties were measured with the TPT module. Therefore, the variation of thermal properties with the extent of freezing/thawing can be obtained. Wet soils were used to demonstrate the performance of this measurement method. The performance of individual modules was first validated with designed experiments. The new sensor was then used to monitor the properties of soils during freezing–thawing process, from which the freezing/thawing degree and thermal properties were simultaneously measured. The results are consistent with documented trends of thermal properties variations.

  9. Transport properties of doped BICUVOX ceramics

    Directory of Open Access Journals (Sweden)

    Yaremchenko, A. A.

    1999-12-01

    Full Text Available Polycrystalline Bi2-xLaxV0.90Cu0.10O5.5-δ (x = 0, 0.10 and 0.20 and Bi1.90Pr0.10V0.90Cu0.10O5.5-δ were prepared by the standard ceramic- synthesis technique. The total electrical conductivity of Bi1.90La0.10V0.90Cu0.10O5.5-δ at temperatures above 500 K is slightly lower than undoped BICUVOX.10, but transport properties in the temperature range 370 - 450 K are similar. Doping BICUVOX. 10 with praseodymium led to the formation of impurity phases, and to both lower conductivity and thermal expansion of ceramic samples. Oxygen-ion transference numbers of phases with moderate rare-earth dopant content (x ≤ 0.10 vary in the range 0.90 - 0.99 at 780 - 910 K and decrease with increasing temperature. Thermal expansion coefficients calculated from the dilatometric data for Bi2-xLnxV0.90Cu0.10O5.5-δ ceramics are (16.1 - 18.0 x 10-6 K-1 at 730 - 1050 K.

    Bi2-xLaxV0.90Cu0.10O5.5-δ (x = 0, 0.10 and 0.20 y Bi1.90Pr0.10V0.90Cu0.10O5.5-δ policristalinos fueron preparados por síntesis cerámica convencional. La conductividad eléctrica total de Bi2-xLaxV0.90Cu0.10O5.5-δ a temperaturas superiores a 500K es ligeramente menor que la correspondiente a BICUVOX.10 no dopada, pero las propiedades de transporte en el rango de temperaturas 370- 450K son similares. Dopando BICUVOX.10 con praseodimio produce la formación de fases secundarias y la reducción de la conductividad y la expansión térmica de las muestras cerámicas. El número de transporte del ión sin oxígeno de fases con un contenido en tierra rara moderado como dopante (x ≤ 0.10 varía en el rango 0.90-0.99 a 780-910k y disminuye con el aumento de la temperatura. Los coeficientes de expansión térmicos calculados a partir de los datos dilatométricos para cerámicas Bi2-xLnxV0.90Cu0.10O5.5-δ son (16.1 - 18.0 x 10-6 K-1 a 730 - 1050 K.

  10. Transport Properties of Nanostructured Graphene

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka

    2017-01-01

    Despite of its many wonderful properties, pristine graphene has one major drawback: it does not have a band gap, which complicates its applications in electronic devices. Many routes have been suggested to overcome this difficulty, such as cutting graphene into nanoribbons, using chemical methods...... device operation. In this talk I elaborate these ideas and review the state-of-the-art both from the theoretical and the experimental points of view. I also introduce two new ideas: (1) triangular antidots, and (2) nanobubbles formed in graphene. Both of these nanostructuring methods are predicted...

  11. Thermal transport characteristics of human skin measured in vivo using ultrathin conformal arrays of thermal sensors and actuators.

    Directory of Open Access Journals (Sweden)

    R Chad Webb

    Full Text Available Measurements of the thermal transport properties of the skin can reveal changes in physical and chemical states of relevance to dermatological health, skin structure and activity, thermoregulation and other aspects of human physiology. Existing methods for in vivo evaluations demand complex systems for laser heating and infrared thermography, or they require rigid, invasive probes; neither can apply to arbitrary regions of the body, offers modes for rapid spatial mapping, or enables continuous monitoring outside of laboratory settings. Here we describe human clinical studies using mechanically soft arrays of thermal actuators and sensors that laminate onto the skin to provide rapid, quantitative in vivo determination of both the thermal conductivity and thermal diffusivity, in a completely non-invasive manner. Comprehensive analysis of measurements on six different body locations of each of twenty-five human subjects reveal systematic variations and directional anisotropies in the characteristics, with correlations to the thicknesses of the epidermis (EP and stratum corneum (SC determined by optical coherence tomography, and to the water content assessed by electrical impedance based measurements. Multivariate statistical analysis establishes four distinct locations across the body that exhibit different physical properties: heel, cheek, palm, and wrist/volar forearm/dorsal forearm. The data also demonstrate that thermal transport correlates negatively with SC and EP thickness and positively with water content, with a strength of correlation that varies from region to region, e.g., stronger in the palmar than in the follicular regions.

  12. Molecular Dynamics study of transport properties (self-diffusion, shear viscosity, thermal conductivity) in CMAS liquids at elevated temperature and pressure: Relations between coordination statistics, activation energy and activation volume. (Invited)

    Science.gov (United States)

    Spera, F. J.; Martin, B.; Creamer, J. B.; Nevins, D.; Cutler, I.; Ghiorso, M. S.; Tikunoff, D.

    2010-12-01

    with and can be modeled from average first nearest neighbor mean coordination numbers especially for Si and Al around oxygen, oxygen around oxygen, and Ca and Mg around oxygen. Generalized versions of the Stokes-Einstein and Eyring relationships connecting self-diffusivity of oxygen to liquid shear viscosity, T and a characteristic length scale based on coordination statistics can be constructed from MD generated transport properties to capture laboratory data reasonably well in many instances.

  13. Thermal Transport in Single-Walled Carbon Nanotubes Under Pure Bending

    Science.gov (United States)

    Ma, Jihong; Ni, Yuxiang; Volz, Sebastian; Dumitricǎ, Traian

    2015-02-01

    The carbon nanotubes' resilience to mechanical deformation is a potentially important feature for imparting tunable properties at the nanoscale. Using nonequilibrium molecular dynamics and empirical interatomic potentials, we examine the thermal conductivity variations with bending in the thermal transport regime where both ballistic and diffusive effects coexist. These simulations are enabled by the realistic atomic-scale descriptions of uniformly curved and buckled nanotube morphologies obtained by imposing objective boundary conditions. We uncover a contrasting behavior. At shorter lengths, the phonon propagation is affected significantly by the occurrence of localized structural buckling. As the nanotube length becomes comparable with the phonon mean free path, heat transport becomes insensitive to the buckling deformations. Our result settles the controversy around the differences between the current experimental and molecular-dynamics measurements of the thermal transport in bent nanotubes.

  14. Thermal transport in boron nitride nanotorus—towards a nanoscopic thermal shield

    International Nuclear Information System (INIS)

    Loh, G. C.; Baillargeat, D.

    2013-01-01

    Nanotori, or nanorings, are topological variants of nanotubes and are conceived to have different properties from their tubular form. In this study, the toroidal arrangement of boron nitride is introduced. Using classical molecular dynamics simulations, the thermal behaviour (thermal conductivity and thermal stability) of the boron nitride nanotorus and its relationship with the structural characteristics are investigated. Its circumferential thermal rectification strength displays a linear dependence on the bending coefficient of the nanostructure. Surface kinks are relatively inconsequential on its circumferential mode of conduction, as compared to its axial sense. The circumferential conductivity in the diffusive regime is calculated to be approximately 10 W/m K, while the axial conductivity is more than tenfold of this value. All nanotori with different toroidal characters show excellent thermal stability at extremely high temperatures approaching 3400 K. With consideration to its favourable properties, a thermal shield made up of a parallel row of nanotori is proposed as a nanoscale thermal insulation device

  15. Prediction of Thermal and Elastic Properties of Honeycomb Sandwich Plate for Analysis of Thermal Deformation

    International Nuclear Information System (INIS)

    Hong, Seok Min; Lee, Jang Il; Byun, Jae Ki; Choi, Young Don

    2014-01-01

    Thermal problems that are directly related to the lifetime of an electronic device are becoming increasingly important owing to the miniaturization of electronic devices. To solve thermal problems, it is essential to study thermal stability through thermal diffusion and insulation. A honeycomb sandwich plate has anisotropic thermal conductivity. To analyze the thermal deformation and temperature distribution of a system that employs a honeycomb sandwich plate, the thermal and elastic properties need to be determined. In this study, the thermal and elastic properties of a honeycomb sandwich plate, such as thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and shear modulus, are predicted. The properties of a honeycomb sandwich plate vary according to the hexagon size, thickness, and material properties

  16. Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Pamela M.; Smoyer, Justin L.; Duda, John Charles.; Hopkins, Patrick E.

    2010-06-01

    Due to the high intrinsic thermal conductivity of carbon allotropes, there have been many attempts to incorporate such structures into existing thermal abatement technologies. In particular, carbon nanotubes (CNTs) and graphitic materials (i.e., graphite and graphene flakes or stacks) have garnered much interest due to the combination of both their thermal and mechanical properties. However, the introduction of these carbon-based nanostructures into thermal abatement technologies greatly increases the number of interfaces per unit length within the resulting composite systems. Consequently, thermal transport in these systems is governed as much by the interfaces between the constituent materials as it is by the materials themselves. This paper reports the behavior of phononic thermal transport across interfaces between isotropic thin films and graphite substrates. Elastic and inelastic diffusive transport models are formulated to aid in the prediction of conductance at a metal-graphite interface. The temperature dependence of the thermal conductance at Au-graphite interfaces is measured via transient thermoreflectance from 78 to 400 K. It is found that different substrate surface preparations prior to thin film deposition have a significant effect on the conductance of the interface between film and substrate.

  17. Computing Thermodynamic And Transport Properties Of Air

    Science.gov (United States)

    Thompson, Richard A.; Gupta, Roop N.; Lee, Kam-Pui

    1994-01-01

    EQAIRS computer program is set of FORTRAN 77 routines for computing thermodynamic and transport properties of equilibrium air for temperatures from 100 to 30,000 K. Computes properties from 11-species, curve-fit mathematical model. Successfully implemented on DEC VAX-series computer running VMS, Sun4-series computer running SunOS, and IBM PC-compatible computer running MS-DOS.

  18. Thermal property testing technique on micro specimen

    International Nuclear Information System (INIS)

    Baba, Tetsuya; Kishimoto, Isao; Taketoshi, Naoyuki

    2000-01-01

    This study aims at establishment of further development on some testing techniques on the nuclear advanced basic research accumulated by the National Research Laboratory of Metrology for ten years. For this purpose, a technology to test heat diffusion ratio and specific heat capacity of less than 3 mm in diameter and 1 mm in thickness of micro specimen and technology to test heat diffusion ratio at micro area of less than 1 mm in area along cross section of less than 10 mm in diameter of column specimen were developed to contribute to common basic technology supporting the nuclear power field. As a result, as an element technology to test heat diffusion ratio and specific heat capacity of the micro specimen, a specimen holding technique stably to hold a micro specimen with 3 mm in diameter could be developed. And, for testing the specific heat capacity by using the laser flush differential calorimetry, a technique to hold two specimen of 5 mm in diameter at their proximities was also developed. In addition, by promoting development of thermal property data base capable of storing thermal property data obtained in this study and with excellent workability in this 1998 fiscal year a data in/out-put program with graphical user interface could be prepared. (G.K.)

  19. Some Physco-thermal properties of Rice Bran | Obetta | Global ...

    African Journals Online (AJOL)

    Some of these properties were combined for study on their effect on thermal conductivity which was one of the thermal properties studied. Mean values of the thermal conductivity determined ranged from 0.2456 to 0.5764 W/m oC depending on the moisture content of the raw rice bran and the variety. The two major varieties ...

  20. Boron nitride elastic and thermal properties. Irradiation effects

    International Nuclear Information System (INIS)

    Jager, Bernard.

    1977-01-01

    The anisotropy of boron nitride (BN) and especially thermal and elastic properties were studied. Specific heat and thermal conductivity between 1.2 and 300K, thermal conductivity between 4 and 350K and elastic constants C 33 and C 44 were measured. BN was irradiated with electrons at 77K and with neutrons at 27K to determine properties after irradiation [fr

  1. Thermal properties of hemp fibre non-woven materials

    Science.gov (United States)

    Freivalde, Liga; Kukle, Silvija; Russell, Stephen

    2013-12-01

    This review considers the thermal properties analysis of hemp fiber non-woven materials made by three different manufacturing technologies - thermal bonding, needle-punching and hydro-entanglement. For non-wovens development two hemp fibers cultivars grown in Latvia were used - Purini and Bialobrzeskie. Thermal resistance, conductivity and the effects of several parameters on thermal performance are revised.

  2. Thermal properties of hemp fibre non-woven materials

    International Nuclear Information System (INIS)

    Freivalde, Liga; Kukle, Silvija; Russell, Stephen

    2013-01-01

    This review considers the thermal properties analysis of hemp fiber non-woven materials made by three different manufacturing technologies – thermal bonding, needle-punching and hydro-entanglement. For non-wovens development two hemp fibers cultivars grown in Latvia were used – Purini and Bialobrzeskie. Thermal resistance, conductivity and the effects of several parameters on thermal performance are revised

  3. Investigation Of Thermal Properties Of Naturally Seasoned Dry ...

    African Journals Online (AJOL)

    Steady-state thermal conductivity measurements of naturally seasoned African thorn tree (Macaranga barteri) timer boards were carried out. Other thermal and physical properties such as specific heat capacity, thermal resistivity, density, thermal absorptivity and diffusivity as well as percentage of dead air space (v/v) were ...

  4. Thermal tests of a transport / Storage cask in buried conditions

    International Nuclear Information System (INIS)

    Yamakawa, H.; Gomi, Y.; Saegusa, T.; Ito, C.

    1998-01-01

    Thermal tests for a hypothetical accident which simulated accidents caused by building collapse in case of an earthquake were conducted using a full-scale dry type transport and storage cask (total heat load: 23 kW). The objectives of these tests were to clarify the heat transfer features of the buried cask under such accidents and the time limit for maintaining the thermal integrity of the cask. Moreover, thermal analyses of the test cask under the buried conditions were carried out on basis of experimental results to establish methodology for the thermal analysis. The characteristics of the test cask are described as well as the test method used. The heat transfer features of the buried cask under such accidents and a time for maintaining the thermal integrity of the cask have been obtained. (O.M.)

  5. Thermodynamic and transport properties of fluids

    Science.gov (United States)

    Fessler, T. E.

    1980-01-01

    Computer program subroutine FLUID calculates thermodynamic and transport properties of pure fluids in liquid, gas, or two-phase (liquid/gas) conditions. Program determines thermodynamic state from assigned values for temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy.

  6. Radiative Transport Modelling of Thermal Barrier Coatings

    Science.gov (United States)

    2017-03-24

    derived by Thrane et al from Fresnel-Huygens diffraction theory .5 The Thrane model defines the normalized signal current as a function of integrated...problem is in part application-driven, namely based on the need to be able to extract the radiative properties from the shape the LCI signal . On the...walk model to test model approaches 75 June 2017 4 Apply the theory to experimental data on TBCs 20 June 2017 5 Report on results and future

  7. Temperature and press load stimulation on thermal transport in fibrous and porous composite insulators

    International Nuclear Information System (INIS)

    Rehman, M.A.; Maqsood, A.

    2006-01-01

    Thermal transport properties of synthetic pliable insulators are measured as a function of applied pressure at constant temperatures. Advantageous Transient Plane Source (ATPS) method is used for the simultaneous measurement of thermal conductivity and thermal diffusivity of these materials and heat capacity per unit volume is then calculated. Three samples namely foam, closed cell foam and fiber glass are subjected to press load, taking into account the flexibility and sustainability of the samples and the requirements of the technique used. The thermal data of the samples were determined within the temperature range (300-414K) and pressure range (Normal -15kPa). These materials are used for thermal insulation and temperature control of air-conditioned space, acoustic and sound insulation, agriculture and fishery, sports and leisure goods, building and civil engineering, industrial packaging cold storage ware house, boiler work and other electric appliances, so they are helpful in reducing energy losses. (author)

  8. Calorimetric and transport properties of Zircalloy 2, Zircalloy 4, and Inconel 625

    International Nuclear Information System (INIS)

    Maglic, K.D.; Perovic, N.Lj.; Stanimirovic, A.M.

    1994-01-01

    This paper presents the measurements and the results on thermal and electrical transport properties of three nuclear reactor cladding materials: Zircalloy 2, Zircalloy 4, and Inconel 625. Study of these materials constituted a part of the IAEA coordinated research program aimed at the generation and establishment of a reliable and complete database of the thermal properties of reactor materials. Measured properties include thermal diffusivity, specific heat, and electrical resistivity. Thermal diffusivity was measured by the laser pulse technique. Specific heat and electrical resistivity were measured using a millisecond-resolution direct electrical pulse heating technique. Thermal conductivity was computed from the experimentally determined thermal diffusivity and specific heat functions and the room temperature density values. Measurements were performed in the 20 to 1500 degrees C temperature range, depending on the material and property concerned

  9. Temperature-dependent thermal properties of spark plasma sintered alumina

    Directory of Open Access Journals (Sweden)

    Saheb Nouari

    2017-01-01

    Full Text Available In this work, we report temperature-dependent thermal properties of alumina powder and bulk alumina consolidated by spark plasma sintering method. The properties were measured between room temperature and 250ºC using a thermal constants analyzer. Alumina powder had very low thermal properties due to the presence of large pores and absence of bonding between its particles. Fully dense alumina with a relative density of 99.6 % was obtained at a sintering temperature of 1400°C and a holding time of 10 min. Thermal properties were found to mainly dependent on density. Thermal conductivity, thermal diffusivity, and specific heat of the fully dense alumina were 34.44 W/mK, 7.62 mm2s-1, and 1.22 J/gK, respectively, at room temperature. Thermal conductivity and thermal diffusivity decreased while specific heat increased with the increase in temperature from room temperature to 250ºC.

  10. Thermal properties of degraded lowland peat-moorsh soils

    Science.gov (United States)

    Gnatowski, Tomasz

    2016-04-01

    Soil thermal properties, i.e.: specific heat capacity (c), thermal conductivity (K), volumetric heat capacity (C) govern the thermal environment and heat transport through the soil. Hence the precise knowledge and accurate predictions of these properties for peaty soils with high amount of organic matter are especially important for the proper forecasting of soil temperature and thus it may lead to a better assessment of the greenhouse gas emissions created by microbiological activity of the peatlands. The objective of the study was to develop the predictive models of the selected thermal parameters of peat-moorsh soils in terms of their potential applicability for forecasting changes of soil temperature in degraded ecosystems of the Middle Biebrza River Valley area. Evaluation of the soil thermal properties was conducted for the parameters: specific heat capacity (c), volumetric heat capacities of the dry and saturated soil (Cdry, Csat) and thermal conductivities of the dry and saturated soil (Kdry, Ksat). The thermal parameters were measured using the dual-needle probe (KD2-Pro) on soil samples collected from seven peaty soils, representing total 24 horizons. The surface layers were characterized by different degrees of advancement of soil degradation dependent on intensiveness of the cultivation practises (peaty and humic moorsh). The underlying soil layers contain peat deposits of different botanical composition (peat-moss, sedge-reed, reed and alder) and varying degrees of decomposition of the organic matter, from H1 to H7 (von Post scale). Based on the research results it has been shown that the specific heat capacity of the soils differs depending on the type of soil (type of moorsh and type of peat). The range of changes varied from 1276 J.kg-1.K-1 in the humic moorsh soil to 1944 J.kg-1.K-1 in the low decomposed sedge-moss peat. It has also been stated that in degraded peat soils with the increasing of the ash content in the soil the value of specific heat

  11. First-principles study of intrinsic phononic thermal transport in monolayer C3N

    Science.gov (United States)

    Gao, Yan; Wang, Haifeng; Sun, Maozhu; Ding, Yingchun; Zhang, Lichun; Li, Qingfang

    2018-05-01

    Very recently, a new graphene-like crystalline, hole-free, 2D-single-layer carbon nitride C3N, has been fabricated by polymerization of 2,3-diaminophenazine and used to fabricate a field-effect transistor device with an on-off current ratio reaching 5. 5 ×1010 (Adv. Mater. 2017, 1605625). Heat dissipation plays a vital role in its practical applications, and therefore the thermal transport properties need to be explored urgently. In this paper, we perform first-principles calculations combined with phonon Boltzmann transport equation to investigate the phononic thermal transport properties of monolayer C3N, and meanwhile, a comparison with graphene is given. Our calculated intrinsic lattice thermal conductivity of C3N is 380 W/mK at room temperature, which is one order of magnitude lower than that of graphene (3550 W/mK at 300 K), but is greatly higher than many other typical 2D materials. The underlying mechanisms governing the thermal transport were thoroughly discussed and compared to graphene, including group velocities, phonon relax time, the contribution from phonon branches, phonon anharmonicity and size effect. The fundamental physics understood from this study may shed light on further studies of the newly fabricated 2D crystalline C3N sheets.

  12. Nano-thermal transport array: An instrument for combinatorial measurements of heat transfer in nanoscale films

    International Nuclear Information System (INIS)

    McCluskey, Patrick J.; Vlassak, Joost J.

    2010-01-01

    The nano-Thermal Transport Array is a silicon-based micromachined device for measuring the thermal properties of nanoscale materials in a high-throughput methodology. The device contains an array of thermal sensors, each one of which consists of a silicon nitride membrane and a tungsten heating element that also serves as a temperature gauge. The thermal behavior of the sensors is described with an analytical model. The assumptions underlying this model and its accuracy are checked using the finite element method. The analytical model is used in a data reduction scheme that relates experimental quantities to materials properties. Measured properties include thermal effusivity, thermal conductivity, and heat capacity. While the array is specifically designed for combinatorial analysis, here we demonstrate the capabilities of the device with a high-throughput study of copper multi-layer films as a function of film thickness, ranging from 15 to 470 nm. Thermal conductivity results show good agreement with earlier models predicting the conductivity based on electron scattering at interfaces.

  13. Optical and Thermal Properties of In2S3

    Directory of Open Access Journals (Sweden)

    Faycel Saadallah

    2011-01-01

    Full Text Available Photothermal deflection spectroscopy (PDS is carried out in order to investigate thermal and optical properties of Al doped In2S3. The influence of thermal annealing on its gap energy as well as its thermal properties is revealed. In this way, we notice that thermal conductivity is increased and the gap energy is reduced. These features are probably due to the improvement of the crystalline structure of the sample.

  14. Elastic and transport properties of topological semimetal ZrTe

    Science.gov (United States)

    Guo, San-Dong; Wang, Yue-Hua; Lu, Wan-Li

    2017-11-01

    Topological semimetals may have substantial applications in electronics, spintronics, and quantum computation. Recently, ZrTe was predicted as a new type of topological semimetal due to the coexistence of Weyl fermions and massless triply degenerate nodal points. In this work, the elastic and transport properties of ZrTe are investigated by combining the first-principles calculations and semiclassical Boltzmann transport theory. Calculated elastic constants prove the mechanical stability of ZrTe, and the bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio also are calculated. It is found that spin-orbit coupling (SOC) has slightly enhanced effects on the Seebeck coefficient, which along the a(b) and c directions for pristine ZrTe at 300 K is 46.26 μVK-1 and 80.20 μVK-1, respectively. By comparing the experimental electrical conductivity of ZrTe (300 K) with the calculated value, the scattering time is determined as 1.59 × 10-14 s. The predicted room-temperature electronic thermal conductivity along the a(b) and c directions is 2.37 {{Wm}}-1{{{K}}}-1 and 2.90 {{Wm}}-1{{{K}}}-1, respectively. The room-temperature lattice thermal conductivity is predicted as 17.56 {{Wm}}-1{{{K}}}-1 and 43.08 {{Wm}}-1{{{K}}}-1 along the a(b) and c directions, showing very strong anisotropy. Calculated results show that isotope scattering produces an observable effect on lattice thermal conductivity. To observably reduce lattice thermal conductivity by nanostructures, the characteristic length should be smaller than 70 nm, based on cumulative lattice thermal conductivity with respect to the phonon mean free path (MFP) at 300 K. It is noted that the average room-temperature lattice thermal conductivity of ZrTe is slightly higher than that of isostructural MoP, which is due to larger phonon lifetimes and smaller Grüneisen parameters. Finally, the total thermal conductivity as a function of temperature is predicted for pristine ZrTe. Our works provide valuable

  15. Electronic transport properties of 4f shell elements of liquid metal using hard sphere Yukawa system

    Science.gov (United States)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.

    2018-04-01

    The electronic transport properties are analyzed for 4f shell elements of liquid metals. To examine the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q), we used our own parameter free model potential with the Hard Sphere Yukawa (HSY) reference system. The screening effect on aforesaid properties has been examined by using different screening functions like Hartree (H), Taylor (T) and Sarkar (S). The correlations of our resultsand other data with available experimental values are intensely promising. Also, we conclude that our newly constructed parameter free model potential is capable of explaining the above mentioned electronic transport properties.

  16. CW 316 mechanical properties during thermal transients

    International Nuclear Information System (INIS)

    Cauvin, R.; Boutard, J.L.; Allegraud, G.

    1984-06-01

    During in pile incidents, the cladding can experience higher temperatures than the nominal one; it is necessary to know the mechanical properties of the cladding material during such thermal transients to predict the time and location of rupture. Two types of tests have been developed: first tensile (constant strain rate) tests after a heating at a constant rate and secondly constant load tests where heating is performed until rupture occurs. The tensile tests clearly show the role of the heating rate: the higher is the heating rate, the lower is the cold work recovery. Constant load tests were conducted with either uniaxial or biaxial (burst tests) loading. The same stress/failure temperature relation is found in both types of loading using the Von Mises equivalent stress. To predict failure, the Larson Miller parameter is not adequate, as well as all parameters based on a time/temperature equivalence. The yield stress measured in the two types of tests are very different probably due to a strain rate effect. Indeed the tensile tests are dynamic ones to avoid thermal recovery during the test duration, while the strain rate measured in constant load tests ranges only from 10 -5 s -1 to 10 -3 s -1 , being an increasing function of heating rate (ranging from 1 0 c/s to 100 0 c/s)

  17. Intrinsic and extrinsic electrical and thermal transport of bulk black phosphorus

    Science.gov (United States)

    Hu, Sile; Xiang, Junsen; Lv, Meng; Zhang, Jiahao; Zhao, Hengcan; Li, Chunhong; Chen, Genfu; Wang, Wenhong; Sun, Peijie

    2018-01-01

    We report a comprehensive investigation of the electrical, thermal, and thermoelectric transport properties of bulk single-crystalline black phosphorus in wide temperature (2-300 K) and field (0-9 T) ranges. Electrical transport below T ≈ 250 K is found to be dominated by extrinsic hole-type charge carriers with large mobility exceeding 104 cm2/V s at low temperatures. While thermal transport measurements reveal an enhanced in-plane thermal conductivity maximum κ = 180 W/m K at T ≈ 25 K, it appears still to be largely constrained by extrinsic phonon scattering processes, e.g., the electron-phonon process, in addition to intrinsic umklapp scattering. The thermoelectric power and Nernst effect seem to be strongly influenced by ambipolar transport of charge carriers with opposite signs in at least the high-temperature region above 200 K, which diminishes the thermoelectric power factor of this material. Our results provide a timely update to the transport properties of bulk black phosphorus for future fundamental and applied research.

  18. Effect of thermal-treatment sequence on sound absorbing and mechanical properties of porous sound-absorbing/thermal-insulating composites

    Directory of Open Access Journals (Sweden)

    Huang Chen-Hung

    2016-01-01

    Full Text Available Due to recent rapid commercial and industrial development, mechanical equipment is supplemented massively in the factory and thus mechanical operation causes noise which distresses living at home. In livelihood, neighborhood, transportation equipment, jobsite construction noises impact on quality of life not only factory noise. This study aims to preparation technique and property evaluation of porous sound-absorbing/thermal-insulating composites. Hollow three-dimensional crimp PET fibers blended with low-melting PET fibers were fabricated into hollow PET/low-melting PET nonwoven after opening, blending, carding, lapping and needle-bonding process. Then, hollow PET/low-melting PET nonwovens were laminated into sound-absorbing/thermal-insulating composites by changing sequence of needle-bonding and thermal-treatment. The optimal thermal-treated sequence was found by tensile strength, tearing strength, sound-absorbing coefficient and thermal conductivity coefficient tests of porous composites.

  19. Transport properties of inertial confinement fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Issanova, M.K.; Kodanova, S.K.; Ramazanov, T.S. [IETP, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Hoffmann, D.H.H. [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)

    2016-06-15

    In this paper the transport properties of non-isothermal dense deuterium-tritium plasmas were studied. Based on the effective interaction potentials between particles, the Coulomb logarithm for a two-temperature nonisothermal dense plasma was obtained. These potentials take into consideration long-range multi-particle screening effects and short-range quantum-mechanical effects in two-temperature plasmas. Transport processes in such plasmas were studied using the Coulomb logarithm. The obtained results were compared with the theoretical works of other authors and with the results of molecular dynamics simulations. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Thermal properties of UO2 - Gd2O3 fuel

    International Nuclear Information System (INIS)

    Kim, G. S.; Yang, J. H.; Kang, K. W.; Kim, Y. M.; Song, G. W.

    2000-01-01

    The thermal properties (thermal conductivity, oxygen potential and thermal expansion) of UO 2 -Gd 2 O 3 fuels were measured by the laser-flash, TGA and dilatometry method. The thermal conductivity decreased with Gd content, but the oxygen potential and thermal expansion increased with Gd content. Substitution of Gd +3 ion in UO 2 structure increases the scattering site for thermal phonon propagation and thereby decreases the thermal conductivity. The oxygen potential of Gd-doped UO 2 increase mainly because the Gd +3 ions, which are inert to oxidation, make it difficult for oxygen interstitials to access just near them

  1. Thermal Transport in Fullerene Derivatives Using Molecular Dynamics Simulations

    Science.gov (United States)

    Chen, Liang; Wang, Xiaojia; Kumar, Satish

    2015-08-01

    In order to study the effects of alkyl chain on the thermal properties of fullerene derivatives, we perform molecular dynamics (MD) simulations to predict the thermal conductivity of fullerene (C60) and its derivative phenyl-C61-butyric acid methyl ester (PCBM). The results of non-equilibrium MD simulations show a length-dependent thermal conductivity for C60 but not for PCBM. The thermal conductivity of C60, obtained from the linear extrapolation of inverse conductivity vs. inverse length curve, is 0.2  W m-1 K-1 at room temperature, while the thermal conductivity of PCBM saturates at ~0.075  W m-1 K-1 around 20 nm. The different length-dependence behavior of thermal conductivity indicates that the long-wavelength and low-frequency phonons have large contribution to the thermal conduction in C60. The decrease in thermal conductivity of fullerene derivatives can be attributed to the reduction in group velocities, the decrease of the frequency range of acoustic phonons, and the strong scattering of low-frequency phonons with the alkyl chains due to the significant mismatch of vibrational density of states in low frequency regime between buckyball and alkyl chains in PCBM.

  2. Electrical and magneto transport properties of

    Indian Academy of Sciences (India)

    Electrical and magneto transport properties of. La0.8−xCaxSr0.1Ag0.1MnO3 (x = 0.1,0.2,0.3). P SUBHASHINI1,∗, B MUNIRATHINAM2, M KRISHNAIAH1, R VENKATESH3,. D VENKATESWARLU3 and V GANESAN3. 1Department of Physics, Sri Venkateswara University, Tirupati, India. 2NDT/SPP, SDSC SHAR, Sriharikota ...

  3. Nanofluid enhancement of mineral oil and thermal properties instrument design

    Science.gov (United States)

    Wilborn, Eli

    There are two purposes of this research, to design and build a heat transfer cell that could accurately calculate heat transport coefficients of various fluids and to determine if the increased heat transfer capabilities of nanofluids can be applied to cooling transformers by using the heat transfer cell to measure the enhancement. The design and construction of a heat transfer cell that could accurately calculate heat transport coefficients of various fluids was successful. A heat transfer cell was built and tested on several fluids to confirm the accuracy of the design and the experiments. Three fluids were successfully tested overall for their thermal conductivity values, and one fluid was tested for its convection coefficients in the heat transfer cells. Values for the thermal conductivity and the convection coefficients were obtained during this experiment that agreed with commonly accepted values for the testing fluids. The average value for the thermal conductivities for mineral oil of the first design in the ¼" diameter cell is 0.15W/ m2c', and agrees well with the commonly accepted values of mineral oils. The value commonly accepted value of thermal conductivity for mineral oil is 0.14W/m2c' at 25°C, the first heat transfer cell yielded a thermal conductivity value of approximately 0.16W/m2 c' at roughly 25C. The heat transfer cell was also used to calculated convection coefficients of mineral oil, and values were obtained within the limits for natural convection according to Incropera, contributing more to the validity of the results from this heat transfer cell. A second heat transfer cell was designed to determine the thermal conductivities of more thermally sensitive fluids, offering a wider range of materials that can be tested. The second design places the thermocouples directly at their assumed position of the wire and the wall temperatures for calculation purposes, yielding more accurate results and can therefore more accurately calculate the

  4. Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases

    International Nuclear Information System (INIS)

    Lee, Song Hi; Kim, Ja Hun

    2014-01-01

    In this paper, we report thermodynamic and transport properties (diffusion coefficient, viscosity, and thermal conductivity) of diatomic gases (H 2 , N 2 , O 2 , and Cl 2 ) at 273.15 K and 1.00 atm by performing molecular dynamics simulations using Lennard-Jones intermolecular potential and modified Green-Kubo formulas. The results of self-diffusion coefficients of diatomic gases obtained from velocity auto-correlation functions by Green-Kubo relation are in good agreement with those obtained from mean square displacements by Einstein relation. While the results for viscosities of diatomic gases obtained from stress auto-correlation functions underestimate the experimental results, those for thermal conductivities obtained from heat flux autocorrelation functions overestimate the experimental data except H 2

  5. Constraining Non-thermal and Thermal properties of Dark Matter

    Directory of Open Access Journals (Sweden)

    Bhupal eDev

    2014-05-01

    Full Text Available We describe the evolution of Dark Matter (DM abundance from the very onset of its creation from inflaton decay under the assumption of an instantaneous reheating. Based on the initial conditions such as the inflaton mass and its decay branching ratio to the DM species, the reheating temperature, and the mass and interaction rate of the DM with the thermal bath, the DM particles can either thermalize (fully/partially with the primordial bath or remain non-thermal throughout their evolution history. In the thermal case, the final abundance is set by the standard freeze-out mechanism for large annihilation rates, irrespective of the initial conditions. For smaller annihilation rates, it can be set by the freeze-in mechanism which also does not depend on the initial abundance, provided it is small to begin with. For even smaller interaction rates, the DM decouples while being non-thermal, and the relic abundance will be essentially set by the initial conditions. We put model-independent constraints on the DM mass and annihilation rate from over-abundance by exactly solving the relevant Boltzmann equations, and identify the thermal freeze-out, freeze-in and non-thermal regions of the allowed parameter space. We highlight a generic fact that inflaton decay to DM inevitably leads to an overclosure of the Universe for a large range of DM parameter space, and thus poses a stringent constraint that must be taken into account while constructing models of DM. For the thermal DM region, we also show the complementary constraints from indirect DM search experiments, Big Bang Nucleosynthesis, Cosmic Microwave Background, Planck measurements, and theoretical limits due to the unitarity of S-matrix. For the non-thermal DM scenario, we show the allowed parameter space in terms of the inflaton and DM masses for a given reheating temperature, and compute the comoving free-streaming length to identify the hot, warm and cold DM regimes.

  6. Unifying first-principles theoretical predictions and experimental measurements of size effects in thermal transport in SiGe alloys

    Science.gov (United States)

    Huberman, Samuel; Chiloyan, Vazrik; Duncan, Ryan A.; Zeng, Lingping; Jia, Roger; Maznev, Alexei A.; Fitzgerald, Eugene A.; Nelson, Keith A.; Chen, Gang

    2017-10-01

    We demonstrate the agreement between first-principles calculations and experimental measurements of size effects in thermal transport in SiGe alloys without fitting parameters. Transient thermal grating (TTG) is used to measure the effect of the grating period on the temperature decay. The virtual crystal approximation under the density-functional-theory framework combined with impurity scattering is used to determine the phonon properties for the exact alloy composition of the measured samples. With these properties, classical size effects are calculated for the experimental geometry of reflection mode TTG using the recently developed variational solution to the phonon Boltzmann transport equation, which is verified against established Monte Carlo simulations. We find agreement between theoretical predictions and experimental measurements in the reduction of thermal conductivity (as much as fourfold of the bulk value) across grating periods spanning one order of magnitude. This paper provides a framework for the study of size effects in thermal transport in opaque materials.

