WorldWideScience

Sample records for thermal transport models

  1. Model Comparison for Electron Thermal Transport

    Science.gov (United States)

    Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques

    2015-11-01

    Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  2. Thermal model of spent fuel transport cask

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.; Sultan, G.F.; Khalil, E.E.

    1996-01-01

    The investigation provides a theoretical model to represent the thermal behaviour of the spent fuel elements when transported in a dry shipping cask under normal transport conditions. The heat transfer process in the spent fuel elements and within the cask are modeled which include the radiant heat transfer within the cask and the heat transfer by thermal conduction within the spent fuel element. The model considers the net radiant method for radiant heat transfer process from the inner most heated element to the surrounding spent elements. The heat conduction through fuel interior, fuel-clad interface and on clad surface are also presented. (author) 6 figs., 9 refs

  3. Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO

    Science.gov (United States)

    Chenhall, Jeffrey; Moses, Gregory

    2017-10-01

    The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  4. Ultrafast Thermal Transport at Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, David [Univ. of Illinois, Champaign, IL (United States); Murphy, Catherine [Univ. of Illinois, Champaign, IL (United States); Martin, Lane [Univ. of Illinois, Champaign, IL (United States)

    2014-10-21

    Our research program on Ultrafast Thermal Transport at Interfaces advanced understanding of the mesoscale science of heat conduction. At the length and time scales of atoms and atomic motions, energy is transported by interactions between single-particle and collective excitations. At macroscopic scales, entropy, temperature, and heat are the governing concepts. Key gaps in fundamental knowledge appear at the transitions between these two regimes. The transport of thermal energy at interfaces plays a pivotal role in these scientific issues. Measurements of heat transport with ultrafast time resolution are needed because picoseconds are the fundamental scales where the lack of equilibrium between various thermal excitations becomes a important factor in the transport physics. A critical aspect of our work has been the development of experimental methods and model systems that enabled more precise and sensitive investigations of nanoscale thermal transport.

  5. Nanoscale thermal transport

    Science.gov (United States)

    Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Merlin, Roberto; Phillpot, Simon R.

    2003-01-01

    Rapid progress in the synthesis and processing of materials with structure on nanometer length scales has created a demand for greater scientific understanding of thermal transport in nanoscale devices, individual nanostructures, and nanostructured materials. This review emphasizes developments in experiment, theory, and computation that have occurred in the past ten years and summarizes the present status of the field. Interfaces between materials become increasingly important on small length scales. The thermal conductance of many solid-solid interfaces have been studied experimentally but the range of observed interface properties is much smaller than predicted by simple theory. Classical molecular dynamics simulations are emerging as a powerful tool for calculations of thermal conductance and phonon scattering, and may provide for a lively interplay of experiment and theory in the near term. Fundamental issues remain concerning the correct definitions of temperature in nonequilibrium nanoscale systems. Modern Si microelectronics are now firmly in the nanoscale regime—experiments have demonstrated that the close proximity of interfaces and the extremely small volume of heat dissipation strongly modifies thermal transport, thereby aggravating problems of thermal management. Microelectronic devices are too large to yield to atomic-level simulation in the foreseeable future and, therefore, calculations of thermal transport must rely on solutions of the Boltzmann transport equation; microscopic phonon scattering rates needed for predictive models are, even for Si, poorly known. Low-dimensional nanostructures, such as carbon nanotubes, are predicted to have novel transport properties; the first quantitative experiments of the thermal conductivity of nanotubes have recently been achieved using microfabricated measurement systems. Nanoscale porosity decreases the permittivity of amorphous dielectrics but porosity also strongly decreases the thermal conductivity. The

  6. Comparative study of boron transport models in NRC Thermal-Hydraulic Code Trace

    Energy Technology Data Exchange (ETDEWEB)

    Olmo-Juan, Nicolás; Barrachina, Teresa; Miró, Rafael; Verdú, Gumersindo; Pereira, Claubia, E-mail: nioljua@iqn.upv.es, E-mail: tbarrachina@iqn.upv.es, E-mail: rmiro@iqn.upv.es, E-mail: gverdu@iqn.upv.es, E-mail: claubia@nuclear.ufmg.br [Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM). Universitat Politècnica de València (Spain); Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Recently, the interest in the study of various types of transients involving changes in the boron concentration inside the reactor, has led to an increase in the interest of developing and studying new models and tools that allow a correct study of boron transport. Therefore, a significant variety of different boron transport models and spatial difference schemes are available in the thermal-hydraulic codes, as TRACE. According to this interest, in this work it will be compared the results obtained using the different boron transport models implemented in the NRC thermal-hydraulic code TRACE. To do this, a set of models have been created using the different options and configurations that could have influence in boron transport. These models allow to reproduce a simple event of filling or emptying the boron concentration in a long pipe. Moreover, with the aim to compare the differences obtained when one-dimensional or three-dimensional components are chosen, it has modeled many different cases using only pipe components or a mix of pipe and vessel components. In addition, the influence of the void fraction in the boron transport has been studied and compared under close conditions to BWR commercial model. A final collection of the different cases and boron transport models are compared between them and those corresponding to the analytical solution provided by the Burgers equation. From this comparison, important conclusions are drawn that will be the basis of modeling the boron transport in TRACE adequately. (author)

  7. Modelling of shear effects on thermal and particle transport in advanced Tokamak scenarios

    International Nuclear Information System (INIS)

    Moreau, D.; Voitsekhovitch, I.; Baker, D.R.

    1999-01-01

    Evolution of thermal and particle internal transport barriers (ITBs) is studied by modelling the time-dependent energy and particle balance in DIII-D plasmas with reversed magnetic shear configurations and in JET discharges with monotonic or slightly reversed q-profiles and large ExB rotation shear. Simulations are performed with semi-empirical models for anomalous diffusion and particle pinch. Stabilizing effects of magnetic and ExB rotation shears are included in anomalous particle and heat diffusivity. Shear effects on particle and thermal transport are compared. Improved particle and energy confinement with the formation of an internal transport barrier (ITB) has been produced in DIII-D plasmas during current ramp-up accompanied with neutral beam injection (NBI). These plasmas are characterized by strong reversed magnetic shear and large ExB rotation shear which provide the reduction of anomalous fluxes. The formation of ITB's in the optimized shear (OS) JET scenario starts with strong NBI heating in a target plasma with a flat or slightly reversed q-profile pre-formed during current ramp-up with ion cyclotron resonance heating (ICRH). Our paper presents the modelling of particle and thermal transport for these scenarios. (authors)

  8. Interfacial Thermal Transport via One-Dimensional Atomic Junction Model

    Directory of Open Access Journals (Sweden)

    Guohuan Xiong

    2018-03-01

    Full Text Available In modern information technology, as integration density increases rapidly and the dimension of materials reduces to nanoscale, interfacial thermal transport (ITT has attracted widespread attention of scientists. This review introduces the latest theoretical development in ITT through one-dimensional (1D atomic junction model to address the thermal transport across an interface. With full consideration of the atomic structures in interfaces, people can apply the 1D atomic junction model to investigate many properties of ITT, such as interfacial (Kapitza resistance, nonlinear interface, interfacial rectification, and phonon interference, and so on. For the ballistic ITT, both the scattering boundary method (SBM and the non-equilibrium Green’s function (NEGF method can be applied, which are exact since atomic details of actual interfaces are considered. For interfacial coupling case, explicit analytical expression of transmission coefficient can be obtained and it is found that the thermal conductance maximizes at certain interfacial coupling (harmonic mean of the spring constants of the two leads and the transmission coefficient is not a monotonic decreasing function of phonon frequency. With nonlinear interaction—phonon–phonon interaction or electron–phonon interaction at interface, the NEGF method provides an efficient way to study the ITT. It is found that at weak linear interfacial coupling, the nonlinearity can improve the ITT, but it depresses the ITT in the case of strong-linear coupling. In addition, the nonlinear interfacial coupling can induce thermal rectification effect. For interfacial materials case which can be simulated by a two-junction atomic chain, phonons show interference effect, and an optimized thermal coupler can be obtained by tuning its spring constant and atomic mass.

  9. Modelling of ion thermal transport in ergodic region of collisionless toroidal plasma

    International Nuclear Information System (INIS)

    Kanno, Ryutaro; Nunami, Masanori; Satake, Shinsuke; Ohyabu, Nobuyoshi; Takamaru, Hisanori; Okamoto, Masao

    2009-09-01

    In recent tokamak experiments it has been found that so-called diffusion theory based on the 'diffusion of magnetic field lines' overestimates the radial energy transport in the ergodic region of the collisionless plasma affected by resonant magnetic perturbations (RMPs), though the RMPs induce chaotic behavior of the magnetic field lines. The result implies that the modelling of the transport should be reconsidered for low collisionality cases. A computer simulation study of transport in the ergodic region is required for understanding fundamental properties of collisionless ergodized-plasmas, estimating the transport coefficients, and reconstructing the modelling of the transport. In this paper, we report the simulation study of thermal transport in the ergodic region under the assumption of neglecting effects of an electric field, impurities and neutrals. Because of the simulations neglecting interactions with different particle-species and saving the computational time, we treat ions (protons) in our numerical-study of the transport. We find that the thermal diffusivity in the ergodic region is extremely small compared to the one predicted by the theory of field-line diffusion and that the diffusivity depends on both the collision frequency and the strength of RMPs even for the collisionless ergodized-plasma. (author)

  10. Phenomena in thermal transport in fuels

    International Nuclear Information System (INIS)

    Chernatynskiy, A.; Tulenko, J.S.; Phillpot, S.R.; El-Azab, A.

    2015-01-01

    Thermal transport in nuclear fuels is a key performance metric that affects not only the power output, but is also an important consideration in potential accident situations. While the fundamental theory of the thermal transport in crystalline solids was extensively developed in the 1950's and 1960's, the pertinent analytic approaches contained significant simplifications of the physical processes. While these approaches enabled estimates of the thermal conductivity in bulk materials with microstructure, they were not comprehensive enough to provide the detailed guidance needed for the in-pile fuel performance. Rather, this guidance has come from data painfully accumulated over 50 years of experiments on irradiated uranium dioxide, the most widely used nuclear fuel. At this point, a fundamental theoretical understanding of the interplay between the microstructure and thermal conductivity of irradiated uranium dioxide fuel is still lacking. In this chapter, recent advances are summarised in the modelling approaches for thermal transport of uranium dioxide fuel. Being computational in nature, these modelling approaches can, at least in principle, describe in detail virtually all mechanisms affecting thermal transport at the atomistic level, while permitting the coupling of the atomistic-level simulations to the mesoscale continuum theory and thus enable the capture of the impact of microstructural evolution in fuel on thermal transport. While the subject of current studies is uranium dioxide, potential applications of the methods described in this chapter extend to the thermal performance of other fuel forms. (authors)

  11. Multiscale thermal transport.

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Samuel Jr. (; .); Wong, C. C.; Piekos, Edward Stanley

    2004-02-01

    A concurrent computational and experimental investigation of thermal transport is performed with the goal of improving understanding of, and predictive capability for, thermal transport in microdevices. The computational component involves Monte Carlo simulation of phonon transport. In these simulations, all acoustic modes are included and their properties are drawn from a realistic dispersion relation. Phonon-phonon and phonon-boundary scattering events are treated independently. A new set of phonon-phonon scattering coefficients are proposed that reflect the elimination of assumptions present in earlier analytical work from the simulation. The experimental component involves steady-state measurement of thermal conductivity on silicon films as thin as 340nm at a range of temperatures. Agreement between the experiment and simulation on single-crystal silicon thin films is excellent, Agreement for polycrystalline films is promising, but significant work remains to be done before predictions can be made confidently. Knowledge gained from these efforts was used to construct improved semiclassical models with the goal of representing microscale effects in existing macroscale codes in a computationally efficient manner.

  12. Stochastic modelling of fusion-product transport and thermalization with nuclear elastic scattering

    International Nuclear Information System (INIS)

    Deveaux, J.C.

    1983-01-01

    Monte Carlo methods are developed to model fusion-product (fp) transport and thermalization with both Rutherford scattering and nuclear elastic scattering (NES) in high-temperature (T/sub i/, T/sub e-/ > 50 keV), advanced-fuel (e.g. Cat-D, D- 3 He) plasmas. A discrete-event model is used to superimpose NES collisions on a Rutherford scattering model that contains the Spitzer coefficients of drag, velocity diffusion (VD), and pith-angle scattering (PAS). The effects of NES on fp transport and thermalization are investigated for advanced-fuel, Field-Reversed Mirror (FRM) plasmas that have a significant Hamiltonian-canonical angular momentum (H-Ptheta) space loss cone which scales with the characteristic size (S identical with R/sub HV//3p/sub i/) and applied vacuum magnetic field (B 0 )

  13. ICF target 2D modeling using Monte Carlo SNB electron thermal transport in DRACO

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2016-10-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup diffusion electron thermal transport method is adapted into a Monte Carlo (MC) transport method to better model angular and long mean free path non-local effects. The MC model was first implemented in the 1D LILAC code to verify consistency with the iSNB model. Implementation of the MC SNB model in the 2D DRACO code enables higher fidelity non-local thermal transport modeling in 2D implosions such as polar drive experiments on NIF. The final step is to optimize the MC model by hybridizing it with a MC version of the iSNB diffusion method. The hybrid method will combine the efficiency of a diffusion method in intermediate mean free path regions with the accuracy of a transport method in long mean free path regions allowing for improved computational efficiency while maintaining accuracy. Work to date on the method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  14. Design process for applying the nonlocal thermal transport iSNB model to a Polar-Drive ICF simulation

    Science.gov (United States)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques; Collins, Timothy

    2014-10-01

    A design process is presented for the nonlocal thermal transport iSNB (implicit Schurtz, Nicolai, and Busquet) model to provide reliable nonlocal thermal transport in polar-drive ICF simulations. Results from the iSNB model are known to be sensitive to changes in the SNB ``mean free path'' formula, and the latter's original form required modification to obtain realistic preheat levels. In the presented design process, SNB mean free paths are first modified until the model can match temperatures from Goncharov's thermal transport model in 1D temperature relaxation simulations. Afterwards the same mean free paths are tested in a 1D polar-drive surrogate simulation to match adiabats from Goncharov's model. After passing the two previous steps, the model can then be run in a full 2D polar-drive simulation. This research is supported by the University of Rochester Laboratory for Laser Energetics.

  15. Thermal Transport in Phosphorene.

    Science.gov (United States)

    Qin, Guangzhao; Hu, Ming

    2018-03-01

    Phosphorene, a novel elemental 2D semiconductor, possesses fascinating chemical and physical properties which are distinctively different from other 2D materials. The rapidly growing applications of phosphorene in nano/optoelectronics and thermoelectrics call for comprehensive studies of thermal transport properties. In this Review, based on the theoretical and experimental progresses, the thermal transport properties of single-layer phosphorene, multilayer phosphorene (nanofilms), and bulk black phosphorus are summarized to give a general view of the overall thermal conductivity trend from single-layer to bulk form. The mechanism underlying the discrepancy in the reported thermal conductivity of phosphorene is discussed by reviewing the effect of different functionals and cutoff distances on the thermal transport evaluations. This Review then provides fundamental insight into the thermal transport in phosphorene by reviewing the role of resonant bonding in driving giant phonon anharmonicity and long-range interactions. In addition, the extrinsic thermal conductivity of phosphorene is reviewed by discussing the effects of strain and substrate, together with phosphorene based heterostructures and nanoribbons. This Review summarizes the progress of thermal transport in phosphorene from both theoretical calculations and experimental measurements, which would be of significance to the design and development of efficient phosphorene based nanoelectronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Monte Carlo Transport for Electron Thermal Transport

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2015-11-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  17. Simulation of electron thermal transport in H-mode discharges

    International Nuclear Information System (INIS)

    Rafiq, T.; Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Halpern, F. D.

    2009-01-01

    Electron thermal transport in DIII-D H-mode tokamak plasmas [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is investigated by comparing predictive simulation results for the evolution of electron temperature profiles with experimental data. The comparison includes the entire profile from the magnetic axis to the bottom of the pedestal. In the simulations, carried out using the automated system for transport analysis (ASTRA) integrated modeling code, different combinations of electron thermal transport models are considered. The combinations include models for electron temperature gradient (ETG) anomalous transport and trapped electron mode (TEM) anomalous transport, as well as a model for paleoclassical transport [J. D. Callen, Nucl. Fusion 45, 1120 (2005)]. It is found that the electromagnetic limit of the Horton ETG model [W. Horton et al., Phys. Fluids 31, 2971 (1988)] provides an important contribution near the magnetic axis, which is a region where the ETG mode in the GLF23 model [R. E. Waltz et al., Phys. Plasmas 4, 2482 (1997)] is below threshold. In simulations of DIII-D discharges, the observed shape of the H-mode edge pedestal is produced when transport associated with the TEM component of the GLF23 model is suppressed and transport given by the paleoclassical model is included. In a study involving 15 DIII-D H-mode discharges, it is found that with a particular combination of electron thermal transport models, the average rms deviation of the predicted electron temperature profile from the experimental profile is reduced to 9% and the offset to -4%.

  18. Analysis for Heat Transfer in a High Current-Passing Carbon Nanosphere Using Nontraditional Thermal Transport Model.

    Science.gov (United States)

    Hol C Y; Chen, B C; Tsai, Y H; Ma, C; Wen, M Y

    2015-11-01

    This paper investigates the thermal transport in hollow microscale and nanoscale spheres subject to electrical heat source using nontraditional thermal transport model. Working as supercapacitor electrodes, carbon hollow micrometer- and nanometer-sized spheres needs excellent heat transfer characteristics to maintain high specific capacitance, long cycle life, and high power density. In the nanoscale regime, the prediction of heat transfer from the traditional heat conduction equation based on Fourier's law deviates from the measured data. Consequently, the electrical heat source-induced heat transfer characteristics in hollow micrometer- and nanometer-sized spheres are studied using nontraditional thermal transport model. The effects of parameters on heat transfer in the hollow micrometer- and nanometer-sized spheres are discussed in this study. The results reveal that the heat transferred into the spherical interior, temperature and heat flux in the hollow sphere decrease with the increasing Knudsen number when the radius of sphere is comparable to the mean free path of heat carriers.

  19. Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations

    Science.gov (United States)

    Qiu, L.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Yang, S. Y.; Hu, A. J.; Wang, L. L.; Li, S. S.

    2015-11-01

    Thermal transport in high-strength polymethacrylimide (PMI) foam insulations is described, with special emphasis on the density and temperature effects on the thermal transport performance. Measurements of the effective thermal conductivity are performed by a freestanding sensor-based 3ω method. A linear relationship between the density and the effective thermal conductivity is observed. Based on the analysis of the foam insulation morphological structures and the corresponding geometrical cell model, the quantitative contribution of the solid conductivity and the gas conductivity as well as the radiative conductivity to the total effective thermal conductivity as a function of the density and temperature is calculated. The agreement between the curves of the results from the developed model and experimental data indicate the model can be used for PMI foam insulating performance optimization.

  20. Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells

    KAUST Repository

    Elafandy, Rami T.; AbuElela, Ayman; Mishra, Pawan; Janjua, Bilal; Oubei, Hassan M.; Buttner, Ulrich; Majid, Mohammed Abdul; Ng, Tien Khee; Merzaban, Jasmeen; Ooi, Boon S.

    2016-01-01

    Knowledge of materials' thermal-transport properties, conductivity and diffusivity, is crucial for several applications within areas of biology, material science and engineering. Specifically, a microsized, flexible, biologically integrated thermal transport sensor is beneficial to a plethora of applications, ranging across plants physiological ecology and thermal imaging and treatment of cancerous cells, to thermal dissipation in flexible semiconductors and thermoelectrics. Living cells pose extra challenges, due to their small volumes and irregular curvilinear shapes. Here a novel approach of simultaneously measuring thermal conductivity and diffusivity of different materials and its applicability to single cells is demonstrated. This technique is based on increasing phonon-boundary-scattering rate in nanomembranes, having extremely low flexural rigidities, to induce a considerable spectral dependence of the bandgap-emission over excitation-laser intensity. It is demonstrated that once in contact with organic or inorganic materials, the nanomembranes' emission spectrally shift based on the material's thermal diffusivity and conductivity. This NM-based technique is further applied to differentiate between different types and subtypes of cancer cells, based on their thermal-transport properties. It is anticipated that this novel technique to enable an efficient single-cell thermal targeting, allow better modeling of cellular thermal distribution and enable novel diagnostic techniques based on variations of single-cell thermal-transport properties.

  1. Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells

    KAUST Repository

    Elafandy, Rami T.

    2016-11-23

    Knowledge of materials\\' thermal-transport properties, conductivity and diffusivity, is crucial for several applications within areas of biology, material science and engineering. Specifically, a microsized, flexible, biologically integrated thermal transport sensor is beneficial to a plethora of applications, ranging across plants physiological ecology and thermal imaging and treatment of cancerous cells, to thermal dissipation in flexible semiconductors and thermoelectrics. Living cells pose extra challenges, due to their small volumes and irregular curvilinear shapes. Here a novel approach of simultaneously measuring thermal conductivity and diffusivity of different materials and its applicability to single cells is demonstrated. This technique is based on increasing phonon-boundary-scattering rate in nanomembranes, having extremely low flexural rigidities, to induce a considerable spectral dependence of the bandgap-emission over excitation-laser intensity. It is demonstrated that once in contact with organic or inorganic materials, the nanomembranes\\' emission spectrally shift based on the material\\'s thermal diffusivity and conductivity. This NM-based technique is further applied to differentiate between different types and subtypes of cancer cells, based on their thermal-transport properties. It is anticipated that this novel technique to enable an efficient single-cell thermal targeting, allow better modeling of cellular thermal distribution and enable novel diagnostic techniques based on variations of single-cell thermal-transport properties.

  2. Nanoscale hotspots due to nonequilibrium thermal transport

    International Nuclear Information System (INIS)

    Sinha, Sanjiv; Goodson, Kenneth E.

    2004-01-01

    Recent experimental and modeling efforts have been directed towards the issue of temperature localization and hotspot formation in the vicinity of nanoscale heat generating devices. The nonequilibrium transport conditions which develop around these nanoscale devices results in elevated temperatures near the heat source which can not be predicted by continuum diffusion theory. Efforts to determine the severity of this temperature localization phenomena in silicon devices near and above room temperature are of technological importance to the development of microelectronics and other nanotechnologies. In this work, we have developed a new modeling tool in order to explore the magnitude of the additional thermal resistance which forms around nanoscale hotspots from temperatures of 100-1000K. The models are based on a two fluid approximation in which thermal energy is transferred between ''stationary'' optical phonons and fast propagating acoustic phonon modes. The results of the model have shown excellent agreement with experimental results of localized hotspots in silicon at lower temperatures. The model predicts that the effect of added thermal resistance due to the nonequilibrium phonon distribution is greatest at lower temperatures, but is maintained out to temperatures of 1000K. The resistance predicted by the numerical code can be easily integrated with continuum models in order to predict the temperature distribution around nanoscale heat sources with improved accuracy. Additional research efforts also focused on the measurements of the thermal resistance of silicon thin films at higher temperatures, with a focus on polycrystalline silicon. This work was intended to provide much needed experimental data on the thermal transport properties for micro and nanoscale devices built with this material. Initial experiments have shown that the exposure of polycrystalline silicon to high temperatures may induce recrystallization and radically increase the thermal

  3. Thermal transport in fractal systems

    DEFF Research Database (Denmark)

    Kjems, Jørgen

    1992-01-01

    Recent experiments on the thermal transport in systems with partial fractal geometry, silica aerogels, are reviewed. The individual contributions from phonons, fractons and particle modes, respectively, have been identified and can be described by quantitative models consistent with heat capacity...

  4. Thermal transport in semicrystalline polyethylene by molecular dynamics simulation

    Science.gov (United States)

    Lu, Tingyu; Kim, Kyunghoon; Li, Xiaobo; Zhou, Jun; Chen, Gang; Liu, Jun

    2018-01-01

    Recent research has highlighted the potential to achieve high-thermal-conductivity polymers by aligning their molecular chains. Combined with other merits, such as low-cost, corrosion resistance, and light weight, such polymers are attractive for heat transfer applications. Due to their quasi-one-dimensional structural nature, the understanding on the thermal transport in those ultra-drawn semicrystalline polymer fibers or films is still lacking. In this paper, we built the ideal repeating units of semicrystalline polyethylene and studied their dependence of thermal conductivity on different crystallinity and interlamellar topology using the molecular dynamics simulations. We found that the conventional models, such as the Choy-Young's model, the series model, and Takayanagi's model, cannot accurately predict the thermal conductivity of the quasi-one-dimensional semicrystalline polyethylene. A modified Takayanagi's model was proposed to explain the dependence of thermal conductivity on the bridge number at intermediate and high crystallinity. We also analyzed the heat transfer pathways and demonstrated the substantial role of interlamellar bridges in the thermal transport in the semicrystalline polyethylene. Our work could contribute to the understanding of the structure-property relationship in semicrystalline polymers and shed some light on the development of plastic heat sinks and thermal management in flexible electronics.

  5. Plasma thermal energy transport: theory and experiments

    International Nuclear Information System (INIS)

    Coppi, B.

    Experiments on the transport across the magnetic field of electron thermal energy are reviewed (Alcator, Frascati Torus). In order to explain the experimental results, a transport model is described that reconfirmed the need to have an expression for the local diffusion coefficient with a negative exponent of the electron temperature

  6. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    Science.gov (United States)

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  7. A four-probe thermal transport measurement method for nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P.; Shi, Li, E-mail: lishi@mail.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-04-15

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models.

  8. A four-probe thermal transport measurement method for nanostructures

    International Nuclear Information System (INIS)

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P.; Shi, Li

    2015-01-01

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models

  9. Three-dimensional transport coefficient model and prediction-correction numerical method for thermal margin analysis of PWR cores

    International Nuclear Information System (INIS)

    Chiu, C.

    1981-01-01

    Combustion Engineering Inc. designs its modern PWR reactor cores using open-core thermal-hydraulic methods where the mass, momentum and energy equations are solved in three dimensions (one axial and two lateral directions). The resultant fluid properties are used to compute the minimum Departure from Nuclear Boiling Ratio (DNBR) which ultimately sets the power capability of the core. The on-line digital monitoring and protection systems require a small fast-running algorithm of the design code. This paper presents two techniques used in the development of the on-line DNB algorithm. First, a three-dimensional transport coefficient model is introduced to radially group the flow subchannel into channels for the thermal-hydraulic fluid properties calculation. Conservation equations of mass, momentum and energy for this channels are derived using transport coefficients to modify the calculation of the radial transport of enthalpy and momentum. Second, a simplified, non-iterative numerical method, called the prediction-correction method, is applied together with the transport coefficient model to reduce the computer execution time in the determination of fluid properties. Comparison of the algorithm and the design thermal-hydraulic code shows agreement to within 0.65% equivalent power at a 95/95 confidence/probability level for all normal operating conditions of the PWR core. This algorithm accuracy is achieved with 1/800th of the computer processing time of its parent design code. (orig.)

  10. Thermalization through parton transport

    International Nuclear Information System (INIS)

    Zhang Bin

    2010-01-01

    A radiative transport model is used to study kinetic equilibration during the early stage of a relativistic heavy ion collision. The parton system is found to be able to overcome expansion and move toward thermalization via parton collisions. Scaling behaviors show up in both the pressure anisotropy and the energy density evolutions. In particular, the pressure anisotropy evolution shows an approximate α s scaling when radiative processes are included. It approaches an asymptotic time evolution on a time scale of 1 to 2 fm/c. The energy density evolution shows an asymptotic time evolution that decreases slower than the ideal hydro evolution. These observations indicate that partial thermalization can be achieved and viscosity is important for the evolution during the early longitudinal expansion stage of a relativistic heavy ion collision.

  11. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Science.gov (United States)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-08-01

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  12. Modeling coupled thermal, flow, transport and geochemical processes controlling near field long-term evolution

    International Nuclear Information System (INIS)

    Zhou, W.; Arthur, R.; Xu, T.; Pruess, K.

    2005-01-01

    Full text of publication follows: Bentonite is planned for use as a buffer material in the Swedish nuclear waste disposal concept (KBS-3). Upon emplacement, the buffer is expected to experience a complex set of coupled processes involving heating, re-saturation, reaction and transport of groundwater imbibed from the host rock. The effect of these processes may eventually lead to changes in desirable physical and rheological properties of the buffer, but these processes are not well understood. In this paper, a new quantitative model is evaluated to help improve our understanding of the long-term performance of buffer materials. This is an extension of a previous study [1] that involved simple thermal and chemical models applied to a fully saturated buffer. The thermal model in the present study uses heating histories for spent fuel in a single waste package [2]. The model uses repository dimensions, such as borehole and tunnel spacings [2], which affect the temperature distribution around the waste package. At the time of emplacement, bentonite is partially saturated with water having a different composition than the host-rock groundwater. The present model simulates water imbibition from the host rock into the bentonite under capillary and hydraulic pressure gradients. The associated chemical reactions and solute transport are simulated using Aespoe water composition [3]. The initial mineralogy of bentonite is assumed to be dominated by Na-smectite with much smaller amounts of anhydrite and calcite. Na-smectite dissolution is assumed to be kinetically-controlled while all other reactions are assumed to be at equilibrium controlled. All equilibrium and kinetic constants are temperature dependent. The modeling tool used is TOUGHREACT, developed by Lawrence Berkeley National Laboratory [4]. TOUGHREACT is a numerical model that is well suited for near-field simulations because it accounts for feedback between porosity and permeability changes from mineral

  13. Evolution of thermal ion transport barriers in reversed shear/ optimised shear plasmas

    International Nuclear Information System (INIS)

    Voitsekhovitch, I.; Garbet, X.; Moreau, D.; Bush, C.E.; Budny, R.V.; Gohil, P.; Kinsey, J.E.; Talyor, T.S.; Litaudon, X.

    2001-01-01

    The effects of the magnetic and ExB rotation shears on the thermal ion transport in advanced tokamak scenarios are analyzed through the predictive modelling of the evolution of internal transport barriers. Such a modelling is performed with an experimentally validated L-mode thermal diffusivity completed with a semi-empirical shear correction which is based on simple theoretical arguments from turbulence studies. A multi-machine test of the model on relevant discharges from the ITER Data Base (TFTR, DIII-D and JET) is presented. (author)

  14. Thermal transport in binary colloidal glasses: Composition dependence and percolation assessment

    Science.gov (United States)

    Ruckdeschel, Pia; Philipp, Alexandra; Kopera, Bernd A. F.; Bitterlich, Flora; Dulle, Martin; Pech-May, Nelson W.; Retsch, Markus

    2018-02-01

    The combination of various types of materials is often used to create superior composites that outperform the pure phase components. For any rational design, the thermal conductivity of the composite as a function of the volume fraction of the filler component needs to be known. When approaching the nanoscale, the homogeneous mixture of various components poses an additional challenge. Here, we investigate binary nanocomposite materials based on polymer latex beads and hollow silica nanoparticles. These form randomly mixed colloidal glasses on a sub-μ m scale. We focus on the heat transport properties through such binary assembly structures. The thermal conductivity can be well described by the effective medium theory. However, film formation of the soft polymer component leads to phase segregation and a mismatch between existing mixing models. We confirm our experimental data by finite element modeling. This additionally allowed us to assess the onset of thermal transport percolation in such random particulate structures. Our study contributes to a better understanding of thermal transport through heterostructured particulate assemblies.

  15. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    International Nuclear Information System (INIS)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-01-01

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester

  16. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Duc; Moses, Gregory [University of Wisconsin—Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Delettrez, Jacques [Laboratory for Laser Energetics of the University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-08-15

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  17. Nanoscale thermal transport: Theoretical method and application

    Science.gov (United States)

    Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2018-03-01

    With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).

  18. Thermal conductivity model for nanofiber networks

    Science.gov (United States)

    Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun; Smalyukh, Ivan I.; Yang, Ronggui

    2018-02-01

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  19. Thermal conductivity model for nanofiber networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinpeng [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Huang, Congliang [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China; Liu, Qingkun [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Smalyukh, Ivan I. [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Yang, Ronggui [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Buildings and Thermal Systems Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA

    2018-02-28

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  20. Using Mosaicity to Tune Thermal Transport in Polycrystalline AlN Thin Films

    KAUST Repository

    Singh, Shivkant

    2018-05-17

    The effect of controlling the c-axis alignment (mosaicity) to the cross-plane thermal transport in textured polycrystalline aluminum nitride (AlN) thin films is experimentally and theoretically investigated. We show that by controlling the sputtering conditions we are able to deposit AlN thin films with varying c-axis grain tilt (mosaicity) from 10° to 0°. Microstructural characterization shows that the films are nearly identical in thickness and grain size, and the difference in mosaicity alters the grain interface quality. This has a significant effect to thermal transport where a thermal conductivity of 4.22 W/mK vs. 8.09 W/mK are measured for samples with tilt angles of 10° vs. 0° respectively. The modified Callaway model was used to fit the theoretical curves to the experimental results using various phonon scattering mechanisms at the grain interface. It was found that using a non-gray model gives an overview of the phonon scattering at the grain boundaries, whereas treating the grain boundary as an array of dislocation lines with varying angle relative to the heat flow, best describes the mechanism of the thermal transport. Lastly, our results show that controlling the quality of the grain interface provides a tuning knob to control thermal transport in polycrystalline materials.

  1. Using Mosaicity to Tune Thermal Transport in Polycrystalline AlN Thin Films

    KAUST Repository

    Singh, Shivkant; Shervin, Shahab; Sun, Haiding; Yarali, Milad; Chen, Jie; Lin, Ronghui; Li, Kuang-Hui; Li, Xiaohang; Ryou, Jae-Hyun; Mavrokefalos, Anastassios

    2018-01-01

    The effect of controlling the c-axis alignment (mosaicity) to the cross-plane thermal transport in textured polycrystalline aluminum nitride (AlN) thin films is experimentally and theoretically investigated. We show that by controlling the sputtering conditions we are able to deposit AlN thin films with varying c-axis grain tilt (mosaicity) from 10° to 0°. Microstructural characterization shows that the films are nearly identical in thickness and grain size, and the difference in mosaicity alters the grain interface quality. This has a significant effect to thermal transport where a thermal conductivity of 4.22 W/mK vs. 8.09 W/mK are measured for samples with tilt angles of 10° vs. 0° respectively. The modified Callaway model was used to fit the theoretical curves to the experimental results using various phonon scattering mechanisms at the grain interface. It was found that using a non-gray model gives an overview of the phonon scattering at the grain boundaries, whereas treating the grain boundary as an array of dislocation lines with varying angle relative to the heat flow, best describes the mechanism of the thermal transport. Lastly, our results show that controlling the quality of the grain interface provides a tuning knob to control thermal transport in polycrystalline materials.

  2. Thermal transport in phononic crystals: The role of zone folding effect

    Science.gov (United States)

    Dechaumphai, Edward; Chen, Renkun

    2012-04-01

    Recent experiments [Yu et al., Nature Nanotech 5, 718 (2010); Tang et al., Nano Lett. 10, 4279 (2010); Hopkins etal., Nano Lett. 11, 107(2011)] on silicon based nanoscale phononic crystals demonstrated substantially reduced thermal conductivity compared to bulk Si, which cannot be explained by incoherent phonon boundary scattering within the Boltzmann Transport Equation (BTE). In this paper, partial coherent treatment of phonons, where phonons are regarded as either wave or particles depending on their frequencies, was considered. Phonons with mean free path smaller than the characteristic size of phononic crystals are treated as particles and the transport in this regime is modeled by BTE with phonon boundary scattering taken into account. On the other hand, phonons with mean free path longer than the characteristic size are treated as waves. In this regime, phonon dispersion relations are computed using the Finite Difference Time Domain (FDTD) method and are found to be modified due to the zone folding effect. The new phonon spectra are then used to compute phonon group velocity and density of states for thermal conductivity modeling. Our partial coherent model agrees well with the recent experimental results on in-plane thermal conductivity of phononic crystals. Our study highlights the importance of zone folding effect on thermal transport in phononic crystals.

  3. Thermal expansion and its impacts on thermal transport in the FPU-α-β model

    Directory of Open Access Journals (Sweden)

    Xiaodong Cao

    2015-05-01

    Full Text Available We study the impacts of thermal expansion, arising from the asymmetric interparticle potential, on thermal conductance in the FPU-α-β model. A nonmonotonic dependence of the temperature gradient and thermal conductance on the cubic interaction parameter α are shown, which corresponds to the variation of the coefficient of thermal expansion. Three domains with respect to α can be identified. The results are explained based on the detailed analysis of the asymmetry of the interparticle potential. The self-consistent phonon theory, which can capture the effect of thermal expansion, is developed to support our explanation in a quantitative way. Our result would be helpful to understand the issue that whether there exist normal thermal conduction in the FPU-α-β model.

  4. Three-dimensional multi-phase flow computational fluid dynamics model for analysis of transport phenomena and thermal stresses in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Maher, A.R.; Al-Baghdadi, S. [International Technological Univ., London (United Kingdom). Dept. of Mechanical Engineering; Haroun, A.K.; Al-Janabi, S. [Babylon Univ., Babylon (Iraq). Dept. of Mechanical Engineering

    2007-07-01

    Fuel cell technology is expected to play an important role in meeting the growing demand for distributed generation because it can convert the chemical energy of a clean fuel directly into electrical energy. An operating fuel cell has varying local conditions of temperature, humidity, and power generation across the active area of the fuel cell in 3D. This paper presented a model that was developed to improve the basic understanding of the transport phenomena and thermal stresses in PEM fuel cells, and to investigate the behaviour of polymer membrane under hygro and thermal stresses during the cell operation. This comprehensive 3D, multiphase, non-isothermal model accounts for the major transport phenomena in a PEM fuel cell, notably convective and diffusive heat and mass transfer; electrode kinetics; transport and phase change mechanism of water; and potential fields. The model accounts for the liquid water flux inside the gas diffusion layers by viscous and capillary forces and can therefore predict the amount of liquid water inside the gas diffusion layers. This study also investigated the key parameters affecting fuel cell performance including geometry, materials and operating conditions. The model considers the many interacting, complex electrochemical, transport phenomena, thermal stresses and deformation that cannot be studied experimentally. It was concluded that the model can provide a computer-aided tool for the design and optimization of future fuel cells with much higher power density and lower cost. 21 refs., 2 tabs., 14 figs.

  5. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang XiaoNing; Xia WeiDong [Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Li HePing [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Murphy, Anthony B. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)

    2013-03-15

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that m{sub e}/m{sub h} Much-Less-Than 1, where m{sub e} and m{sub h} are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  6. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    Science.gov (United States)

    Zhang, Xiao-Ning; Li, He-Ping; Murphy, Anthony B.; Xia, Wei-Dong

    2013-03-01

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that me/mh ≪ 1, where me and mh are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  7. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    Science.gov (United States)

    Bridger, D. W.; Allen, D. M.

    2014-01-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  8. Assessing factors affecting the thermal properties of a passive thermal refuge using three-dimensional hydrodynamic flow and transport modeling

    Science.gov (United States)

    Decker, Jeremy D.; Swain, Eric D.; Stith, Bradley M.; Langtimm, Catherine A.

    2013-01-01

    Everglades restoration activities may cause changes to temperature and salinity stratification at the Port of the Islands (POI) marina, which could affect its suitability as a cold weather refuge for manatees. To better understand how the Picayune Strand Restoration Project (PSRP) may alter this important resource in Collier County in southwestern Florida, the USGS has developed a three-dimensional hydrodynamic model for the marina and canal system at POI. Empirical data suggest that manatees aggregate at the site during winter because of thermal inversions that provide warmer water near the bottom that appears to only occur in the presence of salinity stratification. To study these phenomena, the environmental fluid dynamics code simulator was used to represent temperature and salinity transport within POI. Boundary inputs were generated using a larger two-dimensional model constructed with the flow and transport in a linked overland-aquifer density-dependent system simulator. Model results for a representative winter period match observed trends in salinity and temperature fluctuations and produce temperature inversions similar to observed values. Modified boundary conditions, representing proposed PSRP alterations, were also tested to examine the possible effect on the salinity stratification and temperature inversion within POI. Results show that during some periods, salinity stratification is reduced resulting in a subsequent reduction in temperature inversion compared with the existing conditions simulation. This may have an effect on POI’s suitability as a passive thermal refuge for manatees and other temperature-sensitive species. Additional testing was completed to determine the important physical relationships affecting POI’s suitability as a refuge.

  9. Facilitation of Nanoscale Thermal Transport by Hydrogen Bonds

    OpenAIRE

    Zhang, Lin

    2017-01-01

    Thermal transport performance at the nanoscale and/or of biomaterials is essential to the success of many new technologies including nanoelectronics, biomedical devices, and various nanocomposites. Due to complicated microstructures and chemical bonding, thermal transport process in these materials has not been well understood yet. In terms of chemical bonding, it is well known that the strength of atomic bonding can significantly affect thermal transport across materials or across interfaces...

  10. Conceptual and Numerical Models for UZ Flow and Transport

    International Nuclear Information System (INIS)

    Liu, H.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models

  11. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  12. Nanoscale thermal transport. II. 2003-2012

    Science.gov (United States)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-03-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ˜ 1 nm , the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal

  13. A time-dependent neutron transport model and its coupling to thermal-hydraulics

    International Nuclear Information System (INIS)

    Pautz, A.

    2001-01-01

    A new neutron transport code for time-dependent analyses of nuclear systems has been developed. The code system is based on the well-known Discrete Ordinates code DORT, which solves the steady-state neutron/photon transport equation in two dimensions for an arbitrary number of energy groups and the most common regular geometries. For the implementation of time-dependence a fully implicit first-order scheme was employed to minimize errors due to temporal discretization. This requires various modifications to the transport equation as well as the extensive use of elaborated acceleration mechanisms. The convergence criteria for fluxes, fission rates etc. had to be strongly tightened to ensure the reliability of results. To perform coupled analyses, an interface to the GRS system code ATHLET has been developed. The nodal power densities from the neutron transport code are passed to ATHLET to calculate thermal-hydraulic system parameters, e.g. fuel and coolant temperatures. These are in turn used to generate appropriate nuclear cross sections by interpolation of pre-calculated data sets for each time step. Finally, to demonstrate the transient capabilities of the coupled code system, the research reactor FRM-II has been analysed. Several design basis accidents were modelled, like the loss of off site power, loss of secondary heat sink and unintended control rod withdrawal. (author)

  14. Model Predictive Control of Hybrid Thermal Energy Systems in Transport Refrigeration

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Alleyne, Andrew

    2015-01-01

    A predictive control scheme is designed to control a transport refrigeration system, such as a delivery truck, that includes a vapor compression cycle configured in parallel with a thermal energy storage (TES) unit. A novel approach to TES utilization is introduced and is based on the current...

  15. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Directory of Open Access Journals (Sweden)

    Martin Gregory T

    2004-11-01

    Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the

  16. Thermal performance and heat transport in aquifer thermal energy storage

    Science.gov (United States)

    Sommer, W. T.; Doornenbal, P. J.; Drijver, B. C.; van Gaans, P. F. M.; Leusbrock, I.; Grotenhuis, J. T. C.; Rijnaarts, H. H. M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.

  17. Thermal Transport in Diamond Films for Electronics Thermal Management

    Science.gov (United States)

    2018-03-01

    AFRL-RY-WP-TR-2017-0219 THERMAL TRANSPORT IN DIAMOND FILMS FOR ELECTRONICS THERMAL MANAGEMENT Samuel Graham Georgia Institute of Technology MARCH... ELECTRONICS THERMAL MANAGEMENT 5a. CONTRACT NUMBER FA8650-15-C-7517 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61101E 6. AUTHOR(S) Samuel...seeded sample (NRL 010516, Die A5). The NCD membrane and Al layer thicknesses, tNCD, were measured via transmission electron microscopy (TEM). The

  18. Numerical study of divertor plasma transport with thermal force due to temperature gradient

    International Nuclear Information System (INIS)

    Ohtsu, Shigeki; Tanaka, Satoru; Yamawaki, Michio

    1992-01-01

    A one-dimensional, steady state divertor plasma model is developed in order to study the carbon impurity transport phenomena considering thermal force. The divertor plasma is composed of four regions in terms of momentum transport between hydrogen and carbon impurity: Momentum transferring region, equilibrium region, hydrogen recycling region and carbon recycling region. In the equilibrium region where the friction force is counterbalanced by the thermal force, the localization of carbon impurity occurs. The sufficient condition to avoid the reverse of carbon velocity due to the thermal force is evaluated. (orig.)

  19. Microinstability-based model for anomalous thermal confinement in tokamaks

    International Nuclear Information System (INIS)

    Tang, W.M.

    1986-03-01

    This paper deals with the formulation of microinstability-based thermal transport coefficients (chi/sub j/) for the purpose of modelling anomalous energy confinement properties in tokamak plasmas. Attention is primarily focused on ohmically heated discharges and the associated anomalous electron thermal transport. An appropriate expression for chi/sub e/ is developed which is consistent with reasonable global constraints on the current and electron temperature profiles as well as with the key properties of the kinetic instabilities most likely to be present. Comparisons of confinement scaling trends predicted by this model with the empirical ohmic data base indicate quite favorable agreement. The subject of anomalous ion thermal transport and its implications for high density ohmic discharges and for auxiliary-heated plasmas is also addressed

  20. Thermal transport across graphene and single layer hexagonal boron nitride

    International Nuclear Information System (INIS)

    Zhang, Jingchao; Hong, Yang; Yue, Yanan

    2015-01-01

    As the dimensions of nanocircuits and nanoelectronics shrink, thermal energies are being generated in more confined spaces, making it extremely important and urgent to explore for efficient heat dissipation pathways. In this work, the phonon energy transport across graphene and hexagonal boron-nitride (h-BN) interface is studied using classic molecular dynamics simulations. Effects of temperature, interatomic bond strength, heat flux direction, and functionalization on interfacial thermal transport are investigated. It is found out that by hydrogenating graphene in the hybrid structure, the interfacial thermal resistance (R) between graphene and h-BN can be reduced by 76.3%, indicating an effective approach to manipulate the interfacial thermal transport. Improved in-plane/out-of-plane phonon couplings and broadened phonon channels are observed in the hydrogenated graphene system by analyzing its phonon power spectra. The reported R results monotonically decrease with temperature and interatomic bond strengths. No thermal rectification phenomenon is observed in this interfacial thermal transport. Results reported in this work give the fundamental knowledge on graphene and h-BN thermal transport and provide rational guidelines for next generation thermal interface material designs

  1. Thermal simulations and tests in the development of a helmet transport spent fuel elements Research Reactor

    International Nuclear Information System (INIS)

    Saliba, R.; Quintana, F.; Márquez Turiello, R.; Furnari, J.C.; Pimenta Mourão, R.

    2013-01-01

    A packaging for the transport of irradiated fuel from research reactors was designed by a group of researchers to improve the capability in the management of spent fuel elements from the reactors operated in the region. Two half-scale models for MTR fuel were constructed and tested so far and a third one for both MTR and TRIGA fuels will be constructed and tested next. Four test campaigns have been carried out, covering both normal and hypothetical accident conditions of transportation. The thermal test is part of the requirements for the qualification of transportation packages for nuclear reactors spent fuel elements. In this paper both the numerical modelling and experimental thermal tests performed are presented and discussed. The cask is briefly described as well as the finite element model developed and the main adopted hypotheses for the thermal phenomena. The results of both numerical runs and experimental tests are discussed as a tool to validate the thermal modelling. The impact limiters, attached to the cask for protection, were not modelled. (author) [es

  2. Nanoscale thermal transport. II. 2003–2012

    International Nuclear Information System (INIS)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-01-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ∼1 nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and

  3. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    Science.gov (United States)

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Transport of thermal water from well to thermal baths

    Science.gov (United States)

    Montegrossi, Giordano; Vaselli, Orlando; Tassi, Franco; Nocentini, Matteo; Liccioli, Caterina; Nisi, Barbara

    2013-04-01

    The main problem in building a thermal bath is having a hot spring or a thermal well located in an appropriate position for customer access; since Roman age, thermal baths were distributed in the whole empire and often road and cities were built all around afterwards. Nowadays, the perspectives are changed and occasionally the thermal resource is required to be transported with a pipeline system from the main source to the spa. Nevertheless, the geothermal fluid may show problems of corrosion and scaling during transport. In the Ambra valley, central Italy, a geothermal well has recently been drilled and it discharges a Ca(Mg)-SO4, CO2-rich water at the temperature of 41 °C, that could be used for supplying a new spa in the surrounding areas of the well itself. The main problem is that the producing well is located in a forest tree ca. 4 km far away from the nearest structure suitable to host the thermal bath. In this study, we illustrate the pipeline design from the producing well to the spa, constraining the physical and geochemical parameters to reduce scaling and corrosion phenomena. The starting point is the thermal well that has a flow rate ranging from 22 up to 25 L/sec. The thermal fluid is heavily precipitating calcite (50-100 ton/month) due to the calcite-CO2 equilibrium in the reservoir, where a partial pressure of 11 bar of CO2 is present. One of the most vexing problems in investigating scaling processed during the fluid transport in the pipeline is that there is not a proper software package for multiphase fluid flow in pipes characterized by such a complex chemistry. As a consequence, we used a modified TOUGHREACT with Pitzer database, arranged to use Darcy-Weisbach equation, and applying "fictitious" material properties in order to give the proper y- z- velocity profile in comparison to the analytical solution for laminar fluid flow in pipes. This investigation gave as a result the lowest CO2 partial pressure to be kept in the pipeline (nearly 2

  5. Application of Thermal Network Model to Transient Thermal Analysis of Power Electronic Package Substrate

    Directory of Open Access Journals (Sweden)

    Masaru Ishizuka

    2011-01-01

    Full Text Available In recent years, there is a growing demand to have smaller and lighter electronic circuits which have greater complexity, multifunctionality, and reliability. High-density multichip packaging technology has been used in order to meet these requirements. The higher the density scale is, the larger the power dissipation per unit area becomes. Therefore, in the designing process, it has become very important to carry out the thermal analysis. However, the heat transport model in multichip modules is very complex, and its treatment is tedious and time consuming. This paper describes an application of the thermal network method to the transient thermal analysis of multichip modules and proposes a simple model for the thermal analysis of multichip modules as a preliminary thermal design tool. On the basis of the result of transient thermal analysis, the validity of the thermal network method and the simple thermal analysis model is confirmed.

  6. Modeling thermal dynamics of active layer soils and near-surface permafrost using a fully coupled water and heat transport model

    Science.gov (United States)

    Jiang, Yueyang; Zhuang, Qianlai; O'Donnell, Jonathan A.

    2012-01-01

    Thawing and freezing processes are key components in permafrost dynamics, and these processes play an important role in regulating the hydrological and carbon cycles in the northern high latitudes. In the present study, we apply a well-developed soil thermal model that fully couples heat and water transport, to simulate the thawing and freezing processes at daily time steps across multiple sites that vary with vegetation cover, disturbance history, and climate. The model performance was evaluated by comparing modeled and measured soil temperatures at different depths. We use the model to explore the influence of climate, fire disturbance, and topography (north- and south-facing slopes) on soil thermal dynamics. Modeled soil temperatures agree well with measured values for both boreal forest and tundra ecosystems at the site level. Combustion of organic-soil horizons during wildfire alters the surface energy balance and increases the downward heat flux through the soil profile, resulting in the warming and thawing of near-surface permafrost. A projection of 21st century permafrost dynamics indicates that as the climate warms, active layer thickness will likely increase to more than 3 meters in the boreal forest site and deeper than one meter in the tundra site. Results from this coupled heat-water modeling approach represent faster thaw rates than previously simulated in other studies. We conclude that the discussed soil thermal model is able to well simulate the permafrost dynamics and could be used as a tool to analyze the influence of climate change and wildfire disturbance on permafrost thawing.

  7. Thermal modelling of borehole heat exchangers and borehole thermal energy stores; Zur thermischen Modellierung von Erdwaermesonden und Erdsonden-Waermespeichern

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Dan

    2011-07-15

    The thermal use of the underground for heating and cooling applications can be done with borehole heat exchangers. This work deals with the further development of the modelling of thermal transport processes inside and outside the borehole as well as with the application of the further developed models. The combination of high accuracy and short computation time is achieved by the development of three-dimensional thermal resistance and capacity models for borehole heat exchangers. Short transient transport processes can be calculated by the developed model with a considerable higher dynamic and accuracy than with known models from literature. The model is used to evaluate measurement data of a thermal response test by parameter estimation technique with a transient three-dimensional model for the first time. Clear advantages like shortening of the test duration are shown. The developed borehole heat exchanger model is combined with a three-dimensional description of the underground in the Finite-Element-Program FEFLOW. The influence of moving groundwater on borehole heat exchangers and borehole thermal energy stores is then quantified.

  8. Implications of Thermal Diffusity being Inversely Proportional to Temperature Times Thermal Expansivity on Lower Mantle Heat Transport

    Science.gov (United States)

    Hofmeister, A.

    2010-12-01

    Many measurements and models of heat transport in lower mantle candidate phases contain systematic errors: (1) conventional methods of insulators involve thermal losses that are pressure (P) and temperature (T) dependent due to physical contact with metal thermocouples, (2) measurements frequently contain unwanted ballistic radiative transfer which hugely increases with T, (3) spectroscopic measurements of dense samples in diamond anvil cells involve strong refraction by which has not been accounted for in analyzing transmission data, (4) the role of grain boundary scattering in impeding heat and light transfer has largely been overlooked, and (5) essentially harmonic physical properties have been used to predict anharmonic behavior. Improving our understanding of the physics of heat transport requires accurate data, especially as a function of temperature, where anharmonicity is the key factor. My laboratory provides thermal diffusivity (D) at T from laser flash analysis, which lacks the above experimental errors. Measuring a plethora of chemical compositions in diverse dense structures (most recently, perovskites, B1, B2, and glasses) as a function of temperature provides a firm basis for understanding microscopic behavior. Given accurate measurements for all quantities: (1) D is inversely proportional to [T x alpha(T)] from ~0 K to melting, where alpha is thermal expansivity, and (2) the damped harmonic oscillator model matches measured D(T), using only two parameters (average infrared dielectric peak width and compressional velocity), both acquired at temperature. These discoveries pertain to the anharmonic aspects of heat transport. I have previously discussed the easily understood quasi-harmonic pressure dependence of D. Universal behavior makes application to the Earth straightforward: due to the stiffness and slow motions of the plates and interior, and present-day, slow planetary cooling rates, Earth can be approximated as being in quasi

  9. Nanoscale thermal transport. II. 2003–2012

    OpenAIRE

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2013-01-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of th...

  10. Phonon cross-plane transport and thermal boundary resistance: effect of heat source size and thermal boundary resistance on phonon characteristics

    Science.gov (United States)

    Ali, H.; Yilbas, B. S.

    2016-09-01

    Phonon cross-plane transport across silicon and diamond thin films pair is considered, and thermal boundary resistance across the films pair interface is examined incorporating the cut-off mismatch and diffusive mismatch models. In the cut-off mismatch model, phonon frequency mismatch for each acoustic branch is incorporated across the interface of the silicon and diamond films pair in line with the dispersion relations of both films. The frequency-dependent and transient solution of the Boltzmann transport equation is presented, and the equilibrium phonon intensity ratios at the silicon and diamond film edges are predicted across the interface for each phonon acoustic branch. Temperature disturbance across the edges of the films pair is incorporated to assess the phonon transport characteristics due to cut-off and diffusive mismatch models across the interface. The effect of heat source size, which is allocated at high-temperature (301 K) edge of the silicon film, on the phonon transport characteristics at the films pair interface is also investigated. It is found that cut-off mismatch model predicts higher values of the thermal boundary resistance across the films pair interface as compared to that of the diffusive mismatch model. The ratio of equilibrium phonon intensity due to the cut-off mismatch over the diffusive mismatch models remains >1 at the silicon edge, while it becomes <1 at the diamond edge for all acoustic branches.

  11. Effect of electronic contribution on temperature-dependent thermal transport of antimony telluride thin film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won-Yong; Park, No-Won [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Hong, Ji-Eun [Department of Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yoon, Soon-Gil, E-mail: sgyoon@cnu.ac.kr [Department of Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Koh, Jung-Hyuk [School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Sang-Kwon, E-mail: sangkwonlee@cau.ac.kr [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2015-01-25

    Highlights: • We investigated thermal transport of the antimony telluride thin films. • The contribution of the electronic thermal conductivity increased up to ∼77% at 300 K. • We theoretically analyze and explain the high contribution of electronic component. - Abstract: We study the theoretical and experimental characteristics of thermal transport of 100 nm and 500 nm-thick antimony telluride (Sb{sub 2}Te{sub 3}) thin films prepared by radio frequency magnetron sputtering. The thermal conductivity was measured at temperatures ranging from 20 to 300 K, using four-point-probe 3-ω method. Out-of-plane thermal conductivity of the Sb{sub 2}Te{sub 3} thin film was much lesser in comparison to the bulk material in the entire temperature range, confirming that the phonon- and electron-boundary scattering are enhanced in thin films. Moreover, we found that the contribution of the electronic thermal conductivity (κ{sub e}) in total thermal conductivity (κ) linearly increased up to ∼77% at 300 K with increasing temperature. We theoretically analyze and explain the high contribution of electronic component of thermal conductivity towards the total thermal conductivity of the film by a modified Callaway model. Further, we find the theoretical model predictions to correspond well with the experimental results.

  12. Thermal transport in UO2 with defects and fission products by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooper, Michael William Donald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lashley, Jason Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Byler, Darrin David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-14

    The importance of the thermal transport in nuclear fuel has motivated a wide range of experimental and modelling studies. In this report, the reduction of thermal transport in UO2 due to defects and fission products has been investigated using non-equilibrium MD simulations, with two sets of empirical potentials for studying the degregation of UO2 thermal conductivity including a Buckingham type interatomic potential and a recently developed EAM type interatomic potential. Additional parameters for U5+ and Zr4+ in UO2 have been developed for the EAM potential. The thermal conductivity results from MD simulations are then corrected for the spin-phonon scattering through Callaway model formulations. To validate the modelling results, comparison was made with experimental measurements on single crystal hyper-stoichiometric UO2+x samples.

  13. Thermal analysis on NAC-STC spent fuel transport cask under different transport conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yumei [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Yang, Jian, E-mail: zdhjkz@zju.edu.cn [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Xu, Chao; Wang, Weiping [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Ma, Zhijun [Department of Material Engineering, South China University of Technology, Guangzhou (China)

    2013-12-15

    Highlights: • Spent fuel cask was investigated as a whole instead of fuel assembly alone. • The cask was successfully modeled and meshed after several simplifications. • Equivalence method was used to calculate the properties of parts. • Both the integral thermal field and peak values are captured to verify safety. • The temperature variations of key parts were also plotted. - Abstract: Transport casks used for conveying spent nuclear fuel are inseparably related to the safety of the whole reprocessing system for spent nuclear fuel. Thus they must be designed according to rigorous safety standards including thermal analysis. In this paper, for NAC-STC cask, a finite element model is established based on some proper simplifications on configurations and the heat transfer mechanisms. Considering the complex components and gaps, the equivalence method is presented to define their material properties. Then an equivalent convection coefficient is introduced to define boundary conditions. Finally, the temperature field is captured and analyzed under both normal and accident transport conditions by using ANSYS software. The validity of numerical calculation is given by comparing its results with theoretical calculation. Obtaining the integral distribution laws of temperature and peak temperature values of all vital components, the security of the cask can be evaluated and verified.

  14. Thermal characteristic of insulation for optimum design of RI transport package

    International Nuclear Information System (INIS)

    Lee, J. C.; Bang, K. S.; Seo, K. S.

    2002-01-01

    A package to transport the high level radioactive materials in required to withstand the hypothetical accident conditions as well as normal transport conditions according to IAEA and domestic regulations. The regulations require that the package should maintain the shielding, thermal and structural integrities to release no radioactive material. Thermal characteristics of insulations were evaluated and optimum insulation thickness was deduced for RI transport package. The package has a maximum capacity of 600 Curies for Ir-192 sealed source. The insulation thickness was decided with 10 mm of polyurethane form to maintain the thermal safety under fire accident condition. Thermal analysis was carried out for RI transport package, and it was shown that the thermal integrity of the package was maintained. The results obtained this study will be applied to a basic data for design of RI transport cask

  15. Parallel thermal radiation transport in two dimensions

    International Nuclear Information System (INIS)

    Smedley-Stevenson, R.P.; Ball, S.R.

    2003-01-01

    This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)

  16. Parallel thermal radiation transport in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Smedley-Stevenson, R.P.; Ball, S.R. [AWE Aldermaston (United Kingdom)

    2003-07-01

    This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)

  17. Thermal conductivity of group-IV semiconductors from a kinetic-collective model.

    Science.gov (United States)

    de Tomas, C; Cantarero, A; Lopeandia, A F; Alvarez, F X

    2014-09-08

    The thermal conductivity of group-IV semiconductors (silicon, germanium, diamond and grey tin) with several isotopic compositions has been calculated from a kinetic-collective model. From this approach, significantly different to Callaway-like models in its physical interpretation, the thermal conductivity expression accounts for a transition from a kinetic (individual phonon transport) to a collective (hydrodynamic phonon transport) behaviour of the phonon field. Within the model, we confirm the theoretical proportionality between the phonon-phonon relaxation times of the group-IV semiconductors. This proportionality depends on some materials properties and it allows us to predict the thermal conductivity of the whole group of materials without the need to fit each material individually. The predictions on thermal conductivities are in good agreement with experimental data over a wide temperature range.

  18. Thermal conductivity of group-IV semiconductors from a kinetic-collective model

    Science.gov (United States)

    de Tomas, C.; Cantarero, A.; Lopeandia, A. F.; Alvarez, F. X.

    2014-01-01

    The thermal conductivity of group-IV semiconductors (silicon, germanium, diamond and grey tin) with several isotopic compositions has been calculated from a kinetic-collective model. From this approach, significantly different to Callaway-like models in its physical interpretation, the thermal conductivity expression accounts for a transition from a kinetic (individual phonon transport) to a collective (hydrodynamic phonon transport) behaviour of the phonon field. Within the model, we confirm the theoretical proportionality between the phonon–phonon relaxation times of the group-IV semiconductors. This proportionality depends on some materials properties and it allows us to predict the thermal conductivity of the whole group of materials without the need to fit each material individually. The predictions on thermal conductivities are in good agreement with experimental data over a wide temperature range. PMID:25197256

  19. Thermally Cross-Linkable Hole Transport Materials for Solution Processed Phosphorescent OLEDs

    Science.gov (United States)

    Kim, Beom Seok; Kim, Ohyoung; Chin, Byung Doo; Lee, Chil Won

    2018-04-01

    Materials for unique fabrication of a solution-processed, multi-layered organic light-emitting diode (OLED) were developed. Preparation of a hole transport layer with a thermally cross-linkable chemical structure, which can be processed to form a thin film and then transformed into an insoluble film by using an amine-alcohol condensation reaction with heat treatment, was investigated. Functional groups, such as triplenylamine linked with phenylcarbazole or biphenyl, were employed in the chemical structure of the hole transport layer in order to maintain high triplet energy properties. When phenylcarbazole or biphenyl compounds continuously react with triphenylamine under acid catalysis, a chemically stable thin film material with desirable energy-level properties for a blue OLED could be obtained. The prepared hole transport materials showed excellent surface roughness and thermal stability in comparison with the commercial reference material. On the solution-processed model hole transport layer, we fabricated a device with a blue phosphorescent OLED by using sequential vacuum deposition. The maximum external quantum, 19.3%, was improved by more than 40% over devices with the commercial reference material (11.4%).

  20. Impact of isotopic disorders on thermal transport properties of nanotubes and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Tao [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); Kang, Wei [HEDPS, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871 (China); Wang, Jianxiang, E-mail: jxwang@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); HEDPS, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871 (China)

    2015-01-21

    We present a one-dimensional lattice model to describe thermal transport in isotopically doped nanotubes and nanowires. The thermal conductivities thus predicted, as a function of isotopic concentration, agree well with recent experiments and other simulations. Our results display that for any given concentration of isotopic atoms in a lattice without sharp atomic interfaces, the maximum thermal conductivity is attained when isotopic atoms are placed regularly with an equal space, whereas the minimum is achieved when they are randomly inserted with a uniform distribution. Non-uniformity of disorder can further tune the thermal conductivity between the two values. Moreover, the dependence of the thermal conductivity on the nanoscale feature size becomes weak at low temperature when disorder exists. In addition, when self-consistent thermal reservoirs are included to describe diffusive nanomaterials, the thermal conductivities predicted by our model are in line with the results of macroscopic theories with an interfacial effect. Our results suggest that the disorder provides an additional freedom to tune the thermal properties of nanomaterials in many technological applications including nanoelectronics, solid-state lighting, energy conservation, and conversion.

  1. Impact of isotopic disorders on thermal transport properties of nanotubes and nanowires

    International Nuclear Information System (INIS)

    Sun, Tao; Kang, Wei; Wang, Jianxiang

    2015-01-01

    We present a one-dimensional lattice model to describe thermal transport in isotopically doped nanotubes and nanowires. The thermal conductivities thus predicted, as a function of isotopic concentration, agree well with recent experiments and other simulations. Our results display that for any given concentration of isotopic atoms in a lattice without sharp atomic interfaces, the maximum thermal conductivity is attained when isotopic atoms are placed regularly with an equal space, whereas the minimum is achieved when they are randomly inserted with a uniform distribution. Non-uniformity of disorder can further tune the thermal conductivity between the two values. Moreover, the dependence of the thermal conductivity on the nanoscale feature size becomes weak at low temperature when disorder exists. In addition, when self-consistent thermal reservoirs are included to describe diffusive nanomaterials, the thermal conductivities predicted by our model are in line with the results of macroscopic theories with an interfacial effect. Our results suggest that the disorder provides an additional freedom to tune the thermal properties of nanomaterials in many technological applications including nanoelectronics, solid-state lighting, energy conservation, and conversion

  2. Comparison on thermal transport properties of graphene and phosphorene nanoribbons

    Science.gov (United States)

    Peng, Xiao-Fang; Chen, Ke-Qiu

    2015-01-01

    We investigate ballistic thermal transport at low temperatures in graphene and phosphorene nanoribbons (PNRS) modulated with a double-cavity quantum structure. A comparative analysis for thermal transport in these two kinds of nanomaterials is made. The results show that the thermal conductance in PNRS is greater than that in graphene nanoribbons (GNRS). The ratio kG/kP (kG is the thermal conductivity in GNRS and kP is the thermal conductivity in PNRS) decreases with lower temperature or for narrower nanoribbons, and increases with higher temperature or for wider nanoribbons. The greater thermal conductance and thermal conductivity in PNRS originate from the lower cutoff frequencies of the acoustic modes. PMID:26577958

  3. Thermal transport in Si and Ge nanostructures in the 'confinement' regime.

    Science.gov (United States)

    Kwon, Soonshin; Wingert, Matthew C; Zheng, Jianlin; Xiang, Jie; Chen, Renkun

    2016-07-21

    Reducing semiconductor materials to sizes comparable to the characteristic lengths of phonons, such as the mean-free-path (MFP) and wavelength, has unveiled new physical phenomena and engineering capabilities for thermal energy management and conversion systems. These developments have been enabled by the increasing sophistication of chemical synthesis, microfabrication, and atomistic simulation techniques to understand the underlying mechanisms of phonon transport. Modifying thermal properties by scaling physical size is particularly effective for materials which have large phonon MFPs, such as crystalline Si and Ge. Through nanostructuring, materials that are traditionally good thermal conductors can become good candidates for applications requiring thermal insulation such as thermoelectrics. Precise understanding of nanoscale thermal transport in Si and Ge, the leading materials of the modern semiconductor industry, is increasingly important due to more stringent thermal conditions imposed by ever-increasing complexity and miniaturization of devices. Therefore this Minireview focuses on the recent theoretical and experimental developments related to reduced length effects on thermal transport of Si and Ge with varying size from hundreds to sub-10 nm ranges. Three thermal transport regimes - bulk-like, Casimir, and confinement - are emphasized to describe different governing mechanisms at corresponding length scales.

  4. Investigation of anisotropic thermal transport in cross-linked polymers

    Science.gov (United States)

    Simavilla, David Nieto

    -induced crystallization as the possible causes explaining our observations and evaluate their contribution making use of classical rubber elasticity results. Finally, we study of the role of evaporation-induced thermal effects in the well-know phenomena of the tears of wine. We develop a transport model and support its predictions by experimentally measuring the temperature gradient present in wine and cognac films using IRT. Our results demonstrate that the Marangoni flow responsible for wine tears results from both composition and temperature gradients, whose relative contribution strongly depends on the thermodynamic properties of ethanol-water mixtures. The methods developed here can be used to obtain a deeper understanding of Marangoni flows, which are ubiquitous in nature and modern technology.

  5. Thermal transport across solid-solid interfaces enhanced by pre-interface isotope-phonon scattering

    Science.gov (United States)

    Lee, Eungkyu; Luo, Tengfei

    2018-01-01

    Thermal transport across solid interfaces can play critical roles in the thermal management of electronics. In this letter, we use non-equilibrium molecular dynamics simulations to investigate the isotope effect on the thermal transport across SiC/GaN interfaces. It is found that engineered isotopes (e.g., 10% 15N or 71Ga) in the GaN layer can increase the interfacial thermal conductance compared to the isotopically pure case by as much as 23%. Different isotope doping features, such as the isotope concentration, skin depth of the isotope region, and its distance from the interface, are investigated, and all of them lead to increases in thermal conductance. Studies of spectral temperatures of phonon modes indicate that interfacial thermal transport due to low-frequency phonons (transport. This work may provide insights into interfacial thermal transport and useful guidance to practical material design.

  6. A simplified computational scheme for thermal analysis of LWR spent fuel dry storage and transportation casks

    International Nuclear Information System (INIS)

    Kim, Chang Hyun

    1997-02-01

    A simplified computational scheme for thermal analysis of the LWR spent fuel dry storage and transportation casks has been developed using two-step thermal analysis method incorporating effective thermal conductivity model for the homogenized spent fuel assembly. Although a lot of computer codes and analytical models have been developed for application to the fields of thermal analysis of dry storage and/or transportation casks, some difficulties in its analysis arise from the complexity of the geometry including the rod bundles of spent fuel and the heat transfer phenomena in the cavity of cask. Particularly, if the disk-type structures such as fuel baskets and aluminium heat transfer fins are included, the thermal analysis problems in the cavity are very complex. To overcome these difficulties, cylindrical coordinate system is adopted to calculate the temperature profile of a cylindrical cask body using the multiple cylinder model as the step-1 analysis of the present study. In the step-2 analysis, Cartesian coordinate system is adopted to calculate the temperature distributions of the disk-type structures such as fuel basket and aluminium heat transfer fin using three- dimensional conduction analysis model. The effective thermal conductivity for homogenized spent fuel assembly based on Manteufel and Todreas model is incorporated in step-2 analysis to predict the maximum fuel temperature. The presented two-step computational scheme has been performed using an existing HEATING 7.2 code and the effective thermal conductivity for the homogenized spent fuel assembly has been calculated by additional numerical analyses. Sample analyses of five cases are performed for NAC-STC including normal transportation condition to examine the applicability of the presented simplified computational scheme for thermal analysis of the large LWR spent fuel dry storage and transportation casks and heat transfer characteristics in the cavity of the cask with the disk-type structures

  7. Nonequilibrium Green's function method for quantum thermal transport

    Science.gov (United States)

    Wang, Jian-Sheng; Agarwalla, Bijay Kumar; Li, Huanan; Thingna, Juzar

    2014-12-01

    This review deals with the nonequilibrium Green's function (NEGF) method applied to the problems of energy transport due to atomic vibrations (phonons), primarily for small junction systems. We present a pedagogical introduction to the subject, deriving some of the well-known results such as the Laudauer-like formula for heat current in ballistic systems. The main aim of the review is to build the machinery of the method so that it can be applied to other situations, which are not directly treated here. In addition to the above, we consider a number of applications of NEGF, not in routine model system calculations, but in a few new aspects showing the power and usefulness of the formalism. In particular, we discuss the problems of multiple leads, coupled left-right-lead system, and system without a center. We also apply the method to the problem of full counting statistics. In the case of nonlinear systems, we make general comments on the thermal expansion effect, phonon relaxation time, and a certain class of mean-field approximations. Lastly, we examine the relationship between NEGF, reduced density matrix, and master equation approaches to thermal transport.

  8. Thermal Transport and Entropy Production Mechanisms in a Turbulent Round Jet at Supercritical Thermodynamic Conditions

    Directory of Open Access Journals (Sweden)

    Florian Ries

    2017-08-01

    Full Text Available In the present paper, thermal transport and entropy production mechanisms in a turbulent round jet of compressed nitrogen at supercritical thermodynamic conditions are investigated using a direct numerical simulation. First, thermal transport and its contribution to the mixture formation along with the anisotropy of heat fluxes and temperature scales are examined. Secondly, the entropy production rates during thermofluid processes evolving in the supercritical flow are investigated in order to identify the causes of irreversibilities and to display advantageous locations of handling along with the process regimes favorable to mixing. Thereby, it turned out that (1 the jet disintegration process consists of four main stages under supercritical conditions (potential core, separation, pseudo-boiling, turbulent mixing, (2 causes of irreversibilities are primarily due to heat transport and thermodynamic effects rather than turbulence dynamics and (3 heat fluxes and temperature scales appear anisotropic even at the smallest scales, which implies that anisotropic thermal diffusivity models might be appropriate in the context of both Reynolds-averaged Navier–Stokes (RANS and large eddy simulation (LES approaches while numerically modeling supercritical fluid flows.

  9. Thermal Transport Properties of Dry Spun Carbon Nanotube Sheets

    Directory of Open Access Journals (Sweden)

    Heath E. Misak

    2016-01-01

    Full Text Available The thermal properties of carbon nanotube- (CNT- sheet were explored and compared to copper in this study. The CNT-sheet was made from dry spinning CNTs into a nonwoven sheet. This nonwoven CNT-sheet has anisotropic properties in in-plane and out-of-plane directions. The in-plane direction has much higher thermal conductivity than the out-of-plane direction. The in-plane thermal conductivity was found by thermal flash analysis, and the out-of-plane thermal conductivity was found by a hot disk method. The thermal irradiative properties were examined and compared to thermal transport theory. The CNT-sheet was heated in the vacuum and the temperature was measured with an IR Camera. The heat flux of CNT-sheet was compared to that of copper, and it was found that the CNT-sheet has significantly higher specific heat transfer properties compared to those of copper. CNT-sheet is a potential candidate to replace copper in thermal transport applications where weight is a primary concern such as in the automobile, aircraft, and space industries.

  10. Thermal transport characterization of hexagonal boron nitride nanoribbons using molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Asir Intisar Khan

    2017-10-01

    Full Text Available Due to similar atomic bonding and electronic structure to graphene, hexagonal boron nitride (h-BN has broad application prospects such as the design of next generation energy efficient nano-electronic devices. Practical design and efficient performance of these devices based on h-BN nanostructures would require proper thermal characterization of h-BN nanostructures. Hence, in this study we have performed equilibrium molecular dynamics (EMD simulation using an optimized Tersoff-type interatomic potential to model the thermal transport of nanometer sized zigzag hexagonal boron nitride nanoribbons (h-BNNRs. We have investigated the thermal conductivity of h-BNNRs as a function of temperature, length and width. Thermal conductivity of h-BNNRs shows strong temperature dependence. With increasing width, thermal conductivity increases while an opposite pattern is observed with the increase in length. Our study on h-BNNRs shows considerably lower thermal conductivity compared to GNRs. To elucidate these aspects, we have calculated phonon density of states for both h-BNNRs and GNRs. Moreover, using EMD we have explored the impact of different vacancies, namely, point vacancy, edge vacancy and bi-vacancy on the thermal conductivity of h-BNNRs. With varying percentages of vacancies, significant reduction in thermal conductivity is observed and it is found that, edge and point vacancies are comparatively more destructive than bi-vacancies. Such study would contribute further into the growing interest for accurate thermal transport characterization of low dimensional nanostructures.

  11. Thermal transport phenomena in nanoparticle suspensions

    International Nuclear Information System (INIS)

    Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications. (topical review)

  12. A Combined Electro-Thermal Breakdown Model for Oil-Impregnated Paper

    Directory of Open Access Journals (Sweden)

    Meng Huang

    2017-12-01

    Full Text Available The breakdown property of oil-impregnated paper is a key factor for converter transformer design and operation, but it is not well understood. In this paper, breakdown voltages of oil-impregnated paper were measured at different temperatures. The results showed that with the increase of temperature, electrical, electro-thermal and thermal breakdown occurred successively. An electro-thermal breakdown model was proposed based on the heat equilibrium and space charge transport, and negative differential mobility was introduced to the model. It was shown that carrier mobility determined whether it was electrical or thermal breakdown, and the model can effectively explain the temperature-dependent breakdown.

  13. Thermal conductivity model for nanoporous thin films

    Science.gov (United States)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  14. Molecular dynamics study of interfacial thermal transport between silicene and substrates.

    Science.gov (United States)

    Zhang, Jingchao; Hong, Yang; Tong, Zhen; Xiao, Zhihuai; Bao, Hua; Yue, Yanan

    2015-10-07

    In this work, the interfacial thermal transport across silicene and various substrates, i.e., crystalline silicon (c-Si), amorphous silicon (a-Si), crystalline silica (c-SiO2) and amorphous silica (a-SiO2) are explored by classical molecular dynamics (MD) simulations. A transient pulsed heating technique is applied in this work to characterize the interfacial thermal resistance in all hybrid systems. It is reported that the interfacial thermal resistances between silicene and all substrates decrease nearly 40% with temperature from 100 K to 400 K, which is due to the enhanced phonon couplings from the anharmonicity effect. Analysis of phonon power spectra of all systems is performed to interpret simulation results. Contradictory to the traditional thought that amorphous structures tend to have poor thermal transport capabilities due to the disordered atomic configurations, it is calculated that amorphous silicon and silica substrates facilitate the interfacial thermal transport compared with their crystalline structures. Besides, the coupling effect from substrates can improve the interface thermal transport up to 43.5% for coupling strengths χ from 1.0 to 2.0. Our results provide fundamental knowledge and rational guidelines for the design and development of the next-generation silicene-based nanoelectronics and thermal interface materials.

  15. Edge turbulence and transport: Text and ATF modeling

    International Nuclear Information System (INIS)

    Ritz, C.P.; Rhodes, T.L.; Lin, H.; Rowan, W.L.; Bengtson, R.; Wootton, A.J.; Diamond, P.H.; Ware, A.S.; Thayer, D.R.

    1990-01-01

    We present experimental results on edge turbulence and transport from the tokamak TEXT and the torsatron ATF. The measured electrostatic fluctuations can explain the edge transport of particles and energy. Certain drive (radiation) and stabilizing (velocity shear) terms are suggested by the results. The experimental fluctuation levels and spectral widths can be reproduced by considering the nonlinear evolution of the reduced MHD equations, incorporating a thermal drive from line radiation. In the tokamak limit (with toroidal electric field) the model corresponds to the resistivity gradient mode, while in the currentless torsatron or stellarator limit it corresponds to a thermally driven drift wave

  16. Spectral mapping of thermal conductivity through nanoscale ballistic transport

    Science.gov (United States)

    Hu, Yongjie; Zeng, Lingping; Minnich, Austin J.; Dresselhaus, Mildred S.; Chen, Gang

    2015-08-01

    Controlling thermal properties is central to many applications, such as thermoelectric energy conversion and the thermal management of integrated circuits. Progress has been made over the past decade by structuring materials at different length scales, but a clear relationship between structure size and thermal properties remains to be established. The main challenge comes from the unknown intrinsic spectral distribution of energy among heat carriers. Here, we experimentally measure this spectral distribution by probing quasi-ballistic transport near nanostructured heaters down to 30 nm using ultrafast optical spectroscopy. Our approach allows us to quantify up to 95% of the total spectral contribution to thermal conductivity from all phonon modes. The measurement agrees well with multiscale and first-principles-based simulations. We further demonstrate the direct construction of mean free path distributions. Our results provide a new fundamental understanding of thermal transport and will enable materials design in a rational way to achieve high performance.

  17. Predicting Formation Damage in Aquifer Thermal Energy Storage Systems Utilizing a Coupled Hydraulic-Thermal-Chemical Reservoir Model

    Science.gov (United States)

    Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali

    2014-05-01

    In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to

  18. Existence of negative differential thermal conductance in one-dimensional diffusive thermal transport

    Science.gov (United States)

    Hu, Jiuning; Chen, Yong P.

    2013-06-01

    We show that in a finite one-dimensional (1D) system with diffusive thermal transport described by the Fourier's law, negative differential thermal conductance (NDTC) cannot occur when the temperature at one end is fixed and there are no abrupt junctions. We demonstrate that NDTC in this case requires the presence of junction(s) with temperature-dependent thermal contact resistance (TCR). We derive a necessary and sufficient condition for the existence of NDTC in terms of the properties of the TCR for systems with a single junction. We show that under certain circumstances we even could have infinite (negative or positive) differential thermal conductance in the presence of the TCR. Our predictions provide theoretical basis for constructing NDTC-based devices, such as thermal amplifiers, oscillators, and logic devices.

  19. Hierarchic modeling of heat exchanger thermal hydraulics

    International Nuclear Information System (INIS)

    Horvat, A.; Koncar, B.

    2002-01-01

    Volume Averaging Technique (VAT) is employed in order to model the heat exchanger cross-flow as a porous media flow. As the averaging of the transport equations lead to a closure problem, separate relations are introduced to model interphase momentum and heat transfer between fluid flow and the solid structure. The hierarchic modeling is used to calculate the local drag coefficient C d as a function of Reynolds number Re h . For that purpose a separate model of REV is built and DNS of flow through REV is performed. The local values of heat transfer coefficient h are obtained from available literature. The geometry of the simulation domain and boundary conditions follow the geometry of the experimental test section used at U.C.L.A. The calculated temperature fields reveal that the geometry with denser pin-fins arrangement (HX1) heats fluid flow faster. The temperature field in the HX2 exhibits the formation of thermal boundary layer between pin-fins, which has a significant role in overall thermal performance of the heat exchanger. Although presented discrepancies of the whole-section drag coefficient C d are large, we believe that hierarchic modeling is an appropriate strategy for calculation of complex transport phenomena in heat exchanger geometries.(author)

  20. Computational modeling of geometry dependent phonon transport in silicon nanostructures

    Science.gov (United States)

    Cheney, Drew A.

    Recent experiments have demonstrated that thermal properties of semiconductor nanostructures depend on nanostructure boundary geometry. Phonons are quantized mechanical vibrations that are the dominant carrier of heat in semiconductor materials and their aggregate behavior determine a nanostructure's thermal performance. Phonon-geometry scattering processes as well as waveguiding effects which result from coherent phonon interference are responsible for the shape dependence of thermal transport in these systems. Nanoscale phonon-geometry interactions provide a mechanism by which nanostructure geometry may be used to create materials with targeted thermal properties. However, the ability to manipulate material thermal properties via controlling nanostructure geometry is contingent upon first obtaining increased theoretical understanding of fundamental geometry induced phonon scattering processes and having robust analytical and computational models capable of exploring the nanostructure design space, simulating the phonon scattering events, and linking the behavior of individual phonon modes to overall thermal behavior. The overall goal of this research is to predict and analyze the effect of nanostructure geometry on thermal transport. To this end, a harmonic lattice-dynamics based atomistic computational modeling tool was created to calculate phonon spectra and modal phonon transmission coefficients in geometrically irregular nanostructures. The computational tool is used to evaluate the accuracy and regimes of applicability of alternative computational techniques based upon continuum elastic wave theory. The model is also used to investigate phonon transmission and thermal conductance in diameter modulated silicon nanowires. Motivated by the complexity of the transmission results, a simplified model based upon long wavelength beam theory was derived and helps explain geometry induced phonon scattering of low frequency nanowire phonon modes.

  1. Impact of vacancy ordering on thermal transport in crystalline phase-change materials

    International Nuclear Information System (INIS)

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Wuttig, M; Siegrist, T

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge–Sb–Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb 2 Te 3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more ‘crystal-like’ thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials. (key issues review)

  2. Impact of vacancy ordering on thermal transport in crystalline phase-change materials.

    Science.gov (United States)

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Siegrist, T; Wuttig, M

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more 'crystal-like' thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials.

  3. Intrinsic and extrinsic electrical and thermal transport of bulk black phosphorus

    Science.gov (United States)

    Hu, Sile; Xiang, Junsen; Lv, Meng; Zhang, Jiahao; Zhao, Hengcan; Li, Chunhong; Chen, Genfu; Wang, Wenhong; Sun, Peijie

    2018-01-01

    We report a comprehensive investigation of the electrical, thermal, and thermoelectric transport properties of bulk single-crystalline black phosphorus in wide temperature (2-300 K) and field (0-9 T) ranges. Electrical transport below T ≈ 250 K is found to be dominated by extrinsic hole-type charge carriers with large mobility exceeding 104 cm2/V s at low temperatures. While thermal transport measurements reveal an enhanced in-plane thermal conductivity maximum κ = 180 W/m K at T ≈ 25 K, it appears still to be largely constrained by extrinsic phonon scattering processes, e.g., the electron-phonon process, in addition to intrinsic umklapp scattering. The thermoelectric power and Nernst effect seem to be strongly influenced by ambipolar transport of charge carriers with opposite signs in at least the high-temperature region above 200 K, which diminishes the thermoelectric power factor of this material. Our results provide a timely update to the transport properties of bulk black phosphorus for future fundamental and applied research.

  4. Experimental tests of transport models using modulated ECH

    International Nuclear Information System (INIS)

    DeBoo, J.C.; Kinsey, J.E.; Bravenec, R.

    1998-12-01

    Both the dynamic and equilibrium thermal responses of an L-mode plasma to repetitive ECH heat pulses were measured and compared to predictions from several thermal transport models. While no model consistently agreed with all observations, the GLF23 model was most consistent with the perturbated electron and ion temperature responses for one of the cases studied which may indicate a key role played by electron modes in the core of these discharges. Generally, the IIF and MM models performed well for the perturbed electron response while the GLF23 and IFS/PPPL models agreed with the perturbed ion response for all three cases studied. No single model agreed well with the equilibrium temperature profiles measured

  5. Nonequilibrium Distribution of the Microscopic Thermal Current in Steady Thermal Transport Systems

    KAUST Repository

    Yukawa, Satoshi; Ogushi, Fumiko; Shimada, Takashi; Ito, Nobuyasu

    2010-01-01

    Nonequilibrium distribution of the microscopic thermal current is investigated by direct molecular dynamics simulations. The microscopic thermal current in this study is defined by a flow of kinetic energy carried by a single particle. Asymptotic parallel and antiparallel tails of the nonequilibrium distribution to an average thermal current are identical to ones of equilibrium distribution with different temperatures. These temperatures characterizing the tails are dependent on a characteristic length in which a memory of dynamics is completely erased by several particle collisions. This property of the tails of nonequilibrium distribution is confirmed in other thermal transport systems. In addition, statistical properties of a particle trapped by a harmonic potential in a steady thermal conducting state are also studied. This particle feels a finite force parallel to the average thermal current as a consequence of the skewness of the distribution of the current. This force is interpreted as the microscopic origin of thermophoresis.

  6. Spent fuel transport cask thermal evaluation under normal and accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Lo Frano, R., E-mail: rosa.lofrano@ing.unipi.i [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Forasassi, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy)

    2010-06-15

    The casks used for transport of nuclear materials, especially the spent fuel element (SPE), must be designed according to rigorous acceptance criteria and standards requirements, e.g. the International Atomic Energy Agency ones, in order to provide protection to people and environment against radiation exposure particularly in a severe accident scenario. The aim of this work was the evaluation of the integrity of a spent fuel cask under both normal and accident scenarios transport conditions, such as impact and rigorous fire events, in according to the IAEA accident test requirements. The thermal behaviour and the temperatures distribution of a Light Water Reactor (LWR) spent fuel transport cask are presented in this paper, especially with reference to the Italian cask designed by AGN, which was characterized by a cylindrical body, with water or air inside the internal cavity, and two lateral shock absorbers. Using the finite element code ANSYS a series of thermal analyses (steady-state and transient thermal analyses) were carried out in order to obtain the maximum fuel temperature and the temperatures field in the body of the cask, both in normal and in accidents scenario, considering all the heat transfer modes between the cask and the external environment (fire in the test or air in the normal conditions) as well as inside the cask itself. In order to follow the standards requirements, the thermal analyses in accidents scenarios were also performed adopting a deformed shape of the shock absorbers to simulate the mechanical effects of a previous IAEA 9 m drop test event. Impact tests on scale models of the shock absorbers have already been conducted in the past at the Department of Mechanical, Nuclear and Production Engineering, University of Pisa, in the '80s. The obtained results, used for possible new licensing approval purposes by the Italian competent Authority of the cask for PWR spent fuel cask transport by the Italian competent Authority, are

  7. Thermal Transport in Soft PAAm Hydrogels

    Directory of Open Access Journals (Sweden)

    Ni Tang

    2017-12-01

    Full Text Available As the interface between human and machine becomes blurred, hydrogel incorporated electronics and devices have emerged to be a new class of flexible/stretchable electronic and ionic devices due to their extraordinary properties, such as softness, mechanically robustness, and biocompatibility. However, heat dissipation in these devices could be a critical issue and remains unexplored. Here, we report the experimental measurements and equilibrium molecular dynamics simulations of thermal conduction in polyacrylamide (PAAm hydrogels. The thermal conductivity of PAAm hydrogels can be modulated by both the effective crosslinking density and water content in hydrogels. The effective crosslinking density dependent thermal conductivity in hydrogels varies from 0.33 to 0.51 Wm−1K−1, giving a 54% enhancement. We attribute the crosslinking effect to the competition between the increased conduction pathways and the enhanced phonon scattering effect. Moreover, water content can act as filler in polymers which leads to nearly 40% enhancement in thermal conductivity in PAAm hydrogels with water content vary from 23 to 88 wt %. Furthermore, we find the thermal conductivity of PAAm hydrogel is insensitive to temperature in the range of 25–40 °C. Our study offers fundamental understanding of thermal transport in soft materials and provides design guidance for hydrogel-based devices.

  8. Transport properties site descriptive model. Guidelines for evaluation and modelling

    International Nuclear Information System (INIS)

    Berglund, Sten; Selroos, Jan-Olof

    2004-04-01

    This report describes a strategy for the development of Transport Properties Site Descriptive Models within the SKB Site Investigation programme. Similar reports have been produced for the other disciplines in the site descriptive modelling (Geology, Hydrogeology, Hydrogeochemistry, Rock mechanics, Thermal properties, and Surface ecosystems). These reports are intended to guide the site descriptive modelling, but also to provide the authorities with an overview of modelling work that will be performed. The site descriptive modelling of transport properties is presented in this report and in the associated 'Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock', which describes laboratory measurements and data evaluations. Specifically, the objectives of the present report are to: Present a description that gives an overview of the strategy for developing Site Descriptive Models, and which sets the transport modelling into this general context. Provide a structure for developing Transport Properties Site Descriptive Models that facilitates efficient modelling and comparisons between different sites. Provide guidelines on specific modelling issues where methodological consistency is judged to be of special importance, or where there is no general consensus on the modelling approach. The objectives of the site descriptive modelling process and the resulting Transport Properties Site Descriptive Models are to: Provide transport parameters for Safety Assessment. Describe the geoscientific basis for the transport model, including the qualitative and quantitative data that are of importance for the assessment of uncertainties and confidence in the transport description, and for the understanding of the processes at the sites. Provide transport parameters for use within other discipline-specific programmes. Contribute to the integrated evaluation of the investigated sites. The site descriptive modelling of

  9. Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium

    Science.gov (United States)

    Mongiovì, Maria Stella; Jou, David; Sciacca, Michele

    2018-01-01

    This review paper puts together some results concerning non equilibrium thermodynamics and heat transport properties of superfluid He II. A one-fluid extended model of superfluid helium, which considers heat flux as an additional independent variable, is presented, its microscopic bases are analyzed, and compared with the well known two-fluid model. In laminar situations, the fundamental fields are density, velocity, absolute temperature, and heat flux. Such a theory is able to describe the thermomechanical phenomena, the propagation of two sounds in liquid helium, and of fourth sound in superleak. It also leads in a natural way to a two-fluid model on purely macroscopical grounds and allows a small amount of entropy associated with the superfluid component. Other important features of liquid He II arise in rotating situations and in superfluid turbulence, both characterized by the presence of quantized vortices (thin vortex lines whose circulation is restricted by a quantum condition). Such vortices have a deep influence on the transport properties of superfluid helium, as they increase very much its thermal resistance. Thus, heat flux influences the vortices which, in turn, modify the heat flux. The dynamics of vortex lines is the central topic in turbulent superfluid helium. The model is generalized to take into account the vortices in different cases of physical interest: rotating superfluids, counterflow superfluid turbulence, combined counterflow and rotation, and mass flow in addition to heat flow. To do this, the averaged vortex line density per unit volume L, is introduced and its dynamical equations are considered. Linear and non-linear evolution equations for L are written for homogeneous and inhomogeneous, isotropic and anisotropic situations. Several physical experiments are analyzed and the influence of vortices on the effective thermal conductivity of turbulent superfluid helium is found. Transitions from laminar to turbulent flows, from diffusive to

  10. Phonon Transport through Nanoscale Contact in Tip-Based Thermal Analysis of Nanomaterials.

    Science.gov (United States)

    Dulhani, Jay; Lee, Bong Jae

    2017-07-28

    Nanomaterials have been actively employed in various applications for energy and sustainability, such as biosensing, gas sensing, solar thermal energy conversion, passive radiative cooling, etc. Understanding thermal transports inside such nanomaterials is crucial for optimizing their performance for different applications. In order to probe the thermal transport inside nanomaterials or nanostructures, tip-based nanoscale thermometry has often been employed. It has been well known that phonon transport in nanometer scale is fundamentally different from that occurred in macroscale. Therefore, Fourier's law that relies on the diffusion approximation is not ideally suitable for describing the phonon transport occurred in nanostructures and/or through nanoscale contact. In the present study, the gray Boltzmann transport equation (BTE) is numerically solved using finite volume method. Based on the gray BTE, phonon transport through the constriction formed by a probe itself as well as the nanoscale contact between the probe tip and the specimen is investigated. The interaction of a probe and a specimen (i.e., treated as a substrate) is explored qualitatively by analyzing the temperature variation in the tip-substrate configuration. Besides, each contribution of a probe tip, tip-substrate interface, and a substrate to the thermal resistance are analyzed for wide ranges of the constriction ratio of the probe.

  11. Study of ATES thermal behavior using a steady flow model

    Science.gov (United States)

    Doughty, C.; Hellstroem, G.; Tsang, C. F.; Claesson, J.

    1981-01-01

    The thermal behavior of a single well aquifer thermal energy storage system in which buoyancy flow is neglected is studied. A dimensionless formulation of the energy transport equations for the aquifer system is presented, and the key dimensionless parameters are discussed. A simple numerical model is used to generate graphs showing the thermal behavior of the system as a function of these parameters. Some comparisons with field experiments are given to illustrate the use of the dimensionless groups and graphs.

  12. MMRW-BOOKS, Legacy books on slowing down, thermalization, particle transport theory, random processes in reactors

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2007-01-01

    Description: Prof. M.M..R Williams has now released three of his legacy books for free distribution: 1 - M.M.R. Williams: The Slowing Down and Thermalization of Neutrons, North-Holland Publishing Company - Amsterdam, 582 pages, 1966. Content: Part I - The Thermal Energy Region: 1. Introduction and Historical Review, 2. The Scattering Kernel, 3. Neutron Thermalization in an Infinite Homogeneous Medium, 4. Neutron Thermalization in Finite Media, 5. The Spatial Dependence of the Energy Spectrum, 6. Reactor Cell Calculations, 7. Synthetic Scattering Kernels. Part II - The Slowing Down Region: 8. Scattering Kernels in the Slowing Down Region, 9. Neutron Slowing Down in an Infinite Homogeneous Medium, 10.Neutron Slowing Down and Diffusion. 2 - M.M.R. Williams: Mathematical Methods in Particle Transport Theory, Butterworths, London, 430 pages, 1971. Content: 1 The General Problem of Particle Transport, 2 The Boltzmann Equation for Gas Atoms and Neutrons, 3 Boundary Conditions, 4 Scattering Kernels, 5 Some Basic Problems in Neutron Transport and Rarefied Gas Dynamics, 6 The Integral Form of the Transport Equation in Plane, Spherical and Cylindrical Geometries, 7 Exact Solutions of Model Problems, 8 Eigenvalue Problems in Transport Theory, 9 Collision Probability Methods, 10 Variational Methods, 11 Polynomial Approximations. 3 - M.M.R. Williams: Random Processes in Nuclear Reactors, Pergamon Press Oxford New York Toronto Sydney, 243 pages, 1974. Content: 1. Historical Survey and General Discussion, 2. Introductory Mathematical Treatment, 3. Applications of the General Theory, 4. Practical Applications of the Probability Distribution, 5. The Langevin Technique, 6. Point Model Power Reactor Noise, 7. The Spatial Variation of Reactor Noise, 8. Random Phenomena in Heterogeneous Reactor Systems, 9. Associated Fluctuation Problems, Appendix: Noise Equivalent Sources. Note to the user: Prof. M.M.R Williams owns the copyright of these books and he authorises the OECD/NEA Data Bank

  13. Ion turbulence and thermal transport in laser-produced plasmas

    International Nuclear Information System (INIS)

    Barr, H.C.; Boyd, T.J.M.

    1982-01-01

    In the interaction of high-intensity lasers with target plasmas the transport of thermal energy from the region in which the radiation is absorbed, to the cold dense plasma in the interior of the target, is an issue of central importance. The role of ion turbulence as a flux limiter is addressed with particular regard to recent experiments in which target plasmas were irradiated by 1.06 μm neodymium laser light at irradiances of 10 15 W cm - 2 and greater. Saturation levels of the ion-acoustic turbulence driven by a combination of a suprathermal electron current and a heat flux are calculated on the basis of perturbed orbit theory. The levels of turbulence are found to be markedly lower than those commonly estimated from simple trapping arguments and too low to explain the thermal flux inhibition observed in the experiments used as a basis for the model. (author)

  14. Thermal analysis of transportation packaging for nuclear spent fuel

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi; Taniuchi, Hiroaki

    1989-01-01

    Safety analysis of transportation packaging for nuclear spent fuel comprises structural, thermal, containment, shielding and criticality factors, and the safety of a packaging is verified by these analyses. In thermal analysis, the temperature of each part of the packaging is calculated under normal and accident test conditions. As an example of thermal analysis, the temperature distribution of a packaging being subjected to a normal test was calculated by the TRUMP code and compared with measured data. (author)

  15. Observing golden-mean universality class in the scaling of thermal transport

    Science.gov (United States)

    Xiong, Daxing

    2018-02-01

    We address the issue of whether the golden-mean [ψ =(√{5 }+1 ) /2 ≃1.618 ] universality class, as predicted by several theoretical models, can be observed in the dynamical scaling of thermal transport. Remarkably, we show strong evidence that ψ appears to be the scaling exponent of heat mode correlation in a purely quartic anharmonic chain. This observation seems to somewhat deviate from the previous expectation and we explain it by the unusual slow decay of the cross correlation between heat and sound modes. Whenever the cubic anharmonicity is included, this cross correlation gradually dies out and another universality class with scaling exponent γ =5 /3 , as commonly predicted by theories, seems recovered. However, this recovery is accompanied by two interesting phase transition processes characterized by a change of symmetry of the potential and a clear variation of the dynamic structure factor, respectively. Due to these transitions, an additional exponent close to γ ≃1.580 emerges. All this evidence suggests that, to gain a full prediction of the scaling of thermal transport, more ingredients should be taken into account.

  16. Whole Core Thermal-Hydraulic Design of a Sodium Cooled Fast Reactor Considering the Gamma Energy Transport

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Back, Min Ho; Park, Won Seok; Kim, Sang Ji

    2012-01-01

    Since a fuel cladding failure is the most important parameter in a core thermal-hydraulic design, the conceptual design stage only involves fuel assemblies. However, although non-fuel assemblies such as control rod, reflector, and B4C generate a relatively smaller thermal power compared to fuel assemblies, they also require independent flow allocation to properly cool down each assembly. The thermal power in non-fuel assemblies is produced from both neutron and gamma energy, and thus the core thermal-hydraulic design including non-fuel assemblies should consider an energy redistribution by the gamma energy transport. To design non-fuel assemblies, the design-limiting parameters should be determined considering the thermal failure modes. While fuel assemblies set a limiting factor with cladding creep temperature to prevent a fission product ejection from the fuel rods, non-fuel assemblies restrict their outlet temperature to minimize thermally induced stress on the upper internal structure (UIS). This work employs a heat generation distribution reflecting both neutron and gamma transport. The whole core thermal-hydraulic design including fuel and non-fuel assemblies is then conducted using the SLTHEN (Steady-State LMR Thermal-Hydraulic Analysis Code Based on ENERGY Model) code. The other procedures follow from the previous conceptual design

  17. Thermal transport in layered structure of YBa2Cu3O7-δ superconductors

    Science.gov (United States)

    Sharma, Rakhi; Indu, B. D.

    2017-12-01

    The heat transfer study in YBa2Cu3O7-δ superconductors structures is focused on the influence of the effect of scattering events in cross-plane and in-plane references. Understanding the mechanism of controlling the thermal conductivity of layered superconductors is an area of interest for nano microelectronics and thermo-electronic technological applications. The model of the thermal conduction, and phonon transport perpendicular and parallel to the layers of YBa2Cu3O7-δ are developed. It has been justified via numerical estimation and found substantial diminution in thermal conductivities in both in-plane and cross-plane directions of layered cuprate superconductors.

  18. The thermal impact of aquifer thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling

    Science.gov (United States)

    Visser, Philip W.; Kooi, Henk; Stuyfzand, Pieter J.

    2015-05-01

    Results are presented of a comprehensive thermal impact study on an aquifer thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the thermal impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the thermal plumes. The fine-scale heterogeneity model resulted in larger thermally impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the thermal impact.

  19. Equilibrium Limit of Boundary Scattering in Carbon Nanostructures: Molecular Dynamics Calculations of Thermal Transport

    Science.gov (United States)

    Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir

    2012-01-01

    It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.

  20. Thermal transport measurements of uv laser irradiated spherical targets

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; Delettrez, J.; Henke, B.L.; Richardson, M.C.

    1985-01-01

    New measurements are presented of thermal transport in spherical geometry using time-resolved x-ray spectroscopy. We determine the time dependence of the mass ablation rate m(dot) by following the progress of the ablation surface through thin layers of material embedded at various depths below the surface of the target. These measurements made with 6 and 12 uv (351 nm) beams from OMEGA are compared to previous thermal transport data and are in qualitative agreement with detailed LILAC hydrodynamic code simulations which predict a sharp decrease in m(dot) after the peak of the laser pulse. Non-uniform laser irradiation of the target results in the anomalously high values of m(dot) measured in these experiments

  1. GOLLUM: a next-generation simulation tool for electron, thermal and spin transport

    International Nuclear Information System (INIS)

    Ferrer, J; García-Suárez, V M; Rodríguez-Ferradás, R; Lambert, C J; Manrique, D Zs; Visontai, D; Grace, I; Bailey, S W D; Gillemot, K; Sadeghi, Hatef; Algharagholy, L A; Oroszlany, L

    2014-01-01

    We have developed an efficient simulation tool ‘GOLLUM’ for the computation of electrical, spin and thermal transport characteristics of complex nanostructures. The new multi-scale, multi-terminal tool addresses a number of new challenges and functionalities that have emerged in nanoscale-scale transport over the past few years. To illustrate the flexibility and functionality of GOLLUM, we present a range of demonstrator calculations encompassing charge, spin and thermal transport, corrections to density functional theory such as local density approximation +U (LDA+U) and spectral adjustments, transport in the presence of non-collinear magnetism, the quantum Hall effect, Kondo and Coulomb blockade effects, finite-voltage transport, multi-terminal transport, quantum pumps, superconducting nanostructures, environmental effects, and pulling curves and conductance histograms for mechanically-controlled break-junction experiments. (paper)

  2. A new thermal conductivity model for nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Junemoo; Kleinstreuer, Clement [Department of Mechanical and Aerospace Engineering (United States)], E-mail: ck@eos.ncsu.edu

    2004-12-15

    In a quiescent suspension, nanoparticles move randomly and thereby carry relatively large volumes of surrounding liquid with them. This micro-scale interaction may occur between hot and cold regions, resulting in a lower local temperature gradient for a given heat flux compared with the pure liquid case. Thus, as a result of Brownian motion, the effective thermal conductivity, k{sub eff}, which is composed of the particles' conventional static part and the Brownian motion part, increases to result in a lower temperature gradient for a given heat flux. To capture these transport phenomena, a new thermal conductivity model for nanofluids has been developed, which takes the effects of particle size, particle volume fraction and temperature dependence as well as properties of base liquid and particle phase into consideration by considering surrounding liquid traveling with randomly moving nanoparticles.The strong dependence of the effective thermal conductivity on temperature and material properties of both particle and carrier fluid was attributed to the long impact range of the interparticle potential, which influences the particle motion. In the new model, the impact of Brownian motion is more effective at higher temperatures, as also observed experimentally. Specifically, the new model was tested with simple thermal conduction cases, and demonstrated that for a given heat flux, the temperature gradient changes significantly due to a variable thermal conductivity which mainly depends on particle volume fraction, particle size, particle material and temperature. To improve the accuracy and versatility of the k{sub eff}model, more experimental data sets are needed.

  3. Performance evaluation of Maxwell and Cercignani-Lampis gas-wall interaction models in the modeling of thermally driven rarefied gas transport

    KAUST Repository

    Liang, Tengfei

    2013-07-16

    A systematic study on the performance of two empirical gas-wall interaction models, the Maxwell model and the Cercignani-Lampis (CL) model, in the entire Knudsen range is conducted. The models are evaluated by examining the accuracy of key macroscopic quantities such as temperature, density, and pressure, in three benchmark thermal problems, namely the Fourier thermal problem, the Knudsen force problem, and the thermal transpiration problem. The reference solutions are obtained from a validated hybrid DSMC-MD algorithm developed in-house. It has been found that while both models predict temperature and density reasonably well in the Fourier thermal problem, the pressure profile obtained from Maxwell model exhibits a trend that opposes that from the reference solution. As a consequence, the Maxwell model is unable to predict the orientation change of the Knudsen force acting on a cold cylinder embedded in a hot cylindrical enclosure at a certain Knudsen number. In the simulation of the thermal transpiration coefficient, although all three models overestimate the coefficient, the coefficient obtained from CL model is the closest to the reference solution. The Maxwell model performs the worst. The cause of the overestimated coefficient is investigated and its link to the overly constrained correlation between the tangential momentum accommodation coefficient and the tangential energy accommodation coefficient inherent in the models is pointed out. Directions for further improvement of models are suggested.

  4. Self-Organized Criticality Theory Model of Thermal Sandpile

    International Nuclear Information System (INIS)

    Peng Xiao-Dong; Qu Hong-Peng; Xu Jian-Qiang; Han Zui-Jiao

    2015-01-01

    A self-organized criticality model of a thermal sandpile is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast time scale and diffusive transports on the slow time scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are considered simultaneously. Properties of intermittent transport and improved confinement are analyzed in detail. The results imply that the intermittent phenomenon such as blobs in the low confinement mode as well as edge localized modes in the high confinement mode observed in tokamak experiments are not only determined by the edge plasma physics, but also affected by the core plasma dynamics. (paper)

  5. Metal/dielectric thermal interfacial transport considering cross-interface electron-phonon coupling: Theory, two-temperature molecular dynamics, and thermal circuit

    Science.gov (United States)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2016-02-01

    The standard two-temperature equations for electron-phonon coupled thermal transport across metal/nonmetal interfaces are modified to include the possible coupling between metal electrons with substrate phonons. The previous two-temperature molecular dynamics (TT-MD) approach is then extended to solve these equations numerically at the atomic scale, and the method is demonstrated using Cu/Si interface as an example. A key parameter in TT-MD is the nonlocal coupling distance of metal electrons and nonmetal phonons, and here we use two different approximations. The first is based on Overhauser's "joint-modes" concept, while we use an interfacial reconstruction region as the length scale of joint region rather than the phonon mean-free path as in Overhauser's original model. In this region, the metal electrons can couple to the joint phonon modes. The second approximation is the "phonon wavelength" concept where electrons couple to phonons nonlocally within the range of one phonon wavelength. Compared with the original TT-MD, including the cross-interface electron-phonon coupling can slightly reduce the total thermal boundary resistance. Whether the electron-phonon coupling within the metal block is nonlocal or not does not make an obvious difference in the heat transfer process. Based on the temperature profiles from TT-MD, we construct a new mixed series-parallel thermal circuit. We show that such a thermal circuit is essential for understanding metal/nonmetal interfacial transport, while calculating a single resistance without solving temperature profiles as done in most previous studies is generally incomplete. As a comparison, the simple series circuit that neglects the cross-interface electron-phonon coupling could overestimate the interfacial resistance, while the simple parallel circuit in the original Overhauser's model underestimates the total interfacial resistance.

  6. Charge transport model in nanodielectric composites based on quantum tunneling mechanism and dual-level traps

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guochang; Chen, George, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); School of Electronic and Computer Science, University of Southampton, Southampton SO17 1BJ (United Kingdom); Li, Shengtao, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-08-08

    Charge transport properties in nanodielectrics present different tendencies for different loading concentrations. The exact mechanisms that are responsible for charge transport in nanodielectrics are not detailed, especially for high loading concentration. A charge transport model in nanodielectrics has been proposed based on quantum tunneling mechanism and dual-level traps. In the model, the thermally assisted hopping (TAH) process for the shallow traps and the tunnelling process for the deep traps are considered. For different loading concentrations, the dominant charge transport mechanisms are different. The quantum tunneling mechanism plays a major role in determining the charge conduction in nanodielectrics with high loading concentrations. While for low loading concentrations, the thermal hopping mechanism will dominate the charge conduction process. The model can explain the observed conductivity property in nanodielectrics with different loading concentrations.