  7. Thermal Properties of G-348 Graphite

    Energy Technology Data Exchange (ETDEWEB)

    McEligot, Donald M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Valentin, Francisco I. [City Univ. (CUNY), NY (United States)

    2017-04-01

    Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08 (R-2014). Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.

  8. Thermal Properties of G-348 Graphite

    Energy Technology Data Exchange (ETDEWEB)

    McEligot, Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Valentin, Francisco I. [City College of New York, NY (United States)

    2016-05-01

    Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08. Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.

  9. THERMAL-ENERGY STORAGE IN A DEEP SANDSTONE AQUIFER IN MINNESOTA: FIELD OBSERVATIONS AND THERMAL ENERGY-TRANSPORT MODELING.

    Science.gov (United States)

    Miller, R.T.

    1986-01-01

    A study of the feasibility of storing heated water in a deep sandstone aquifer in Minnesota is described. The aquifer consists of four hydraulic zones that are areally anisotropic and have average hydraulic conductivities that range from 0. 03 to 1. 2 meters per day. A preliminary axially symmetric, nonisothermal, isotropic, single-phase, radial-flow, thermal-energy-transport model was constructed to investigate the sensitivity of model simulation to various hydraulic and thermal properties of the aquifer. A three-dimensional flow and thermal-energy transport model was constructed to incorporate the areal anisotropy of the aquifer. Analytical solutions of equations describing areally anisotropic groundwater flow around a doublet-well system were used to specify model boundary conditions for simulation of heat injection. The entire heat-injection-testing period of approximately 400 days was simulated. Model-computed temperatures compared favorably with field-recorded temperatures, with differences of no more than plus or minus 8 degree C. For each test cycle, model-computed aquifer thermal efficiency, defined as total heat withdrawn divided by total heat injected, was within plus or minus 2% of the field-calculated values.

  10. On sound absorption and thermal properties of non-wovens

    Directory of Open Access Journals (Sweden)

    Chen Jin-Jing

    2015-01-01

    Full Text Available Non-woven is widely used as auxiliary materials of automobile industry due to its excellent sound absorption capability and good thermal property. The paper concludes that its density greatly affects sound absorption and thermal resistance, and an aluminum evaporated film can enhance the thermal resistance.

  11. On sound absorption and thermal properties of non-wovens

    OpenAIRE

    Chen Jin-Jing; Yu Hong-Qin; Guo Zheng; You Jin-Zhang; Song Wen-Fang

    2015-01-01

    Non-woven is widely used as auxiliary materials of automobile industry due to its excellent sound absorption capability and good thermal property. The paper concludes that its density greatly affects sound absorption and thermal resistance, and an aluminum evaporated film can enhance the thermal resistance.

  12. Experimental Determination of Some Thermal Properties of Raphia ...

    African Journals Online (AJOL)

    The thermal properties - thermal conductivity, specific heat capacity and viscosity of raphia gum are studied experimentally. The results show that thermal conductivity varies from 0.0164 to 0.0403 (W/mok) for moisture content and temperature ranging from 59.77 to 93.13% (W.b) and 40 to 80 (oC) respectively. The specific ...

  13. Study on the Cross Plane Thermal Transport of Polycrystalline Molybdenum Nanofilms by Applying Picosecond Laser Transient Thermoreflectance Method

    Directory of Open Access Journals (Sweden)

    Tingting Miao

    2014-01-01

    Full Text Available Thin metal films are widely used as interconnecting wires and coatings in electronic devices and optical components. Reliable thermophysical properties of the films are required from the viewpoint of thermal management. The cross plane thermal transport of four polycrystalline molybdenum nanofilms with different thickness deposited on glass substrates has been studied by applying the picosecond laser transient thermoreflectance technique. The measurement is performed by applying both front pump-front probe and rear pump-front probe configurations with high quality signal. The determined cross plane thermal diffusivity of the Mo films greatly decreases compared to the corresponding bulk value and tends to increase as films become thicker, exhibiting significant size effect. The main mechanism responsible for the thermal diffusivity decrease of the present polycrystalline Mo nanofilms is the grain boundary scattering on the free electrons. Comparing the cross plane thermal diffusivity and inplane electrical conductivity indicates the anisotropy of the transport properties of the Mo films.

  14. Thermal-Insulation Properties of Multilayer Textile Packages

    Directory of Open Access Journals (Sweden)

    Matusiak Małgorzata

    2014-12-01

    Full Text Available Thermal-insulation properties of textile materials play a significant role in material engineering of protective clothing. Thermal-insulation properties are very important from the point of view of thermal comfort of the clothing user as well as the protective efficiency against low or high temperature. Thermal protective clothing usually is a multilayer construction. Its thermal insulation is a resultant of a number of layers and their order, as well as the thermalinsulation properties of a single textile material creating particular layers. The aim of the presented work was to investigate the relationships between the thermal-insulation properties of single materials and multilayer textile packages composed of these materials. Measurement of the thermal-insulation properties of single and multilayer textile materials has been performed with the Alambeta. The following properties have been investigated: thermal conductivity, resistance and absorptivity. Investigated textile packages were composed of two, three and four layers made of woven and knitted fabrics, as well as nonwovens. On the basis of the obtained results an analysis has been carried out in order to assess the dependency of the resultant values of the thermal-insulation properties of multilayer packages on the appropriate values of particular components.

  15. SOME MOISTURE DEPENDENT THERMAL PROPERTIES AND ...

    African Journals Online (AJOL)

    The thermal heat conductivity, specific heat capacity, thermal heat diffusivity and bulk density of Prosopis africana seeds were determined as a function of moisture content. Specific heat capacity was measured by the method of mixture while the thermal heat conductivity was measured by the guarded hot plate method.

  16. Thermophysical properties of fluids: dynamic viscosity and thermal conductivity

    Science.gov (United States)

    Latini, G.

    2017-11-01

    Thermophysical properties of fluids strongly depend upon atomic and molecular structure, complex systems governed by physics laws providing the time evolution. Theoretically the knowledge of the initial position and velocity of each atom, of the interaction forces and of the boundary conditions, leads to the solution; actually this approach contains too many variables and it is generally impossible to obtain an acceptable solution. In many cases it is only possible to calculate or to measure some macroscopic properties of fluids (pressure, temperature, molar volume, heat capacities...). The ideal gas “law,” PV = nRT, was one of the first important correlations of properties and the deviations from this law for real gases were usefully proposed. Moreover the statistical mechanics leads for example to the “hard-sphere” model providing the link between the transport properties and the molecular size and speed of the molecules. Further approximations take into account the intermolecular interactions (the potential functions) which can be used to describe attractions and repulsions. In any case thermodynamics reduces experimental or theoretical efforts by relating one physical property to another: the Clausius-Clapeyron equation provides a classical example of this method and the PVT function must be known accurately. However, in spite of the useful developments in molecular theory and computers technology, often it is usual to search for physical properties when the existing theories are not reliable and experimental data are not available: the required value of the physical or thermophysical property must be estimated or predicted (very often estimation and prediction are improperly used as synonymous). In some cases empirical correlations are useful, if it is clearly defined the range of conditions on which they are based. This work is concerned with dynamic viscosity µ and thermal conductivity λ and is based on clear and important rules to be respected

  17. Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers

    Directory of Open Access Journals (Sweden)

    Byong Chol Bai

    2015-01-01

    Full Text Available This paper investigates the thermal properties of asphalt mixtures modified with conductive fillers used for snow melting and solar harvesting pavements. Two different mixing processes were adopted to mold asphalt mixtures, dry- and wet-mixing, and two conductive fillers were used in this study, graphite and carbon black. The thermal conductivity was compared to investigate the effects of asphalt mixture preparing methods, the quantity, and the distribution of conductive filler on thermal properties. The combination of conductive filler with carbon fiber in asphalt mixture was evaluated. Also, rheological properties of modified asphalt binders with conductive fillers were measured using dynamic shear rheometer and bending beam rheometer at grade-specific temperatures. Based on rheological testing, the conductive fillers improve rutting resistance and decrease thermal cracking resistance. Thermal testing indicated that graphite and carbon black improve the thermal properties of asphalt mixes and the combined conductive fillers are more effective than the single filler.

  18. A Coupled Model of Multiphase Flow, Reactive Biogeochemical Transport, Thermal Transport and Geo-Mechanics.

    Science.gov (United States)

    Tsai, C. H.; Yeh, G. T.

    2015-12-01

    In this investigation, a coupled model of multiphase flow, reactive biogeochemical transport, thermal transport and geo-mechanics in subsurface media is presented. It iteratively solves the mass conservation equation for fluid flow, thermal transport equation for temperature, reactive biogeochemical transport equations for concentration distributions, and solid momentum equation for displacement with successive linearization algorithm. With species-based equations of state, density of a phase in the system is obtained by summing up concentrations of all species. This circumvents the problem of having to use empirical functions. Moreover, reaction rates of all species are incorporated in mass conservation equation for fluid flow. Formation enthalpy of all species is included in the law of energy conservation as a source-sink term. Finite element methods are used to discretize the governing equations. Numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results demonstrate the feasibility and capability of present model in subsurface media.

  19. Perspective: Thermal and thermoelectric transport in molecular junctions

    Science.gov (United States)

    Cui, Longji; Miao, Ruijiao; Jiang, Chang; Meyhofer, Edgar; Reddy, Pramod

    2017-03-01

    With the advent of molecular electronics, tremendous attention has been paid towards understanding the structure-function relationship of molecular junctions. Understanding how heat is transported, dissipated, and converted into electricity in molecular junctions is of great importance for designing thermally robust molecular circuits and high-performance energy conversion devices. Further, the study of thermal and thermoelectric phenomena in molecular junctions provides novel insights into the limits of applicability of classical laws. Here, we present a review of the computational and experimental progress made in probing thermoelectric effects, thermal conduction, heat dissipation, and local heating/cooling in self-assembled monolayer and single molecule junctions. We also discuss some outstanding challenges and potential future directions.

  20. Strain dependence of the heat transport properties of graphene nanoribbons

    International Nuclear Information System (INIS)

    Emmeline Yeo, Pei Shan; Loh, Kian Ping; Gan, Chee Kwan

    2012-01-01

    Using a combination of accurate density-functional theory and a nonequilibrium Green’s function method, we calculate the ballistic thermal conductance characteristics of tensile-strained armchair (AGNR) and zigzag (ZGNR) edge graphene nanoribbons, with widths between 3 and 50 Å. The optimized lateral lattice constants for AGNRs of different widths display a three-family behavior when the ribbons are grouped according to N modulo 3, where N represents the number of carbon atoms across the width of the ribbon. Two lowest-frequency out-of-plane acoustic modes play a decisive role in increasing the thermal conductance of AGNR-N at low temperatures. At high temperatures the effect of tensile strain is to reduce the thermal conductance of AGNR-N and ZGNR-N. These results could be explained by the changes in force constants in the in-plane and out-of-plane directions with the application of strain. This fundamental atomistic understanding of the heat transport in graphene nanoribbons paves a way to effect changes in their thermal properties via strain at various temperatures. (paper)

  1. Transport Properties Of Type-I Sn Clathrates

    Science.gov (United States)

    Egbele, Peter; Joubert, Daniel; Shoko, Elvis

    The conversion of 'waste' heat into useful energy can contribute to the efficient use of available energy. This includes converting heat energy from internal combustion engines, conventional power plants and solar cells into usable energy. Thermoelectric devices can convert heat into an electric current and have immense potential for utilizing heat energy. One of the desired features of an efficient thermoelectric material is a low lattice thermal conductivity. In this study thermal transport properties of type-I Sn clathrates are investigated. We study the dynamics of the guest atoms Cs and K in the compound A8 Sn44 (A = Cs, K). We find that the guest atom are responsible for scattering of the heat in these systems, and hence responsible for the low thermal conductivity in these materials. These compounds are formed in a cubic lattice. A low thermal conductivity value of 0.17 and 0.18 W m-1 K-1 at 300 K respectively, was calculated for Cs8 Sn44 and K8 Sn44 . These are low values which makes these and similar materials attractive for further study. NRF South Africa.

  2. Thermal properties of WC-10 wt. (% Co alloys

    Directory of Open Access Journals (Sweden)

    Francisco de Assis Léo Machado

    2008-03-01

    Full Text Available In this article, photothermal techniques were used in order to determine some thermal properties: diffusivity, conductivity, effusivity and specific heat capacity of WC-10 wt. (% Co six samples subjected to different sintering processes. The samples were sintered using high pressure - high temperature (HPHT sintering system. The open cell photoacoustic (OPC used to measure thermal diffusivity is described in detail. The values of thermal properties here measured and evaluated are consistent to those previously reported in the literature.

  3. Characterization of thermal, hydraulic, and gas diffusion properties in variably saturated sand grades

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Smits, Kathleen; Ramirez, Jamie

    2016-01-01

    porous media transport properties, key transport parameters such as thermal conductivity and gas diffusivity are particularly important to describe temperature-induced heat transport and diffusion-controlled gas transport processes, respectively. Despite many experimental and numerical studies focusing...... on a specific porous media characteristic, a single study presenting a wide range of important characteristics, together with the best-performing functional relationships, can seldom be found. This study characterized five differently textured sand grades (Accusand no. 12/20, 20/30, 30/40, 40/50, and 50...

  4. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    Science.gov (United States)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  5. Thermal Coatings Seminar Series Training Part 1: Properties of Thermal Coatings

    Science.gov (United States)

    Triolo, Jack

    2015-01-01

    This course will present an overview of a variety of thermal coatings-related topics, including: coating types and availability, thermal properties measurements, environmental testing (lab and in-flight), environmental impacts, contamination impacts, contamination liabilities, determination of BOLEOL values, and what does specularity mean to the thermal engineer.

  6. Electronic and transport properties of kinked graphene

    Directory of Open Access Journals (Sweden)

    Jesper Toft Rasmussen

    2013-02-01

    Full Text Available Local curvature, or bending, of a graphene sheet is known to increase the chemical reactivity presenting an opportunity for templated chemical functionalisation. Using first-principles calculations based on density functional theory (DFT, we investigate the reaction barrier reduction for the adsorption of atomic hydrogen at linear bends in graphene. We find a significant barrier lowering (≈15% for realistic radii of curvature (≈20 Å and that adsorption along the linear bend leads to a stable linear kink. We compute the electronic transport properties of individual and multiple kink lines, and demonstrate how these act as efficient barriers for electron transport. In particular, two parallel kink lines form a graphene pseudo-nanoribbon structure with a semimetallic/semiconducting electronic structure closely related to the corresponding isolated ribbons; the ribbon band gap translates into a transport gap for electronic transport across the kink lines. We finally consider pseudo-ribbon-based heterostructures and propose that such structures present a novel approach for band gap engineering in nanostructured graphene.

  7. Thermal and structural properties of spray pyrolysed CdS thin film

    Indian Academy of Sciences (India)

    Unknown

    probes is not advisable and such measurements are less reliable. But here in photoacoustics, these are avoided and so the results are reliable. The present measurements show that the thermal transport properties are small com- pared to the bulk CdS. This is in conformity with earlier measurements on various other films ...

  8. Effect of nickel substitution on thermal properties of Na0⋅9CoO2

    Indian Academy of Sciences (India)

    TECS

    Sodium cobaltate; thermoelectric power; photoacoustics; thermal conductivity; figure of merit. 1. Introduction. The widespread interest in sodium cobalt oxide is mainly due to its unique combination of high thermopower with metallic transport properties (Terasaki et al 1997), which makes it one of the most promising systems ...

  9. Electronic and transport properties of kinked graphene

    DEFF Research Database (Denmark)

    Rasmussen, Jesper Toft; Gunst, Tue; Bøggild, Peter

    2013-01-01

    for the adsorption of atomic hydrogen at linear bends in graphene. We find a significant barrier lowering (≈15%) for realistic radii of curvature (≈20 Å) and that adsorption along the linear bend leads to a stable linear kink. We compute the electronic transport properties of individual and multiple kink lines......Local curvature, or bending, of a graphene sheet is known to increase the chemical reactivity presenting an opportunity for templated chemical functionalisation. Using first-principles calculations based on density functional theory (DFT), we investigate the reaction barrier reduction......, and demonstrate how these act as efficient barriers for electron transport. In particular, two parallel kink lines form a graphene pseudo-nanoribbon structure with a semimetallic/semiconducting electronic structure closely related to the corresponding isolated ribbons; the ribbon band gap translates...

  10. FLUID- THERMODYNAMIC AND TRANSPORT PROPERTIES OF FLUIDS (IBM PC VERSION)

    Science.gov (United States)

    Fessler, T. E.

    1994-01-01

    The accurate computation of the thermodynamic and transport properties of fluids is a necessity for many engineering calculations. The FLUID program was developed to calculate the thermodynamic and transport properties of pure fluids in both the liquid and gas phases. Fluid properties are calculated using a simple gas model, empirical corrections, and an efficient numerical interpolation scheme. FLUID produces results that are in very good agreement with measured values, while being much faster than older more complex programs developed for the same purpose. A Van der Waals equation of state model is used to obtain approximate state values. These values are corrected for real-gas effects by model correction factors obtained from tables based on experimental data. These tables also accurately compensate for the special circumstances which arise whenever phase conditions occur. Viscosity and thermal conductivity values are computed directly from tables. Interpolation within tables is based on Lagrange's three point formula. A set of tables must be generated for each fluid implemented. FLUID currently contains tables for nine fluids including dry air and steam. The user can add tables for any fluid for which adequate thermal property data is available. The FLUID routine is structured so that it may easily be incorporated into engineering programs. The IBM 360 version of FLUID was developed in 1977. It is written in FORTRAN IV and has been implemented on an IBM 360 with a central memory requirement of approximately 222K of 8 bit bytes. The IBM PC version of FLUID is written in Microsoft FORTRAN 77 and has been implemented on an IBM PC with a memory requirement of 128K of 8 bit bytes. The IBM PC version of FLUID was developed in 1986.

  11. FLUID- THERMODYNAMIC AND TRANSPORT PROPERTIES OF FLUIDS (IBM VERSION)

    Science.gov (United States)

    Fessler, T. E.

    1994-01-01

    The accurate computation of the thermodynamic and transport properties of fluids is a necessity for many engineering calculations. The FLUID program was developed to calculate the thermodynamic and transport properties of pure fluids in both the liquid and gas phases. Fluid properties are calculated using a simple gas model, empirical corrections, and an efficient numerical interpolation scheme. FLUID produces results that are in very good agreement with measured values, while being much faster than older more complex programs developed for the same purpose. A Van der Waals equation of state model is used to obtain approximate state values. These values are corrected for real-gas effects by model correction factors obtained from tables based on experimental data. These tables also accurately compensate for the special circumstances which arise whenever phase conditions occur. Viscosity and thermal conductivity values are computed directly from tables. Interpolation within tables is based on Lagrange's three point formula. A set of tables must be generated for each fluid implemented. FLUID currently contains tables for nine fluids including dry air and steam. The user can add tables for any fluid for which adequate thermal property data is available. The FLUID routine is structured so that it may easily be incorporated into engineering programs. The IBM 360 version of FLUID was developed in 1977. It is written in FORTRAN IV and has been implemented on an IBM 360 with a central memory requirement of approximately 222K of 8 bit bytes. The IBM PC version of FLUID is written in Microsoft FORTRAN 77 and has been implemented on an IBM PC with a memory requirement of 128K of 8 bit bytes. The IBM PC version of FLUID was developed in 1986.

  12. Electron thermal transport in RTP: filaments, barriers and bifurcations

    International Nuclear Information System (INIS)

    Lopes Cardozo, N.J.; Hogeweij, G.M.D.; Baar, M. de; Barth, C.J.; Beurskens, M.N.A.; Donne, A.J.H.; Gelder, J.F.M. van; Groot, B. de; Karelse, F.A.; Kloe, J. de; Kruijt, O.G.; Lok, J.; Meiden, H.J. van der; Oomens, A.A.M.; Oyevaar, Th.; Pijper, R.J.; Polman, R.W.; Salzedas, F.; Schueller, F.C.; Westerhof, E.; De Luca, F.; Galli, P.; Gorini, G.; Jacchia, A.; Mantica, P.

    1997-01-01

    Experiments with strong localized electron cyclotron heating (ECH) in the RTP tokamak show that electron heat transport is governed by alternating layers of good and bad thermal conduction. For central deposition hot T e filaments are observed inside the q = 1 radius. Moving the ECH resonance from the centre to the edge of the plasma results in discrete steps of the central electron temperature. The transitions occur when the minimum q value crosses q = 1,2,5/2 or 3, and correspond to the loss of a transport barrier situated close to the rational q value. Close to the transitions a new type of sawtooth activity is observed, characterized by the formation of sharp off-axis maxima on the T e profile, which collapse abruptly. The formation of the off-axis maxima is attributed to heat deposition precisely 'on top of' a transport barrier. (author)

  13. Computation and analysis of the electron transport properties for nitrogen and air inductively-coupled plasmas

    Science.gov (United States)

    Yu, Minghao; Kihara, Hisashi; Abe, Ken-ichi; Takahashi, Yusuke

    2015-06-01

    A relatively simple method for calculating accurately the third-order electron transport properties of nitrogen and air thermal plasmas is presented. The electron transport properties, such as the electrical conductivity and the electron thermal conductivity, were computed with the best and latest available collision cross-section data in the temperature and pressure ranges of T = 300 - 15000 K and p = 0.01 - 1.0 atm, respectively. The results obtained under the atmospheric pressure condition showed good agreements with the experimental and the high-accuracy theoretical results. The presently-introduced method has good application potential in numerical simulations of nitrogen and air inductively-coupled plasmas.

  14. Collective thermal transport in pure and alloy semiconductors.

    Science.gov (United States)

    Torres, Pol; Mohammed, Amr; Torelló, Àlvar; Bafaluy, Javier; Camacho, Juan; Cartoixà, Xavier; Shakouri, Ali; Alvarez, F Xavier

    2018-03-07

    Conventional models for predicting thermal conductivity of alloys usually assume a pure kinetic regime as alloy scattering dominates normal processes. However, some discrepancies between these models and experiments at very small alloy concentrations have been reported. In this work, we use the full first principles kinetic collective model (KCM) to calculate the thermal conductivity of Si 1-x Ge x and In x Ga 1-x As alloys. The calculated thermal conductivities match well with the experimental data for all alloy concentrations. The model shows that the collective contribution must be taken into account at very low impurity concentrations. For higher concentrations, the collective contribution is suppressed, but normal collisions have the effect of significantly reducing the kinetic contribution. The study thus shows the importance of the proper inclusion of normal processes even for alloys for accurate modeling of thermal transport. Furthermore, the phonon spectral distribution of the thermal conductivity is studied in the framework of KCM, providing insights to interpret the superdiffusive regime introduced in the truncated Lévy flight framework.

  15. Thermal Transport in Porous Media with Application to Fuel Cell Diffusion Media and Metal Foams

    Science.gov (United States)

    Sadeghi, Ehsan

    Transport phenomena in high porosity open-cell fibrous structures have been the focus of many recent industrial and academic investigations. Unique features of these structures such as relatively low cost, ultra-low density, high surface area to volume ratio, and the ability to mix the passing fluid make them excellent candidates for a variety of thermofluid applications including fuel cells, compact heat exchangers and cooling of microelectronics. This thesis contributes to improved understanding of thermal transport phenomena in fuel cell gas diffusion layers (GDLs) and metal foams and describes new experimental techniques and analytic models to characterize and predict effective transport properties. Heat transfer through the GDL is a key process in the design and operation of a proton exchange membrane (PEM) fuel cell. The analysis of this process requires determination of the effective thermal conductivity as well as the thermal contact resistance (TCR) associated with the interface between the GDL and adjacent surfaces/ layers. The effective thermal conductivity significantly differs in through-plane and in-plane directions due to anisotropy of the GDL micro-structure. Also, the high porosity of GDLs makes the contribution of TCR against the heat flow through the medium more pronounced. A test bed was designed and built to measure the thermal contact resistance and effective thermal conductivity in both through-plane and in-plane directions under vacuum and ambient conditions. The developed experimental program allows the separation of effective thermal conductivity and thermal contact resistance. For GDLs, measurements are performed under a wide range of compressive loads using Toray carbon paper samples. To study the effect of cyclic compression, which may happen during the operation of a fuel cell stack, measurements are performed on the thermal and structural properties of GDL at different loading-unloading cycles. The static compression measurements are

  16. Eutectic mixtures of some fatty acids for latent heat storage: Thermal properties and thermal reliability with respect to thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Ahmet [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey)]. E-mail: asari@gop.edu.tr

    2006-06-15

    Accelerated thermal cycle tests have been conducted to study the change in melting temperatures and latent heats of fusion of the eutectic mixtures of lauric acid (LA)-myristic acid (MA), lauric acid (LA)-palmitic acid (PA) and myristic acid (MA)-stearic acid (SA) as latent heat storage materials. The thermal properties of these materials were determined by the differential scanning calorimetry (DSC) analysis method. The thermal reliability of the eutectic mixtures after melt/freeze cycles of 720, 1080 and 1460 was also evaluated using the DSC curves. The accelerated thermal cycle tests indicate that the melting temperatures usually tend to decrease, and the variations in the latent heats of fusion are irregular with increasing number of thermal cycles. Moreover, the probable reasons for the change in thermal properties of the eutectic mixtures after repeated thermal cycles were investigated. Fourier Transform Infrared (FT-IR) spectroscopic analysis indicates that the accelerated melt/freeze processes do not cause any degradation in the chemical structure of the mixtures. The change in thermal properties of the eutectic mixtures with increasing number of thermal cycles is only because of the presence of certain amounts of impurities in the fatty acids used in their preparation. It is concluded that the tested eutectic mixtures have reasonable thermal properties and thermal reliability as phase change materials (PCMs) for latent heat storage in any solar heating applications that include a four year utilization period.

  17. Eutectic mixtures of some fatty acids for latent heat storage: Thermal properties and thermal reliability with respect to thermal cycling

    International Nuclear Information System (INIS)

    Sari, Ahmet

    2006-01-01

    Accelerated thermal cycle tests have been conducted to study the change in melting temperatures and latent heats of fusion of the eutectic mixtures of lauric acid (LA)-myristic acid (MA), lauric acid (LA)-palmitic acid (PA) and myristic acid (MA)-stearic acid (SA) as latent heat storage materials. The thermal properties of these materials were determined by the differential scanning calorimetry (DSC) analysis method. The thermal reliability of the eutectic mixtures after melt/freeze cycles of 720, 1080 and 1460 was also evaluated using the DSC curves. The accelerated thermal cycle tests indicate that the melting temperatures usually tend to decrease, and the variations in the latent heats of fusion are irregular with increasing number of thermal cycles. Moreover, the probable reasons for the change in thermal properties of the eutectic mixtures after repeated thermal cycles were investigated. Fourier Transform Infrared (FT-IR) spectroscopic analysis indicates that the accelerated melt/freeze processes do not cause any degradation in the chemical structure of the mixtures. The change in thermal properties of the eutectic mixtures with increasing number of thermal cycles is only because of the presence of certain amounts of impurities in the fatty acids used in their preparation. It is concluded that the tested eutectic mixtures have reasonable thermal properties and thermal reliability as phase change materials (PCMs) for latent heat storage in any solar heating applications that include a four year utilization period

  18. Thermodynamic and transport properties of liquid gallium

    International Nuclear Information System (INIS)

    Park, H.Y.; Jhon, M.S.

    1982-01-01

    The significant structure theory of liquids has been successfully applied to liquid gallium. In this work, we have assumed that two structures exist simultaneously in liquid gallium. One is considerec as loosely close packed β-Ga-like structure and the other is remainder of solid α-Ga or α-Ga-like structure. This two structural model is introduced to construct the liquid partition function. Using the partition function, the thermodynamic and transport properties are calculated ever a wide temperature range. The calculated results are quite satisfactory when compared with the experimental results. (Author)

  19. Method for measuring thermal properties using a long-wavelength infrared thermal image

    Science.gov (United States)

    Walker, Charles L [Albuquerque, NM; Costin, Laurence S [Albuquerque, NM; Smith, Jody L [Albuquerque, NM; Moya, Mary M [Albuquerque, NM; Mercier, Jeffrey A [Albuquerque, NM

    2007-01-30

    A method for estimating the thermal properties of surface materials using long-wavelength thermal imagery by exploiting the differential heating histories of ground points in the vicinity of shadows. The use of differential heating histories of different ground points of the same surface material allows the use of a single image acquisition step to provide the necessary variation in measured parameters for calculation of the thermal properties of surface materials.

  20. TRANSPORT PROPERTIES OF THE STRONGLY CORRELATED SYSTEMS

    Directory of Open Access Journals (Sweden)

    T.Domanski

    2004-01-01

    Full Text Available The transport properties of various systems are studied here in the context of three different models. These are: - the disordered Hubbard model applicable to correlated binary alloys with a general disorder, - the Anderson model used in describing the Kondo physics of a quantum dot connected to the external superconducting leads, and - the Ranninger-Robaszkiewicz model applied to the study of optical properties of the system with preformed electron pairs above the temperature of transition to the superconducting state. We calculate the density of states, specific heat, the Wilson ratio and conductivity of the correlated binary alloy with off-diagonal disorder. We investigate the conditions under which the Kondo peak appears in the density of states and in the conductance of a dot coupled to the external superconducting leads. We analyze the effect of the pseudogap on the optical spectra in the high temperature superconductors described by the boson-fermion model.

  1. Simultaneous reconstruction of thermal degradation properties for anisotropic scattering fibrous insulation after high temperature thermal exposures

    International Nuclear Information System (INIS)

    Zhao, Shuyuan; Zhang, Wenjiao; He, Xiaodong; Li, Jianjun; Yao, Yongtao; Lin, Xiu

    2015-01-01

    To probe thermal degradation behavior of fibrous insulation for long-term service, an inverse analysis model was developed to simultaneously reconstruct thermal degradation properties of fibers after thermal exposures from the experimental thermal response data, by using the measured infrared spectral transmittance and X-ray phase analysis data as direct inputs. To take into account the possible influence of fibers degradation after thermal exposure on the conduction heat transfer, we introduced a new parameter in the thermal conductivity model. The effect of microstructures on the thermal degradation parameters was evaluated. It was found that after high temperature thermal exposure the decay rate of the radiation intensity passing through the material was weakened, and the probability of being scattered decreased during the photons traveling in the medium. The fibrous medium scattered more radiation into the forward directions. The shortened heat transfer path due to possible mechanical degradation, along with the enhancement of mean free path of phonon scattering as devitrification after severe heat treatment, made the coupled solid/gas thermal conductivities increase with the rise of heat treatment temperature. - Highlights: • A new model is developed to probe conductive and radiative properties degradation of fibers. • To characterize mechanical degradation, a new parameter is introduced in the model. • Thermal degradation properties are reconstructed from experiments by L–M algorithm. • The effect of microstructures on the thermal degradation parameters is evaluated. • The analysis provides a powerful tool to quantify thermal degradation of fiber medium

  2. Serrated magnetic properties in metallic glass by thermal cycle

    International Nuclear Information System (INIS)

    Ri Myong-Chol; Sohrabi, Sajad; Ding Da-Wei; Wang Wei-Hua; Dong Bang-Shao; Zhou Shao-Xiong

    2017-01-01

    Fe-based metallic glasses (MGs) with excellent soft magnetic properties are applicable in a wide range of electronic industry. We show that the cryogenic thermal cycle has a sensitive effect on soft magnetic properties of Fe 78 Si 9 B 13 glassy ribbon. The values of magnetic induction (or magnetic flux density) B and coercivity H c show fluctuation with increasing number of thermal cycles. This phenomenon is explained as thermal-cycle-induced stochastically structural aging or rejuvenation which randomly fluctuates magnetic anisotropy and, consequently, the magnetic induction and coercivity. Overall, increasing the number of thermal cycles improves the soft magnetic properties of the ribbon. The results could help understand the relationship between relaxation and magnetic property, and the thermal cycle could provide an effective approach to improving performances of metallic glasses in industry. (paper)

  3. Some Aspects of Thermal Transport across the Interface between Graphene and Epoxy in Nanocomposites.

    Science.gov (United States)

    Wang, Yu; Yang, Chunhui; Pei, Qing-Xiang; Zhang, Yingyan

    2016-03-01

    Owing to the superior thermal properties of graphene, graphene-reinforced polymer nanocomposites hold great potential as the thermal interface materials (TIMs) dissipating heat for electronic packages. However, this application is greatly hindered by the high thermal resistance at the interface between graphene and polymer. In this paper, some important aspects of the improvement of the thermal transport across the interface between graphene and epoxy in graphene-epoxy nanocomposites, including the effectiveness of covalent and noncovalent functionalization, isotope doping, and acetylenic linkage in graphene are systematically investigated using molecular dynamics (MD) simulations. The simulation results show that the covalent and noncovalent functionalization techniques could considerably reduce the graphene-epoxy interfacial thermal resistance in the nanocomposites. Among different covalent functional groups, butyl is more effective than carboxyl and hydroxyl in reducing the interfacial thermal resistance. Different noncovalent functional molecules, including 1-pyrenebutyl, 1-pyrenebutyric acid, and 1-pyrenebutylamine, yield a similar amount of reductions. Moreover, it is found that the graphene-epoxy interfacial thermal resistance is insensitive to the carbon isotope doping in graphene, while it can be reduced moderately by replacing the sp(2) bonds in graphene with acetylenic linkages.

  4. Thermal transport in binary colloidal glasses: Composition dependence and percolation assessment

    Science.gov (United States)

    Ruckdeschel, Pia; Philipp, Alexandra; Kopera, Bernd A. F.; Bitterlich, Flora; Dulle, Martin; Pech-May, Nelson W.; Retsch, Markus

    2018-02-01

    The combination of various types of materials is often used to create superior composites that outperform the pure phase components. For any rational design, the thermal conductivity of the composite as a function of the volume fraction of the filler component needs to be known. When approaching the nanoscale, the homogeneous mixture of various components poses an additional challenge. Here, we investigate binary nanocomposite materials based on polymer latex beads and hollow silica nanoparticles. These form randomly mixed colloidal glasses on a sub-μ m scale. We focus on the heat transport properties through such binary assembly structures. The thermal conductivity can be well described by the effective medium theory. However, film formation of the soft polymer component leads to phase segregation and a mismatch between existing mixing models. We confirm our experimental data by finite element modeling. This additionally allowed us to assess the onset of thermal transport percolation in such random particulate structures. Our study contributes to a better understanding of thermal transport through heterostructured particulate assemblies.

  5. Thermal properties of nonstoichiometry uranium dioxide

    Science.gov (United States)

    Kavazauri, R.; Pokrovskiy, S. A.; Baranov, V. G.; Tenishev, A. V.

    2016-04-01

    In this paper, was developed a method of oxidation pure uranium dioxide to a predetermined deviation from the stoichiometry. Oxidation was carried out using the thermogravimetric method on NETZSCH STA 409 CD with a solid electrolyte galvanic cell for controlling the oxygen potential of the environment. 4 samples uranium oxide were obtained with a different ratio of oxygen-to-metal: O / U = 2.002, O / U = 2.005, O / U = 2.015, O / U = 2.033. For the obtained samples were determined basic thermal characteristics of the heat capacity, thermal diffusivity, thermal conductivity. The error of heat capacity determination is equal to 5%. Thermal diffusivity and thermal conductivity of the samples decreased with increasing deviation from stoichiometry. For the sample with O / M = 2.033, difference of both values with those of stoichiometric uranium dioxide is close to 50%.

  6. Transport properties of the clathrate BaGe5

    Science.gov (United States)

    Candolfi, C.; Aydemir, U.; Ormeci, A.; Carrillo-Cabrera, W.; Burkhardt, U.; Baitinger, M.; Oeschler, N.; Steglich, F.; Grin, Yu.

    2011-08-01

    We report on the synthesis, crystallographic and transport properties of the Zintl phase BaGe5, which crystallizes in a new clathrate-type structure. This compound was synthesized by the decomposition of the type-I clathrate Ba8Ge43□3 subjected to annealing treatment at 623, 673 and 793 K. Electrical resistivity, thermopower and thermal conductivity measurements were performed in the temperature range 2 - 773 K and complemented by magnetization, specific heat and Hall experiments below room temperature. Additional information on the chemical bonding and electronic band structure in BaGe5 was obtained through the electron localizability indicator (ELI) and the total density of states, all calculated within the all-electron full-potential local orbital method (FLPO). In agreement with the chemical bonding and electronic band structure calculations, electrical resistivity and specific heat data show that BaGe5 is a semiconductor. The complex crystal structure of BaGe5 contributes to the low thermal conductivity which displays a conventional crystalline-like behavior. Further measurements were carried out on samples annealed at 623, 673 and 793 K for four up to 30 days to probe possible variations of the crystal structure and electronic properties as a function of the annealing temperature and time. Even though the annealing temperature does not alter the semiconducting nature of this material, differences in the absolute values of the transport properties were unveiled in samples annealed for short-time periods. These differences are significantly reduced in samples which underwent long-time annealing treatment even though the measured curves do not merge completely.

  7. Study RELAP5 Helium Properties for HTGR Thermal Hydraulic Analysis

    Science.gov (United States)

    Widodo, Surip; Rohanda, Anis; Subekti, Muhammad; Setiadipura, Topan; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    The system codes non-specific for HTGR such as RELAP5 has been utilized for HTGR thermal hydraulic analysis even helium gas property is not based on KTA 3102.1. However, those RELAP5 applications for HTGR above are merely based on the assumption that RELAP5 helium properties are comparable to the helium properties in the KTA 3102.1. Therefore, the study for comparing the helium properties used in RELAP5 and the helium properties in KTA 3102.1 is required. The objective of this paper is to study the appropriateness’ helium properties in RELAP5 code for high temperature gas reactor (HTGR) thermal hydraulic analysis. There has been an inclined interest in the scientific community in the study of the application RELAP5 for HTGR thermal hydraulic analysis. The KTA 3102.1 provides the helium properties that are the most commonly use for the HTGR thermal hydraulic analysis. For this study, the RELAP5 helium properties are compared with the helium properties in KTA 3102.1. The comparison results showed that the RELAP5 helium properties are satisfactory for the HTGR thermal hydraulic analysis.

  8. Electronic, thermal and mechanical properties of carbon nanotubes.

    Science.gov (United States)

    Dresselhaus, M S; Dresselhaus, G; Charlier, J C; Hernández, E

    2004-10-15

    A review of the electronic, thermal and mechanical properties of nanotubes is presented, with particular reference to properties that differ from those of the bulk counterparts and to potential applications that might result from the special structure and properties of nanotubes. Both experimental and theoretical aspects of these topics are reviewed.

  9. Preduction of transport properties of gases using classical nonspherical models

    International Nuclear Information System (INIS)

    Verlin, J.D.

    1976-01-01

    The general formulation of the classical kinetic theory, which is needed to predict transport properties of gases in situations where the hydrodynamic equations are valid, is reviewed. A rigid convex model of tetrahedral symmetry is used to predict the Senftleben-Beenakker effect of a static magnetic field on the thermal conductivity and viscosity of pure CH 4 , CD 4 and CF 4 . The parameters of the model are optimized and are found to assume physically reasonable values. The calculations agree with experiment to a degree comparable to that of similar work on diatomic molecules. A generalized scattering cross section, γ, is defined which can be evaluated exactly for the limiting cases of a spherical soft potential and rigid ovaloids. For a general soft nonspherical interaction of the Kihara type, a suitable approximation for the momentum dependence is made with the following attributes: γ reduces to the form for soft sphere and rigid ovaloid in the limits and the resulting matrix elements of the collision operator can be written in terms of the familiar Ω* integrals. This formulation is used to investigate thermal diffusion in binary isotopic mixtures of CO. Calculations are made in an 80 0 K to 300 0 K range which includes the inversion temperatures for all mixtures studied. Thermal conductivity and diffusion coefficients of CO are also calculated. The parameters of the model can be adjusted to account for the major features of the experimental data. The physical significance of the parameters is discussed

  10. THERMAL PROPERTIES OF SECONDARY ORGANIC AEROSOLS

    Science.gov (United States)

    Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in several hydrocarbon/NOx irradiation experiments. These measurements were used to estimate the thermal behavior of the particles that may be formed in the atmosphere. These laborator...

  11. First-principles study of thermal properties of borophene.

    Science.gov (United States)

    Sun, Hongyi; Li, Qingfang; Wan, X G

    2016-06-01

    Very recently, a new single-element two-dimensional (2D) material borophene was successfully grown on a silver surface under pristine ultrahigh vacuum conditions which attracts tremendous interest. In this paper, the lattice thermal conductivity, phonon lifetimes, thermal expansion and temperature dependent elastic moduli of borophene are systematically studied by using first-principles. Our simulations show that borophene possesses unique thermal properties. Strong phonon-phonon scattering is found in borophene, which results in its unexpectedly low lattice thermal conductivity. Thermal expansion coefficients along both the armchair and zigzag directions of borophene show impressive negative values. More strikingly, the elastic moduli are sizably strengthened as temperature increases, and the negative in-plane Poisson's ratios are found along both the armchair and zigzag directions at around 120 K. The mechanisms of these unique thermal properties are also discussed in this paper.

  12. Method and apparatus for implementing material thermal property measurement by flash thermal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiangang

    2017-11-14

    A method and apparatus are provided for implementing measurement of material thermal properties including measurement of thermal effusivity of a coating and/or film or a bulk material of uniform property. The test apparatus includes an infrared camera, a data acquisition and processing computer coupled to the infrared camera for acquiring and processing thermal image data, a flash lamp providing an input of heat onto the surface of a two-layer sample with an enhanced optical filter covering the flash lamp attenuating an entire infrared wavelength range with a series of thermal images is taken of the surface of the two-layer sample.

  13. Estimation technique on thermal properties data of reactor materials

    International Nuclear Information System (INIS)

    Imai, Hidetaka; Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1998-01-01

    This study aims at rapid measurement of thermal properties (thermal conductivity, thermal diffusivity, specific heat capacity, and emissivity) with the highest precision and till ultra high temperature in the world under identifying high temperature materials expected at reactor engineering in future such as plasma facing materials of nuclear fusion reactor. It was conducted by setting some sub-theme such as highly precise measurement and characterization of thermal properties, estimation technique of their data. Thus, precise measurement on specific heat capacity of meso-phase graphite was conducted. Between those at 1000degC and 3000degC a difference of about 5% was observed. As a result, it was found that it was required for highly precise estimation of thermal property data to consider value of the specific heat capacity. (G.K.)

  14. Optical and transport properties of polyaniline films

    International Nuclear Information System (INIS)

    Tzamalis, Georgios

    2002-01-01

    This thesis presents the results of a comprehensive study on the transport and optical properties of polyaniline (PANI) films. The films are derived by protonation (doping) of the emeraldine base form of polyaniline, as synthesized in Durham, with either 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) or 10-camphorsulfonic acid. Thus, two distinct PANI systems are obtained: PANI-CSA and PANI-AMPSA. The variation of the doping level can affect the metallic properties of the final system, so that samples close to the boundary as well as samples at either side of a disorder induced metal-insulator can be obtained. The relation between the doping level and the degree of disorder, along with the existence of an inherently metallic behaviour in PANI, are investigated through a series of experiments. Temperature dependent dc conductivity measurements ranging from 10-295 K are performed using a closed loop helium cryostat under dynamic vacuum (∼10 -5 mbar). From the conductivity data curves, typical fingerprints of the metallic behaviour are detected for certain samples and an initial estimate of the degree of disorder is implicitly attained. More specific information regarding the microscopic contributions to the transport mechanisms is obtained via low temperature (down to 1.5 K) magnetoconductance measurements on selected samples. The magnetic field dependence of conductivity for fields up to 14 T is measured and the suitability of the localization-interaction model for the understanding of the transport mechanism in PANI is examined. Infrared reflectivity (20-9000 cm -1 ) measurements on samples of both PANI systems are performed. The experimental configuration permits the determination of the sample's absolute reflectivity. The optical constants are deduced from Kramers-Kronig analysis of the reflectivity data. Typical features of metallic behaviour are examined and analysed in the context of the localization modified Drude model. The results are shown to be

  15. Symmetry properties of macroscopic transport coefficients in porous media

    Science.gov (United States)

    Lasseux, D.; Valdés-Parada, F. J.

    2017-04-01

    We report on symmetry properties of tensorial effective transport coefficients characteristic of many transport phenomena in porous systems at the macroscopic scale. The effective coefficients in the macroscopic models (derived by upscaling (volume averaging) the governing equations at the underlying scale) are obtained from the solution of closure problems that allow passing the information from the lower to the upper scale. The symmetry properties of the macroscopic coefficients are identified from a formal analysis of the closure problems and this is illustrated for several different physical mechanisms, namely, one-phase flow in homogeneous porous media involving inertial effects, slip flow in the creeping regime, momentum transport in a fracture relying on the Reynolds model including slip effects, single-phase flow in heterogeneous porous media embedding a porous matrix and a clear fluid region, two-phase momentum transport in homogeneous porous media, as well as dispersive heat and mass transport. The results from the analysis of these study cases are summarized as follows. For inertial single-phase flow, the apparent permeability tensor is irreducibly decomposed into its symmetric (viscous) and skew-symmetric (inertial) parts; for creeping slip-flow, the apparent permeability tensor is not symmetric; for one-phase slightly compressible gas flow in the slip regime within a fracture, the effective transmissivity tensor is symmetric, a result that remains valid in the absence of slip; for creeping one-phase flow in heterogeneous media, the permeability tensor is symmetric; for two-phase flow, we found the dominant permeability tensors to be symmetric, whereas the coupling tensors do not exhibit any special symmetry property; finally for dispersive heat transfer, the thermal conductivity tensors include a symmetric and a skew-symmetric part, the latter being a consequence of convective transport only. A similar result is achieved for mass dispersion. Beyond the

  16. experimental determination of some thermal properties of raphia ...

    African Journals Online (AJOL)

    NIJOTECH

    Introduction. A knowledge of thermal properties of materials is one which is frequently desired in many areas of engineering applications. A few of such areas include thermal storage for low temperature application, equipment design, insulation for refrigeration and air-conditioning technology. The raphia palm known as ...

  17. Preparation and investigations of thermal properties of copper oxide ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 2. Preparation and investigations of thermal properties of copper oxide, aluminium oxide and graphite based on new organic phase change material for thermal energy storage. Murat Genc Betul Inci Zuhal Karagoz Genc Canan Aksu Canbay Memet Sekercı.

  18. Preparation and investigations of thermal properties of copper oxide ...

    Indian Academy of Sciences (India)

    EDX) and scan- ning electron microscope (SEM) were used to determine the chemical structure, crystalloid phase, chemical com- position and microstructure of the composites, respectively. The thermal properties were investigated by differen-.

  19. Densely crosslinked polycarbosiloxanes .2. Thermal and mechanical properties

    NARCIS (Netherlands)

    Flipsen, T.A C; Derks, R.; van der Vegt, H.A.; Stenekes, R.; Pennings, A.J; Hadziioannou, G

    1997-01-01

    The thermal and mechanical properties of two densely crosslinked polycarbosiloxane systems were investigated in relation to the molecular structure. The networks were prepared from functional branched prepolymers and crosslinked via a hydrosilylation curing reaction. The prepolymers having only

  20. Thermal treatment of natural goethite: Thermal transformation and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haibo [Laboratory for Nanomineralogy and Environmental Material, School of Resources and Environmental Engineering, Hefei University of Technology (China); School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (Australia); Chen, Tianhu, E-mail: chentianhu@hfut.edu.cn [Laboratory for Nanomineralogy and Environmental Material, School of Resources and Environmental Engineering, Hefei University of Technology (China); Zou, Xuehua; Qing, Chengsong [Laboratory for Nanomineralogy and Environmental Material, School of Resources and Environmental Engineering, Hefei University of Technology (China); Frost, Ray L., E-mail: r.frost@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (Australia)

    2013-09-20

    Highlights: • We have characterized the thermal transformation of natural goethite. • The heated products showed a topotactical relationship to the original mineral. • The N2 adsorption isotherm provided the variation of surface area and pore size distribution with temperature. • The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores. • The hematite derived from heating goethite has application as an adsorbent and catalyst. - Abstract: XRD (X-ray diffraction), XRF (X-ray fluorescence), TG (thermogravimetry), FT-IES (Fourier transform infrared emission spectroscopy), FESEM (field emission scanning electron microscope), TEM (transmission electron microscope) and nitrogen–adsorption–desorption analysis were used to characterize the composition and thermal evolution of the structure of natural goethite. The in situ FT-IES demonstrated the start temperature (250 °C) of the transformation of natural goethite to hematite and the thermodynamic stability of protohematite between 250 and 600 °C. The heated products showed a topotactic relationship to the original mineral based on SEM analysis. Finally, the nitrogen–adsorption–desorption isotherm provided the variation of surface area and pore size distribution as a function of temperature. The surface area displayed a remarkable increase up to 350 °C, and then decreased above this temperature. The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores running parallel to elongated direction of hematite microcrystal. The main pore size varied from 0.99 nm to 3.5 nm when heating temperature increases from 300 to 400 °C. The hematite derived from heating goethite possesses high surface area and favors the possible application of hematite as an adsorbent as well as catalyst carrier.

  1. Thermal treatment of natural goethite: Thermal transformation and physical properties

    International Nuclear Information System (INIS)

    Liu, Haibo; Chen, Tianhu; Zou, Xuehua; Qing, Chengsong; Frost, Ray L.

    2013-01-01

    Highlights: • We have characterized the thermal transformation of natural goethite. • The heated products showed a topotactical relationship to the original mineral. • The N2 adsorption isotherm provided the variation of surface area and pore size distribution with temperature. • The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores. • The hematite derived from heating goethite has application as an adsorbent and catalyst. - Abstract: XRD (X-ray diffraction), XRF (X-ray fluorescence), TG (thermogravimetry), FT-IES (Fourier transform infrared emission spectroscopy), FESEM (field emission scanning electron microscope), TEM (transmission electron microscope) and nitrogen–adsorption–desorption analysis were used to characterize the composition and thermal evolution of the structure of natural goethite. The in situ FT-IES demonstrated the start temperature (250 °C) of the transformation of natural goethite to hematite and the thermodynamic stability of protohematite between 250 and 600 °C. The heated products showed a topotactic relationship to the original mineral based on SEM analysis. Finally, the nitrogen–adsorption–desorption isotherm provided the variation of surface area and pore size distribution as a function of temperature. The surface area displayed a remarkable increase up to 350 °C, and then decreased above this temperature. The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores running parallel to elongated direction of hematite microcrystal. The main pore size varied from 0.99 nm to 3.5 nm when heating temperature increases from 300 to 400 °C. The hematite derived from heating goethite possesses high surface area and favors the possible application of hematite as an adsorbent as well as catalyst carrier

  2. Temperature-dependent Transport Properties of Graphene

    Science.gov (United States)

    Zhong, Bochen; Singh, Amol; Uddin, Ahsan; Koley, Goutam; Webb, Richard

    2014-03-01

    Temperature-dependent transport properties of graphene synthesized by chemical vapor deposition (CVD) on a Cu thin sheet have been investigated. Raman spectra of our samples show good quality of the CVD graphene. We have measured the temperature dependence of conductivity, charge-carrier density and Hall mobility of graphene by patterning them into micrometer-sized Hall bars. Quantum Hall effect has been observed when the temperature is about 60 Kelvin, which is the evidence for single-layer graphene. Furthermore, the results of temperature dependence of Hall mobility indicate that impurity and defect scattering is the primary scattering mechanism at low temperature, while substrate surface polar phonon scattering is dominant at high temperature.

  3. Electronic transport properties of (fluorinated) metal phthalocyanine

    KAUST Repository

    Fadlallah, M M

    2015-12-21

    The magnetic and transport properties of the metal phthalocyanine (MPc) and F16MPc (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ag) families of molecules in contact with S–Au wires are investigated by density functional theory within the local density approximation, including local electronic correlations on the central metal atom. The magnetic moments are found to be considerably modified under fluorination. In addition, they do not depend exclusively on the configuration of the outer electronic shell of the central metal atom (as in isolated MPc and F16MPc) but also on the interaction with the leads. Good agreement between the calculated conductance and experimental results is obtained. For M = Ag, a high spin filter efficiency and conductance is observed, giving rise to a potentially high sensitivity for chemical sensor applications.

  4. Electrical transport and thermoelectric properties of boron carbide nanowires

    Science.gov (United States)

    Kirihara, Kazuhiro; Mukaida, Masakazu; Shimizu, Yoshiki

    2017-04-01

    The electrical transport and thermoelectric property of boron carbide nanowires synthesized by a carbothermal method are reported. It is demonstrated that the nanowires achieve a higher Seebeck coefficient and power factor than those of the bulk samples. The conduction mechanism of the nanowires at low temperatures below 300 K is different from that of the sintered-polycrystalline and single-crystal bulk samples. In a temperature range of 200-450 K, there is a crossover between electrical conduction by variable-range hopping and phonon-assisted hopping. The inhomogeneous carbon concentration and planar defects, such as twins and stacking faults, in the nanowires are thought to modify the bonding nature and electronic structure of the boron carbide crystal substantially, causing differences in the electrical conductivity and Seebeck coefficient. The effect of boundary scattering of phonon at nanostructured surface on the thermal conductivity reduction is discussed.

  5. Investigation of electrical and thermal properties of carbon nanotube interconnects

    OpenAIRE

    Todri-Sanial , Aida

    2016-01-01

    International audience; Carbon nanotubes (CNTs) present themselves as a viable material for on-and off-chip interconnect material due to their unique electrical, thermal and mechanical properties. The electrothermal properties of CNTs, including high Young's modulus, resiliency and low thermal expansion coefficient offer great advantage for reliable and strong interconnects, and even more so for local and global on-chip interconnects. With aggressive scaling, on-chip interconnects contribute ...

  6. Electrical transport properties of manganite powders under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M.G. [Laboratorio de Bajas Temperaturas, Departamento de Fisica, FCEyN, UBA, and IFIBA (CONICET), Ciudad Universitaria, (C1428EHA) Buenos Aires (Argentina); Leyva, A.G. [Gerencia de Investigacion y Aplicaciones, CAC, Comision Nacional de Energia Atomica, Gral Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Acha, C., E-mail: acha@df.uba.ar [Laboratorio de Bajas Temperaturas, Departamento de Fisica, FCEyN, UBA, and IFIBA (CONICET), Ciudad Universitaria, (C1428EHA) Buenos Aires (Argentina)

    2012-08-15

    We have measured the electrical resistance of micrometric to nanometric powders of the La{sub 5/8-y}Pr{sub y}Ca{sub 3/8}MnO{sub 3} (LPCMO with y=0.3) manganite for hydrostatic pressures up to 4 kbar. By applying different final thermal treatments to samples synthesized by a microwave assisted denitration process, we obtained two particular grain characteristic dimensions (40 nm and 1000 nm) which allowed us to analyze the grain size sensitivity of the electrical conduction properties of both the metal electrode interface with manganite (Pt/LPCMO) and the intrinsic intergranular interfaces formed by the LPCMO powder, conglomerate under the only effect of external pressure. We also analyzed the effects of pressure on the phase diagram of these powders. Our results indicate that different magnetic phases coexist at low temperatures and that the electrical transport properties are related to the intrinsic interfaces, as we observe evidences of a granular behavior and an electronic transport dominated by the Space Charge limited Current mechanism.

  7. Dependence of Glass Mechanical Properties on Thermal and Pressure History

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Bauchy, Mathieu

    -equilibrium material, the structure and properties of glass depend not only on its composition, but also on its thermal and pressure histories. Here we review our recent findings regarding the thermal and pressure history dependence of indentation-derived mechanical properties of oxide glasses.......Predicting the properties of new glasses prior to manufacturing is a topic attracting great industrial and scientific interest. Mechanical properties are currently of particular interest given the increasing demand for stronger, thinner, and more flexible glasses in recent years. However, as a non...

  8. Transport and Phase Equilibria Properties for Steam Flooding of Heavy Oils

    Energy Technology Data Exchange (ETDEWEB)

    Gabitto, Jorge; Barrufet, Maria

    2002-11-20

    The objectives of this research included experimental determination and rigorous modeling and computation of phase equilibrium diagrams, volumetric, and transport properties of hydrocarbon/CO2/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils.

  9. Transport and Phase Equilibria Properties for Steam Flooding of Heavy Oils

    Energy Technology Data Exchange (ETDEWEB)

    Gabitto, Jorge; Barrufet, Maria

    2001-12-18

    The objectives of this research included experimental determination and rigorous modeling and computation of phase equilibria, volumetric, and transport properties of hydrocarbon/CO2/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils.

  10. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications.

    Science.gov (United States)

    Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi

    2017-04-27

    Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural-functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles.

  11. Nonequilibrium Green's function method for quantum thermal transport

    Science.gov (United States)

    Wang, Jian-Sheng; Agarwalla, Bijay Kumar; Li, Huanan; Thingna, Juzar

    2014-12-01

    This review deals with the nonequilibrium Green's function (NEGF) method applied to the problems of energy transport due to atomic vibrations (phonons), primarily for small junction systems. We present a pedagogical introduction to the subject, deriving some of the well-known results such as the Laudauer-like formula for heat current in ballistic systems. The main aim of the review is to build the machinery of the method so that it can be applied to other situations, which are not directly treated here. In addition to the above, we consider a number of applications of NEGF, not in routine model system calculations, but in a few new aspects showing the power and usefulness of the formalism. In particular, we discuss the problems of multiple leads, coupled left-right-lead system, and system without a center. We also apply the method to the problem of full counting statistics. In the case of nonlinear systems, we make general comments on the thermal expansion effect, phonon relaxation time, and a certain class of mean-field approximations. Lastly, we examine the relationship between NEGF, reduced density matrix, and master equation approaches to thermal transport.

  12. Estimation of radiative properties of thermal protective clothing

    International Nuclear Information System (INIS)

    Udayraj; Talukdar, Prabal; Das, Apurba; Alagirusamy, Ramasamy

    2016-01-01

    Highlights: • Absorption and scattering coefficients of thermal protective fabrics are determined. • Genetic algorithm is applied for the inverse estimation. • Effects of pyrolysis of fabrics on radiative properties are analyzed. • Radiative properties of different layers of protective clothing are determined. - Abstract: Thermal protective clothing provides more safety and time to allow wearer to complete task or escape from external high heat or fire exposures. Radiation heat transfer is significant in such high temperature conditions. In the present work, radiative properties of various fabrics used for thermal protective clothing are estimated. Experimentally measured spectral directional–hemispherical reflectance and transmittance data available from literature are used to predict some of the radiative properties. A coupled finite volume radiative transfer equation solver along with genetic algorithm is used for this purpose. Radiative properties of some commonly used fabrics in thermal protective clothing at various heat source temperatures are predicted. Effects of pyrolysis on these properties are also analyzed. It is found that the extinction coefficient of the outermost layer of thermal protective clothing is very high as compared to the other inner layers, and it plays a significant role in blocking heat transfer to the skin. Scattering in fabrics used for thermal protective clothing is also found significant.

  13. Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Cemil; Sari, Ahmet; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2011-01-15

    This study deals with preparation, characterization, thermal properties and thermal reliability of n-eicosane microcapsules as novel phase change material (PCM) for thermal energy storage. The microcapsulated PCMs were prepared by coating n-eicosane with polymethylmethacrylate (PMMA) shell. Fourier transform infrared (FT-IR), scanning electron microscope (SEM) and particle size distribution (PSD) analysis were used to characterize the PMMA/eicosane microcapsules as microcapsulated PCMs. The PSD analysis indicated that the average diameter of microcapsules was found to be 0.70 {mu}m under the stirring speed of 2000 rpm. Thermal properties and thermal reliability of the microcapsules were determined using differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA) methods. From DSC analysis, the melting and freezing temperatures and the latent heats of the microcapsules were measured as 35.2 C and 34.9 C, 84.2 and -87.5 J/g, respectively. TGA analysis indicated that PMMA/eicosane microcapsules degrade in three steps at considerably high temperatures. Accelerated thermal cycling tests have been also applied to show the thermal reliability of the microcapsules. All results showed that thermal properties make the PMMA/eicosane microcapsules potential PCM for thermal energy storage. (author)

  14. Use of thermal-inertia properties for material identification

    Science.gov (United States)

    Schieldge, J. P.; Kahle, A. B.; Alley, R. E.; Gillespie, A. R.

    1980-01-01

    It is noted that a knowledge of the thermal inertia of the earth's surface can be used in geologic mapping as a complement to surface reflectance data as provided by Landsat. Thermal inertia, which is a body property, cannot be determined directly but can be inferred from radiation temperature measurements made at various times in the diurnal heating cycle, combined with a model of the surface heating processes. A model of this type is developed and applied along with temperature measurements made in the field and by satellite to determine thermal properties of surface materials. An example from a test site in western Nevada is used to demonstrate the utility of this technique.

  15. SYNTHESIS, SPECTRAL AND THERMAL PROPERTIES OF SOME ...

    African Journals Online (AJOL)

    The infrared spectral studies reveal that the ligand HNAAPTS is coordinated in neutral tridentate (N,N,S) fashion. The coordination number of Th(IV) in these coordination compounds varies from 6, 8, 10 or 11; while for U(VI) the coordination number are 8, 9 or 10. Thermal stabilities of these complexes were investigated ...

  16. Mesophase properties after anthracene thermal exposure

    Czech Academy of Sciences Publication Activity Database

    Šugárková, Věra; Plevová, Eva; Kaloč, M.

    -, - (2008), s. 62-70. ISBN 978-80-248-1939-6 Grant - others:GA ČR GA105/00/1698 Institutional research plan: CEZ:AV0Z30860518 Keywords : mesophase * anthracene * thermal behaviour * anisotropy Subject RIV: CC - Organic Chemistry

  17. Mechanical and thermal properties of prepacked aggregate ...

    Indian Academy of Sciences (India)

    Hossein Mohammadhosseini

    Use of pozzolanic materials in conventional concrete has become increasingly extensive, and this trend is expected to continue in PAC as well. Palm oil fuel ... POFA is beneficial, particularly for prepacked mass concrete where thermal cracking due to extreme heat rise is ... POFA is an agro-industrial waste that contains a.

  18. Influence of molybdenum on thermal properties of CMCs

    International Nuclear Information System (INIS)

    Khan, A.A.; Labbe, J.C.

    1996-01-01

    Aluminum nitride (AlN) has received considerable attention in recent years because of its high thermal conductivity. AlN is currently used in thermal management applications. AlN single crystals have a thermal conductivity as high as 320 W·m -1 ·K -1 , whereas the thermal conductivity of polycrystalline AlN varies from 80 to 200 W· -1 ·K -1 , depending on the microstructure and composition of the sintered ceramic. Conventional AlN ceramics, however, do not exhibit thermal conductivity as high as expected because of their relatively low purity and sinterability. Purity, particle-size distribution, oxygen content and specific surface area affect sinterability and thermal properties of AlN. It is difficult to produce pure AlN powder and dense, sintered AlN materials that are free from oxygen impurities. The effect of adding a ductile metallic phase (aluminum) to improve the mechanical behavior of AlN is therefore studied. Aluminum, because of its low melting point, degrades the mechanical properties of AlN at high temperatures. A refractory metal with high thermal conductivity is the best choice as a second phase additive. The influence of molybdenum addition on the thermal properties of AlN has been studied

  19. In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    Ganiu B. Olowojoba

    2016-01-01

    Full Text Available Abstract Graphene has excellent mechanical, thermal, optical and electrical properties and this has made it a prime target for use as a filler material in the development of multifunctional polymeric composites. However, several challenges need to be overcome to take full advantage of the aforementioned properties of graphene. These include achieving good dispersion and interfacial properties between the graphene filler and the polymeric matrix. In the present work, we report the thermal and mechanical properties of reduced graphene oxide/epoxy composites prepared via a facile, scalable and commercially viable method. Electron micrographs of the composites demonstrate that the reduced graphene oxide (rGO is well dispersed throughout the composite. Although no improvements in glass transition temperature, tensile strength and thermal stability in air of the composites were observed, good improvements in thermal conductivity (about 36 %, tensile and storage moduli (more than 13 % were recorded with the addition of 2 wt% of rGO.

  20. THERMAL PROPERTIES OF PARTICULATE EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    Vasile BRIA

    2010-06-01

    Full Text Available The combination of a filler with a polymer results in a new material with changed properties. Some of these changes are advantageous while others are less favorable. Polymeric dispersions of nanometer-sized metal particles offer the possibility of functionalizing the polymer by properties coming from the large number of surface atoms and the quantum-size effects. Nanosized metals show properties that differ significantly from that of bulk metals, which makes these nano-composite systems intriguing for scientific study and potentially useful for a number of technological applications. This study is about changing the epoxy properties using appropriate fillers.

  1. Thermal characterization and properties of a copper-diamond composite

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Pin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chavez, Thomas P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); DiAntonio, Christopher Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coker, Eric Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The thermal properties of a commercial copper-diamond composite were measured from below -50°C to above 200°C. The results of thermal expansion, heat capacity, and thermal diffusivity were reported. These data were used to calculate the thermal conductivity of the composite as a function of temperature in the thickness direction. These results are compared with estimated values based on a simple mixing rule and the temperature dependence of these physical properties is represented by curve fitting equations. These fitting equations can be used for thermal modeling of practical devices/systems at their operation temperatures. The results of the mixing rule showed a consistent correlation between the amount of copper and diamond in the composite, based on density, thermal expansion, and heat capacity measurements. However, there was a disparity between measured and estimated thermal diffusivity and thermal conductivity. These discrepancies can be caused by many intrinsic material issues such as lattice defects and impurities, but the dominant factor is attributed to the large uncertainty of the interfacial thermal conductance between diamond and copper.

  2. Thermal analysis of regulatory fire conditions on a transport package for radioactive material

    International Nuclear Information System (INIS)

    Ramsay, J.

    2006-01-01

    MDS Nordion, a division of Canadian-based MDS Inc., maintains and operates transport packages for the distribution of radioactive materials used in the medical, sterilization and pharmaceutical industries. Each of these packages must be proven to meet international regulatory standards, often including the analysis of the packages under accident fire conditions. Actual physical fire tests are costly and time consuming. Therefore, it is beneficial to simulate such fire tests with numerical models validated against previous tests. This paper describes the thermal simulation of the IAEA TS-R-1 regulatory fire conditions (800 o C fire for a period of 30 minutes and left to cool naturally in the heat of the sun) on a transport package using the ANSYS finite element code. The analyzed transport package is a steel-encased cylindrical lead-filled radiation shield welded to a support frame. A cylindrical cavity in the center of the shield, sealed by a lead-filled shielding plug, holds the radioactive material. The radiation shield is wrapped in thermal insulation, which is held in place by wire mesh. A two-dimensional, axi-symmetric model was developed to simulate the thermal behavior of the transport package during and after the regulatory fire. Mechanical deformations and stresses induced from the temperature distributions in the package are not considered in this paper. The mesh (solid model, radiation enclosure calculations, convection and radiation elements), material properties (non-linear), boundary conditions (radiation and convection) and loading (thermal transient, heat generation) used in the ANSYS simulations are discussed. Test data from physical steady state and transient fire tests was used to develop and validate the model. The finite element model was then used to predict and evaluate the response of the package to the TS-R-1 fire transient. (author)

  3. Synthesis, characterization, thermal and electrical properties of ...

    Indian Academy of Sciences (India)

    The anticorrosive property of a coating of PANI/[Co(mea)2(H2O)2Cl2] composite on mild steel coupon in 3 M HNO3 was evaluated using weight loss measurement and compared with pure polyaniline coating. The said composite has shown anticorrosive property and can thus, act as a potent dopant for enhancing corrosion ...

  4. Thermal transport across solid-solid interfaces enhanced by pre-interface isotope-phonon scattering

    Science.gov (United States)

    Lee, Eungkyu; Luo, Tengfei

    2018-01-01

    Thermal transport across solid interfaces can play critical roles in the thermal management of electronics. In this letter, we use non-equilibrium molecular dynamics simulations to investigate the isotope effect on the thermal transport across SiC/GaN interfaces. It is found that engineered isotopes (e.g., 10% 15N or 71Ga) in the GaN layer can increase the interfacial thermal conductance compared to the isotopically pure case by as much as 23%. Different isotope doping features, such as the isotope concentration, skin depth of the isotope region, and its distance from the interface, are investigated, and all of them lead to increases in thermal conductance. Studies of spectral temperatures of phonon modes indicate that interfacial thermal transport due to low-frequency phonons (transport. This work may provide insights into interfacial thermal transport and useful guidance to practical material design.

  5. Thermal properties of composite materials: a complex systems approximation

    Science.gov (United States)

    Carrillo, J. L.; Bonilla, Beatriz; Reyes, J. J.; Dossetti, Victor

    We propose an effective media approximation to describe the thermal diffusivity of composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy, the thermal diffusivity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal diffusivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a significant difference in the thermal properties of the anisotropic samples, compared to the isotropic randomly distributed. We correlate some measures of the complexity of the inclusion structure with the observed thermal response through a multifractal analysis. In this way, we are able to describe, and at some extent predict, the behavior of the thermal diffusivity in terms of the lacunarity and other measures of the complexity of these samples Partial Financial Support by CONACyT México and VIEP-BUAP.

  6. Thermal properties of light-weight concrete with waste polypropylene aggregate

    Science.gov (United States)

    Záleská, Martina; Pokorný, Jaroslav; Pavlíková, Milena; Pavlík, Zbyšek

    2017-07-01

    Thermal properties of a sustainable light-weight concrete incorporating high volume of waste polypropylene as partial substitution of natural aggregate were studied in the paper. Glass fiber reinforced polypropylene (GFPP), a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40, and 50 mass%. In order to quantify the effect of GFPP use on concrete properties, a reference concrete mix without plastic waste was studied as well. For the applied GFPP, bulk density, matrix density, and particle size distribution were measured. Specific attention was paid to thermal transport and storage properties of GFPP that were examined in dependence on compaction time. For the developed light-weight concrete, thermal properties were accessed using transient impulse technique, whereas the measurement was done in dependence on moisture content, from the dry state to fully water saturated state. Additionally, the investigated thermal properties were plotted as function of porosity. The tested light-weight concrete was found to be prospective construction material possessing improved thermal insulation function. Moreover, the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view considering plastics low biodegradability and safe disposal.

  7. Whole Year Optimization of Building Thermal Properties

    OpenAIRE

    Naeimi, Homa

    2014-01-01

    Along with improvement in buildings structure, developments in thermal design allow decreasing the energy demand of heating, cooling, and air conditioning of buildings. This thesis distinguishes and optimizes design elements that are essential in minimizing building heating /cooling loads. Optimum designs vary significantly for different areas due to different meteorological conditions between locations and seasonal changes at the same location. Considering the typical meteorological conditio...

  8. Thermal properties and stabilities of polymer thin films

    International Nuclear Information System (INIS)

    Kanaya, Toshiji; Kawashima, Kazuko; Inoue, Rintaro; Miyazaki, Tsukasa

    2009-01-01

    Recent extensive studies have revealed that polymer thin films showed very interesting but unusual thermal properties and stabilities. In the article we show that X-ray reflectivity and neutron reflectivity are very powerful tools to study the anomalous properties of polymer thin films. (author)

  9. Comparative study of physicochemical and thermal properties of the ...

    African Journals Online (AJOL)

    Three indigenous cucurbit seeds from Ivory Coast namely Cucumeropsis mannii Naudin, Citrullus lanatus var. Citroides (Thrumb.) Matsum & Nakai and Cucumis melo var. Agrestis were investigated for the physicochemical properties. Thermal properties of their crude oils extracted by a cold solvent method were also tested.

  10. Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces.

    Science.gov (United States)

    Foley, Brian M; Hernández, Sandra C; Duda, John C; Robinson, Jeremy T; Walton, Scott G; Hopkins, Patrick E

    2015-08-12

    The high mobility exhibited by both supported and suspended graphene, as well as its large in-plane thermal conductivity, has generated much excitement across a variety of applications. As exciting as these properties are, one of the principal issues inhibiting the development of graphene technologies pertains to difficulties in engineering high-quality metal contacts on graphene. As device dimensions decrease, the thermal and electrical resistance at the metal/graphene interface plays a dominant role in degrading overall performance. Here we demonstrate the use of a low energy, electron-beam plasma to functionalize graphene with oxygen, fluorine, and nitrogen groups, as a method to tune the thermal and electrical transport properties across gold-single layer graphene (Au/SLG) interfaces. We find that while oxygen and nitrogen groups improve the thermal boundary conductance (hK) at the interface, their presence impairs electrical transport leading to increased contact resistance (ρC). Conversely, functionalization with fluorine has no impact on hK, yet ρC decreases with increasing coverage densities. These findings indicate exciting possibilities using plasma-based chemical functionalization to tailor the thermal and electrical transport properties of metal/2D material contacts.