  7. Thermal transport in phosphorene and phosphorene-based materials: A review on numerical studies

    Science.gov (United States)

    Hong, Yang; Zhang, Jingchao; Zeng, Xiao Cheng

    2018-03-01

    The recently discovered two-dimensional (2D) layered material phosphorene has attracted considerable interest as a promising p-type semiconducting material. In this article, we review the recent advances in numerical studies of the thermal properties of monolayer phosphorene and phosphorene-based heterostructures. We first briefly review the commonly used first-principles and molecular dynamics (MD) approaches to evaluate the thermal conductivity and interfacial thermal resistance of 2D phosphorene. Principles of different steady-state and transient MD techniques have been elaborated on in detail. Next, we discuss the anisotropic thermal transport of phosphorene in zigzag and armchair chiral directions. Subsequently, the in-plane and cross-plane thermal transport in phosphorene-based heterostructures such as phosphorene/silicon and phosphorene/graphene is summarized. Finally, the numerical research in the field of thermal transport in 2D phosphorene is highlighted along with our perspective of potentials and opportunities of 2D phosphorenes in electronic applications such as photodetectors, field-effect transistors, lithium ion batteries, sodium ion batteries, and thermoelectric devices.

  8. Modeling Thermal Transport and Surface Deformation on Europa using Realistic Rheologies

    Science.gov (United States)

    Linneman, D.; Lavier, L.; Becker, T. W.; Soderlund, K. M.

    2017-12-01

    Most existing studies of Europa's icy shell model the ice as a Maxwell visco-elastic solid or viscous fluid. However, these approaches do not allow for modeling of localized deformation of the brittle part of the ice shell, which is important for understanding the satellite's evolution and unique geology. Here, we model the shell as a visco-elasto-plastic material, with a brittle Mohr-Coulomb elasto-plastic layer on top of a convective Maxwell viscoelastic layer, to investigate how thermal transport processes relate to the observed deformation and topography on Europa's surface. We use Fast Lagrangian Analysis of Continua (FLAC) code, which employs an explicit time-stepping algorithm to simulate deformation processes in Europa's icy shell. Heat transfer drives surface deformation within the icy shell through convection and tidal dissipation due to its elliptical orbit around Jupiter. We first analyze the visco-elastic behavior of a convecting ice layer and the parameters that govern this behavior. The regime of deformation depends on the magnitude of the stress (diffusion creep at low stresses, grain-size-sensitive creep at intermediate stresses, dislocation creep at high stresses), so we calculate effective viscosity each time step using the constitutive stress-strain equation and a combined flow law that accounts for all types of deformation. Tidal dissipation rate is calculated as a function of the temperature-dependent Maxwell relaxation time and the square of the second invariant of the strain rate averaged over each orbital period. After we initiate convection in the viscoelastic layer by instituting an initial temperature perturbation, we then add an elastoplastic layer on top of the convecting layer and analyze how the brittle ice reacts to stresses from below and any resulting topography. We also take into account shear heating along fractures in the brittle layer. We vary factors such as total shell thickness and minimum viscosity, as these parameters are

  9. Directions in Radiation Transport Modelling

    Directory of Open Access Journals (Sweden)

    P Nicholas Smith

    2016-12-01

    More exciting advances are on the horizon to increase the power of simulation tools. The advent of high performance computers is allowing bigger, higher fidelity models to be created, if the challenges of parallelization and memory management can be met. 3D whole core transport modelling is becoming possible. Uncertainty quantification is improving with large benefits to be gained from more accurate, less pessimistic estimates of uncertainty. Advanced graphical displays allow the user to assimilate and make sense of the vast amounts of data produced by modern modelling tools. Numerical solvers are being developed that use goal-based adaptivity to adjust the nodalisation of the system to provide the optimum scheme to achieve the user requested accuracy on the results, thus removing the need to perform costly convergence studies in space and angle etc. More use is being made of multi-physics methods in which radiation transport is coupled with other phenomena, such as thermal-hydraulics, structural response, fuel performance and/or chemistry in order to better understand their interplay in reactor cores.

  10. Thermal transport through a spin-phonon interacting junction: A nonequilibrium Green's function method study

    Science.gov (United States)

    Zhang, Zu-Quan; Lü, Jing-Tao

    2017-09-01

    Using the nonequilibrium Green's function method, we consider heat transport in an insulating ferromagnetic spin chain model with spin-phonon interaction under an external magnetic field. Employing the Holstein-Primakoff transformation to the spin system, we treat the resulted magnon-phonon interaction within the self-consistent Born approximation. We find the magnon-phonon coupling can change qualitatively the magnon thermal conductance in the high-temperature regime. At a spectral mismatched ferromagnetic-normal insulator interface, we also find thermal rectification and negative differential thermal conductance due to the magnon-phonon interaction. We show that these effects can be effectively tuned by the external applied magnetic field, a convenient advantage absent in anharmonic phonon and electron-phonon systems studied before.

  11. Thermal-hydraulic software development for nuclear waste transportation cask design and analysis

    International Nuclear Information System (INIS)

    Brown, N.N.; Burns, S.P.; Gianoulakis, S.E.; Klein, D.E.

    1991-01-01

    This paper describes the development of a state-of-the-art thermal-hydraulic software package intended for spent fuel and high-level nuclear waste transportation cask design and analysis. The objectives of this software development effort are threefold: (1) to take advantage of advancements in computer hardware and software to provide a more efficient user interface, (2) to provide a tool for reducing inefficient conservatism in spent fuel and high-level waste shipping cask design by including convection as well as conduction and radiation heat transfer modeling capabilities, and (3) to provide a thermal-hydraulic analysis package which is developed under a rigorous quality assurance program established at Sandia National Laboratories. 20 refs., 5 figs., 2 tabs

  12. Removal, transportation and disposal of the Millstone 2 neutron thermal shield

    International Nuclear Information System (INIS)

    Snedeker, D.F.; Thomas, L.S.; Schmoker, D.S.; Cade, M.S.

    1985-01-01

    Some PWR reactors equipped with neutron thermal shields (NTS) have experienced severe neutron shield degradation to the extent that removal and disposal of these shields has become necessary. Due to the relative size and activation levels of the thermal shield, disposal techniques, remote material handling and transportation equipment must be carefully evaluated to minimize plant down time and maintain disposal costs at a minimum. This paper describes the techniques, equipment and methodology employed in the removal, transportation and disposal of the NTS at the Millstone 2 Nuclear Generating Station, a PWR facility owned and operated by Northeast Utilities of Hartford, CT. Specific areas addressed include: (1) remote underwater equipment and tooling for use in segmenting and loading the thermal shield in a disposal liner; (2) adaptation of the General Electric IF-300 Irradiated Fuel Cask for transportation of the NTS for disposal; (3) equipment and techniques used for cask handling and liner burial at the Low Level Radioactive Waste (LLRW) disposal facility

  13. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    International Nuclear Information System (INIS)

    Xie, Zhong-Xiang; Zhang, Yong; Zhang, Li-Fu; Fan, Dian-Yuan

    2017-01-01

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  14. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhong-Xiang [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Yong [Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Li-Fu, E-mail: zhanglifu68@hotmail.com [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Fan, Dian-Yuan [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China)

    2017-05-03

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  15. A statistical approach for predicting thermal diffusivity profiles in fusion plasmas as a transport model

    International Nuclear Information System (INIS)

    Yokoyama, Masayuki

    2014-01-01

    A statistical approach is proposed to predict thermal diffusivity profiles as a transport “model” in fusion plasmas. It can provide regression expressions for the ion and electron heat diffusivities (χ i and χ e ), separately, to construct their radial profiles. An approach that this letter is proposing outstrips the conventional scaling laws for the global confinement time (τ E ) since it also deals with profiles (temperature, density, heating depositions etc.). This approach has become possible with the analysis database accumulated by the extensive application of the integrated transport analysis suite to experiment data. In this letter, TASK3D-a analysis database for high-ion-temperature (high-T i ) plasmas in the LHD (Large Helical Device) is used as an example to describe an approach. (author)

  16. Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Wang, Zhiqiang

    2014-01-01

    Highlights: • Using local thermal non-equilibrium model to solve heat transfer of porous media. • CH 4 /H 2 O mixture is adopted as feeding gas of porous media receiver. • Radiative transfer equation between porous strut is solved by Rosseland approximation. • Transport and thermophysical models not included in Fluent are programmed by UDFs. • Variations of model on thermal performance of porous media receiver are studied. - Abstract: The local thermal non-equilibrium model is adopted to solve the steady state heat and mass transfer problems of porous media solar receiver. The fluid entrance surface is subjected to concentrated solar radiation, and CH 4 /H 2 O mixture is adopted as feeding gas. The radiative heat transfer equation between porous strut is solved by Rosseland approximation. The impacts of variation in transport and thermophysical characteristics model of gas mixture on thermal performance of porous media receiver are investigated. The transport and thermophysical characteristics models which are not included in software Fluent are programmed by user defined functions (UDFs). The numerical results indicate that models of momentum source term for porous media receiver have significant impact on pressure drop and static pressure distribution, and the radiative heat transfer cannot be omitted during the thermal performance analysis of porous media receiver

  17. Modelling freight transport

    NARCIS (Netherlands)

    Tavasszy, L.A.; Jong, G. de

    2014-01-01

    Freight Transport Modelling is a unique new reference book that provides insight into the state-of-the-art of freight modelling. Focusing on models used to support public transport policy analysis, Freight Transport Modelling systematically introduces the latest freight transport modelling

  18. Contributions of different degrees of freedom to thermal transport in the C60 molecular crystal

    Science.gov (United States)

    Kumar, Sushant; Shao, Cheng; Lu, Simon; McGaughey, Alan J. H.

    2018-03-01

    Three models of the C60 molecular crystal are studied using molecular dynamics simulations to resolve the roles played by intermolecular and intramolecular degrees of freedom (DOF) in its structural, mechanical, and thermal properties at temperatures between 35 and 400 K. In the full DOF model, all DOF are active. In the rigid body model, the intramolecular DOF are frozen, such that only center of mass (COM) translations and molecular rotations/librations are active. In the point mass model, the molecule is replaced by a point mass, such that only COM translations are active. The zero-pressure lattice constants and bulk moduli predicted from the three models fall within ranges of 0.15 and 20%. The thermal conductivity of the point mass model is the largest across the temperature range, showing a crystal-like temperature dependence (i.e., it decreases with increasing temperature) due to the presence of phonon modes associated with the COM translations. The rigid body model thermal conductivity is the smallest and follows two distinct regimes. It is crystal-like at low temperatures and becomes temperature invariant at high temperatures. The latter is typical of the behavior of an amorphous material. By calculating the rotational diffusion coefficient, the transition between the two regimes is found to occur at the temperature where the molecules begin to rotate freely. Above this temperature, phonons related to COM translations are scattered by the rotational DOF. The full DOF model thermal conductivity is larger than that of the rigid body model, indicating that intramolecular DOF contribute to thermal transport.

  19. Methodology for a thermal analysis of a proposed SFR transport cask with the thermal code SYRTHES

    International Nuclear Information System (INIS)

    Peniguel, C.; Rupp, I.; Schneider, J. P.

    2010-01-01

    Fast reactors with liquid metal coolant have received a renewed interest owing to the need of a more efficient usage of the primary uranium resources, and they are one of the proposal for the next Generation IV. In the framework of the 2006 French law on sustainable management of radioactive materials and waste, an evaluation of the industrial perspectives of minor actinides transmutation advantages and drawbacks in Generation IV fast spectrum reactors system is requested for 2012. The CEA is in charge of studying the global problem, but on some aspects, EDF is interested to do its own exploratory studies. Among other points, transport is seen as important for the nuclear industry, to link points of production and treatment. Nuclear fuel is generally transported in thick walled rail or truck casks. These packages are designed to provide confinement, shielding and criticality protection during normal and severe transport conditions. Heat generated within the fuel (and a contribution of solar heating) makes the package becoming quite hot, but one must demonstrate that the cladding temperature does not exceed a long term temperature limit during normal transport. This paper presents a thermal study done on a package in which 9 SFR assemblies are included. Each of them is of hexagonal shape and contains 271 fuel pins. The approach followed for these calculations is to rely on an explicit representation of all pins. For these calculations a 2D analysis is performed thanks to the thermal code SYRTHES. Conduction is solved thanks to a finite element method, while thermal radiation is handled through a radiosity approach. The main aim of this paper is to present a possible numerical methodology to handle the thermal problem. (authors)

  20. Thermal transport in low dimensions from statistical physics to nanoscale heat transfer

    CERN Document Server

    2016-01-01

    Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources. The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibrium and nonequilibrium molecular dynamics simulations, hydrodynamic and kinetic approaches and the solution of stochastic models. The second part (Chapters 7-10) deals with applications to nano and microscale heat transfer, as for instance phononic transport in carbon-based nanomaterials, including the prominent case of na...

  1. Energy Storage Thermal Safety | Transportation Research | NREL

    Science.gov (United States)

    reaction/thermal runaway, internal short circuit, and electrical/chemical/thermal network models are used contributions to the U.S. Department of Energy's Computer-Aided Engineering of Batteries (CAEBAT) project Li-ion battery geometries. Chemical components in Li-ion batteries become thermally unstable when

  2. Empirical particle transport model for tokamaks

    International Nuclear Information System (INIS)

    Petravic, M.; Kuo-Petravic, G.

    1986-08-01

    A simple empirical particle transport model has been constructed with the purpose of gaining insight into the L- to H-mode transition in tokamaks. The aim was to construct the simplest possible model which would reproduce the measured density profiles in the L-regime, and also produce a qualitatively correct transition to the H-regime without having to assume a completely different transport mode for the bulk of the plasma. Rather than using completely ad hoc constructions for the particle diffusion coefficient, we assume D = 1/5 chi/sub total/, where chi/sub total/ ≅ chi/sub e/ is the thermal diffusivity, and then use the κ/sub e/ = n/sub e/chi/sub e/ values derived from experiments. The observed temperature profiles are then automatically reproduced, but nontrivially, the correct density profiles are also obtained, for realistic fueling rates and profiles. Our conclusion is that it is sufficient to reduce the transport coefficients within a few centimeters of the surface to produce the H-mode behavior. An additional simple assumption, concerning the particle mean-free path, leads to a convective transport term which reverses sign a few centimeters inside the surface, as required by the H-mode density profiles

  3. Test of 1-D transport models, and their predictions for ITER

    International Nuclear Information System (INIS)

    Mikkelsen, D.; Bateman, G.; Boucher, D.

    2001-01-01

    A number of proposed tokamak thermal transport models are tested by comparing their predictions with measurements from several tokamaks. The necessary data have been provided for a total of 75 discharges from C-mod, DIII-D, JET, JT-60U, T10, and TFTR. A standard prediction methodology has been developed, and three codes have been benchmarked; these 'standard' codes have been relied on for testing most of the transport models. While a wide range of physical transport processes has been tested, no single model has emerged as clearly superior to all competitors for simulating H-mode discharges. In order to winnow the field, further tests of the effect of sheared flows and of the 'stiffness' of transport are planned. Several of the models have been used to predict ITER performance, with widely varying results. With some transport models ITER's predicted fusion power depends strongly on the 'pedestal' temperature, but ∼ 1GW (Q=10) is predicted for most models if the pedestal temperature is at least 4 keV. (author)

  4. Tests of 1-D transport models, and their predictions for ITER

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; Bateman, G.; Boucher, D.

    1999-01-01

    A number of proposed tokamak thermal transport models are tested by comparing their predictions with measurements from several tokamaks. The necessary data have been provided for a total of 75 discharges from C-mod, DIII-D, JET, JT-60U, T10, and TFTR. A standard prediction methodology has been developed, and three codes have been benchmarked; these 'standard' codes have been relied on for testing most of the transport models. While a wide range of physical transport processes has been tested, no single model has emerged as clearly superior to all competitors for simulating H-mode discharges. In order to winnow the field, further tests of the effect of sheared flows and of the 'stiffness' of transport are planned. Several of the models have been used to predict ITER performance, with widely varying results. With some transport models ITER's predicted fusion power depends strongly on the 'pedestal' temperature, but ∼ 1GW (Q=10) is predicted for most models if the pedestal temperature is at least 4 keV. (author)

  5. Dynamic modeling of interfacial structures via interfacial area transport equation

    International Nuclear Information System (INIS)

    Seungjin, Kim; Mamoru, Ishii

    2004-01-01

    Full text of publication follows:In the current thermal-hydraulic system analysis codes using the two-fluid model, the empirical correlations that are based on the two-phase flow regimes and regime transition criteria are being employed as closure relations for the interfacial transfer terms. Due to its inherent shortcomings, however, such static correlations are inaccurate and present serious problems in the numerical analysis. In view of this, a new dynamic approach employing the interfacial area transport equation has been studied. The interfacial area transport equation dynamically models the two-phase flow regime transitions and predicts continuous change of the interfacial area concentration along the flow field. Hence, when employed in the thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Therefore, the interfacial area transport equation can make a leapfrog improvement in the current capability of the two-fluid model from both scientific and practical point of view. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, the two-group interfacial area transport equations have been developed. The group 1 equation describes the transport of small-dispersed bubbles that are either distorted or spherical in shapes, and the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. The source and sink terms in the right hand-side of the transport equations have been established by mechanistically modeling the creation and destruction of bubbles due to major bubble interaction mechanisms. The coalescence mechanisms include the random collision driven by turbulence, and the entrainment of trailing bubbles in the wake region of the preceding bubble. The disintegration mechanisms include the break-up by turbulence impact, shearing-off at the rim of large cap bubbles and the break-up of large cap

  6. Numerical simulation of cryogenic cavitating flow by an extended transport-based cavitation model with thermal effects

    Science.gov (United States)

    Zhang, Shaofeng; Li, Xiaojun; Zhu, Zuchao

    2018-06-01

    Thermodynamic effects on cryogenic cavitating flow is important to the accuracy of numerical simulations mainly because cryogenic fluids are thermo-sensitive, and the vapour saturation pressure is strongly dependent on the local temperature. The present study analyses the thermal cavitating flows in liquid nitrogen around a 2D hydrofoil. Thermal effects were considered using the RNG k-ε turbulence model with a modified turbulent eddy viscosity and the mass transfer homogenous cavitation model coupled with energy equation. In the cavitation model process, the saturated vapour pressure is modified based on the Clausius-Clapron equation. The convection heat transfer approach is also considered to extend the Zwart-Gerber-Belamri model. The predicted pressure and temperature inside the cavity under cryogenic conditions show that the modified Zwart-Gerber-Belamri model is in agreement with the experimental data of Hord et al. in NASA, especially in the thermal field. The thermal effect significantly affects the cavitation dynamics during phase-change process, which could delay or suppress the occurrence and development of cavitation behaviour. Based on the modified Zwart-Gerber-Belamri model proposed in this paper, better prediction of the cryogenic cavitation is attainable.

  7. The thermal analysis of BR-100: A barge/rail nuclear spent fuel transportation container

    International Nuclear Information System (INIS)

    Copsey, A.B.

    1992-01-01

    B ampersand W Fuel Company is designing a spent-fuel container called BR-100 that can be used for either barge or rail transport. This paper presents the thermal design and analysis. Both normal operation and hypothetical accident thermal transient conditions are evaluated. The BR-100 cask has a concrete layer than contains free water. During a hypothetical accident, the free water vaporizes and flows from the cask, removing a significant amount of thermal transient energy. The BR-100 transportation package meets the thermal requirements of 10CFR71. It additionally offers substantial margins to established material temperature limits

  8. On the Boltzmann Equation of Thermal Transport for Interacting Phonons and Electrons

    Directory of Open Access Journals (Sweden)

    Amelia Carolina Sparavigna

    2016-05-01

    Full Text Available The thermal transport in a solid can be determined by means of the Boltzmann equations regarding its distributions of phonons and electrons, when the solid is subjected to a thermal gradient. After solving the coupled equations, the related thermal conductivities can be obtained. Here we show how to determine the coupled equations for phonons and electrons.

  9. Enhanced Electrochemical and Thermal Transport Properties of Graphene/MoS2 Heterostructures for Energy Storage: Insights from Multiscale Modeling.

    Science.gov (United States)

    Gong, Feng; Ding, Zhiwei; Fang, Yin; Tong, Chuan-Jia; Xia, Dawei; Lv, Yingying; Wang, Bin; Papavassiliou, Dimitrios V; Liao, Jiaxuan; Wu, Mengqiang

    2018-05-02

    Graphene has been combined with molybdenum disulfide (MoS 2 ) to ameliorate the poor cycling stability and rate performance of MoS 2 in lithium ion batteries, yet the underlying mechanisms remain less explored. Here, we develop multiscale modeling to investigate the enhanced electrochemical and thermal transport properties of graphene/MoS 2 heterostructures (GM-Hs) with a complex morphology. The calculated electronic structures demonstrate the greatly improved electrical conductivity of GM-Hs compared to MoS 2 . Increasing the graphene layers in GM-Hs not only improves the electrical conductivity but also stabilizes the intercalated Li atoms in GM-Hs. It is also found that GM-Hs with three graphene layers could achieve and maintain a high thermal conductivity of 85.5 W/(m·K) at a large temperature range (100-500 K), nearly 6 times that of pure MoS 2 [∼15 W/(m·K)], which may accelerate the heat conduction from electrodes to the ambient. Our quantitative findings may shed light on the enhanced battery performances of various graphene/transition-metal chalcogenide composites in energy storage devices.

  10. The Role of Electron Transport and Trapping in MOS Total-Dose Modeling

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Riewe, L.C.; Flament, O.; Paillet, P.; Leray, J.L.

    1999-01-01

    Radiation-induced hole and electron transport and trapping are fundamental to MOS total-dose models. Here we separate the effects of electron-hole annihilation and electron trapping on the neutralization of radiation-induced charge during switched-bias irradiation for hard and soft oxides, via combined thermally stimulated current (TSC) and capacitance-voltage measurements. We also show that present total-dose models cannot account for the thermal stability of deeply trapped electrons near the Si/SiO 2 interface, or the inability of electrons in deep or shallow traps to contribute to TSC at positive bias following (1) room-temperature, (2) high-temperature, or (3) switched-bias irradiation. These results require revisions of modeling parameters and boundary conditions for hole and electron transport in SiO 2 . The nature of deep and shallow electron traps in the near-interfacial SiO 2 is discussed

  11. Performance of a Bounce-Averaged Global Model of Super-Thermal Electron Transport in the Earth's Magnetic Field

    Science.gov (United States)

    McGuire, Tim

    1998-01-01

    In this paper, we report the results of our recent research on the application of a multiprocessor Cray T916 supercomputer in modeling super-thermal electron transport in the earth's magnetic field. In general, this mathematical model requires numerical solution of a system of partial differential equations. The code we use for this model is moderately vectorized. By using Amdahl's Law for vector processors, it can be verified that the code is about 60% vectorized on a Cray computer. Speedup factors on the order of 2.5 were obtained compared to the unvectorized code. In the following sections, we discuss the methodology of improving the code. In addition to our goal of optimizing the code for solution on the Cray computer, we had the goal of scalability in mind. Scalability combines the concepts of portabilty with near-linear speedup. Specifically, a scalable program is one whose performance is portable across many different architectures with differing numbers of processors for many different problem sizes. Though we have access to a Cray at this time, the goal was to also have code which would run well on a variety of architectures.

  12. Phason thermal transport of three-helix state in insulating chiral magnets

    Science.gov (United States)

    Tatara, Gen

    2018-06-01

    Thermal dynamics of the three-helix state in a chiral magnet is studied based on a phason representation. Although phason representation is convenient for intuitive description, it is not straightforwardly compatible with microscopic linear response calculation of transport phenomena, because it is a (semi)macroscopic picture obtained by a coarse graining. By separating the slow phason mode and fast magnon mode, we show that phason thermal dynamics is driven by thermal magnon flow via the spin-transfer effect. The magnon and phason velocities are calculated by use of thermal vector potential formalism.

  13. Influence of thermal buoyancy on vertical tube bundle thermal density head predictions under transient conditions

    International Nuclear Information System (INIS)

    Lin, H.C.; Kasza, K.E.

    1984-01-01

    The thermal-hydraulic behavior of an LMFBR system under various types of plant transients is usually studied using one-dimensional (1-D) flow and energy transport models of the system components. Many of the transient events involve the change from a high to a low flow with an accompanying change in temperature of the fluid passing through the components which can be conductive to significant thermal bouyancy forces. Thermal bouyancy can exert its influence on system dynamic energy transport predictions through alterations of flow and thermal distributions which in turn can influence decay heat removal, system-response time constants, heat transport between primary and secondary systems, and thermal energy rejection at the reactor heat sink, i.e., the steam generator. In this paper the results from a comparison of a 1-D model prediction and experimental data for vertical tube bundle overall thermal density head and outlet temperature under transient conditions causing varying degrees of thermal bouyancy are presented. These comparisons are being used to generate insight into how, when, and to what degree thermal buoyancy can cause departures from 1-D model predictions

  14. Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures

    Science.gov (United States)

    Savin, Alexander V.; Kosevich, Yuriy A.; Cantarero, Andres

    2012-08-01

    We present a detailed description of semiquantum molecular dynamics simulation of stochastic dynamics of a system of interacting particles. Within this approach, the dynamics of the system is described with the use of classical Newtonian equations of motion in which the effects of phonon quantum statistics are introduced through random Langevin-like forces with a specific power spectral density (the color noise). The color noise describes the interaction of the molecular system with the thermostat. We apply this technique to the simulation of thermal properties and heat transport in different low-dimensional nanostructures. We describe the determination of temperature in quantum lattice systems, to which the equipartition limit is not applied. We show that one can determine the temperature of such a system from the measured power spectrum and temperature- and relaxation-rate-independent density of vibrational (phonon) states. We simulate the specific heat and heat transport in carbon nanotubes, as well as the heat transport in molecular nanoribbons with perfect (atomically smooth) and rough (porous) edges, and in nanoribbons with strongly anharmonic periodic interatomic potentials. We show that the effects of quantum statistics of phonons are essential for the carbon nanotube in the whole temperature range T<500K, in which the values of the specific heat and thermal conductivity of the nanotube are considerably less than that obtained within the description based on classical statistics of phonons. This conclusion is also applicable to other carbon-based materials and systems with high Debye temperature like graphene, graphene nanoribbons, fullerene, diamond, diamond nanowires, etc. We show that the existence of rough edges and quantum statistics of phonons change drastically the low-temperature thermal conductivity of the nanoribbon in comparison with that of the nanoribbon with perfect edges and classical phonon dynamics and statistics. The semiquantum molecular

  15. Interfacial and Wall Transport Models for SPACE-CAP Code

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Choo, Yeon Joon; Han, Tae Young; Hwang, Su Hyun; Lee, Byung Chul; Choi, Hoon; Ha, Sang Jun

    2009-01-01

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. And CAP (Containment Analysis Package) code has been also developed for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (gas, continuous liquid, and dispersed drop) for the assessment of containment specific phenomena, and is featured by its multidimensional assessment capabilities. Thermal hydraulics solver was already developed and now under testing of its stability and soundness. As a next step, interfacial and wall transport models was setup. In order to develop the best model and correlation package for the CAP code, various models currently used in major containment analysis codes, which are GOTHIC, CONTAIN2.0, and CONTEMPT-LT, have been reviewed. The origins of the selected models used in these codes have also been examined to find out if the models have not conflict with a proprietary right. In addition, a literature survey of the recent studies has been performed in order to incorporate the better models for the CAP code. The models and correlations of SPACE were also reviewed. CAP models and correlations are composed of interfacial heat/mass, and momentum transport models, and wall heat/mass, and momentum transport models. This paper discusses on those transport models in the CAP code

  16. Interfacial and Wall Transport Models for SPACE-CAP Code

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon Joon; Choo, Yeon Joon; Han, Tae Young; Hwang, Su Hyun; Lee, Byung Chul [FNC Tech., Seoul (Korea, Republic of); Choi, Hoon; Ha, Sang Jun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. And CAP (Containment Analysis Package) code has been also developed for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (gas, continuous liquid, and dispersed drop) for the assessment of containment specific phenomena, and is featured by its multidimensional assessment capabilities. Thermal hydraulics solver was already developed and now under testing of its stability and soundness. As a next step, interfacial and wall transport models was setup. In order to develop the best model and correlation package for the CAP code, various models currently used in major containment analysis codes, which are GOTHIC, CONTAIN2.0, and CONTEMPT-LT, have been reviewed. The origins of the selected models used in these codes have also been examined to find out if the models have not conflict with a proprietary right. In addition, a literature survey of the recent studies has been performed in order to incorporate the better models for the CAP code. The models and correlations of SPACE were also reviewed. CAP models and correlations are composed of interfacial heat/mass, and momentum transport models, and wall heat/mass, and momentum transport models. This paper discusses on those transport models in the CAP code.

  17. Miniature Heat Transport System for Spacecraft Thermal Control

    Science.gov (United States)

    Ochterbeck, Jay M.; Ku, Jentung (Technical Monitor)

    2002-01-01

    Loop heat pipes (LHP) are efficient devices for heat transfer and use the basic principle of a closed evaporation-condensation cycle. The advantage of using a loop heat pipe over other conventional methods is that large quantities of heat can be transported through a small cross-sectional area over a considerable distance with no additional power input to the system. By using LHPs, it seems possible to meet the growing demand for high-power cooling devices. Although they are somewhat similar to conventional heat pipes, LHPs have a whole set of unique properties, such as low pressure drops and flexible lines between condenser and evaporator, that make them rather promising. LHPs are capable of providing a means of transporting heat over long distances with no input power other than the heat being transported because of the specially designed evaporator and the separation of liquid and vapor lines. For LHP design and fabrication, preliminary analysis on the basis of dimensionless criteria is necessary because of certain complicated phenomena that take place in the heat pipe. Modeling the performance of the LHP and miniaturizing its size are tasks and objectives of current research. In the course of h s work, the LHP and its components, including the evaporator (the most critical and complex part of the LHP), were modeled with the corresponding dimensionless groups also being investigated. Next, analysis of heat and mass transfer processes in the LHP, selection of the most weighted criteria from known dimensionless groups (thermal-fluid sciences), heat transfer rate limits, (heat pipe theory), and experimental ratios which are unique to a given heat pipe class are discussed. In the third part of the report, two-phase flow heat and mass transfer performances inside the LHP condenser are analyzed and calculated for Earth-normal gravity and microgravity conditions. On the basis of recent models and experimental databanks, an analysis for condensing two-phase flow regimes

  18. First-principles study of intrinsic phononic thermal transport in monolayer C3N

    Science.gov (United States)

    Gao, Yan; Wang, Haifeng; Sun, Maozhu; Ding, Yingchun; Zhang, Lichun; Li, Qingfang

    2018-05-01

    Very recently, a new graphene-like crystalline, hole-free, 2D-single-layer carbon nitride C3N, has been fabricated by polymerization of 2,3-diaminophenazine and used to fabricate a field-effect transistor device with an on-off current ratio reaching 5. 5 ×1010 (Adv. Mater. 2017, 1605625). Heat dissipation plays a vital role in its practical applications, and therefore the thermal transport properties need to be explored urgently. In this paper, we perform first-principles calculations combined with phonon Boltzmann transport equation to investigate the phononic thermal transport properties of monolayer C3N, and meanwhile, a comparison with graphene is given. Our calculated intrinsic lattice thermal conductivity of C3N is 380 W/mK at room temperature, which is one order of magnitude lower than that of graphene (3550 W/mK at 300 K), but is greatly higher than many other typical 2D materials. The underlying mechanisms governing the thermal transport were thoroughly discussed and compared to graphene, including group velocities, phonon relax time, the contribution from phonon branches, phonon anharmonicity and size effect. The fundamental physics understood from this study may shed light on further studies of the newly fabricated 2D crystalline C3N sheets.

  19. Discrete Diffusion Monte Carlo for Electron Thermal Transport

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Wollaeger, Ryan; Moses, Gregory

    2014-10-01

    The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. is adapted to a Discrete Diffusion Monte Carlo (DDMC) solution method for eventual inclusion in a hybrid IMC-DDMC (Implicit Monte Carlo) method. The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the iSNB-DDMC method will be presented. This work was supported by Sandia National Laboratory - Albuquerque.

  20. Time-resolved x-ray line emission studies of thermal transport in multiple beam uv-irradiated targets

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; Henke, B.L.; Delettrez, J.; Richardson, M.C.

    1984-01-01

    Thermal transport in spherical targets irradiated with multiple, nanosecond duration laser beams, has been a topic of much discussion recently. Different inferences on the level of thermal flux inhibition have been drawn from plasma velocity and x-ray spectroscopic diagnostics. We present new measurements of thermal transport on spherical targets made through time-resolved x-ray spectroscopic measurements of the progress of the ablation surface through thin layers of material on the surface of the target. These measurements, made with 6 and 12 uv (351 nm) nanosecond beams from OMEGA, will be compared to previous thermal transport measurements. Transparencies of the conference presentation are given

  1. A New Regime of Nanoscale Thermal Transport: Collective Diffusion Increases Dissipation Efficiency

    Science.gov (United States)

    2015-04-21

    different regimes of thermal transport. The laser-induced thermal expansion and subsequent cooling of the nanogratings is probed using coherent extreme UV ...technique compared with previously reported MFP spectros - copy techniques. First, our approach that combines nanoheaters with the phase sensitivity of

  2. Theory of thermal and charge transport in diffusive normal metal / superconductor junctions

    NARCIS (Netherlands)

    Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Asano, Y.

    2005-01-01

    Thermal and charge transport in diffusive normal metal (DN)/insulator/s-, d-, and p-wave superconductor junctions are studied based on the Usadel equation with the Nazarov's generalized boundary condition. We derive a general expression of the thermal conductance in unconventional superconducting

  3. Modeling thermal effects in braking systems of railway vehicles

    Directory of Open Access Journals (Sweden)

    Milošević Miloš S.

    2012-01-01

    Full Text Available The modeling of thermal effects has become increasingly important in product design in different transport means, road vehicles, airplanes, railway vehicles, and so forth. The thermal analysis is a very important stage in the study of braking systems, especially of railway vehicles, where it is necessary to brake huge masses, because the thermal load of a braked railway wheel prevails compared to other types of loads. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of railway wheels. Thus induced thermal loads determine thermomechanical behavior of the structure of railway wheels. In cases of thermal overloads, which mainly occur as a result of long-term braking on down-grade railroads, the generation of stresses and deformations occurs, whose consequences are the appearance of cracks on the rim of a wheel and the final total wheel defect. The importance to precisely determine the temperature distribution caused by the transfer process of the heat generated during braking due to the friction on contact surfaces of the braking system makes it a challenging research task. Therefore, the thermal analysis of a block-braked solid railway wheel of a 444 class locomotive of the national railway operator Serbian Railways is processed in detail in this paper, using analytical and numerical modeling of thermal effects during long-term braking for maintaining a constant speed on a down-grade railroad.

  4. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    Science.gov (United States)

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.

    1989-01-01

    Reaction rate coefficients and thermodynamic and transport properties are provided for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in such environments.

  5. Thermal test and analysis for transporting vitrified high-level radioactive wastes

    International Nuclear Information System (INIS)

    Yamakawa, H.; Gomi, Y.; Ozaki, S.; Kato, O.; Tamaki, H.

    1993-01-01

    As a part of the safety demonstration tests for transport casks of high level radioactive vitrified wastes, the thermal tests of the cask (left unattended at an ambient temperature of 38degC for a period of one week) were executed before and after the side free drop test (from height of 30 cm). This condition was set according to the prospect of the damage of contents (baskets, etc.) by the impact force at the drop test. It was shown that the cask temperatures at the representative parts, such as the vitrified wastes, the containment system, and the protection wire net, were lower than allowable values. From the result of measured temperatures it was considered that no damages and no large deformations could happen to the contents in this drop test. Thermal analysis was also done to establish the analysis model. (J.P.N.)

  6. Thermal transport across metal–insulator interface via electron–phonon interaction

    International Nuclear Information System (INIS)

    Zhang, Lifa; Wang, Jian-Sheng; Li, Baowen; Lü, Jing-Tao

    2013-01-01

    The thermal transport across a metal–insulator interface can be characterized by electron–phonon interaction through which an electron lead is coupled to a phonon lead if phonon–phonon coupling at the interface is very weak. We investigate the thermal conductance and rectification between the electron part and the phonon part using the nonequilibrium Green’s function method. It is found that the thermal conductance has a nonmonotonic behavior as a function of average temperature or the coupling strength between the phonon leads in the metal part and the insulator part. The metal–insulator interface shows a clear thermal rectification effect, which can be reversed by a change in average temperature or the electron–phonon coupling. (paper)

  7. A Network Model for the Effective Thermal Conductivity of Rigid Fibrous Refractory Insulations

    Science.gov (United States)

    Marschall, Jochen; Cooper, D. M. (Technical Monitor)

    1995-01-01

    A procedure is described for computing the effective thermal conductivity of a rigid fibrous refractory insulation. The insulation is modeled as a 3-dimensional Cartesian network of thermal conductance. The values and volume distributions of the conductance are assigned to reflect the physical properties of the insulation, its constituent fibers, and any permeating gas. The effective thermal conductivity is computed by considering the simultaneous energy transport by solid conduction, gas conduction and radiation through a cubic volume of model insulation; thus the coupling between heat transfer modes is retained (within the simplifications inherent to the model), rather than suppressed by treating these heat transfer modes as independent. The model takes into account insulation composition, density and fiber anisotropy, as well as the geometric and material properties of the constituent fibers. A relatively good agreement, between calculated and experimentally derived thermal conductivity values, is obtained for a variety of rigid fibrous insulations.

  8. Development and Testing of a Variable Conductance Thermal Acquisition, Transport, and Switching System

    Science.gov (United States)

    Bugby, David C.; Farmer, Jeffery T.; Stouffer, Charles J.

    2013-01-01

    This paper describes the development and testing of a scalable thermal management architecture for instruments, subsystems, or systems that must operate in severe space environments with wide variations in sink temperature. The architecture involves a serial linkage of one or more hot-side variable conductance heat pipes (VCHPs) to one or more cold-side loop heat pipes (LHPs). The VCHPs provide wide area heat acquisition, limited distance thermal transport, modest against gravity pumping, concentrated LHP startup heating, and high switching ratio variable conductance operation. The LHPs provide localized heat acquisition, long distance thermal transport, significant against gravity pumping, and high switching ratio variable conductance operation. The single-VCHP, single-LHP system described herein was developed to maintain thermal control of a small robotic lunar lander throughout the lunar day-night thermal cycle. It is also applicable to other variable heat rejection space missions in severe environments. Operationally, despite a 60-70% gas blocked VCHP condenser during ON testing, the system was still able to provide 2-4 W/K ON conductance, 0.01 W/K OFF conductance, and an end-to-end switching ratio of 200-400. The paper provides a detailed analysis of VCHP condenser performance, which quantified the gas blockage situation. Future multi-VCHP/multi-LHP thermal management system concepts that provide power/transport length scalability are also discussed.

  9. Thermal tests of a transport / Storage cask in buried conditions

    International Nuclear Information System (INIS)

    Yamakawa, H.; Gomi, Y.; Saegusa, T.; Ito, C.

    1998-01-01

    Thermal tests for a hypothetical accident which simulated accidents caused by building collapse in case of an earthquake were conducted using a full-scale dry type transport and storage cask (total heat load: 23 kW). The objectives of these tests were to clarify the heat transfer features of the buried cask under such accidents and the time limit for maintaining the thermal integrity of the cask. Moreover, thermal analyses of the test cask under the buried conditions were carried out on basis of experimental results to establish methodology for the thermal analysis. The characteristics of the test cask are described as well as the test method used. The heat transfer features of the buried cask under such accidents and a time for maintaining the thermal integrity of the cask have been obtained. (O.M.)

  10. Normal conditions of transport thermal analysis and testing of a Type B drum package

    International Nuclear Information System (INIS)

    Jerrell, J.W.; Alstine, M.N. van; Gromada, R.J.

    1995-01-01

    Increasing the content limits of radioactive material packagings can save money and increase transportation safety by decreasing the total number of shipments required to transport large quantities of material. The contents of drum packages can be limited by unacceptable containment vessel pressures and temperatures due to the thermal properties of the insulation. The purpose of this work is to understand and predict the effects of insulation properties on containment system performance. The type B shipping container used in the study is a double containment fiberboard drum package. The package is primarily used to transport uranium and plutonium metals and oxides. A normal condition of transport (NCT) thermal test was performed to benchmark an NCT analysis of the package. A 21 W heater was placed in an instrumented package to simulate the maximum source decay heat. The package reached thermal equilibrium 120 hours after the heater was turned on. Testing took place indoors to minimize ambient temperature fluctuations. The thermal analysis of the package used fiberboard properties reported in the literature and resulted in temperature significantly greater than those measured during the test. Details of the NCT test will be described and transient temperatures at key thermocouple locations within the package will be presented. Analytical results using nominal fiberboard properties will be presented. Explanations of the results and the attempt to benchmark the analysis will be presented. The discovery that fiberboard has an anisotropic thermal conductivity and its effect on thermal performance will also be discussed

  11. Paleoclassical transport explains electron transport barriers in RTP and TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Hogeweij, G M D [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, NL-3430 BE Nieuwegein (Netherlands); Callen, J D [University of Wisconsin, Madison, WI 53706-1609 (United States)

    2008-06-15

    The recently developed paleoclassical transport model sets the minimum level of electron thermal transport in a tokamak. This transport level has proven to be in good agreement with experimental observations in many cases when fluctuation-induced anomalous transport is small, i.e. in (near-)ohmic plasmas in small to medium size tokamaks, inside internal transport barriers (ITBs) or edge transport barriers (H-mode pedestal). In this paper predictions of the paleoclassical transport model are compared in detail with data from such kinds of discharges: ohmic discharges from the RTP tokamak, EC heated RTP discharges featuring both dynamic and shot-to-shot scans of the ECH power deposition radius and off-axis EC heated discharges from the TEXTOR tokamak. For ohmically heated RTP discharges the T{sub e} profiles predicted by the paleoclassical model are in reasonable agreement with the experimental observations, and various parametric dependences are captured satisfactorily. The electron thermal ITBs observed in steady state EC heated RTP discharges and transiently after switch-off of off-axis ECH in TEXTOR are predicted very well by the paleoclassical model.

  12. Development of instrumentation in the transport phenomena research in thermal equipment

    International Nuclear Information System (INIS)

    Carvalho Tofani, P. de; Ladeira, L.C.D.

    1983-11-01

    The results obtained from the effort on the acquisition of know-how in experimental reactor thermal during the last years, through the approach of relevant aspects of basic research on transport phenomena applicable to nuclear reactor analysis and conventional thermal equipment based in the simultaneous development of instrumentation and experimental methods are presented. (E.G.) [pt

  13. PAT-2 (Plutonium Air Transportable Model 2)

    International Nuclear Information System (INIS)

    Anderson, J.

    1981-01-01

    The PAT-2 (Plutonium Air Transportable Model 2) package is designed for the safe transport of plutonium and/or uranium in small quantities, especially as used in international safeguards activities, and especially as transported by air. The PAT-2 package is resistant to severe accidents, including that of a high-speed jet aircraft crash, and is designed to withstand such environments as extreme impact, crushing, puncturing and slashing loads, severe hydrocarbon-fueled fires, and deep underwater immersion, with no escape of contents. The accident environments may be imposed upon the package singly or seqentially. The package meets the requirements of 10 CFR 71 for Fissile Class I packages with a cargo of 15 grams of Pu-239, or other isotopic forms described herein, not to exceed 2 watts of thermal activity. Packaging, operational features, and contents of package, are discussed

  14. Tunnel and thermal c-axis transport in BSCCO in the normal and pseudogap states

    International Nuclear Information System (INIS)

    Giura, M; Fastampa, R; Sarti, S; Pompeo, N; Silva, E

    2007-01-01

    We consider the problem of c-axis transport in double-layered cuprates, in particular with reference to Bi 2 Sr 2 CaCu 2 O 8+δ compounds. We exploit the effect of the two barriers on the thermal and tunnel transport. The resulting model is able to describe accurately the normal state c-axis resistivity in Bi 2 Sr 2 CaCu 2 O 8+δ , from the underdoped side up to the strongly overdoped. We extend the model, without introducing additional parameters, in order to allow for the decrease of the barrier when an external voltage bias is applied. The extended model is found to describe properly the c-axis resistivity for small voltage bias above the pseudogap temperature T * , the c-axis resistivity for large voltage bias even below T c , and the differential dI/dV curves taken in mesa structures

  15. Thermal modelling using discrete vasculature for thermal therapy: a review

    Science.gov (United States)

    Kok, H.P.; Gellermann, J.; van den Berg, C.A.T.; Stauffer, P.R.; Hand, J.W.; Crezee, J.

    2013-01-01

    Reliable temperature information during clinical hyperthermia and thermal ablation is essential for adequate treatment control, but conventional temperature measurements do not provide 3D temperature information. Treatment planning is a very useful tool to improve treatment quality and substantial progress has been made over the last decade. Thermal modelling is a very important and challenging aspect of hyperthermia treatment planning. Various thermal models have been developed for this purpose, with varying complexity. Since blood perfusion is such an important factor in thermal redistribution of energy in in vivo tissue, thermal simulations are most accurately performed by modelling discrete vasculature. This review describes the progress in thermal modelling with discrete vasculature for the purpose of hyperthermia treatment planning and thermal ablation. There has been significant progress in thermal modelling with discrete vasculature. Recent developments have made real-time simulations possible, which can provide feedback during treatment for improved therapy. Future clinical application of thermal modelling with discrete vasculature in hyperthermia treatment planning is expected to further improve treatment quality. PMID:23738700

  16. Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green's function transport simulations

    Science.gov (United States)

    Sadasivam, Sridhar; Ye, Ning; Feser, Joseph P.; Charles, James; Miao, Kai; Kubis, Tillmann; Fisher, Timothy S.

    2017-02-01

    Heat transfer across metal-semiconductor interfaces involves multiple fundamental transport mechanisms such as elastic and inelastic phonon scattering, and electron-phonon coupling within the metal and across the interface. The relative contributions of these different transport mechanisms to the interface conductance remains unclear in the current literature. In this work, we use a combination of first-principles calculations under the density functional theory framework and heat transport simulations using the atomistic Green's function (AGF) method to quantitatively predict the contribution of the different scattering mechanisms to the thermal interface conductance of epitaxial CoSi2-Si interfaces. An important development in the present work is the direct computation of interfacial bonding from density functional perturbation theory (DFPT) and hence the avoidance of commonly used "mixing rules" to obtain the cross-interface force constants from bulk material force constants. Another important algorithmic development is the integration of the recursive Green's function (RGF) method with Büttiker probe scattering that enables computationally efficient simulations of inelastic phonon scattering and its contribution to the thermal interface conductance. First-principles calculations of electron-phonon coupling reveal that cross-interface energy transfer between metal electrons and atomic vibrations in the semiconductor is mediated by delocalized acoustic phonon modes that extend on both sides of the interface, and phonon modes that are localized inside the semiconductor region of the interface exhibit negligible coupling with electrons in the metal. We also provide a direct comparison between simulation predictions and experimental measurements of thermal interface conductance of epitaxial CoSi2-Si interfaces using the time-domain thermoreflectance technique. Importantly, the experimental results, performed across a wide temperature range, only agree well with

  17. VHTR core modeling: coupling between neutronic and thermal-hydraulics

    International Nuclear Information System (INIS)

    Limaiem, I.; Damian, F.; Raepsaet, X.; Studer, E.

    2005-01-01

    Following the present interest in the next generation nuclear power plan (NGNP), Cea is deploying special effort to develop new models and qualify its research tools for this next generation reactors core. In this framework, the Very High Temperature Reactor concept (VHTR) has an increasing place in the actual research program. In such type of core, a strong interaction exists between neutronic and thermal-hydraulics. Consequently, the global core modelling requires accounting for the temperature feedback in the neutronic models. The purpose of this paper is to present the new neutronic and thermal-hydraulics coupling model dedicated to the High Temperature Reactors (HTR). The coupling model integrates a new version of the neutronic scheme calculation developed in collaboration between Cea and Framatome-ANP. The neutronic calculations are performed using a specific calculation processes based on the APOLLO2 transport code and CRONOS2 diffusion code which are part of the French reactor physics code system SAPHYR. The thermal-hydraulics model is characterised by an equivalent porous media and 1-D fluid/3-D thermal model implemented in the CAST3M/ARCTURUS code. The porous media approach involves the definition of both homogenous and heterogeneous models to ensure a correct temperature feedback. This study highlights the sensitivity of the coupling system's parameters (radial/axial meshing and data exchange strategy between neutronic and thermal-hydraulics code). The parameters sensitivity study leads to the definition of an optimal coupling system specification for the VHTR. Besides, this work presents the first physical analysis of the VHTR core in steady-state condition. The analysis gives information about the 3-D power peaking and the temperature coefficient. Indeed, it covers different core configurations with different helium distribution in the core bypass. (authors)

  18. Experimental Study of the Thermal Transport in CsNiF3 - An S=1 Quantum Chain

    Czech Academy of Sciences Publication Activity Database

    Tkáč, V.; Orendáčová, A.; Orendáč, M.; Legut, Dominik; Tibenská, K.; Feher, A.; Poirier, M.; Meisel, M. W.

    2012-01-01

    Roč. 121, 5-6 (2012), s. 1098-1101 ISSN 0587-4246. [European Conference on Physics of Magnetism (PM). Poznaň, 27.06.2011-01.07.2011] Institutional support: RVO:68081723 Keywords : thermal transport * lattice specif heat * phonons * ab initio * Debye model Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.531, year: 2012

  19. Significantly High Thermal Rectification in an Asymmetric Polymer Molecule Driven by Diffusive versus Ballistic Transport.

    Science.gov (United States)

    Ma, Hao; Tian, Zhiting

    2018-01-10

    Tapered bottlebrush polymers have novel nanoscale polymer architecture. Using nonequilibrium molecular dynamics simulations, we showed that these polymers have the unique ability to generate thermal rectification in a single polymer molecule and offer an exceptional platform for unveiling different heat conduction regimes. In sharp contrast to all other reported asymmetric nanostructures, we observed that the heat current from the wide end to the narrow end (the forward direction) in tapered bottlebrush polymers is smaller than that in the opposite direction (the backward direction). We found that a more disordered to less disordered structural transition within tapered bottlebrush polymers is essential for generating nonlinearity in heat conduction for thermal rectification. Moreover, the thermal rectification ratio increased with device length, reaching as high as ∼70% with a device length of 28.5 nm. This large thermal rectification with strong length dependence uncovered an unprecedented phenomenon-diffusive thermal transport in the forward direction and ballistic thermal transport in the backward direction. This is the first observation of radically different transport mechanisms when heat flow direction changes in the same system. The fundamentally new knowledge gained from this study can guide exciting research into nanoscale organic thermal diodes.

  20. Plasma transport simulation modeling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1991-08-01

    New empirical and theoretical transport models for helical confinement systems are developed based on the neoclassical transport theory including the effect of radial electric field and multi-helicity magnetic components, and the drift wave turbulence transport for electrostatic and electromagnetic modes, or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with CHS (Compact Helical System) experimental data, which indicates that the central transport coefficient of the ECH plasma agrees with the neoclassical axi-symmetric value and the transport outside the half radius is anomalous. On the other hand, the transport of NBI-heated plasmas is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these flat-density-profile discharges. For the detailed prediction of plasma parameters in LHD (Large Helical Device), 3-D(dimensional) equilibrium/1-D transport simulations including empirical or drift wave turbulence models are carried out, which suggests that the global confinement time of LHD is determined mainly by the electron anomalous transport near the plasma edge region rather than the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase of the global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to the half level of the present scaling, like so-called 'H-mode' of the tokamak discharge, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius is effective for improving plasma confinement and raising more than 50% of the fusion product by reducing this neoclassical asymmetric ion transport loss and increasing 10% in the plasma radius. (author)

  1. Vertical transport of desert particulates by dust devils and clear thermals

    International Nuclear Information System (INIS)

    Sinclair, P.C.

    1974-01-01

    While the vertical and horizontal transport of natural surface material by dust devils is not in itself a critical environmental problem, the transport and downwind fallout of toxic or hazardous materials from dust devil activity may be a contributing factor in the development of future ecological-biological problems. Direct quantitative measurements of the dust particle size distribution near and within the visible dust devil vortex and analyses of the upper level clear thermal plume have been made to provide estimates of the vertical and horizontal transport of long half-life radioactive substances such as plutonium. Preliminary measurements and calculations of dust concentrations within dust devils indicate that over 7 x 10 3 tons of desert dust and sand may be transported downwind from an area 285 km 2 during an average dust devil season (May to August). Near the ground these dust concentrations contain particles in the size range from approximately 1 μm to 250 μm diameter. Since the vertical velocity distribution greatly exceeds the particle(s) fall velocities, the detrainment of particles within the vortex is controlled primarily by the spatial distribution of the radial (v/sub r/) and tangential (v/sub theta/) velocity fields. Above the visible dust devil vortex, a clear thermal plume may extend upward to 15,000 to 18,000 ft MSL. A new airborne sampling and air data system has been developed to provide direct measurements of the dust concentration and air motion near and within the upper thermal plume. The air sampler has been designed to operate isokinetically over a considerable portion of the low-speed flight regime of a light aircraft. A strapped down, gyro-reference platform and a boom-vane system is used to determine the vertical air motions as well as the temperature and turbulence structure within the thermal plume. (U.S.)

  2. Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance.

    Science.gov (United States)

    Ping, Linquan; Hou, Peng-Xiang; Liu, Chang; Li, Jincheng; Zhao, Yang; Zhang, Feng; Ma, Chaoqun; Tai, Kaiping; Cong, Hongtao; Cheng, Hui-Ming

    2017-06-22

    A vertically aligned carbon nanotube (VACNT) array is a promising candidate for a high-performance thermal interface material in high-power microprocessors due to its excellent thermal transport property. However, its rough and entangled free tips always cause poor interfacial contact, which results in serious contact resistance dominating the total thermal resistance. Here, we employed a thin carbon cover to restrain the disorderly growth of the free tips of a VACNT array. As a result, all the free tips are seamlessly connected by this thin carbon cover and the top surface of the array is smoothed. This unique structure guarantees the participation of all the carbon nanotubes in the array in the heat transport. Consequently the VACNT array grown on a Cu substrate shows a record low thermal resistance of 0.8 mm 2 K W -1 including the two-sided contact resistances, which is 4 times lower than the best result previously reported. Remarkably, the VACNT array can be easily peeled away from the Cu substrate and act as a thermal pad with excellent flexibility, adhesive ability and heat transport capability. As a result the CNT array with a thin carbon cover shows great potential for use as a high-performance flexible thermal interface material.

  3. Generalized heat-transport equations: parabolic and hyperbolic models

    Science.gov (United States)

    Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio

    2018-03-01

    We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.

  4. Paleoclassical transport explains electron transport barriers in RTP and TEXTOR

    NARCIS (Netherlands)

    Hogeweij, G. M. D.; Callen, J.D.

    2008-01-01

    The recently developed paleoclassical transport model sets the minimum level of electron thermal transport in a tokamak. This transport level has proven to be in good agreement with experimental observations in many cases when fluctuation-induced anomalous transport is small, i.e. in (near-) ohmic

  5. Structural and Thermal Safety Analysis Report for the Type B Radioactive Waste Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Seo, K. S.; Lee, J. C.; Bang, K. S

    2007-09-15

    We carried out structural safety evaluation for the type B radioactive waste transport package. Requirements for type B packages according to the related regulations such as IAEA Safety Standard Series No. TS-R-1, Korea Most Act. 2001-23 and US 10 CFR Part 71 were evaluated. General requirements for packages such as those for a lifting attachment, a tie-down attachment and pressure condition were considered. For the type B radioactive waste transport package, the structural, thermal and containment analyses were carried out under the normal transport conditions. Also the safety analysis were conducted under the accidental transport conditions. The 9 m drop test, 1 m puncture test, fire test and water immersion test under the accidental transport conditions were consecutively done. The type B radioactive waste transport packages were maintained the structural and thermal integrities.

  6. Dynamic modeling of interfacial structures via interfacial area transport equation

    International Nuclear Information System (INIS)

    Seungjin, Kim; Mamoru, Ishii

    2005-01-01

    The interfacial area transport equation dynamically models the two-phase flow regime transitions and predicts continuous change of the interfacial area concentration along the flow field. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, the two-group interfacial area transport equations have been developed. The group 1 equation describes the transport of small-dispersed bubbles that are either distorted or spherical in shapes, and the group 2 equation describes the transport of large cap, slug or churn-turbulent bubbles. The source and sink terms in the right-hand-side of the transport equations have been established by mechanistically modeling the creation and destruction of bubbles due to major bubble interaction mechanisms. In the present paper, the interfacial area transport equations currently available are reviewed to address the feasibility and reliability of the model along with extensive experimental results. These include the data from adiabatic upward air-water two-phase flow in round tubes of various sizes, from a rectangular duct, and from adiabatic co-current downward air-water two-phase flow in round pipes of two sizes. (authors)

  7. Characterization and modeling of thermal diffusion and aggregation in nanofluids.

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Goodson, Kenneth E. (Stanford University, Stanford, CA)

    2010-05-01

    Fluids with higher thermal conductivities are sought for fluidic cooling systems in applications including microprocessors and high-power lasers. By adding high thermal conductivity nanoscale metal and metal oxide particles to a fluid the thermal conductivity of the fluid is enhanced. While particle aggregates play a central role in recent models for the thermal conductivity of nanofluids, the effect of particle diffusion in a temperature field on the aggregation and transport has yet to be studied in depth. The present work separates the effects of particle aggregation and diffusion using parallel plate experiments, infrared microscopy, light scattering, Monte Carlo simulations, and rate equations for particle and heat transport in a well dispersed nanofluid. Experimental data show non-uniform temporal increases in thermal conductivity above effective medium theory and can be well described through simulation of the combination of particle aggregation and diffusion. The simulation shows large concentration distributions due to thermal diffusion causing variations in aggregation, thermal conductivity and viscosity. Static light scattering shows aggregates form more quickly at higher concentrations and temperatures, which explains the increased enhancement with temperature reported by other research groups. The permanent aggregates in the nanofluid are found to have a fractal dimension of 2.4 and the aggregate formations that grow over time are found to have a fractal dimension of 1.8, which is consistent with diffusion limited aggregation. Calculations show as aggregates grow the viscosity increases at a faster rate than thermal conductivity making the highly aggregated nanofluids unfavorable, especially at the low fractal dimension of 1.8. An optimum nanoparticle diameter for these particular fluid properties is calculated to be 130 nm to optimize the fluid stability by reducing settling, thermal diffusion and aggregation.

  8. Electro-Thermal Transport in Nanotube Based Composites for Macroelectronic Applications

    OpenAIRE

    Kumar, Satish

    2007-01-01

    Dispersions of particles of different shapes and sizes in fluids or solids modify the transport properties of the underlying matrix. A remarkable enhancement in the electrical, thermal and other transport properties of the matrix due to the long aspect ratio dispersions like nanotube/nanowires has been observed my many research groups. This has motivated tremendous research to explore these composites for various macro-electronic and micro-electronic applications in the last decade. Carbon na...

  9. Asymptotic diffusion limit of cell temperature discretisation schemes for thermal radiation transport

    Energy Technology Data Exchange (ETDEWEB)

    Smedley-Stevenson, Richard P., E-mail: richard.smedley-stevenson@awe.co.uk [AWE PLC, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom); Department of Earth Science and Engineering, Imperial College London, SW7 2AZ (United Kingdom); McClarren, Ryan G., E-mail: rmcclarren@ne.tamu.edu [Department of Nuclear Engineering, Texas A & M University, College Station, TX 77843-3133 (United States)

    2015-04-01

    This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes.

  10. Asymptotic diffusion limit of cell temperature discretisation schemes for thermal radiation transport

    International Nuclear Information System (INIS)

    Smedley-Stevenson, Richard P.; McClarren, Ryan G.

    2015-01-01

    This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes

  11. The Role of Electron Transport and Trapping in MOS Total-Dose Modeling

    International Nuclear Information System (INIS)

    Flament, O.; Fleetwood, D.M.; Leray, J.L.; Paillet, P.; Riewe, L.C.; Winokur, P.S.

    1999-01-01

    Deep and shallow electron traps form in irradiated thermal SiO 2 as a natural response to hole transport and trapping. The density and stability of these defects are discussed, as are their implications for total-dose modeling

  12. Multi-Scale Thermal Heat Tracer Tests for Characterizing Transport Processes and Flow Channelling in Fractured Media: Theory and Field Experiments

    Science.gov (United States)

    de La Bernardie, J.; Klepikova, M.; Bour, O.; Le Borgne, T.; Dentz, M.; Guihéneuf, N.; Gerard, M. F.; Lavenant, N.

    2017-12-01

    The characterization of flow and transport in fractured media is particularly challenging because hydraulic conductivity and transport properties are often strongly dependent on the geometric structure of the fracture surfaces. Here we show how thermal tracer tests may be an excellent complement to conservative solute tracer tests to infer fracture geometry and flow channeling. We performed a series of thermal tracer tests at different scales in a crystalline rock aquifer at the experimental site of Ploemeur (H+ observatory network). The first type of thermal tracer tests are push-pull tracer tests at different scales. The temporal and spatial scaling of heat recovery, measured from thermal breakthrough curves, shows a clear signature of flow channeling. In particular, the late time tailing of heat recovery under channeled flow is shown to diverge from the T(t) α t-1,5 behavior expected for the classical parallel plate model and follow the scaling T(t) α 1/t(logt)2 for a simple channel modeled as a tube. Flow channeling is also manifested on the spatial scaling of heat recovery as flow channeling affects the decay of the thermal breakthrough peak amplitude and the increase of the peak time with scale. The second type of thermal tracer tests are flow-through tracer tests where a pulse of hot water was injected in a fracture isolated by a double straddle packer while pumping at the same flow rate in another fracture at a distance of about 10 meters to create a dipole flow field. Comparison with a solute tracer test performed under the same conditions also present a clear signature of flow channeling. We derive analytical expressions for the retardation and decay of the thermal breakthrough peak amplitude for different fracture geometries and show that the observed differences between thermal and solute breakthrough can be explained only by channelized flow. These results suggest that heat transport is much more sensitive to fracture heterogeneity and flow

  13. Assessment of thermal load on transported goats administered with ascorbic acid during the hot-dry conditions

    Science.gov (United States)

    Minka, N. S.; Ayo, J. O.

    2012-03-01

    The major factor in the induction of physiological stress during road transportation of livestock is the complex fluctuations of the thermal transport microenvironment, encountered when animals are transported across different ecological zones. Recommended guidelines on optimum "on-board" conditions in which goats should be transported are lacking, and there are no acceptable ranges and limits for the thermal loads to which goats may be subjected during long-distance road transportation in hot-dry conditions. Panting score (PS), rectal temperature (RT), heart rate (HR) and respiratory rate (RR) were employed as reliable stress indices to assess the effects of different thermal loads, measured as temperature humidity index (THI), encountered in the vehicle during 12 h of road transportation of 40 goats, and to suggest the administration of 100 mg/kg body weight of ascorbic acid (AA) as an ameliorating agent. The results obtained showed that the PS, RT, HR and RR rose above normal reference values with increase in the THI and journey duration. The rise in PS value, which is a visual indicator of the severity of thermal load, was the most pronounced. The results suggest that values of THI in the vehicle up to 94.6 constitute no risk, while at of 100 it presents a moderate risk and above 100 may result in severe stress. The relationships between the thermal load and the physiological variables were positive and significant ( P goats. The results demonstrated that administration of 100 mg/kg body weight of AA before road transportation mitigated the risk of adverse effects of high THI values and other stress factors due to road transportation in goats.

  14. THERMAL COMPOSITE COATINGS IMPROVING QUALITY OF TECHNICAL MEANS OF TRANSPORT

    Directory of Open Access Journals (Sweden)

    Andrzej POSMYK

    2015-06-01

    Full Text Available The paper presents the thermal properties of composite insulating material designed for producing of technical means of transport. This material can be coated on most of engineering materials. The matrix of this material is an acrylic resin ant non porous ceramic microspheres made of alumina are the reinforcing phase. Thanks to that into the spheres almost vacuum (0,13 Pa dominants and a big amount of spheres pro thickness unit is it possible to achieve low thermal conductivity. Usage of these coatings for producing of cooling cabins on vehicles let us to reduce of fuel for maintain of given temperature. Usage of these coatings in planes flying on high altitudes (temperature up to -60 allows to reduce of fuel consumption for heating. It has an important influence on transport quality and quality costs.

  15. Neutron importance calculation in an equivalent cell using the age approximation and differential thermalization models. Determination of the cross section sensitivity to the parameters of a differential model in the thermal range

    International Nuclear Information System (INIS)

    Sidorenko, V.D.

    1978-01-01

    The equations are discussed for calculating the importance of neutron function in heterogeneous media obtained with the integral transport theory method. The thermalization effect in the thermal range is described using the differential model. The account of neutron slowing-down in the epithermal range is accomplished in the age approximation. The fast range is described in the 3-group approximation. On the basis of the equations derived the share of delayed neutrons and lifetimes of prompt neutrons are calculated and compared with available experimental data. In the thermal range the sensitivity of cross sections to some parameters of the differential model is analyzed for reactor cells typical for WWER type reactor cores. The models and approximations used are found to be adequate for the calculations

  16. Hydrodynamic efficiency and thermal transport in planar target experiments at LLE

    International Nuclear Information System (INIS)

    Boehly, T.; Goldman, L.M.; Seka, W.; Craxton, R.S.

    1984-01-01

    The authors report the results of single beam irradiation of thin CH foils at laser intensities of 10 13 to 10 15 W/cm 2 in 0.8 ns pulses containing 20 to 50 J of 350 nm and 1054 nm light. They also discuss the hydrodynamic efficiency, thermal transport and preheat in these targets. Included is the measurement of the ion blowoff energy distribution and velocity. The efficient acceleration by short wavelength radiation causes target displacements comparable to the spot size resulting in two-dimension effects. The results are adequately modeled with the 2-D hydrocode SAGE using a flux limiter of f=0.04

  17. Thermal Edge-Effects Model for Automated Tape Placement of Thermoplastic Composites

    Science.gov (United States)

    Costen, Robert C.

    2000-01-01

    Two-dimensional thermal models for automated tape placement (ATP) of thermoplastic composites neglect the diffusive heat transport that occurs between the newly placed tape and the cool substrate beside it. Such lateral transport can cool the tape edges prematurely and weaken the bond. The three-dimensional, steady state, thermal transport equation is solved by the Green's function method for a tape of finite width being placed on an infinitely wide substrate. The isotherm for the glass transition temperature on the weld interface is used to determine the distance inward from the tape edge that is prematurely cooled, called the cooling incursion Delta a. For the Langley ATP robot, Delta a = 0.4 mm for a unidirectional lay-up of PEEK/carbon fiber composite, and Delta a = 1.2 mm for an isotropic lay-up. A formula for Delta a is developed and applied to a wide range of operating conditions. A surprise finding is that Delta a need not decrease as the Peclet number Pe becomes very large, where Pe is the dimensionless ratio of inertial to diffusive heat transport. Conformable rollers that increase the consolidation length would also increase Delta a, unless other changes are made, such as proportionally increasing the material speed. To compensate for premature edge cooling, the thermal input could be extended past the tape edges by the amount Delta a. This method should help achieve uniform weld strength and crystallinity across the width of the tape.

  18. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  19. A turbulent transport network model in MULTIFLUX coupled with TOUGH2

    International Nuclear Information System (INIS)

    Danko, G.; Bahrami, D.; Birkholzer, J.T.

    2011-01-01

    A new numerical method is described for the fully iterated, conjugate solution of two discrete submodels, involving (a) a transport network model for heat, moisture, and airflows in a high-permeability, air-filled cavity; and (b) a variably saturated fractured porous medium. The transport network submodel is an integrated-parameter, computational fluid dynamics solver, describing the thermal-hydrologic transport processes in the flow channel system of the cavity with laminar or turbulent flow and convective heat and mass transport, using MULTIFLUX. The porous medium submodel, using TOUGH2, is a solver for the heat and mass transport in the fractured rock mass. The new model solution extends the application fields of TOUGH2 by integrating it with turbulent flow and transport in a discrete flow network system. We present demonstrational results for a nuclear waste repository application at Yucca Mountain with the most realistic model assumptions and input parameters including the geometrical layout of the nuclear spent fuel and waste with variable heat load for the individual containers. The MULTIFLUX and TOUGH2 model elements are fully iterated, applying a programmed reprocessing of the Numerical Transport Code Functionalization model-element in an automated Outside Balance Iteration loop. The natural, convective airflow field and the heat and mass transport in a representative emplacement drift during postclosure are explicitly solved in the new model. The results demonstrate that the direction and magnitude of the air circulation patterns and all transport modes are strongly affected by the heat and moisture transport processes in the surrounding rock, justifying the need for a coupled, fully iterated model solution such as the one presented in the paper.

  20. Waste heat recovery for transport trucks using thermally regenerative fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Carrier, A.; Wechsler, D.; Whitney, R.; Jessop, P. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry; Davis, B.R. [Queen' s-RMC Fuel Cell Research Centre, Kingston, ON (Canada)

    2009-07-01

    Carbon emissions associated with transportation can be reduced by increasing the fuel efficiency of transport trucks. This can be achieved with thermally regenerative fuel cells that transform the waste heat from the engine block into electricity. In order to operate such a fuel cell, one needs a fluid which rapidly, reversibly, and selectively undergoes dehydrogenation. Potential fluids have been screened for their ability to dehydrogenate and then rehydrogenate at the appropriate temperatures. An examination of the thermodynamics, kinetics, and selectivities of these processes have shown that the challenge involving hydrogenolysis at high temperature must be addressed. This paper discussed the economics of thermally regenerative fuel cells and the advantages and disadvantages of the identified fluids, and of such systems in general.

  1. Conceptual Model and Numerical Approaches for Unsaturated Zone Flow and Transport

    International Nuclear Information System (INIS)

    H.H. Liu

    2004-01-01

    The purpose of this model report is to document the conceptual and numerical models used for modeling unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This work was planned in ''Technical Work Plan for: Unsaturated Zone Flow Model and Analysis Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.5, 2.1.1, 2.1.2 and 2.2.1). The conceptual and numerical modeling approaches described in this report are mainly used for models of UZ flow and transport in fractured, unsaturated rock under ambient conditions. Developments of these models are documented in the following model reports: (1) UZ Flow Model and Submodels; (2) Radionuclide Transport Models under Ambient Conditions. Conceptual models for flow and transport in unsaturated, fractured media are discussed in terms of their applicability to the UZ at Yucca Mountain. The rationale for selecting the conceptual models used for modeling of UZ flow and transport is documented. Numerical approaches for incorporating these conceptual models are evaluated in terms of their representation of the selected conceptual models and computational efficiency; and the rationales for selecting the numerical approaches used for modeling of UZ flow and transport are discussed. This report also documents activities to validate the active fracture model (AFM) based on experimental observations and theoretical developments. The AFM is a conceptual model that describes the fracture-matrix interaction in the UZ of Yucca Mountain. These validation activities are documented in Section 7 of this report regarding use of an independent line of evidence to provide additional confidence in the use of the AFM in the UZ models. The AFM has been used in UZ flow and transport models under both ambient and thermally disturbed conditions. Developments of these models are documented

  2. Significant Electronic Thermal Transport in the Conducting Polymer Poly(3,4‐ethylenedioxythiophene)

    DEFF Research Database (Denmark)

    Weathers, Annie; Khan, Zia Ullah; Brooke, Robert

    2015-01-01

    Suspended microdevices are employed to measure the in-plane electrical conductivity, thermal conductivity, and Seebeck coefficient of suspended poly(3,4-ethylenedioxythiophene) (PEDOT) thin films. The measured thermal conductivity is higher than previously reported for PEDOT and generally increases...... with the electrical conductivity. The increase exceeds that predicted by the Wiedemann–Franz law for metals and can be explained by significant electronic thermal transport in PEDOT....

  3. Modelling of Power Fluxes during Thermal Quenches

    International Nuclear Information System (INIS)

    Konz, C.; Coster, D. P.; Lackner, K.; Pautasso, G.

    2005-01-01

    Plasma disruptions, i. e. the sudden loss of magnetic confinement, are unavoidable, at least occasionally, in present day and future tokamaks. The expected energy fluxes to the plasma facing components (PFCs) during disruptions in ITER lie in the range of tens of GW/m''2 for timescales of about a millisecond. Since high energy fluxes can cause severe damage to the PFCs, their design heavily depends on the spatial and temporal distribution of the energy fluxes during disruptions. We investigate the nature of power fluxes during the thermal quench phase of disruptions by means of numerical simulations with the B2 SOLPS fluid code. Based on an ASDEX Upgrade shot, steady-state pre-disruption equilibria are generated which are then subjected to a simulated thermal quench by artificially enhancing the perpendicular transport in the ion and electron channels. The enhanced transport coefficients flows the Rechester and Rosenbluth model (1978) for ergodic transport in a tokamak with destroyed flux surfaces, i. e. χ, D∼const. xT''5/2 where the constants differ by the square root of the mass ratio for ions and electrons. By varying the steady-state neutral puffing rate we can modify the divertor conditions in terms of plasma temperature and density. Our numerical findings indicate that the disruption characteristics depend on the pre disruptive divertor conditions. We study the timescales and the spatial distribution of the divertor power fluxes. The simulated disruptions show rise and decay timescales in the range observed at ASDEX Upgrade. The decay timescale for the central electron temperature of ∼800 μs is typical for non-ITB disruptions. Varying the divertor conditions we find a distinct transition from a regime with symmetric power fluxes to inboard and outboard divertors to a regime where the bulk of the power flux goes to the outboard divertor. This asymmetry in the divertor peak fluxes for the higher puffing case is accompanied by a time delay between the

  4. Advanced modelling and numerical strategies in nuclear thermal-hydraulics

    International Nuclear Information System (INIS)

    Staedtke, H.

    2001-01-01

    The first part of the lecture gives a brief review of the current status of nuclear thermal hydraulics as it forms the basis of established system codes like TRAC, RELAP5, CATHARE or ATHLET. Specific emphasis is given to the capabilities and limitations of the underlying physical modelling and numerical solution strategies with regard to the description of complex transient two-phase flow and heat transfer conditions as expected to occur in PWR reactors during off-normal and accident conditions. The second part of the lecture focuses on new challenges and future needs in nuclear thermal-hydraulics which might arise with regard to re-licensing of old plants using bestestimate methodologies or the design and safety analysis of Advanced Light Water Reactors relying largely on passive safety systems. In order to meet these new requirements various advanced modelling and numerical techniques will be discussed including extended wellposed (hyperbolic) two-fluid models, explicit modelling of interfacial area transport or higher order numerical schemes allowing a high resolution of local multi-dimensional flow processes.(author)

  5. Multiscale Modelling of Electronic and Thermal Transport : Thermoelectrics, Turbostratic 2D Materials and Diamond/c-BN HEMT

    Science.gov (United States)

    Narendra, Namita

    Multiscale modelling has become necessary with the advent of low dimensional devices as well as use of heterostructures which necessitates atomistic treatment of the interfaces. Multiscale methodology is able to capture the quantum mechanical atomistic details while enabling the simulation of micro-scale structures at the same time. In this thesis, multiscale modelling has been applied to study transport in thermoelectrics, turbostratic 2D MoS2/WS 2 heterostructure and diamond/c-BN high mobility electron transistor (HEMT). The possibility of enhanced thermoelectric properties through nanostructuring is investigated theoretically in a p-type Bi2Te3/Sb 2Te3 heterostructure. A multi-scale modeling approach is adopted to account for the atomistic characteristics of the interface as well as the carrier/phonon transport properties in the larger scales. The calculations clearly illustrate the desired impact of carrier energy filtering at the potential barrier by locally boosting the power factor over a sizable distance in the well region. Further, the phonon transport analysis illustrates a considerable reduction in the thermal conductivity at the heterointerface. Both effects are expected to provide an effective means to engineer higher zT in this material system. Next, power factor enhancement through resonant doping is explored in Bi2Te3 based on a detailed first-principles study. Of the dopant atoms investigated, it is found that the formation of resonant states may be achieved with In, Po and Na, leading potentially to significant increase in the thermoelectric efficiency at room temperature. While doping with Po forms twin resonant state peaks in the valence and conduction bands, the incorporation of Na or In results in the resonant states close to the valence band edge. Further analysis reveals the origin of these resonant states. Transport calculations are also carried out to estimate the anticipated level of enhancement. Next, in-plane and cross-plane transport

  6. Characterization of thermal, hydraulic, and gas diffusion properties in variably saturated sand grades

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Smits, Kathleen; Ramirez, Jamie

    2016-01-01

    porous media transport properties, key transport parameters such as thermal conductivity and gas diffusivity are particularly important to describe temperature-induced heat transport and diffusion-controlled gas transport processes, respectively. Despite many experimental and numerical studies focusing...... transport models (thermal conductivity, saturated hydraulic conductivity, and gas diffusivity). An existing thermal conductivity model was improved to describe the distinct three-region behavior in observed thermal conductivity–water saturation relations. Applying widely used parametric models for saturated......Detailed characterization of partially saturated porous media is important for understanding and predicting vadose zone transport processes. While basic properties (e.g., particle- and pore-size distributions and soil-water retention) are, in general, essential prerequisites for characterizing most...

  7. Three-dimensional temperature field model of thermally decomposing resin composite irradiated by laser

    International Nuclear Information System (INIS)

    Chen Minsun; Jiang Houman; Liu Zejin

    2011-01-01

    Fundamental equations governing the temperature field of thermally decomposing resin composite irradiated by laser are derived from mass and energy conservation laws with the control Janume method. The thermal decomposition of resin is described by a multi-step model. An assumption is proposed that the flow of pyrolysis gas is one-dimensional, which makes it possible to consider the influence of pyrolysis gas convective transport and realize the closure of the three-dimensional model without introducing mechanical quantities. In view of the anisotropy of resin composite, expressions of the thermal conductivities of partially pyrolyzed material are deduced, as well as the computing formula for the laser absorption coefficient of partially pyrolyzed material. The energy conservation equation is consistent with reference under some simplifications. (authors)

  8. A TBA approach to thermal transport in the XXZ Heisenberg model

    Science.gov (United States)

    Zotos, X.

    2017-10-01

    We show that the thermal Drude weight and magnetothermal coefficient of the 1D easy-plane Heisenberg model can be evaluated by an extension of the Bethe ansatz thermodynamics formulation by Takahashi and Suzuki (1972 Prog. Theor. Phys. 48 2187). They have earlier been obtained by the quantum transfer matrix method (Klümper 1999 Z. Phys. B 91 507). Furthermore, this approach can be applied to the study of the far-out of equilibrium energy current generated at the interface between two semi-infinite chains held at different temperatures.

  9. Implementation and verification of a coupled fire model as a thermal boundary condition within P3/THERMAL

    International Nuclear Information System (INIS)

    Hensinger, D.M.; Gritzo, L.A.; Koski, J.A.

    1996-01-01

    A user-defined boundary condition subroutine has been implemented within P3/THERMAL to represent the heat flux between a noncombusting object and an engulfing fire. The heat flux calculations includes a simple 2D fire model in which energy and radiative heat transport equations are solved to produce estimates of the heat fluxes at the fire-object interface. These estimates reflect radiative coupling between a cold object and the flow of hot combustion gases which has been observed in fire experiments. The model uses a database of experimental pool fire measurements for far field boundary conditions and volumetric heat release rates. Taking into account the coupling between a structure and the fire is an improvement over the σT 4 approximation frequently used as a boundary condition for engineered system response and is the preliminary step in the development of a fire model with a predictive capability. This paper describes the implementation of the fire model as a P3/THERMAL boundary condition and presents the results of a verification calculation carried out using the model

  10. Plasma transport simulation modelling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1992-01-01

    New empirical and theoretical transport models for helical confinement systems are developed on the basis of the neoclassical transport theory, including the effect of the radial electric field and of multi-helicity magnetic components as well as the drift wave turbulence transport for electrostatic and electromagnetic modes or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with experimental data from the Compact Helical System which indicate that the central transport coefficient of a plasma with electron cyclotron heating agrees with neoclassical axisymmetric value and the transport outside the half-radius is anomalous. On the other hand, the transport of plasmas with neutral beam injection heating is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these discharges with flat density profiles. For a detailed prediction of the plasma parameters in the Large Helical Device (LHD), 3-D equilibrium/1-D transport simulations including empirical or drift wave turbulence models are performed which suggest that the global confinement time of the LHD is determined mainly by the electron anomalous transport in the plasma edge region rather than by the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase in global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to half of the value used in the present scaling, as is the case in the H-mode of tokamak discharges, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius improves the plasma confinement and increases the fusion product by more than 50% by reducing the neoclassical asymmetric ion transport loss and increasing the plasma radius (10%). (author). 32 refs, 7 figs

  11. Thermal site descriptive model. A strategy for the model development during site investigations - version 2

    International Nuclear Information System (INIS)

    Back, Paer-Erik; Sundberg, Jan

    2007-09-01

    This report presents a strategy for describing, predicting and visualising the thermal aspects of the site descriptive model. The strategy is an updated version of an earlier strategy applied in all SDM versions during the initial site investigation phase at the Forsmark and Oskarshamn areas. The previous methodology for thermal modelling did not take the spatial correlation fully into account during simulation. The result was that the variability of thermal conductivity in the rock mass was not sufficiently well described. Experience from earlier thermal SDMs indicated that development of the methodology was required in order describe the spatial distribution of thermal conductivity in the rock mass in a sufficiently reliable way, taking both variability within rock types and between rock types into account. A good description of the thermal conductivity distribution is especially important for the lower tail. This tail is important for the design of a repository because it affects the canister spacing. The presented approach is developed to be used for final SDM regarding thermal properties, primarily thermal conductivity. Specific objectives for the strategy of thermal stochastic modelling are: Description: statistical description of the thermal conductivity of a rock domain. Prediction: prediction of thermal conductivity in a specific rock volume. Visualisation: visualisation of the spatial distribution of thermal conductivity. The thermal site descriptive model should include the temperature distribution and thermal properties of the rock mass. The temperature is the result of the thermal processes in the repository area. Determination of thermal transport properties can be made using different methods, such as laboratory investigations, field measurements, modelling from mineralogical composition and distribution, modelling from density logging and modelling from temperature logging. The different types of data represent different scales, which has to be

  12. Thermal site descriptive model. A strategy for the model development during site investigations - version 2

    Energy Technology Data Exchange (ETDEWEB)

    Back, Paer-Erik; Sundberg, Jan [Geo Innova AB (Sweden)

    2007-09-15

    This report presents a strategy for describing, predicting and visualising the thermal aspects of the site descriptive model. The strategy is an updated version of an earlier strategy applied in all SDM versions during the initial site investigation phase at the Forsmark and Oskarshamn areas. The previous methodology for thermal modelling did not take the spatial correlation fully into account during simulation. The result was that the variability of thermal conductivity in the rock mass was not sufficiently well described. Experience from earlier thermal SDMs indicated that development of the methodology was required in order describe the spatial distribution of thermal conductivity in the rock mass in a sufficiently reliable way, taking both variability within rock types and between rock types into account. A good description of the thermal conductivity distribution is especially important for the lower tail. This tail is important for the design of a repository because it affects the canister spacing. The presented approach is developed to be used for final SDM regarding thermal properties, primarily thermal conductivity. Specific objectives for the strategy of thermal stochastic modelling are: Description: statistical description of the thermal conductivity of a rock domain. Prediction: prediction of thermal conductivity in a specific rock volume. Visualisation: visualisation of the spatial distribution of thermal conductivity. The thermal site descriptive model should include the temperature distribution and thermal properties of the rock mass. The temperature is the result of the thermal processes in the repository area. Determination of thermal transport properties can be made using different methods, such as laboratory investigations, field measurements, modelling from mineralogical composition and distribution, modelling from density logging and modelling from temperature logging. The different types of data represent different scales, which has to be

  13. Transport of runaway and thermal electrons due to magnetic microturbulence

    International Nuclear Information System (INIS)

    Mynick, H.E.; Strachan, J.D.

    1981-01-01

    The ratio of the runaway electron confinement to thermal electron energy confinement is derived for tokamaks where both processes are determined by free streaming along stochastic magnetic field lines. The runaway electron confinement is enhanced at high runaway electron energies due to phase averaging over the magnetic perturbations when the runaway electron drift surfaces are displaced from the magnetic surfaces. Comparison with experimental data from LT-3, Ormak, PLT, ST, and TM-3 indicates that magnetic stochasticity may explain the relative transport rates of runaways and thermal electron energy

  14. The gyro-radius scaling of ion thermal transport from global numerical simulations of ITG turbulence

    International Nuclear Information System (INIS)

    Ottaviani, M.; Manfredi, G.

    1998-12-01

    A three-dimensional, fluid code is used to study the scaling of ion thermal transport caused by Ion-Temperature-Gradient-Driven (ITG) turbulence. The code includes toroidal effects and is capable of simulating the whole torus. It is found that both close to the ITG threshold and well above threshold, the thermal transport and the turbulence structures exhibit a gyro-Bohm scaling, at least for plasmas with moderate poloidal flow. (author)

  15. Transport simulations of TFTR experiments to test theoretical models for χe and χi

    International Nuclear Information System (INIS)

    Redi, M.H.; Bateman, G.

    1990-08-01

    1-1/2-d BALDUR transport code predictions using recent theoretically-based models for thermal and particle transport are compared to measured profiles of electron plasma density and electron and ion temperatures for TFTR ohmic, L-mode and supershot discharges. The profile consistent drift wave model is found to overestimate ion temperatures at high heating powers, so that a third mode or loss process is needed in addition to drift wave transport (TEM, η i ) and an edge loss model. None of several versions of local multiple mode models, using the 1989 Carreras-Diamond resistive ballooning model, gives T e , T i within 20% for all three TFTR regimes studied. 36 refs., 7 figs., 4 tabs

  16. Human Thermal Model Evaluation Using the JSC Human Thermal Database

    Science.gov (United States)

    Bue, Grant; Makinen, Janice; Cognata, Thomas

    2012-01-01

    Human thermal modeling has considerable long term utility to human space flight. Such models provide a tool to predict crew survivability in support of vehicle design and to evaluate crew response in untested space environments. It is to the benefit of any such model not only to collect relevant experimental data to correlate it against, but also to maintain an experimental standard or benchmark for future development in a readily and rapidly searchable and software accessible format. The Human thermal database project is intended to do just so; to collect relevant data from literature and experimentation and to store the data in a database structure for immediate and future use as a benchmark to judge human thermal models against, in identifying model strengths and weakness, to support model development and improve correlation, and to statistically quantify a model s predictive quality. The human thermal database developed at the Johnson Space Center (JSC) is intended to evaluate a set of widely used human thermal models. This set includes the Wissler human thermal model, a model that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. These models are statistically compared to the current database, which contains experiments of human subjects primarily in air from a literature survey ranging between 1953 and 2004 and from a suited experiment recently performed by the authors, for a quantitative study of relative strength and predictive quality of the models.

  17. Physical and JIT Model Based Hybrid Modeling Approach for Building Thermal Load Prediction

    Science.gov (United States)

    Iino, Yutaka; Murai, Masahiko; Murayama, Dai; Motoyama, Ichiro

    Energy conservation in building fields is one of the key issues in environmental point of view as well as that of industrial, transportation and residential fields. The half of the total energy consumption in a building is occupied by HVAC (Heating, Ventilating and Air Conditioning) systems. In order to realize energy conservation of HVAC system, a thermal load prediction model for building is required. This paper propose a hybrid modeling approach with physical and Just-in-Time (JIT) model for building thermal load prediction. The proposed method has features and benefits such as, (1) it is applicable to the case in which past operation data for load prediction model learning is poor, (2) it has a self checking function, which always supervises if the data driven load prediction and the physical based one are consistent or not, so it can find if something is wrong in load prediction procedure, (3) it has ability to adjust load prediction in real-time against sudden change of model parameters and environmental conditions. The proposed method is evaluated with real operation data of an existing building, and the improvement of load prediction performance is illustrated.

  18. Large scale atomistic approaches to thermal transport and phonon scattering in nanostructured materials

    Science.gov (United States)

    Savic, Ivana

    2012-02-01

    Decreasing the thermal conductivity of bulk materials by nanostructuring and dimensionality reduction, or by introducing some amount of disorder represents a promising strategy in the search for efficient thermoelectric materials [1]. For example, considerable improvements of the thermoelectric efficiency in nanowires with surface roughness [2], superlattices [3] and nanocomposites [4] have been attributed to a significantly reduced thermal conductivity. In order to accurately describe thermal transport processes in complex nanostructured materials and directly compare with experiments, the development of theoretical and computational approaches that can account for both anharmonic and disorder effects in large samples is highly desirable. We will first summarize the strengths and weaknesses of the standard atomistic approaches to thermal transport (molecular dynamics [5], Boltzmann transport equation [6] and Green's function approach [7]) . We will then focus on the methods based on the solution of the Boltzmann transport equation, that are computationally too demanding, at present, to treat large scale systems and thus to investigate realistic materials. We will present a Monte Carlo method [8] to solve the Boltzmann transport equation in the relaxation time approximation [9], that enables computation of the thermal conductivity of ordered and disordered systems with a number of atoms up to an order of magnitude larger than feasible with straightforward integration. We will present a comparison between exact and Monte Carlo Boltzmann transport results for small SiGe nanostructures and then use the Monte Carlo method to analyze the thermal properties of realistic SiGe nanostructured materials. This work is done in collaboration with Davide Donadio, Francois Gygi, and Giulia Galli from UC Davis.[4pt] [1] See e.g. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).[0pt] [2] A. I. Hochbaum et al, Nature 451, 163 (2008).[0pt

  19. Advanced transport modeling of toroidal plasmas with transport barriers

    International Nuclear Information System (INIS)

    Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.

    2005-01-01

    Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)

  20. Electron thermal energy transport research based on dynamical relationship between heat flux and temperature gradient

    International Nuclear Information System (INIS)

    Notake, Takashi; Inagaki, Shigeru; Tamura, Naoki

    2008-01-01

    In the nuclear fusion plasmas, both of thermal energy and particle transport governed by turbulent flow are anomalously enhanced more than neoclassical levels. Thus, to clarify a relationship between the turbulent flow and the anomalous transports has been the most worthwhile work. There are experimental results that the turbulent flow induces various phenomena on transport processes such as non-linearity, transition, hysteresis, multi-branches and non-locality. We are approaching these complicated problems by analyzing not conventional power balance but these phenomena directly. They are recognized as dynamical trajectories in the flux and gradient space and must be a clue to comprehend a physical mechanism of arcane anomalous transport. Especially, to elucidate the mechanism for electron thermal energy transport is critical in the fusion plasma researches because the burning plasmas will be sustained by alpha-particle heating. In large helical device, the dynamical relationships between electron thermal energy fluxes and electron temperature gradients are investigated by using modulated electron cyclotron resonance heating and modern electron cyclotron emission diagnostic systems. Some trajectories such as hysteresis loop or line segments with steep slope which represent non-linear property are observed in the experiment. (author)

  1. A ballistic transport model for electronic excitation following particle impact

    Science.gov (United States)

    Hanke, S.; Heuser, C.; Weidtmann, B.; Wucher, A.

    2018-01-01

    We present a ballistic model for the transport of electronic excitation energy induced by keV particle bombardment onto a solid surface. Starting from a free electron gas model, the Boltzmann transport equation (BTE) is employed to follow the evolution of the temporal and spatial distribution function f (r → , k → , t) describing the occupation probability of an electronic state k → at position r → and time t. Three different initializations of the distribution function are considered: i) a thermal distribution function with a locally and temporally elevated electron temperature, ii) a peak excitation at a specific energy above the Fermi level with a quasi-isotropic distribution in k-space and iii) an anisotropic peak excitation with k-vectors oriented in a specific transport direction. While the first initialization resembles a distribution function which may, for instance, result from electronic friction of moving atoms within an ion induced collision cascade, the peak excitation can in principle result from an autoionization process after excitation in close binary collisions. By numerically solving the BTE, we study the electronic energy exchange along a one dimensional transport direction to obtain a time and space resolved excitation energy distribution function, which is then analyzed in view of general transport characteristics of the chosen model system.

  2. Thermal fatigue. Materials modelling

    International Nuclear Information System (INIS)

    Siegele, D.; Fingerhuth, J.; Mrovec, M.

    2012-01-01

    In the framework of the ongoing joint research project 'Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behavior under transient thermal-mechanical stress conditions (high cycle fatigue V HCF and low cycle fatigue - LCF) are carried out. The primary objective of the research is the further development of simulation methods applied in safety evaluations of nuclear power plant components. In this context the modeling of crack initiation and growth inside the material structure induced by varying thermal loads are of particular interest. Therefore, three scientific working groups organized in three sub-projects of the joint research project are dealing with numerical modeling and simulation at different levels ranging from atomistic to micromechanics and continuum mechanics, and in addition corresponding experimental data for the validation of the numerical results and identification of the parameters of the associated material models are provided. The present contribution is focused on the development and experimental validation of material models and methods to characterize the damage evolution and the life cycle assessment as a result of thermal cyclic loading. The individual purposes of the subprojects are as following: - Material characterization, Influence of temperature and surface roughness on fatigue endurances, biaxial thermo-mechanical behavior, experiments on structural behavior of cruciform specimens and scatter band analysis (IfW Darmstadt) - Life cycle assessment with micromechanical material models (MPA Stuttgart) - Life cycle assessment with atomistic and damage-mechanical material models associated with material tests under thermal fatigue (Fraunhofer IWM, Freiburg) - Simulation of fatigue crack growth, opening and closure of a short crack under

  3. A comparison between the IAEA Safety Series 6 thermal environment and a proposed alternative thermal environment

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1994-01-01

    The present regulations for packaging and transportation of radioactive materials, IAEA Safety Series No. 6; 1985, establish specific criteria for the thermal environment of a hypothetical accident. The regulation states: The scope of this paper is to examine the effects on modeling that result with the Fry proposed thermal boundary conditions. The examination is accomplished by comparing thermal model results using the current IAEA specified thermal environment and the Fry proposed thermal boundary conditions

  4. A thermal conductivity model for U-­Si compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    U3Si2 is a candidate for accident tolerant nuclear fuel being developed as an alternative to UO2 in commercial light water reactors (LWRs). One of its main benefits compared to UO2 is higher thermal conductivity that increases with temperature. This increase is contrary to UO2, for which the thermal conductivity decreases with temperature. The reason for the difference is the electronic origin of thermal conductivity in U3Si2, as compared to the phonon mechanism responsible for thermal transport in UO2. The phonon thermal conductivity in UO2 is unusually low for a fluorite oxide due to the strong interaction with the spins in the paramagnetic phase. The thermal conductivity of U3Si2 as well as other U-­Si compounds has been measured experimentally [1-­4]. However, for fuel performance simulations it is also critical to model the degradation of the thermal conductivity due to damage and microstructure evolution caused by the reactor environment (irradiation and high temperature). For UO2 this reduction is substantial and it has been the topic of extensive NEAMS research resulting in several publications [5, 6]. There are no data or models for the evolution of the U3Si2 thermal conductivity under irradiation. We know that the intrinsic thermal conductivities of UO2 (semi-conductor) and U3Si2 (metal) are very different, and we do not necessarily expect the dependence on damage to be the same either, which could present another advantage for the silicide fuel. In this report we summarize the first step in developing a model for the thermal conductivity of U-­Si compounds with the goal of capturing the effect of damage in U3Si2. Next year, we will focus on lattice damage. We will also attempt to assess the impact of fission gas bubbles.

  5. Coupled Transport Phenomena in the Opalinus Clay: Implications for Radionuclide Transport

    International Nuclear Information System (INIS)

    Soler, J.M.

    1999-09-01

    performance, in agreement with the previous estimates. Finally, the results of two- and three-dimensional simple flow models incorporating advection (Darcy's law) and thermal osmosis show that, under the conditions in the vicinity of the repository at the time scales of interest, the advective component of flow will oppose and cancel the thermal-osmotic component. After evaluating the different coupled transport mechanisms, the conclusion is that coupled phenomena will only have a very minor impact on radionuclide transport in the Opalinus Clay, at least under the conditions at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years). (author)

  6. Coupled Transport Phenomena in the Opalinus Clay: Implications for Radionuclide Transport

    Energy Technology Data Exchange (ETDEWEB)

    Soler, J.M.

    1999-09-01

    performance, in agreement with the previous estimates. Finally, the results of two- and three-dimensional simple flow models incorporating advection (Darcy's law) and thermal osmosis show that, under the conditions in the vicinity of the repository at the time scales of interest, the advective component of flow will oppose and cancel the thermal-osmotic component. After evaluating the different coupled transport mechanisms, the conclusion is that coupled phenomena will only have a very minor impact on radionuclide transport in the Opalinus Clay, at least under the conditions at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years). (author)

  7. Numerical modeling of Thermal Response Tests in Energy Piles

    Science.gov (United States)

    Franco, A.; Toledo, M.; Moffat, R.; Herrera, P. A.

    2013-05-01

    Nowadays, thermal response tests (TRT) are used as the main tools for the evaluation of low enthalpy geothermal systems such as heat exchangers. The results of TRT are used for estimating thermal conductivity and thermal resistance values of those systems. We present results of synthetic TRT simulations that model the behavior observed in an experimental energy pile system, which was installed at the new building of the Faculty of Engineering of Universidad de Chile. Moreover, we also present a parametric study to identify the most influent parameters in the performance of this type of tests. The modeling was developed using the finite element software COMSOL Multiphysics, which allows the incorporation of flow and heat transport processes. The modeled system consists on a concrete pile with 1 m diameter and 28 m deep, which contains a 28 mm diameter PEX pipe arranged in a closed circuit. Three configurations were analyzed: a U pipe, a triple U and a helicoid shape implemented at the experimental site. All simulations were run considering transient response in a three-dimensional domain. The simulation results provided the temperature distribution on the pile for a set of different geometry and physical properties of the materials. These results were compared with analytical solutions which are commonly used to interpret TRT data. This analysis demonstrated that there are several parameters that affect the system response in a synthetic TRT. For example, the diameter of the simulated pile affects the estimated effective thermal conductivity of the system. Moreover, the simulation results show that the estimated thermal conductivity for a 1 m diameter pile did not stabilize even after 100 hours since the beginning of the test, when it reached a value 30% below value used to set up the material properties in the simulation. Furthermore, we observed different behaviors depending on the thermal properties of concrete and soil. According to the simulations, the thermal

  8. Thermal sensation models: a systematic comparison.

    Science.gov (United States)

    Koelblen, B; Psikuta, A; Bogdan, A; Annaheim, S; Rossi, R M

    2017-05-01

    Thermal sensation models, capable of predicting human's perception of thermal surroundings, are commonly used to assess given indoor conditions. These models differ in many aspects, such as the number and type of input conditions, the range of conditions in which the models can be applied, and the complexity of equations. Moreover, the models are associated with various thermal sensation scales. In this study, a systematic comparison of seven existing thermal sensation models has been performed with regard to exposures including various air temperatures, clothing thermal insulation, and metabolic rate values after a careful investigation of the models' range of applicability. Thermo-physiological data needed as input for some of the models were obtained from a mathematical model for human physiological responses. The comparison showed differences between models' predictions for the analyzed conditions, mostly higher than typical intersubject differences in votes. Therefore, it can be concluded that the choice of model strongly influences the assessment of indoor spaces. The issue of comparing different thermal sensation scales has also been discussed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    Science.gov (United States)

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.; Lee, Kam-Pui

    1990-01-01

    Reaction rate coefficients and thermodynamic and transport properties are reviewed and supplemented for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium up to temperatures of 3000 K. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Curve fits are given for the various species properties for their efficient computation in flowfield codes. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in a high energy environment. Limitations of the approximate mixing laws are discussed for a mixture of ionized species. An electron number-density correction for the transport properties of the charged species is obtained. This correction has been generally ignored in the literature.

  10. Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehyun; Sellan, Daniel P.; Ou, Eric; Shi, Li, E-mail: lishi@mail.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Evans, Daniel A.; Williams, Owen M.; Cowley, Alan H. [Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2016-05-16

    Recent first principles calculations have predicted that boron arsenide (BAs) can possess an unexpectedly high thermal conductivity that depends sensitively on the crystal size and defect concentration. However, few experimental results have been obtained to verify these predictions. In the present work, we report four-probe thermal and thermoelectric transport measurements of an individual BAs microstructure that was synthesized via a vapor transport method. The measured thermal conductivity was found to decrease slightly with temperature in the range between 250 K and 350 K. The temperature dependence suggests that the extrinsic phonon scattering processes play an important role in addition to intrinsic phonon-phonon scattering. The room temperature value of (186 ± 46) W m{sup −1 }K{sup −1} is higher than that of bulk silicon but still a factor of four lower than the calculated result for a defect-free, non-degenerate BAs rod with a similar diameter of 1.15 μm. The measured p-type Seebeck coefficient and thermoelectric power factor are comparable to those of bismuth telluride, which is a commonly used thermoelectric material. The foregoing results also suggest that it is necessary to not only reduce defect and boundary scatterings but also to better understand and control the electron scattering of phonons in order to achieve the predicted ultrahigh intrinsic lattice thermal conductivity of BAs.

  11. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  12. UZ Colloid Transport Model

    International Nuclear Information System (INIS)

    McGraw, M.

    2000-01-01

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations

  13. Plausible carrier transport model in organic-inorganic hybrid perovskite resistive memory devices

    Science.gov (United States)

    Park, Nayoung; Kwon, Yongwoo; Choi, Jaeho; Jang, Ho Won; Cha, Pil-Ryung

    2018-04-01

    We demonstrate thermally assisted hopping (TAH) as an appropriate carrier transport model for CH3NH3PbI3 resistive memories. Organic semiconductors, including organic-inorganic hybrid perovskites, have been previously speculated to follow the space-charge-limited conduction (SCLC) model. However, the SCLC model cannot reproduce the temperature dependence of experimental current-voltage curves. Instead, the TAH model with temperature-dependent trap densities and a constant trap level are demonstrated to well reproduce the experimental results.

  14. Electron thermal transport in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Konings, J A

    1994-11-30

    The process of fusion of small nuclei thereby releasing energy, as it occurs continuously in the sun, is essential for the existence of mankind. The same process applied in a controlled way on earth would provide a clean and an abundant energy source, and be the long term solution of the energy problem. Nuclear fusion requires an extremely hot (10{sup 8} K) ionized gas, a plasma, that can only be maintained if it is kept insulated from any material wall. In the so called `tokamak` this is achieved by using magnetic fields. The termal insulation, which is essential if one wants to keep the plasma at the high `fusion` temperature, can be predicted using basic plasma therory. A comparison with experiments in tokamaks, however, showed that the electron enery losses are ten to hundred times larger than this theory predicts. This `anomalous transport` of thermal energy implies that, to reach the condition for nuclear fusion, a fusion reactor must have very large dimensions. This may put the economic feasibility of fusion power in jeopardy. Therefore, in a worldwide collaboration, physicists study tokamak plasmas in an attempt to understand and control the energy losses. From a scientific point of view, the mechanisms driving anomalous transport are one of the challenges in fudamental plasma physics. In Nieuwegein, a tokamak experiment (the Rijnhuizen Tokamak Project, RTP) is dedicated to the study of anomalous transport, in an international collaboration with other laboratories. (orig./WL).

  15. Comparison of four-probe thermal and thermoelectric transport measurements of thin films and nanostructures with microfabricated electro-thermal transducers

    Science.gov (United States)

    Kim, Jaehyun; Fleming, Evan; Zhou, Yuanyuan; Shi, Li

    2018-03-01

    Two different four-probe thermal and thermoelectric measurement methods have been reported for measuring the thermal conductivity, Seebeck coefficient, and electrical conductivity of suspended thin films and nanostructures with microfabricated electro-thermal transducers. The thermal contact resistance was extracted from the measured thermoelectric voltage drop at the contacts in the earlier four-probe method based on the assumption of constant thermal and thermoelectric properties along the sample. In comparison, the latter four-probe method can directly obtain the contact thermal resistance together with the intrinsic sample thermal resistance without making this assumption. Here, the measurement theory and data reduction processes of the latter four-probe measurement method are re-examined and improved. The measured thermal conductivity result of this improved method on representative thin film samples are found to agree with those obtained from the earlier four-probe method, which has obtained similar Seebeck coefficient and electrical conductivity as those measured with a different method for a supported thin film. The agreement provides further validation of the latest four-probe thermal transport measurement method of thin films and nanostructures.

  16. LBM estimation of thermal conductivity in meso-scale modelling

    International Nuclear Information System (INIS)

    Grucelski, A

    2016-01-01

    Recently, there is a growing engineering interest in more rigorous prediction of effective transport coefficients for multicomponent, geometrically complex materials. We present main assumptions and constituents of the meso-scale model for the simulation of the coal or biomass devolatilisation with the Lattice Boltzmann method. For the results, the estimated values of the thermal conductivity coefficient of coal (solids), pyrolytic gases and air matrix are presented for a non-steady state with account for chemical reactions in fluid flow and heat transfer. (paper)

  17. 3D modeling of groundwater heat transport in the shallow Westliches Leibnitzer Feld aquifer, Austria

    Science.gov (United States)

    Rock, Gerhard; Kupfersberger, Hans

    2018-02-01

    For the shallow Westliches Leibnitzer feld aquifer (45 km2) we applied the recently developed methodology by Kupfersberger et al. (2017a) to derive the thermal upper boundary for a 3D heat transport model from observed air temperatures. We distinguished between land uses of grass and agriculture, sealed surfaces, forest and water bodies. To represent the heat flux from heated buildings and the mixture between different land surfaces in urban areas we ran the 1D vertical heat conduction module SoilTemp which is coupled to the heat transport model (using FEFLOW) on a time step basis. Over a simulation period of 23 years the comparison between measured and observed groundwater temperatures yielded NSE values ranging from 0.41 to 0.92 including readings at different depths. The model results showed that the thermal input signals lead to distinctly different vertical groundwater temperature distributions. To overcome the influence of specific warm or cold years we introduced the computation of an annual averaged groundwater temperature profile. With respect to the use of groundwater cooling or heating facilities we evaluated the application of vertically averaged statistical groundwater temperature distributions compared to the use of temperature distributions at selected dates. We concluded that the heat transport model serves well as an aquifer scale management tool to optimize the use of the shallow subsurface for thermal purposes and to analyze the impacts of corresponding measures on groundwater temperatures.

  18. Analysis of PBMR transients using a coupled neutron transport/thermal-hydraulics code DORT-TD/thermix

    International Nuclear Information System (INIS)

    Tyobeka, B.; Ivanov, K.; Pautz, A.

    2007-01-01

    In the advent of increased demand for safety and economics of nuclear power plants, nuclear engineers and designers are called upon to develop advanced computation tools. In these developments, space-time effects in the dynamics of nuclear reactors must be considered within the framework of a full 3-dimensional treatment of both neutron kinetics and thermal hydraulics. In a recent effort at the Pennsylvania State University, a time-dependent version of the discrete ordinates transport code DORT, DORT-TD was coupled to a 2-dimensional core thermal hydraulics code THERMIX-DIREKT. In the coupling process, a feedback model was developed to account for the feedback effects and was implemented into DORT-TD. During the calculation process for each spatial node of the DORT-TD core model, feedback parameters representative of this node are passed to the feedback module. Using these values, cross section tables are then interpolated for the appropriate macroscopic cross section values. The updated macroscopic cross sections are passed back to DORT-TD to perform transport core calculations, and the power distribution is transferred to THERMIX-DIREKT to obtain the relevant thermal-hydraulics data in turn, and this calculation loop continues. In this paper, DORT-TD/THERMIX is used to simulate transients of interest in the PBMR (Pebble Bed Modular Reactor) safety using established benchmark problems: load change from 100% to 40% power and fast control rod ejection (PBMR-268 benchmark problem). The results obtained are compared with those obtained using the diffusion-based module of the code. The results are only preliminary and so far show that diffusion theory is not such a bad approximation for PBMR for the prediction of integral parameters

  19. SUPPRESSION OF PARALLEL TRANSPORT IN TURBULENT MAGNETIZED PLASMAS AND ITS IMPACT ON THE NON-THERMAL AND THERMAL ASPECTS OF SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Nicolas H.; Kontar, Eduard P. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Emslie, A. Gordon, E-mail: n.bian@physics.gla.ac.uk, E-mail: emslieg@wku.edu [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2016-06-20

    The transport of the energy contained in electrons, both thermal and suprathermal, in solar flares plays a key role in our understanding of many aspects of the flare phenomenon, from the spatial distribution of hard X-ray emission to global energetics. Motivated by recent RHESSI observations that point to the existence of a mechanism that confines electrons to the coronal parts of flare loops more effectively than Coulomb collisions, we here consider the impact of pitch-angle scattering off turbulent magnetic fluctuations on the parallel transport of electrons in flaring coronal loops. It is shown that the presence of such a scattering mechanism in addition to Coulomb collisional scattering can significantly reduce the parallel thermal and electrical conductivities relative to their collisional values. We provide illustrative expressions for the resulting thermoelectric coefficients that relate the thermal flux and electrical current density to the temperature gradient and the applied electric field. We then evaluate the effect of these modified transport coefficients on the flare coronal temperature that can be attained, on the post-impulsive-phase cooling of heated coronal plasma, and on the importance of the beam-neutralizing return current on both ambient heating and the energy loss rate of accelerated electrons. We also discuss the possible ways in which anomalous transport processes have an impact on the required overall energy associated with accelerated electrons in solar flares.