  11. Efficient calculation of dissipative quantum transport properties in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Greck, Peter

    2012-11-26

    We present a novel quantum transport method that follows the non-equilibrium Green's function (NEGF) framework but side steps any self-consistent calculation of lesser self-energies by replacing them by a quasi-equilibrium expression. We termed this method the multi-scattering Buettiker-Probe (MSB) method. It generalizes the so-called Buettiker-Probe model but takes into account all relevant individual scattering mechanisms. It is orders of magnitude more efficient than a fully selfconsistent non-equilibrium Green's function calculation for realistic devices, yet accurately reproduces the results of the latter method as well as experimental data. This method is fairly easy to implement and opens the path towards realistic three-dimensional quantum transport calculations. In this work, we review the fundamentals of the non-equilibrium Green's function formalism for quantum transport calculations. Then, we introduce our novel MSB method after briefly reviewing the original Buettiker-Probe model. Finally, we compare the results of the MSB method to NEGF calculations as well as to experimental data. In particular, we calculate quantum transport properties of quantum cascade lasers in the terahertz (THz) and the mid-infrared (MIR) spectral domain. With a device optimization algorithm based upon the MSB method, we propose a novel THz quantum cascade laser design. It uses a two-well period with alternating barrier heights and complete carrier thermalization for the majority of the carriers within each period. We predict THz laser operation for temperatures up to 250 K implying a new temperature record.

  12. Measurement and model on thermal properties of sintered diamond composites

    International Nuclear Information System (INIS)

    Moussa, Tala; Garnier, Bertrand; Peerhossaini, Hassan

    2013-01-01

    Highlights: ► Thermal properties of sintered diamond used for grinding is studied. ► Flash method with infrared temperature measurement is used to investigate. ► Thermal conductivity increases with the amount of diamond. ► It is very sensitive to binder conductivity. ► Results agree with models assuming imperfect contact between matrix and particles. - Abstract: A prelude to the thermal management of grinding processes is measurement of the thermal properties of working materials. Indeed, tool materials must be chosen not only for their mechanical properties (abrasion performance, lifetime…) but also for thermal concerns (thermal conductivity) for efficient cooling that avoids excessive temperatures in the tool and workpiece. Sintered diamond is currently used for grinding tools since it yields higher performances and longer lifetimes than conventional materials (mineral or silicon carbide abrasives), but its thermal properties are not yet well known. Here the thermal conductivity, heat capacity and density of sintered diamond are measured as functions of the diamond content in composites and for two types of metallic binders: hard tungsten-based and soft cobalt-based binders. The measurement technique for thermal conductivity is derived from the flash method. After pulse heating, the temperature of the rear of the sample is measured with a noncontact method (infrared camera). A parameter estimation method associated with a three-layer nonstationary thermal model is used to obtain sample thermal conductivity, heat transfer coefficient and absorbed energy. With the hard metallic binder, the thermal conductivity of sintered diamond increased by up to 64% for a diamond content increasing from 0 to 25%. The increase is much less for the soft binder: 35% for diamond volumes up to 25%. In addition, experimental data were found that were far below the value predicted by conventional analytical models for effective thermal conductivity. A possible explanation

  13. Comparison of four-probe thermal and thermoelectric transport measurements of thin films and nanostructures with microfabricated electro-thermal transducers

    Science.gov (United States)

    Kim, Jaehyun; Fleming, Evan; Zhou, Yuanyuan; Shi, Li

    2018-03-01

    Two different four-probe thermal and thermoelectric measurement methods have been reported for measuring the thermal conductivity, Seebeck coefficient, and electrical conductivity of suspended thin films and nanostructures with microfabricated electro-thermal transducers. The thermal contact resistance was extracted from the measured thermoelectric voltage drop at the contacts in the earlier four-probe method based on the assumption of constant thermal and thermoelectric properties along the sample. In comparison, the latter four-probe method can directly obtain the contact thermal resistance together with the intrinsic sample thermal resistance without making this assumption. Here, the measurement theory and data reduction processes of the latter four-probe measurement method are re-examined and improved. The measured thermal conductivity result of this improved method on representative thin film samples are found to agree with those obtained from the earlier four-probe method, which has obtained similar Seebeck coefficient and electrical conductivity as those measured with a different method for a supported thin film. The agreement provides further validation of the latest four-probe thermal transport measurement method of thin films and nanostructures.

  14. Temperature-dependent transport properties of FeRh

    Science.gov (United States)

    Mankovsky, S.; Polesya, S.; Chadova, K.; Ebert, H.; Staunton, J. B.; Gruenbaum, T.; Schoen, M. A. W.; Back, C. H.; Chen, X. Z.; Song, C.

    2017-04-01

    The finite-temperature transport properties of FeRh compounds are investigated by first-principles density-functional-theory-based calculations. The focus is on the behavior of the longitudinal resistivity with rising temperature, which exhibits an abrupt decrease at the metamagnetic transition point, T =Tm , between ferro- and antiferromagnetic phases. A detailed electronic structure investigation for T ≥0 K explains this feature and demonstrates the important role of (i) the difference of the electronic structure at the Fermi level between the two magnetically ordered states and (ii) the different degree of thermally induced magnetic disorder in the vicinity of Tm, giving different contributions to the resistivity. To support these conclusions, we also describe the temperature dependence of the spin-orbit-induced anomalous Hall resistivity and Gilbert damping parameter. For the various response quantities considered, the impact of thermal lattice vibrations and spin fluctuations on their temperature dependence is investigated in detail. Comparison with corresponding experimental data shows, in general, very good agreement.

  15. Transport properties of polycrystalline boron doped diamond

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J.R. de [Instituto Nacional de Pesquisas Espaciais, INPE/LAS, S.J. Campos, SP 12227-010 (Brazil); Berengue, O.M. [Universidade Estadual Paulista, UNESP Departamento de Física, Guaratinguetá 12.516-410 (Brazil); Moro, J. [Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Bragança Paulista 12929-600 (Brazil); Ferreira, N.G. [Instituto Nacional de Pesquisas Espaciais, INPE/LAS, S.J. Campos, SP 12227-010 (Brazil); Chiquito, A.J. [Universidade Federal de São Carlos, Departamento de Física, São Carlos 13565-905 (Brazil); Baldan, M.R., E-mail: baldan@las.inpe.br [Instituto Nacional de Pesquisas Espaciais, INPE/LAS, S.J. Campos, SP 12227-010 (Brazil)

    2014-08-30

    Highlights: • Synthetic boron doped diamond films were grown by hot filament chemical vapor deposition. • We characterized the films by hall effects as a function of temperature and magnetic field. • The resistivity was investigated. • The conduction mechanism was dominated by variable range hopping (VRH). - Abstract: The influence of doping level in the electronic conductivity and resistivity properties of synthetic diamond films grown by hot filament chemical vapor deposition (HFCVD) was investigated. Eight different doping level concentrations varied from 500 to 30,000 ppm were considered. The polycrystalline morphology observed by scanning electron microscopy and Raman spectra was strongly affected by the addition of boron. The electric characterization by Hall effect as a function of temperature and magnetic field showed that at sufficiently low temperatures, electrical conduction is dominated by variable range hopping (VRH) conducting process. The resistivity was also investigated by temperature-dependent transport measurements in order to investigate the conduction mechanism in the doped samples. The samples exhibited the VRH (m = 1/4) mechanism in the temperature range from 77 to 300 K. The interface between metal, and our HFCVD diamond was also investigated for the lower doped samples.

  16. Thermal conductivity theory, properties, and applications

    CERN Document Server

    Tritt, Terry M

    2006-01-01

    It has been almost thirty years since the publication of a book that is entirely dedicated to the theory, description, characterization and measurement of the thermal conductivity of solids. The recent discovery of new materials which possess more complex crystal structures and thus more complicated phonon scattering mechanisms have brought innovative challenges to the theory and experimental understanding of these new materials. With the development of new and novel solid materials and new measurement techniques, this book will serve as a current and extensive resource to the next generation

  17. Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    International Nuclear Information System (INIS)

    Clark, J.S.; Borowski, S.K.; Mcilwain, M.C.; Pellaccio, D.G.

    1992-09-01

    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the next generation of space propulsion systems - the key to space exploration

  18. Thermal-Fluid Transport Phenomena between Twin Rotating Parallel Disks

    Directory of Open Access Journals (Sweden)

    Shuichi Torii

    2008-01-01

    Full Text Available This paper investigates thermal-fluid transport phenomena in laminar flow between twin rotating parallel disks from whose center a circular jet is impinged on the heated horizontal bottom disk surface. Emphasis is placed on the effects of the Reynolds number, rotation speed, and disk spacing on both the formations of velocity and thermal fields and the heat transfer rate along the heated wall surface. The governing equations are discretized by means of a finite-difference technique and are numerically solved to determine the distributions of velocity vector and fluid temperature under the appropriate boundary conditions. It is found from the study that (i the recirculation zone which appears on the bottom disk moves along the outward direction with an increase in the Reynolds number, (ii when the Reynolds number is increased, heat transfer performance is intensified over the whole disk surface and the minimum value of the heat transfer rate moves in the downstream direction, and (iii the heat transfer rate is induced due to the disk rotation, whose effect becomes larger due to the upper disk rotation.

  19. Mechanical and thermal properties of bulk ZrB2

    International Nuclear Information System (INIS)

    Nakamori, Fumihiro; Ohishi, Yuji; Muta, Hiroaki; Kurosaki, Ken; Fukumoto, Ken-ichi; Yamanaka, Shinsuke

    2015-01-01

    ZrB 2 appears to have formed in the fuel debris at the Fukushima Daiichi nuclear disaster site, through the reaction between Zircaloy cladding materials and the control rod material B 4 C. Since ZrB 2 has a high melting point of 3518 K, the ceramic has been widely studied as a heat-resistant material. Although various studies on the thermochemical and thermophysical properties have been performed for ZrB 2 , significant differences exist in the data, possibly due to impurities or the porosity within the studied samples. In the present study, we have prepared a ZrB 2 bulk sample with 93.1% theoretical density by sintering ZrB 2 powder. On this sample, we have comprehensively examined the thermal and mechanical properties of ZrB 2 by the measurement of specific heat, ultrasonic sound velocities, thermal diffusivity, and thermal expansion. Vickers hardness and fracture toughness were also measured and found to be 13–23 GPa and 1.8–2.8 MPa m 0.5 , respectively. The relationships between these properties were carefully examined in the present study. - Highlights: • A ZrB 2 bulk sample with 93.1% theoretical density was prepared by sintering ZrB 2 powder. • We have evaluated mechanical and thermal properties such as Vickers hardness, fracture toughness and thermal conductivity. • The relationships between these properties were carefully examined.

  20. Thermal properties of alkali-activated aluminosilicates with CNT admixture

    Science.gov (United States)

    Zmeskal, Oldrich; Trhlikova, Lucie; Fiala, Lukas; Florian, Pavel; Cerny, Robert

    2017-07-01

    Material properties of electrically conductive cement-based materials with increased attention paid on electric and thermal properties were often studied in the last years. Both electric and thermal properties play an important role thanks to their possible utilization in various practical applications (e.g. snow-melting systems or building structures monitoring systems without the need of an external monitoring system). The DC/AC characteristics depend significantly on the electrical resistivity and the electrical capacity of bulk materials. With respect to the DC/AC characteristics of cement-based materials, such materials can be basically classified as electric insulators. In order to enhance them, various conductive admixtures such as those based on different forms of carbon, can be used. Typical representatives of carbon-based admixtures are carbon nanotubes (CNT), carbon fibers (CF), graphite powder (GP) and carbon black (CB). With an adequate amount of such admixtures, electric properties significantly change and new materials with higher added value can be prepared. However, other types of materials can be enhanced in the same way. Alkali-activated aluminosilicates (AAA) based on blast furnace slag are materials with high compressive strength comparable with cement-based materials. Moreover, the price of slag is lower than of Portland cement. Therefore, this paper deals with the study of thermal properties of this promising material with different concentrations of CNT. Within the paper a simple method of basic thermal parameters determination based on the thermal transient response to a heat power step is presented.

  1. Phonon thermal properties of graphene from molecular dynamics using different potentials.

    Science.gov (United States)

    Zou, Ji-Hang; Ye, Zhen-Qiang; Cao, Bing-Yang

    2016-10-07

    Phonon thermal transport in graphene has attracted significant interest in recent years. Phonon thermal properties of graphene are investigated by molecular dynamics simulations using the Tersoff, Tersoff-2010, REBO, and AIREBO potentials. By calculating the phonon properties and thermal conductivity of graphene, the performance of the potentials is evaluated based on comparisons with experimental data. It shows that the Tersoff-2010 and REBO display better dispersion curves for graphene than the original Tersoff and AIREBO. The Tersoff-2010 correctly provides the Γ point phonon velocities of the LA and TA branches as well as the G peak frequency with a value of 46 THz. In addition, the acoustic phonon relaxation time derived from the Tersoff-2010 satisfies the ideal relation "τ -1 ∝ ν 2 ." It is also found that the Tersoff-2010 provides the highest graphene thermal conductivity among the used potentials, and estimates about 30.0% contribution for flexural phonons to the total thermal conductivity. By comparison, the Tersoff-2010 potential is demonstrated to be the most suitable one to describe the phonon thermal properties of graphene.

  2. Cation Dynamics Governed Thermal Properties of Lead Halide Perovskite Nanowires.

    Science.gov (United States)

    Wang, Yuxi; Lin, Renxing; Zhu, Pengchen; Zheng, Qinghui; Wang, Qianjin; Li, Deyu; Zhu, Jia

    2018-04-09

    Metal halide perovskite (MHP) nanowires such as hybrid organic-inorganic CH 3 NH 3 PbX 3 (X = Cl, Br, I) have drawn significant attention as promising building blocks for high-performance solar cells, light-emitting devices, and semiconductor lasers. However, the physics of thermal transport in MHP nanowires is still elusive even though it is highly relevant to the device thermal stability and optoelectronic performance. Through combined experimental measurements and theoretical analyses, here we disclose the underlying mechanisms governing thermal transport in three different kinds of lead halide perovskite nanowires (CH 3 NH 3 PbI 3 , CH 3 NH 3 PbBr 3 and CsPbBr 3 ). It is shown that the thermal conductivity of CH 3 NH 3 PbBr 3 nanowires is significantly suppressed as compared to that of CsPbBr 3 nanowires, which is attributed to the cation dynamic disorder. Furthermore, we observed different temperature-dependent thermal conductivities of hybrid perovskites CH 3 NH 3 PbBr 3 and CH 3 NH 3 PbI 3 , which can be attributed to accelerated cation dynamics in CH 3 NH 3 PbBr 3 at low temperature and the combined effects of lower phonon group velocity and higher Umklapp scattering rate in CH 3 NH 3 PbI 3 at high temperature. These data and understanding should shed light on the design of high-performance MHP based thermal and optoelectronic devices.

  3. High pressure elasticity and thermal properties of depleted uranium

    International Nuclear Information System (INIS)

    Jacobsen, M. K.; Velisavljevic, N.

    2016-01-01

    Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. This work presents the first high pressure studies of the elasticity and thermal properties of depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.

  4. Phonon thermal transport through tilt grain boundaries in strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zexi; Chen, Xiang; Yang, Shengfeng; Xiong, Liming; Chen, Youping [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611 (United States); Deng, Bowen; Chernatynskiy, Aleksandr [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States)

    2014-08-21

    In this work, we perform nonequilibrium molecular dynamics simulations to study phonon scattering at two tilt grain boundaries (GBs) in SrTiO{sub 3}. Mode-wise energy transmission coefficients are obtained based on phonon wave-packet dynamics simulations. The Kapitza conductance is then quantified using a lattice dynamics approach. The obtained results of the Kapitza conductance of both GBs compare well with those obtained by the direct method, except for the temperature dependence. Contrary to common belief, the results of this work show that the optical modes in SrTiO{sub 3} contribute significantly to phonon thermal transport, accounting for over 50% of the Kapitza conductance. To understand the effect of the GB structural disorder on phonon transport, we compare the local phonon density of states of the atoms in the GB region with that in the single crystalline grain region. Our results show that the excess vibrational modes introduced by the structural disorder do not have a significant effect on phonon scattering at the GBs, but the absence of certain modes in the GB region appears to be responsible for phonon reflections at GBs. This work has also demonstrated phonon mode conversion and simultaneous generation of new modes. Some of the new modes have the same frequency as the initial wave packet, while some have the same wave vector but lower frequencies.

  5. Phonon thermal transport through tilt grain boundaries in strontium titanate

    International Nuclear Information System (INIS)

    Zheng, Zexi; Chen, Xiang; Yang, Shengfeng; Xiong, Liming; Chen, Youping; Deng, Bowen; Chernatynskiy, Aleksandr

    2014-01-01

    In this work, we perform nonequilibrium molecular dynamics simulations to study phonon scattering at two tilt grain boundaries (GBs) in SrTiO 3 . Mode-wise energy transmission coefficients are obtained based on phonon wave-packet dynamics simulations. The Kapitza conductance is then quantified using a lattice dynamics approach. The obtained results of the Kapitza conductance of both GBs compare well with those obtained by the direct method, except for the temperature dependence. Contrary to common belief, the results of this work show that the optical modes in SrTiO 3 contribute significantly to phonon thermal transport, accounting for over 50% of the Kapitza conductance. To understand the effect of the GB structural disorder on phonon transport, we compare the local phonon density of states of the atoms in the GB region with that in the single crystalline grain region. Our results show that the excess vibrational modes introduced by the structural disorder do not have a significant effect on phonon scattering at the GBs, but the absence of certain modes in the GB region appears to be responsible for phonon reflections at GBs. This work has also demonstrated phonon mode conversion and simultaneous generation of new modes. Some of the new modes have the same frequency as the initial wave packet, while some have the same wave vector but lower frequencies

  6. Determination of the transport of thermal energy by conduction in perfused tissue

    International Nuclear Information System (INIS)

    Waterman, F.M.; Tupchong, L.; Matthews, J.; Nerlinger, R.E.

    1987-01-01

    A limitation of the thermal clearance method for determination of the blood flow rate during local hyperthermia is its inability to distinguish between thermal energy transport by perfusion and thermal conduction. A method is described for determination of the thermal energy transport by conduction at the point where thermal clearance is measured. Three profiles of the tissue temperature are measured in mutually orthogonal directions about this point. The conduction term of the bioheat equation is evaluated from the temperature profiles by the method of finite differences. The ability to determine the rate of thermal energy transport by conduction from orthogonal temperature profiles is demonstrated in a static phantom where conduction is the only mode of thermal energy transport. The implementation of this method in the clinic is described

  7. Thermodynamic and transport combustion properties of hydrocarbons with air. Part 1: Properties in SI units

    Science.gov (United States)

    Gordon, S.

    1982-01-01

    Thermodynamic and transport combustion properties were calculated for a wide range of conditions for the reaction of hydrocarbons with air. Three hydrogen-carbon atom ratios (H/C = 1.7, 2.0, 2.1) were selected to represent the range of aircraft fuels. For each of these H/C ratios, combustion properties were calculated for the following conditions: Equivalence ratio: 0, 0.25, 0.5, 0.75, 1.0, 1.25 Water - dry air mass ratio: 0, 0.03 Pressure, kPa: 1.01325, 10.1325, 101.325, 1013.25, 5066.25 (or in atm: 0.01, 0.1, 1, 10, 50) Temperature, K: every 10 degrees from 200 to 900 K; every 50 degrees from 900 to 3000 K Temperature, R: every 20 degrees from 360 to 1600 R; very 100 degrees from 1600 to 5400 R. The properties presented are composition, density, molecular weight, enthalphy, entropy, specific heat at constant pressure, volume derivatives, isentropic exponent, velocity of sound, viscosity, thermal conductivity, and Prandtl number. Property tables are based on composites that were calculated by assuming both: (1) chemical equilibrium (for both homogeneous and heterogeneous phases) and (2) constant compositions for all temperatures. Properties in SI units are presented in this report for the Kelvin temperature schedules.

  8. Antisickling properties, thermal and photochemical degradations of ...

    African Journals Online (AJOL)

    Anthocyanin crude extracts and fractions of Annona senegalensis leaves were screened for their antisickling properties using a validated in vitro bioassay model of sickle cell anaemia. Preparative thin layer chromatography of acetylated anthocyanin crude extracts carried out with chloroform as solvent provided two active ...

  9. Synthesis, characterization, thermal and electrical properties of ...

    Indian Academy of Sciences (India)

    Administrator

    known as hybrid materials, which are the current inquisi- tion among material scientists. These hybrid systems possess varied properties and find applications in various fields like catalysis, sensors, bio-medical field (Greene et al 1975) and in corrosion study. Ethanolamines commonly known as aminoalcohols include ...

  10. Thermal radiative properties of a DLC coating

    Czech Academy of Sciences Publication Activity Database

    Hanzelka, Pavel; Králík, Tomáš; Mašková, A.; Musilová, Věra; Vyskočil, J.

    2008-01-01

    Roč. 48, 9-10 (2008), s. 455-457 ISSN 0011-2275 Institutional research plan: CEZ:AV0Z20650511 Keywords : thin films * heat transfer * radiant properties * cryostats Subject RIV: BJ - Thermodynamics Impact factor: 0.915, year: 2008

  11. Effects of Sintering on the Thermal and Optical Properties of Zinc Oxide Ceramic

    Science.gov (United States)

    Tabasco-Novelo, C.; May-Crespo, J.; Ramírez-Rincón, J. A.; Forero-Sandoval, I. Y.; Rodríguez-Gattorno, G.; Quintana, P.; Alvarado-Gil, J. J.

    2018-02-01

    Microstructure and composition are factors determining heat transfer in ZnO ceramic materials, which define the performance of the material after Joule heating, generated by electron transport. In this study, photothermal radiometry was applied to investigate the influence of the sintering temperature, ranging from 800 {°}C to 1300 {°}C, by measuring the thermal diffusivity and thermal conductivity at room temperature, of commercial and sol-gel ZnO pellets. Our results show that the values of these thermal properties for both types of ZnO increase when the sintering temperature increases, displaying maximum energy dissipation at 1200 {°}C. Additionally, the role of the sintering temperature on the optical properties was also analyzed using diffuse reflectance spectroscopy, and from these data the optical band-gap was obtained.

  12. Temperature-dependent thermal properties of Ru/C multilayers.

    Science.gov (United States)

    Yan, Shuai; Jiang, Hui; Wang, Hua; He, Yan; Li, Aiguo; Zheng, Yi; Dong, Zhaohui; Tian, Naxi

    2017-09-01

    Multilayers made of Ru/C are the most promising candidates when working in the energy region 8-20 keV. The stability of its thermal properties, including thermal expansion and thermal conduction, needs to be considered for monochromator or focusing components. Ru/C multilayers with periodic thicknesses of 3, 4 and 5 nm were investigated in situ by grazing-incidence X-ray reflectometry and diffuse scattering in order to study their thermal expansion characteristics as a function of annealing temperature up to 400°C. The thermal conductivity of multilayers with the same structure was also measured by the transient hot-wire method and compared with bulk values.

  13. Thermal Properties of Anionic Polyurethane Composition for Leather Finishing

    Directory of Open Access Journals (Sweden)

    Olga KOVTUNENKO

    2016-09-01

    Full Text Available Thermal properties of anionic polyurethane composition mixed with collagen product and hydrophilic sodium form of montmorillonite for use in the finishing of leather were studied by thermogravimetric method. The thermal indices of processes of thermal and thermo-oxidative destruction depending on the polyurethane composition were determined. The influence of anionic polyurethane composition on thermal behavior of chromium tanned gelatin films that imitate the leather were studied. APU composition with natural compounds increases their thermal stability both in air and in nitrogen atmosphere due to the formation of additional bonds between active groups of APU, protein and chrome tanning agent as the result of chemical reactions between organic and inorganic parts with the new structure formation.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.10043

  14. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Cemil; Sari, Ahmet; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey); Uzun, Orhan [Department of Physics, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2009-01-15

    This study is focused on the preparation, characterization, and determination of thermal properties of microencapsulated docosane with polymethylmethacrylate (PMMA) as phase change material for thermal energy storage. Microencapsulation of docosane has been carried out by emulsion polymerization. The microencapsulated phase change material (MEPCM) was characterized using scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Thermal properties and thermal stability of MEPCM were measured by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). DSC analysis indicated that the docosane in the microcapsules melts at 41.0 C and crystallizes at 40.6 C. It has latent heats of 54.6 and -48.7 J/g for melting and crystallization, respectively. TGA showed that the MEPCM degraded in three distinguishable steps and had good chemical stability. Accelerated thermal cycling tests also indicated that the MEPCM had good thermal reliability. Based on all these results, it can be concluded that the microencapsulated docosane as MEPCMs have good potential for thermal energy storage purposes such as solar space heating applications. (author)

  15. Mechanical properties and thermal behaviour of LLDPE/MWNTs nanocomposites

    Directory of Open Access Journals (Sweden)

    Tai Jin-hua

    2012-12-01

    Full Text Available Multi-walled carbon nanotubes (MWNTs were incorporated into a linear low-density polyethylene (LLDPE matrix through using screw extrusion and injection technique. The effect of different weight percent loadings of MWNTs on the morphology, mechanical, and thermal of LLDPE/MWNTs nanocomposite had been investigated. It was found that, at low concentration of MWNTs, it could uniformly disperse into a linear low-density polyethylene matrix and provide LLDPE/MWNTs nanocomposites much improved mechanical properties. Thermal analysis showed that a clear improvement of thermal stability for LLDPE/MWNTs nanocomposites increased with increasing MWNTs content.

  16. Thermal properties for the thermal-hydraulics analyses of the BR2 maximum nominal heat flux.

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.; Kim, Y. S.; Hofman, G. L. (Nuclear Engineering Division)

    2011-05-23

    This memo describes the assumptions and references used in determining the thermal properties for the various materials used in the BR2 HEU (93% enriched in {sup 235}U) to LEU (19.75% enriched in {sup 235}U) conversion feasibility analysis. More specifically, this memo focuses on the materials contained within the pressure vessel (PV), i.e., the materials that are most relevant to the study of impact of the change of fuel from HEU to LEU. This section is regrouping all of the thermal property tables. Section 2 provides a summary of the thermal properties in form of tables while the following sections present the justification of these values. Section 3 presents a brief background on the approach used to evaluate the thermal properties of the dispersion fuel meat and specific heat capacity. Sections 4 to 7 discuss the material properties for the following materials: (i) aluminum, (ii) dispersion fuel meat (UAlx-Al and U-7Mo-Al), (iii) beryllium, and (iv) stainless steel. Section 8 discusses the impact of irradiation on material properties. Section 9 summarizes the material properties for typical operating temperatures. Appendix A elaborates on how to calculate dispersed phase's volume fraction. Appendix B shows the evolution of the BR2 maximum heat flux with burnup.

  17. Transport properties of solid oxide electrolyte ceramics. A brief review

    Energy Technology Data Exchange (ETDEWEB)

    Kharton, V.V.; Marques, F.M.B. [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Atkinson, A. [Department of Materials, Imperial College, Exhibition Road, London SW7 2AZ (United Kingdom)

    2004-10-29

    This work is centered on the comparative analysis of oxygen ionic conductivity, electronic transport properties and thermal expansion of solid electrolyte ceramics, providing a brief overview of the materials having maximum potential performance in various high-temperature electrochemical devices, such as solid oxide fuel cells (SOFCs). Particular emphasis is focused on the oxygen ionic conductors reported during the last 10-15 years, including derivatives of {gamma}-Bi{sub 4}V{sub 2}O{sub 11} (BIMEVOX), La{sub 2}Mo{sub 2}O{sub 9} (LAMOX), Ln{sub 10-x}Si{sub 6}O{sub 26}-based apatites, (Gd,Ca){sub 2}Ti{sub 2}O{sub 7-{delta}} pyrochlores and perovskite-related phases based on LaGaO{sub 3} and Ba{sub 2}In{sub 2}O{sub 5}, in order to identify their specific features determining possible applications. The properties of the new ion-conducting phases are compared to data on well-known solid electrolytes, such as stabilized zirconia, {delta}-Bi{sub 2}O{sub 3}-based ceramics, doped ceria and LaAlO{sub 3}. The compositions exhibiting highest ionic conductivity are briefly discussed.

  18. Thermal transport in low dimensions from statistical physics to nanoscale heat transfer

    CERN Document Server

    2016-01-01

    Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources. The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibrium and nonequilibrium molecular dynamics simulations, hydrodynamic and kinetic approaches and the solution of stochastic models. The second part (Chapters 7-10) deals with applications to nano and microscale heat transfer, as for instance phononic transport in carbon-based nanomaterials, including the prominent case of na...

  19. Transport properties of cobalt at low temperatures

    DEFF Research Database (Denmark)

    Radharkishna, P.; Nielsen, Mourits

    1965-01-01

    Measurements are made of electrical resistivity, absolute thermoelectric power, and thermal conductivity of polycrystalline cobalt between 1.2 and 6 K; results are discussed on basis of inter-electronic scattering.......Measurements are made of electrical resistivity, absolute thermoelectric power, and thermal conductivity of polycrystalline cobalt between 1.2 and 6 K; results are discussed on basis of inter-electronic scattering....

  20. Carbon filter property detection with thermal neutron technique

    International Nuclear Information System (INIS)

    Deng Zhongbo; Han Jun; Li Wenjie

    2003-01-01

    The paper discussed the mechanism that the antigas property of the carbon filter will decrease because of its carbon bed absorbing water from the air while the carbon filter is being stored, and introduced the principle and method of detection the amount of water absorption with thermal neutron technique. Because some certain relation between the antigas property of the carbon filter and the amount of water absorption exists, the decrease degree of the carbon filter antigas property can be estimated through the amount of water absorption, offering a practicable facility technical pathway to quickly non-destructively detect the carbon filter antigas property

  1. Thermal Properties of Consolidated Granular Salt as a Backfill Material

    Science.gov (United States)

    Paneru, Laxmi P.; Bauer, Stephen J.; Stormont, John C.

    2018-03-01

    Granular salt has been proposed as backfill material in drifts and shafts of a nuclear waste disposal facility where it will serve to conduct heat away from the waste to the host rock. Creep closure of excavations in rock salt will consolidate (reduce the porosity of) the granular salt. This study involved measuring the thermal conductivity and specific heat of granular salt as a function of porosity and temperature to aid in understanding how thermal properties will change during granular salt consolidation accomplished at pressures and temperatures consistent with a nuclear waste disposal facility. Thermal properties of samples from laboratory-consolidated granular salt and in situ consolidated granular salt were measured using a transient plane source method at temperatures ranging from 50 to 250 °C. Additional measurements were taken on a single crystal of halite and dilated polycrystalline rock salt. Thermal conductivity of granular salt decreased with increases in temperature and porosity. Specific heat of granular salt at lower temperatures decreased with increasing porosity. At higher temperatures, porosity dependence was not apparent. The thermal conductivity and specific heat data were fit to empirical models and compared with results presented in the literature. At comparable densities, the thermal conductivities of granular salt samples consolidated hydrostatically in this study were greater than those measured previously on samples formed by quasi-static pressing. Petrographic studies of the consolidated salt indicate that the consolidation method influenced the nature of the porosity; these observations are used to explain the variation of measured thermal conductivities between the two consolidation methods. Thermal conductivity of dilated polycrystalline salt was lower than consolidated salt at comparable porosities. The pervasive crack network along grain boundaries in dilated salt impedes heat flow and results in a lower thermal conductivity

  2. Thermal relaxation and heat transport in spin ice Dy{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Klemke, Bastian; Meissner, M.; Tennant, D.A. [Helmholtz-Zentrum Berlin (Germany); Technische Universitaet Berlin (Germany); Strehlow, P. [Technische Universitaet Berlin (Germany); Physikalisch Technische Bundesanstalt, Institut Berlin (Germany); Kiefer, K. [Helmholtz-Zentrum Berlin (Germany); Grigera, S.A. [School of Physics and Astronomy, St. Andrews (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, CONICET, UNLP, La Plata (Argentina)

    2011-07-01

    The thermal properties of single crystalline Dy{sub 2}Ti{sub 2}O{sub 7} have been studied at temperature below 30 K and magnetic fields applied along [110] direction up to 1.5 T. Based on a thermodynamic field theory (TFT) various heat relaxation and thermal transport measurements were analysed. So we were able to present not only the heat capacity of Dy{sub 2}Ti{sub 2}O{sub 7}, but also for the first time the different contributions of the magnetic excitations and their corresponding relaxation times in the spin ice phase. In addition, the thermal conductivity and the shortest relaxation time were determined by thermodynamic analysis of steady state heat transport measurements. Finally, we were able to reproduce the temperature profiles recorded in heat pulse experiments on the basis of TFT using the previously determined heat capacity and thermal conductivity data without additional parameters. Thus, TFT has been proved to be thermodynamically consistent in describing three thermal transport experiments on different time scales. The observed temperature and field dependencies of heat capacity contributions and relaxation times indicate the magnetic excitations in the spin ice Dy{sub 2}Ti{sub 2}O{sub 7} as thermally activated monopole-antimonopole defects.

  3. Thermal transport of III-V semiconductor materials and superlattices based on molecular dynamics with optimized Tersoff potentials

    Science.gov (United States)

    Mei, Song; Knezevic, Irena

    III-V compound semiconductor materials are widely used in optoelectronics devices. III-V superlattices (SLs) make the active core of quantum cascade lasers (QCLs). Achieving room-temperature (RT), high-power, and continuous-wave (CW) operation in QCLs hinges on the understanding and engineering of thermal transport in the layers and across the interfaces. Cations in III-V ternary alloys differ a lot in mass and this effect on thermal transport is hard to capture using the scattering rates deduced from common perturbation theories. Molecular dynamics (MD) simulations can explicitly take the mass difference into consideration and are suitable for calculating the bulk thermal conductivity of III-V ternary alloys. Furthermore, the morphology and anharmonic interactions at an interface are naturally captured in MD, leading to an accurate description of interfacial transport. We adopt the Tersoff-type potentials for III-V binaries and optimize them according to acoustic phonon dispersions in order to capture thermal properties. The optimized potential is then used to directly compute the thermal boundary resistance at a heterojunction interface, as well as the thermal conductivity in the SL as a whole. US Department of Energy Award No. DE-SC0008712.

  4. Imaging Spatial Variations in the Dissipation and Transport of Thermal Energy within Individual Silicon Nanowires Using Ultrafast Microscopy.

    Science.gov (United States)

    Cating, Emma E M; Pinion, Christopher W; Van Goethem, Erika M; Gabriel, Michelle M; Cahoon, James F; Papanikolas, John M

    2016-01-13

    Thermal management is an important consideration for most nanoelectronic devices, and an understanding of the thermal conductivity of individual device components is critical for the design of thermally efficient systems. However, it can be difficult to directly probe local changes in thermal conductivity within a nanoscale system. Here, we utilize the time-resolved and diffraction-limited imaging capabilities of ultrafast pump-probe microscopy to determine, in a contact-free configuration, the local thermal conductivity in individual Si nanowires (NWs). By suspending single NWs across microfabricated trenches in a quartz substrate, the properties of the same NW both on and off the substrate are directly compared. We find the substrate has no effect on the recombination lifetime or diffusion length of photogenerated charge carriers; however, it significantly impacts the thermal relaxation properties of the NW. In substrate-supported regions, thermal energy deposited into the lattice by the ultrafast laser pulse dissipates within ∼10 ns through thermal diffusion and coupling to the substrate. In suspended regions, the thermal energy persists for over 100 ns, and we directly image the time-resolved spatial motion of the thermal signal. Quantitative analysis of the transient images permits direct determination of the NW's local thermal conductivity, which we find to be a factor of ∼4 smaller than in bulk Si. Our results point to the strong potential of pump-probe microscopy to be used as an all-optical method to quantify the effects of localized environment and morphology on the thermal transport characteristics of individual nanostructured components.