  20. The interaction of horizontal eddy transport and thermal drive in the stratosphere

    Science.gov (United States)

    Salby, Murry L.; O'Sullivan, Donal; Callaghan, Patrick; Garcia, Rolando R.

    1990-01-01

    The two processes that determine the average state of the circulation; i.e., horizontal eddy transport and thermal dissipation, are examined, and the effects of their interaction on circulation and on tracer distribution in the stratosphere are investigated using barotropic calculations on the sphere. It is shown that eddy advection tends to homogenize the meridional gradient Q at low latitudes, while thermal dissipation restores the gradient after episodes of mixing.

  1. Modeling the energy balance in Marseille: Sensitivity to roughness length parameterizations and thermal admittance

    Science.gov (United States)

    Demuzere, M.; De Ridder, K.; van Lipzig, N. P. M.

    2008-08-01

    During the ESCOMPTE campaign (Experience sur Site pour COntraindre les Modeles de Pollution atmospherique et de Transport d'Emissions), a 4-day intensive observation period was selected to evaluate the Advanced Regional Prediction System (ARPS), a nonhydrostatic meteorological mesoscale model that was optimized with a parameterization for thermal roughness length to better represent urban surfaces. The evaluation shows that the ARPS model is able to correctly reproduce temperature, wind speed, and direction for one urban and two rural measurements stations. Furthermore, simulated heat fluxes show good agreement compared to the observations, although simulated sensible heat fluxes were initially too low for the urban stations. In order to improve the latter, different roughness length parameterization schemes were tested, combined with various thermal admittance values. This sensitivity study showed that the Zilitinkevich scheme combined with and intermediate value of thermal admittance performs best.

  2. Tutorial: Determination of thermal boundary resistance by molecular dynamics simulations

    Science.gov (United States)

    Liang, Zhi; Hu, Ming

    2018-05-01

    Due to the high surface-to-volume ratio of nanostructured components in microelectronics and other advanced devices, the thermal resistance at material interfaces can strongly affect the overall thermal behavior in these devices. Therefore, the thermal boundary resistance, R, must be taken into account in the thermal analysis of nanoscale structures and devices. This article is a tutorial on the determination of R and the analysis of interfacial thermal transport via molecular dynamics (MD) simulations. In addition to reviewing the commonly used equilibrium and non-equilibrium MD models for the determination of R, we also discuss several MD simulation methods which can be used to understand interfacial thermal transport behavior. To illustrate how these MD models work for various interfaces, we will show several examples of MD simulation results on thermal transport across solid-solid, solid-liquid, and solid-gas interfaces. The advantages and drawbacks of a few other MD models such as approach-to-equilibrium MD and first-principles MD are also discussed.

  3. Heat pipe solar receiver with thermal energy storage

    Science.gov (United States)

    Zimmerman, W. F.

    1981-01-01

    An HPSR Stirling engine generator system featuring latent heat thermal energy storge, excellent thermal stability and self regulating, effective thermal transport at low system delta T is described. The system was supported by component technology testing of heat pipes and of thermal storage and energy transport models which define the expected performance of the system. Preliminary and detailed design efforts were completed and manufacturing of HPSR components has begun.

  4. The electrical and thermal transport properties of hybrid zigzag graphene-BN nanoribbons

    Science.gov (United States)

    Gao, Song; Lu, Wei; Zheng, Guo-Hui; Jia, Yalei; Ke, San-Huang

    2017-06-01

    The electron and phonon transport in hybrid graphene-BN zigzag nanoribbons are investigated by the nonequilibrium Green’s function method combined with density functional theory calculations. A 100% spin-polarized electron transport in a large energy window around the Fermi level is found and this behavior is independent of the ribbon width as long as there contain 3 zigzag carbon chains. The phonon transport calculations show that the ratio of C-chain number to BN-chain number will modify the thermal conductance of the hybrid nanoribbon in a complicated manner.

  5. The electrical and thermal transport properties of hybrid zigzag graphene-BN nanoribbons

    International Nuclear Information System (INIS)

    Gao, Song; Lu, Wei; Zheng, Guo-Hui; Jia, Yalei; Ke, San-Huang

    2017-01-01

    The electron and phonon transport in hybrid graphene-BN zigzag nanoribbons are investigated by the nonequilibrium Green’s function method combined with density functional theory calculations. A 100% spin-polarized electron transport in a large energy window around the Fermi level is found and this behavior is independent of the ribbon width as long as there contain 3 zigzag carbon chains. The phonon transport calculations show that the ratio of C-chain number to BN-chain number will modify the thermal conductance of the hybrid nanoribbon in a complicated manner. (paper)

  6. A Process-Based Transport-Distance Model of Aeolian Transport

    Science.gov (United States)

    Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.

    2017-12-01

    We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.

  7. GIS Modelling of Radionuclide Transport from the Semipalatinsk Test Site

    Science.gov (United States)

    Balakay, L.; Zakarin, E.; Mahura, A.; Baklanov, A.; Sorensen, J. H.

    2009-04-01

    In this study, the software complex GIS-project MigRad (Migration of Radionuclide) was developed, tested and applied for the territory of the Semipalatinsk test site/ polygon (Republic of Kazakhstan), where since 1961, in total 348 underground nuclear explosions were conducted. The MigRad is oriented on integration of large volumes of different information (mapping, ground-based, and satellite-based survey): and also includes modeling on its base local redistribution of radionuclides by precipitation and surface waters and by long-range transport of radioactive aerosols. The existing thermal anomaly on territory of the polygon was investigated in details, and the object-oriented analysis was applied for the studied area. Employing the RUNOFF model, the simulation of radionuclides migration with surface waters was performed. Employing the DERMA model, the simulation of long-term atmospheric transport, dispersion and deposition patterns for cesium was conducted from 3 selected locations (Balapan, Delegen, and Experimental Field). Employing geoinformation technology, the mapping of the of the high temperature zones and epicenters of radioactive aerosols transport for the territory of the test site was carried out with post-processing and integration of modelling results into GIS environment. Contamination levels of pollution due to former nuclear explosions for population and environment of the surrounding polygon territories of Kazakhstan as well as adjacent countries were analyzed and evaluated. The MigRad was designed as instrument for comprehensive analysis of complex territorial processes influenced by former nuclear explosions on the territory of Semipalatinsk test site. It provides possibilities in detailed analyses for (i) extensive cartographic material, remote sensing, and field measurements data collected in different level databases; (ii) radionuclide migration with flows using accumulation and redistribution of soil particles; (iii) thermal anomalies

  8. RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jie; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Carlsson, Mats, E-mail: dmd@nju.edu.cn [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)

    2017-08-20

    Ellerman bombs (EBs) are brightenings in the H α line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the H α line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the H α line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the H α line will be unrealistically strong and there are still no clear UV burst signatures.

  9. RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs

    Science.gov (United States)

    Hong, Jie; Carlsson, Mats; Ding, M. D.

    2017-08-01

    Ellerman bombs (EBs) are brightenings in the Hα line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the Hα line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the Hα line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the Hα line will be unrealistically strong and there are still no clear UV burst signatures.

  10. Plausible carrier transport model in organic-inorganic hybrid perovskite resistive memory devices

    Directory of Open Access Journals (Sweden)

    Nayoung Park

    2018-04-01

    Full Text Available We demonstrate thermally assisted hopping (TAH as an appropriate carrier transport model for CH3NH3PbI3 resistive memories. Organic semiconductors, including organic-inorganic hybrid perovskites, have been previously speculated to follow the space-charge-limited conduction (SCLC model. However, the SCLC model cannot reproduce the temperature dependence of experimental current-voltage curves. Instead, the TAH model with temperature-dependent trap densities and a constant trap level are demonstrated to well reproduce the experimental results.

  11. Investigation of thermal energy transport from an anisotropic central heating element to the adjacent channels: A multipoint flux approximation

    KAUST Repository

    Salama, Amgad; Sun, Shuyu; El-Amin, Mohamed

    2015-01-01

    anisotropy of the heating element and/or the encompassing plates on thermal energy transport to the fluid passing through the two channels. When the medium is anisotropic with respect to thermal conductivity; energy transport to the neighboring channels

  12. Test of models for electron transport in laser produced plasmas

    International Nuclear Information System (INIS)

    Colombant, D.G.; Manheimer, W.M.; Busquet, M.

    2005-01-01

    This paper examines five different models of electron thermal transport in laser produced spherical implosions. These are classical, classical with a flux limit f, delocalization, beam deposition model, and Fokker-Planck solutions. In small targets, the results are strongly dependent on f for flux limit models, with small f's generating very steep temperature gradients. Delocalization models are characterized by large preheat in the center of the target. The beam deposition model agrees reasonably well with the Fokker-Planck simulation results. For large, high gain fusion targets, the delocalization model shows the gain substantially reduced by the preheat. However, flux limitation models show gain largely independent of f, with the beam deposition model also showing the same high gain

  13. A kinetic model for chemical reactions without barriers: transport coefficients and eigenmodes

    Science.gov (United States)

    Alves, Giselle M.; Kremer, Gilberto M.; Marques, Wilson, Jr.; Jacinta Soares, Ana

    2011-03-01

    The kinetic model of the Boltzmann equation proposed in the work of Kremer and Soares 2009 for a binary mixture undergoing chemical reactions of symmetric type which occur without activation energy is revisited here, with the aim of investigating in detail the transport properties of the reactive mixture and the influence of the reaction process on the transport coefficients. Accordingly, the non-equilibrium solutions of the Boltzmann equations are determined through an expansion in Sonine polynomials up to the first order, using the Chapman-Enskog method, in a chemical regime for which the reaction process is close to its final equilibrium state. The non-equilibrium deviations are explicitly calculated for what concerns the thermal-diffusion ratio and coefficients of shear viscosity, diffusion and thermal conductivity. The theoretical and formal analysis developed in the present paper is complemented with some numerical simulations performed for different concentrations of reactants and products of the reaction as well as for both exothermic and endothermic chemical processes. The results reveal that chemical reactions without energy barrier can induce an appreciable influence on the transport properties of the mixture. Oppositely to the case of reactions with activation energy, the coefficients of shear viscosity and thermal conductivity become larger than those of an inert mixture when the reactions are exothermic. An application of the non-barrier model and its detailed transport picture are included in this paper, in order to investigate the dynamics of the local perturbations on the constituent number densities, and velocity and temperature of the whole mixture, induced by spontaneous internal fluctuations. It is shown that for the longitudinal disturbances there exist two hydrodynamic sound modes, one purely diffusive hydrodynamic mode and one kinetic mode.

  14. Lattice thermal transport in group II-alloyed PbTe

    Science.gov (United States)

    Xia, Yi; Hodges, James M.; Kanatzidis, Mercouri G.; Chan, Maria K. Y.

    2018-04-01

    PbTe, one of the most promising thermoelectric materials, has recently demonstrated a thermoelectric figure of merit (ZT) of above 2.0 when alloyed with group II elements. The improvements are due mainly to significant reduction of lattice thermal conductivity (κl), which was in turn attributed to nanoparticle precipitates. However, a fundamental understanding of various phonon scattering mechanisms within the bulk alloy is still lacking. In this work, we apply the newly-developed density-functional-theory-based compressive sensing lattice dynamics approach to model lattice heat transport in PbTe, MTe, and Pb0.94M0.06Te (M = Mg, Ca, Sr, and Ba) and compare our results with experimental measurements, with focus on the strain effect and mass disorder scattering. We find that (1) CaTe, SrTe, and BaTe in the rock-salt structure exhibit much higher κl than PbTe, while MgTe in the same structure shows anomalously low κl; (2) lattice heat transport of PbTe is extremely sensitive to static strain induced by alloying atoms in solid solution form; (3) mass disorder scattering plays a major role in reducing κl for Mg/Ca/Sr-alloyed PbTe through strongly suppressing the lifetimes of intermediate- and high-frequency phonons, while for Ba-alloyed PbTe, precipitated nanoparticles are also important.

  15. Thermally modulated biomolecule transport through nanoconfined channels.

    Science.gov (United States)

    Liu, Lei; Zhu, Lizhong

    2015-01-01

    In this work, a nanofluidic device containing both a feed cell and a permeation cell linked by nanopore arrays has been fabricated, which is employed to investigate thermally controlled biomolecular transporting properties through confined nanochannels. The ionic currents modulated by the translocations of goat antibody to human immunoglobulin G (IgG) or bovine serum albumin (BSA) are recorded and analyzed. The results suggest that the modulation effect decreases with the electrolyte concentration increasing, while the effects generated by IgG translocation are more significant than that generated by BSA translocation. More importantly, there is a maximum decreasing value in each modulated current curve with biomolecule concentration increasing for thermally induced intermolecular collision. Furthermore, the turning point for the maximum shifts to lower biomolecule concentrations with the system temperature rising (from 4°C to 45°C), and it is mainly determined by the temperature in the feed cell if the temperature difference exists in the two separated cells. These findings are expected to be valuable for the future design of novel sensing device based on nanopore and/or nanopore arrays.

  16. Sub-picowatt/kelvin resistive thermometry for probing nanoscale thermal transport.

    Science.gov (United States)

    Zheng, Jianlin; Wingert, Matthew C; Dechaumphai, Edward; Chen, Renkun

    2013-11-01

    Advanced instrumentation in thermometry holds the key for experimentally probing fundamental heat transfer physics. However, instrumentation with simultaneously high thermometry resolution and low parasitic heat conduction is still not available today. Here we report a resistive thermometry scheme with ~50 μK temperature resolution and ~0.25 pW/K thermal conductance resolution, which is achieved through schemes using both modulated heating and common mode noise rejection. The suspended devices used herein have been specifically designed to possess short thermal time constants and minimal attenuation effects associated with the modulated heating current. Furthermore, we have systematically characterized the parasitic background heat conductance, which is shown to be significantly reduced using the new device design and can be effectively eliminated using a "canceling" scheme. Our results pave the way for probing fundamental nanoscale thermal transport processes using a general scheme based on resistive thermometry.

  17. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.

    Science.gov (United States)

    Yang, Lina; Minnich, Austin J

    2017-03-14

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  18. Controlling Heat Transport and Flow Structures in Thermal Turbulence Using Ratchet Surfaces

    Science.gov (United States)

    Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef; Sun, Chao

    2018-01-01

    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchetlike roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the large scale circulation roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through a quantitative analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. The current work has important implications for passive and active flow control in engineering, biofluid dynamics, and geophysical flows.

  19. Thermal properties Forsmark. Modelling stage 2.3 Complementary analysis and verification of the thermal bedrock model, stage 2.

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Jan; Wrafter, John; Laendell, Maerta (Geo Innova AB (Sweden)); Back, Paer-Erik; Rosen, Lars (Sweco AB (Sweden))

    2008-11-15

    This report present the results of thermal modelling work for the Forsmark area carried out during modelling stage 2.3. The work complements the main modelling efforts carried out during modelling stage 2.2. A revised spatial statistical description of the rock mass thermal conductivity for rock domain RFM045 is the main result of this work. Thermal modelling of domain RFM045 in Forsmark model stage 2.2 gave lower tail percentiles of thermal conductivity that were considered to be conservatively low due to the way amphibolite, the rock type with the lowest thermal conductivity, was modelled. New and previously available borehole data are used as the basis for revised stochastic geological simulations of domain RFM045. By defining two distinct thermal subdomains, these simulations have succeeded in capturing more of the lithological heterogeneity present. The resulting thermal model for rock domain RFM045 is, therefore, considered to be more realistic and reliable than that presented in model stage 2.2. The main conclusions of modelling efforts in model stage 2.3 are: - Thermal modelling indicates a mean thermal conductivity for domain RFM045 at the 5 m scale of 3.56 W/(mK). This is slightly higher than the value of 3.49 W/(mK) derived in model stage 2.2. - The variance decreases and the lower tail percentiles increase as the scale of observation increases from 1 to 5 m. Best estimates of the 0.1 percentile of thermal conductivity for domain RFM045 are 2.24 W/(mK) for the 1 m scale and 2.36 W/(mK) for the 5 m scale. This can be compared with corresponding values for domain RFM029 of 2.30 W/(mK) for the 1 m scale and 2.87 W/(mK)for the 5 m scale. - The reason for the pronounced lower tail in the thermal conductivity distribution for domain RFM045 is the presence of large bodies of the low-conductive amphibolite. - The modelling results for domain RFM029 presented in model stage 2.2 are still applicable. - As temperature increases, the thermal conductivity decreases

  20. Evidence of thermal transport anisotropy in stable glasses of vapor deposited organic molecules

    Science.gov (United States)

    Ràfols-Ribé, Joan; Dettori, Riccardo; Ferrando-Villalba, Pablo; Gonzalez-Silveira, Marta; Abad, Llibertat; Lopeandía, Aitor F.; Colombo, Luciano; Rodríguez-Viejo, Javier

    2018-03-01

    Vapor deposited organic glasses are currently in use in many optoelectronic devices. Their operation temperature is limited by the glass transition temperature of the organic layers and thermal management strategies become increasingly important to improve the lifetime of the device. Here we report the unusual finding that molecular orientation heavily influences heat flow propagation in glassy films of small molecule organic semiconductors. The thermal conductivity of vapor deposited thin-film semiconductor glasses is anisotropic and controlled by the deposition temperature. We compare our data with extensive molecular dynamics simulations to disentangle the role of density and molecular orientation on heat propagation. Simulations do support the view that thermal transport along the backbone of the organic molecule is strongly preferred with respect to the perpendicular direction. This is due to the anisotropy of the molecular interaction strength that limits the transport of atomic vibrations. This approach could be used in future developments to implement small molecule glassy films in thermoelectric or other organic electronic devices.

  1. TRANSPORT PROPERTIES FOR REFRIGERANT MIXTURES

    Directory of Open Access Journals (Sweden)

    V. Geller

    2014-06-01

    Full Text Available A set of models to predict viscosity and thermal conductivity of refrigerant mixtures is developed. A general model for viscosity and thermal conductivity use the three contributions sum form (the dilute-gas terms, the residual terms, and the liquid terms. The corresponding states model is recommended to predict the dense gas transport properties over a range of reduced density from 0 to 2. It is shown that the RHS model provides the most reliable results for the saturated-liquid and the compressed-liquid transport properties over a range of given temperatures from 0,5 to 0,95.

  2. One day-old chicks transport: Assessment of thermal profile in a tropical region

    Directory of Open Access Journals (Sweden)

    Aérica C. Nazareno

    2015-07-01

    Full Text Available The aim of this study was to assess the thermal profile of truck with different levels of box placement during one day-old chicks transport. An experiment was conducted through monitoring of 11 transport loads. A acclimatized truck was used in this research, with maximum capacity of 630 one day-old chicks boxes, totalizing 63,000 animals. The assessment of thermal environment was performed in 5 min intervals, through the following variables: temperature, relative humidity and specific enthalpy. The treatments were registered at two levels of the load (first rack and floor where 17 data loggers were distributed throughout the truck. The experiment used a completely randomized design and geostatistics was used for spatial dependency and Kriging interpolation. The microclimatic conditions of the truck were not as per recommended values, which confirm a heterogeneous distribution of heat and moisture in environment. Regarding the box positioning, the mean values of thermal variables associated with thermal comfort of one day-old chicks was found in the floor area. The most stressful environment for birds inside the truck was located in front and at the center of the truck.

  3. Coupled-analysis of current transport performance and thermal behaviour of conduction-cooled Bi-2223/Ag double-pancake coil for magnetic sail spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, Y., E-mail: nagasaki@rish.kyoto-u.ac.jp [Research Institute of Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Nakamura, T. [Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura, Nishikyo, Kyoto 615-8530 (Japan); Funaki, I. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Ashida, Y.; Yamakawa, H. [Research Institute of Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2013-09-15

    Highlights: • We model current transport and thermal performances of conduction-cooled HTS coil. • We investigate the effect of the longitudinal inhomogeneity of the HTS tape. • The analysis can precisely estimate performances of the conduction-cooled coil. • The longitudinal inhomogeneity of the HTS tape deteriorates coil performances. • Quench currents of the HTS coil are not consistent with the critical currents. -- Abstract: This paper investigated the quantitative current transport performance and thermal behaviour of a high temperature superconducting (HTS) coil, and the effect of the critical current inhomogeneity along the longitudinal direction of HTS tapes on the coil performances. We fabricated a double-pancake coil using a Bi-2223/Ag tape with a length of 200 m as a scale-down model for a magnetic sail spacecraft. We measured the current transport property and temperature rises during current applications of the HTS coil in a conduction-cooled system, and analytically reproduced the results on the basis of the percolation depinning model and three-dimensional heat balance equation. The percolation depinning model can describe the electric field versus current density of HTS tapes as a function of temperature and magnetic field vector, and we also introduced the longitudinal distribution of the local critical current of the HTS tape into this model. As a result, we can estimate the critical currents of the HTS coil within 10% error for a wide range of the operational temperatures from 45 to 80 K, and temperature rises on the coil during current applications. These results showed that our analysis and conduction-cooled system were successfully realized. The analysis also suggested that the critical current inhomogeneity along the length of the HTS tape deteriorated the current transport performance and thermal stability of the HTS coil. The present study contributes to the characterization of HTS coils and design of a coil system for the

  4. Coupled-analysis of current transport performance and thermal behaviour of conduction-cooled Bi-2223/Ag double-pancake coil for magnetic sail spacecraft

    International Nuclear Information System (INIS)

    Nagasaki, Y.; Nakamura, T.; Funaki, I.; Ashida, Y.; Yamakawa, H.

    2013-01-01

    Highlights: • We model current transport and thermal performances of conduction-cooled HTS coil. • We investigate the effect of the longitudinal inhomogeneity of the HTS tape. • The analysis can precisely estimate performances of the conduction-cooled coil. • The longitudinal inhomogeneity of the HTS tape deteriorates coil performances. • Quench currents of the HTS coil are not consistent with the critical currents. -- Abstract: This paper investigated the quantitative current transport performance and thermal behaviour of a high temperature superconducting (HTS) coil, and the effect of the critical current inhomogeneity along the longitudinal direction of HTS tapes on the coil performances. We fabricated a double-pancake coil using a Bi-2223/Ag tape with a length of 200 m as a scale-down model for a magnetic sail spacecraft. We measured the current transport property and temperature rises during current applications of the HTS coil in a conduction-cooled system, and analytically reproduced the results on the basis of the percolation depinning model and three-dimensional heat balance equation. The percolation depinning model can describe the electric field versus current density of HTS tapes as a function of temperature and magnetic field vector, and we also introduced the longitudinal distribution of the local critical current of the HTS tape into this model. As a result, we can estimate the critical currents of the HTS coil within 10% error for a wide range of the operational temperatures from 45 to 80 K, and temperature rises on the coil during current applications. These results showed that our analysis and conduction-cooled system were successfully realized. The analysis also suggested that the critical current inhomogeneity along the length of the HTS tape deteriorated the current transport performance and thermal stability of the HTS coil. The present study contributes to the characterization of HTS coils and design of a coil system for the

  5. Nuclear-Thermal Analysis of Fully Ceramic Microencapsulated Fuel via Two-Temperature Homogenized Model

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Nam Zin

    2013-01-01

    The FCM fuel is based on a proven safety philosophy that has been utilized operationally in very high temperature reactors (VHTRs). However, the FCM fuel consists of TRISO particles randomly dispersed in SiC matrix. The high heterogeneity in composition leads to difficulty in explicit thermal calculation of such a fuel. Therefore, an appropriate homogenization model becomes essential. In this paper, we apply the two-temperature homogenized model to thermal analysis of an FCM fuel. The model was recently proposed in order to provide more realistic temperature profiles in the fuel element in VHTRs. We applied the two-temperature homogenized model to FCM fuel. The two-temperature homogenized model was obtained by particle transport Monte Carlo calculation applied to the pellet region consisting of many coated particles uniformly dispersed in SiC matrix. Since this model gives realistic temperature profiles in the pellet (providing fuel-kernel temperature and SiC matrix temperature distinctly), it can be used for more accurate neutronics evaluation such as Doppler temperature feedback. The transient thermal calculation may be performed also more realistically with temperature-dependent homogenized parameters in various scenarios

  6. Thermal testing of packages for transport of radioactive wastes

    International Nuclear Information System (INIS)

    Koski, J.A.

    1994-01-01

    Shipping containers for radioactive materials must be shown capable of surviving tests specified by regulations such as Title 10, Code of Federal Regulations, Part 71 (called 10CFR71 in this paper) within the United States. Equivalent regulations hold for other countries such as Safety Series 6 issued by the International Atomic Energy Agency. The containers must be shown to be capable of surviving, in order, drop tests, puncture tests, and thermal tests. Immersion testing in water is also required, but must be demonstrated for undamaged packages. The thermal test is intended to simulate a 30 minute exposure to a fully engulfing pool fire that could occur if a transport accident involved the spill of large quantities of hydrocarbon fuels. Various qualification methods ranging from pure analysis to actual pool fire tests have been used to prove regulatory compliance. The purpose of this paper is to consider the alternatives for thermal testing, point out the strengths and weaknesses of each approach, and to provide the designer with the information necessary to make informed decisions on the proper test program for the particular shipping container under consideration. While thermal analysis is an alternative to physical testing, actual testing is often emphasized by regulators, and this report concentrates on these testing alternatives

  7. Thermal relaxation and heat transport in spin ice Dy{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Klemke, Bastian; Meissner, M.; Tennant, D.A. [Helmholtz-Zentrum Berlin (Germany); Technische Universitaet Berlin (Germany); Strehlow, P. [Technische Universitaet Berlin (Germany); Physikalisch Technische Bundesanstalt, Institut Berlin (Germany); Kiefer, K. [Helmholtz-Zentrum Berlin (Germany); Grigera, S.A. [School of Physics and Astronomy, St. Andrews (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, CONICET, UNLP, La Plata (Argentina)

    2011-07-01

    The thermal properties of single crystalline Dy{sub 2}Ti{sub 2}O{sub 7} have been studied at temperature below 30 K and magnetic fields applied along [110] direction up to 1.5 T. Based on a thermodynamic field theory (TFT) various heat relaxation and thermal transport measurements were analysed. So we were able to present not only the heat capacity of Dy{sub 2}Ti{sub 2}O{sub 7}, but also for the first time the different contributions of the magnetic excitations and their corresponding relaxation times in the spin ice phase. In addition, the thermal conductivity and the shortest relaxation time were determined by thermodynamic analysis of steady state heat transport measurements. Finally, we were able to reproduce the temperature profiles recorded in heat pulse experiments on the basis of TFT using the previously determined heat capacity and thermal conductivity data without additional parameters. Thus, TFT has been proved to be thermodynamically consistent in describing three thermal transport experiments on different time scales. The observed temperature and field dependencies of heat capacity contributions and relaxation times indicate the magnetic excitations in the spin ice Dy{sub 2}Ti{sub 2}O{sub 7} as thermally activated monopole-antimonopole defects.

  8. Polymer/boron nitride nanocomposite materials for superior thermal transport performance.

    Science.gov (United States)

    Song, Wei-Li; Wang, Ping; Cao, Li; Anderson, Ankoma; Meziani, Mohammed J; Farr, Andrew J; Sun, Ya-Ping

    2012-06-25

    Boron nitride nanosheets were dispersed in polymers to give composite films with excellent thermal transport performances approaching the record values found in polymer/graphene nanocomposites. Similarly high performance at lower BN loadings was achieved by aligning the nanosheets in poly(vinyl alcohol) matrix by simple mechanical stretching (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A Review on Concepts, Applications, and Models of Aquifer Thermal Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Kun Sang Lee

    2010-06-01

    Full Text Available Being a heat source or sink, aquifers have been used to store large quantities of thermal energy to match cooling and heating supply and demand on both a short-term and long-term basis. The current technical, economic, and environmental status of aquifer thermal energy storage (ATES is promising. General information on the basic operation principles, design, and construction of ATES systems is discussed in this paper. Numerous projects in operation around the world are summarized to illustrate the present status of ATES. Hydrogeological-thermal simulation has become an integral part of predicting ATES system performance. Numerical models which are available to simulate an ATES system by modeling mass and heat transport in the aquifer have been summarized. This paper also presents an example of numerical simulation and thermohydraulic evaluation of a two-well, ATES system operating under a continuous flow regime.

  10. Global thermal models of the lithosphere

    Science.gov (United States)

    Cammarano, F.; Guerri, M.

    2017-12-01

    Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations

  11. Modeling thermal stress propagation during hydraulic stimulation of geothermal wells

    Science.gov (United States)

    Jansen, Gunnar; Miller, Stephen A.

    2017-04-01

    A large fraction of the world's water and energy resources are located in naturally fractured reservoirs within the earth's crust. Depending on the lithology and tectonic history of a formation, fracture networks can range from dense and homogeneous highly fractured networks to single large scale fractures dominating the flow behavior. Understanding the dynamics of such reservoirs in terms of flow and transport is crucial to successful application of engineered geothermal systems (also known as enhanced geothermal systems or EGS) for geothermal energy production in the future. Fractured reservoirs are considered to consist of two distinct separate media, namely the fracture and matrix space respectively. Fractures are generally thin, highly conductive containing only small amounts of fluid, whereas the matrix rock provides high fluid storage but typically has much smaller permeability. Simulation of flow and transport through fractured porous media is challenging due to the high permeability contrast between the fractures and the surrounding rock matrix. However, accurate and efficient simulation of flow through a fracture network is crucial in order to understand, optimize and engineer reservoirs. It has been a research topic for several decades and is still under active research. Accurate fluid flow simulations through field-scale fractured reservoirs are still limited by the power of current computer processing units (CPU). We present an efficient implementation of the embedded discrete fracture model, which is a promising new technique in modeling the behavior of enhanced geothermal systems. An efficient coupling strategy is determined for numerical performance of the model. We provide new insight into the coupled modeling of fluid flow, heat transport of engineered geothermal reservoirs with focus on the thermal stress changes during the stimulation process. We further investigate the interplay of thermal and poro-elastic stress changes in the reservoir

  12. Incorporating Water Boiling in the Numerical Modelling of Thermal Remediation by Electrical Resistance Heating

    Science.gov (United States)

    Molnar, I. L.; Krol, M.; Mumford, K. G.

    2017-12-01

    Developing numerical models for subsurface thermal remediation techniques - such as Electrical Resistive Heating (ERH) - that include multiphase processes such as in-situ water boiling, gas production and recovery has remained a significant challenge. These subsurface gas generation and recovery processes are driven by physical phenomena such as discrete and unstable gas (bubble) flow as well as water-gas phase mass transfer rates during bubble flow. Traditional approaches to multiphase flow modeling soil remain unable to accurately describe these phenomena. However, it has been demonstrated that Macroscopic Invasion Percolation (MIP) can successfully simulate discrete and unstable gas transport1. This has lead to the development of a coupled Electro Thermal-MIP Model2 (ET-MIP) capable of simulating multiple key processes in the thermal remediation and gas recovery process including: electrical heating of soil and groundwater, water flow, geological heterogeneity, heating-induced buoyant flow, water boiling, gas bubble generation and mobilization, contaminant mass transport and removal, and additional mechanisms such as bubble collapse in cooler regions. This study presents the first rigorous validation of a coupled ET-MIP model against two-dimensional water boiling and water/NAPL co-boiling experiments3. Once validated, the model was used to explore the impact of water and co-boiling events and subsequent gas generation and mobilization on ERH's ability to 1) generate, expand and mobilize gas at boiling and NAPL co-boiling temperatures, 2) efficiently strip contaminants from soil during both boiling and co-boiling. In addition, a quantification of the energy losses arising from steam generation during subsurface water boiling was examined with respect to its impact on the efficacy of thermal remediation. While this study specifically targets ERH, the study's focus on examining the fundamental mechanisms driving thermal remediation (e.g., water boiling) renders

  13. ALGE3D: A Three-Dimensional Transport Model

    Science.gov (United States)

    Maze, G. M.

    2017-12-01

    Of the top 10 most populated US cities from a 2015 US Census Bureau estimate, 7 of the cities are situated near the ocean, a bay, or on one of the Great Lakes. A contamination of the water ways in the United States could be devastating to the economy (through tourism and industries such as fishing), public health (from direct contact, or contaminated drinking water), and in some cases even infrastructure (water treatment plants). Current national response models employed by emergency response agencies have well developed models to simulate the effects of hazardous contaminants in riverine systems that are primarily driven by one-dimensional flows; however in more complex systems, such as tidal estuaries, bays, or lakes, a more complex model is needed. While many models exist, none are capable of quick deployment in emergency situations that could contain a variety of release situations including a mixture of both particulate and dissolved chemicals in a complex flow area. ALGE3D, developed at the Department of Energy's (DOE) Savannah River National Laboratory (SRNL), is a three-dimensional hydrodynamic code which solves the momentum, mass, and energy conservation equations to predict the movement and dissipation of thermal or dissolved chemical plumes discharged into cooling lakes, rivers, and estuaries. ALGE3D is capable of modeling very complex flows, including areas with tidal flows which include wetting and drying of land. Recent upgrades have increased the capabilities including the transport of particulate tracers, allowing for more complete modeling of the transport of pollutants. In addition the model is capable of coupling with a one-dimension riverine transport model or a two-dimension atmospheric deposition model in the event that a contamination event occurs upstream or upwind of the water body.

  14. Microscale solid-state thermal diodes enabling ambient temperature thermal circuits for energy applications

    KAUST Repository

    Wang, Song

    2017-05-10

    Thermal diodes, or devices that transport thermal energy asymmetrically, analogous to electrical diodes, hold promise for thermal energy harvesting and conservation, as well as for phononics or information processing. The junction of a phase change material and phase invariant material can form a thermal diode; however, there are limited constituent materials available for a given target temperature, particularly near ambient. In this work, we demonstrate that a micro and nanoporous polystyrene foam can house a paraffin-based phase change material, fused to PMMA, to produce mechanically robust, solid-state thermal diodes capable of ambient operation with Young\\'s moduli larger than 11.5 MPa and 55.2 MPa above and below the melting transition point, respectively. Moreover, the composites show significant changes in thermal conductivity above and below the melting point of the constituent paraffin and rectification that is well-described by our previous theory and the Maxwell–Eucken model. Maximum thermal rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences – analogous to an electrical diode bridge with widespread implications for transient thermal energy harvesting and conservation. Overall, our approach yields mechanically robust, solid-state thermal diodes capable of engineering design from a mathematical model of phase change and thermal transport, with implications for energy harvesting.

  15. Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition

    Energy Technology Data Exchange (ETDEWEB)

    Menges, F.; Spieser, M.; Riel, H.; Gotsmann, B., E-mail: bgo@zurich.ibm.com [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Dittberner, M. [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Novotny, L. [Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Passarello, D.; Parkin, S. S. P. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States)

    2016-04-25

    The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-based scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.

  16. An electro-thermal model and its application on a spiral-wound lithium ion battery with porous current collectors

    International Nuclear Information System (INIS)

    Ye, Yonghuang; Shi, Yixiang; Saw, Lip Huat; Tay, Andrew A.O.

    2014-01-01

    Highlights: • A local electro-thermal model is developed to verify the validity of a lump electro-thermal model. • Comparisons on edge effect of batteries with porous current collectors and batteries normal current collector foil. • Investigation on thermal performance of novel battery with porous current collector sheets. - Abstract: A local electro-thermal model for a spiral-wound lithium ion battery is developed to provide detailed and local insights of electrochemistry, transport phenomenon and heat transfer processes in spiral-wound geometries. The discharging potential, bulk heat generation rate, battery surface temperature and the temperature distribution within battery predicted by the model are used to verify a lumped electro-thermal model. The results show good agreement between the lumped electro-thermal model and the local electro-thermal model. The edge effect is investigated using the local electro-thermal model. And the results indicate that a novel battery with porous current collector sheets has a higher utilization rate of porous electrode materials than a commercial battery with normal current collector foils. The novel battery with porous current collector sheets is also investigated using the local electro-thermal model, simulation results show smaller liquid phase potential gradient and smaller liquid concentration gradient in the novel battery. The increased electrical resistance has minor effect on the overall heat generation within the battery when the porous current collector is employed, while it reduces the discharging potential of the battery

  17. Experimental validation of new empirical models of the thermal properties of food products for safe shipping

    Science.gov (United States)

    Hamid, Hanan H.; Mitchell, Mark; Jahangiri, Amirreza; Thiel, David V.

    2018-04-01

    Temperature controlled food transport is essential for human safety and to minimise food waste. The thermal properties of food are important for determining the heat transfer during the transient stages of transportation (door opening during loading and unloading processes). For example, the temperature of most dairy products must be confined to a very narrow range (3-7 °C). If a predefined critical temperature is exceeded, the food is defined as spoiled and unfit for human consumption. An improved empirical model for the thermal conductivity and specific heat capacity of a wide range of food products was derived based on the food composition (moisture, fat, protein, carbohydrate and ash). The models that developed using linear regression analysis were compared with the published measured parameters in addition to previously published theoretical and empirical models. It was found that the maximum variation in the predicated thermal properties leads to less than 0.3 °C temperature change. The correlation coefficient for these models was 0.96. The t-Stat test ( P-value >0.99) demonstrated that the model results are an improvement on previous works. The transient heat transfer based on the food composition and the temperature boundary conditions was found for a Camembert cheese (short cylindrical shape) using a multiple dimension finite difference method code. The result was verified using the heat transfer today (HTT) educational software which is based on finite volume method. The core temperature rises from the initial temperature (2.7 °C) to the maximum safe temperature in ambient air (20.24 °C) was predicted to within about 35.4 ± 0.5 min. The simulation results agree very well ( +0.2 °C) with the measured temperature data. This improved model impacts on temperature estimation during loading and unloading the trucks and provides a clear direction for temperature control in all refrigerated transport applications.

  18. Wide-range measurement of thermal effusivity using molybdenum thin film with low thermal conductivity for thermal microscopes

    Science.gov (United States)

    Miyake, Shugo; Matsui, Genzou; Ohta, Hiromichi; Hatori, Kimihito; Taguchi, Kohei; Yamamoto, Suguru

    2017-07-01

    Thermal microscopes are a useful technology to investigate the spatial distribution of the thermal transport properties of various materials. However, for high thermal effusivity materials, the estimated values of thermophysical parameters based on the conventional 1D heat flow model are known to be higher than the values of materials in the literature. Here, we present a new procedure to solve the problem which calculates the theoretical temperature response with the 3D heat flow and measures reference materials which involve known values of thermal effusivity and heat capacity. In general, a complicated numerical iterative method and many thermophysical parameters are required for the calculation in the 3D heat flow model. Here, we devised a simple procedure by using a molybdenum (Mo) thin film with low thermal conductivity on the sample surface, enabling us to measure over a wide thermal effusivity range for various materials.

  19. Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces

    Science.gov (United States)

    Sun, Chao; Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef

    2017-11-01

    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchet-like roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the Large Scale Circulation Roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. This work is financially supported by the Natural Science Foundation of China under Grant No. 11672156, the Dutch Foundation for Fundamental Research on Matter (FOM), the Dutch Technology Foundation (STW) and a VIDI Grant.

  20. Thermal and shielding layout of the transport and storage container Asse TB1

    International Nuclear Information System (INIS)

    Kessels, W.; Muth, M.; Gross, S.; Pfeifer, S.; Kolditz, H.

    1985-01-01

    A large spectrum has been devoted to the general questions of the thermal and radiological calculations, the nuclide content of the different types of waste and to the layout of an optimum transport container. This also concerns the considerations in case of fire, since upon inserting a transport container into a mine particular importance is attached to the possible liberation of toxic materials under these circumstances. It was possible to construct a transport container with a weight less than 10 t in such a way that it is suitable to transport and store the planned vitrified HLW according to DWK-specifications in a final repository borehole. (orig./HP) [de

  1. Models for the transport of low energy electrons in water and the yield of hydrated electrons at early times

    International Nuclear Information System (INIS)

    Brenner, D.J.; Miller, J.H.; Ritchie, R.H.; Bichsel, H.

    1985-01-01

    An insulator model with four experimental energy bands was used to fit the optical properties of liquid water and to extend these data to non-zero momentum transfer. Inelastic mean free paths derived from this dielectric response function provided the basic information necessary to degrade high energy electrons to the subexcitation energy domain. Two approaches for the transport of subexcitation electrons were investigated. (i) Gas phase cross sections were used to degrade subexcitation electrons to thermal energy and the thermalization lengths were scaled to unit density. (ii) Thermalization lengths were estimated by age-diffusion theory with a stopping power deduced from the data on liquid water and transport cross sections derived from elastic scattering in water vapor. Theoretical ranges were compared to recent experimental results. A stochastic model was used to calculate the rapid diffusion and reaction of hydrated electrons with other radiolysis products. The sensitivity of the calculated yields to the model assumptions and comparison with experimental data are discussed

  2. An immersed body method for coupled neutron transport and thermal hydraulic simulations of PWR assemblies

    International Nuclear Information System (INIS)

    Jewer, S.; Buchan, A.G.; Pain, C.C.; Cacuci, D.G.

    2014-01-01

    Highlights: • A new method of coupled radiation transport, heat and momentum exchanges on fluids, and heat transfer simulations. • Simulation of the thermal hydraulics and radiative properties within whole PWR assemblies. • An immersed body method for modelling complex solid domains on practical computational meshes. - Abstract: A recently developed immersed body method is adapted and used to model a typical pressurised water reactor (PWR) fuel assembly. The approach is implemented with the numerical framework of the finite element, transient criticality code, FETCH which is composed of the neutron transport code, EVENT, and the CFD code, FLUIDITY. Within this framework the neutron transport equation, Navier–Stokes equations and a fluid energy conservation equation are solved in a coupled manner on a coincident structured or unstructured mesh. The immersed body method has been used to model the solid fuel pins. The key feature of this method is that the fluid/neutronic domain and the solid domain are represented by overlapping and non-conforming meshes. The main difficulty of this approach, for which a solution is proposed in this work, is the conservative mapping of the energy and momentum exchange between the fluid/neutronic mesh and the solid fuel pin mesh. Three numerical examples are presented which include a validation of the fuel pin submodel against an analytical solution; an uncoupled (no neutron transport solution) PWR fuel assembly model with a specified power distribution which was validated against the COBRA-EN subchannel analysis code; and finally a coupled model of a PWR fuel assembly with reflective neutron boundary conditions. Coupling between the fluid and neutron transport solutions is through the nuclear cross sections dependence on Doppler fuel temperature, coolant density and temperature, which was taken into account by using pre-calculated cross-section lookup tables generated using WIMS9a. The method was found to show good agreement

  3. A thermal model for czochralski silicon crystal growth with an axial magnetic field

    Science.gov (United States)

    Hjellming, L. N.

    1990-07-01

    This paper presents a thermal model for molten silicon in a Czochralski crystal puller system with an applied uniform axial magnetic field. The melt depth is treated as continually decreasing, which affects the thermal environment of the melt and crystal. The radiative heat loss and the input heat flux are treated as functions of time, with a constraint placed on the heat lost to the crystal from the melt. As the melt motion reaches a steady state rapidly, the temperature and flow fields are treated as instantaneously steady at each melt depth. The heat transport is a mixture of conduction and convection, and by considering the crystal and crucible to be rotating with the same angular velocity, the flows driven by buoyancy and thermocapillarity are isolated and provide the convective heat transport in the melt for the range of magnetic field strengths 0.2 ≤ B ≤ 1.0T.

  4. Development of numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    P. Dobson

    2004-01-01

    This report describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain, Nevada. Numerical grid generation is an integral part of the development of the unsaturated zone (UZ) flow and transport model, a complex, three-dimensional (3-D) model of Yucca Mountain. This revision contains changes made to improve the clarity of the description of grid generation. The numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal-loading conditions. The technical scope, content, and management for the current revision of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 2). Grids generated and documented in this report supersede those documented in Revision 00 of this report, ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2001 [DIRS 159356]). The grids presented in this report are the same as those developed in Revision 01 (BSC 2003 [DIRS 160109]); however, the documentation of the development of the grids in Revision 02 has been updated to address technical inconsistencies and achieve greater transparency, readability, and traceability. The constraints, assumptions, and limitations associated with this report are discussed in the appropriate sections that follow

  5. Use of advanced modeling techniques to optimize thermal packaging designs.

    Science.gov (United States)

    Formato, Richard M; Potami, Raffaele; Ahmed, Iftekhar

    2010-01-01

    during its validation. Thermal packaging is routinely used by the pharmaceutical industry to provide passive and active temperature control of their thermally sensitive products from manufacture through end use (termed the cold chain). In this study, the authors focus on passive temperature control (passive control does not require any external energy source and is entirely based on specific and/or latent heat of shipper components). As temperature-sensitive pharmaceuticals are being transported over longer distances, cold chain reliability is essential. To achieve reliability, a significant amount of time and resources must be invested in design, test, and production of optimized temperature-controlled packaging solutions. To shorten the cumbersome trial and error approach (design/test/design/test …), computer simulation (virtual prototyping and testing of thermal shippers) is a promising method. Although several companies have attempted to develop such a tool, there has been limited success to date. Through a detailed case study the authors demonstrate, for the first time, the capability of using advanced modeling techniques to correctly simulate the transient temperature response of a coupled conductive/convective-based thermal shipper. A modeling technique capable of correctly capturing shipper thermal behavior can be used to develop packaging designs more quickly, reducing up-front costs while also improving shipper performance.

  6. Electron thermal transport in tokamak: ETG or TEM turbulences?

    International Nuclear Information System (INIS)

    Lin, Z.; Chen, L.; Nishimura, Y.; Qu, H.; Hahm, T.S.; Lewandowski, J.; Rewoldt, G.; Wang, W.X.; Diamond, P.H.; Holland, C.; Zonca, F.; Li, Y.

    2005-01-01

    This paper reports progress on numerical and theoretical studies of electron transport in tokamak including: (1) electron temperature gradient turbulence; (2) trapped electron mode turbulence; and (3) a new finite element solver for global electromagnetic simulation. In particular, global gyrokinetic particle simulation and nonlinear gyrokinetic theory find that electron temperature gradient (ETG) instability saturates via nonlinear toroidal couplings, which transfer energy successively from unstable modes to damped modes preferably with longer poloidal wavelengths. The electrostatic ETG turbulence is dominated by nonlinearly generated radial streamers. The length of streamers scales with the device size and is much longer than the distance between mode rational surfaces or electron radial excursions. Both fluctuation intensity and transport level are independent of the streamer size. These simulations with realistic plasma parameters find that the electron heat conductivity is much smaller than the experimental value and in contrast with recent findings of flux-tube simulations that ETG turbulence is responsible for the anomalous electron thermal transport in fusion plasmas. The nonlinear toroidal couplings represent a new paradigm for the spectral cascade in plasma turbulence. (author)

  7. Review of prediction for thermal contact resistance

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Theoretical prediction research on thermal contact resistance is reviewed in this paper. In general, modeling or simulating the thermal contact resistance involves several aspects, including the descriptions of surface topography, the analysis of micro mechanical deformation, and the thermal models. Some key problems are proposed for accurately predicting the thermal resistance of two solid contact surfaces. We provide a perspective on further promising research, which would be beneficial to understanding mechanisms and engineering applications of the thermal contact resistance in heat transport phenomena.

  8. THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING

    International Nuclear Information System (INIS)

    Cowan, Nicolas B.; Voigt, Aiko; Abbot, Dorian S.

    2012-01-01

    In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3× the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A pole-on observer

  9. THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics and Department of Physics and Astronomy, Northwestern University, 2131 Tech Drive, Evanston, IL 60208 (United States); Voigt, Aiko [Max Planck Institute for Meteorology, Bundesstr. 53, D-20146 Hamburg (Germany); Abbot, Dorian S., E-mail: n-cowan@nortwestern.edu [Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States)

    2012-09-20

    In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3 Multiplication-Sign the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A

  10. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Samper, J.; Montenegro, L.

    2011-04-01

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO{sub 2}(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO{sub 3}{sup -} and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

  11. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    International Nuclear Information System (INIS)

    Zheng, L.; Samper, J.; Montenegro, L.

    2011-01-01

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO 2 (g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO 3 - and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

  12. Isolating lattice from electronic contributions in thermal transport measurements of metals and alloys above ambient temperature and an adiabatic model

    Science.gov (United States)

    Criss, Everett M.; Hofmeister, Anne M.

    2017-06-01

    From femtosecond spectroscopy (fs-spectroscopy) of metals, electrons and phonons reequilibrate nearly independently, which contrasts with models of heat transfer at ordinary temperatures (T > 100 K). These electronic transfer models only agree with thermal conductivity (k) data at a single temperature, but do not agree with thermal diffusivity (D) data. To address the discrepancies, which are important to problems in solid state physics, we separately measured electronic (ele) and phononic (lat) components of D in many metals and alloys over ˜290-1100 K by varying measurement duration and sample length in laser-flash experiments. These mechanisms produce distinct diffusive responses in temperature versus time acquisitions because carrier speeds (u) and heat capacities (C) differ greatly. Electronic transport of heat only operates for a brief time after heat is applied because u is high. High Dele is associated with moderate T, long lengths, low electrical resistivity, and loss of ferromagnetism. Relationships of Dele and Dlat with physical properties support our assignments. Although kele reaches ˜20 × klat near 470 K, it is transient. Combining previous data on u with each D provides mean free paths and lifetimes that are consistent with ˜298 K fs-spectroscopy, and new values at high T. Our findings are consistent with nearly-free electrons absorbing and transmitting a small fraction of the incoming heat, whereas phonons absorb and transmit the majority. We model time-dependent, parallel heat transfer under adiabatic conditions which is one-dimensional in solids, as required by thermodynamic law. For noninteracting mechanisms, k≅ΣCikiΣCi/(ΣCi2). For metals, this reduces to k = klat above ˜20 K, consistent with our measurements, and shows that Meissner’s equation (k≅klat + kele) is invalid above ˜20 K. For one mechanism with multiple, interacting carriers, k≅ΣCiki/(ΣCi). Thus, certain dynamic behaviors of electrons and phonons in metals have been

  13. Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor-Solvent Interfaces.

    Science.gov (United States)

    Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C

    2015-06-23

    We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.

  14. Probabilistic transport models for fusion

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Carreras, B.A.; Lynch, V.E.; Sanchez, R.

    2005-01-01

    A generalization of diffusive (Fickian) transport is considered, in which particle motion is described by probability distributions. We design a simple model that includes a critical mechanism to switch between two transport channels, and show that it exhibits various interesting characteristics, suggesting that the ideas of probabilistic transport might provide a framework for the description of a range of unusual transport phenomena observed in fusion plasmas. The model produces power degradation and profile consistency, as well as a scaling of the confinement time with system size reminiscent of the gyro-Bohm/Bohm scalings observed in fusion plasmas, and rapid propagation of disturbances. In the present work we show how this model may also produce on-axis peaking of the profiles with off-axis fuelling. It is important to note that the fluid limit of a simple model like this, characterized by two transport channels, does not correspond to the usual (Fickian) transport models commonly used for modelling transport in fusion plasmas, and behaves in a fundamentally different way. (author)

  15. Comet thermal modeling

    International Nuclear Information System (INIS)

    Weissman, P.R.; Kieffer, H.H.

    1987-01-01

    The past year was one of tremendous activity because of the appearance of Halley's Comet. Observations of the comet were collected from a number of sources and compared with the detailed predictions of the comet thermal modeling program. Spacecraft observations of key physical parameters for cometary nucleus were incorporated into the thermal model and new cases run. These results have led to a much better understanding of physical processes on the nucleus and have pointed the way for further improvements to the modeling program. A model for the large-scale structure of cometary nuclei was proposed in which comets were envisioned as loosely bound agglomerations of smaller icy planetesimals, essentially a rubble pile of primordial dirty snowballs. In addition, a study of the physical history of comets was begun, concentrating on processes during formation and in the Oort cloud which would alter the volatile and nonvolatile materials in cometary nuclei from their pristine state before formation

  16. Shear flow effects on ion thermal transport in tokamaks

    International Nuclear Information System (INIS)

    Tajima, T.; Horton, W.; Dong, J.Q.; Kishimoto, Y.

    1995-03-01

    From various laboratory and numerical experiments, there is clear evidence that under certain conditions the presence of sheared flows in a tokamak plasma can significantly reduce the ion thermal transport. In the presence of plasma fluctuations driven by the ion temperature gradient, the flows of energy and momentum parallel and perpendicular to the magnetic field are coupled with each other. This coupling manifests itself as significant off-diagonal coupling coefficients that give rise to new terms for anomalous transport. The authors derive from the gyrokinetic equation a set of velocity moment equations that describe the interaction among plasma turbulent fluctuations, the temperature gradient, the toroidal velocity shear, and the poloidal flow in a tokamak plasma. Four coupled equations for the amplitudes of the state variables radially extended over the transport region by toroidicity induced coupling are derived. The equations show bifurcations from the low confinement mode without sheared flows to high confinement mode with substantially reduced transport due to strong shear flows. Also discussed is the reduced version with three state variables. In the presence of sheared flows, the radially extended coupled toroidal modes driven by the ion temperature gradient disintegrate into smaller, less elongated vortices. Such a transition to smaller spatial correlation lengths changes the transport from Bohm-like to gyrobohm-like. The properties of these equations are analyzed. The conditions for the improved confined regime are obtained as a function of the momentum-energy deposition rates and profiles. The appearance of a transport barrier is a consequence of the present theory

  17. Development of irradiated UO2 thermal conductivity model

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Bang Je-Geon; Kim Dae Ho; Jung Youn Ho

    2001-01-01

    Thermal conductivity model of the irradiated UO 2 pellet was developed, based upon the thermal diffusivity data of the irradiated UO 2 pellet measured during thermal cycling. The model predicts the thermal conductivity by multiplying such separate correction factors as solid fission products, gaseous fission products, radiation damage and porosity. The developed model was validated by comparison with the variation of the measured thermal diffusivity data during thermal cycling and prediction of other UO 2 thermal conductivity models. Since the developed model considers the effect of gaseous fission products as a separate factor, it can predict variation of thermal conductivity in the rim region of high burnup UO 2 pellet where the fission gases in the matrix are precipitated into bubbles, indicating that decrease of thermal conductivity by bubble precipitation in rim region would be significantly compensated by the enhancing effect of fission gas depletion in the UO 2 matrix. (author)

  18. Numerical assessment of the ion turbulent thermal transport scaling laws

    International Nuclear Information System (INIS)

    Ottaviani, M.; Manfredi, G.