  5. Thermal Properties for the Thermal-Hydraulics Analyses of the BR2 Maximum Nominal Heat Flux

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Kim, Y. S. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hofman, G. L. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2015-02-01

    This memo describes the assumptions and references used in determining the thermal properties for the various materials used in the BR2 HEU (93% enriched in 235U) to LEU (19.75% enriched in 235U) conversion feasibility analysis. More specifically, this memo focuses on the materials contained within the pressure vessel (PV), i.e., the materials that are most relevant to the study of impact of the change of fuel from HEU to LEU. Section 2 provides a summary of the thermal properties in the form of tables while the following sections and appendices present the justification of these values. Section 3 presents a brief background on the approach used to evaluate the thermal properties of the dispersion fuel meat and specific heat capacity. Sections 4 to 7 discuss the material properties for the following materials: i) aluminum, ii) dispersion fuel meat (UAlx-Al and U-7Mo-Al), iii) beryllium, and iv) stainless steel. Section 8 discusses the impact of irradiation on material properties. Section 9 summarizes the material properties for typical operating temperatures. Appendix A elaborates on how to calculate dispersed phase’s volume fraction. Appendix B provides a revised methodology for determining the thermal conductivity as a function of burnup for HEU and LEU.

  6. Three-dimensional transport coefficient model and prediction-correction numerical method for thermal margin analysis of PWR cores

    International Nuclear Information System (INIS)

    Chiu, C.

    1981-01-01

    Combustion Engineering Inc. designs its modern PWR reactor cores using open-core thermal-hydraulic methods where the mass, momentum and energy equations are solved in three dimensions (one axial and two lateral directions). The resultant fluid properties are used to compute the minimum Departure from Nuclear Boiling Ratio (DNBR) which ultimately sets the power capability of the core. The on-line digital monitoring and protection systems require a small fast-running algorithm of the design code. This paper presents two techniques used in the development of the on-line DNB algorithm. First, a three-dimensional transport coefficient model is introduced to radially group the flow subchannel into channels for the thermal-hydraulic fluid properties calculation. Conservation equations of mass, momentum and energy for this channels are derived using transport coefficients to modify the calculation of the radial transport of enthalpy and momentum. Second, a simplified, non-iterative numerical method, called the prediction-correction method, is applied together with the transport coefficient model to reduce the computer execution time in the determination of fluid properties. Comparison of the algorithm and the design thermal-hydraulic code shows agreement to within 0.65% equivalent power at a 95/95 confidence/probability level for all normal operating conditions of the PWR core. This algorithm accuracy is achieved with 1/800th of the computer processing time of its parent design code. (orig.)

  7. Thermal Properties of Lunar Regolith Simulants

    Science.gov (United States)

    Street, Kenneth W., Jr.; Ray, Chandra; Rickman, Doug; Scheiman, Daniel A.

    2010-01-01

    Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH-, the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the Moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Thermo-Gravimetric Analysis (TGA) with Fourier Transform Infrared (FTIR) analysis provides information on evolved gas species and their evolution temperature profiles. The DTA and TGA studies included JSC-1A fine (Johnson Space Center Mare Type 1A simulant), NU-LHT-2M (National Aeronautics and Space Administration (NASA)-- United States Geological Survey (USGS)--Lunar Highlands Type 2M simulant) and its proposed feedstocks: anorthosite; dunite; high quality (HQ) glass and the norite from which HQ glass is produced. As an example, the DTA and TGA profiles for anorthosite follow. The DTA indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water is lost accounting for approximately 0.1 percent mass loss. Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals along with other volatile oxides. Limited TGA-FTIR data is available at the time of this writing. For JSC-1A fine, the TGA-FTIR indicates at least two kinds of water are evolved in the 100 to 500 and the 700 to 900 C ranges. Evolution of carbon dioxide types occurs in the 250 to 545, 545 to 705, and 705 to 985 C ranges. Geologically, the results are consistent with the evolution of "water" in its several forms, CO2 from break down of secondary carbonates and magmatic, dissolved gas and glass

  8. Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium

    Science.gov (United States)

    Mongiovì, Maria Stella; Jou, David; Sciacca, Michele

    2018-01-01

    This review paper puts together some results concerning non equilibrium thermodynamics and heat transport properties of superfluid He II. A one-fluid extended model of superfluid helium, which considers heat flux as an additional independent variable, is presented, its microscopic bases are analyzed, and compared with the well known two-fluid model. In laminar situations, the fundamental fields are density, velocity, absolute temperature, and heat flux. Such a theory is able to describe the thermomechanical phenomena, the propagation of two sounds in liquid helium, and of fourth sound in superleak. It also leads in a natural way to a two-fluid model on purely macroscopical grounds and allows a small amount of entropy associated with the superfluid component. Other important features of liquid He II arise in rotating situations and in superfluid turbulence, both characterized by the presence of quantized vortices (thin vortex lines whose circulation is restricted by a quantum condition). Such vortices have a deep influence on the transport properties of superfluid helium, as they increase very much its thermal resistance. Thus, heat flux influences the vortices which, in turn, modify the heat flux. The dynamics of vortex lines is the central topic in turbulent superfluid helium. The model is generalized to take into account the vortices in different cases of physical interest: rotating superfluids, counterflow superfluid turbulence, combined counterflow and rotation, and mass flow in addition to heat flow. To do this, the averaged vortex line density per unit volume L, is introduced and its dynamical equations are considered. Linear and non-linear evolution equations for L are written for homogeneous and inhomogeneous, isotropic and anisotropic situations. Several physical experiments are analyzed and the influence of vortices on the effective thermal conductivity of turbulent superfluid helium is found. Transitions from laminar to turbulent flows, from diffusive to

  9. Thermal characteristic of insulation for optimum design of RI transport package

    International Nuclear Information System (INIS)

    Lee, J. C.; Bang, K. S.; Seo, K. S.

    2002-01-01

    A package to transport the high level radioactive materials in required to withstand the hypothetical accident conditions as well as normal transport conditions according to IAEA and domestic regulations. The regulations require that the package should maintain the shielding, thermal and structural integrities to release no radioactive material. Thermal characteristics of insulations were evaluated and optimum insulation thickness was deduced for RI transport package. The package has a maximum capacity of 600 Curies for Ir-192 sealed source. The insulation thickness was decided with 10 mm of polyurethane form to maintain the thermal safety under fire accident condition. Thermal analysis was carried out for RI transport package, and it was shown that the thermal integrity of the package was maintained. The results obtained this study will be applied to a basic data for design of RI transport cask

  10. Thermoelectric properties and thermal stability of layered chalcogenides, TlScQ2, Q = Se, Te.

    Science.gov (United States)

    Aswathy, Vijayakumar Sajitha; Sankar, Cheriyedath Raj; Varma, Manoj Raama; Assoud, Abdeljalil; Bieringer, Mario; Kleinke, Holger

    2017-12-12

    A few thallium based layered chalcogenides of α-NaFeO 2 structure-type are known for their excellent thermoelectric properties and interesting topological insulator nature. TlScQ 2 belongs to this structural category. In the present work, we have studied the electronic structure, electrical and thermal transport properties and thermal stability of the title compounds within the temperature range 2-600 K. Density functional theory (DFT) predicts a metallic nature for TlScTe 2 and a semiconducting nature for TlScSe 2 . DFT calculations also show significant lowering of energies of frontier bands upon inclusion of spin-orbit coupling contribution in the calculation. The electronic structure also shows the simultaneous occurrence of holes and electron pockets for the telluride. Experiments reveal that the telluride shows a semi-metallic behaviour whereas the selenide is a semiconductor. The thermoelectric properties for both the materials were also investigated. Both these materials possess very low thermal conductivity which is an attractive feature for thermoelectrics. However, they lack thermal stability and decompose upon warming above room temperature, as evidenced from high temperature powder X-ray diffraction and thermal analysis.

  11. Tuning the electronic transport properties of graphene through functionalisation with fluorine

    Directory of Open Access Journals (Sweden)

    Dubois Marc

    2011-01-01

    Full Text Available Abstract We demonstrate the possibility to tune the electronic transport properties of graphene mono-layers and multi-layers by functionalisation with fluorine. For mono-layer samples, with increasing the fluorine content, we observe a transition from electronic transport through Mott variable range hopping (VRH in two dimensions to Efros-Shklovskii VRH. Multi-layer fluorinated graphene with high concentration of fluorine show two-dimensional Mott VRH transport, whereas CF0.28 multi-layer flakes exhibit thermally activated transport through near neighbour hopping. Our experimental findings demonstrate that the ability to control the degree of functionalisation of graphene is instrumental to engineer different electronic properties in graphene materials.

  12. Comparative study of hygrothermal properties of five thermal insulation materials

    OpenAIRE

    Laure Ducoulombier; Zoubeir Lafhaj

    2017-01-01

    The objective of this article is to carry out a comparative study of the main hygrothermal properties of five thermal insulation materials for buildings. These properties are necessary for a correct prediction of heat and moisture transfers through the walls and the selection of the most appropriate materials according to the specific buildings. The studied materials were glass wool, rock wool, expanded polystyrene, wood fiberboard and polyester fiberfill. The article is divided into three pa...

  13. Rare Earth Borohydrides—Crystal Structures and Thermal Properties

    Directory of Open Access Journals (Sweden)

    Christoph Frommen

    2017-12-01

    Full Text Available Rare earth (RE borohydrides have received considerable attention during the past ten years as possible hydrogen storage materials due to their relatively high gravimetric hydrogen density. This review illustrates the rich chemistry, structural diversity and thermal properties of borohydrides containing RE elements. In addition, it highlights the decomposition and rehydrogenation properties of composites containing RE-borohydrides, light-weight metal borohydrides such as LiBH4 and additives such as LiH.

  14. Thermal properties. Site descriptive modelling Forsmark - stage 2.2

    International Nuclear Information System (INIS)

    Back, Paer-Erik; Wrafter, John; Sundberg, Jan; Rosen, L ars

    2007-09-01

    The lithological data acquired from boreholes and mapping of the rock surface need to be reclassified into thermal rock classes, TRCs. The main reason is to simplify the simulations. The lithological data are used to construct models of the transition between different TRCs, thus describing the spatial statistical structure of each TRC. The result is a set of transition probability models that are used in the simulation of TRCs. The intermediate result of this first stochastic simulation is a number of realisations of the geology, each one equally probable. Based on the thermal data, a spatial statistical thermal model is constructed for each TRC. It consists of a statistical distribution and a variogram for each TRC. These are used in the stochastic simulation of thermal conductivity and the result is a number of equally probable realisations of thermal conductivity for the domain. In the next step, the realisations of TRCs (lithology) and thermal conductivity are merged, i.e. each realisation of geology is filled with simulated thermal conductivity values. The result is a set of realisations of thermal conductivity that considers both the difference in thermal properties between different TRCs, and the variability within each TRC. If the result is desired in a scale different from the simulation scale, i.e. the canister scale, upscaling of the realisations can be performed. The result is a set of equally probable realisations of thermal properties. The presented methodology was applied to rock domain RFM029 and RFM045. The main results are sets of realisations of thermal properties that can be used for further processing, most importantly for statistical analysis and numerical temperature simulations for the design of repository layout (distances between deposition holes). The main conclusions of the thermal modelling are: The choice of scale has a profound influence on the distribution of thermal conductivity values. The variance decreases and the lower tail

  15. Thermal properties. Site descriptive modelling Forsmark - stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Back, Paer-Erik; Wrafter, John; Sundberg, Jan [Geo Innova AB (Sweden); Rosen, L ars [Sweco Viak AB (Sweden)

    2007-09-15

    The lithological data acquired from boreholes and mapping of the rock surface need to be reclassified into thermal rock classes, TRCs. The main reason is to simplify the simulations. The lithological data are used to construct models of the transition between different TRCs, thus describing the spatial statistical structure of each TRC. The result is a set of transition probability models that are used in the simulation of TRCs. The intermediate result of this first stochastic simulation is a number of realisations of the geology, each one equally probable. Based on the thermal data, a spatial statistical thermal model is constructed for each TRC. It consists of a statistical distribution and a variogram for each TRC. These are used in the stochastic simulation of thermal conductivity and the result is a number of equally probable realisations of thermal conductivity for the domain. In the next step, the realisations of TRCs (lithology) and thermal conductivity are merged, i.e. each realisation of geology is filled with simulated thermal conductivity values. The result is a set of realisations of thermal conductivity that considers both the difference in thermal properties between different TRCs, and the variability within each TRC. If the result is desired in a scale different from the simulation scale, i.e. the canister scale, upscaling of the realisations can be performed. The result is a set of equally probable realisations of thermal properties. The presented methodology was applied to rock domain RFM029 and RFM045. The main results are sets of realisations of thermal properties that can be used for further processing, most importantly for statistical analysis and numerical temperature simulations for the design of repository layout (distances between deposition holes). The main conclusions of the thermal modelling are: The choice of scale has a profound influence on the distribution of thermal conductivity values. The variance decreases and the lower tail

  16. Thermal Properties of Lunar Regolith Simulants

    Science.gov (United States)

    Street, Kenneth; Ray, Chandra; Rickman, Doug

    2010-01-01

    Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH-, the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Themo-Gravimetric Analysis (TGA) with mass spectrometric (MS) determination of evolved gas species yields chemical information on various oxygenated volatiles (water, carbon dioxide, sulfur oxides, nitrogen oxides and phosphorus oxides) and their evolution temperature profiles. The DTA and TGAMS studies included JSC-1A fine, NU-LHT-2M and its proposed feed stocks: anorthosite; dunite; HQ (high quality) glass and the norite from which HQ glass is produced. Fig 1 is a data profile for anorthosite. The DTA (Fig 1a) indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water (Molecular Weight, MW, 18 in Fig 1c) is lost accounting for approximately 0.1% mass loss due to water removal (Fig 1b). Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals. Between 490 and the 970 transition other volatile oxides are lost including those of hydrogen (third water type), carbon (MW = 44), sulfur (MW = 64 and 80), nitrogen (MW 30 and 46) and possibly phosphorus (MW = 79, 95 or 142). Peaks at MW = 35 and 19 may be attributable to loss of chlorine and fluorine respectively. Negative peaks in the NO (MW = 30) and oxygen (MW = 32) MS profiles may indicate the production of NO2 (MW = 46). Because so many compounds are volatilized in this temperature range quantification of

  17. Measurement of thermal properties of magnetic nanoparticles using infrared thermal microscopy

    DEFF Research Database (Denmark)

    Kim, Jae Young; Chang, Ki Soo; Kook, Myung Ho

    2013-01-01

    Magnetic nanoparticles (MNPs) are considered promising for biomedical applications such as hyperthermia treatment and disease diagnosis owing to their distinctive thermal properties. For these applications, it is essential to screen the temperature distribution in the targeted disease site....... This study aimed to investigate and observe the thermal properties of a small amount of MNPs used as highly sensitive biomarkers for disease diagnosis by microthermography. Toward this end, we used polyacrylamide and agarose phantoms containing a small amount of MNPs (30 mg Fe-1). In phantoms, the increasing...

  18. Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation.

    Science.gov (United States)

    Guntur, Sitaramanjaneya Reddy; Lee, Kang Il; Paeng, Dong-Guk; Coleman, Andrew John; Choi, Min Joo

    2013-10-01

    Thermotherapy uses a heat source that raises temperatures in the target tissue, and the temperature rise depends on the thermal properties of the tissue. Little is known about the temperature-dependent thermal properties of tissue, which prevents us from accurately predicting the temperature distribution of the target tissue undergoing thermotherapy. The present study reports the key thermal parameters (specific heat capacity, thermal conductivity and heat diffusivity) measured in ex vivo porcine liver while being heated from 20 ° C to 90 ° C and then naturally cooled down to 20 ° C. The study indicates that as the tissue was heated, all the thermal parameters resulted in plots with asymmetric quasi-parabolic curves with temperature, being convex downward with their minima at the turning temperature of 35-40 ° C. The largest change was observed for thermal conductivity, which decreased by 9.6% from its initial value (at 20 ° C) at the turning temperature (35 ° C) and rose by 45% at 90 ° C from its minimum (at 35 ° C). The minima were 3.567 mJ/(m(3) ∙ K) for specific heat capacity, 0.520 W/(m.K) for thermal conductivity and 0.141 mm(2)/s for thermal diffusivity. The minimum at the turning temperature was unique, and it is suggested that it be taken as a characteristic value of the thermal parameter of the tissue. On the other hand, the thermal parameters were insensitive to temperature and remained almost unchanged when the tissue cooled down, indicating that their variations with temperature were irreversible. The rate of the irreversible rise at 35 ° C was 18% in specific heat capacity, 40% in thermal conductivity and 38.3% in thermal diffusivity. The study indicates that the key thermal parameters of ex vivo porcine liver vary largely with temperature when heated, as described by asymmetric quasi-parabolic curves of the thermal parameters with temperature, and therefore, substantial influence on the temperature distribution of the tissue undergoing

  19. Thermal properties of solids at room and cryogenic temperatures

    CERN Document Server

    Ventura, Guglielmo

    2014-01-01

    This book is a guide for materials scientists, physicists, chemists and engineers who wish to explore the field of low-temperature material properties. The focus is on heat capacity, thermal expansion and electrical and thermal conductivity. The authors report a wide range of experimental details and data, and have compiled useful tables of low-temperature data. Each chapter of the book starts by addressing the theoretical basis of the phenomena. This is a concise presentation, but it helps the reader to develop a deeper understanding of the experiments. The second part of the chapters is dedicated to describing the main experimental techniques to measure thermal properties at low and very low temperature ranges. The final part of each chapter provides a wealth of relevant experimental data in the form of tables and graphs.

  20. Thermal transport in topological-insulator-based superconducting hybrid structures with mixed singlet and triplet pairing states.

    Science.gov (United States)

    Li, Hai; Zhao, Yuan Yuan

    2017-11-22

    In the framework of the Bogoliubov-de Gennes equation, we investigate the thermal transport properties in topological-insulator-based superconducting hybrid structures with mixed spin-singlet and spin-triplet pairing states, and emphasize the different manifestations of the spin-singlet and spin-triplet pairing states in the thermal transport signatures. It is revealed that the temperature-dependent differential thermal conductance strongly depends on the components of the pairing state, and the negative differential thermal conductance only occurs in the spin-singlet pairing state dominated regime. It is also found that the thermal conductance is profoundly sensitive to the components of the pairing state. In the spin-singlet pairing state controlled regime, the thermal conductance obviously oscillates with the phase difference and junction length. With increasing the proportion of the spin-triplet pairing state, the oscillating characteristic of the thermal conductance fades out distinctly. These results suggest an alternative route for distinguishing the components of pairing states in topological-insulator-based superconducting hybrid structures.

  1. Applications and properties of thermally sprayed oxide ceramics

    International Nuclear Information System (INIS)

    Pawlowski, L.

    1991-01-01

    After a brief discussion of the general properties of thermally sprayed oxide ceramics, some of the more important materials are discussed in detail. The electric properties of Al 2 O 3 , such as electric resistivity, dielectric constant and dielectric strength, are shown together with the applications of thermally sprayed alumina coatings in 'corona rolls' and substrates in hybrid microelectronics. The thermal conductivity of ZrO 2 stabilized with a different Y 2 O 3 content is discussed together with the coatings' microstructure. The research on the development of zirconia coatings for application in the advanced turbines is briefly described. The mechanical properties of thermally sprayed Cr 2 O 3 coatings as well as their microstructure are shown. As chromia coatings often contain suboxides or even metallic chromium, a special powder giving metal free deposits has been developed and the coatings sprayed therefrom are applied in the printing industry as 'anilox rolls'. Finally, microstructure and some electrical properties of a high temperature superconductor YBa 2 CU 3 O 7-x are presented. (orig.) [de

  2. On the thermal properties of polarized nuclear matter

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Montasser, S.S.; Ramadan, S.

    1979-08-01

    The thermal properties of polarized nuclear matter are calculated using Skyrme III interaction modified by Dabrowski for polarized nuclear matter. The temperature dependence of the volume, isospin, spin and spin isospin pressure and energies are determined. The temperature, isospin, spin and spin isospin dependence of the equilibrium Fermi momentum is also discussed. (author)

  3. Chemical and thermal properties of VIP latrine sludge

    African Journals Online (AJOL)

    2015-07-04

    Jul 4, 2015 ... This study investigated the chemical and thermal properties of faecal sludge from 10 dry VIP latrines in Bester's Camp in the eThekwini Municipality, Durban, ... emptying and treatment equipment. A manual sorting of the pit .... (LaDePa) plant (Harrison and Wilson, 2012). Figure 3 illustrates the depths of the ...

  4. Effects of ageing and moisture content on thermal properties of ...

    African Journals Online (AJOL)

    This study therefore investigated the influence of tuber age and moisture content on the thermal properties of cassava roots. Freshly harvested cassava roots were peeled, cut into cylindrical shape of length 5cm and diameter 3.5 cm and then conditioned to moisture contents of 50, 55, 60, 65 and 70% (wet basis).

  5. Chemical and thermal properties of VIP latrine sludge | Zuma | Water ...

    African Journals Online (AJOL)

    This study investigated the chemical and thermal properties of faecal sludge from 10 dry VIP latrines in Bester's Camp in the eThekwini Municipality, Durban, South Africa. Faecal sludge samples were selected at different depths and from the front and back sections of 10 VIP latrines during a manual emptying process.

  6. Thermal, electrical, mechanical and fluidity properties of polyester ...

    Indian Academy of Sciences (India)

    Bariş Şimşek

    2018-04-13

    Apr 13, 2018 ... Design of experiment; electrical resistivity; polyester-reinforced concrete composites; thermal conductivity; product design. 1. Introduction. In recent years, polyesters have been widely used in resin systems to provide extraordinary mechanical [1], corrosion and water resistance properties to composite ...

  7. Thermal impact on spiking properties in Hodgkin-Huxley neuron ...

    Indian Academy of Sciences (India)

    Thermal impact on spiking properties in Hodgkin-Huxley neuron with synaptic stimulus. Shenbing ... Department of Physical Science and Technology, Wuhan University of Technology, Wuhan, 430070, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China ...

  8. Structural Properties of Dwelling and Thermal Comfort in Tropical ...

    African Journals Online (AJOL)

    The structural properties of dwelling units, in particular “window types” in 1, 250 apartments and their indoor temperature levels were collected. One hypothesis was formulated: (HO) There is no significant variation in effective temperature index and thus thermal comfort between dwellings built with wooden windows and ...

  9. Mechanical properties of clayey soils and thermal solicitations

    International Nuclear Information System (INIS)

    Boisson, J.Y.

    1992-01-01

    Changes in permeability and mechanical properties of three clayey soils with temperature have been studied by using a special oedometric cell. The action of a thermal solicitation on the fabric and the behavior of the samples is highlighted. 3 figs., 1 tab

  10. SIMULATION OF THERMO-ELASTICS PROPERTIES OF THERMAL ...

    African Journals Online (AJOL)

    30 juin 2011 ... SIMULATION OF THERMO-ELASTICS PROPERTIES OF THERMAL. BARRIER COATINGS. A. M. Ferouani*, H. I. Faraoun and H. Aourag*. Laboratoire d'Étude et Prédiction des Matériaux, Unité de Recherche Matériaux et. Energies Renouvelables, Faculté des sciences, Département de physique, ...

  11. Evaluating Thermal Properties of Rock | Bello | Journal of the ...

    African Journals Online (AJOL)

    The coefficients of the generalized model give the thermal properties of each rock type. The chi-square test showed that there was no significant difference (p>0.05) between the expected and observed data for all the models. The model developed in this work enabled us to use simulation prediction as the basis for rock ...

  12. Bark thermal properties of selected central hardwood species

    Science.gov (United States)

    Gretel E. Hengst; Jeffery O. Dawson

    1993-01-01

    Some physical, thermal, and chemical properties of bark of eleven tree species native to the central hardwood region were measured to determine their potential to protect the vascular cambium from damage by fire. The relationship between dbh and bark thickness for each of sixteen species was determined. For purposes of monitoring seasonal trends, two species (Quercus...

  13. Preparation and investigations of thermal properties of copper oxide ...

    Indian Academy of Sciences (India)

    Abstract. The effects of copper oxide, aluminium oxide and graphite on the thermal and structural properties of the organic phase change material (PCM) were investigated. Ethyl 2-(1H-benzotriazole-1-yl)acetate was selected as the pure PCM. Fourier transform infrared (FT-IR) spectroscopy, X-ray, energy dispersive X-ray ...

  14. Phonon and thermal properties of achiral single wall carbon ...

    Indian Academy of Sciences (India)

    A detailed theoretical study of the phonon and thermal properties of achiral single wall carbon nanotubes has been carried out using force constant model considering up to third nearest-neighbor interactions. We have calculated the phonon dispersions, density of states, radial breathing modes (RBM) and the specific heats ...

  15. Application of Glass Fiber Waste Polypropylene Aggregate in Lightweight Concrete – thermal properties

    Science.gov (United States)

    Citek, D.; Rehacek, S.; Pavlik, Z.; Kolisko, J.; Dobias, D.; Pavlikova, M.

    2018-03-01

    Actual paper focus on thermal properties of a sustainable lightweight concrete incorporating high volume of waste polypropylene aggregate as partial substitution of natural aggregate. In presented experiments a glass fiber reinforced polypropylene (GFPP) which is a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40 and 50 mass %. Results were compared with a reference concrete mix without plastic waste in order to quantify the effect of GFPP use on concrete properties. Main material physical parameters were studied (bulk density, matrix density without air content, and particle size distribution). Especially a thermal transport and storage properties of GFPP were examined in dependence on compaction time. For the developed lightweight concrete, thermal properties were accessed using transient impulse technique, where the measurement was done in dependence on moisture content (from the fully water saturated state to dry state). It was found that the tested lightweight concrete should be prospective construction material possessing improved thermal insulation function and the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view.

  16. A first principles study of the electronic structure, elastic and thermal properties of UB2

    Science.gov (United States)

    Jossou, Ericmoore; Malakkal, Linu; Szpunar, Barbara; Oladimeji, Dotun; Szpunar, Jerzy A.

    2017-07-01

    Uranium diboride (UB2) has been widely deployed for refractory use and is a proposed material for Accident Tolerant Fuel (ATF) due to its high thermal conductivity. However, the applicability of UB2 towards high temperature usage in a nuclear reactor requires the need to investigate the thermomechanical properties, and recent studies have failed in highlighting applicable properties. In this work, we present an in-depth theoretical outlook of the structural and thermophysical properties of UB2, including but not limited to elastic, electronic and thermal transport properties. These calculations were performed within the framework of Density Functional Theory (DFT) + U approach, using Quantum ESPRESSO (QE) code considering the addition of Coulomb correlations on the uranium atom. The phonon spectra and elastic constant analysis show the dynamic and mechanical stability of UB2 structure respectively. The electronic structure of UB2 was investigated using full potential linear augmented plane waves plus local orbitals method (FP-LAPW+lo) as implemented in WIEN2k code. The absence of a band gap in the total and partial density of states confirms the metallic nature while the valence electron density plot reveals the presence of covalent bond between adjacent B-B atoms. We predicted the lattice thermal conductivity (kL) by solving Boltzmann Transport Equation (BTE) using ShengBTE. The second order harmonic and third-order anharmonic interatomic force constants required as input to ShengBTE was calculated using the Density-functional perturbation theory (DFPT). However, we predicted the electronic thermal conductivity (kel) using Wiedemann-Franz law as implemented in Boltztrap code. We also show that the sound velocity along 'a' and 'c' axes exhibit high anisotropy, which accounts for the anisotropic thermal conductivity of UB2.

  17. Electromagnetic, mechanical, and transport properties of composite materials

    CERN Document Server

    Pal, Rajinder

    2012-01-01

    Applications of Composite MaterialsElectromagnetic Properties of Composites: Static Electromagnetic Properties of CompositesElectrical Conductivity of CompositesDielectric Properties of CompositesMagnetic Properties of CompositesElectromagnetic Properties of Composites: General Treatment of Electromagnetic Phenomena in CompositesMaxwell Equations and the Generalized Conductivity PrincipleComplex Electromagnetic Properties of CompositesMechanical Properties of CompositesMechanical Properties of Dilute Particulate-Filled CompositesMechanical Properties of Concentrated Pore-Solid CompositesEffective Young's Modulus of Concentrated CompositesEffective Shear Modulus of Concentrated CompositesMechanical Properties of Concentrated Composites of Randomly Oriented Platelets Interfacial and Interphase Effects on Mechanical Properties of CompositesViscoelastic Behavior of CompositesTransport Properties of Composites: Heat Transfer in CompositesGeneral Introduction to Heat TransferFundamentals of Conductive Heat Transfer...

  18. Particle transport in a wave spectrum with a thermal distribution of Larmor radii

    Science.gov (United States)

    Martinell, Julio; Kryukov, Nikolay; Del Castillo-Negrete, Diego

    2017-10-01

    Test particle E × B transport is studied due to an infinite spectrum of drift waves in two dimensions using a Hamiltonian approach, which can be reduced to a 2D mapping. Finite Larmor radius (FLR) effects are included taking a gyroaverage. When the wave amplitude is increased there is a gradual transition to chaos but the chaos level is reduced when FLR grows, implying that fast particles are better confined. The fraction of confined particles is found to be reduced as the wave amplitude rises. The statistical properties of transport are studied finding that, in the absence of a background flow, it is diffusive with a Gaussian PDF, when all particles have the same FLR. In contrast, for a thermal FLR distribution, the PDF is non-Gaussian but the transport remains diffusive. A theoretical explanation of this is given showing that a superposition of Gaussians produces a PDF with long tails. When a background flow is introduced that varies monotonically with radius, the transport becomes strongly super-diffusive due to the appearance of long Levy flights which dominate the particles. The PDF develops long tails as the flow strength is increased. The particle variance scales as σ t3 for chaotic regime but reduces to ballistic ( t2) for low chaos. Work funded by PAPIIT-UNAM project IN109115.

  19. Transport properties of transition metal carbide

    International Nuclear Information System (INIS)

    Wu, K.Y.; Taylor, R.E.

    1974-01-01

    The purpose of this study was to study the scattering mechanisms of heat carriers in TiC. Measurements of electric resistivity, thermopower, Lorentz function, and lattice thermal conductivity were carried out on pure TiC and TiC--2.4 and 25 mole percent VC. 8 figures

  20. Tailoring Thermal Radiative Properties with Doped-Silicon Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuomin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-08-28

    Aligned doped-silicon nanowire (D-SiNW) arrays form a hyperbolic metamaterial in the mid-infrared and have unique thermal radiative properties, such as broadband omnidirectional absorption, low-loss negative refraction, etc. A combined theoretical and experimental investigation will be performed to characterize D-SiNW arrays and other metamaterials for tailoring thermal radiative properties. Near-field thermal radiation between anisotropic materials with hyperbolic dispersions will also be predicted for potential application in energy harvesting. A new kind of anisotropic metamaterial with a hyperbolic dispersion in a broad infrared region has been proposed and demonstrated based on aligned doped-silicon nanowire (D-SiNW) arrays. D-SiNW-based metamaterials have unique thermal radiative properties, such as broadband omnidirectional absorption whose width and location can be tuned by varying the filling ratio and/or doping level. Furthermore, high figure of merit (FOM) can be achieved in a wide spectral region, suggesting that D-SiNW arrays may be used as a negative refraction material with much less loss than other structured materials, such as layered semiconductor materials. We have also shown that D-SiNWs and other nanostructures can significantly enhance near-field thermal radiation. The study of near-field radiative heat transfer between closely spaced objects and the electromagnetic wave interactions with micro/nanostructured materials has become an emerging multidisciplinary field due to its importance in advanced energy systems, manufacturing, local thermal management, and high spatial resolution thermal sensing and mapping. We have performed extensive study on the energy streamlines involving anisotropic metamaterials and the applicability of the effective medium theory for near-field thermal radiation. Graphene as a 2D material has attracted great attention in nanoelectronics, plasmonics, and energy harvesting. We have shown that graphene can be used to

  1. Transport Properties of the Nuclear Pasta Phase with Quantum Molecular Dynamics

    Science.gov (United States)

    Nandi, Rana; Schramm, Stefan

    2018-01-01

    We study the transport properties of nuclear pasta for a wide range of density, temperature, and proton fractions, relevant for different astrophysical scenarios adopting a quantum molecular dynamics model. In particular, we estimate the values of shear viscosity as well as electrical and thermal conductivities by calculating the static structure factor S(q) using simulation data. In the density and temperature range where the pasta phase appears, the static structure factor shows irregular behavior. The presence of a slab phase greatly enhances the peak in S(q). However, the effect of irregularities in S(q) on the transport coefficients is not very dramatic. The values of all three transport coefficients are found to have the same orders of magnitude as found in theoretical calculations for the inner crust matter of neutron stars without the pasta phase; therefore, the values are in contrast to earlier speculations that a pasta layer might be highly resistive, both thermally and electrically.

  2. Correlation of normal and superconducting transport properties on textured Bi-2212 ceramic thin rods

    International Nuclear Information System (INIS)

    Natividad, E.; Castro, M.; Burriel, R.; Diez, J.C.; Navarro, R.; Angurel, L.A.

    2002-01-01

    The electric and thermal properties well above and below T c of Bi-2212 textured ceramics have been correlated through a careful analysis of the microstructure and the transport measurements. Thin rods with the same Bi-2122 stoichiometry and textured by a laser floating zone technique have been studied with that aim. By changing the growth parameters, it has been possible to produce strong changes in microstructure and critical current density, J c , with small variations in the thermal conductivity. The existence of phase and composition gradients across the thin rods, which explains the variations of T c , makes the relation difficult between the normal state resistivity and J c (77 K). A simple qualitative analysis that takes into account the observed microstructure has been developed to correlate the electric transport properties in the normal and in the superconducting states. (author)

  3. High-frequency filtering for low-temperature thermal transport studies in nanostructures

    OpenAIRE

    Torgovkin, Andrii

    2012-01-01

    Filtering of external unwanted RF-noise and thermal noise generated at the high-temperature parts of the measuring circuit is essential for successful measurements of thermal transport of nanostructures at low temperatures. This is because of thermal decoupling of the systems, i.e. the extreme weakness of thermal conduction at sub-Kelvin temperatures, leading easily to overheating even with excess power in sub pW range. We have started to improve the noise filtering in our cryogenic diluti...

  4. Thermal properties of carbon black aqueous nanofluids for solar absorption

    Science.gov (United States)

    Han, Dongxiao; Meng, Zhaoguo; Wu, Daxiong; Zhang, Canying; Zhu, Haitao

    2011-07-01

    In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  5. Thermal Properties of Prominence Motions as Observed in the UV

    Science.gov (United States)

    Kucera, T.; Landi, E.

    2003-01-01

    The mechanisms by which solar prominences are filled with plasma are still undetermined. In this study we perform a quantitative analysis of the thermal properties of moving features in prominences in order to put constraints on models of prominence formation and dynamics. In order to make such measurements of quickly moving features seen in prominences in the UV we use the SOHO instruments SUMER and CDS to take a time series of exposures at a single pointing position, providing a measurement of spectral line properties as a function of time and position along the slit. The resulting observations in spectral lines in a range of 'transition region' temperatures allow us to analyze the thermal properties of the moving prominence sources as a function of time.

  6. Thermal properties of carbon black aqueous nanofluids for solar absorption

    Directory of Open Access Journals (Sweden)

    Han Dongxiao

    2011-01-01

    Full Text Available Abstract In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  7. Thermal Properties of Oxides With Magnetoplumbite Structure for Advanced Thermal Barrier Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2007-01-01

    Oxides having magnetoplumbite structure are promising candidate materials for applications as high temperature thermal barrier coatings because of their high thermal stability, high thermal expansion, and low thermal conductivity. In this study, powders of LaMgAl11O19, GdMgAl11O19, SmMgAl11O19, and Gd0.7Yb0.3MgAl11O19 magnetoplumbite oxides were synthesized by citric acid sol-gel method and hot pressed into disk specimens. The thermal expansion coefficients (CTE) of these oxide materials were measured from room temperature to 1500 C. The average CTE value was found to be approx.9.6x10(exp -6)/C. Thermal conductivity of these magnetoplumbite-based oxide materials was also evaluated using steady-state laser heat flux test method. The effects of doping on thermal properties were also examined. Thermal conductivity of the doped Gd0.7Yb0.3MgAl11O19 composition was found to be lower than that of the undoped GdMgAl11O19. In contrast, thermal expansion coefficient was found to be independent of the oxide composition and appears to be controlled by the magnetoplumbite crystal structure. Thermal conductivity testing of LaMgAl11O19 and LaMnAl11O19 magnetoplumbite oxide coatings plasma sprayed on NiCrAlY/Rene N5 superalloy substrates indicated resistance of these coatings to sintering even at temperatures as high as 1600 C.

  8. Characterization of thermal properties of municipal solid waste landfills.

    Science.gov (United States)

    Faitli, József; Magyar, Tamás; Erdélyi, Attila; Murányi, Attila

    2015-02-01

    Municipal waste landfills represent not only a source of landfill gases, but a source of thermal energy as well. The heat in landfills is generated by physical, chemical and microbiological processes. The goal of our study was to characterize the thermal properties of municipal solid waste (MSW) samples of the given landfill. A new apparatus was designed and constructed to measure heat flow. A systematic test series of 17 discrete measurements was carried out with municipal waste samples of 1.0-1.7 m(3). The thermal conductivity, heat diffusivity and specific heat capacity of the samples were determined. Analysing the results of the sampling and our experiments it was realized that the theoretical fundaments should be clarified. Two theories were developed for the serial and for the parallel heat flow in three phase disperse systems. The serial and parallel models resulted in different theoretical estimations. The measured thermal conductivity and heat diffusivity were better characterized by the parallel heat flow estimations. The results show that heat can flow parallel in solid, liquid and gas phases. Characterization of thermal properties serves to establish the fundament of heat extraction from municipal waste landfills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  10. Electronic properties of thermally formed thin iron oxide films

    International Nuclear Information System (INIS)

    Wielant, J.; Goossens, V.; Hausbrand, R.; Terryn, H.

    2007-01-01

    The oxide layer, present between an organic coating and the substrate, guarantees adhesion of the coating and plays a determinating role in the delamination rate of the organic coating. The purpose of this study is to compare the resistive and semiconducting properties of thermal oxides formed on steel in two different atmospheres at 250 deg. C: an oxygen rich atmosphere, air, and an oxygen deficient atmosphere, N 2 . In N 2 , a magnetite layer grows while in air a duplex oxide film forms composed by an inner magnetite layer and a thin outer hematite scale. The heat treatment for different amounts of time at high temperature was used as method to sample the thickness variation and change in electronic and semiconducting properties of the thermal oxide layers. Firstly, linear voltammetric measurements were performed to have a first insight in the electrochemical behavior of the thermal oxides in a borate buffer solution. Electrochemical impedance spectroscopy in the same buffer combined with the Mott-Schottky analysis were used to determine the semiconducting properties of the thermal oxides. By spectroscopic ellipsometry (SE) and atomic force microscopy (AFM), respectively, the thickness and roughness of the oxide layers were determined supporting the physical interpretation of the voltammetric and EIS data. These measurements clearly showed that oxide layers with different constitution, oxide resistance, flatband potential and doping concentration can be grown by changing the atmosphere

  11. Enhancement in thermal and mechanical properties of bricks

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2013-01-01

    Full Text Available A new type of porous brick is proposed. Sawdust is initially well mixed with wet clay in order to create voids inside the brick during the firing process. The voids will enhance the total performance of the brick due to the reduction of its density and thermal conductivity and a minor reduction of its compressive stress. All these properties have been measured experimentally and good performance has been obtained. Although a minor reduction in compressive stress has been observed with increased porosity, this property has still been larger than that of the common used hollow brick. Data obtained by this work lead to a new type of effective brick having a good performance with no possibility that mortar enters inside the holes which is the case with the common used hollow bricks. The mortar has a determent effect on thermal properties of the wall since it has some higher thermal conductivity and density than that of brick which increases the wall overall density and thermal conductivity of the wall.

  12. Computer program for calculating thermodynamic and transport properties of fluids

    Science.gov (United States)

    Hendricks, R. C.; Braon, A. K.; Peller, I. C.

    1975-01-01

    Computer code has been developed to provide thermodynamic and transport properties of liquid argon, carbon dioxide, carbon monoxide, fluorine, helium, methane, neon, nitrogen, oxygen, and parahydrogen. Equation of state and transport coefficients are updated and other fluids added as new material becomes available.

  13. Transport Properties of some Conducting TCNQ-Salts

    DEFF Research Database (Denmark)

    Mortensen, Kell; Jacobsen, C. S.; Andersen, J. R.

    1979-01-01

    An experimental decomposition of the transport properties for organic transfer salts is attempted on the basis of conductivity and thermopower measurements. A decomposition is proposed on the compound: TMTSF-DMTCNQ. Furthermore some new transport data on the organic low-temperature conductor: HMTSF...

  14. Temperature-dependent ionic conductivity and transport properties ...

    Indian Academy of Sciences (India)

    Administrator

    with dc conductivity (σdc) for different LiClO4 weight fractions (p) related to transport dimensionality was also focused. The highest ionic ... Percolation; transport properties; VTF model; ionic conductivity; Williams–Landel–Ferry. 1. Introduction ..... thermodynamic interaction parameter and composites are thermodynamically ...

  15. Thermal properties of flax fiber scoured by different methods

    Directory of Open Access Journals (Sweden)

    Zheng Dong

    2015-01-01

    Full Text Available Thermal properties of flax roves untreated and treated were characterized by differential scanning calorimetry (DSC and thermal gravity analyzer (TGA in order to understand their thermal behavior in more detail and to evaluate the effect of scouring processing on the thermal behavior. Flax roves were treated with six kinds of methods including biological scouring, one bath, two bath, bleaching, alkali scouring and industry chemical scouring as standards. Results showed that all treatments improved thermal stability of flax roves. The results indicated that glass transition temperature (Tg decreased after scouring besides the sample by directly bleaching. It is more difficult to determine the endothermic peak of flax treated by chemical scouring in industry because it takes a very flat course. A distinct endothermic peak was observed for the untreated flax rove, while a distinct exothermic peak in different temperature interval was revealed for other four treated flax rove samples. For TGA analysis, thermal degradation of flax roves studied consists of three regions of the initial, main, and char decomposition, and the third stage consists of secondary weight loss and carbonization for flax roves with biological scouring, one-bath and two-bath. Besides, different residue left indicates that the bio-scoured flax roves are lost with volatile products and does not contribute to char formation. These results provide valuable preferences for mechanism and top value added application of bio-scouring in flax roves.

  16. Transport theory and low energy properties of colour superconductors

    CERN Document Server

    Litim, Daniel F

    2002-01-01

    The one-loop polarisation tensor and the propagation of ``in-medium'' photons of colour superconductors in the 2SC and CFL phase is discussed. For a study of thermal corrections to the low energy effective theory in the 2SC phase, a classical transport theory for fermionic quasiparticles is invoked.

  17. High Temperature Thermal Properties of Bentonite Foundry Sand

    Directory of Open Access Journals (Sweden)

    Krajewski P.K.

    2015-06-01

    Full Text Available The paper presents results of measuring thermal conductivity and heat capacity of bentonite foundry sand in temperature range ambient - 900­­°C. During the experiments a technical purity Cu plate was cast into the green-sand moulds. Basing on measurements of the mould temperature field during the solidification of the casting, the temperature relationships of the measured properties were evaluated. It was confirmed that water vaporization strongly influences thermal conductivity of the moulding sand in the first period of the mould heating by the poured casting.

  18. Effect of phonon transport on the Seebeck coefficient and thermal conductivity of silicon nanowire arrays

    Science.gov (United States)

    Sadhu, Jyothi Swaroop

    Thermoelectrics enable solid-state conversion of heat to electricity by the Seebeck effect, but must provide scalable and cost-effective technology for practical waste heat harvesting. This dissertation explores the thermoelectric properties of electrochemically etched silicon nanowires through experiments, complemented by charge and thermal transport theories. Electrolessly etched silicon nanowires show anomalously low thermal conductivity that has been attributed to the increased scattering of heat conducting phonons from the surface disorder introduced by etching. The reduction is below the incoherent limit for phonon scattering at the boundary, the so-called Casimir limit. A new model of partially coherent phonon transport shows that correlated multiple scattering of phonons off resonantly matched rough surfaces can indeed lead to thermal conductivity below the Casimir limit. Using design guidelines from the theory, silicon nanowires of controllable surface roughness are fabricated using metal-assisted chemical etching. Extensive characterization of the nanowire surfaces using transmission electron microscopy provides surface roughness parameters that are important in testing transport theories. The second part of the dissertation focuses on the implications of increased phonon scattering on the Seebeck coefficient, which is a cumulative effect of non-equilibrium amongst charge carriers and phonons. A novel frequency-domain technique enables simultaneous measurements of the Seebeck coefficient and the thermal conductivity of nanowire arrays. The frequency response measurements isolate the parasitic contributions thus improving upon existing techniques for cross-plane thermoelectric measurements. While the thermal conductivity of nanowires reduces significantly with increased roughness, there is also a significant reduction in the Seebeck coefficient over a wide range of doping. Theoretical fitting of the data reveals that such reduction results from the

  19. Contributions of different degrees of freedom to thermal transport in the C60 molecular crystal

    Science.gov (United States)

    Kumar, Sushant; Shao, Cheng; Lu, Simon; McGaughey, Alan J. H.

    2018-03-01

    Three models of the C60 molecular crystal are studied using molecular dynamics simulations to resolve the roles played by intermolecular and intramolecular degrees of freedom (DOF) in its structural, mechanical, and thermal properties at temperatures between 35 and 400 K. In the full DOF model, all DOF are active. In the rigid body model, the intramolecular DOF are frozen, such that only center of mass (COM) translations and molecular rotations/librations are active. In the point mass model, the molecule is replaced by a point mass, such that only COM translations are active. The zero-pressure lattice constants and bulk moduli predicted from the three models fall within ranges of 0.15 and 20%. The thermal conductivity of the point mass model is the largest across the temperature range, showing a crystal-like temperature dependence (i.e., it decreases with increasing temperature) due to the presence of phonon modes associated with the COM translations. The rigid body model thermal conductivity is the smallest and follows two distinct regimes. It is crystal-like at low temperatures and becomes temperature invariant at high temperatures. The latter is typical of the behavior of an amorphous material. By calculating the rotational diffusion coefficient, the transition between the two regimes is found to occur at the temperature where the molecules begin to rotate freely. Above this temperature, phonons related to COM translations are scattered by the rotational DOF. The full DOF model thermal conductivity is larger than that of the rigid body model, indicating that intramolecular DOF contribute to thermal transport.

  20. Characterization of thermal transport in one-dimensional microstructures using Johnson noise electro-thermal technique

    Science.gov (United States)

    Liu, Jing; Wang, Xinwei

    2015-06-01

    This work reports on the development of a Johnson noise electro-thermal (JET) technique to directly characterize the thermal conductivity of one-dimensional micro-/nanoscale materials. In this technique, the to-be-measured micro-/nanoscale sample is connected between two electrodes and is subjected to steady-state Joule heating. The average temperature rise of the sample is evaluated by simultaneously measuring the Johnson noise over it and its electrical resistance. The system's Johnson noise measurement accuracy is evaluated by measuring the Boltzmann constant ( k B). Our measured k B value (1.375 × 10-23 J/K) agrees very well with the reference value of 1.381 × 10-23 J/K. The temperature measurement accuracy based on Johnson noise is studied against the resistance temperature detector method, and sound agreement (4 %) is obtained. The thermal conductivity of a glass fiber with a diameter of 8.82 μm is measured using the JET technique. The measured value 1.20 W/m K agrees well with the result using a standard technique in our laboratory. The JET technique provides a very compelling way to characterize the thermophysical properties of micro-/nanoscale materials without calibrating the sample's resistance-temperature coefficient, thereby eliminating the effect of resistance drift/change during measurement and calibration. Since JET technique does not require resistance-temperature correlation, it is also applicable to semi-conductive materials which usually have a nonlinear I- V relation.

  1. Thermal properties of poly(3-hydroxybutyrate)/vegetable fiber composites

    Science.gov (United States)

    Vitorino, Maria B. C.; Reul, Lízzia T. A.; Carvalho, Laura H.; Canedo, Eduardo L.

    2015-05-01

    The present work studies the thermal properties of composites of poly(3-hydroxybutyrate) (PHB) - a fully biodegradable semi-crystalline thermo-plastic obtained from renewable resources through low-impact biotechno-logical process, biocompatible and non-toxic - and vegetable fiber from the fruit (coconut) of babassu palm tree. PHB is a highly crystalline resin and this characteristic leads to suboptimal properties in some cases. Consequently, thermal properties, in particular those associated with the crystallization of the matrix, are important to judge the suitability of the compounds for specific applications. PHB/babassu composites with 0-50% load were prepared in an internal mixer. Two different types of babassu fibers with two different particle size ranges were compounded with PHB and test specimens molded by compression. Melting and crystallization behavior were studied by differential scanning calorimetry (DSC) at heating/cooling rates between 2 and 30°C/min. Several parameters, including melting point, crystallization temperature, crystallinity, and rate of crystallization, were estimated as functions of load and heating/cooling rates. Results indicate that fibers do not affect the melting process, but facilitate crystallization from the melt. Crystallization temperatures are 30 to 40°C higher for the compounds compared with the neat resin. However, the amount of fiber added has little effect on crystallinity and the degree of crystallinity is hardly affected by the load. Fiber type and initial particle size do not have a significant effect on thermal properties.

  2. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin

    Science.gov (United States)

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Chad Webb, R.; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A.

    2014-09-01

    Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or ‘epidermal’, photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively.

  3. Heat experiment design to estimate temperature dependent thermal properties

    International Nuclear Information System (INIS)

    Romanovski, M

    2008-01-01

    Experimental conditions are studied to optimize transient experiments for estimating temperature dependent thermal conductivity and volumetric heat capacity. A mathematical model of a specimen is the one-dimensional heat equation with boundary conditions of the second kind. Thermal properties are assumed to vary nonlinearly with temperature. Experimental conditions refer to the thermal loading scheme, sampling times and sensor location. A numerical model of experimental configurations is studied to elicit the optimal conditions. The numerical solution of the design problem is formulated on a regularization scheme with a stabilizer minimization without a regularization parameter. An explicit design criterion is used to reveal the optimal sensor location, heating duration and flux magnitude. Results obtained indicate that even the strongly nonlinear experimental design problem admits the aggregation of its solution and has a strictly defined optimal measurement scheme. Additional region of temperature measurements with allowable identification error is revealed.

  4. Parametric study of thermal and thermodynamic properties on pyrolysis of biomass in thermally thick regime

    International Nuclear Information System (INIS)

    Babu, B.V.; Chaurasia, A.S.

    2004-01-01

    In the present study, a simultaneous chemical kinetics and heat transfer model is used to predict the effects of the most important thermal and thermodynamic properties (thermal conductivity, heat transfer coefficient, emissivity and heat of reaction number) of the feedstock on the convective-radiant pyrolysis of biomass fuels. A finite difference pure implicit scheme utilizing the tri-diagonal matrix algorithm is employed for solving the heat transfer model equation. The Runge-Kutta fourth-order method is used for the chemical kinetics model equations. Simulations are performed considering cylindrical pellets of equivalent radius ranging from 0.003 to 0.011 m and temperatures ranging from 303 to 900 K. For conversion in the thermally thick regime (intra-particle heat transfer control), it is found that variations in the properties mainly affect the activity of the primary reactions. Sensitivity analysis is conducted to find the most dominant properties affecting the pyrolysis and found that the highest sensitivity is associated with the emissivity and thermal conductivity of the biomass. Applications of these findings in reactor design and operation are discussed. The results obtained using the improved models are in excellent agreement with the experimental data, much better than the agreement with the earlier models reported in the literature

  5. Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage

    International Nuclear Information System (INIS)

    Fuensanta, Mónica; Paiphansiri, Umaporn; Romero-Sánchez, María Dolores; Guillem, Celia; López-Buendía, Ángel M.; Landfester, Katharina

    2013-01-01

    Highlights: • A paraffin wax RT80 was encapsulated in styrene–butyl acrylate copolymer as polymer shell using miniemulsion polymerization process to obtain a novel nanoencapsulated PCM with 80 °C melting temperature. • Nano-PCMs have high compact structure, spherical morphology and thermal stability. • The nano-PCMs have potential applications as thermal energy storage materials. - Abstract: A novel nanoencapsulation of a paraffine type phase change material, RT80, in a styrene–butyl acrylate copolymer shell using the miniemulsion polymerization process was carried out. General characteristics of the RT80 nanoparticles in terms of thermal properties, morphology, chemical composition and particle size distribution were characterized by Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Dynamic Light Scattering (DLS). The influence of different monomers (styrene, butyl acrylate) and the surfactant/paraffin mass ratios on nanoparticles properties such as thermal capacity, particle size and morphology were systematically investigated. In all cases studied, encapsulation efficiency was close to 80 wt% with a particle size distribution between 52 and 112 nm and regular spherical shape and uniform structure. The amount of encapsulated paraffin achieved was comprised between 8 and 20%. Melting and crystallization heats were found to be approximately 5–25 J g −1 , mainly depending on surfactant/paraffin mass ratio. Melting temperature of RT80 nanoparticles slightly decreased (1–7 °C) respect to the raw RT80. In addition, the encapsulated RT80 nanoparticles show thermal stability even after 200 thermal (heat-cooling) cycles

  6. Glass-Like Thermal and Elastic Properties of Boron - Solids.

    Science.gov (United States)

    Medwick, Paul Anthony

    1995-01-01

    An understanding of the mechanical and thermal properties of the icosahedral borides is critical to their successful use in high temperature thermoelectric power converters, soft x-ray monochromators, nuclear reactor control rods, and armor. It is also of fundamental interest because the physical properties of these boron-rich solids are not well-understood. I present measurements of the thermal conductivity, specific heat, internal friction, and speed of sound for two classes of crystalline icosahedral borides: boron carbide (B_{1-x}C_ x) and the rare earth boride MB_ {68-delta} (M = Y, Gd). The high temperature (T~300 K) thermal conductivity of MB_{68-delta } and carbon deficient (xx}C _ x is similar to amorphous solids. The low temperature (Tx}C_ x and MB_{68-delta} show the elastic signature of a glass thereby providing the first experimental evidence for two-level systems (TLS) in these crystalline borides. The data show that the TLS relax via phonons and via other channels. The combined elastic and thermal data definitively establish, for the first time, that the vibrational properties of crystalline B_{1-x}C_ x and MB_{68-delta} are intrinsically glass-like. As a means of comparison, I have measured the internal friction and speed of sound of a-rm B and a-rm B_9C at low temperatures (Tx}C_ x and MB _{68-delta}, thereby indicating the presence of TLS in the material. Using these data, I present the first theoretical calculation for the low temperature thermal conductivity of a-rm B and find excellent agreement with data for the crystalline icosahedral borides. The inherent glass-like nature of their vibrational excitations is thereby established.

  7. Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction.

    Science.gov (United States)

    Cheng, Yehong; Zhou, Shanbao; Hu, Ping; Zhao, Guangdong; Li, Yongxia; Zhang, Xinghong; Han, Wenbo

    2017-05-03

    Graphene aerogels with high surface areas, ultra-low densities and thermal conductivities have been prepared to exploit their wide applications from pollution adsorption to energy storage, supercapacitor, and thermal insulation. However, the low mechanical properties, poor thermal stability and electric conductivity restrict these aerogels' applications. In this paper, we prepared mechanically strong graphene aerogels with large BET surface areas, low thermal conductivities, high thermal stability and electric conductivities via hydrothermal reduction and supercritical ethanol drying. Annealing at 1500 °C resulted in slightly increased thermal conductivity and further improvement in mechanical properties, oxidation temperature and electric conductivity of the graphene aerogel. The large BET surface areas, together with strong mechanical properties, low thermal conductivities, high thermal stability and electrical conductivities made these graphene aerogels feasible candidates for use in a number of fields covering from batteries to sensors, electrodes, lightweight conductor and insulation materials.

  8. Effective Thermal Expansion Property of Consolidated Granular Materials.

    Science.gov (United States)

    Küçük, Gülşad; Gonzalez, Marcial; Cuitiño, Alberto M

    2017-11-09

    Thermally-assisted compaction of granular materials is of keen interest in many engineering applications. A proper estimation of the material behavior of compacted granular materials is contingent upon the knowledge of microstructure formation, which is highly dependent on the bulk material properties and processing conditions, during the deformation stage. Originating from the pair interactions between particles, the macroscopic properties are obtained using various homogenization techniques and postulating continuum constitutive laws. While pioneers in this field have laid fundamental groundwork regarding effective medium descriptions, there exists a discrepancy between discrete and continuum level solutions. In our previous work, we elaborated a Particle Mechanics Approach (PMA) that integrates thermal contact and Hertzian deformation models to understand the thermo-mechanically-coupled consolidation problem. We also considered the analogous problem from the perspective of the conventional Continuum Mechanics Approach (CMA). In this study, following the multi-scale modeling framework, we propose an effective thermal expansion coefficient for the thermally-assisted compaction of granular materials.

  9. Thermal properties of graphene from path-integral simulations

    Science.gov (United States)

    Herrero, Carlos P.; Ramírez, Rafael

    2018-03-01

    Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures in the range from 12 to 2000 K and zero external stress, by describing the interatomic interactions through the LCBOPII effective potential. We analyze the internal energy and specific heat and compare the results derived from the simulations with those yielded by a harmonic approximation for the vibrational modes. This approximation turns out to be rather precise up to temperatures of about 400 K. At higher temperatures, we observe an influence of the elastic energy due to the thermal expansion of the graphene sheet. Zero-point and thermal effects on the in-plane and "real" surface of graphene are discussed. The thermal expansion coefficient α of the real area is found to be positive at all temperatures, in contrast to the expansion coefficient αp of the in-plane area, which is negative at low temperatures and becomes positive for T ≳ 1000 K.

  10. Handbook on dielectric and thermal properties of microwaveable materials

    CERN Document Server

    Komarov, Vyacheslav V

    2012-01-01

    The application of microwave energy for thermal processing of different materials and substances is a rapidly growing trend in modern science and engineering. In fact, optimal design work involving microwaves is impossible without solid knowledge of the properties of these materials. Here s a practical reference that collects essential data on the dielectric and thermal properties of microwaveable materials, saving you countless hours on projects in a wide range of areas, including microwave design and heating, applied electrodynamics, food science, and medical technology. This unique book provides hard-to-find information on complex dielectric permittivity of media at industrial, scientific, and medical frequencies (430 MHz, 915MHz, 2.45GHz, 5.8 GHz, and 24.125GHz). Written by a leading expert in the field, this authoritative book does an exceptional job at presenting critical data on various materials and explaining what their key characteristics are concerning microwaves.

  11. Effect of thermal cycling on change of titanium alloy properties

    International Nuclear Information System (INIS)

    Anufriev, V.P.; Bogachev, I.N.; Veksler, Yu.G.

    1980-01-01

    Investigated are the change of mechanical and physical properties of VT1-0, VT3-1 and VT-16 alloys, as well as resistances of their thermal fatigue under thermocycling (TC). It is shown that mechanical properties of the investigated alloys increase in the result of thermocycling. Maximum of the strength characteristics is obtained at 10 cycles on fine-grained alloys after TC. Maximum of strength and hardness on the samples with coarse grain is described and is shifted towards the lower number of cycles. VT1-0, VT3-1 and VT-16 alloys have high resistant ability against thermal fatigue in themocycling with maximal cycle temperature below recrystallization threshold

  12. Measurement of thermal properties of soil and concrete samples

    DEFF Research Database (Denmark)

    Pagola, Maria Alberdi; Jensen, Rasmus Lund; Madsen, Søren

    This document aims to present the laboratory work undertaken to analyse the thermal properties of the soil at two test sites in Denmark and the concrete produced by Centrum Pæle A/S, used to produce the pile heat exchangers studied in the present PhD project. The tasks have been carried out between...... “Thermal response testing of precast pile heat exchangers: fieldwork report” by (Alberdi-Pagola et al., 2017). The report is organized as follows: first, the measurement methods and the test procedures are described. Second, the soils at both test sites are described, together with the measurements. Third......, the measurements of the properties of the concrete are treated. The work is extended in appendixes....

  13. Rheological and thermal properties of PP-based WPC

    Science.gov (United States)

    Mazzanti, V.; Mollica, F.; El Kissi, N.

    2014-05-01

    Wood Plastic Composite (WPC) has attracted great interest in outdoor building products for the reduced cost and the possibility of using recycled materials. Nevertheless the material shows two problems: the large viscosity due to the presence of high concentrations of filler and the degradation of cellulose during processing The aim of this work was to investigate the rheological and thermal properties of WPC. The material used for the experiments was a commercial PP-based WPC compound, with different concentrations of natural fibers (30, 50, 70% wt.). The thermal properties were studied to check for degradation of natural fibers during the subsequent rheological tests. Analyzing the storage and loss moduli and the complex viscosity curves obtained using a parallel plate rheometer it was possible to observe some features related to the viscoelastic nature of the composite.

  14. Characterization of mouthguard materials: thermal properties of commercialized products.

    Science.gov (United States)

    Gould, Trenton E; Piland, Scott G; Shin, Junghwan; McNair, Olivia; Hoyle, Charles E; Nazarenko, Sergei

    2009-12-01

    Several mechanisms have been purported to describe how mouthguards protect the orofacial complex against injury. As the properties needed for these mechanisms to be effective are temperature and frequency dependent, the specific aim of this study was to provide a comprehensive thermal characterization of commercial mouthguard materials. Five commercially representative thermoplastic mouthguard materials (Essix Resin, Erkoflex, Proform-regular, Proform-laminate, and Polyshok) were tested. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) techniques were implemented to measure thermal transitions and mechanical properties. Measurements were conducted three times per sample. One-way ANOVA and one-sample t-tests were used to test for differences between commercial products on selected mean thermal property values. The DSC measurements indicated no differences between commercial materials for mean glass transition (p=0.053), onset melt (p=0.973), or peak melt (p=0.436) temperatures. Likewise, DMA measurements revealed no differences between commercial materials for the mean glass transition (p=0.093), storage modulus (p=0.257), or loss modulus (p=0.172) properties, respectively. The one-sample t-tests revealed that glass transition temperatures were different from intra-oral temperature (psensitive to repetitive heating and cooling cycles, prolonged thermal treatment, and have glass transitions well below their end-use intra-oral temperature. As such, these materials are functioning as elastomers and not optimal mechanical damping materials. Dental clinicians, healthcare practitioners, or end-users should be aware that these materials are at best problematic with respect to this protective mechanism.

  15. Electrical and thermal properties of PLA/CNT composite films

    OpenAIRE

    Ceregatti, Thayara; Pecharki, Paloma; Pachekoski, Wagner M.; Becker, Daniela; Dalmolin, Carla

    2017-01-01

    ABSTRACT Conducting polymers presents many potential applications such as biosensors and biofuelcells. However, to be used in those devices, a thin film must be deposited onto a conducting and biocompatible substrate. In this work, carbon nanotubes (CNT) were mixed in a poly (lactic acid) - PLA - matrix with different compositions (from 0.25 to 5.0 %) in order to form conducting composites suitable to the deposition of a conducting polymer. Thermal properties of PLA/CNT composites were evalua...

  16. Thermal properties of SFR-HPC exposed to high temperatures

    Science.gov (United States)

    Scheinherrová, Lenka; Pavlík, Zbyšek

    2017-07-01

    In this paper, a non-adiabatic method was used for the assessment of specific heat capacity of steel fibre reinforced high performance concrete in the temperature range 105-1000 °C. The tested SFR-HPC mix was produced from CEM II 42.5 R, ground granulated blast furnace slag, silica sand with maximum particle size of 2 mm, silica fume, brass-coated steel fibres, superplasticizer on polycarboxylate ether basis and batch water. For the studied material, properties after 2 hours thermal treatment at the temperatures of 105 °C, 200 °C, 400 °C, 600 °C, 800 °C, and 1000 °C respectively were tested. Among them, bulk density, matrix density, total open porosity and thermal parameters as thermal conductivity, thermal diffusivity and specific heat capacity were measured. The measured specific heat capacity exhibited high dependence on temperature and pointed to the structural changes that studied material underwent at high temperatures. Accordingly, the obtained residual parameters revealed the thermally induced damage of SFR-HPC and critical temperatures for its functionality.

  17. Compaction physics of solid additive blends a thermal properties study

    Science.gov (United States)

    Brown, Amy

    Compacted solid additive blends have attracted the interest of the polymers industry due to their ability to improve processability. However, limited research has been performed to analyze the thermal properties that these additives have during pelletization. This research studies the reaction behavior of erucamide and silica, when in a pure and mixed form, with each other when thermal conductivity and frictional heating experiments are conducted. During the thermal conductivity study, it was found that pure erucamide had a thermal conductivity of 0.37 W/mK. The thermal conductivity of pure silica could not be found since silica will not compact to itself. Therefore, the thermal conductivity was extrapolated and found to be 0.09 W/mK. With the higher thermal conductivity belonging to erucamide, the heat transference that occurs during pelletization is through the use of erucamide. During the frictional studies, it was found that erucamide had a lower coefficient of friction compared to silica. The samples used were not pure, meaning a presence of both silica and erucamide were present for all experiments. The value obtained for the sample with a 75wt% of erucamide was 0.26. The value obtained for the sample with 75wt% of silica was 0.53. The surface and cross-section morphology and composition of the samples was examined by Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy. Through this a softened layer was seen that provided evidence of an outer protective layer that forms during the pelletization process. Further analysis into this formed softened layer for varying compositions provided critical temperatures that need to be reached during processing.

  18. [Research on the Thermal Infrared Polarization Properties of Fresh Snow].

    Science.gov (United States)

    Wang, Ting-ting; Li, Zhao-liang; Tang, Bo-hui; Sun, Wei-qi; Zhao, Yun-sheng

    2015-07-01

    Snow can directly affect the surface energy balance and climate change and has a significant impact on human life and production. It is therefore of great significance to study the fresh snow emission spectroscopy properties by using the thermal infrared Polarization technique. This can provide a basis for quantitative thermal infrared remote sensing monitoring of snow as well as a deeper understanding of global warming and appropriate countermeasures. This paper focuses on the investigation of the thermal infrared polarization properties of the fresh snow. The results show that the thermal emissive polarization properties of fresh snow depend significantly on the wavelengths (channels) and view angles used to measure them. Four channels are considered in this study, their spectral response ranges are 8-14 microm for channel 1 (CH1), 11.5-12.5 microm for channel 2 (CH2), 10.3-11.5 microm for channel 3 (CH) and 8.2-9.2 microm for channel 4 (CH4). The snow polarized radiance (L) and its polarized brightness temperature (T) manifest as L(CH1) >L(CH3) > L(CH4) > L(CH2) and T(CH4) > T(CH1) > T(CH2) > TCH3, respectively, while the degree of polarization (P) manifests as P0 > P30 > P40 > P20 > P0 > P50 where the subscript of P denotes the view angle. The maximum of both L and T occurs at the view angle of 50 degree and polarization angle of 90 degree while their minimum appears at the view angle of 30 degree and polarization angle of 75 degree for each channel. In addition, the results show that: CH3 is more appropriate for better investigation of the emissive polarization properties of snow. Linear relationship is found between the fresh snow polarized T and the polarization angle with the coefficient of determination larger than 0.77 for all four channels. The polarized brightness temperature of the fresh snow is found to be increased about 0.003 K per polarization angle within 0-135 degree. The degree of polarization of snow is almost independent of the channels we

  19. Statistical properties of transport in plasma turbulence

    DEFF Research Database (Denmark)

    Naulin, V.; Garcia, O.E.; Nielsen, A.H.

    2004-01-01

    The statistical properties of the particle flux in different types of plasma turbulence models are numerically investigated using probability distribution functions (PDFs). The physics included in the models range from two-dimensional drift wave turbulence to three-dimensional MHD dynamics...

  20. Thermal Properties of Moving UV Features in Prominences

    Science.gov (United States)

    Kucera, Therese A.

    2003-01-01

    Multi-thermal features with speeds of 5-70 kilometers per second perpendicular to the line of sight are common in the prominences which showed traceable motions. These speeds are noticeably higher than the typical speeds of 5-20 kilometers per second observed in H-alpha data from "quiet" prominences and are more typical of "activated" prominences in which H-alpha blob speeds of up to 40 kilometers per second have been reported. In order to make a more quantitative determination of the thermal properties of the moving features seen in the UV, we use the SOHO instruments SUMER and CDS to take a time series of exposures from a single pointing position, providing a measurement of spectral line properties as a function of time and position along the slit. The resulting observations in lines spectral lines in a range of "transition region" temperatures allow us to analyze the thermal properties of the moving prominence sources as a function of time.

  1. Synthesis, thermal behavior and thermoelectric properties of disordered tellurides with structures derived from the rocksalt type

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Thorsten

    2014-06-17

    GeBi{sub 2}Te{sub 4} is proposed as phase-change material. Nanostructures in metastable GeBi{sub 2}Te{sub 4} were obtained by high-pressure synthesis and thermal quenching, - depending on temperature and pressure different modifications were found. The differences in the electrical characteristics can be attributed to the variation of grain boundary concentration and the grain size distribution. Two synthesis approaches were used to prepare Ag{sub 3.4}In{sub 3.7}Sb{sub 76.4}Te{sub 16.5} bulk samples and studied with respect to their transport and thermal properties. A high pressure route to prepare thermoelectrics with low thermal conductivity was developed for AgIn{sub x}Sb{sub 1-x}Te{sub 2}. Disorder and and transport studies on In{sub 3}SbTe{sub 2} were performed using X-ray, neutron and electron diffraction measurements. Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials were induced by phase transitions associated with vacancy ordering. Further studies concerned solid solution series (GeTe){sub x}(LiSbTe{sub 2}){sub 2} (1 smaller or equal x smaller or equal 11) and their thermoelectric properties.

  2. Thermal properties of lithium-ion battery and components

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, H.; Hallaj, S.A.; Selman, J.R. [Illinois Inst. of Tech., Chicago, IL (United States). Center for Electrochemical Science and Engineering; Dinwiddie, R.B.; Wang, H. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1999-03-01

    Experimental thermal property data of the Sony US-18650 lithium-ion battery and components are presented, as well as thermal property measuring techniques. The properties in question are specific heat capacity (C{sub p}), thermal diffusivity ({alpha}), and thermal conductivity ({kappa}), in the presence and absence of electrolyte [1 M LiPF{sub 6} in ethylene carbonate-dimethyl carbonate (EC:DMC, 1:1 wt %)]. The heat capacity of the battery, C{sub p}, is 0.96 {+-} 0.02 J/g K at an open-circuit voltage (OCV) of 2.75 V, and 1.04 {+-} 0.02 J/g K at 3.75 V. The thermal conductivity, {kappa}, was calculated from {kappa} {identical_to} {alpha}{rho}C{sub p} where {alpha} was measured by a xenon-flash technique. In the absence of electrolyte, {kappa} increases with OCV, for both the negative electrode (NE) and the positive electrode (PE). For the NE, the increase is 26% as the OCV increases from 2.75 to 3.75 V, whereas for the PE the increase is only 5 to 6%. The dependence of both C{sub p} and {kappa} on OCV is explained qualitatively by considering the effect of lithiation and delithiation on the electron carrier density, which leads to n-type semiconduction in the graphitic NE material, but a change from semiconducting to metallic character in Li{sub x}CoO{sub 2} PE material. The overall effect is an increase of C{sub p} and {kappa} with OCV. For {kappa} this dependence is eliminated by electrolyte addition, which, however, greatly increases the effective {kappa} of the layered battery components by lowering the thermal contact resistance. For both NE and PE, the in-plane {kappa} value (measured along layers) is nearly one order of magnitude higher than the cross-plane {kappa}. This is ascribed mostly to the high thermal conductivity of the current collectors and to a lesser extent to the orientation of particles in the layers of electrodes.

  3. CET89 - CHEMICAL EQUILIBRIUM WITH TRANSPORT PROPERTIES, 1989

    Science.gov (United States)

    Mcbride, B.

    1994-01-01

    Scientists and engineers need chemical equilibrium composition data to calculate the theoretical thermodynamic properties of a chemical system. This information is essential in the design and analysis of equipment such as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical processing equipment. The substantial amount of numerical computation required to obtain equilibrium compositions and transport properties for complex chemical systems led scientists at NASA's Lewis Research Center to develop CET89, a program designed to calculate the thermodynamic and transport properties of these systems. CET89 is a general program which will calculate chemical equilibrium compositions and mixture properties for any chemical system with available thermodynamic data. Generally, mixtures may include condensed and gaseous products. CET89 performs the following operations: it 1) obtains chemical equilibrium compositions for assigned thermodynamic states, 2) calculates dilute-gas transport properties of complex chemical mixtures, 3) obtains Chapman-Jouguet detonation properties for gaseous species, 4) calculates incident and reflected shock properties in terms of assigned velocities, and 5) calculates theoretical rocket performance for both equilibrium and frozen compositions during expansion. The rocket performance function allows the option of assuming either a finite area or an infinite area combustor. CET89 accommodates problems involving up to 24 reactants, 20 elements, and 600 products (400 of which may be condensed). The program includes a library of thermodynamic and transport properties in the form of least squares coefficients for possible reaction products. It includes thermodynamic data for over 1300 gaseous and condensed species and transport data for 151 gases. The subroutines UTHERM and UTRAN convert thermodynamic and transport data to unformatted form for faster processing. The program conforms to the FORTRAN 77 standard, except for

  4. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    Energy Technology Data Exchange (ETDEWEB)

    J. Conca

    2000-12-20

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.