    2001-01-01

    Numerical simulations of ion temperature gradient (ITG) driven turbulence were carried out to investigate the parametric dependence of the ion thermal transport on the reduced gyroradius and on the local safety factor. Whereas the simulations show a clear proportionality of the conductivity to the gyroradius, the dependence on the safety factor cannot be represented as a simple power law like the one exhibited by the empirical scaling laws. (author)

  19. Spin-pump-induced spin transport in a thermally evaporated pentacene film

    Energy Technology Data Exchange (ETDEWEB)

    Tani, Yasuo; Shikoh, Eiji, E-mail: shikoh@elec.eng.osaka-cu.ac.jp [Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Teki, Yoshio [Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

    2015-12-14

    We report the spin-pump-induced spin transport properties of a pentacene film prepared by thermal evaporation. In a palladium(Pd)/pentacene/Ni{sub 80}Fe{sub 20} tri-layer sample, a pure spin-current is generated in the pentacene layer by the spin-pumping of Ni{sub 80}Fe{sub 20}, which is independent of the conductance mismatch problem in spin injection. The spin current is absorbed into the Pd layer, converted into a charge current with the inverse spin-Hall effect in Pd, and detected as an electromotive force. This is clear evidence for the pure spin current at room temperature in pentacene films prepared by thermal evaporation.

  20. Thermal Radiation Effects on Thermal Explosion in Polydisperse Fuel Spray-Probabilistic Model

    Directory of Open Access Journals (Sweden)

    Ophir Navea

    2011-06-01

    Full Text Available We investigate the effect of thermal radiation on the dynamics of a thermal explosion of polydisperse fuel spray with a complete description of the chemistry via a single-step two-reactant model of general order. The polydisperse spray is modeled using a Probability Density Function (PDF. The thermal radiation energy exchange between the evaporation surface of the fuel droplets and the burning gas is described using the Marshak boundary conditions. An explicit expression of the critical condition for thermal explosion limit is derived analytically and represents a generalization of the critical parameter of the classical Semenov theory. Because we investigated the model in the range where the temperature is very high, the effect of the thermal radiation is significant.

  1. Hybrid photovoltaic–thermal solar collectors dynamic modeling

    International Nuclear Information System (INIS)

    Amrizal, N.; Chemisana, D.; Rosell, J.I.

    2013-01-01

    Highlights: ► A hybrid photovoltaic/thermal dynamic model is presented. ► The model, once calibrated, can predict the power output for any set of climate data. ► The physical electrical model includes explicitly thermal and irradiance dependences. ► The results agree with those obtained through steady-state characterization. ► The model approaches the junction cell temperature through the system energy balance. -- Abstract: A hybrid photovoltaic/thermal transient model has been developed and validated experimentally. The methodology extends the quasi-dynamic thermal model stated in the EN 12975 in order to involve the electrical performance and consider the dynamic behavior minimizing constraints when characterizing the collector. A backward moving average filtering procedure has been applied to improve the model response for variable working conditions. Concerning the electrical part, the model includes the thermal and radiation dependences in its variables. The results revealed that the characteristic parameters included in the model agree reasonably well with the experimental values obtained from the standard steady-state and IV characteristic curve measurements. After a calibration process, the model is a suitable tool to predict the thermal and electrical performance of a hybrid solar collector, for a specific weather data set.

  2. MELTER: A model of the thermal response of cargos transported in the Safe-Secure Trailer subject to fire environments for risk assessment applications

    International Nuclear Information System (INIS)

    Larsen, M.E.

    1994-08-01

    MELTER is an analysis of cargo responses inside a fire-threatened Safe-Secure Trailer (SST) developed for the Defense Program Transportation Risk Assessment (DPTRA). Many simplifying assumptions are required to make the subject problem tractable. MELTER incorporates modeling which balances the competing requirements of execution speed, generality, completeness of essential physics, and robustness. Input parameters affecting the analysis include those defining the fire scenario, those defining the cargo loaded in the SST, and those defining properties of the SST. For a specified fire, SST, and cargo geometry MELTER predicts the critical fire duration that will lead to a failure. The principal features of the analysis include: (a) Geometric considerations to interpret fire-scenario descriptors in terms of a thermal radiation boundary condition, (b) a simple model of the SST's wall combining the diffusion model for radiation through optically-thick media with an endothermic reaction front to describe the charring of dimensional, rigid foam in the SST wall, (c) a transient radiation enclosure model, (d) a one-dimensional, spherical idealization of the shipped cargos providing modularity so that cargos of interest can be inserted into the model, and (e) associated numerical methods to integrate coupled, differential equations and find roots

  3. Numerical investigation of temperature distribution and thermal performance while charging-discharging thermal energy in aquifer

    International Nuclear Information System (INIS)

    Ganguly, Sayantan; Mohan Kumar, M.S.; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-01-01

    Highlights: • A 3D coupled thermo-hydrogeological numerical model of an ATES system is presented. • Importance of a few parameters involved in the study is determined. • Thermal energy discharge by the ATES system for two seasons is estimated. • A strategy and a safe well spacing are proposed to avoid thermal interference. • The proposed model is applied to simulate a real life ATES field study. - Abstract: A three-dimensional (3D) coupled thermo-hydrogeological numerical model for a confined aquifer thermal energy storage (ATES) system underlain and overlain by rock media has been presented in this paper. The ATES system operates in cyclic mode. The model takes into account heat transport processes of advection, conduction and heat loss to confining rock media. The model also includes regional groundwater flow in the aquifer in the longitudinal and lateral directions, geothermal gradient and anisotropy in the aquifer. Results show that thermal injection into the aquifer results in the generation of a thermal-front which grows in size with time. The thermal interference caused by the premature thermal-breakthrough when the thermal-front reaches the production well results in the fall of system performance and hence should be avoided. This study models the transient temperature distribution in the aquifer for different flow and geological conditions which may be effectively used in designing an efficient ATES project by ensuring safety from thermal-breakthrough while catering to the energy demand. Parameter studies are also performed which reveals that permeability of the confining rocks; well spacing and injection temperature are important parameters which influence transient heat transport in the subsurface porous media. Based on the simulations here a safe well spacing is proposed. The thermal energy produced by the system in two seasons is estimated for four different cases and strategy to avoid the premature thermal-breakthrough in critical cases is

  4. Modeling of ionic transport in solid polymer electrolytes

    International Nuclear Information System (INIS)

    Cheang, P L; Teo, L L; Lim, T L

    2010-01-01

    A Monte Carlo model describing the ionic trans port in solid polyme relectrolyte is developed. Single cation simulation is carried out using hopping rate to study the transport mechanism of a thermally activated ion in solid polymer electrolyte. In our model, the ion is able to hop along a polymer chain and to jump between different chains, surmounting energy barriers that consist of polymer's activation energy and the externally applied electric field. The model is able to trace the motion of ion across polymer electrolyte. The mean hopping distance is calculated based on the available open bond in the next nearest side. Random numbers are used to determine the hopping distances, free flight times, final energy and direction of the cation after successful hop. Drift velocity and energy of cation are simulated in our work. The model is expected to be able to simulate the lithium-polymer battery in future.

  5. Transient Mass and Thermal Transport during Methane Adsorption into the Metal-Organic Framework HKUST-1.

    Science.gov (United States)

    Babaei, Hasan; McGaughey, Alan J H; Wilmer, Christopher E

    2018-01-24

    Methane adsorption into the metal-organic framework (MOF) HKUST-1 and the resulting heat generation and dissipation are investigated using molecular dynamics simulations. Transient simulations reveal that thermal transport in the MOF occurs two orders of magnitude faster than gas diffusion. A large thermal resistance at the MOF-gas interface (equivalent to 127 nm of bulk HKUST-1), however, prevents fast release of the generated heat. The mass transport resistance at the MOF-gas interface is equivalent to 1 nm of bulk HKUST-1 and does not present a bottleneck in the adsorption process. These results provide important insights into the application of MOFs for gas storage applications.

  6. Nanoscale phase engineering of thermal transport with a Josephson heat modulator

    Science.gov (United States)

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    2016-03-01

    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  7. Modeling of Thermal Behavior of Raw Natural Gas Air Coolers

    Science.gov (United States)

    Scherbinin, S. V.; Prakhova, M. Yu; Krasnov, A. N.; Khoroshavina, E. A.

    2018-05-01

    When gas is being prepared for a long-range transportation, it passes through air cooling units (ACUs) after compressing; there, hot gas passing through finned tubes is cooled with air streams. ACU's mode of operation shall ensure a certain value of gas temperature at the ACU's outlet. At that, when cooling raw gas, temperature distribution along all the tubes shall be known to prevent local hydrate formation. The paper proposes a mathematical model allowing one to obtain a thermal field distribution inside the ACU and study influence of various factors onto it.

  8. Thermal generation and mobility of charge carriers in collective proton transport in hydrogen-bonded chains

    International Nuclear Information System (INIS)

    Peyrard, M.; Boesch, R.; Kourakis, I.

    1991-01-01

    The transport of protons in hydrogen-bonded systems is a long standing problem which has not yet obtained a satisfactorily theoretical description. Although this problem was examined first for ice, it is relevant in many systems and in particular in biology for the transport along proteins or for proton conductance across membranes, an essential process in cell life. The broad relevance makes the study of proton conduction very appealing. Since the original work of Bernal and Fowler on ice, the idea that the transport occurs through chains of hydrogen bonds has been well accepted. Such ''proton wires'' were invoked by Nagle and Morowitz for proton transport across membranes proteins and more recently across lipid bilayers. In this report, we assume the existence of such an hydrogen-bonded chain and discuss its consequences on the dynamics of the charge carriers. We show that this assumption leads naturally to the idea of soliton transport and we put a special emphasis on the role of the coupling between the protons and heavy ions motions. The model is presented. We show how the coupling affects strongly the dynamics of the charge carriers and we discuss the role it plays in the thermal generation of carriers. The work presented has been performed in 1986 and 87 with St. Pnevmatikos and N. Flyzanis and was then completed in collaboration with D. Hochstrasser and H. Buettner. Therefore the results presented in this part are not new but we think that they are appropriate in the context of this multidisciplinary workshop because they provide a rather complete example of the soliton picture for proton conduction. This paper discusses the thermal generation of the charge carriers when the coupling between the protons and heavy ions dynamics is taken into account. The results presented in this part are very recent and will deserve further analysis but they already show that the coupling can assist for the formation of the charge carriers

  9. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall.

    Science.gov (United States)

    Huang, Shiping; Hu, Mengyu; Huang, Yonghui; Cui, Nannan; Wang, Weifeng

    2018-04-17

    The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry.

  10. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall

    Directory of Open Access Journals (Sweden)

    Shiping Huang

    2018-04-01

    Full Text Available The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry.

  11. Modelling of transport phenomena

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi.

    1993-09-01

    In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the anomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confinement modes, and the sudden jumps such as L-H transition. Starting from the formalism of the transport matrix, the modelling based on the low frequency instabilities are reviewed. Theoretical results in the range of drift wave frequency are examined. Problems in theories based on the quasilinear and mixing-length estimates lead to the renewal of the turbulence theory, and the physics picture of the self-sustained turbulence is discussed. The theory of transport using the fluid equation of plasma is developed, showing that the new approach is very promising in explaining abovementioned characteristics of anomalous transport in both L-mode and improved confinement plasmas. The interference of the fluxes is the key to construct the physics basis of the bifurcation theory for the L-H transition. The present status of theories on the mechanisms of improved confinement is discussed. Modelling on the nonlocal nature of transport is briefly discussed. Finally, the impact of the anomalous transport on disruptive phenomena is also described. (author) 95 refs

  12. Thermal-mechanical deformation modelling of soft tissues for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Jazar, Reza; Subic, Aleksandar

    2014-01-01

    Modeling of thermal-induced mechanical behaviors of soft tissues is of great importance for thermal ablation. This paper presents a method by integrating the heating process with thermal-induced mechanical deformations of soft tissues for simulation and analysis of the thermal ablation process. This method combines bio-heat transfer theories, constitutive elastic material law under thermal loads as well as non-rigid motion dynamics to predict and analyze thermal-mechanical deformations of soft tissues. The 3D governing equations of thermal-mechanical soft tissue deformation are discretized by using the finite difference scheme and are subsequently solved by numerical algorithms. Experimental results show that the proposed method can effectively predict the thermal-induced mechanical behaviors of soft tissues, and can be used for the thermal ablation therapy to effectively control the delivered heat energy for cancer treatment.

  13. Application of a calculational model for thermal neutrons through biological shields

    Energy Technology Data Exchange (ETDEWEB)

    Hathout, A M [Nuclear engineering safety department, national center for nuclear safety and radiation, Nasr City Cairo, (Egypt)

    1995-10-01

    In this work a computational program, based on the Boltzmann transport integrodifferential equation, is applied. The scattering kernel is represented by the synthetic scattering model. The behaviour of thermal neutron in hydrogenous materials, which can be used as biological shields, are studied. These materials are water, polyethylene, Oak-Ridge concrete, ordinary concrete and manganese concrete. The data obtained are presented in tables. The results are analysed and compared with similar experimental values. Safety evaluation and environmental impact are discussed. 2 tabs.

  14. Thermal transport properties of niobium and some niobium base alloys from 80 to 16000K

    International Nuclear Information System (INIS)

    Moore, J.P.; Graves, R.S.; Williams, R.K.

    1980-01-01

    The electrical resistivities and absolute Seebeck coefficients of 99.8 at. % niobium with a RRR of 36, Nb-4.8 at. % W, Nb-5 at. % Mo, Nb-10 at. % Mo, and Nb-2.4 at. % Mo-2.4 at. % Zr were measured from 80 to 1600 0 K, and the thermal conductivities of the niobium and Nb-5 at. % W were measured from 80 to 1300 0 K. A technique is described for measuring the electrical resistivity and Seebeck coefficient of a specimen during radial heat flow measurements of the thermal conductivity. The transport property results, which had uncertainties of +-0.4%for electrical resistivity and +-1.4% for thermal conductivity, showed the influence of tungsten and molybdenum solutes on the transport properties of niobium and were used to obtain the electronic Lorenz function of pure niobium, which was found to approach the Sommerfeld value at high temperatures

  15. Development of Numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    Hinds, J.

    2001-01-01

    This Analysis/Model Report (AMR) describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of a complex, three-dimensional (3-D) model, such as the Unsaturated-Zone Flow and Transport Model (UZ Model) of Yucca Mountain. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal loading conditions. Revision 00 of the work described herein follows the planning and work direction outlined in the ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (CRWMS M and O 1999c). The technical scope, content, and management of ICN 01 of this AMR is currently controlled by the planning document, ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001 b, Addendum B, Section 4.1). The steps involved in numerical grid development include: (1) defining the location of important calibration features, (2) determining model grid layers and fault geometry based on the Geologic Framework Model (GFM), the Integrated Site Model (ISM), and definition of hydrogeologic units (HGUs), (3) analyzing and extracting GFM and ISM data pertaining to layer contacts and property distributions, (4) discretizing and refining the two-dimensional (2-D), plan-view numerical grid, (5) generating the 3-D grid with finer resolution at the repository horizon and within the Calico Hills nonwelded (CHn) hydrogeologic unit, and (6) formulating the dual-permeability mesh. The

  16. Predictive modelling of edge transport phenomena in ELMy H-mode tokamak fusion plasmas

    International Nuclear Information System (INIS)

    Loennroth, J.-S.

    2009-01-01

    This thesis discusses a range of work dealing with edge plasma transport in magnetically confined fusion plasmas by means of predictive transport modelling, a technique in which qualitative predictions and explanations are sought by running transport codes equipped with models for plasma transport and other relevant phenomena. The focus is on high confinement mode (H-mode) tokamak plasmas, which feature improved performance thanks to the formation of an edge transport barrier. H-mode plasmas are generally characterized by the occurrence of edge localized modes (ELMs), periodic eruptions of particles and energy, which limit confinement and may turn out to be seriously damaging in future tokamaks. The thesis introduces schemes and models for qualitative study of the ELM phenomenon in predictive transport modelling. It aims to shed new light on the dynamics of ELMs using these models. It tries to explain various experimental observations related to the performance and ELM-behaviour of H-mode plasmas. Finally, it also tries to establish more generally the potential effects of ripple-induced thermal ion losses on H-mode plasma performance and ELMs. It is demonstrated that the proposed ELM modelling schemes can qualitatively reproduce the experimental dynamics of a number of ELM regimes. Using a theory-motivated ELM model based on a linear instability model, the dynamics of combined ballooning-peeling mode ELMs is studied. It is shown that the ELMs are most often triggered by a ballooning mode instability, which renders the plasma peeling mode unstable, causing the ELM to continue in a peeling mode phase. Understanding the dynamics of ELMs will be a key issue when it comes to controlling and mitigating the ELMs in future large tokamaks. By means of integrated modelling, it is shown that an experimentally observed increase in the ELM frequency and deterioration of plasma confinement triggered by external neutral gas puffing might be due to a transition from the second to

  17. Modeling thermal inkjet and cell printing process using modified pseudopotential and thermal lattice Boltzmann methods

    Science.gov (United States)

    Sohrabi, Salman; Liu, Yaling

    2018-03-01

    Pseudopotential lattice Boltzmann methods (LBMs) can simulate a phase transition in high-density ratio multiphase flow systems. If coupled with thermal LBMs through equation of state, they can be used to study instantaneous phase transition phenomena with a high-temperature gradient where only one set of formulations in an LBM system can handle liquid, vapor, phase transition, and heat transport. However, at lower temperatures an unrealistic spurious current at the interface introduces instability and limits its application in real flow system. In this study, we proposed new modifications to the LBM system to minimize a spurious current which enables us to study nucleation dynamic at room temperature. To demonstrate the capabilities of this approach, the thermal ejection process is modeled as one example of a complex flow system. In an inkjet printer, a thermal pulse instantly heats up the liquid in a microfluidic chamber and nucleates bubble vapor providing the pressure pulse necessary to eject droplets at high speed. Our modified method can present a more realistic model of the explosive vaporization process since it can also capture a high-temperature/density gradient at nucleation region. Thermal inkjet technology has been successfully applied for printing cells, but cells are susceptible to mechanical damage or death as they squeeze out of the nozzle head. To study cell deformation, a spring network model, representing cells, is connected to the LBM through the immersed boundary method. Looking into strain and stress distribution of a cell membrane at its most deformed state, it is found that a high stretching rate effectively increases the rupture tension. In other words, membrane deformation energy is released through creation of multiple smaller nanopores rather than big pores. Overall, concurrently simulating multiphase flow, phase transition, heat transfer, and cell deformation in one unified LB platform, we are able to provide a better insight into the

  18. Modeling thermal inkjet and cell printing process using modified pseudopotential and thermal lattice Boltzmann methods.

    Science.gov (United States)

    Sohrabi, Salman; Liu, Yaling

    2018-03-01

    Pseudopotential lattice Boltzmann methods (LBMs) can simulate a phase transition in high-density ratio multiphase flow systems. If coupled with thermal LBMs through equation of state, they can be used to study instantaneous phase transition phenomena with a high-temperature gradient where only one set of formulations in an LBM system can handle liquid, vapor, phase transition, and heat transport. However, at lower temperatures an unrealistic spurious current at the interface introduces instability and limits its application in real flow system. In this study, we proposed new modifications to the LBM system to minimize a spurious current which enables us to study nucleation dynamic at room temperature. To demonstrate the capabilities of this approach, the thermal ejection process is modeled as one example of a complex flow system. In an inkjet printer, a thermal pulse instantly heats up the liquid in a microfluidic chamber and nucleates bubble vapor providing the pressure pulse necessary to eject droplets at high speed. Our modified method can present a more realistic model of the explosive vaporization process since it can also capture a high-temperature/density gradient at nucleation region. Thermal inkjet technology has been successfully applied for printing cells, but cells are susceptible to mechanical damage or death as they squeeze out of the nozzle head. To study cell deformation, a spring network model, representing cells, is connected to the LBM through the immersed boundary method. Looking into strain and stress distribution of a cell membrane at its most deformed state, it is found that a high stretching rate effectively increases the rupture tension. In other words, membrane deformation energy is released through creation of multiple smaller nanopores rather than big pores. Overall, concurrently simulating multiphase flow, phase transition, heat transfer, and cell deformation in one unified LB platform, we are able to provide a better insight into the

  19. Impact of thermal conductivity models on the coupling of heat transport, oxygen diffusion, and deformation in (U, Pu)O nuclear fuel elements

    Science.gov (United States)

    Mihaila, Bogdan; Stan, Marius; Crapps, Justin; Yun, Di

    2013-02-01

    We study the coupled thermal transport, oxygen diffusion, and thermal expansion in a generic nuclear fuel rod consisting of a (U) fuel pellet separated by a helium gap from zircaloy cladding. Steady-state and time-dependent finite-element simulations with a variety of initial- and boundary-value conditions are used to study the effect of the Pu content, y, and deviation from stoichiometry, x, on the temperature and deformation profiles in this fuel element. We find that the equilibrium radial temperature and deformation profiles are most sensitive to x at small values of y. For larger values of y, the effects of oxygen and Pu content are equally important. Following a change in the heat-generation rate, the centerline temperature, the radial deformation of the fuel pellet, and the centerline deviation from stoichiometry track each other closely in (U,Pu)O, as the characteristic time scales of the heat transport and oxygen diffusion are similar. This result is different from the situation observed in the case of UO fuels.

  20. Prediction of Thermal Transport Properties of Materials with Microstructural Complexity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Youping

    2017-10-10

    This project aims at overcoming the major obstacle standing in the way of progress in dynamic multiscale simulation, which is the lack of a concurrent atomistic-continuum method that allows phonons, heat and defects to pass through the atomistic-continuum interface. The research has led to the development of a concurrent atomistic-continuum (CAC) methodology for multiscale simulations of materials microstructural, mechanical and thermal transport behavior. Its efficacy has been tested and demonstrated through simulations of dislocation dynamics and phonon transport coupled with microstructural evolution in a variety of materials and through providing visual evidences of the nature of phonon transport, such as showing the propagation of heat pulses in single and polycrystalline solids is partially ballistic and partially diffusive. In addition to providing understanding on phonon scattering with phase interface and with grain boundaries, the research has contributed a multiscale simulation tool for understanding of the behavior of complex materials and has demonstrated the capability of the tool in simulating the dynamic, in situ experimental studies of nonequilibrium transient transport processes in material samples that are at length scales typically inaccessible by atomistically resolved methods.

  1. Aquifer Thermal Energy Storage as an ecosystem service for Brussels, Belgium: investigating iron (hydr)oxide precipitation with reactive transport modeling

    Science.gov (United States)

    Anibas, Christian; Possemiers, Mathias; Huysmans, Marijke

    2016-04-01

    In an evolving energy system it is important that urbanized areas contribute to their own energy demands. To reduce greenhouse gas emissions sustainable energy systems with a high efficiency are required, e.g. using urban aquifers as an ecosystem service. Here the potential of seasonal aquifer thermal energy storage and recovery (ATES) for the Brussels-Capital Region, Belgium is investigated. An important shallow geologic formation in the Brussels Capital Region is the Brussels Sand formation, a 20-60 m thick phreatic aquifer. The Brussels Sand Formation is known for its potential for ATES systems, but also for its varying redox and hydraulic conditions. Important limiting factors for ATES systems in the Brussels Sand Formation therefore are the hydraulic conductivity and the geochemical composition of the groundwater. Near the redox boundary iron hydroxide precipitation can negatively influence ATES well performance due to clogging. The interactions between physical processes (e.g. particle transport and clogging in the wider proximity of the ATES well) and chemical processes (e.g. influence of the operation temperatures on precipitation processes) during ATES operation are complex but not well understood. Therefore we constructed numerical groundwater flow models in MODFLOW to estimate maximum pumping and injection rates of different hydraulic conditions and competing water uses in the Brussels Sand Formation. In further steps the thermal potential for ATES was quantified using MT3DMS and the reactive transport model PHT3D was applied to assess the effects of operating ATES systems near the redox boundary. Results show that initial mixing plays an important role in the development of iron(hydr)oxide precipitation around the ATES wells, with the highest concentrations around the cold wells. This behavior is enhanced by the temperature effect; temperature differences of ΔT≈10°C already influence the iron (hydr)oxide concentration. The initial injection into the

  2. Modeling of Thermal Barrier Coatings

    Science.gov (United States)

    Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.

    1992-01-01

    The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.

  3. Rectenna thermal model development

    Science.gov (United States)

    Kadiramangalam, Murall; Alden, Adrian; Speyer, Daniel

    1992-01-01

    Deploying rectennas in space requires adapting existing designs developed for terrestrial applications to the space environment. One of the major issues in doing so is to understand the thermal performance of existing designs in the space environment. Toward that end, a 3D rectenna thermal model has been developed, which involves analyzing shorted rectenna elements and finite size rectenna element arrays. A shorted rectenna element is a single element whose ends are connected together by a material of negligible thermal resistance. A shorted element is a good approximation to a central element of a large array. This model has been applied to Brown's 2.45 GHz rectenna design. Results indicate that Brown's rectenna requires redesign or some means of enhancing the heat dissipation in order for the diode temperature to be maintained below 200 C above an output power density of 620 W/sq.m. The model developed in this paper is very general and can be used for the analysis and design of any type of rectenna design of any frequency.

  4. Impact of tensile strain on the thermal transport of zigzag hexagonal boron nitride nanoribbon: An equilibrium molecular dynamics study

    Science.gov (United States)

    Navid, Ishtiaque Ahmed; Intisar Khan, Asir; Subrina, Samia

    2018-02-01

    The thermal conductivity of single layer strained hexagonal boron nitride nanoribbon (h-BNNR) has been computed using the Green—Kubo formulation of Equilibrium Molecular Dynamics (EMD) simulation. We have investigated the impact of strain on thermal transport of h-BNNR by varying the applied tensile strain from 1% upto 5% through uniaxial loading. The thermal conductivity of h-BNNR decreases monotonically with the increase of uniaxial tensile strain keeping the sample size and temperature constant. The thermal conductivity can be reduced upto 86% for an applied uniaxial tensile strain of 5%. The impact of temperature and width variation on the thermal conductivity of h-BNNR has also been studied under different uniaxial tensile strain conditions. With the increase in temperature, the thermal conductivity of strained h-BNNR exhibits a decaying characteristics whereas it shows an opposite pattern with the increasing width. Such study would provide a good insight on the strain tunable thermal transport for the potential device application of boron nitride nanostructures.

  5. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  6. Thermal explosion models

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Tso Chin [Malaya Univ., Kuala Lumpur (Malaysia)

    1984-12-01

    The phenomenon of thermal explosion arises in several important safety problems, yet scientists are still baffled by its origin. This article reviews some of the models that have been proposed to explain the phenomenon.

  7. Thermal transport through Ge-rich Ge/Si superlattices grown on Ge(0 0 1)

    Science.gov (United States)

    Thumfart, L.; Carrete, J.; Vermeersch, B.; Ye, N.; Truglas, T.; Feser, J.; Groiss, H.; Mingo, N.; Rastelli, A.

    2018-01-01

    The cross-plane thermal conductivities of Ge-rich Si/Ge superlattices have been measured using both time-domain thermoreflectance and the differential 3ω method. The superlattices were grown by molecular beam epitaxy on Ge(0 0 1) substrates. Crystal quality and structural information were investigated by x-ray diffractometry and transmission electron microscopy. The influence of segregation during growth on the composition profiles was modeled using the experimental growth temperatures and deposition rates. Those profiles were then employed to obtain parameter-free theoretical estimates of the thermal conductivity by combining first-principles calculations, Boltzmann transport theory and phonon Green’s functions. Good agreement between theory and experiment is observed. The thermal conductivity shows a strong dependence on the composition and the thickness of the samples. Moreover, the importance of the composition profile is reflected in the fact that the thermal conductivity of the superlattices is considerably lower than predicted values for alloys with the same average composition and thickness. Measurement on different samples with the same Si layer thickness and number of periods, but different Ge layer thickness, show that the thermal resistance is only weakly dependent on the Ge layers. We analyze this phenomenon based on the first-principles mode, and build an approximate parametrization showing that, in this regime, the resistivity of a SL is roughly linear on the amount of Si.

  8. Nonlinear thermal reduced model for Microwave Circuit Analysis

    OpenAIRE

    Chang, Christophe; Sommet, Raphael; Quéré, Raymond; Dueme, Ph.

    2004-01-01

    With the constant increase of transistor power density, electro thermal modeling is becoming a necessity for accurate prediction of device electrical performances. For this reason, this paper deals with a methodology to obtain a precise nonlinear thermal model based on Model Order Reduction of a three dimensional thermal Finite Element (FE) description. This reduced thermal model is based on the Ritz vector approach which ensure the steady state solution in every case. An equi...

  9. Improving efficiency of transport fuels production by thermal hydrolysis of waste activated sludge

    Science.gov (United States)

    Gulshin, Igor

    2017-10-01

    The article deals with issues of transport biofuels. Transport biofuels are an important element of a system of energy security. Moreover, as part of a system it is inextricably linked to the urban, rural or industrial infrastructure. The paper discusses methods of increasing the yield of biogas from anaerobic digesters at wastewater treatment plants. The thermal hydrolysis method was considered. The main advantages and drawbacks of this method were analyzed. The experimental biomass (from SNDOD-bioreactor) and high-organic substrate have been previously studied by respirometry methods. A biomethane potential of the investigated organic substrate has high rates because of substrate composition (the readily biodegradable substrate in the total composition takes about 85%). Waste activated sludge from SNDOD-bioreactor can be used for biofuel producing with high efficiency especially with pre-treatment like a thermal hydrolysis. Further studies have to consider the possibility of withdrawing inhibitors from waste activated sludge.

  10. Modelling thermal plume impacts - Kalpakkam approach

    International Nuclear Information System (INIS)

    Rao, T.S.; Anup Kumar, B.; Narasimhan, S.V.

    2002-01-01

    A good understanding of temperature patterns in the receiving waters is essential to know the heat dissipation from thermal plumes originating from coastal power plants. The seasonal temperature profiles of the Kalpakkam coast near Madras Atomic Power Station (MAPS) thermal out fall site are determined and analysed. It is observed that the seasonal current reversal in the near shore zone is one of the major mechanisms for the transport of effluents away from the point of mixing. To further refine our understanding of the mixing and dilution processes, it is necessary to numerically simulate the coastal ocean processes by parameterising the key factors concerned. In this paper, we outline the experimental approach to achieve this objective. (author)

  11. Thermal explosion models

    International Nuclear Information System (INIS)

    Tso Chin Ping

    1984-01-01

    The phenomenon of thermal explosion arises in several important safety problems, yet scientists are still baffled by its origin. This article reviews some of the models that have been proposed to explain the phenomenon. (author)

  12. Normal Condition on Transport Thermal Analysis and Testing of a Type B Drum Package

    International Nuclear Information System (INIS)

    Jerrell, J.W.; van Alstine, M.N.; Gromada, R.J.

    1995-01-01

    Increasing the content limits of radioactive material packagings can save money and increase transportation safety by decreasing the total number of shipments required to transport large quantities of material. The contents of drum packages can be limited by unacceptable containment vessel pressures and temperatures due to the thermal properties of the insulation. The purpose of this work is to understand and predict the effects of insulation properties on containment system performance

  13. Thermal transport in oblique finned microminichannels

    CERN Document Server

    Fan, Yan; Singh, Pawan Kumar; Lee, Yong Jiun

    2015-01-01

    The main aim of this book is to introduce and give an overview of a novel, easy, and highly effective heat transfer augmentation technique for single-phase micro/minichannel heat sink. The specific objectives of the volume are to: Introduce a novel planar oblique fin microchannel and cylindrical oblique fin minichannel heat sink design using passive heat transfer enhancement techniques  Investigate the thermal transport in both planar and cylindrical oblique fin structures through numerical simulation and systematic experimental studies. Evaluate the feasibility of employing the proposed solution in cooling non-uniform heat fluxes and hotspot suppression Conduct the similarity analysis and parametric study to obtain empirical correlations to evaluate the total heat transfer rate of the oblique fin heat sink Investigate the flow mechanism and optimize the dimensions of cylindrical oblique fin heat sink Investigate the influence of edge effect on flow and temperature uniformity in these oblique fin chan...

  14. Thermal and electrical transport measurements of low-dimensional correlated electron systems; Thermische und elektrische Transportuntersuchungen an niederdimensionalen korrelierten Elektronensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Steckel, Frank

    2015-10-27

    In this work electrical and thermal transport measurements of a antiferromagnetically ordered iridate and of superconducting FeAs-based high-temperature superconductors are presented and analyzed. The iridates are compounds with strong spin-orbit coupling. In the two-dimensional representative Sr{sub 2}IrO{sub 4} this yields isolating behavior with simultaneous antiferromagnetically ordered spin-orbit moments. Thus, Sr{sub 2}IrO{sub 4} is a model system for studying magnetic excitations in iridates. The analysis of the heat transport yields for the first time clear-cut evidence for magnetic heat conductivity in iridates. The extracted magnetic mean free path uncovers scattering processes of the magnons contributing to the heat transport and draws conclusions about the excitations of the spin-orbit coupled system. The FeAs-superconductors have mainly two-dimensional transport of carriers due to their layered crystal structure. The phase diagrams of these materials consist of ordering phenomena of magnetism, superconductivity and structural distortion. The main focus is on the reaction of the transport coefficients to the developed phases in representatives of the 111- and 122-families upon chemical doping in and out of the two-dimensional plane. With the help of resistivity and magnetic susceptibility phase diagrams are constructed. In selected cases, the Hall coefficient as well as electro-thermal transport coefficients are used to study the phase diagram in detail. The majority of these investigations yield omnipresent electrical ordering phenomena, which are named nematic phase. The measurement of the heat conductivity and the Nernst coefficient in doped BaFe{sub 2}As{sub 2} show that these transport coefficients are dominantly influenced by fluctuations which are preceeding the nematic phase. From the Nernst data conclusions are deduced about the driving mechanisms of the correlated electron system yielding the phase transitions.

  15. THERMAL CONDUCTIVITY OF NON-REPOSITORY LITHOSTRATIGRAPHIC LAYERS

    International Nuclear Information System (INIS)

    R. JONES

    2004-01-01

    This model report addresses activities described in ''Technical Work Plan for: Near-Field Environment and Transport Thermal Properties and Analysis Reports Integration'' (BSC 2004 [DIRS 171708]). The model develops values for thermal conductivity, and its uncertainty, for the nonrepository layers of Yucca Mountain; in addition, the model provides estimates for matrix porosity and dry bulk density for the nonrepository layers. The studied lithostratigraphic units, as identified in the ''Geologic Framework Model'' (GFM 2000) (BSC 2004 [DIRS 170029]), are the Timber Mountain Group, the Tiva Canyon Tuff, the Yucca Mountain Tuff, the Pah Canyon Tuff, the Topopah Spring Tuff (excluding the repository layers), the Calico Hills Formation, the Prow Pass Tuff, the Bullfrog Tuff, and the Tram Tuff. The deepest model units of the GFM (Tund and Paleozoic) are excluded from this study because no data suitable for model input are available. The parameter estimates developed in this report are used as input to various models and calculations that simulate heat transport through the rock mass. Specifically, analysis model reports that use product output from this report are: (1) Drift-scale coupled processes (DST and TH seepage) models; (2) Drift degradation analysis; (3) Multiscale thermohydrologic model; and (4) Ventilation model and analysis report. In keeping with the methodology of the thermal conductivity model for the repository layers in ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]), the Hsu and others (1995 [DIRS 158073]) three-dimensional (3-D) cubic model (referred to herein as ''the Hsu model'') was used to represent the matrix thermal conductivity as a function of the four parameters (matrix porosity, thermal conductivity of the saturating fluid, thermal conductivity of the solid, and geometric connectivity of the solid). The Hsu model requires input data from each test specimen to meet three specific conditions: (1) Known value

  16. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    Science.gov (United States)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  17. Thermal conductivity and heat transfer in superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G; Neagu, M; Borca-Tasciuc, T

    1997-07-01

    Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and devices based on quantum structures. This work reports progress on the modeling of thermal conductivity of superlattice structures. Results from the models established based on the Boltzmann transport equation could explain existing experimental results on the thermal conductivity of semiconductor superlattices in both in plane and cross-plane directions. These results suggest the possibility of engineering the interfaces to further reduce thermal conductivity of superlattice structures.

  18. A phenomenological model for cross-field plasma transport in non-ambipolar scrape-off layers

    International Nuclear Information System (INIS)

    LaBombard, B.; Grossman, A.A.; Conn, R.W.

    1990-01-01

    A simplified two-fluid transport model which includes phenomenological coefficients of particle diffusion, mobility, and thermal diffusivity is used to investigate the effects of nonambipolar particle transport on scrape-off layer (SOL) plasma profiles. A computer code (BSOLRAD3) has been written to iteratively solve for 2-D cross-field density, potential, and electron temperature profiles for arbitrary boundary conditions, including segments of 'limiters' that are electrically conducting or non-conducting. Numerical results are presented for two test cases: (1) a 1-D slab geometry showing the interdependency of the density, potential, and temperature gradient scale lengths on particle diffusion, mobility, and thermal diffusivity coefficients and limiter bias conditions, and (2) a 2-D geometry illustrating ExB plasma flow effects. It is shown that the SOL profiles can be quite sensitive to non-ambipolarity conditions imposed by the limiter and, in particular, whether the limiter surfaces are biased. Such effects, if overlooked in SOL transport analysis, can lead to erroreous conclusions about the magnitude of the local ambipolar diffusion coefficient. (orig.)

  19. Hierarchical modeling of plasma and transport phenomena in a dielectric barrier discharge reactor

    Science.gov (United States)

    Bali, N.; Aggelopoulos, C. A.; Skouras, E. D.; Tsakiroglou, C. D.; Burganos, V. N.

    2017-12-01

    A novel dual-time hierarchical approach is developed to link the plasma process to macroscopic transport phenomena in the interior of a dielectric barrier discharge (DBD) reactor that has been used for soil remediation (Aggelopoulos et al 2016 Chem. Eng. J. 301 353-61). The generation of active species by plasma reactions is simulated at the microseconds (µs) timescale, whereas convection and thermal conduction are simulated at the macroscopic (minutes) timescale. This hierarchical model is implemented in order to investigate the influence of the plasma DBD process on the transport and reaction mechanisms during remediation of polluted soil. In the microscopic model, the variables of interest include the plasma-induced reactive concentrations, while in the macroscopic approach, the temperature distribution, and the velocity field both inside the discharge gap and within the polluted soil material as well. For the latter model, the Navier-Stokes and Darcy Brinkman equations for the transport phenomena in the porous domain are solved numerically using a FEM software. The effective medium theory is employed to provide estimates of the effective time-evolving and three-phase transport properties in the soil sample. Model predictions considering the temporal evolution of the plasma remediation process are presented and compared with corresponding experimental data.

  20. Thermal energy creation and transport and X-ray/EUV emission in a thermodynamic MHD CME simulation

    Science.gov (United States)

    Reeves, K.; Mikic, Z.; Torok, T.; Linker, J.; Murphy, N. A.

    2017-12-01

    We model a CME using the PSI 3D numerical MHD code that includes coronal heating, thermal conduction and radiative cooling in the energy equation. The magnetic flux distribution at 1 Rs is produced by a localized subsurface dipole superimposed on a global dipole field, mimicking the presence of an active region within the global corona. We introduce transverse electric fields near the neutral line in the active region to form a flux rope, then a converging flow is imposed that causes the eruption. We follow the formation and evolution of the current sheet and find that instabilities set in soon after the reconnection commences. We simulate XRT and AIA EUV emission and find that the instabilities manifest as bright features emanating from the reconnection region. We examine the quantities responsible for plasma heating and cooling during the eruption, including thermal conduction, radiation, adiabatic compression and expansion, coronal heating and ohmic heating due to dissipation of currents. We find that the adiabatic compression plays an important role in heating the plasma around the current sheet, especially in the later stages of the eruption when the instabilities are present. Thermal conduction also plays an important role in the transport of thermal energy away from the current sheet region throughout the reconnection process.

  1. Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems

    Science.gov (United States)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2018-01-01

    Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.

  2. Thermal electron transport in regimes with low and negative magnetic shear in Tore Supra

    International Nuclear Information System (INIS)

    Voitsekhovitch, I.; Litaudon, X.; Moreau, D.; Aniel, T.; Becoulet, A.; Erba, M.; Joffrin, E.; Kazarian-Vibert, F.; Peysson, Y.

    1997-01-01

    The magnetic shear effect on thermal electron transport is studied in a large variety of non-inductive plasmas in Tore Supra. An improved confinement in the region of low and negative shear was observed and quantified with an exponential dependence on the magnetic shear (Litaudon, et al., Fusion Energy 1996 (Proc. 16th Int. Conf. Montreal, 1996), Vol. 1, IAEA, Vienna (1997) 669). This is interpreted as a consequence of a decoupling of the global modes (Romanelli and Zonca, Phys. Fluids B 5 (1993) 4081) that are thought to be responsible for anomalous transport. This dependence is proposed in order to complete the Bohm-like L mode local electron thermal diffusivity so as to describe the transition from Bohm-like to gyroBohm transport in the plasma core. The good agreement between the predictive simulations of the different Tore Supra regimes (hot core lower hybrid enhanced performance, reversed shear plasmas and combined lower hybrid current drive and fast wave electron heating) and experimental data provides a basis for extrapolation of this magnetic shear dependence in the local transport coefficients to future machines. As an example, a scenario for non-inductive current profile optimization and control in ITER is presented. (author)

  3. Enhanced interfacial thermal transport in pnictogen tellurides metallized with a lead-free solder alloy

    Energy Technology Data Exchange (ETDEWEB)

    Devender,; Ramanath, Ganpati, E-mail: Ramanath@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lofgreen, Kelly; Devasenathipathy, Shankar; Swan, Johanna; Mahajan, Ravi [Intel Corporation, Assembly Test and Technology Development, Chandler, Arizona 85226 (United States); Borca-Tasciuc, Theodorian [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Controlling thermal transport across metal–thermoelectric interfaces is essential for realizing high efficiency solid-state refrigeration and waste-heat harvesting power generation devices. Here, the authors report that pnictogen chalcogenides metallized with bilayers of Sn{sub 96.5}Ag{sub 3}Cu{sub 0.5} solder and Ni barrier exhibit tenfold higher interfacial thermal conductance Γ{sub c} than that obtained with In/Ni bilayer metallization. X-ray diffraction and x-ray spectroscopy indicate that reduced interdiffusion and diminution of interfacial SnTe formation due to Ni layer correlates with the higher Γ{sub c}. Finite element modeling of thermoelectric coolers metallized with Sn{sub 96.5}Ag{sub 3}Cu{sub 0.5}/Ni bilayers presages a temperature drop ΔT ∼ 22 K that is 40% higher than that obtained with In/Ni metallization. Our results underscore the importance of controlling chemical intermixing at solder–metal–thermoelectric interfaces to increase the effective figure of merit, and hence, the thermoelectric cooling efficiency. These findings should facilitate the design and development of lead-free metallization for pnictogen chalcogenide-based thermoelectrics.

  4. Overview of thermal conductivity models of anisotropic thermal insulation materials

    Science.gov (United States)

    Skurikhin, A. V.; Kostanovsky, A. V.

    2017-11-01

    Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.

  5. The time-dependent 3D discrete ordinates code TORT-TD with thermal-hydraulic feedback by ATHLET models

    International Nuclear Information System (INIS)

    Seubert, A.; Velkov, K.; Langenbuch, S.

    2008-01-01

    This paper describes the time-dependent 3D discrete ordinates transport code TORT-TD. Thermal-hydraulic feedback is considered by coupling TORT-TD with the thermal-hydraulics system code ATHLET. The coupled code TORT-TD/ATHLET allows 3D pin-by-pin analyses of transients in few energy groups and anisotropic scattering by solving the time-dependent transport equation using the unconditionally stable implicit method. The nuclear cross sections are interpolated between pre-calculated table values of fuel temperature, moderator density and boron concentration. For verification of the implementation, selected test cases have been calculated by TORT-TD/ATHLET. They include a control rod ejection transient in a small PWR fuel assembly arrangement and a local boron concentration change in a single PWR fuel assembly. In the latter, special attention has been paid to study the influence of the thermal-hydraulic feedback modelling in ATHLET. The results obtained for a control rod ejection accident in a PWR quarter core demonstrate the applicability of TORT-TD/ATHLET. (authors)

  6. Study on the Cross Plane Thermal Transport of Polycrystalline Molybdenum Nanofilms by Applying Picosecond Laser Transient Thermoreflectance Method

    Directory of Open Access Journals (Sweden)

    Tingting Miao

    2014-01-01

    Full Text Available Thin metal films are widely used as interconnecting wires and coatings in electronic devices and optical components. Reliable thermophysical properties of the films are required from the viewpoint of thermal management. The cross plane thermal transport of four polycrystalline molybdenum nanofilms with different thickness deposited on glass substrates has been studied by applying the picosecond laser transient thermoreflectance technique. The measurement is performed by applying both front pump-front probe and rear pump-front probe configurations with high quality signal. The determined cross plane thermal diffusivity of the Mo films greatly decreases compared to the corresponding bulk value and tends to increase as films become thicker, exhibiting significant size effect. The main mechanism responsible for the thermal diffusivity decrease of the present polycrystalline Mo nanofilms is the grain boundary scattering on the free electrons. Comparing the cross plane thermal diffusivity and inplane electrical conductivity indicates the anisotropy of the transport properties of the Mo films.

  7. Non-Fourier thermal transport induced structural hierarchy and damage to collagen ultrastructure subjected to laser irradiation.

    Science.gov (United States)

    Sahoo, Nilamani; Narasimhan, Arunn; Dhar, Purbarun; Das, Sarit K

    2018-05-01

    Comprehending the mechanism of thermal transport through biological tissues is an important factor for optimal ablation of cancerous tissues and minimising collateral tissue damage. The present study reports detailed mapping of the rise in internal temperature within the tissue mimics due to NIR (1064 nm) laser irradiation, both for bare mimics and with gold nanostructures infused. Gold nanostructures such as mesoflowers and nanospheres have been synthesised and used as photothermal converters to enhance the temperature rise, resulting in achieving the desired degradation of malignant tissue in targeted region. Thermal history was observed experimentally and simulated considering non-Fourier dual phase lag (DPL) model incorporated Pennes bio-heat transfer equation using COMSOL Multiphysics software. The gross deviation in temperature i.e. rise from the classical Fourier model for bio-heat conduction suggests additional effects of temperature rise on the secondary structures and morphological and physico-chemical changes to the collagen ultrastructures building the tissue mass. The observed thermal denaturation in the collagen fibril morphologies have been explained based on the physico-chemical structure of collagen and its response to thermal radiation. The large shift in frequency of amides A and B is pronounced at a depth of maximum temperature rise compared with other positions in tissue phantom. Observations for change in band of amide I, amide II, and amide III are found to be responsible for damage to collagen ultra-structure. Variation in the concentration of gold nanostructures shows the potentiality of localised hyperthermia treatment subjected to NIR radiation through a proposed free radical mechanism.

  8. Economic and Environmental Considerations for Zero-emission Transport and Thermal Energy Generation on an Energy Autonomous Island

    Directory of Open Access Journals (Sweden)

    Fontina Petrakopoulou

    2018-01-01

    Full Text Available The high cost and environmental impact of fossil-fuel energy generation in remote regions can make renewable energy applications more competitive than business-as-usual scenarios. Furthermore, energy and transport are two of the main sectors that significantly contribute to global greenhouse gas emissions. This paper focuses on the generation of thermal energy and the transport sector of a fossil fuel-based energy independent island in Greece. We evaluate (1 technologies for fully renewable thermal energy generation using building-specific solar thermal systems and (2 the replacement of the vehicle fleet of the island with electric and hydrogen-fueled vehicles. The analysis, based on economic and environmental criteria, shows that although solar thermal decreases greenhouse gases by 83%, when compared to the current diesel-based situation, it only becomes economically attractive with subsidy scenarios equal to or higher than 50%. However, in the transport sector, the sum of fuel and maintenance costs of fuel-cell and electric vehicles is found to be 45% lower than that of the current fleet, due to their approximately seven times lower fuel cost. Lastly, it will take approximately six years of use of the new vehicles to balance out the emissions of their manufacturing phase.

  9. Titanium contacts to graphene: process-induced variability in electronic and thermal transport

    Science.gov (United States)

    Freedy, Keren M.; Giri, Ashutosh; Foley, Brian M.; Barone, Matthew R.; Hopkins, Patrick E.; McDonnell, Stephen

    2018-04-01

    Contact resistance (R C) is a major limiting factor in the performance of graphene devices. R C is sensitive to the quality of the interface and the composition of the contact, which are affected by the graphene transfer process and contact deposition conditions. In this work, a linear correlation is observed between the composition of Ti contacts, characterized by x-ray photoelectron spectroscopy, and the Ti/graphene contact resistance measured by the transfer length method. We find that contact composition is tunable via deposition rate and base pressure. Reactor base pressure is found to effect the resultant contact resistance. The effect of contact deposition conditions on thermal transport measured by time-domain thermoreflectance is also reported. Interfaces with higher oxide composition appear to result in a lower thermal boundary conductance. Possible origins of this thermal boundary conductance change with oxide composition are discussed.

  10. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    International Nuclear Information System (INIS)

    B.W. ARNOLD

    2004-01-01

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ

  11. Thermal transport in cuprates, cobaltates, and manganites

    International Nuclear Information System (INIS)

    Berggold, K.

    2006-09-01

    The subject of this thesis is the investigation of the thermal transport properties of three classes of transition-metal oxides: Cuprates, cobaltates, and manganites. The layered cuprates R 2 CuO 4 with R=La, Pr, Nd, Sm, Eu, and Gd show an anomalous thermal conductivity κ. Two maxima of κ are observed as a function of temperature for a heat current within the CuO 2 planes, whereas for a heat current perpendicular to the CuO 2 planes only a conventional phononic low-temperature maximum of κ is present. Evidence is provided that the high-temperature maximum is caused by heat-carrying excitations on the CuO 2 square lattice. Moreover, it is shown that the complex low-temperature and magnetic-field behavior of κ in Nd 2 CuO 4 is most likely caused by additional phonon scattering rather than by heat-carrying Nd magnons, as it was proposed in the literature. In the cobaltates RCoO 3 with R=La, Pr, Nd, and Eu, a temperature-induced spin-state transition of the Co 3+ ions occurs. It is shown that the additional lattice disorder caused by the random distribution of populated higher spin states causes a large suppression of the thermal conductivity of LaCoO 3 for T>25 K. The effect is much weaker in PrCoO 3 and NdCoO 3 due to the increased spin gap. A quantitative analysis of the responsible mechanisms based on EuCoO 3 as a reference compound is provided. A main result is that the static disorder is sufficient to explain the suppression of κ. No dynamical Jahn-Teller distortion, as proposed in the literature, is necessary to enhance the scattering strength. Below 25 K, k is mainly determined by resonant phonon scattering on paramagnetic impurity levels, e.g. caused by oxygen non-stoichiometry. Such a suppression of the thermal conductivity by resonant scattering processes is e.g. known from Holmium ethylsulfate. This effect is most pronounced in LaCoO 3 , presumably due to magnetic polaron formation. In the doped compounds La 1-x Sr x CoO 3 with 0≤x≤0.25, a large

  12. Simulation study of burning control with internal transport barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tateishi, Gonta [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka (Japan); Yagi, Masatoshi; Itoh, S.I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    2000-02-01

    Dynamics of burning plasma with internal transport barrier is studied by use of a one dimensional transport simulation code. Two possible mechanisms are modeled for internal transport barrier collapse. One is the collapse, which occurs above the critical pressure gradient, the impact of which is modeled by the enhancement of thermal conductivity. The other is the collapse, which occurs due to the sawtooth trigger. The extended Kadomtsev type reconnection model with multiple resonant surfaces is introduced. Both models are examined for the analysis of long time sustainment of burning. A test of profile control to mitigate the collapse is investigated. The additional circulating power to suppress thermal quench (collapse) is evaluated. (author)

  13. Mathematical Models of IABG Thermal-Vacuum Facilities

    Science.gov (United States)

    Doring, Daniel; Ulfers, Hendrik

    2014-06-01

    IABG in Ottobrunn, Germany, operates thermal-vacuum facilities of different sizes and complexities as a service for space-testing of satellites and components. One aspect of these tests is the qualification of the thermal control system that keeps all onboard components within their save operating temperature band. As not all possible operation / mission states can be simulated within a sensible test time, usually a subset of important and extreme states is tested at TV facilities to validate the thermal model of the satellite, which is then used to model all other possible mission states. With advances in the precision of customer thermal models, simple assumptions of the test environment (e.g. everything black & cold, one solar constant of light from this side) are no longer sufficient, as real space simulation chambers do deviate from this ideal. For example the mechanical adapters which support the spacecraft are usually not actively cooled. To enable IABG to provide a model that is sufficiently detailed and realistic for current system tests, Munich engineering company CASE developed ESATAN models for the two larger chambers. CASE has many years of experience in thermal analysis for space-flight systems and ESATAN. The two models represent the rather simple (and therefore very homogeneous) 3m-TVA and the extremely complex space simulation test facility and its solar simulator. The cooperation of IABG and CASE built up extensive knowledge of the facilities thermal behaviour. This is the key to optimally support customers with their test campaigns in the future. The ESARAD part of the models contains all relevant information with regard to geometry (CAD data), surface properties (optical measurements) and solar irradiation for the sun simulator. The temperature of the actively cooled thermal shrouds is measured and mapped to the thermal mesh to create the temperature field in the ESATAN part as boundary conditions. Both models comprise switches to easily

  14. Development of CANDU 6 Primary Heat Transport System Modeling Program

    International Nuclear Information System (INIS)

    Seo, Hyung-beom; Kim, Sung-min; Park, Joong-woo; Kim, Kwang-su; Ko, Dae-hack; Han, Bong-seob

    2007-01-01

    NUCIRC is a steady-state thermal-hydraulic code used for design and performance analyses of CANDU Heat Transport System. The code is used to build PHT model in Wolsong NPP and to calculate channel flow distribution. Wolsong NPP has to calculate channel flow distribution and quality of coolant at the ROH header after every outage by OPP (Operating Policy and Principal). PHT modeling work is time consuming which need a lot of operation experience and specialty. It is very difficult to build PHT model as plant operator in two weeks which is obligate for plant operation after every outage. That is why Wolsong NPP develop NUMODEL (NUcirc MODELing) with many-years experience and a know-how of using NUCIRC code. NUMODEL is computer program which is used to create PHT model based on utilizing NUCIRC code

  15. A kinetic model for chemical reactions without barriers: transport coefficients and eigenmodes

    International Nuclear Information System (INIS)

    Alves, Giselle M; Kremer, Gilberto M; Marques, Wilson Jr; Soares, Ana Jacinta

    2011-01-01

    The kinetic model of the Boltzmann equation proposed in the work of Kremer and Soares 2009 for a binary mixture undergoing chemical reactions of symmetric type which occur without activation energy is revisited here, with the aim of investigating in detail the transport properties of the reactive mixture and the influence of the reaction process on the transport coefficients. Accordingly, the non-equilibrium solutions of the Boltzmann equations are determined through an expansion in Sonine polynomials up to the first order, using the Chapman–Enskog method, in a chemical regime for which the reaction process is close to its final equilibrium state. The non-equilibrium deviations are explicitly calculated for what concerns the thermal–diffusion ratio and coefficients of shear viscosity, diffusion and thermal conductivity. The theoretical and formal analysis developed in the present paper is complemented with some numerical simulations performed for different concentrations of reactants and products of the reaction as well as for both exothermic and endothermic chemical processes. The results reveal that chemical reactions without energy barrier can induce an appreciable influence on the transport properties of the mixture. Oppositely to the case of reactions with activation energy, the coefficients of shear viscosity and thermal conductivity become larger than those of an inert mixture when the reactions are exothermic. An application of the non-barrier model and its detailed transport picture are included in this paper, in order to investigate the dynamics of the local perturbations on the constituent number densities, and velocity and temperature of the whole mixture, induced by spontaneous internal fluctuations. It is shown that for the longitudinal disturbances there exist two hydrodynamic sound modes, one purely diffusive hydrodynamic mode and one kinetic mode

  16. Temperature Distribution and Thermal Performance of an Aquifer Thermal Energy Storage System

    Science.gov (United States)

    Ganguly, Sayantan

    2017-04-01

    Energy conservation and storage has become very crucial to make use of excess energy during times of future demand. Excess thermal energy can be captured and stored in aquifers and this technique is termed as Aquifer Thermal Energy Storage (ATES). Storing seasonal thermal energy in water by injecting it into subsurface and extracting in time of demand is the principle of an ATES system. Using ATES systems leads to energy savings, reduces the dependency on fossil fuels and thus leads to reduction in greenhouse gas emission. This study numerically models an ATES system to store seasonal thermal energy and evaluates the performance of it. A 3D thermo-hydrogeological numerical model for a confined ATES system is presented in this study. The model includes heat transport processes of advection, conduction and heat loss to confining rock media. The model also takes into account regional groundwater flow in the aquifer, geothermal gradient and anisotropy in the aquifer. Results show that thermal injection into the aquifer results in the generation of a thermal-front which grows in size with time. Premature thermal-breakthrough causes thermal interference in the system when the thermal-front reaches the production well and consequences in the fall of system performance and hence should be avoided. This study models the transient temperature distribution in the aquifer for different flow and geological conditions. This may be effectively used in designing an efficient ATES project by ensuring safety from thermal-breakthrough while catering to the energy demand. Based on the model results a safe well spacing is proposed. The thermal energy discharged by the system is determined and strategy to avoid the premature thermal-breakthrough in critical cases is discussed. The present numerical model is applied to simulate an experimental field study which is found to approximate the field results quite well.