  5. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    International Nuclear Information System (INIS)

    Conca, J.

    2000-01-01

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion

  6. The effects of MWNT on thermal conductivity and thermal mechanical properties of epoxy

    Science.gov (United States)

    Ismadi, A. I.; Othman, R. N.

    2017-12-01

    Multiwall nanotube (MWNT) was used as filler in various studies to improve thermal conductivity and mechanical properties of epoxy. Present study varied different weight loading (0, 0.1 %, 0.5 %, 1 %, 1.5 %, 3 % and 5 %) of MWNT in order to observe the effects on the epoxy. Nanocomposite was analyzed by dynamic-mechanical thermal analyser (DMTA) and KD2 pro analyzer. DMTA measured storage modulus (E') and glass transition temperature (Tg) of the nanocomposite. Result showed that Tg value of neat epoxy is higher than all MWNT epoxy nanocomposite. Tg values drop from 81.55 °C (neat epoxy) to 65.03 °C (at 0.1 wt%). This may happen due to the agglomeration of MWNT in the epoxy. However, Tg values increases with the increase of MWNT wt%. Tg values increased from 65.03 °C to 78.53 °C at 1 wt%. Increment of storage modulus (E') at 3 °C (glassy region) was observed as the MWNT loading increases. Maximum value of E' during glassy region was observed to be at 5 wt% with (7.26±0.7) E+08 Pa compared to neat epoxy. On the contrary, there is slight increased and slight decreased with E' values at 100 °C (rubbery region) for all nanocomposite. Since epoxy exhibits low thermal conductivity properties, addition of MWNT has enhanced the properties. Optimum value of thermal conductivity was observed at 3 wt%. The values increased up to 9.03 % compared to neat epoxy. As expected, the result showed decrease value in thermal conductivity at 5 wt% as a result of agglomeration of MWNT in the epoxy.

  7. Thermal and mechanical properties of fatty acid starch esters.

    Science.gov (United States)

    Winkler, H; Vorwerg, W; Rihm, R

    2014-02-15

    The current study examined thermal and mechanical properties of fatty acid starch esters (FASEs). All highly soluble esters were obtained by the sustainable, homogeneous transesterification of fatty acid vinyl esters in dimethylsulfoxide (DMSO). Casted films of products with a degree of substitution (DS) of 1.40-1.73 were compared with highly substituted ones (DS 2.20-2.63). All films were free of any plasticizer additives. Hydrophobic surfaces were characterized by contact angle measurements. Dynamic scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) revealed thermal transitions (T(g), T(m)) which were influenced by the internal plasticizing effect of the ester groups. Thermal gravimetric analysis (TGA) measurements showed the increased thermal stability toward native starch. Tensile tests revealed the decreasing strength and stiffness of the products with increasing ester-group chain length while the elongation increased up to the ester group laurate and after that decreased. Esters of the longest fatty acids, palmitate and stearate turned out to be brittle materials due to super molecular structures of the ester chains such as confirmed by X-ray. Summarized products with a DS 1.40-1.73 featured more "starch-like" properties with tensile strength up to outstanding 43 MPa, while products with a DS >2 behaved more "oil-like". Both classes of esters should be tested as a serious alternative to commercial starch blends and petrol-based plastics. The term Cnumber is attributed to the number of total C-Atoms of the fatty acid (e.g. C6=Hexanoate). Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Transport properties of mesoscopic graphene rings

    International Nuclear Information System (INIS)

    Xu, N.; Ding, J.W.; Wang, B.L.; Shi, D.N.; Sun, H.Q.

    2012-01-01

    Based on a recursive Green's function method, we investigate the conductance of mesoscopic graphene rings in the presence of disorder, in the limit of phase coherent transport. Two models of disorder are considered: edge disorder and surface disorder. Our simulations show that the conductance decreases exponentially with the edge disorder and the surface disorder. In the presence of flux, a clear Aharonov-Bohm conductance oscillation with the period Φ 0 (Φ 0 =h/e) is observed. The edge disorder and the surface disorder have no effect on the period of AB oscillation. The amplitudes of AB oscillations vary with gate voltage and flux, which is consistent with the previous results. Additionally, ballistic rectification and negative differential resistance are observed in I-V curves, with on/off characteristic.

  9. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys

    Science.gov (United States)

    Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas

    2017-11-01

    We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe, and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving {κ }{InSe}conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, in InSe, GaSe and GaS thermal transport is governed by in-plane vibrations. Alloying of InSe, GaSe, and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ˜2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.

  10. Morphology and the physical and thermal properties of thermoplastic polyurethane reinforced with thermally reduced graphene oxide

    Directory of Open Access Journals (Sweden)

    Strankowski Michał

    2015-12-01

    Full Text Available In this study, thermally reduced graphene oxide (TRG-containing polyurethane nanocomposites were obtained by the extrusion method. The content of TRG incorporated into polyurethane elastomer systems equaled 0.5, 1.0, 2.0 and 3.0 wt%. The morphology, static and dynamic mechanical properties, and thermal stability of the modified materials were investigated. The application of TRG resulted in a visible increase in material stiffness as confirmed by the measurements of complex compression modulus (E′ and glass transition temperature (Tg. The Tg increased with increasing content of nanofiller in the thermoplastic system. The addition of thermally reduced graphene oxide had a slight effect on thermal stability of the obtained materials. The incorporation of 0.5, 1.0, 2.0 and 3.0 wt% of TRG into a system resulted in increased char residues compared to unmodified PU elastomer. Also, this study demonstrated that after exceeding a specific amount of TRG, the physicomechanical properties of modified materials start to deteriorate.

  11. Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures.

    Science.gov (United States)

    Noshin, Maliha; Khan, Asir Intisar; Subrina, Samia

    2018-05-04

    Recently, stanene and silicene based nanostructures with low thermal conductivity have incited noteworthy interest due to their prospect in thermoelectrics. Aiming at the possibility of extracting lower thermal conductivity, in this study, we have proposed and modeled stanene/silicene heterobilayer nanoribbons, a new heterostructure and subsequently characterized their thermal transport by using an equilibrium molecular dynamics simulation. In addition, the thermal transport in bilayer stanene is also studied and compared. We have computed the thermal conductivity of the stanene/silicene and bilayer stanene nanostructures to characterize their thermal transport phenomena. The studied nanostructures show good thermal stability within the temperature range of 100-600 K. The room temperature thermal conductivities of pristine 10 nm × 3 nm stanene/silicene hetero-bilayer and stanene bilayer are estimated to be 3.63 ± 0.27 W m -1 K -1 and 1.31 ± 0.34 W m -1 K -1 , respectively, which are smaller than that of silicene, graphene and some other 2D monolayers as well as heterobilayers such as stanene/graphene and silicene/graphene. In the temperature range of 100-600 K, the thermal conductivity of our studied bilayer nanoribbons decreases with an increase in the temperature. Furthermore, we have investigated the dependence of our estimated thermal conductivity on the size of the considered nanoribbons. The thermal conductivities of both the nanoribbons are found to increase with an increase in the width of the structure. The thermal conductivity shows a similar increasing trend with the increase in the ribbon length, as well. Our results suggest that, the low thermal conductivity of our studied bilayer structures can be further decreased by nanostructuring. The significantly low thermal conductivity of the stanene/silicene heterobilayer and stanene bilayer nanoribbons realized in our study would provide a good insight and encouragement into their appealing prospect

  12. Thermal Properties Capability Development Workshop Summary to Support the Implementation Plan for PIE Thermal Conductivity Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Braase, Lori [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hurley, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Department of Energy (DOE)-Office of Nuclear Energy (NE), Idaho National Laboratory (INL), and associated nuclear fuels programs have invested heavily over the years in infrastructure and capability development. With the current domestic and international need to develop Accident Tolerant Fuels (ATF), increasing importance is being placed on understanding fuel performance in irradiated conditions and on the need to model and validate that performance to reduce uncertainty and licensing timeframes. INL’s Thermal Properties Capability Development Workshop was organized to identify the capability needed by the various nuclear programs and list the opportunities to meet those needs. In addition, by the end of fiscal year 2015, the decision will be made on the initial thermal properties instruments to populate the shielded cell in the Irradiated Materials Characterization Laboratory (IMCL).

  13. Development of instrumentation in the transport phenomena research in thermal equipment

    International Nuclear Information System (INIS)

    Carvalho Tofani, P. de; Ladeira, L.C.D.

    1983-11-01

    The results obtained from the effort on the acquisition of know-how in experimental reactor thermal during the last years, through the approach of relevant aspects of basic research on transport phenomena applicable to nuclear reactor analysis and conventional thermal equipment based in the simultaneous development of instrumentation and experimental methods are presented. (E.G.) [pt

  14. Comparative study of hygrothermal properties of five thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Laure Ducoulombier

    2017-09-01

    Full Text Available The objective of this article is to carry out a comparative study of the main hygrothermal properties of five thermal insulation materials for buildings. These properties are necessary for a correct prediction of heat and moisture transfers through the walls and the selection of the most appropriate materials according to the specific buildings. The studied materials were glass wool, rock wool, expanded polystyrene, wood fiberboard and polyester fiberfill. The article is divided into three parts. The first part presents the phenomena of hygrothermal transfers in walls in order to understand the need for determining specific properties of the insulating materials. The second part describes in details the five studied insulating materials and the methods used for the characterization and identification of their main properties. Finally, the last part presents the experimental results and makes comparisons between materials. The differences between the insulating materials are brought out, such as the strong dependence of the thermal conductivity of polystyrene on temperature, or the good permeability of fibrous insulating materials to water vapor. A detailed analysis of the obtained results is presented.

  15. Significant Electronic Thermal Transport in the Conducting Polymer Poly(3,4‐ethylenedioxythiophene)

    DEFF Research Database (Denmark)

    Weathers, Annie; Khan, Zia Ullah; Brooke, Robert

    2015-01-01

    Suspended microdevices are employed to measure the in-plane electrical conductivity, thermal conductivity, and Seebeck coefficient of suspended poly(3,4-ethylenedioxythiophene) (PEDOT) thin films. The measured thermal conductivity is higher than previously reported for PEDOT and generally increases...... with the electrical conductivity. The increase exceeds that predicted by the Wiedemann–Franz law for metals and can be explained by significant electronic thermal transport in PEDOT....

  16. Phonon and thermal properties of exfoliated TaSe{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Z.; Jiang, C.; Renteria, J. [Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Pope, T. R.; Tsang, C. F.; Stickney, J. L.; Salguero, T. T., E-mail: salguero@uga.edu, E-mail: balandin@ee.ucr.edu [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States); Goli, P. [Materials Science and Engineering Program, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Balandin, A. A., E-mail: salguero@uga.edu, E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Materials Science and Engineering Program, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States)

    2013-11-28

    We report on the phonon and thermal properties of thin films of tantalum diselenide (2H-TaSe{sub 2}) obtained via the “graphene-like” mechanical exfoliation of crystals grown by chemical vapor transport. The ratio of the intensities of the Raman peak from the Si substrate and the E{sub 2g} peak of TaSe{sub 2} presents a convenient metric for quantifying film thickness. The temperature coefficients for two main Raman peaks, A{sub 1g} and E{sub 2g}, are −0.013 and −0.0097 cm{sup −1}/{sup o}C, respectively. The Raman optothermal measurements indicate that the room temperature thermal conductivity in these films decreases from its bulk value of ∼16 W/mK to ∼9 W/mK in 45-nm thick films. The measurement of electrical resistivity of the field-effect devices with TaSe{sub 2} channels shows that heat conduction is dominated by acoustic phonons in these van der Waals films. The scaling of thermal conductivity with the film thickness suggests that the phonon scattering from the film boundaries is substantial despite the sharp interfaces of the mechanically cleaved samples. These results are important for understanding the thermal properties of thin films exfoliated from TaSe{sub 2} and other metal dichalcogenides, as well as for evaluating self-heating effects in devices made from such materials.

  17. Phonon and thermal properties of exfoliated TaSe2 thin films

    International Nuclear Information System (INIS)

    Yan, Z.; Jiang, C.; Renteria, J.; Pope, T. R.; Tsang, C. F.; Stickney, J. L.; Salguero, T. T.; Goli, P.; Balandin, A. A.

    2013-01-01

    We report on the phonon and thermal properties of thin films of tantalum diselenide (2H-TaSe 2 ) obtained via the “graphene-like” mechanical exfoliation of crystals grown by chemical vapor transport. The ratio of the intensities of the Raman peak from the Si substrate and the E 2g peak of TaSe 2 presents a convenient metric for quantifying film thickness. The temperature coefficients for two main Raman peaks, A 1g and E 2g , are −0.013 and −0.0097 cm −1 / o C, respectively. The Raman optothermal measurements indicate that the room temperature thermal conductivity in these films decreases from its bulk value of ∼16 W/mK to ∼9 W/mK in 45-nm thick films. The measurement of electrical resistivity of the field-effect devices with TaSe 2 channels shows that heat conduction is dominated by acoustic phonons in these van der Waals films. The scaling of thermal conductivity with the film thickness suggests that the phonon scattering from the film boundaries is substantial despite the sharp interfaces of the mechanically cleaved samples. These results are important for understanding the thermal properties of thin films exfoliated from TaSe 2 and other metal dichalcogenides, as well as for evaluating self-heating effects in devices made from such materials

  18. Phonon and thermal properties of exfoliated TaSe2 thin films

    Science.gov (United States)

    Yan, Z.; Jiang, C.; Pope, T. R.; Tsang, C. F.; Stickney, J. L.; Goli, P.; Renteria, J.; Salguero, T. T.; Balandin, A. A.

    2013-11-01

    We report on the phonon and thermal properties of thin films of tantalum diselenide (2H-TaSe2) obtained via the "graphene-like" mechanical exfoliation of crystals grown by chemical vapor transport. The ratio of the intensities of the Raman peak from the Si substrate and the E2g peak of TaSe2 presents a convenient metric for quantifying film thickness. The temperature coefficients for two main Raman peaks, A1g and E2g, are -0.013 and -0.0097 cm-1/oC, respectively. The Raman optothermal measurements indicate that the room temperature thermal conductivity in these films decreases from its bulk value of ˜16 W/mK to ˜9 W/mK in 45-nm thick films. The measurement of electrical resistivity of the field-effect devices with TaSe2 channels shows that heat conduction is dominated by acoustic phonons in these van der Waals films. The scaling of thermal conductivity with the film thickness suggests that the phonon scattering from the film boundaries is substantial despite the sharp interfaces of the mechanically cleaved samples. These results are important for understanding the thermal properties of thin films exfoliated from TaSe2 and other metal dichalcogenides, as well as for evaluating self-heating effects in devices made from such materials.

  19. Magneto-electronic, thermal, and thermoelectric properties of some Co-based quaternary alloys

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2018-01-01

    In this study, quaternary Heusler alloys CoFeCrZ (Z = Si, As, Sb) were investigated based on the modified Becke-Johnson exchange potential. The electronic structures demonstrated that CoFeCrZ (Z = Si, As, Sb) alloys are completely spin polarized with indirect bandgap and has an integer magnetic moment according to the Slater-Pauling rule. Pugh's and Poisson's ratios showed that these materials are highly ductile with high melting temperatures. The thermal properties comprising the thermal expansion coefficient, heat capacity, and Grüneisen parameter were evaluated at various pressures from 0 to 20 GPa. The Grüneisen parameter values indicated the strong anharmonicity of the lattice vibrations that predominated in these compounds. We also studied the dependency of the thermoelectric transport properties on the temperature, i.e., the thermal conductivity and Seebeck coefficient. These alloys exhibited low lattice thermal conductivity and good Seebeck coefficients at room temperature. The half-metallic structures of these compounds with large band gaps and adequate Seebeck coefficients mean that they are suitable for use in spintronic and thermoelectric device applications.

  20. Simultaneous measurements of transport and poroelastic properties of rocks.

    Science.gov (United States)

    Hasanov, Azar K; Prasad, Manika; Batzle, Michael L

    2017-12-01

    A novel laboratory apparatus has been developed for simultaneous measurements of transport and poroelastic rock properties. These transport and poroelastic properties at reservoir pressure and temperature conditions are required inputs for various geoscience applications, such as reservoir simulation, basin modeling, or modeling of pore pressure generation. Traditionally, the transport and poroelastic properties are measured separately using, for example, the oscillating pore pressure method to measure hydraulic transport properties, static strain measurements for elastic properties, and pore volumometry for storage capacity. In addition to time, the separate set of measurements require either aliquot cores or subjecting the same core to multiple pressure tests. We modified the oscillating pore pressure method to build an experimental setup, capable of measuring permeability, storage capacity, and pseudo-bulk modulus of rocks simultaneously. We present here the test method, calibration measurements (capillary tube), and sample measurements (sandstone) of permeability and storage capacity at reservoir conditions. We establish that hydraulically measured storage capacities were overestimated by an order of magnitude when compared to elastically derived ones. Our concurrent measurement of elastic properties during the hydraulic experiment provides an independent constraint on storage capacity.

  1. Transport Properties in the TJ-II Flexible Heliac

    International Nuclear Information System (INIS)

    Castejon, F.; Ascasibar, E.; Alejaldre, C.; Alonso, J.; Almoguera, L.; Baciero, A.; Balbin, R.; Blanco, E.; Blaumoser, M.; Botija, J.; Branas, B.; Cappa, A.; Carrasco, R.; Cepero, J.R.; Doncel, J.; Eguilior, S.; Estrada, T.; Fernandez, A.; Fuentes, C.; Garcia, A.

    2003-01-01

    TJ-II flexibility is exploited to perform an investigation on the transport properties of this device. Rotational transform can be varied in a wide range, which allows one to introduce low order rationals and to study their effect on transport. On the other hand, confinement properties can be studied at very different rotational transform values and for different values of magnetic shear: Experiments on influence of the magnetic shear on confinement are reported. Plasma potential profiles have been recently measured in some configurations up to the plasma core with the Heavy Ion Beam Probe (HIBP) diagnostic and the electric field values measured in low-density plasmas are consistent with neoclassical calculations near the plasma core. Plasma edge turbulent transport has been studied in configurations that are marginally stable due to decreased magnetic well. Results show a dynamical coupling between gradients and turbulent transport

  2. Thermal Transport and Phonon Hydrodynamics in Strontium Titanate

    Science.gov (United States)

    Martelli, Valentina; Jiménez, Julio Larrea; Continentino, Mucio; Baggio-Saitovitch, Elisa; Behnia, Kamran

    2018-03-01

    We present a study of thermal conductivity, κ , in undoped and doped strontium titanate in a wide temperature range (2-400 K) and detecting different regimes of heat flow. In undoped SrTiO3 , κ evolves faster than cubic with temperature below its peak and in a narrow temperature window. Such behavior, previously observed in a handful of solids, has been attributed to a Poiseuille flow of phonons, expected to arise when momentum-conserving scattering events outweigh momentum-degrading ones. The effect disappears in the presence of dopants. In SrTi1 -xNbx O3 , a significant reduction in lattice thermal conductivity starts below the temperature at which the average inter-dopant distance and the thermal wavelength of acoustic phonons become comparable. In the high-temperature regime, thermal diffusivity becomes proportional to the inverse of temperature, with a prefactor set by sound velocity and Planckian time (τp=(ℏ/kBT ) ).

  3. Phonons and Thermal Transport in Carbon Nanotube Systems

    National Research Council Canada - National Science Library

    Gartstein, Yuri

    2005-01-01

    "Due to the combination of a high speed of sound hard optical vibration modes and a large phonon mean free path carbon nanotubes prove to be the most efficient thermal conductors." (D Tornanek, 2005...

  4. On q dependence of thermal transport in tokamaks

    Science.gov (United States)

    Hirose, A.; Livingstone, S.; Singh, A. K.

    2005-12-01

    Analysis based on a gyro-kinetic ballooning stability code predicts that both the ion and electron thermal diffusivities, due to the ion temperature gradient (ITG) and electron temperature gradient (ETG) modes, respectively, increase with the safety factor q almost linearly. In the case of ITG driven ion thermal diffusivity, the q dependence originates from the coupling to the ion acoustic mode, and in the case of the electron thermal diffusivity due to the ETG mode, it emerges from the coupling to the skin size drift mode. In the ETG mode, charge neutrality does not hold for typical tokamak discharges, and mixing length estimates yield a thermal diffusivity large enough to be relevant to experiments.

  5. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications

    Directory of Open Access Journals (Sweden)

    Xiaohua Bao

    2017-04-01

    Full Text Available Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural–functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs. Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles.

  6. Crystal structure and thermal property of polyethylene glycol octadecyl ether

    International Nuclear Information System (INIS)

    Meng, Jie-yun; Tang, Xiao-fen; Li, Wei; Shi, Hai-feng; Zhang, Xing-xiang

    2013-01-01

    Highlights: ► The crystal structure of C18En for n ≥ 20 is a monoclinic system. ► Polyethylene glycol octadecyl ether crystallizes perfectly. ► The number of repeat units has significant effect on the melting, crystallizing temperature and enthalpy. ► The thermal stable temperature increases rapidly with increasing the number of repeat unit. - Abstract: The crystal structure, phase change property and thermal stable temperature (T d ) of polyethylene glycol octadecyl ether [HO(CH 2 CH 2 O) n C 18 H 37 , C18En] with various numbers of repeat units (n = 2, 10, 20 and 100) as phase change materials (PCMs) were investigated using temperature variable Fourier transformed infrared spectroscopy (FTIR), wide-angle X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). C18En crystallizes perfectly at 0 °C; and the crystal structure for n ≥ 20 is a monoclinic system. The number of repeat units has great effect on the phase change properties of C18En. The thermal stable temperature increases rapidly with increasing the number of repeat units. They approach to that of PEG-2000 as the number of repeat units is more than 10. T d increases rapidly with increasing the number of repeat units. C18En are a series of promising polymeric PCMs

  7. Thermal Properties of Hybrid Carbon Nanotube/Carbon Fiber Polymer

    Science.gov (United States)

    Kang, Jin Ho; Cano, Roberto J.; Luong, Hoa; Ratcliffe, James G.; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    Carbon fiber reinforced polymer (CFRP) composites possess many advantages for aircraft structures over conventional aluminum alloys: light weight, higher strength- and stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low thermal and electrical conductivities of CFRP composites are deficient in providing structural safety under certain operational conditions such as lightning strikes. One possible solution to these issues is to interleave carbon nanotube (CNT) sheets between conventional carbon fiber (CF) composite layers. However, the thermal and electrical properties of the orthotropic hybrid CNT/CF composites have not been fully understood. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel (Registered Trademark) IM7/8852 prepreg. The CNT sheets were infused with a 5% solution of a compatible epoxy resin prior to composite fabrication. Orthotropic thermal and electrical conductivities of the hybrid polymer composites were evaluated. The interleaved CNT sheets improved the in-plane thermal conductivity of the hybrid composite laminates by about 400% and the electrical conductivity by about 3 orders of magnitude.

  8. Industrial Requirements for Thermodynamics and Transport Properties

    DEFF Research Database (Denmark)

    Hendriks, Eric; Kontogeorgis, Georgios; Dohrn, Ralf

    2010-01-01

    reactive systems (simultaneous chemical and physical equilibrium). Education in thermodynamics is perceived as key, for the future application of thermodynamics in the industry. A number of suggestions for improvement were made at all three levels (undergraduate, postgraduate, and professional development...... addressed to or written by industrial colleagues, are discussed initially. This provides the context of the survey and material with which the results of the survey can be compared. The results of the survey have been divided into the themes: data, models, systems, properties, education, and collaboration...... are becoming interesting to a number of survey participants. Despite the academic success of molecular simulation techniques, the survey does not indicate great interest in it or its future development. Algorithms appear to be a neglected area, but improvements are still needed especially for multiphase...

  9. Electronic structure and transport properties of intermetallics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, A.J.; Ellis, D.E.; Welsh, L.B.

    1975-12-01

    The electronic interactions responsible for the unusual properties of several important classes of materials (including the highly anisotropic layered dichalcogenides, and network and cage structure materials and pseudobinary alloys) have been investigated experimentally and theoretically. The unique ability of NMR to probe the local electronic properties of the various constituents of an intermetallic compound or alloy has provided important new information including correlations with observed changes in superconducting transition temperatures. Novel theoretical models (including relativistic effects) are found to yield energy band structures, Fermi surfaces, transport properties, charge and spin densities, generalized magnetic susceptibilities, and optical properties in very good agreement with experimental determinations of these observable phenomena. (Author) (GRA)

  10. Transport properties of supercooled confined water

    International Nuclear Information System (INIS)

    Mallamace, F.; Baglioni, P.; Corsaro, C.; Spooren, J.; Stanley, H.E.; Chen, S.-H.

    2011-01-01

    We present an overview of recent experiments performed on water in the deeply supercooled region, a temperature region of fundamental importance in the science of water. We examine data generated by nuclear magnetic resonance, quasi-elastic neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy, and study water confined in nanometer-scale environments. When contained within small pores, water does not crystallize and can be supercooled well below its homogeneous nucleation temperature T H. On this basis, it is possible to carry out a careful analysis of the well-known thermodynamic anomalies of water. Studying the temperature and pressure dependencies of water dynamics, we show that the liquid-liquid phase transition (LLPT) hypothesis represents a reliable model for describing liquid water. In this model, liquid water is a mixture of two different local structures: a low density liquid (LDL) and a high-density liquid (HDL). The LLPT line terminates at a low-T liquid-liquid critical point. We discuss the following experimental findings: 1.) the crossover from non-Arrhenius behavior at high T to Arrhenius behavior at low T in transport parameters; 2.) the breakdown of the Stokes-Einstein relation; 3.) the existence of a Widom line, which is the locus of points corresponding to a maximum correlation length in the P-T phase diagram and which ends in the liquid-liquid critical point; 4.) the direct observation of the LDL phase; and 5.) the minimum in the density at approximately 70 K below the temperature of the density maximum. In our opinion these results strongly support the LLPT hypothesis. All of the basic science and technology community should be impressed by the fact that, although the few ideas (apparently elementary) developed concerning water approximately 27 centuries ago have changed very little up to now, because of the current expansion in our knowledge in this area, they can begin to change in the near future.

  11. Lipophilic phytosterol derivatives: synthesis, thermal property and nanoemulsion behavior

    DEFF Research Database (Denmark)

    Panpipat, Worawan; Xu, Xuebing; Guo, Zheng

    Phytosterols and their esters have been reported as a cholesterol lowering agent in human. However, natural phytosterols have a low solubility in both water and fat resulting in a poor absorption in intestine. To improve the intestinal absorption and bioavailability of phytosterols, conversion...... of phytosterols into enzyme-liable lipophilic derivatives, such as fatty acid esters was one of the possible strategies. Differences in molecular structures of modified phytosterols may result in the differences in their thermal and micelling behaviors. Therefore, the objectives of this study were to improve...... the productive yield of a series of -sitosteryl fatty acid esters (C2-C18) and to investigate the thermal property and nano-emulsion behaviors of those compounds. This work reported a novel approach to synthesize phytosterol (-sitosterol as a model) fatty acid ester by employing Candida antarctica lipase...

  12. Optical Property Evaluation of Next Generation Thermal Control Coatings

    Science.gov (United States)

    Jaworske, Donald A.; Deshpande, Mukund S.; Pierson, Edward A.

    2010-01-01

    Next generation white thermal control coatings were developed via the Small Business Innovative Research program utilizing lithium silicate chemistry as a binder. Doping of the binder with additives yielded a powder that was plasma spray capable and that could be applied to light weight polymers and carbon-carbon composite surfaces. The plasma sprayed coating had acceptable beginning-of-life and end-of-live optical properties, as indicated by a successful 1.5 year exposure to the space environment in low Earth orbit. Recent studies also showed the coating to be durable to simulated space environments consisting of 1 keV and 10 keV electrons, 4.5 MeV electrons, and thermal cycling. Large scale deposition was demonstrated on a polymer matrix composite radiator panel, leading to the selection of the coating for use on the Gravity Recovery And Interior Laboratory (GRAIL) mission.

  13. Impact of carbonation on water transport properties of cementitious materials

    International Nuclear Information System (INIS)

    Auroy, Martin

    2014-01-01

    Carbonation is a very well-known cementitious materials pathology. It is the major cause of reinforced concrete structures degradation. It leads to rebar corrosion and consequent concrete cover cracking. In the framework of radioactive waste management, cement-based materials used as building materials for structures or containers would be simultaneously submitted to drying and atmospheric carbonation. Although scientific literature regarding carbonating is vast, it is clearly lacking information about the influence of carbonation on water transport properties. This work then aimed at studying and understanding the change in water transport properties induced by carbonation. Simultaneously, the representativeness of accelerated carbonation (in the laboratory) was also studied. (author) [fr

  14. 1D-transport properties of single superconducting lead nanowires

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.

    2003-01-01

    We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have uniform diameter of ̃40 nm and a very large aspect ratio (̃500). The diameter of the nan......We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have uniform diameter of ̃40 nm and a very large aspect ratio (̃500). The diameter...

  15. Prediction of transport and other physical properties of fluids

    CERN Document Server

    Bretsznajder, S

    1971-01-01

    Prediction of Transport and Other Physical Properties of Fluids reviews general methods for predicting the transport and other physical properties of fluids such as gases and liquids. Topics covered range from the theory of corresponding states and methods for estimating the surface tension of liquids to some basic concepts of the kinetic theory of gases. Methods of estimating liquid viscosity based on the principle of additivity are also described. This volume is comprised of eight chapters and opens by presenting basic information on gases and liquids as well as intermolecular forces and con

  16. Structural and Thermal Safety Analysis Report for the Type B Radioactive Waste Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Seo, K. S.; Lee, J. C.; Bang, K. S

    2007-09-15

    We carried out structural safety evaluation for the type B radioactive waste transport package. Requirements for type B packages according to the related regulations such as IAEA Safety Standard Series No. TS-R-1, Korea Most Act. 2001-23 and US 10 CFR Part 71 were evaluated. General requirements for packages such as those for a lifting attachment, a tie-down attachment and pressure condition were considered. For the type B radioactive waste transport package, the structural, thermal and containment analyses were carried out under the normal transport conditions. Also the safety analysis were conducted under the accidental transport conditions. The 9 m drop test, 1 m puncture test, fire test and water immersion test under the accidental transport conditions were consecutively done. The type B radioactive waste transport packages were maintained the structural and thermal integrities.

  17. Ab initio phonon point defect scattering and thermal transport in graphene

    Science.gov (United States)

    Polanco, Carlos A.; Lindsay, Lucas

    2018-01-01

    We study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitude smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (˜ω0 ) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. This work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.

  18. Transport properties of self-consolidating concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sonebi, M.; Nanukuttan, S. [Queens University Belfast, Belfast (United Kingdom). School of Planning Architecture & Civil Engineering

    2009-03-15

    This study reports the findings from an investigation carried out to study the effect of the mixture variations on the durability of medium- and high-strength self-consolidating concrete (SCC). The mixture variations studied include the type of mineral admixtures, such as limestone powder (LSP) and pulverized fuel ash (PFA), and viscosity-modifying admixtures (VMA) for both medium- and high-strength SCC. Air permeability, water permeability, capillary absorption, and chloride diffusivity were used to assess the durability of SCC mixtures in comparison with normal, vibrated concretes. The results showed that SCC mixtures, for medium- and high-strength grades using PFA followed by LSP give lower permeability, properties compared with normal concretes. SCC made with VMA had a higher sorptivity, air permeability, and water permeability compared with other SCC mixtures, which can be attributed to higher water-cement ratio (w/c) and lack of pore filling effect. An in-place migration coefficient was obtained using the in-place ion migration test. This was used to compare the potential diffusivity of different concretes. The results indicated that SCC, for both grades of strength, made with PFA showed much lower diffusivity values in comparison with other mixtures, whereas the SCC mixtures with VMA showed higher diffusivity.

  19. Thermal properties of typical chernozems in Kursk Oblast

    Science.gov (United States)

    Arkhangel'skaya, T. A.; Velichenko, M. V.; Tikhonravova, P. I.

    2016-10-01

    Thermal diffusivity and heat capacity of virgin and plowed heavy loamy typical chernozems of Kursk oblast were studied. Thermal diffusivity was determined in the course of step-by-step drying of the initially capillary-saturated samples to the air-dry state. Specific heat capacity was determined for absolutely dry samples. Volumetric heat capacity was calculated according to the de Vries equation. Thermal diffusivity varied within the ranges of (1.15-3.46) × 10-7 m2/s in the Ap horizon, (1.14-3.35) × 10-7 m2/s in the A1 horizon, (1.49-3.70) × 10-7 m2/s in the AB horizon, (1.49-3.91) × 10-7 m2/s in the B1 horizon, and (1.60-3.80) × 10-7 m2/s in the Bca horizon. The thermal diffusivity vs. water content dependencies had distinct maximums and were flattened in the range of low water contents. The maximums were most pronounced for the mineral B1 and Bca horizons; for the A1 and Ap horizons, the curves were rather S-shaped. Volumetric heat capacity of the air-dry soils varied from 0.96 J/(cm3 K) in the A1 horizon to 1.31 J/(cm3 K) in the Bca horizon; in the state of capillary saturation, it varied from 2.79 J/(cm3 K) in the A1 horizon to 3.28 J/(cm3 K) in the Bca horizon. Thermal properties of topsoil horizons were higher in the plowed chernozem compared with the virgin chernozem, which is explained by an increase in the bulk density and a decrease in the organic matter content in the plowed soil.

  20. Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps

    KAUST Repository

    Mei, Yaochuan

    2017-08-02

    The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials for consumer applications. Here, we present experimental results that suggest that the inhomogeneous strain induced in organic semiconductor layers by the mismatch between the coefficients of thermal expansion (CTE) of the consecutive device layers of field-effect transistors generates trapping states that localize charge carriers. We observe a universal scaling between the activation energy of the transistors and the interfacial thermal expansion mismatch, in which band-like transport is observed for similar CTEs, and activated transport otherwise. Our results provide evidence that a high-quality semiconductor layer is necessary, but not sufficient, to obtain efficient charge-carrier transport in devices, and underline the importance of holistic device design to achieve the intrinsic performance limits of a given organic semiconductor. We go on to show that insertion of an ultrathin CTE buffer layer mitigates this problem and can help achieve band-like transport on a wide range of substrate platforms.

  1. Structural, electrical, thermal and optical properties of the nonlinear optical crystal L-Arginine Fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Mohandoss, R.; Dhanuskodi, S. [School of Physics, Bharathidasan University, Tiruchirappalli-620 024 (India); Jayalakshmy, M.S.; Philip, J. [Sophisticated Test and Instrumentation Centre, Cochin University of Science and Technology, Cochin-682 002 (India); Bhagavannarayana, G. [Crystal Growth and Crystallography Section, Materials Characterization Division, National Physical Laboratory, New Delhi-110 012 (India)

    2012-06-15

    Single crystals of L-Arginine Fluoride (LAF) have been grown by the slow evaporation technique, and the crystalline perfection was studied by HRXRD. Optical absorption studies reveal the lower cut off wavelength (280 nm) and the band gap (5.1 eV). The dielectric constant and dielectric loss have been measured as a function of frequency (42 Hz-5 MHz) and temperature (307-368K) and the activation energy is 77 {mu}eV. The thermal transport properties such as thermal conductivity (0.88 {+-} 0.02 W/mK) and specific heat capacity (482{+-}24 J/kg/K) have been estimated by the photopyroelectric technique. The nonlinear refractive index n{sub 2}, is found to be of the order of 10{sup -13} cm{sup 2}/W by the Z-scan technique. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Diffusion, Thermal Properties and Chemical Compatibilities of Select MAX Phases with Materials For Advanced Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michel [Drexel Univ., Philadelphia, PA (United States); Bentzel, Grady [Drexel Univ., Philadelphia, PA (United States); Tallman, Darin J. [Drexel Univ., Philadelphia, PA (United States); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-04

    The demands of Gen IV nuclear power plants for long service life under neutron irradiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ ºC) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the chemical compatibility of select MAX with potential materials that are important for nuclear energy, as well as to measure the thermal transport properties as a function of neutron irradiation. The chemical counterparts chosen for this work are: pyrolytic carbon, SiC, U, Pd, FLiBe, Pb-Bi and Na, the latter 3 in the molten state. The thermal conductivities and heat capacities of non-irradiated MAX phases will be measured.

  3. Transport Properties of Water and Sodium Dodecyl Sulfate (Postprint)

    Science.gov (United States)

    2013-08-01

    applicability and on the molecular system to be studied [34,46]. Bulk liquid properties using rigid water models are extensively studied and available...intended to be used to simulate bulk liquid water. In order to investigate the transport properties of the MP2f water model, we computed the diffusion... Monde , M., 2012, “Enhancement of Nucleate Pool Boiling Heat Transfer in Ammonia/Water Mixtures With a Surface-Active Agent,” Int. J. Heat Mass Transfer

  4. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    International Nuclear Information System (INIS)

    Xie, Zhong-Xiang; Zhang, Yong; Zhang, Li-Fu; Fan, Dian-Yuan

    2017-01-01

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  5. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhong-Xiang [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Yong [Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Li-Fu, E-mail: zhanglifu68@hotmail.com [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Fan, Dian-Yuan [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China)

    2017-05-03

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  6. Hemp Thermal Insulation Concrete with Alternative Binders, Analysis of their Thermal and Mechanical Properties

    Science.gov (United States)

    Sinka, M.; Sahmenko, G.; Korjakins, A.; Radina, L.; Bajare, D.

    2015-11-01

    One of the main challenges that construction industry faces today is how to address the demands for more sustainable, environmentally friendly and carbon neutral construction materials and building upkeep processes. One of the answers to these demands is lime-hemp concrete (LHC) building materials - carbon negative materials that have sufficient thermal insulation capabilities to be used as thermal insulation materials for new as well as for existing buildings. But one problem needs to be overcome before these materials can be used on a large scale - current manufacturing technology allows these materials to be used only as self-bearing thermal insulation material with large labour intensity in the manufacturing process. In order to lower the labour intensity and allow the material to be used in wider applications, a LHC block and board production is necessary, which in turn calls for the binders different from the classically used ones, as they show insufficient mechanical strength for this new use. The particular study focuses on alternative binders produced using gypsum-cement compositions ensuring they are usable in outdoor applications together with hemp shives. Physical, mechanical, thermal and water absorption properties of hemp concrete with various binders are addressed in the current study.

  7. The thermal properties of a carbon nanotube-enriched epoxy: Thermal conductivity, curing, and degradation kinetics

    KAUST Repository

    Ventura, Isaac Aguilar

    2013-05-31

    Multiwalled carbon nanotube-enriched epoxy polymers were prepared by solvent evaporation based on a commercially available epoxy system and functionalized multiwalled carbon nanotubes (COOH-MWCNTs). Three weight ratio configurations (0.05, 0.5, and 1.0 wt %) of COOH-MWCNTs were considered and compared with neat epoxy and ethanol-treated epoxy to investigate the effects of nano enrichment and processing. Here, the thermal properties of the epoxy polymers, including curing kinetics, thermal conductivity, and degradation kinetics were studied. Introducing the MWCNTs increased the curing activation energy as revealed by differential scanning calorimetry. The final thermal conductivity of the 0.5 and 1.0 wt % MWCNT-enriched epoxy samples measured by laser flash technique increased by up to 15% compared with the neat material. The activation energy of the degradation process, investigated by thermogravimetric analysis, was found to increase with increasing CNT content, suggesting that the addition of MWCNTs improved the thermal stability of the epoxy polymers. © 2013 Wiley Periodicals, Inc.

  8. Thermal properties of nuclear matter under the periodic boundary condition

    International Nuclear Information System (INIS)

    Otuka, Naohiko; Ohnishi, Akira

    1999-01-01

    We present the thermal properties of nuclear matter under the periodic boundary condition by the use of our hadronic nucleus-nucleus cascade model (HANDEL) which is developed to treat relativistic heavy-ion collisions from BNL-AGS to CERN-SPS. We first show some results of p-p scattering calculation in our new version which is improved in order to treat isospin ratio and multiplicity more accurately. We then display the results of calculation of nuclear matter with baryon density ρ b = 0.77 fm 3 at some energy densities. Time evolution of particle abundance and temperature are shown. (author)

  9. Crystallization and thermal properties of Polylactide/Palygorskite composites

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2014-06-01

    Full Text Available of Applied Polymer Science For Peer Review 1 Crystallization and thermal properties of polylactide/palygorskite composites Sreejarani Kesavan Pillai1*, Vincent Ojijo1 and Suprakas Sinha Ray1,2,3 1DST/CSIR Nanotechnology Innovation Centre, National... limits the processability of the polymer.3 This specifically becomes an issue when PLA is to be used in extrusion and injection moulding where it is hard to get high PLA crystallinity in a short time.4 Therefore, how to enhance crystallization kinetics...

  10. Experimental validation of new empirical models of the thermal properties of food products for safe shipping

    Science.gov (United States)

    Hamid, Hanan H.; Mitchell, Mark; Jahangiri, Amirreza; Thiel, David V.

    2018-04-01

    Temperature controlled food transport is essential for human safety and to minimise food waste. The thermal properties of food are important for determining the heat transfer during the transient stages of transportation (door opening during loading and unloading processes). For example, the temperature of most dairy products must be confined to a very narrow range (3-7 °C). If a predefined critical temperature is exceeded, the food is defined as spoiled and unfit for human consumption. An improved empirical model for the thermal conductivity and specific heat capacity of a wide range of food products was derived based on the food composition (moisture, fat, protein, carbohydrate and ash). The models that developed using linear regression analysis were compared with the published measured parameters in addition to previously published theoretical and empirical models. It was found that the maximum variation in the predicated thermal properties leads to less than 0.3 °C temperature change. The correlation coefficient for these models was 0.96. The t-Stat test ( P-value >0.99) demonstrated that the model results are an improvement on previous works. The transient heat transfer based on the food composition and the temperature boundary conditions was found for a Camembert cheese (short cylindrical shape) using a multiple dimension finite difference method code. The result was verified using the heat transfer today (HTT) educational software which is based on finite volume method. The core temperature rises from the initial temperature (2.7 °C) to the maximum safe temperature in ambient air (20.24 °C) was predicted to within about 35.4 ± 0.5 min. The simulation results agree very well ( +0.2 °C) with the measured temperature data. This improved model impacts on temperature estimation during loading and unloading the trucks and provides a clear direction for temperature control in all refrigerated transport applications.

  11. Experimental validation of new empirical models of the thermal properties of food products for safe shipping

    Science.gov (United States)

    Hamid, Hanan H.; Mitchell, Mark; Jahangiri, Amirreza; Thiel, David V.

    2017-11-01

    Temperature controlled food transport is essential for human safety and to minimise food waste. The thermal properties of food are important for determining the heat transfer during the transient stages of transportation (door opening during loading and unloading processes). For example, the temperature of most dairy products must be confined to a very narrow range (3-7 °C). If a predefined critical temperature is exceeded, the food is defined as spoiled and unfit for human consumption. An improved empirical model for the thermal conductivity and specific heat capacity of a wide range of food products was derived based on the food composition (moisture, fat, protein, carbohydrate and ash). The models that developed using linear regression analysis were compared with the published measured parameters in addition to previously published theoretical and empirical models. It was found that the maximum variation in the predicated thermal properties leads to less than 0.3 °C temperature change. The correlation coefficient for these models was 0.96. The t-Stat test (P-value >0.99) demonstrated that the model results are an improvement on previous works. The transient heat transfer based on the food composition and the temperature boundary conditions was found for a Camembert cheese (short cylindrical shape) using a multiple dimension finite difference method code. The result was verified using the heat transfer today (HTT) educational software which is based on finite volume method. The core temperature rises from the initial temperature (2.7 °C) to the maximum safe temperature in ambient air (20.24 °C) was predicted to within about 35.4 ± 0.5 min. The simulation results agree very well (+0.2 °C) with the measured temperature data. This improved model impacts on temperature estimation during loading and unloading the trucks and provides a clear direction for temperature control in all refrigerated transport applications.

  12. Interactive FORTRAN IV computer programs for the thermodynamic and transport properties of selected cryogens (fluids pack)

    Science.gov (United States)

    Mccarty, R. D.

    1980-01-01

    The thermodynamic and transport properties of selected cryogens had programmed into a series of computer routines. Input variables are any two of P, rho or T in the single phase regions and either P or T for the saturated liquid or vapor state. The output is pressure, density, temperature, entropy, enthalpy for all of the fluids and in most cases specific heat capacity and speed of sound. Viscosity and thermal conductivity are also given for most of the fluids. The programs are designed for access by remote terminal; however, they have been written in a modular form to allow the user to select either specific fluids or specific properties for particular needs. The program includes properties for hydrogen, helium, neon, nitrogen, oxygen, argon, and methane. The programs include properties for gaseous and liquid states usually from the triple point to some upper limit of pressure and temperature which varies from fluid to fluid.

  13. Integration of experimental and computational methods for identifying geometric, thermal and diffusive properties of biomaterials

    Science.gov (United States)

    Weres, Jerzy; Kujawa, Sebastian; Olek, Wiesław; Czajkowski, Łukasz

    2016-04-01

    Knowledge of physical properties of biomaterials is important in understanding and designing agri-food and wood processing industries. In the study presented in this paper computational methods were developed and combined with experiments to enhance identification of agri-food and forest product properties, and to predict heat and water transport in such products. They were based on the finite element model of heat and water transport and supplemented with experimental data. Algorithms were proposed for image processing, geometry meshing, and inverse/direct finite element modelling. The resulting software system was composed of integrated subsystems for 3D geometry data acquisition and mesh generation, for 3D geometry modelling and visualization, and for inverse/direct problem computations for the heat and water transport processes. Auxiliary packages were developed to assess performance, accuracy and unification of data access. The software was validated by identifying selected properties and using the estimated values to predict the examined processes, and then comparing predictions to experimental data. The geometry, thermal conductivity, specific heat, coefficient of water diffusion, equilibrium water content and convective heat and water transfer coefficients in the boundary layer were analysed. The estimated values, used as an input for simulation of the examined processes, enabled reduction in the uncertainty associated with predictions.

  14. Elucidation technique on thermal properties data on material for nuclear power

    International Nuclear Information System (INIS)

    Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1999-01-01

    National Research Laboratory of Metrology developed a technology capable of measuring thermal diffusivity with more than 2% in precision at less than 2600degC by using laser flash method, specific heat volume and thermal emissivity with more than 3% in precision at less than 3000degC by using pulse electro-heating method, and thermal conductivity of micro specimen with 3% in precision at a range of room of room temperature to 500degC. On base of such technical potentials, this study aimed at rapidly measuring thermal properties (thermal conductivity, thermal diffusivity specific heat volume, and thermal emissivity) with precision at the highest precision in the world and ranging to ultrahigh temperature under identifying fundamental properties of materials. As a result, a data base on thermal properties capable of collecting all thermal property data obtained at this study and with excellent operability could be developed. (G.K.)

  15. Physicochemical, thermal and functional properties of gamma irradiated chickpea starch.

    Science.gov (United States)

    Bashir, Khalid; Aggarwal, Manjeet

    2017-04-01

    The study was conducted to evaluate the effect of gamma irradiation (0, 0.5, 1, 2.5, 5 and 10kGy) on physicochemical, functional and thermal properties of chickpea starch. Results revealed that the pasting properties showed a significant (p≤0.05) decrease in peak viscosity, final viscosity, setback viscosity, trough viscosity and pasting temperature in dose dependent manner. Swelling, solubility index, oil absorption capacity and water absorption capacity increased significantly with dose, while as syneresis decreased with dose. Gelatinization temperatures T o , T p and T c decreased significantly with dose. X-ray diffraction showed a characteristic C type pattern of the starches and the crystallinity decreased with dose. Scanning electron microscopy revealed small oval shaped starch granules and slight surface fissures were seen in the irradiated starch treated with 5 and 10kGy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Oxygen transport properties estimation by DSMC-CT simulations

    International Nuclear Information System (INIS)

    Bruno, Domenico; Frezzotti, Aldo; Ghiroldi, Gian Pietro

    2014-01-01

    Coupling DSMC simulations with classical trajectories calculations is emerging as a powerful tool to improve predictive capabilities of computational rarefied gas dynamics. The considerable increase of computational effort outlined in the early application of the method (Koura,1997) can be compensated by running simulations on massively parallel computers. In particular, GPU acceleration has been found quite effective in reducing computing time (Ferrigni,2012; Norman et al.,2013) of DSMC-CT simulations. The aim of the present work is to study rarefied Oxygen flows by modeling binary collisions through an accurate potential energy surface, obtained by molecular beams scattering (Aquilanti, et al.,1999). The accuracy of the method is assessed by calculating molecular Oxygen shear viscosity and heat conductivity following three different DSMC-CT simulation methods. In the first one, transport properties are obtained from DSMC-CT simulations of spontaneous fluctuation of an equilibrium state (Bruno et al, Phys. Fluids, 23, 093104, 2011). In the second method, the collision trajectory calculation is incorporated in a Monte Carlo integration procedure to evaluate the Taxman’s expressions for the transport properties of polyatomic gases (Taxman,1959). In the third, non-equilibrium zero and one-dimensional rarefied gas dynamic simulations are adopted and the transport properties are computed from the non-equilibrium fluxes of momentum and energy. The three methods provide close values of the transport properties, their estimated statistical error not exceeding 3%. The experimental values are slightly underestimated, the percentage deviation being, again, few percent

  17. Low-temperature localization in the transport properties of self ...

    Indian Academy of Sciences (India)

    Transport properties; scattering mechanisms; low temperature localization. 1. Introduction. The investigation on mixed-valent manganites with per- ovskite structure is on run for the last two decades. Specially, the studies on the hole doped manganites, La1−δAδMnO3. (A = divalent atom) still demands special attention ...

  18. A comparative study of proton transport properties of zirconium ...

    Indian Academy of Sciences (India)

    TECS

    A comparative study of proton transport properties of zirconium phosphate and its metal exchanged phases. RAKESH THAKKAR, HEEMANSHU PATEL and UMA CHUDASAMA*. Applied Chemistry Department, Faculty of Technology and Engineering, M.S. University of Baroda,. Vadodara 390 001, India. MS received 26 ...

  19. Density functional theory calculations of charge transport properties ...

    Indian Academy of Sciences (India)

    ZIRAN CHEN

    2017-08-04

    Aug 4, 2017 ... Density functional theory calculations of charge transport properties of 'plate-like' coronene topological structures. ZIRAN CHENa, ZHANRONG HEa, YOUHUI XUa and WENHAO YUb,∗. aDepartment of Architecture and Environment Engineering, Sichuan Vocational and Technical College, Suining,.

  20. Computer programs for thermodynamic and transport properties of hydrogen

    Science.gov (United States)

    Hall, W. J.; Mc Carty, R. D.; Roder, H. M.

    1968-01-01

    Computer program subroutines provide the thermodynamic and transport properties of hydrogen in tabular form. The programs provide 18 combinations of input and output variables. This program is written in FORTRAN 4 for use on the IBM 7044 or CDC 3600 computers.

  1. Influence of copolymer composition on the transport properties of ...

    Indian Academy of Sciences (India)

    Unknown

    Influence of copolymer composition on the transport properties of conducting copolymers: poly(aniline-co-o-anisidine). S S UMARE*, A D BORKAR† and M C GUPTA†. Department of Chemistry, Visvesvaraya Regional College of Engineering, Nagpur 440 011, India. †Department of Chemistry, Nagpur University, Nagpur ...

  2. Temperature-dependent ionic conductivity and transport properties ...

    Indian Academy of Sciences (India)

    This paper presents the investigation on physicochemical properties and ionic conductivity of LiClO4-doped poly(vinyl alcohol) (PVA)/modified cellulose composites. The percolative behaviour of LiClO4 with dc conductivity (dc) for different LiClO4 weight fractions (p) related to transport dimensionality was also focused.

  3. Thermal transport characterization of hexagonal boron nitride nanoribbons using molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Asir Intisar Khan

    2017-10-01

    Full Text Available Due to similar atomic bonding and electronic structure to graphene, hexagonal boron nitride (h-BN has broad application prospects such as the design of next generation energy efficient nano-electronic devices. Practical design and efficient performance of these devices based on h-BN nanostructures would require proper thermal characterization of h-BN nanostructures. Hence, in this study we have performed equilibrium molecular dynamics (EMD simulation using an optimized Tersoff-type interatomic potential to model the thermal transport of nanometer sized zigzag hexagonal boron nitride nanoribbons (h-BNNRs. We have investigated the thermal conductivity of h-BNNRs as a function of temperature, length and width. Thermal conductivity of h-BNNRs shows strong temperature dependence. With increasing width, thermal conductivity increases while an opposite pattern is observed with the increase in length. Our study on h-BNNRs shows considerably lower thermal conductivity compared to GNRs. To elucidate these aspects, we have calculated phonon density of states for both h-BNNRs and GNRs. Moreover, using EMD we have explored the impact of different vacancies, namely, point vacancy, edge vacancy and bi-vacancy on the thermal conductivity of h-BNNRs. With varying percentages of vacancies, significant reduction in thermal conductivity is observed and it is found that, edge and point vacancies are comparatively more destructive than bi-vacancies. Such study would contribute further into the growing interest for accurate thermal transport characterization of low dimensional nanostructures.

  4. Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites

    International Nuclear Information System (INIS)

    Sarathi, R.; Sahu, R.K.; Rajeshkumar, P.

    2007-01-01

    In the present work, the electrical, mechanical and thermal properties of epoxy nanocomposite materials were studied. The electrical insulation characteristics were analyzed through short time breakdown voltage test, accelerated electrical ageing test, and by tracking test. The breakdown voltage increases with increase in nano-clay content up to 5 wt%, under AC and DC voltages. The volume resistivity, permittivity and tan(δ) of the epoxy nanocomposites were measured. The Weibull studies indicate that addition of nanoclay upto 5 wt% enhances the characteristic life of epoxy nanocomposite insulation material. The tracking test results indicate that the tracking time is high with epoxy nanocomposites as compared to pure epoxy. Ageing studies were carried out to understand the surface characteristic variation through contact angle measurement. The hydrophobicity of the insulating material was analysed through contact angle measurement. The diffusion coefficients of the material with different percentage of clay in epoxy nanocomposites were calculated. The exfoliation characteristics in epoxy nanocomposites were analyzed through wide angle X-ray diffraction (WAXD) studies. The thermal behaviour of the epoxy nanocomposites was analyzed by carrying out thermo gravimetric-differential thermal analysis (TG-DTA) studies. Heat deflection temperature of the material was measured to understand the stability of the material for intermittent temperature variation. The dynamic mechanical analysis (DMA) results indicated that storage modulus of the material increases with small amount of clay in epoxy resin. The activation energy of the material was calculated from the DMA results

  5. Thermal and Electronic Transport in Graphene-Based Nanostructures and Applications in Electrical Sensors

    Science.gov (United States)

    Ramnani, Pankaj Ghanshyam

    It is a general consensus that silicon metal-oxide-semiconductor FET (MOSFET) is approaching its scaling limits due to issues including high power dissipation, short channel effects and degraded electrostatics. In recent years, a significant amount of research has been directed towards exploring novel materials like graphene and other two-dimensional atomic crystals to replace Si. Graphene is an ideal candidate owing to its exceptional properties including high carrier mobility (exceeding 15,000 cm2 V -1 s-1), high charge carrier concentration ( 1012 cm -2), low contact resistance due to tunable fermi level, excellent thermal conductivity ( 5000W m-1 K-1), optical transparency ( 97.7%) and flexibility. Despite all these intriguing properties, the absence of a bandgap in graphene has limited its potential applications owing to large off-state currents and low Ion/Ioff ratios observed in graphene-based field effect transistors (FETs). Additionally, most of these experimental studies are conducted using pristine graphene isolated by mechanical exfoliation of graphite, which is not a practical approach for large scale synthesis of graphene. In this dissertation, a scalable method of synthesizing high quality single-layer and bilayer graphene was developed using ambient pressure chemical vapor deposition (AP-CVD). The crystalline nature and physical properties were characterized using electron microscopy and spectroscopic techniques. We investigated the effects of point defects--typically introduced during material characterization and device fabrication steps--on thermal transport in CVD grown single-layer graphene. Furthermore, we investigated methods to engineer a bandgap in graphene by nanopatterning graphene into pseudo one-dimensional nanostructures called graphene nanoribbons (GNRs) using two different top-down approaches. The edge defects in GNRs, which limit carrier mobility and induce p-doping, were characterized using Raman spectroscopy and x

  6. Measurement of gas transport properties for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1996-12-01

    In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

  7. PROPERTIES OF FIBERBOARD OVERPACK MATERIAL IN THE 9975 SHIPPING PACKAGE FOLLOWING THERMAL AGING

    International Nuclear Information System (INIS)

    Daugherty, W

    2007-01-01

    Many radioactive material shipping packages incorporate cane fiberboard overpacks for thermal insulation and impact resistance. Mechanical, thermal and physical properties have been measured on cane fiberboard following thermal aging in several temperature/humidity environments. Several of the measured properties change significantly over time in the more severe environments, while other properties are relatively constant. These properties continue to be tracked, with the goal of developing a model for predicting a service life under long-term storage conditions

  8. Adjustment of Sensor Locations During Thermal Property Parameter Estimation

    Science.gov (United States)

    Milos, Frank S.; Marschall, Jochen; Rasky, Daniel J. (Technical Monitor)

    1996-01-01

    The temperature dependent thermal properties of a material may be evaluated from transient temperature histories using nonlinear parameter estimation techniques. The usual approach is to minimize the sum of the squared errors between measured and calculated temperatures at specific locations in the body. Temperature measurements are usually made with thermocouples and it is customary to take thermocouple locations as known and fixed during parameter estimation computations. In fact, thermocouple locations are never known exactly. Location errors on the order of the thermocouple wire diameter are intrinsic to most common instrumentation procedures (e.g., inserting a thermocouple into a drilled hole) and additional errors can be expected for delicate materials, difficult installations, large thermocouple beads, etc.. Thermocouple location errors are especially significant when estimating thermal properties of low diffusively materials which can sustain large temperature gradients during testing. In the present work, a parameter estimation formulation is presented which allows for the direct inclusion of thermocouple positions into the primary parameter estimation procedure. It is straightforward to set bounds on thermocouple locations which exclude non-physical locations and are consistent with installation tolerances. Furthermore, bounds may be tightened to an extent consistent with any independent verification of thermocouple location, such as x-raying, and so the procedure is entirely consonant with experimental information. A mathematical outline of the procedure is given and its implementation is illustrated through numerical examples characteristic of light-weight, high-temperature ceramic insulation during transient heating. The efficacy and the errors associated with the procedure are discussed.

  9. Structural and thermal properties of carboxylic acid functionalized polythiophenes

    Directory of Open Access Journals (Sweden)

    Ariane de França Mescoloto

    2014-01-01

    Full Text Available Polythiophenes functionalized with polar groups at the end of side-chain have emerged as an alternative method to obtain good compatibility between this class of conjugated polymers and electron acceptor compounds. The aim is to prevent phase segregation and to improve the efficiency of the polythiophene technological devices. However, homopolymers synthesized from thiophene rings with high polar groups at the end of the side-chain, such as hydroxyl and carboxylic acid groups, are poorly soluble in common volatile organic solvents. We report on a systematic preparation of copolymers of 3-hexylthiophene (HT and thiophene-3-acetic acid (TAA, using different feed ratios. The chemical structures of the copolymers were confirmed by FTIR and ¹H-NMR. The TAA content in these copolymers were 33, 38 and 54 mol %. HPSEC results did not show any remarkable correlation with TAA contents in the copolymers. In contrast, the thermal analyses showed a decrease in the thermal stability and an increase in rigidity of their backbones, for the copolymers with high amounts of TAA. The solubility and optical property of copolymers were also related to the TAA contents. Thus, the properties of these copolymers can be modulated by a simple control of feed ratio of TAA in the copolymerization.

  10. Thermal Properties of Unusual Local-Scale Features on Vesta

    Science.gov (United States)

    Capria, M.; DeSanctis, M.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.; Sunshine, J. M.; Titus, T. N.; Mittlefehldt, D. W.; hide

    2012-01-01

    On Vesta, the thermal behavior of areas of unusual albedo seen at the local scale can be related to physical properties that can provide information about the origin of those materials. We used Dawn s Visible and Infrared Mapping Spectrometer (VIR) hyperspectral cubes to retrieve surface temperatures and emissivities, with high accuracy as long as temperatures are greater than 180 K. Data acquired in the Survey phase (23 July through 29 August 2011) show several unusual surface features: 1) high-albedo (bright) and low-albedo (dark) material deposits, 2) spectrally distinct ejecta and pitted materials, 3) regions suggesting finer-grained materials. Some of the unusual dark and bright features were reobserved by VIR in the subsequent High-Altitude Mapping Orbit (HAMO) and Low- Altitude Mapping Orbit (LAMO) phases at increased pixel resolution. In this work we present temperature maps and emissivities of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times. Data from VIR's IR channel show that bright regions generally correspond to regions with lower thermal emission, i.e. lower temperature, while dark regions correspond to areas with higher thermal emission, i.e. higher temperature. This behavior confirms that many of the dark appearances in the VIS mainly reflect albedo variations, and not, for example, shadowing. During maximum daily insolation, dark features in the equatorial region may rise to temperatures greater than 270 K, while brightest features stop at roughly 258 K, local solar time being similar. However, pitted materials, showing relatively low reflectance, have significantly lower temperatures, as a result of differences in composition and/or structure (e.g, average grain size of the surface regolith, porosity, etc.). To complement this work, we provide preliminary values of thermal inertia for some bright and dark features.

  11. Structural properties of the Chinese air transportation multilayer network

    International Nuclear Information System (INIS)

    Hong, Chen; Zhang, Jun; Cao, Xian-Bin; Du, Wen-Bo

    2016-01-01

    Highlights: • We investigate the structural properties of the Chinese air transportation multilayer network (ATMN). • We compare two main types of layers corresponding to major and low-cost airlines. • It is found that small-world property and rich-club effect of the Chinese ATMN are mainly caused by major airlines. - Abstract: Recently multilayer networks are attracting great attention because the properties of many real-world systems cannot be well understood without considering their different layers. In this paper, we investigate the structural properties of the Chinese air transportation multilayer network (ATMN) by progressively merging layers together, where each commercial airline (company) defines a layer. The results show that the high clustering coefficient, short characteristic path length and large collection of reachable destinations of the Chinese ATMN can only emerge when several layers are merged together. Moreover, we compare two main types of layers corresponding to major and low-cost airlines. It is found that the small-world property and the rich-club effect of the Chinese ATMN are mainly caused by those layers corresponding to major airlines. Our work will highlight a better understanding of the Chinese air transportation network.

  12. Wentzel-Bardeen singularity in coupled Luttinger liquids: Transport properties

    International Nuclear Information System (INIS)

    Martin, T.

    1994-01-01

    The recent progress on 1 D interacting electrons systems and their applications to study the transport properties of quasi one dimensional wires is reviewed. We focus on strongly correlated elections coupled to low energy acoustic phonons in one dimension. The exponents of various response functions are calculated, and their striking sensitivity to the Wentzel-Bardeen singularity is discussed. For the Hubbard model coupled to phonons the equivalent of a phase diagram is established. By increasing the filling factor towards half filling the WB singularity is approached. This in turn suppresses antiferromagnetic fluctuations and drives the system towards the superconducting regime, via a new intermediate (metallic) phase. The implications of this phenomenon on the transport properties of an ideal wire as well as the properties of a wire with weak or strong scattering are analyzed in a perturbative renormalization group calculation. This allows to recover the three regimes predicted from the divergence criteria of the response functions

  13. Thermal properties and thermal reliability of eutectic mixtures of some fatty acids as latent heat storage materials

    International Nuclear Information System (INIS)

    Sari, Ahmet; Sari, Hayati; Oenal, Adem

    2004-01-01

    The present study deals with two subjects. The first one is to determine the thermal properties of lauric acid (LA)-stearic acid (SA), myristic acid (MA)-palmitic acid (PA) and palmitic acid (PA)-stearic acid (SA) eutectic mixtures as latent heat storage material. The properties were measured by the differential scanning calorimetry (DSC) analysis technique. The second one is to study the thermal reliability of these materials in view of the change in their melting temperatures and latent heats of fusion with respect to repeated thermal cycles. For this aim, the eutectic mixtures were subjected to 360 repeated melt/freeze cycles, and their thermal properties were measured after 0, 90,180 and 360 thermal cycles by the technique of DSC analysis. The DSC thermal analysis results show that the binary systems of LA-SA in the ratio of 75.5:24.5 wt.%, MA-PA in the ratio of 58:42 wt.% and PA-SA in the ratio of 64.2:35.8 wt.% form eutectic mixtures with melting temperatures of 37.0, 42.60 and 52.30 deg. C and with latent heats of fusion of 182.7, 169.7 and 181.7 J g -1 , respectively. These thermal properties make them possible for heat storage in passive solar heating applications with respect to climate conditions. The accelerated thermal cycle tests indicate that the changes in the melting temperatures and latent heats of fusion of the studied eutectic mixtures are not regular with increasing number of thermal cycles. However, these materials, latent heat energy storage materials, have good thermal reliability in terms of the change in their thermal properties with respect to thermal cycling for about a one year utility period

  14. Thermal transport and dissipation in two dimensional superfluid 4He

    International Nuclear Information System (INIS)

    Joseph, R.A.

    1982-01-01

    The thermal conductivity of unsaturated helium films on a stainless steel substrate near the super-fluid transition has been examined, both as a function of temperature and as a function of heat carried by film. The terms of vortex dynamics as calculated by Ambegaokar, Halperin, Nelson, and Siggia (AHNS). Near the superfluid transitions it was found that the thermal conductivity increases with decreasing temperature in a manner similar to what would be expected on the basis of the AHNS theory. Below the superfluid transition, the determination of the dependence of thermal conductivity on superfluid velocity differs from the dependence expected on the basis of the AHNS theory. Also, the specific heat of helium in filled pores of Vycor glass has been examined. The temperature range in which rho/sub s/ is known to vanish with 2/3 power law has been studied in detail. No singularity was found in the specific heat. The data have been analyzed in terms of finite size scaling theory and two-scale factor universality

  15. Effects of pressure on thermal transport in plutonium oxide powder

    International Nuclear Information System (INIS)

    Bielenberg, Patricia; Prenger, F. Coyne; Veirs, Douglas Kirk; Jones, Jerry

    2004-01-01

    Radial temperature profiles in plutonium oxide (PuO 2 ) powder were measured in a cylindrical vessel over a pressure range of 0.055 to 334.4 kPa with two different fill gases, helium and argon. The fine PuO 2 powder provides a very uniform self-heating medium amenable to relatively simple mathematical descriptions. At low pressures ( 2 powder has small particle sizes (on the order of 1 to 10 μm), random particle shapes, and high porosity so a more general model was required for this system. The model correctly predicts the temperature profiles of the powder over the wide pressure range for both argon and helium as fill gases. The effective thermal conductivity of the powder bed exhibits a pressure dependence at higher pressures because the pore sizes in the interparticle contact area are relatively small (less than 1 μm) and the Knudsen number remains above the continuum limit at these conditions for both fill gases. Also, the effective thermal conductivity with argon as a fill gas is higher than expected at higher pressures because the solid pathways account for over 80% of the effective powder conductivity. The results obtained from this model help to bring insight to the thermal conductivity of very fine ceramic powders with different fill gases.

  16. Phonon Transport through Nanoscale Contact in Tip-Based Thermal Analysis of Nanomaterials.

    Science.gov (United States)

    Dulhani, Jay; Lee, Bong Jae

    2017-07-28

    Nanomaterials have been actively employed in various applications for energy and sustainability, such as biosensing, gas sensing, solar thermal energy conversion, passive radiative cooling, etc. Understanding thermal transports inside such nanomaterials is crucial for optimizing their performance for different applications. In order to probe the thermal transport inside nanomaterials or nanostructures, tip-based nanoscale thermometry has often been employed. It has been well known that phonon transport in nanometer scale is fundamentally different from that occurred in macroscale. Therefore, Fourier's law that relies on the diffusion approximation is not ideally suitable for describing the phonon transport occurred in nanostructures and/or through nanoscale contact. In the present study, the gray Boltzmann transport equation (BTE) is numerically solved using finite volume method. Based on the gray BTE, phonon transport through the constriction formed by a probe itself as well as the nanoscale contact between the probe tip and the specimen is investigated. The interaction of a probe and a specimen (i.e., treated as a substrate) is explored qualitatively by analyzing the temperature variation in the tip-substrate configuration. Besides, each contribution of a probe tip, tip-substrate interface, and a substrate to the thermal resistance are analyzed for wide ranges of the constriction ratio of the probe.

  17. Transport properties in a superconducting proximity sandwich, Kondo effect

    International Nuclear Information System (INIS)

    Mori, N.

    1981-01-01

    Temperature-dependent properties are evaluated in a superconducting Kondo alloy induced by the proximity effect. These include (i) the order parameter, (ii) the dc Josephson current, and (iii) the thermal conductivity and ultrasonic attenuation, in the case when there is reentance of superconductivity. The calculations are based on the theory given by Kaiser, in which the McMillan tunneling model and the Mueller-Hartmann-Zittartz theory are combined. The temperature dependence of pair-breaking is reflected directly in the above properties in much the same way as in an intrinsic Kondo superconductor, indicating that proximity-effect studies may provide detailed information on the Kondo effect in superconductivity

  18. Thermal and shielding layout of the transport and storage container Asse TB1

    International Nuclear Information System (INIS)

    Kessels, W.; Muth, M.; Gross, S.; Pfeifer, S.; Kolditz, H.

    1985-01-01

    A large spectrum has been devoted to the general questions of the thermal and radiological calculations, the nuclide content of the different types of waste and to the layout of an optimum transport container. This also concerns the considerations in case of fire, since upon inserting a transport container into a mine particular importance is attached to the possible liberation of toxic materials under these circumstances. It was possible to construct a transport container with a weight less than 10 t in such a way that it is suitable to transport and store the planned vitrified HLW according to DWK-specifications in a final repository borehole. (orig./HP) [de

  19. Thermal properties and dynamic mechanical properties of ceramic fillers filled epoxy composites

    Science.gov (United States)

    Saidina, D. S.; Mariatti, M.; Juliewatty, J.

    2015-07-01

    This present study is aimed to enhance the thermal and dynamic mechanical properties of ceramic fillers such as Calcium Copper Titanate, CaCu3Ti4O12 (CCTO) and Barium Titanate (BaTiO3) filled epoxy thin film composites. As can be seen from the results, 20 vol% BaTiO3/epoxy thin film composite showed the lowest coefficient of thermal expansion (CTE) value, the highest decomposition temperature (T5 and Tonset) and weight of residue among the composites as the filler has low CTE value, distributed homogeneously throughout the composite and less voids can be seen between epoxy resin and BaTiO3 filler.

  20. Transport processes in partially saturate concrete: Testing and liquid properties

    Science.gov (United States)

    Villani, Chiara

    The measurement of transport properties of concrete is considered by many to have the potential to serve as a performance criterion that can be related to concrete durability. However, the sensitivity of transport tests to several parameters combined with the low permeability of concrete complicates the testing. Gas permeability and diffusivity test methods are attractive due to the ease of testing, their non-destructive nature and their potential to correlate to in-field carbonation of reinforced concrete structures. This work was aimed at investigating the potential of existing gas transport tests as a way to reliably quantify transport properties in concrete. In this study gas permeability and diffusivity test methods were analyzed comparing their performance in terms of repeatability and variability. The influence of several parameters was investigated such as moisture content, mixture proportions and gas flow. A closer look to the influence of pressure revealed an anomalous trend of permeability with respect to pressure. An alternative calculation is proposed in an effort to move towards the determination of intrinsic material properties that can serve as an input for service life prediction models. The impact of deicing salts exposure was also analyzed with respect to their alteration of the degree of saturation as this may affect gas transport in cementitious materials. Limited information were previously available on liquid properties over a wide range of concentrations. To overcome this limitation, this study quantified surface tension, viscosity in presence of deicing salts in a broad concentration range and at different temperatures. Existing models were applied to predict the change of fluid properties during drying. Vapor desorption isotherms were obtained to investigate the influence of deicing salts presence on the non-linear moisture diffusion coefficient. Semi-empirical models were used to quantify the initiation and the rate of drying using liquid