  17. Electrical and thermal modeling of railguns

    International Nuclear Information System (INIS)

    Kerrisk, J.F.

    1984-01-01

    Electrical and thermal modeling of railguns at Los Alamos has been done for two purposes: (1) to obtain detailed information about the behavior of specific railgun components such as the rails, and (2) to predict overall performance of railgun tests. Detailed electrical and thermal modeling has concentrated on calculations of the inductance and surface current distribution of long parallel conductors in the high-frequency limit and on calculations of current and thermal diffusion in rails. Inductance calculations for various rail cross sections and for magnetic flux compression generators (MFCG) have been done. Inductance and current distribution results were compared with experimental measurements. Twodimensional calculations of current and thermal diffusion in rail cross sections have been done; predictions of rail heating and melting as a function of rail size and total current have been made. An overall performance model of a railgun and power supply has been developed and used to design tests at Los Alamos. The lumped-parameter circuit model uses results from the detailed inductance and current diffusion calculations along with other circuit component models to predict rail current and projectile acceleration, velocity, and position as a function of time

  18. Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media

    International Nuclear Information System (INIS)

    Chen, J.; Zhang, P.

    2017-01-01

    Highlights: • The nano-sized phase change emulsions are prepared by using D-phase method. • The thermo-physical and transport properties are experimentally investigated. • The influence of surfactant on the melting temperature and latent heat of water is clarified. • The phase change emulsion can be used as the heat transfer fluid in a thermal energy storage system. - Abstract: Phase change emulsion (PCE) is a kind of two-phase heat transfer fluid with phase change material (PCM) dispersed in carrier fluid. It has received intensive attractions in recent years due to the fact that it can be used as both the thermal energy storage material and transport medium simultaneously in a thermal energy storage system. In the present study, nano-sized PCEs are prepared by the D-phase method with n-hexadecane and n-octadecane as PCMs. The thermo-physical and transport properties are characterized to facilitate the applications. The droplet size distribution of the PCE is measured by a Photon Correlation Spectroscopy, and the results show that the droplet size distributions are similar at different mass fractions. The rheological behavior and viscosity of the PCE are measured by a rheometer, which shows that the PCEs at mass fractions below 30.0 wt% are Newtonian fluids, and the viscosities are dependent on both the mass fraction and temperature. The differential scanning calorimetry (DSC) is employed to analyze the phase change characteristics of the PCE, and the results indicate large supercooling degree of water and PCM in the PCE. The melting temperature and latent heat of water in the PCE are much smaller than those of pure water. The thermal conductivities of the PCE with different mass fractions at different temperatures are measured by the transient hot-wire method. Furthermore, the energy transport characteristics of the PCEs are evaluated on the basis of the measured thermo-physical and transport properties. The results suggest that the PCEs show a drastic

  19. Transport simulations of ohmic TFTR experiments with profile-consistent microinstability-based models for chi/sub e/ and chi/sub i/

    International Nuclear Information System (INIS)

    Redi, M.H.; Tang, W.M.; Efthimion, P.C.; Mikkelsen, D.R.; Schmidt, G.L.

    1987-03-01

    Transport simulations of ohmically heated TFTR experiments with recently developed profile-consistent microinstability models for the anomalous thermal diffusivities, chi/sub e/ and chi/sub i/, give good agreement with experimental data. The steady-state temperature profiles and the total energy confinement times, tau/sub e/, were found to agree for each of the ohmic TFTR experiments simulated, including three high radiation cases and two plasmas fueled by pellet injection. Both collisional and collisionless models are tested. The trapped-electron drift wave microinstability model results are consistent with the thermal confinement of large plasma ohmic experiments on TFTR. We also find that transport due to the toroidal ion temperature gradient (eta/sub i/) modes can cause saturation in tau/sub E/ at the highest densities comparable to that observed on TFTR and equivalent to a neoclassical anomaly factor of 3. Predictions based on stabilized eta/sub i/-mode-driven ion transport are found to be in agreement with the enhanced global energy confinement times for pellet-fueled plasmas. 33 refs., 26 figs., 4 tabs

  20. Thermal spin current generation and spin transport in Pt/magnetic-insulator/Py heterostructures

    Science.gov (United States)

    Chen, Ching-Tzu; Safranski, Christopher; Krivorotov, Ilya; Sun, Jonathan

    Magnetic insulators can transmit spin current via magnon propagation while blocking charge current. Furthermore, under Joule heating, magnon flow as a result of the spin Seeback effect can generate additional spin current. Incorporating magnetic insulators in a spin-orbit torque magnetoresistive memory device can potentially yield high switching efficiencies. Here we report the DC magneto-transport studies of these two effects in Pt/magnetic-insulator/Py heterostructures, using ferrimagnetic CoFexOy (CFO) and antiferromagnet NiO as the model magnetic insulators. We observe the presence and absence of the inverse spin-Hall signals from the thermal spin current in Pt/CFO/Py and Pt/NiO/Py structures. These results are consistent with our spin-torque FMR linewidths in comparison. We will also report investigations into the magnetic field-angle dependence of these observations.

  1. Development of whole core thermal-hydraulic analysis program ACT. 3. Coupling core module with primary heat transport system module

    International Nuclear Information System (INIS)

    Ohtaka, Masahiko; Ohshima, Hiroyuki

    1998-10-01

    A whole core thermal-hydraulic analysis program ACT is being developed for the purpose of evaluating detailed in-core thermal hydraulic phenomena of fast reactors including inter-wrapper flow under various reactor operation conditions. In this work, the core module as a main part of the ACT developed last year, which simulates thermal-hydraulics in the subassemblies and the inter-subassembly gaps, was coupled with an one dimensional plant system thermal-hydraulic analysis code LEDHER to simulate transients in the primary heat transport system and to give appropriate boundary conditions to the core model. The effective algorithm to couple these two calculation modules was developed, which required minimum modification of them. In order to couple these two calculation modules on the computing system, parallel computing technique using PVM (Parallel Virtual Machine) programming environment was applied. The code system was applied to analyze an out-of-pile sodium experiment simulating core with 7 subassemblies under transient condition for code verification. It was confirmed that the analytical results show a similar tendency of experimental results. (author)

  2. Modelling and Control of Thermal System

    Directory of Open Access Journals (Sweden)

    Vratislav Hladky

    2014-01-01

    Full Text Available Work presented here deals with the modelling of thermal processes in a thermal system consisting of direct and indirect heat exchangers. The overal thermal properties of the medium and the system itself such as liquid mixing or heat capacity are shortly analysed and their features required for modelling are reasoned and therefore simplified or neglected. Special attention is given to modelling heat losses radiated into the surroundings through the walls as they are the main issue of the effective work with the heat systems. Final part of the paper proposes several ways of controlling the individual parts’ temperatures as well as the temperature of the system considering heating elements or flowage rate as actuators.

  3. Thermal transport in lithium ion batteries: An experimental investigation of interfaces and granular materials

    Science.gov (United States)

    Gaitonde, Aalok Jaisheela Uday

    simultaneously shears the sample while applying a temperature gradient across the particle bed, enabling thermal conductivity measurements using a radial equivalent of the conventional reference bar method. Results of this research, which includes characterization of thermal conductance across the rate limiting separator-case interface, will help improve the design and reliability of lithium ion batteries. Cells of larger dimension and capacity could also be achieved by the improved understanding of thermal transport across the microscopic electrode stack. Better analytic models of the thermal response of the batteries could be constructed, by taking into account the interfacial conductance and thermal conductivity of the electrodes measured in this work. This is of particular importance in the current circumstances, where accidents and safety issues related to lithium ion batteries are on the increase.

  4. Progress in transport modelling of internal transport barrier plasmas in JET

    International Nuclear Information System (INIS)

    Tala, T.; Bourdelle, C.; Imbeaux, F.; Moreau, D.; Garbet, X.; Joffrin, E.; Laborde, L.; Litaudon, X.; Mazon, D.; Parail, V.; Corrigan, G.; Heading, D.; Crisanti, F.; Mantica, P.; Salmi, A.; Strand, P.; Weiland, J.

    2005-01-01

    This paper will report on the recent progress in transport modelling of Internal Transport Barrier (ITB) plasmas. Two separate issues will be covered, fully predictive transport modelling of ITBs in the multi-tokamak database, including micro-stability analyses of ITBs, and predictive closed-loop (i.e. real-time control) transport simulations of the q-profile and ITBs. For the first time, the predictive capabilities of the mixed Bohm/GyroBohm and Weiland transport models are investigated with discharges from the ITPA ITB database by fully predictive transport simulations. The predictive transport simulations with the Bohm/GyroBohm model agree very well with experimental results from JET and JT-60U. In order to achieve a good agreement in DIII-D, the stabilisation had to be included into the model, showing the significant role played by the stabilisation in governing the physics of the ITBs. The significant role of the stabilisation is also emphasised by the gyrokinetic analysis. The Weiland transport model shows only limited agreement between the model predictions and experimental results with respect to the formation and location of the ITB. The fully predictive closed-loop simulations with real-time control of the q-profile and ITB show that it is possible to reach various set-point profiles for q and ITB and control them for longer than a current diffusion time in JET using the same real-time control technique as in the experiments. (author)

  5. Electrical and thermal transport properties of uranium and plutonium carbides

    International Nuclear Information System (INIS)

    Lewis, H.D.; Kerrisk, J.F.

    1976-09-01

    Contributions of many authors are outlined with respect to the experimental measurement methods used and characteristics of the sample materials. Discussions treat the qualitative effects of sample material composition; oxygen, nitrogen, and nickel concentrations; porosity; microstructural variations; and the variability in transport property values obtained by the various investigators. Temperature-dependent values are suggested for the electrical resistivities and thermal conductivities of selected carbide compositions based on a comparative evaluation of the available data and the effects of variation in the characteristics of sample materials

  6. A three-dimensional model for thermal analysis in a vanadium flow battery

    International Nuclear Information System (INIS)

    Zheng, Qiong; Zhang, Huamin; Xing, Feng; Ma, Xiangkun; Li, Xianfeng; Ning, Guiling

    2014-01-01

    Highlights: • A three-dimensional model for thermal analysis in a VFB has been developed. • A quasi-static thermal behavior and temperature spatial distribution were showed. • Ohmic heat gets vital in heat generation if applied current density is large enough. • A lower porosity or a faster flow shows a more uniform temperature distribution. • The model shows good prospect in heat and temperature management for a VFB. - Abstract: A three-dimensional model for thermal analysis has been developed to gain a better understanding of thermal behavior in a vanadium flow battery (VFB). The model is based on a comprehensive description of mass, momentum, charge and energy transport and conservation, combining with a global kinetic model for reactions involving all vanadium species. The emphasis in this paper is placed on the heat losses inside a cell. A quasi-static behavior of temperature and the temperature spatial distribution were characterized via the thermal model. The simulations also indicate that the heat generation exhibits a strong dependence on the applied current density. The reaction rate and the over potential rise with an increased applied current density, resulting in the electrochemical reaction heat rises proportionally and the activation heat rises at a parabolic rate. Based on the Ohm’s law, the ohmic heat rises at a parabolic rate when the applied current density increases. As a result, the determining heat source varies when the applied current density changes. While the relative contribution of the three types of heat is dependent on the cell materials and cell geometry, the regularities of heat losses can also be attained via the model. In addition, the electrochemical reaction heat and activation heat have a lack of sensitivity to the porosity and flow rate, whereas an obvious increase of ohmic heat has been observed with the rise of the porosity. A lower porosity or a faster flow shows a better uniformity of temperature distribution in

  7. Application of thermal conduction models to deepsea disposal of radioacitve wastes

    International Nuclear Information System (INIS)

    Schimmel, W.P. Jr.; Hickox, C.E.

    1978-03-01

    Thermal problems associated with the emplacement of radio-active wastes in the deepsea sedimentary layer have been studied. In particular, the nature of the temperature field surrounding and the interstitial water velocity arising from a buried cask have been examined. Worst case estimates indicate that the velocity will be extremely weak and thus not likely to provide a primary transport mechanism for the radioactive material. This statement will, of course, only apply for moderately low levels of heat generation by the decaying radio nuclides. Because of the low interstitial water velocity, thermal conduction models can be used to predict the temperature field in the surrounding sediments as well as the cask surface temperature. This is equivalent to ''decoupling'' the energy and momentum conservation relationships thus simplifying the solution of the temperature field. The present work considers in come detail the temperature field surrounding a vertical circular ''cylinder'' located a distance below a horizontal, isothermal, plane surface. Actually, the isotherm corresponding to the cask surface is an ellipsoid of revolution but the error will be small for large values of the length to diameter ratio. The resulting expression can be usd to estimate temperature of the cask surface for material degradation studies and the effect of temperature upon the ion transport process in the sediments

  8. Porous media fluid flow, heat, and mass transport model with rock stress coupling

    International Nuclear Information System (INIS)

    Runchal, A.K.

    1980-01-01

    This paper describes the physical and mathematical basis of a general purpose porous media flow model, GWTHERM. The mathematical basis of the model is obtained from the coupled set of the classical governing equations for the mass, momentum and energy balance. These equations are embodied in a computational model which is then coupled externally to a linearly elastic rock-stress model. This coupling is rather exploratory and based upon empirical correlations. The coupled model is able to take account of time-dependent, inhomogeneous and anisotropic features of the hydrogeologic, thermal and transport phenomena. A number of applications of the model have been made. Illustrations from the application of the model to nuclear waste repositories are included

  9. How Accurately can we Calculate Thermal Systems?

    International Nuclear Information System (INIS)

    Cullen, D; Blomquist, R N; Dean, C; Heinrichs, D; Kalugin, M A; Lee, M; Lee, Y; MacFarlan, R; Nagaya, Y; Trkov, A

    2004-01-01

    I would like to determine how accurately a variety of neutron transport code packages (code and cross section libraries) can calculate simple integral parameters, such as K eff , for systems that are sensitive to thermal neutron scattering. Since we will only consider theoretical systems, we cannot really determine absolute accuracy compared to any real system. Therefore rather than accuracy, it would be more precise to say that I would like to determine the spread in answers that we obtain from a variety of code packages. This spread should serve as an excellent indicator of how accurately we can really model and calculate such systems today. Hopefully, eventually this will lead to improvements in both our codes and the thermal scattering models that they use in the future. In order to accomplish this I propose a number of extremely simple systems that involve thermal neutron scattering that can be easily modeled and calculated by a variety of neutron transport codes. These are theoretical systems designed to emphasize the effects of thermal scattering, since that is what we are interested in studying. I have attempted to keep these systems very simple, and yet at the same time they include most, if not all, of the important thermal scattering effects encountered in a large, water-moderated, uranium fueled thermal system, i.e., our typical thermal reactors

  10. Transport modelling for ergodic configurations

    International Nuclear Information System (INIS)

    Runov, A.; Kasilov, S.V.; McTaggart, N.; Schneider, R.; Bonnin, X.; Zagorski, R.; Reiter, D.

    2004-01-01

    The effect of ergodization, either by additional coils like in TEXTOR-dynamic ergodic divertor (DED) or by intrinsic plasma effects like in W7-X, defines the need for transport models that are able to describe the ergodic configuration properly. A prerequisite for this is the concept of local magnetic coordinates allowing a correct discretization with minimized numerical errors. For these coordinates the appropriate full metric tensor has to be known. To study the transport in complex edge geometries (in particular for W7-X) two possible methods are used. First, a finite-difference discretization of the transport equations on a custom-tailored grid in local magnetic coordinates is used. This grid is generated by field-line tracing to guarantee an exact discretization of the dominant parallel transport (thus also minimizing the numerical diffusion problem). The perpendicular fluxes are then interpolated in a plane (a toroidal cut), where the interpolation problem for a quasi-isotropic system has to be solved by a constrained Delaunay triangulation (keeping the structural information for magnetic surfaces if they exist) and discretization. All toroidal terms are discretized by finite differences. Second, a Monte Carlo transport model originally developed for the modelling of the DED configuration of TEXTOR is used. A generalization and extension of this model was necessary to be able to handle W7-X. The model solves the transport equations with Monte Carlo techniques making use of mappings of local magnetic coordinates. The application of this technique to W7-X in a limiter-like configuration is presented. The decreasing dominance of parallel transport with respect to radial transport for electron heat, ion heat and particle transport results in increasingly steep profiles for the respective quantities within the islands. (author)

  11. THERMAL CONDUCTIVITY OF NON-REPOSITORY LITHOSTRATIGRAPHIC LAYERS

    Energy Technology Data Exchange (ETDEWEB)

    R. JONES

    2004-10-22

    This model report addresses activities described in ''Technical Work Plan for: Near-Field Environment and Transport Thermal Properties and Analysis Reports Integration'' (BSC 2004 [DIRS 171708]). The model develops values for thermal conductivity, and its uncertainty, for the nonrepository layers of Yucca Mountain; in addition, the model provides estimates for matrix porosity and dry bulk density for the nonrepository layers. The studied lithostratigraphic units, as identified in the ''Geologic Framework Model'' (GFM 2000) (BSC 2004 [DIRS 170029]), are the Timber Mountain Group, the Tiva Canyon Tuff, the Yucca Mountain Tuff, the Pah Canyon Tuff, the Topopah Spring Tuff (excluding the repository layers), the Calico Hills Formation, the Prow Pass Tuff, the Bullfrog Tuff, and the Tram Tuff. The deepest model units of the GFM (Tund and Paleozoic) are excluded from this study because no data suitable for model input are available. The parameter estimates developed in this report are used as input to various models and calculations that simulate heat transport through the rock mass. Specifically, analysis model reports that use product output from this report are: (1) Drift-scale coupled processes (DST and TH seepage) models; (2) Drift degradation analysis; (3) Multiscale thermohydrologic model; and (4) Ventilation model and analysis report. In keeping with the methodology of the thermal conductivity model for the repository layers in ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]), the Hsu et al. (1995 [DIRS 158073]) three-dimensional (3-D) cubic model (referred to herein as ''the Hsu model'') was used to represent the matrix thermal conductivity as a function of the four parameters (matrix porosity, thermal conductivity of the saturating fluid, thermal conductivity of the solid, and geometric connectivity of the solid). The Hsu model requires input data

  12. Electrical and thermal transport in the quasiatomic limit of coupled Luttinger liquids

    Science.gov (United States)

    Szasz, Aaron; Ilan, Roni; Moore, Joel E.

    2017-02-01

    We introduce a new model for quasi-one-dimensional materials, motivated by intriguing but not yet well-understood experiments that have shown two-dimensional polymer films to be promising materials for thermoelectric devices. We consider a two-dimensional material consisting of many one-dimensional systems, each treated as a Luttinger liquid, with weak (incoherent) coupling between them. This approximation of strong interactions within each one-dimensional chain and weak coupling between them is the "quasiatomic limit." We find integral expressions for the (interchain) transport coefficients, including the electrical and thermal conductivities and the thermopower, and we extract their power law dependencies on temperature. Luttinger liquid physics is manifested in a violation of the Wiedemann-Franz law; the Lorenz number is larger than the Fermi liquid value by a factor between γ2 and γ4, where γ ≥1 is a measure of the electron-electron interaction strength in the system.

  13. Temperature and press load stimulation on thermal transport in fibrous and porous composite insulators

    International Nuclear Information System (INIS)

    Rehman, M.A.; Maqsood, A.

    2006-01-01

    Thermal transport properties of synthetic pliable insulators are measured as a function of applied pressure at constant temperatures. Advantageous Transient Plane Source (ATPS) method is used for the simultaneous measurement of thermal conductivity and thermal diffusivity of these materials and heat capacity per unit volume is then calculated. Three samples namely foam, closed cell foam and fiber glass are subjected to press load, taking into account the flexibility and sustainability of the samples and the requirements of the technique used. The thermal data of the samples were determined within the temperature range (300-414K) and pressure range (Normal -15kPa). These materials are used for thermal insulation and temperature control of air-conditioned space, acoustic and sound insulation, agriculture and fishery, sports and leisure goods, building and civil engineering, industrial packaging cold storage ware house, boiler work and other electric appliances, so they are helpful in reducing energy losses. (author)

  14. Thermal transport of carbon nanotubes and graphene under optical and electrical heating measured by Raman spectroscopy

    Science.gov (United States)

    Hsu, I.-Kai

    This thesis presents systematic studies of thermal transport in individual single walled carbon nanotubes (SWCNTs) and graphene by optical and electrical approaches using Raman spectroscopy. In the work presented from Chapter 2 to Chapter 6, individual suspended CNTs are preferentially measured in order to explore their intrinsic thermal properties. Moreover, the Raman thermometry is developed to detect the temperature of the carbon nanotube (CNT). A parabolic temperature profile is observed in the suspended region of the CNT while a heating laser scans across it, providing a direct evidence of diffusive thermal transport in an individual suspended CNT. Based on the curvature of the temperature profile, we can solve for the ratio of thermal contact resistance to the thermal resistance of the CNT, which spans the range from 0.02 to 17. The influence of thermal contact resistance on the thermal transport in an individual suspended CNT is also studied. The Raman thermometry is carried out in the center of a CNT, while its contact length is successively shortened by an atomic force microscope (AFM) tip cutting technique. By investigating the dependence of the CNT temperature on its thermal contact length, the temperature of a CNT is found to increase dramatically as the contact length is made shorter. This work reveals the importance of manipulating the CNT thermal contact length when adopting CNT as a thermal management material. In using a focused laser to induce heating in a suspended CNT, one open question that remains unanswered is how many of the incident photons are absorbed by the CNT of interest. To address this question, micro-fabricated platinum thermometers, together with micro-Raman spectroscopy are used to quantify the optical absorption of an individual CNT. The absorbed power in the CNT is equal to the power detected by two thermometers at the end of the CNT. Our result shows that the optical absorption lies in the range between 0.03 to 0.44%. In

  15. Thermal transport studies using extreme ultraviolet spectroscopy: Final technical report, 5 March 1986-30 June 1987

    International Nuclear Information System (INIS)

    Griem, H.R.

    1987-12-01

    Thermal transport was investigated in laser-produced plasmas using spectroscopic measurements in the extreme ultraviolet. Theoretical work in collaboration with the University of Rochester allowed comparisons to be made of experimental spectra to a lagrangian hydrodynamic code. Results showed that transport is influenced by thermal flux inhibition in addition to non-uniformities in the laser irradiation. This work is a continuation of last year's project in which the main thermal transport results are reported. Very rich spectra were obtained in these experiments which yielded additional information on the ablating plasmas. A doppler shift was observed for neonlike titanium lines relative to higher ionization states of Ti. This shift is attributed to differences in expansion velocities between different charge states of Ti. A detailed report discussing this effect is attached. New lines were identified for Ti XXI and Ti XIX from these spectra in the wavelength region from 12 to 15 /angstrom/. The new heliumlike lines of Ti can exhibit population inversion and are candidates for x-ray laser experiments. A preprint of this paper is attached. Finally, line ratios of Ti XIX and Ti XX were employed to determine electron densities and temperatures. A report is also attached discussing these results

  16. Phonon model of perovskite thermal capacity

    International Nuclear Information System (INIS)

    Kesler, Ya.A.; Poloznikova, M.Eh.; Petrov, K.I.

    1983-01-01

    A model for calculating the temperature curve of thermal capacity of perovskite family crystals on the basis of vibrational spectra is proposed. Different representatives of the perovskite family: cubic SrTiO 3 , tetragonal BaTiO 3 and orthorbombic CaTiO 3 and LaCrO 3 are considered. The total frequency set is used in thermal capacity calcUlations. Comparison of the thermal capacity values of compounds calculated on the basis of the proposed model with the experimental values shows their good agreement. The method is also recommended for other compounds with the perovskite-like structure

  17. Thermal transport in cuprates, cobaltates, and manganites

    Energy Technology Data Exchange (ETDEWEB)

    Berggold, K.

    2006-09-15

    The subject of this thesis is the investigation of the thermal transport properties of three classes of transition-metal oxides: Cuprates, cobaltates, and manganites. The layered cuprates R{sub 2}CuO{sub 4} with R=La, Pr, Nd, Sm, Eu, and Gd show an anomalous thermal conductivity {kappa}. Two maxima of {kappa} are observed as a function of temperature for a heat current within the CuO{sub 2} planes, whereas for a heat current perpendicular to the CuO{sub 2} planes only a conventional phononic low-temperature maximum of {kappa} is present. Evidence is provided that the high-temperature maximum is caused by heat-carrying excitations on the CuO{sub 2} square lattice. Moreover, it is shown that the complex low-temperature and magnetic-field behavior of {kappa} in Nd{sub 2}CuO{sub 4} is most likely caused by additional phonon scattering rather than by heat-carrying Nd magnons, as it was proposed in the literature. In the cobaltates RCoO{sub 3} with R=La, Pr, Nd, and Eu, a temperature-induced spin-state transition of the Co{sup 3+} ions occurs. It is shown that the additional lattice disorder caused by the random distribution of populated higher spin states causes a large suppression of the thermal conductivity of LaCoO{sub 3} for T>25 K. The effect is much weaker in PrCoO{sub 3} and NdCoO{sub 3} due to the increased spin gap. A quantitative analysis of the responsible mechanisms based on EuCoO{sub 3} as a reference compound is provided. A main result is that the static disorder is sufficient to explain the suppression of {kappa}. No dynamical Jahn-Teller distortion, as proposed in the literature, is necessary to enhance the scattering strength. Below 25 K, k is mainly determined by resonant phonon scattering on paramagnetic impurity levels, e.g. caused by oxygen non-stoichiometry. Such a suppression of the thermal conductivity by resonant scattering processes is e.g. known from Holmium ethylsulfate. This effect is most pronounced in LaCoO{sub 3}, presumably due to

  18. Electron-beam-welded segmental heat pipes of AlMgSi 1 for the thermal model of the satellite Aeros-A

    Energy Technology Data Exchange (ETDEWEB)

    Hoell, H.; Lasar, H.

    1974-07-01

    For the purposes of tests with the thermal model of the German aeronomy satellite Aeros-A, a heat pipe system of optimized weight was developed in order to transport thermal energy from the solar cells of the cylindrical satellite to the conical bottom. Because of stringent requirements on the fabrication process, electron beam welding is used for bonding. The welding process is described and preliminary test results are given. (LEW)

  19. Flexural resonance mechanism of thermal transport across graphene-SiO2 interfaces

    Science.gov (United States)

    Ong, Zhun-Yong; Qiu, Bo; Xu, Shanglong; Ruan, Xiulin; Pop, Eric

    2018-03-01

    Understanding the microscopic mechanism of heat dissipation at the dimensionally mismatched interface between a two-dimensional (2D) crystal and its substrate is crucial for the thermal management of devices based on 2D materials. Here, we study the lattice contribution to thermal (Kapitza) transport at graphene-SiO2 interfaces using molecular dynamics (MD) simulations and non-equilibrium Green's functions (NEGF). We find that 78 percent of the Kapitza conductance is due to sub-20 THz flexural acoustic modes, and that a resonance mechanism dominates the interfacial phonon transport. MD and NEGF estimate the classical Kapitza conductance to be hK ≈ 10 to 16 MW K-1 m-2 at 300 K, respectively, consistent with existing experimental observations. Taking into account quantum mechanical corrections, this value is approximately 28% lower at 300 K. Our calculations also suggest that hK scales as T2 at low temperatures (T < 100 K) due to the linear frequency dependence of phonon transmission across the graphene-SiO2 interface at low frequencies. Our study sheds light on the role of flexural acoustic phonons in heat dissipation from graphene to its substrate.

  20. Theory of anomalous transport in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.; Fukuyama, A.

    1992-03-01

    Theoretical model of the anomalous transport in Torsatron/Heliotron plasmas is developed, based on the current-diffusive interchange instability which is destabilized due to the averaged magnetic hill near edge. Analytic formula of transport coefficient is derived. This model explains the high edge transport, the power degradation and energy confinement scaling law and the enhanced heat-pulse thermal conduction. (author)

  1. Refined Three-Dimensional Modelling of Thermally-Driven Flow in the Bormio System (Central Italian Alps)

    Science.gov (United States)

    Volpi, Giorgio; Riva, Federico; Frattini, Paolo; Battista Crosta, Giovanni; Magri, Fabien

    2016-04-01

    Thermal springs are widespread in the European Alps, where more than 80 geothermal sites are known and exploited. The quantitative assessment of those thermal flow systems is a challenging issue and requires accurate conceptual model and a thorough understanding of thermo-hydraulic properties of the aquifers. Accordingly in the last years, several qualitative studies were carried out to understand the heat and fluid transport processes driving deep fluids from the reservoir to the springs. Our work focused on thermal circulation and fluid outflows of the area around Bormio (Central Italian Alps), where nine geothermal springs discharge from dolomite bodies located close to a regional alpine thrust, called the Zebrù Line. At this site, water is heated in deep circulation systems and vigorously upwells at temperature of about 40°C. The aim of this paper is to explore the mechanisms of heat and fluid transport in the Bormio area by carrying out refined steady and transient three-dimensional finite element simulations of thermally-driven flow and to quantitatively assess the source area of the thermal waters. The full regional model (ca. 700 km2) is discretized with a highly refined triangular finite element planar grid obtained with Midas GTS NX software. The structural 3D features of the regional Zebrù thrust are built by interpolating series of geological cross sections using Fracman. A script was developed to convert and implement the thrust grid into FEFLOW mesh that comprises ca. 4 million elements. The numerical results support the observed discharge rates and temperature field within the simulated domain. Flow and temperature patterns suggest that thermal groundwater flows through a deep system crossing both sedimentary and metamorphic lithotypes, and a fracture network associated to the thrust system. Besides providing a numerical framework to simulate complex fractured systems, this example gives insights into the influence of deep alpine structures on

  2. Electronic transport in VO2—Experimentally calibrated Boltzmann transport modeling

    International Nuclear Information System (INIS)

    Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y.; Kado, Motohisa; Ling, Chen; Zhu, Gaohua; Banerjee, Debasish

    2015-01-01

    Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO 2 has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO 2 in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO 2 films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties

  3. Some Aspects of Thermal Transport across the Interface between Graphene and Epoxy in Nanocomposites.

    Science.gov (United States)

    Wang, Yu; Yang, Chunhui; Pei, Qing-Xiang; Zhang, Yingyan

    2016-03-01

    Owing to the superior thermal properties of graphene, graphene-reinforced polymer nanocomposites hold great potential as the thermal interface materials (TIMs) dissipating heat for electronic packages. However, this application is greatly hindered by the high thermal resistance at the interface between graphene and polymer. In this paper, some important aspects of the improvement of the thermal transport across the interface between graphene and epoxy in graphene-epoxy nanocomposites, including the effectiveness of covalent and noncovalent functionalization, isotope doping, and acetylenic linkage in graphene are systematically investigated using molecular dynamics (MD) simulations. The simulation results show that the covalent and noncovalent functionalization techniques could considerably reduce the graphene-epoxy interfacial thermal resistance in the nanocomposites. Among different covalent functional groups, butyl is more effective than carboxyl and hydroxyl in reducing the interfacial thermal resistance. Different noncovalent functional molecules, including 1-pyrenebutyl, 1-pyrenebutyric acid, and 1-pyrenebutylamine, yield a similar amount of reductions. Moreover, it is found that the graphene-epoxy interfacial thermal resistance is insensitive to the carbon isotope doping in graphene, while it can be reduced moderately by replacing the sp(2) bonds in graphene with acetylenic linkages.

  4. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  5. Numerical investigation of temperature distribution and thermal performance while charging-discharging thermal energy in aquifer

    NARCIS (Netherlands)

    Ganguly, S.; Mohan Kumar, M.S.; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-01-01

    A three-dimensional (3D) coupled thermo-hydrogeological numerical model for a confined aquifer thermal energy storage (ATES) system underlain and overlain by rock media has been presented in this paper. The ATES system operates in cyclic mode. The model takes into account heat transport processes of

  6. Homogenized thermal conduction model for particulate foods

    OpenAIRE

    Chinesta , Francisco; Torres , Rafael; Ramón , Antonio; Rodrigo , Mari Carmen; Rodrigo , Miguel

    2002-01-01

    International audience; This paper deals with the definition of an equivalent thermal conductivity for particulate foods. An homogenized thermal model is used to asses the effect of particulate spatial distribution and differences in thermal conductivities. We prove that the spatial average of the conductivity can be used in an homogenized heat transfer model if the conductivity differences among the food components are not very large, usually the highest conductivity ratio between the foods ...

  7. Thermal stability evaluation of palm oil as energy transport media

    International Nuclear Information System (INIS)

    Wan Nik, W.B.; Ani, F.N.; Masjuki, H.H.

    2005-01-01

    The thermal stability of palm oil as energy transport media in a hydraulic system was studied. The oils were aged by circulating the oil in an open loop hydraulic system at an isothermal condition of 55 deg. C for 600 h. The thermal behavior and kinetic parameters of fresh and degraded palm oil, with and without oxidation inhibitor, were studied using the dynamic heating rate mode of a thermogravimetric analyser (TGA). Viscometric properties, total acid number and iodine value analyses were used to complement the TGA data. The thermodynamic parameter of activation energy of the samples was determined by direct Arrhenius plot and integral methods. The results may have important applications in the development of palm oil based hydraulic fluid. The results were compared with commercial vegetable based hydraulic fluid. The use of F10 and L135 additives was found to suppress significantly the increase of acid level and viscosity of the fluid

  8. Thermal modelling of friction stir welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blicher; Hattel, Jesper Henri

    2008-01-01

    The objective of the present work is to present the basic elements of the thermal modelling of friction stir welding as well as to clarify some of the uncertainties in the literature regarding the different contributions to the heat generation. Some results from a new thermal pseudomechanical model...... in which the temperature-dependent yield stress of the weld material controls the heat generation are also presented....

  9. Development of whole core thermal-hydraulic analysis program ACT. 4. Simplified fuel assembly model and parallelization by MPI

    International Nuclear Information System (INIS)

    Ohshima, Hiroyuki

    2001-10-01

    A whole core thermal-hydraulic analysis program ACT is being developed for the purpose of evaluating detailed in-core thermal hydraulic phenomena of fast reactors including the effect of the flow between wrapper-tube walls (inter-wrapper flow) under various reactor operation conditions. As appropriate boundary conditions in addition to a detailed modeling of the core are essential for accurate simulations of in-core thermal hydraulics, ACT consists of not only fuel assembly and inter-wrapper flow analysis modules but also a heat transport system analysis module that gives response of the plant dynamics to the core model. This report describes incorporation of a simplified model to the fuel assembly analysis module and program parallelization by a message passing method toward large-scale simulations. ACT has a fuel assembly analysis module which can simulate a whole fuel pin bundle in each fuel assembly of the core and, however, it may take much CPU time for a large-scale core simulation. Therefore, a simplified fuel assembly model that is thermal-hydraulically equivalent to the detailed one has been incorporated in order to save the simulation time and resources. This simplified model is applied to several parts of fuel assemblies in a core where the detailed simulation results are not required. With regard to the program parallelization, the calculation load and the data flow of ACT were analyzed and the optimum parallelization has been done including the improvement of the numerical simulation algorithm of ACT. Message Passing Interface (MPI) is applied to data communication between processes and synchronization in parallel calculations. Parallelized ACT was verified through a comparison simulation with the original one. In addition to the above works, input manuals of the core analysis module and the heat transport system analysis module have been prepared. (author)

  10. Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps

    KAUST Repository

    Mei, Yaochuan

    2017-08-02

    The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials for consumer applications. Here, we present experimental results that suggest that the inhomogeneous strain induced in organic semiconductor layers by the mismatch between the coefficients of thermal expansion (CTE) of the consecutive device layers of field-effect transistors generates trapping states that localize charge carriers. We observe a universal scaling between the activation energy of the transistors and the interfacial thermal expansion mismatch, in which band-like transport is observed for similar CTEs, and activated transport otherwise. Our results provide evidence that a high-quality semiconductor layer is necessary, but not sufficient, to obtain efficient charge-carrier transport in devices, and underline the importance of holistic device design to achieve the intrinsic performance limits of a given organic semiconductor. We go on to show that insertion of an ultrathin CTE buffer layer mitigates this problem and can help achieve band-like transport on a wide range of substrate platforms.

  11. Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps.

    Science.gov (United States)

    Mei, Yaochuan; Diemer, Peter J; Niazi, Muhammad R; Hallani, Rawad K; Jarolimek, Karol; Day, Cynthia S; Risko, Chad; Anthony, John E; Amassian, Aram; Jurchescu, Oana D

    2017-08-15

    The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials for consumer applications. Here, we present experimental results that suggest that the inhomogeneous strain induced in organic semiconductor layers by the mismatch between the coefficients of thermal expansion (CTE) of the consecutive device layers of field-effect transistors generates trapping states that localize charge carriers. We observe a universal scaling between the activation energy of the transistors and the interfacial thermal expansion mismatch, in which band-like transport is observed for similar CTEs, and activated transport otherwise. Our results provide evidence that a high-quality semiconductor layer is necessary, but not sufficient, to obtain efficient charge-carrier transport in devices, and underline the importance of holistic device design to achieve the intrinsic performance limits of a given organic semiconductor. We go on to show that insertion of an ultrathin CTE buffer layer mitigates this problem and can help achieve band-like transport on a wide range of substrate platforms.

  12. From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures

    Science.gov (United States)

    de Tomas, C.; Cantarero, A.; Lopeandia, A. F.; Alvarez, F. X.

    2014-04-01

    We present a model which deepens into the role that normal scattering has on the thermal conductivity in semiconductor bulk, micro, and nanoscale samples. Thermal conductivity as a function of the temperature undergoes a smooth transition from a kinetic to a collective regime that depends on the importance of normal scattering events. We demonstrate that in this transition, the key point to fit experimental data is changing the way to perform the average on the scattering rates. We apply the model to bulk Si with different isotopic compositions obtaining an accurate fit. Then we calculate the thermal conductivity of Si thin films and nanowires by only introducing the effective size as additional parameter. The model provides a better prediction of the thermal conductivity behavior valid for all temperatures and sizes above 30 nm with a single expression. Avoiding the introduction of confinement or quantum effects, the model permits to establish the limit of classical theories in the study of the thermal conductivity in nanoscopic systems.

  13. From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures

    International Nuclear Information System (INIS)

    Tomas, C. de; Lopeandia, A. F.; Alvarez, F. X.; Cantarero, A.

    2014-01-01

    We present a model which deepens into the role that normal scattering has on the thermal conductivity in semiconductor bulk, micro, and nanoscale samples. Thermal conductivity as a function of the temperature undergoes a smooth transition from a kinetic to a collective regime that depends on the importance of normal scattering events. We demonstrate that in this transition, the key point to fit experimental data is changing the way to perform the average on the scattering rates. We apply the model to bulk Si with different isotopic compositions obtaining an accurate fit. Then we calculate the thermal conductivity of Si thin films and nanowires by only introducing the effective size as additional parameter. The model provides a better prediction of the thermal conductivity behavior valid for all temperatures and sizes above 30 nm with a single expression. Avoiding the introduction of confinement or quantum effects, the model permits to establish the limit of classical theories in the study of the thermal conductivity in nanoscopic systems

  14. From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tomas, C. de; Lopeandia, A. F.; Alvarez, F. X., E-mail: xavier.alvarez@uab.cat [Department of Physics, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Cantarero, A. [Materials Science Institute, University of Valencia, P. O. Box 22085, 46071 Valencia (Spain)

    2014-04-28

    We present a model which deepens into the role that normal scattering has on the thermal conductivity in semiconductor bulk, micro, and nanoscale samples. Thermal conductivity as a function of the temperature undergoes a smooth transition from a kinetic to a collective regime that depends on the importance of normal scattering events. We demonstrate that in this transition, the key point to fit experimental data is changing the way to perform the average on the scattering rates. We apply the model to bulk Si with different isotopic compositions obtaining an accurate fit. Then we calculate the thermal conductivity of Si thin films and nanowires by only introducing the effective size as additional parameter. The model provides a better prediction of the thermal conductivity behavior valid for all temperatures and sizes above 30 nm with a single expression. Avoiding the introduction of confinement or quantum effects, the model permits to establish the limit of classical theories in the study of the thermal conductivity in nanoscopic systems.

  15. Thermal margin model for transition core of KSNP

    International Nuclear Information System (INIS)

    Nahm, Kee Yil; Lim, Jong Seon; Park, Sung Kew; Chun, Chong Kuk; Hwang, Sun Tack

    2004-01-01

    The PLUS7 fuel was developed with mixing vane grids for KSNP. For the transition core partly loaded with the PLUS7 fuels, the procedure to set up the optimum thermal margin model of the transition core was suggested by introducing AOPM concept into the screening method which determines the limiting assembly. According to the procedure, the optimum thermal margin model of the first transition core was set up by using a part of nuclear data for the first transition and the homogeneous core with PLUS7 fuels. The generic thermal margin model of PLUS7 fuel was generated with the AOPM of 138%. The overpower penalties on the first transition core were calculated to be 1.0 and 0.98 on the limiting assembly and the generic thermal margin model, respectively. It is not usual case to impose the overpower penalty on reload cores. It is considered that the lack of channel flow due to the difference of pressure drop between PLUS7 and STD fuels results in the decrease of DNBR. The AOPM of the first transition core is evaluated to be about 135% by using the optimum generic thermal margin model which involves the generic thermal margin model and the total overpower penalty. The STD fuel is not included among limiting assembly candidates in the second transition core, because they have much lower pin power than PLUS7 fuels. The reduced number of STD fuels near the limiting assembly candidates the flow from the limiting assembly to increase the thermal margin for the second transition core. It is expected that cycle specific overpower penalties increase the thermal margin for the transition core. Using the procedure to set up the optimum thermal margin model makes sure that the enhanced thermal margin of PLUS7 fuel can be sufficiently applied to not only the homogeneous core but also the transition core

  16. Transport Studies and Modeling in PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Mittelsteadt, Cortney K. [Giner, Inc., Auburndale, MA (United States); Xu, Hui [Giner, Inc., Auburndale, MA (United States); Brawn, Shelly [Giner, Inc., Auburndale, MA (United States)

    2014-07-30

    was not achieved. We have simulated fuel cell performance, current distribution and water distribution at various values of the water uptake, membrane diffusivity, and electro-osmotic drag coefficient (EODC) and compared modeling results with segmented-cell data for both serpentine and parallel flow-fields. We have developed iterations of fuel cell flow fields to achieve specific water transport and thermal management targets. This work demonstrated the importance of membrane diffusivity on fuel cell performance, the necessity of a high membrane diffusion coefficient, and the desirability of a low EODC at low levels of relative humidity.

  17. A comparison of non-local electron transport models relevant to inertial confinement fusion

    Science.gov (United States)

    Sherlock, Mark; Brodrick, Jonathan; Ridgers, Christopher

    2017-10-01

    We compare the reduced non-local electron transport model developed by Schurtz et al. to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a 1-dimensional hohlraum ablation problem. We find the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced model reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Thermal Vacuum Test Correlation of A Zero Propellant Load Case Thermal Capacitance Propellant Gauging Analytics Model

    Science.gov (United States)

    McKim, Stephen A.

    2016-01-01

    This thesis describes the development and test data validation of the thermal model that is the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented to validate the model are presented. The thermal model was correlated to within plus or minus 3 degrees Centigrade of the thermal vacuum test data, and was found to be relatively insensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed, however, to refine the thermal model to further improve temperature predictions in the upper hemisphere of the propellant tank. Temperatures predictions in this portion were found to be 2-2.5 degrees Centigrade lower than the test data. A road map to apply the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.

  19. Model-based analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    Thermal insulation properties of coatings based on selected functional filler materials are investigated. The underlying physics, thermal conductivity of a heterogeneous two-component coating, and porosity and thermal conductivity of hollow spheres (HS) are quantified and a mathematical model for...

  20. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

    Science.gov (United States)

    Zhu, Dongming; Spuckler, Charles M.

    2010-01-01

    The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

  1. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and colloids, and

  2. Numerical thermal mathematical model correlation to thermal balance test using adaptive particle swarm optimization (APSO)

    International Nuclear Information System (INIS)

    Beck, T.; Bieler, A.; Thomas, N.

    2012-01-01

    We present structural and thermal model (STM) tests of the BepiColombo laser altimeter (BELA) receiver baffle with emphasis on the correlation of the data with a thermal mathematical model. The test unit is a part of the thermal and optical protection of the BELA instrument being tested under infrared and solar irradiation at University of Bern. An iterative optimization method known as particle swarm optimization has been adapted to adjust the model parameters, mainly the linear conductivity, in such a way that model and test results match. The thermal model reproduces the thermal tests to an accuracy of 4.2 °C ± 3.2 °C in a temperature range of 200 °C after using only 600 iteration steps of the correlation algorithm. The use of this method brings major benefits to the accuracy of the results as well as to the computational time required for the correlation. - Highlights: ► We present model correlations of the BELA receiver baffle to thermal balance tests. ► Adaptive particle swarm optimization has been adapted for the correlation. ► The method improves the accuracy of the correlation and the computational time.

  3. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.

    Science.gov (United States)

    Kang, Joon Sang; Wu, Huan; Hu, Yongjie

    2017-12-13

    Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of

  4. Low-temperature thermal transport and thermopower of monolayer transition metal dichalcogenide semiconductors

    Science.gov (United States)

    Sengupta, Parijat; Tan, Yaohua; Klimeck, Gerhard; Shi, Junxia

    2017-10-01

    We study the low temperature thermal conductivity of single-layer transition metal dichalcogenides (TMDCs). In the low temperature regime where heat is carried primarily through transport of electrons, thermal conductivity is linked to electrical conductivity through the Wiedemann-Franz law (WFL). Using a k.p Hamiltonian that describes the K and K{\\prime} valley edges, we compute the zero-frequency electric (Drude) conductivity using the Kubo formula to obtain a numerical estimate for the thermal conductivity. The impurity scattering determined transit time of electrons which enters the Drude expression is evaluated within the self-consistent Born approximation. The analytic expressions derived show that low temperature thermal conductivity (1) is determined by the band gap at the valley edges in monolayer TMDCs and (2) in presence of disorder which can give rise to the variable range hopping regime, there is a distinct reduction. Additionally, we compute the Mott thermopower and demonstrate that under a high frequency light beam, a valley-resolved thermopower can be obtained. A closing summary reviews the implications of results followed by a brief discussion on applicability of the WFL and its breakdown in context of the presented calculations.

  5. Optimal transportation networks models and theory

    CERN Document Server

    Bernot, Marc; Morel, Jean-Michel

    2009-01-01

    The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.

  6. Quantifying the relevance of adaptive thermal comfort models in moderate thermal climate zones

    Energy Technology Data Exchange (ETDEWEB)

    Hoof, Joost van; Hensen, Jan L.M. [Faculty of Architecture, Building and Planning, Technische Universiteit Eindhoven, Vertigo 6.18, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2007-01-15

    Standards governing thermal comfort evaluation are on a constant cycle of revision and public review. One of the main topics being discussed in the latest round was the introduction of an adaptive thermal comfort model, which now forms an optional part of ASHRAE Standard 55. Also on a national level, adaptive thermal comfort guidelines come into being, such as in the Netherlands. This paper discusses two implementations of the adaptive comfort model in terms of usability and energy use for moderate maritime climate zones by means of literature study, a case study comprising temperature measurements, and building performance simulation. It is concluded that for moderate climate zones the adaptive model is only applicable during summer months, and can reduce energy for naturally conditioned buildings. However, the adaptive thermal comfort model has very limited application potential for such climates. Additionally we suggest a temperature parameter with a gradual course to replace the mean monthly outdoor air temperature to avoid step changes in optimum comfort temperatures. (author)

  7. STP-ECRTS - THERMAL AND GAS ANALYSES FOR SLUDGE TRANSPORT AND STORAGE CONTAINER (STSC) STORAGE AT T PLANT

    Energy Technology Data Exchange (ETDEWEB)

    CROWE RD; APTHORPE R; LEE SJ; PLYS MG

    2010-04-29

    The Sludge Treatment Project (STP) is responsible for the disposition of sludge contained in the six engineered containers and Settler tank within the 105-K West (KW) Basin. The STP is retrieving and transferring sludge from the Settler tank into engineered container SCS-CON-230. Then, the STP will retrieve and transfer sludge from the six engineered containers in the KW Basin directly into a Sludge Transport and Storage Containers (STSC) contained in a Sludge Transport System (STS) cask. The STSC/STS cask will be transported to T Plant for interim storage of the STSC. The STS cask will be loaded with an empty STSC and returned to the KW Basin for loading of additional sludge for transportation and interim storage at T Plant. CH2MHILL Plateau Remediation Company (CHPRC) contracted with Fauske & Associates, LLC (FAI) to perform thermal and gas generation analyses for interim storage of STP sludge in the Sludge Transport and Storage Container (STSCs) at T Plant. The sludge types considered are settler sludge and sludge originating from the floor of the KW Basin and stored in containers 210 and 220, which are bounding compositions. The conditions specified by CHPRC for analysis are provided in Section 5. The FAI report (FAI/10-83, Thermal and Gas Analyses for a Sludge Transport and Storage Container (STSC) at T Plant) (refer to Attachment 1) documents the analyses. The process considered was passive, interim storage of sludge in various cells at T Plant. The FATE{trademark} code is used for the calculation. The results are shown in terms of the peak sludge temperature and hydrogen concentrations in the STSC and the T Plant cell. In particular, the concerns addressed were the thermal stability of the sludge and the potential for flammable gas mixtures. This work was performed with preliminary design information and a preliminary software configuration.

  8. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling

    Science.gov (United States)

    Liu, Feifei; Lan, Fengchong; Chen, Jiqing

    2016-07-01

    Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a ;segmented; thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed ;segmented; model shows more precise than the ;non-segmented; model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the ;segmented; model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.

  9. Thermal and electron transport studies on the valence fluctuating compound YbNiAl4

    Science.gov (United States)

    Falkowski, M.; Kowalczyk, A.

    2018-05-01

    We report the thermoelectric power S and thermal conductivity κ measurements on the valence fluctuating compound YbNiAl4, furthermore taking into account the impact of the applied magnetic field. We discuss our new results with revisiting the magnetic [χ(T)], transport [ρ(T)], and thermodynamic [Cp(T)] properties in order to better understand the phenomenon of thermal and electron transport in this compound. The field dependence of the magnetoresistivity data is also given. The temperature dependence of thermoelectric power S(T) was found to exhibit a similar behaviour as expected for Yb-based compounds with divalent or nearly divalent Yb ions. In addition, the values of total thermal conductivity as a function of temperature κ(T) of YbNiAl4 are fairly low compared to those of pure metals which may be linked to the fact that the conduction band is perturbed by strong hybridization. A deeper analysis of the specific heat revealed the low-T anomaly of the ratio Cp(T)/T3, most likely associated with the localized low-frequency oscillators in this alloy. In addition, the Kadowaki-Woods ratio and the Wilson ratio are discussed with respect to the electronic correlations in YbNiAl4.

  10. Heat transport in two-dimensional materials by directly solving the phonon Boltzmann equation under Callaway's dual relaxation model

    Science.gov (United States)

    Guo, Yangyu; Wang, Moran

    2017-10-01

    The single mode relaxation time approximation has been demonstrated to greatly underestimate the lattice thermal conductivity of two-dimensional materials due to the collective effect of phonon normal scattering. Callaway's dual relaxation model represents a good approximation to the otherwise ab initio solution of the phonon Boltzmann equation. In this work we develop a discrete-ordinate-method (DOM) scheme for the numerical solution of the phonon Boltzmann equation under Callaway's model. Heat transport in a graphene ribbon with different geometries is modeled by our scheme, which produces results quite consistent with the available molecular dynamics, Monte Carlo simulations, and experimental measurements. Callaway's lattice thermal conductivity model with empirical boundary scattering rates is examined and shown to overestimate or underestimate the direct DOM solution. The length convergence of the lattice thermal conductivity of a rectangular graphene ribbon is explored and found to depend appreciably on the ribbon width, with a semiquantitative correlation provided between the convergence length and the width. Finally, we predict the existence of a phonon Knudsen minimum in a graphene ribbon only at a low system temperature and isotope concentration so that the average normal scattering rate is two orders of magnitude stronger than the intrinsic resistive one. The present work will promote not only the methodology for the solution of the phonon Boltzmann equation but also the theoretical modeling and experimental detection of hydrodynamic phonon transport in two-dimensional materials.

  11. Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures

    International Nuclear Information System (INIS)

    Miao, K.; Charles, J.; Klimeck, G.; Sadasivam, S.; Fisher, T. S.; Kubis, T.

    2016-01-01

    Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.

  12. Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures

    Science.gov (United States)

    Miao, K.; Sadasivam, S.; Charles, J.; Klimeck, G.; Fisher, T. S.; Kubis, T.

    2016-03-01

    Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.

  13. Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Miao, K., E-mail: kmiao@purdue.edu; Charles, J.; Klimeck, G. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Network for Computational Nanotechnology, Purdue University, West Lafayette, Indiana 47907 (United States); Sadasivam, S.; Fisher, T. S. [School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Kubis, T. [Network for Computational Nanotechnology, Purdue University, West Lafayette, Indiana 47907 (United States)

    2016-03-14

    Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.

  14. Multi-sphere unit cell model to calculate the effective thermal conductivity in pebble bed reactors

    International Nuclear Information System (INIS)

    Van Antwerpen, W.; Rousseau, P.G.; Du Toit, C.G.

    2010-01-01

    A proper understanding of the mechanisms of heat transfer, fluid flow and pressure drop through a packed bed of spheres is of utmost importance in the design of a high temperature Pebble Bed Reactor (PBR). While the gas flows predominantly in the axial direction through the bed, the total effective thermal conductivity is a lumped parameter that characterises the total heat transfer in the radial direction through the packed bed. The study of the effective thermal conductivity is important because it forms an intricate part of the self-acting decay heat removal chain, which is directly related to the PBR safety case. The effective thermal conductivity is the summation of various heat transport phenomena. These are the enhanced thermal conductivity due to turbulent mixing as the fluid passes through the voids between pebbles, heat transfer due to the movement of the solid spheres and thermal conduction and thermal radiation between the spheres in a stagnant fluid environment. In this study, the conduction and radiation between the spheres are investigated. Firstly, existing correlations for the effective thermal conductivity are investigated, with particular attention given to its applicability in the near-wall region. Several phenomena in particular are examined namely: conduction through the spheres, conduction through the contact area between the spheres, conduction through the gas phase and radiation between solid surfaces. A new approach to simulate the effective thermal conductivity for randomly packed beds is then presented, namely the so-called Multi-sphere Unit Cell Model. The model is validated by comparing the results with that obtained in experiments. (authors)

  15. Dileptons from transport and hydrodynamical models

    International Nuclear Information System (INIS)

    Huovinen, P.; Koch, V.

    2000-01-01

    Transport and hydrodynamical models used to describe the expansion stage of a heavy-ion collision at the CERN SPS give different dilepton spectrum even if they are tuned to reproduce the observed hadron spectra. To understand the origin of this difference we compare the dilepton emission from transport and hydrodynamical models using similar initial states in both models. We find that the requirement of pion number conservation in a hydrodynamical model does not change the dilepton emission. Also the mass distribution from the transport model indicates faster cooling and longer lifetime of the fireball

  16. Assessment of applications of transport models on regional scale solute transport

    Science.gov (United States)

    Guo, Z.; Fogg, G. E.; Henri, C.; Pauloo, R.

    2017-12-01

    Regional scale transport models are needed to support the long-term evaluation of groundwater quality and to develop management strategies aiming to prevent serious groundwater degradation. The purpose of this study is to evaluate the capacity of previously-developed upscaling approaches to accurately describe main solute transport processes including the capture of late-time tails under changing boundary conditions. Advective-dispersive contaminant transport in a 3D heterogeneous domain was simulated and used as a reference solution. Equivalent transport under homogeneous flow conditions were then evaluated applying the Multi-Rate Mass Transfer (MRMT) model. The random walk particle tracking method was used for both heterogeneous and homogeneous-MRMT scenarios under steady state and transient conditions. The results indicate that the MRMT model can capture the tails satisfactorily for plume transported with ambient steady-state flow field. However, when boundary conditions change, the mass transfer model calibrated for transport under steady-state conditions cannot accurately reproduce the tailing effect observed for the heterogeneous scenario. The deteriorating impact of transient boundary conditions on the upscaled model is more significant for regions where flow fields are dramatically affected, highlighting the poor applicability of the MRMT approach for complex field settings. Accurately simulating mass in both mobile and immobile zones is critical to represent the transport process under transient flow conditions and will be the future focus of our study.

  17. Modelling for Near-Surface Transport Dynamics of Hydrogen of Plasma Facing Materials by use of Cellular Automaton

    International Nuclear Information System (INIS)

    Shimura, K.; Terai, T.; Yamawaki, M.

    2003-01-01

    In this study, the kinetics of desorption of adsorbed hydrogen from an ideal metallic surface is modelled in Cellular Automaton (CA). The modelling is achieved by downgrading the surface to one dimension. The model consists of two parts that are surface migration and desorption. The former is attained by randomly sorting the particles at each time, the latter is realised by modelling the thermally-activated process. For the verification of this model, thermal desorption is simulated then the comparison with the chemical kinetics is carried out. Excellent agreement is observed from the result. The results show that this model is reasonable to express the recombinative desorption of two chemisorbed adatoms. Though, the application of this model is limited to the second-order reaction case. But it can be believed that the groundwork of modelling the transport dynamics of hydrogen through the surface under complex conditions is established

  18. Mathematical modeling plasma transport in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Quiang, Ji [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1997-01-01

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 1020/m3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%.

  19. Mathematical modeling plasma transport in tokamaks

    International Nuclear Information System (INIS)

    Quiang, Ji

    1995-01-01

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10 20 /m 3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%

  20. Transport coefficients for the plasma thermal energy and empirical scaling ''laws''

    International Nuclear Information System (INIS)

    Coppi, B.

    1989-01-01

    A set of transport coefficients has been identified for the electron and nuclei thermal energy of plasmas with temperatures in the multi-keV range, taking into account the available experimental information including the temperature spatial profiles and the inferred scaling ''laws'' for the measured energy replacement times. The specific form of these coefficients is suggested by the theory of a mode, so-called ''ubiquitous,'' that can be excited when a significant fraction of the electron population has magnetically trapped orbits. (author)

  1. A disaggregate freight transport model of transport chain and shipment size choice

    NARCIS (Netherlands)

    Windisch, E.; De Jong, G.C.; Van Nes, R.; Hoogendoorn, S.P.

    2010-01-01

    The field of freight transport modelling is relatively young compared to passenger transport modelling. However, some key issues in freight policy, like growing freight shares on the road, advanced logistics concepts or emerging strict freight transport regulations, have been creating increasing

  2. Characterization of thermal, optical and carrier transport properties of porous silicon using the photoacoustic technique

    International Nuclear Information System (INIS)

    Sheng, Chan Kok; Mahmood Mat Yunus, W.; Yunus, Wan Md. Zin Wan; Abidin Talib, Zainal; Kassim, Anuar

    2008-01-01

    In this work, the porous silicon layer was prepared by the electrochemical anodization etching process on n-type and p-type silicon wafers. The formation of the porous layer has been identified by photoluminescence and SEM measurements. The optical absorption, energy gap, carrier transport and thermal properties of n-type and p-type porous silicon layers were investigated by analyzing the experimental data from photoacoustic measurements. The values of thermal diffusivity, energy gap and carrier transport properties have been found to be porosity-dependent. The energy band gap of n-type and p-type porous silicon layers was higher than the energy band gap obtained for silicon substrate (1.11 eV). In the range of porosity (50-76%) of the studies, our results found that the optical band-gap energy of p-type porous silicon (1.80-2.00 eV) was higher than that of the n-type porous silicon layer (1.70-1.86 eV). The thermal diffusivity value of the n-type porous layer was found to be higher than that of the p-type and both were observed to increase linearly with increasing layer porosity

  3. Nonlinear features of the electron temperature gradient mode and electron thermal transport in tokamaks

    International Nuclear Information System (INIS)

    Kaw, P.K.; Singh, R.; Weiland, J.G.

    2001-01-01

    Analytical investigations of several linear and nonlinear features of ETG turbulence are reported. The linear theory includes effects such as finite beta induced electromagnetic shielding, coupling to electron magnetohydrodynamic modes like whistlers etc. It is argued that nonlinearly, turbulence and transport are dominated by radially extended modes called 'streamers'. A nonlinear mechanism generating streamers based on a modulational instability theory of the ETG turbulence is also presented. The saturation levels of the streamers using a Kelvin Helmholtz secondary instability mechanism are calculated and levels of the electron thermal transport due to streamers are estimated. (author)

  4. Non-thermal AGN models

    Energy Technology Data Exchange (ETDEWEB)

    Band, D.L.

    1986-12-01

    The infrared, optical and x-ray continua from radio quiet active galactic nuclei (AGN) are explained by a compact non-thermal source surrounding a thermal ultraviolet emitter, presumably the accretion disk around a supermassive black hole. The ultraviolet source is observed as the ''big blue bump.'' The flat (..cap alpha.. approx. = .7) hard x-ray spectrum results from the scattering of thermal ultraviolet photons by the flat, low energy end of an electron distribution ''broken'' by Compton losses; the infrared through soft x-ray continuum is the synchrotron radiation of the steep, high energy end of the electron distribution. Quantitative fits to specific AGN result in models which satisfy the variability constraints but require electron (re)acceleration throughout the source. 11 refs., 1 fig.

  5. Multi-dimensional boron transport modeling in subchannel approach: Part I. Model selection, implementation and verification of COBRA-TF boron tracking model

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, Ozkan Emre, E-mail: ozdemir@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Avramova, Maria N., E-mail: mna109@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Sato, Kenya, E-mail: kenya_sato@mhi.co.jp [Mitsubishi Heavy Industries (MHI), Kobe (Japan)

    2014-10-15

    Highlights: ► Implementation of multidimensional boron transport model in a subchannel approach. ► Studies on cross flow mechanism, heat transfer and lateral pressure drop effects. ► Verification of the implemented model via code-to-code comparison with CFD code. - Abstract: The risk of reflux condensation especially during a Small Break Loss Of Coolant Accident (SB-LOCA) and the complications of tracking the boron concentration experimentally inside the primary coolant system have stimulated and subsequently have been a focus of many computational studies on boron tracking simulations in nuclear reactors. This paper presents the development and implementation of a multidimensional boron transport model with Modified Godunov Scheme within a thermal-hydraulic code based on a subchannel approach. The cross flow mechanism in multiple-subchannel rod bundle geometry as well as the heat transfer and lateral pressure drop effects are considered in the performed studies on simulations of deboration and boration cases. The Pennsylvania State University (PSU) version of the COBRA-TF (CTF) code was chosen for the implementation of three different boron tracking models: First Order Accurate Upwind Difference Scheme, Second Order Accurate Godunov Scheme, and Modified Godunov Scheme. Based on the performed nodalization sensitivity studies, the Modified Godunov Scheme approach with a physical diffusion term was determined to provide the best solution in terms of precision and accuracy. As a part of the verification and validation activities, a code-to-code comparison was carried out with the STAR-CD computational fluid dynamics (CFD) code and presented here. The objective of this study was two-fold: (1) to verify the accuracy of the newly developed CTF boron tracking model against CFD calculations; and (2) to investigate its numerical advantages as compared to other thermal-hydraulics codes.

  6. System Convergence in Transport Modelling

    DEFF Research Database (Denmark)

    Rich, Jeppe; Nielsen, Otto Anker; Cantarella, Guilio E.

    2010-01-01

    A fundamental premise of most applied transport models is the existence and uniqueness of an equilibrium solution that balances demand x(t) and supply t(x). The demand consists of the people that travel in the transport system and on the defined network, whereas the supply consists of the resulting...... level-of-service attributes (e.g., travel time and cost) offered to travellers. An important source of complexity is the congestion, which causes increasing demand to affect travel time in a non-linear way. Transport models most often involve separate models for traffic assignment and demand modelling...... iterating between a route-choice (demand) model and a time-flow (supply) model. It is generally recognised that a simple iteration scheme where the level-of-service level is fed directly to the route-choice and vice versa may exhibit an unstable pattern and lead to cyclic unstable solutions. It can be shown...

  7. Analysis technology in the thick plate free drop impact, heat and thermal stress of the cask for radioactive material transport

    International Nuclear Information System (INIS)

    Lee, Dew Hey; Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Choi, Kyung Joo; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun; Kim, Seong Jong

    2002-03-01

    In this study, The regulatory condition and analysis condition is analyzed for thick plate free drop, heat and thermal stress analysis to develop the safety assessment technology. Analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. ANSYS, LS-DYNA3D and ABAQUS is suitable for thick plate free drop, heat and thermal stress analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS for thick plate free drop and the results of ANSYS, LS-DYNA3D and ABAQUS for heat and thermal stress analysis is completely corresponded. And the integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology

  8. Analysis technology in the thick plate free drop impact, heat and thermal stress of the cask for radioactive material transport

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dew Hey [Korea Institute of Nuclear and Safety, Taejon (Korea, Republic of); Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Choi, Kyung Joo; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun; Kim, Seong Jong [Chungnam National Univ., Taejon (Korea, Republic of)

    2002-03-15

    In this study, The regulatory condition and analysis condition is analyzed for thick plate free drop, heat and thermal stress analysis to develop the safety assessment technology. Analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. ANSYS, LS-DYNA3D and ABAQUS is suitable for thick plate free drop, heat and thermal stress analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS for thick plate free drop and the results of ANSYS, LS-DYNA3D and ABAQUS for heat and thermal stress analysis is completely corresponded. And the integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology.

  9. In-situ measurements of material thermal parameters for accurate LED lamp thermal modelling

    NARCIS (Netherlands)

    Vellvehi, M.; Perpina, X.; Jorda, X.; Werkhoven, R.J.; Kunen, J.M.G.; Jakovenko, J.; Bancken, P.; Bolt, P.J.

    2013-01-01

    This work deals with the extraction of key thermal parameters for accurate thermal modelling of LED lamps: air exchange coefficient around the lamp, emissivity and thermal conductivity of all lamp parts. As a case study, an 8W retrofit lamp is presented. To assess simulation results, temperature is

  10. Analysis of Thermal Behavior in a Cargo Hold of LILW Transport Ship

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Unjang; Kim, Dohyung; Lee, Dongkyu; Choi, Kyusup [Korea Nuclear Engineering and Service Corporation, Seoul (Korea, Republic of)

    2007-07-01

    With determining Kyongju as a repository site for the low and intermediate-level radioactive waste (LILW), it is time to decide transportation method to bring the waste from NPPs (Nuclear Power Plants) to the site. Now considering transport ship as an alternative, it is important to design cargo compartments in the ship. Especially, it is necessary to ensure thermal criteria in the cargo hold by using natural or forced convection. According to INF Code, there is addressed a technical standard of the cargo that adequate ventilation or refrigeration of enclosed cargo spaces shall be provided so that the average ambient temperature within such spaces does not exceed 55 .deg. C at any time. And many counties which operate LILW transport ships are conformable to the standard, and Ministry of Maritime Affairs and Fisheries of Korea also follows it. In this article analytical study of ventilation system in a cargo hold shows to keep the temperature below 55 .deg. C or not.

  11. House thermal model parameter estimation method for Model Predictive Control applications

    NARCIS (Netherlands)

    van Leeuwen, Richard Pieter; de Wit, J.B.; Fink, J.; Smit, Gerardus Johannes Maria

    In this paper we investigate thermal network models with different model orders applied to various Dutch low-energy house types with high and low interior thermal mass and containing floor heating. Parameter estimations are performed by using data from TRNSYS simulations. The paper discusses results

  12. Thermal Models of the Niger Delta: Implications for Charge Modelling

    International Nuclear Information System (INIS)

    Ejedawe, J.

    2002-01-01

    There are generally three main sources of temperature data-BHT data from log headers, production temperature data, and continuo's temperature logs. Analysis of continuous temperature profiles of over 100 wells in the Niger Delta two main thermal models (single leg and dogleg) are defined with occasional occurrence of a modified dogleg model.The dogleg model is characterised by a shallow interval of low geothermal gradient ( 3.0.C/100m). This is characteristically developed onshore area is simple, requiring only consideration of heat transients, modelling in the onshore require modelling programmes with built in modules to handle convective heat flow dissipation in the shallow layer. Current work around methods would involve tweaking of thermal conductivity values to mimic the underlying heat flow process effects, or heat flow mapping above and below the depth of gradient change. These methods allow for more realistic thermal modelling, hydrocarbon type prediction, and also more accurate prediction of temperature prior to drilling and for reservoir rock properties. The regional distribution of the models also impact on regional hydrocarbon distribution pattern in the Niger Delta

  13. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas

    2017-10-17

    We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving κInSe< κGaSe< κGaS. This behavior is demonstrated by correlating the scattering phase space limited by fundamental conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, thermal transport is governed by in-plane vibrations in InSe, GaSe and GaS, similar to buckled monolayer materials such as silicene. Alloying of InSe, GaSe and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ~2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.

  14. Modeling pollutant transport using a meshless-lagrangian particle model

    International Nuclear Information System (INIS)

    Carrington, D.B.; Pepper, D.W.

    2002-01-01

    A combined meshless-Lagrangian particle transport model is used to predict pollutant transport over irregular terrain. The numerical model for initializing the velocity field is based on a meshless approach utilizing multiquadrics established by Kansa. The Lagrangian particle transport technique uses a random walk procedure to depict the advection and dispersion of pollutants over any type of surface, including street and city canyons

  15. Enhancing electron transport in Si:P delta-doped devices by rapid thermal anneal

    International Nuclear Information System (INIS)

    Goh, K. E. J.; Augarten, Y.; Oberbeck, L.; Simmons, M. Y.

    2008-01-01

    We address the use of rapid thermal anneal (RTA) to enhance electron mobility and phase coherent transport in Si:P δ-doped devices encapsulated by low temperature Si molecular beam epitaxy while minimizing dopant diffusion. RTA temperatures of 500-700 deg. C were applied to δ-doped layers encapsulated at 250 deg. C. From 4.2 K magnetotransport measurements, we find that the improved crystal quality after RTA increases the mobility/mean free path by ∼40% and the phase coherence length by ∼25%. Our results suggest that the initial capping layer has near optimal crystal quality and transport improvement achieved by a RTA is limited

  16. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system

    International Nuclear Information System (INIS)

    Basu, Suman; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Sohn, Dong Kee; Yeo, Taejung

    2016-01-01

    Highlights: • Three-dimensional electrochemical thermal model of Li-ion battery pack using computational fluid dynamics (CFD). • Novel pack design for compact liquid cooling based thermal management system. • Simple temperature estimation algorithm for the cells in the pack using the results from the model. • Sensitivity of the thermal performance to contact resistance has been investigated. - Abstract: Thermal management system is of critical importance for a Li-ion battery pack, as high performance and long battery pack life can be simultaneously achieved when operated within a narrow range of temperature around the room temperature. An efficient thermal management system is required to keep the battery temperature in this range, despite widely varying operating conditions. A novel liquid coolant based thermal management system, for 18,650 battery pack has been introduced herein. This system is designed to be compact and economical without compromising safety. A coupled three-dimensional (3D) electrochemical thermal model is constructed for the proposed Li-ion battery pack. The model is used to evaluate the effects of different operating conditions like coolant flow-rate and discharge current on the pack temperature. Contact resistance is found to have the strongest impact on the thermal performance of the pack. From the numerical solution, a simple and novel temperature correlation of predicting the temperatures of all the individual cells given the temperature measurement of one cell is devised and validated with experimental results. Such coefficients have great potential of reducing the sensor requirement and complexity in a large Li-ion battery pack, typical of an electric vehicle.

  17. Thermal-hydraulic Experiments for Advanced Physical Model Development

    International Nuclear Information System (INIS)

    Song, Chulhwa

    2012-04-01

    The improvement of prediction models is needed to enhance the safety analysis capability through experimental database of local phenomena. To improve the two-phase interfacial area transport model, the various experiments were carried out with local two-phase interfacial structure test facilities. 2 Χ 2 and 6 Χ 6 rod bundle test facilities were used for the experiment on the droplet behavior. The experiments on the droplet behavior inside a heated rod bundle geometry. The experiments used GIRLS and JICO and CFD analysis were carried out to comprehend the local condensation of steam jet, turbulent jet induced by condensation and the thermal mixing in a pool. In order to develop a model for key phenomena of newly adapted safety system, experiments for boiling inside a pool and condensation in horizontal channel have been performed. An experimental database of the CHF (Critical Heat Flux) and PDO (Post-dryout) was constructed. The mechanism of the heat transfer enhancement by surface modifications in nano-fluid was investigated in boiling mode and rapid quenching mode. The special measurement techniques were developed. They are Double-sensor optical void probe, Optic Rod, PIV technique and UBIM system

  18. Uncertainty calculation in transport models and forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Prato, Carlo Giacomo

    Transport projects and policy evaluations are often based on transport model output, i.e. traffic flows and derived effects. However, literature has shown that there is often a considerable difference between forecasted and observed traffic flows. This difference causes misallocation of (public...... implemented by using an approach based on stochastic techniques (Monte Carlo simulation and Bootstrap re-sampling) or scenario analysis combined with model sensitivity tests. Two transport models are used as case studies: the Næstved model and the Danish National Transport Model. 3 The first paper...... in a four-stage transport model related to different variable distributions (to be used in a Monte Carlo simulation procedure), assignment procedures and levels of congestion, at both the link and the network level. The analysis used as case study the Næstved model, referring to the Danish town of Næstved2...

  19. Highway and interline transportation routing models

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.

    1994-01-01

    The potential impacts associated with the transportation of hazardous materials are important issues to shippers, carriers, and the general public. Since transportation routes are a central characteristic in most of these issues, the prediction of likely routes is the first step toward the resolution of these issues. In addition, US Department of Transportation requirements (HM-164) mandate specific routes for shipments of highway controlled quantities of radioactive materials. In response to these needs, two routing models have been developed at Oak Ridge National Laboratory under the sponsorship of the U.S. Department of Energy (DOE). These models have been designated by DOE's Office of Environmental Restoration and Waste Management, Transportation Management Division (DOE/EM) as the official DOE routing models. Both models, HIGHWAY and INTERLINE, are described

  20. Up-gradient transport in a probabilistic transport model

    DEFF Research Database (Denmark)

    Gavnholt, J.; Juul Rasmussen, J.; Garcia, O.E.

    2005-01-01

    The transport of particles or heat against the driving gradient is studied by employing a probabilistic transport model with a characteristic particle step length that depends on the local concentration or heat gradient. When this gradient is larger than a prescribed critical value, the standard....... These results supplement recent works by van Milligen [Phys. Plasmas 11, 3787 (2004)], which applied Levy distributed step sizes in the case of supercritical gradients to obtain the up-gradient transport. (c) 2005 American Institute of Physics....

  1. Adaptive thermal modeling of Li-ion batteries

    International Nuclear Information System (INIS)

    Shadman Rad, M.; Danilov, D.L.; Baghalha, M.; Kazemeini, M.; Notten, P.H.L.

    2013-01-01

    Highlights: • A simple, accurate and adaptive thermal model is proposed for Li-ion batteries. • Equilibrium voltages, overpotentials and entropy changes are quantified from experimental results. • Entropy changes are highly dependent on the battery State-of-Charge. • Good agreement between simulated and measured heat development is obtained under all conditions. • Radiation contributes to about 50% of heat dissipation at elevated temperatures. -- Abstract: An accurate thermal model to predict the heat generation in rechargeable batteries is an essential tool for advanced thermal management in high power applications, such as electric vehicles. For such applications, the battery materials’ details and cell design are normally not provided. In this work a simple, though accurate, thermal model for batteries has been developed, considering the temperature- and current-dependent overpotential heat generation and State-of-Charge dependent entropy contributions. High power rechargeable Li-ion (7.5 Ah) batteries have been experimentally investigated and the results are used for model verification. It is shown that the State-of-Charge dependent entropy is a significant heat source and is therefore essential to correctly predict the thermal behavior of Li-ion batteries under a wide variety of operating conditions. An adaptive model is introduced to obtain these entropy values. A temperature-dependent equation for heat transfer to the environment is also taken into account. Good agreement between the simulations and measurements is obtained in all cases. The parameters for both the heat generation and heat transfer processes can be applied to the thermal design of advanced battery packs. The proposed methodology is generic and independent on the cell chemistry and battery design. The parameters for the adaptive model can be determined by performing simple cell potential/current and temperature measurements for a limited number of charge/discharge cycles

  2. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Bobby, E-mail: philipb@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Berrill, Mark A.; Allu, Srikanth; Hamilton, Steven P.; Sampath, Rahul S.; Clarno, Kevin T. [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Dilts, Gary A. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)

    2015-04-01

    This paper describes an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors is described. Details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstrating the achieved efficiency of the algorithm are presented. Furthermore, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.

  3. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport

  4. Calculating lattice thermal conductivity: a synopsis

    Science.gov (United States)

    Fugallo, Giorgia; Colombo, Luciano

    2018-04-01

    We provide a tutorial introduction to the modern theoretical and computational schemes available to calculate the lattice thermal conductivity in a crystalline dielectric material. While some important topics in thermal transport will not be covered (including thermal boundary resistance, electronic thermal conduction, and thermal rectification), we aim at: (i) framing the calculation of thermal conductivity within the general non-equilibrium thermodynamics theory of transport coefficients, (ii) presenting the microscopic theory of thermal conduction based on the phonon picture and the Boltzmann transport equation, and (iii) outlining the molecular dynamics schemes to calculate heat transport. A comparative and critical addressing of the merits and drawbacks of each approach will be discussed as well.

  5. Thermal-hydraulic Experiments for Advanced Physical Model Development

    International Nuclear Information System (INIS)

    Song, Chul Hwa; Baek, W. P.; Yoon, B. J.

    2010-04-01

    The improvement of prediction models is needed to enhance the safety analysis capability through the fine measurements of local phenomena. To improve the two-phase interfacial area transport model, the various experiments were carried out used SUBO and DOBO. 2x2 and 6x6 rod bundle test facilities were used for the experiment on the droplet behavior. The experiments on the droplet behavior inside a heated rod bundle were focused on the break-up of droplets induced by a spacer grid in a rod bundle geometry. The experiments used GIRLS and JICO and CFD analysis were carried out to comprehend the local condensation of steam jet, turbulent jet induced by condensation and the thermal mixing in a pool. An experimental database of the CHF (Critical Heat Flux) and PDO (Post-dryout) had been constructed. The mechanism of the heat transfer enhancement by surface modifications in nano-fluid was investigated in boiling mode and rapid quenching mode. The special measurement techniques were developed. They are Double -sensor optical void probe, Optic Rod, PIV technique and UBIM system

  6. Multi-scale modeling of spin transport in organic semiconductors

    Science.gov (United States)

    Hemmatiyan, Shayan; Souza, Amaury; Kordt, Pascal; McNellis, Erik; Andrienko, Denis; Sinova, Jairo

    In this work, we present our theoretical framework to simulate simultaneously spin and charge transport in amorphous organic semiconductors. By combining several techniques e.g. molecular dynamics, density functional theory and kinetic Monte Carlo, we are be able to study spin transport in the presence of anisotropy, thermal effects, magnetic and electric field effects in a realistic morphologies of amorphous organic systems. We apply our multi-scale approach to investigate the spin transport in amorphous Alq3 (Tris(8-hydroxyquinolinato)aluminum) and address the underlying spin relaxation mechanism in this system as a function of temperature, bias voltage, magnetic field and sample thickness.

  7. Electrohydrodynamic fibrillation governed enhanced thermal transport in dielectric colloids under a field stimulus.

    Science.gov (United States)

    Dhar, Purbarun; Maganti, Lakshmi Sirisha; Harikrishnan, A R

    2018-05-30

    Electrorheological (ER) fluids are known to exhibit enhanced viscous effects under an electric field stimulus. The present article reports the hitherto unreported phenomenon of greatly enhanced thermal conductivity in such electro-active colloidal dispersions in the presence of an externally applied electric field. Typical ER fluids are synthesized employing dielectric fluids and nanoparticles and experiments are performed employing an in-house designed setup. Greatly augmented thermal conductivity under a field's influence was observed. Enhanced thermal conduction along the fibril structures under the field effect is theorized as the crux of the mechanism. The formation of fibril structures has also been experimentally verified employing microscopy. Based on classical models for ER fluids, a mathematical formalism has been developed to predict the propensity of chain formation and statistically feasible chain dynamics at given Mason numbers. Further, a thermal resistance network model is employed to computationally predict the enhanced thermal conduction across the fibrillary colloid microstructure. Good agreement between the mathematical model and the experimental observations is achieved. The domineering role of thermal conductivity over relative permittivity has been shown by proposing a modified Hashin-Shtrikman (HS) formalism. The findings have implications towards better physical understanding and design of ER fluids from both 'smart' viscoelastic as well as thermally active materials points of view.

  8. Monte Carlo impurity transport modeling in the DIII-D transport

    International Nuclear Information System (INIS)

    Evans, T.E.; Finkenthal, D.F.

    1998-04-01

    A description of the carbon transport and sputtering physics contained in the Monte Carlo Impurity (MCI) transport code is given. Examples of statistically significant carbon transport pathways are examined using MCI's unique tracking visualizer and a mechanism for enhanced carbon accumulation on the high field side of the divertor chamber is discussed. Comparisons between carbon emissions calculated with MCI and those measured in the DIII-D tokamak are described. Good qualitative agreement is found between 2D carbon emission patterns calculated with MCI and experimentally measured carbon patterns. While uncertainties in the sputtering physics, atomic data, and transport models have made quantitative comparisons with experiments more difficult, recent results using a physics based model for physical and chemical sputtering has yielded simulations with about 50% of the total carbon radiation measured in the divertor. These results and plans for future improvement in the physics models and atomic data are discussed

  9. Role of field-induced nanostructures, zippering and size polydispersity on effective thermal transport in magnetic fluids without significant viscosity enhancement

    Science.gov (United States)

    Vinod, Sithara; Philip, John

    2017-12-01

    Magnetic nanofluids or ferrofluids exhibit extraordinary field dependant tunable thermal conductivity (k), which make them potential candidates for microelectronic cooling applications. However, the associated viscosity enhancement under an external stimulus is undesirable for practical applications. Further, the exact mechanism of heat transport and the role of field induced nanostructures on thermal transport is not clearly understood. In this paper, through systematic thermal, rheological and microscopic studies in 'model ferrofluids', we demonstrate for the first time, the conditions to achieve very high thermal conductivity to viscosity ratio. Highly stable ferrofluids with similar crystallite size, base fluid, capping agent and magnetic properties, but with slightly different size distributions, are synthesized and characterized by X-ray diffraction, small angle X-ray scattering, transmission electron microscopy, dynamic light scattering, vibrating sample magnetometer, Fourier transform infrared spectroscopy and thermo-gravimetry. The average hydrodynamic diameters of the particles were 11.7 and 10.1 nm and the polydispersity indices (σ), were 0.226 and 0.151, respectively. We observe that the system with smaller polydispersity (σ = 0.151) gives larger k enhancement (130% for 150 G) as compared to the one with σ = 0.226 (73% for 80 G). Further, our results show that dispersions without larger aggregates and with high density interfacial capping (with surfactant) can provide very high enhancement in thermal conductivity, with insignificant viscosity enhancement, due to minimal interfacial losses. We also provide experimental evidence for the effective heat conduction (parallel mode) through a large number of space filling linear aggregates with high aspect ratio. Microscopic studies reveal that the larger particles act as nucleating sites and facilitate lateral aggregation (zippering) of linear chains that considerably reduces the number density of space

  10. Thermal model of attic systems with radiant barriers

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, K.E.

    1991-07-01

    This report summarizes the first phase of a project to model the thermal performance of radiant barriers. The objective of this phase of the project was to develop a refined model for the thermal performance of residential house attics, with and without radiant barriers, and to verify the model by comparing its predictions against selected existing experimental thermal performance data. Models for the thermal performance of attics with and without radiant barriers have been developed and implemented on an IBM PC/AT computer. The validity of the models has been tested by comparing their predictions with ceiling heat fluxes measured in a number of laboratory and field experiments on attics with and without radiant barriers. Cumulative heat flows predicted by the models were usually within about 5 to 10 percent of measured values. In future phases of the project, the models for attic/radiant barrier performance will be coupled with a whole-house model and further comparisons with experimental data will be made. Following this, the models will be utilized to provide an initial assessment of the energy savings potential of radiant barriers in various configurations and under various climatic conditions. 38 refs., 14 figs., 22 tabs.

  11. Thermal-hydrological models

    Energy Technology Data Exchange (ETDEWEB)

    Buscheck, T., LLNL

    1998-04-29

    This chapter describes the physical processes and natural and engineered system conditions that affect thermal-hydrological (T-H) behavior in the unsaturated zone (UZ) at Yucca Mountain and how these effects are represented in mathematical and numerical models that are used to predict T-H conditions in the near field, altered zone, and engineered barrier system (EBS), and on waste package (WP) surfaces.

  12. Coal supply and transportation model (CSTM)

    International Nuclear Information System (INIS)

    1991-11-01

    The Coal Supply and Transportation Model (CSTM) forecasts annual coal supply and distribution to domestic and foreign markets. The model describes US coal production, national and international coal transportation industries. The objective of this work is to provide a technical description of the current version of the model

  13. Transport Choice Modeling for the Evaluation of New Transport Policies

    Directory of Open Access Journals (Sweden)

    Ander Pijoan

    2018-04-01

    Full Text Available Quantifying the impact of the application of sustainable transport policies is essential in order to mitigate effects of greenhouse gas emissions produced by the transport sector. One of the most common approaches used for this purpose is that of traffic modelling and simulation, which consists of emulating the operation of an entire road network. This article presents the results of fitting 8 well known data science methods for transport choice modelling, the area in which more research is needed. The models have been trained with information from Biscay province in Spain in order to match as many of its commuters as possible. Results show that the best models correctly forecast more than 51% of the trips recorded. Finally, the results have been validated with a second data set from the Silesian Voivodeship in Poland, showing that all models indeed maintain their forecasting ability.

  14. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    N. Lubchenko; M. Rodríguez-Buño; E.A. Bates; R. Podgorney; E. Baglietto; J. Buongiorno; M.J. Driscoll

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusion coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport mechanism

  15. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo; Artina, Marco; Foransier, Massimo; Markowich, Peter A.

    2015-01-01

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation

  16. Engineered Barrier System Thermal-Hydraulic-Chemical Column Test Report

    International Nuclear Information System (INIS)

    W.E. Lowry

    2001-01-01

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M and O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01

  17. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  18. Transmutation Fuel Performance Code Thermal Model Verification

    Energy Technology Data Exchange (ETDEWEB)

    Gregory K. Miller; Pavel G. Medvedev

    2007-09-01

    FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.

  19. Thermal properties. Site descriptive modelling Forsmark - stage 2.2

    International Nuclear Information System (INIS)

    Back, Paer-Erik; Wrafter, John; Sundberg, Jan; Rosen, L ars

    2007-09-01

    The lithological data acquired from boreholes and mapping of the rock surface need to be reclassified into thermal rock classes, TRCs. The main reason is to simplify the simulations. The lithological data are used to construct models of the transition between different TRCs, thus describing the spatial statistical structure of each TRC. The result is a set of transition probability models that are used in the simulation of TRCs. The intermediate result of this first stochastic simulation is a number of realisations of the geology, each one equally probable. Based on the thermal data, a spatial statistical thermal model is constructed for each TRC. It consists of a statistical distribution and a variogram for each TRC. These are used in the stochastic simulation of thermal conductivity and the result is a number of equally probable realisations of thermal conductivity for the domain. In the next step, the realisations of TRCs (lithology) and thermal conductivity are merged, i.e. each realisation of geology is filled with simulated thermal conductivity values. The result is a set of realisations of thermal conductivity that considers both the difference in thermal properties between different TRCs, and the variability within each TRC. If the result is desired in a scale different from the simulation scale, i.e. the canister scale, upscaling of the realisations can be performed. The result is a set of equally probable realisations of thermal properties. The presented methodology was applied to rock domain RFM029 and RFM045. The main results are sets of realisations of thermal properties that can be used for further processing, most importantly for statistical analysis and numerical temperature simulations for the design of repository layout (distances between deposition holes). The main conclusions of the thermal modelling are: The choice of scale has a profound influence on the distribution of thermal conductivity values. The variance decreases and the lower tail

  20. Thermal properties. Site descriptive modelling Forsmark - stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Back, Paer-Erik; Wrafter, John; Sundberg, Jan [Geo Innova AB (Sweden); Rosen, L ars [Sweco Viak AB (Sweden)

    2007-09-15

    The lithological data acquired from boreholes and mapping of the rock surface need to be reclassified into thermal rock classes, TRCs. The main reason is to simplify the simulations. The lithological data are used to construct models of the transition between different TRCs, thus describing the spatial statistical structure of each TRC. The result is a set of transition probability models that are used in the simulation of TRCs. The intermediate result of this first stochastic simulation is a number of realisations of the geology, each one equally probable. Based on the thermal data, a spatial statistical thermal model is constructed for each TRC. It consists of a statistical distribution and a variogram for each TRC. These are used in the stochastic simulation of thermal conductivity and the result is a number of equally probable realisations of thermal conductivity for the domain. In the next step, the realisations of TRCs (lithology) and thermal conductivity are merged, i.e. each realisation of geology is filled with simulated thermal conductivity values. The result is a set of realisations of thermal conductivity that considers both the difference in thermal properties between different TRCs, and the variability within each TRC. If the result is desired in a scale different from the simulation scale, i.e. the canister scale, upscaling of the realisations can be performed. The result is a set of equally probable realisations of thermal properties. The presented methodology was applied to rock domain RFM029 and RFM045. The main results are sets of realisations of thermal properties that can be used for further processing, most importantly for statistical analysis and numerical temperature simulations for the design of repository layout (distances between deposition holes). The main conclusions of the thermal modelling are: The choice of scale has a profound influence on the distribution of thermal conductivity values. The variance decreases and the lower tail

  1. Thermal Vacuum Test Correlation of a Zero Propellant Load Case Thermal Capacitance Propellant Gauging Analytical Model

    Science.gov (United States)

    Mckim, Stephen A.

    2016-01-01

    This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within plus or minus 3 degrees Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2 to 2.5 C lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.

  2. Phonon thermal conductance of disordered graphene strips with armchair edges

    International Nuclear Information System (INIS)

    Shi Lipeng; Xiong Shijie

    2009-01-01

    Based on the model of lattice dynamics together with the transfer matrix technique, we investigate the thermal conductances of phonons in quasi-one-dimensional disordered graphene strips with armchair edges using Landauer formalism for thermal transport. It is found that the contributions to thermal conductance from the phonon transport near von Hove singularities is significantly suppressed by the presence of disorder, on the contrary to the effect of disorder on phonon modes in other frequency regions. Besides the magnitude, for different widths of the strips, the thermal conductance also shows different temperature dependence. At low temperatures, the thermal conductance displays quantized features of both pure and disordered graphene strips implying that the transmission of phonon modes at low frequencies are almost unaffected by the disorder

  3. DOE/PNC joint program on transportation technology

    International Nuclear Information System (INIS)

    Kubo, M.; Kajitani, M.; Seya, M.; Yoshimura, H.R.; Moya, J.L.; May, R.A.; Huerta, M.; Stenberg, D.R.

    1986-01-01

    This paper summarizes the work performed in a cooperative program on transportation technology between the Department of Energy (DOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. This work was performed at Sandia National Laboratories (SNL) in Albuquerque, New Mexico. The joint program emphasized the safety analysis for truck transportation of special nuclear materials (SNM) in Japan. Tasks included structural analyses and testing, thermal testing, leak rate studies and tests, and transportation risk assessments. The purpose of this paper is to present the results of full-scale structural and thermal tests conducted on a PNC development SNM transport system. Correlation of full-scale impact test results with structural analysis and scale model testing will also be reviewed

  4. Electronic transport in VO{sub 2}—Experimentally calibrated Boltzmann transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y., E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kado, Motohisa [Higashifuji Technical Center, Toyota Motor Corporation, Susono, Shizuoka 410-1193 (Japan); Ling, Chen; Zhu, Gaohua; Banerjee, Debasish, E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Materials Research Department, Toyota Motor Engineering and Manufacturing North America, Inc., Ann Arbor, Michigan 48105 (United States)

    2015-12-28

    Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO{sub 2} has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO{sub 2} in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO{sub 2} films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties.

  5. Effect of anomalous transport coefficients on the thermal structure of the storm time auroral ionosphere

    International Nuclear Information System (INIS)

    Fontheim, E.G.; Ong, R.S.B.; Roble, R.G.; Mayr, H.G.; Hoegy, W.H.; Baron, M.J.; Wickwar, V.B.

    1978-01-01

    By analyzing an observed storm time auroral electron temperature profile it is shown that anomalous transport effects strongly influence the thermal structure of the disturbed auroral ionosphere. Such anomalous transport effects are a consequence of plasma turbulence, the existence of which has been established by a large number of observations in the auroral ionosphere. The electron and composite ion energy equations are solved with anomalous electron thermal conductivity and parallel electrical resistivity coefficients. The solutions are parameterized with respect to a phenomenological altitude-dependent anomaly coefficient A and are compared with an observed storm time electron temperature profile above Chatanika. The calculated temperature profile for the classical case (A=1)disagrees considerably with the measured profile over most of the altitude range up to 450km. It is shown that an anomaly coefficient with a sharp peak of the order of 10 4 centered aroung the F 2 peak is consistent with observations

  6. Thermally driven convective cells and tokamak edge turbulence

    International Nuclear Information System (INIS)

    Thayer, D.R.; Diamond, P.H.

    1987-07-01

    A unified theory for the dynamics of thermally driven convective cell turbulence is presented. The cells are excited by the combined effects of radiative cooling and resistivity gradient drive. The model also includes impurity dynamics. Parallel thermal and impurity flows enhanced by turbulent radial duffusion regulate and saturate overlapping cells, even in regimes dominated by thermal instability. Transport coefficients and fluctuation levels characteristic of the saturated turbulence are calculated. It is found that the impurity radiation increases transport coefficients for high density plasmas, while the parallel conduction damping, elevated by radial diffusion, in turn quenches the thermal instability. The enhancement due to radiative cooling provides a resolution to the dilemma of explaining the experimental observation that potential fluctuations exceed density fluctuations in the edge plasma (e PHI/T/sub e/ > n/n 0 )

  7. Self-consistent electron transport in collisional plasmas

    International Nuclear Information System (INIS)

    Mason, R.J.

    1982-01-01

    A self-consistent scheme has been developed to model electron transport in evolving plasmas of arbitrary classical collisionality. The electrons and ions are treated as either multiple donor-cell fluids, or collisional particles-in-cell. Particle suprathermal electrons scatter off ions, and drag against fluid background thermal electrons. The background electrons undergo ion friction, thermal coupling, and bremsstrahlung. The components move in self-consistent advanced E-fields, obtained by the Implicit Moment Method, which permits Δt >> ω/sub p/ -1 and Δx >> lambda/sub D/ - offering a 10 2 - 10 3 -fold speed-up over older explicit techniques. The fluid description for the background plasma components permits the modeling of transport in systems spanning more than a 10 7 -fold change in density, and encompassing contiguous collisional and collisionless regions. Results are presented from application of the scheme to the modeling of CO 2 laser-generated suprathermal electron transport in expanding thin foils, and in multi-foil target configurations

  8. Use of the Long Duration Exposure Facility's thermal measurement system for the verification of thermal models

    Science.gov (United States)

    Berrios, William M.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) postflight thermal model predicted temperatures were matched to flight temperature data recorded by the Thermal Measurement System (THERM), LDEF experiment P0003. Flight temperatures, recorded at intervals of approximately 112 minutes for the first 390 days of LDEF's 2105 day mission were compared with predictions using the thermal mathematical model (TMM). This model was unverified prior to flight. The postflight analysis has reduced the thermal model uncertainty at the temperature sensor locations from +/- 40 F to +/- 18 F. The improved temperature predictions will be used by the LDEF's principal investigators to calculate improved flight temperatures experienced by 57 experiments located on 86 trays of the facility.

  9. Note: Local thermal conductivities from boundary driven non-equilibrium molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bresme, F.; Armstrong, J.

    2014-01-01

    We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the “local” thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation

  10. Numerical modeling of aquifer thermal energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongchan [Korea Institute of Geoscience and Mineral Resources, Geothermal Resources Department, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Kongju National University, Department of Geoenvironmental Sciences, 182 Singwan-dong, Gongju-si, Chungnam 314-701 (Korea, Republic of); Lee, Youngmin [Korea Institute of Geoscience and Mineral Resources, Geothermal Resources Department, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Yoon, Woon Sang; Jeon, Jae Soo [nexGeo Inc., 134-1 Garak 2-dong, Songpa-gu, Seoul 138-807 (Korea, Republic of); Koo, Min-Ho; Keehm, Youngseuk [Kongju National University, Department of Geoenvironmental Sciences, 182 Singwan-dong, Gongju-si, Chungnam 314-701 (Korea, Republic of)

    2010-12-15

    The performance of the ATES (aquifer thermal energy storage) system primarily depends on the thermal interference between warm and cold thermal energy stored in an aquifer. Additionally the thermal interference is mainly affected by the borehole distance, the hydraulic conductivity, and the pumping/injection rate. Thermo-hydraulic modeling was performed to identify the thermal interference by three parameters and to estimate the system performance change by the thermal interference. Modeling results indicate that the thermal interference grows as the borehole distance decreases, as the hydraulic conductivity increases, and as the pumping/injection rate increases. The system performance analysis indicates that if {eta} (the ratio of the length of the thermal front to the distance between two boreholes) is lower than unity, the system performance is not significantly affected, but if {eta} is equal to unity, the system performance falls up to {proportional_to}22%. Long term modeling for a factory in Anseong was conducted to test the applicability of the ATES system. When the pumping/injection rate is 100 m{sup 3}/day, system performances during the summer and winter after 3 years of operation are estimated to be {proportional_to}125 kW and {proportional_to}110 kW, respectively. Therefore, 100 m{sup 3}/day of the pumping/injection rate satisfies the energy requirements ({proportional_to}70 kW) for the factory. (author)

  11. Cumulus parameterizations in chemical transport models

    Science.gov (United States)

    Mahowald, Natalie M.; Rasch, Philip J.; Prinn, Ronald G.

    1995-12-01

    Global three-dimensional chemical transport models (CTMs) are valuable tools for studying processes controlling the distribution of trace constituents in the atmosphere. A major uncertainty in these models is the subgrid-scale parametrization of transport by cumulus convection. This study seeks to define the range of behavior of moist convective schemes and point toward more reliable formulations for inclusion in chemical transport models. The emphasis is on deriving convective transport from meteorological data sets (such as those from the forecast centers) which do not routinely include convective mass fluxes. Seven moist convective parameterizations are compared in a column model to examine the sensitivity of the vertical profile of trace gases to the parameterization used in a global chemical transport model. The moist convective schemes examined are the Emanuel scheme [Emanuel, 1991], the Feichter-Crutzen scheme [Feichter and Crutzen, 1990], the inverse thermodynamic scheme (described in this paper), two versions of a scheme suggested by Hack [Hack, 1994], and two versions of a scheme suggested by Tiedtke (one following the formulation used in the ECMWF (European Centre for Medium-Range Weather Forecasting) and ECHAM3 (European Centre and Hamburg Max-Planck-Institut) models [Tiedtke, 1989], and one formulated as in the TM2 (Transport Model-2) model (M. Heimann, personal communication, 1992). These convective schemes vary in the closure used to derive the mass fluxes, as well as the cloud model formulation, giving a broad range of results. In addition, two boundary layer schemes are compared: a state-of-the-art nonlocal boundary layer scheme [Holtslag and Boville, 1993] and a simple adiabatic mixing scheme described in this paper. Three tests are used to compare the moist convective schemes against observations. Although the tests conducted here cannot conclusively show that one parameterization is better than the others, the tests are a good measure of the

  12. Development and evaluation of thermal model reduction algorithms for spacecraft

    Science.gov (United States)

    Deiml, Michael; Suderland, Martin; Reiss, Philipp; Czupalla, Markus

    2015-05-01

    This paper is concerned with the topic of the reduction of thermal models of spacecraft. The work presented here has been conducted in cooperation with the company OHB AG, formerly Kayser-Threde GmbH, and the Institute of Astronautics at Technische Universität München with the goal to shorten and automatize the time-consuming and manual process of thermal model reduction. The reduction of thermal models can be divided into the simplification of the geometry model for calculation of external heat flows and radiative couplings and into the reduction of the underlying mathematical model. For simplification a method has been developed which approximates the reduced geometry model with the help of an optimization algorithm. Different linear and nonlinear model reduction techniques have been evaluated for their applicability in reduction of the mathematical model. Thereby the compatibility with the thermal analysis tool ESATAN-TMS is of major concern, which restricts the useful application of these methods. Additional model reduction methods have been developed, which account to these constraints. The Matrix Reduction method allows the approximation of the differential equation to reference values exactly expect for numerical errors. The summation method enables a useful, applicable reduction of thermal models that can be used in industry. In this work a framework for model reduction of thermal models has been created, which can be used together with a newly developed graphical user interface for the reduction of thermal models in industry.

  13. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    Science.gov (United States)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  14. Modelling radionuclide transport in the geosphere: a review of the models available

    International Nuclear Information System (INIS)

    Cacas, M.C.; Cordier, E.; Coudrain-Ribstein, A.; Fargue, D.; Goblet, P.; Jamet, Ph.; Ledoux, E.; Marsily, G. de; Vinsot, A.; Brun, Ch.; Cernes, A.; Jacquier, Ph.; Lewi, J.; Priem, Th.

    1990-01-01

    Over the last twelve years, several models have been developed to simulate the transport of radionuclides in the environment of a radioactive waste repository: - continuous equivalent porous media flow and transport models using the finite element method in 1, 2 or 3 dimensions and taking into account various coupled mechanisms; - discontinuous stochastic fracture network models in 3 dimensions representing flow, transport, matrix diffusion, heat flow and mechanical stress; - geochemical models representing interactions between transported elements and a solid matrix; - transport process models coupling non dominant phenomena such as thermo-diffusion or thermo-gravitation. This paper reviews the role that each of these models can play in safety analyses. 3 refs [fr

  15. Thermal, chemical, and mass transport processes induced in abyssal sediments by the emplacement of nuclear wastes: Experimental and modelling results

    International Nuclear Information System (INIS)

    McVey, D.F.; Erickson, K.L.; Seyfried, W.E. Jr.

    1983-01-01

    In this chapter the authors discuss the current status of heat and mass transport studies in the marine red clay sediments that are being considered as a nuclear waste isolation medium and review analytical and experimental studies. Calculations based on numerical models indicate that for a maximum allowable sediment-canister interface temperatures of 200 0 to 250 0 C, the sediment can absorb about 1.5kW initial power from waste buried 30 m in the sediment in a canister that is 3 m long and 0.3 m in diameter. The resulting fluid displacement due to convections is found to be small, less than 1 m. Laboratory studies of the geochemical effects induced by heating sediment-seawater mixtures indicate that the canister and waste form should be designed to resist a hot, relatively acidic oxidizing environment. Since the thermally altered sediment volume of about 5.5 m/sup 3/ is small relative to the sediment volume overlying the canister, the acid and oxidizing conditions should significantly affect the properties of the far field only if thermodiffusional process (Soret effect) prove to be significant. If thermodiffusional effects are important, however, near-field chemistry will differ considerably from that predicted from results of constant temperature sediment-seawater interaction experiments

  16. Multiscale Modeling of UHTC: Thermal Conductivity

    Science.gov (United States)

    Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  17. Effects of pressure on thermal transport in plutonium oxide powder

    International Nuclear Information System (INIS)

    Bielenberg, Patricia; Prenger, F. Coyne; Veirs, Douglas Kirk; Jones, Jerry

    2004-01-01

    Radial temperature profiles in plutonium oxide (PuO 2 ) powder were measured in a cylindrical vessel over a pressure range of 0.055 to 334.4 kPa with two different fill gases, helium and argon. The fine PuO 2 powder provides a very uniform self-heating medium amenable to relatively simple mathematical descriptions. At low pressures ( 2 powder has small particle sizes (on the order of 1 to 10 μm), random particle shapes, and high porosity so a more general model was required for this system. The model correctly predicts the temperature profiles of the powder over the wide pressure range for both argon and helium as fill gases. The effective thermal conductivity of the powder bed exhibits a pressure dependence at higher pressures because the pore sizes in the interparticle contact area are relatively small (less than 1 μm) and the Knudsen number remains above the continuum limit at these conditions for both fill gases. Also, the effective thermal conductivity with argon as a fill gas is higher than expected at higher pressures because the solid pathways account for over 80% of the effective powder conductivity. The results obtained from this model help to bring insight to the thermal conductivity of very fine ceramic powders with different fill gases.

  18. Electrical/thermal transport and electronic structure of the binary cobalt pnictides CoPn2 (Pn = As and Sb

    Directory of Open Access Journals (Sweden)

    Yosuke Goto

    2015-06-01

    Full Text Available We demonstrate the electrical and thermal transport properties of polycrystalline CoPn2 (Pn = As and Sb between 300 and 900 K. CoAs2 shows semiconducting electrical transport up to 900 K, while CoSb2 exhibits degenerate conduction. Sign inversion of the Seebeck coefficient is observed at ∼310 and ∼400 K for CoAs2 and CoSb2, respectively. Thermal conductivity at 300 K is 11.7 Wm−1K−1 for CoAs2 and 9.4 Wm−1K−1 for CoSb2. The thermoelectric power factor of CoAs2 is ∼10 μWcm−1K−2, although the dimensionless figure of merit is limited to ∼0.1 due to relatively high thermal conductivity. Using electronic structure calculations, the band gap value is calculated to be 0.55 eV for CoAs2 and 0.26 eV for CoSb2.

  19. Interplay between total thickness and period thickness in the phonon thermal conductivity of superlattices from the nanoscale to the microscale: Coherent versus incoherent phonon transport

    Science.gov (United States)

    Cheaito, Ramez; Polanco, Carlos A.; Addamane, Sadhvikas; Zhang, Jingjie; Ghosh, Avik W.; Balakrishnan, Ganesh; Hopkins, Patrick E.

    2018-02-01

    We report on the room temperature thermal conductivity of AlAs-GaAs superlattices (SLs), in which we systematically vary the period thickness and total thickness between 2 -24 nm and 20.1 -2 ,160 nm , respectively. The thermal conductivity increases with the SL thickness and plateaus at a thickness around 200 nm, showing a clear transition from a quasiballistic to a diffusive phonon transport regime. These results demonstrate the existence of classical size effects in SLs, even at the highest interface density samples. We use harmonic atomistic Green's function calculations to capture incoherence in phonon transport by averaging the calculated transmission over several purely coherent simulations of independent SL with different random mixing at the AlAs-GaAs interfaces. These simulations demonstrate the significant contribution of incoherent phonon transport through the decrease in the transmission and conductance in the SLs as the number of interfaces increases. In spite of this conductance decrease, our simulations show a quasilinear increase in thermal conductivity with the superlattice thickness. This suggests that the observation of a quasilinear increase in thermal conductivity can have important contributions from incoherent phonon transport. Furthermore, this seemingly linear slope in thermal conductivity versus SL thickness data may actually be nonlinear when extended to a larger number of periods, which is a signature of incoherent effects. Indeed, this trend for superlattices with interatomic mixing at the interfaces could easily be interpreted as linear when the number of periods is small. Our results reveal that the change in thermal conductivity with period thickness is dominated by incoherent (particlelike) phonons, whose properties are not dictated by changes in the AlAs or GaAs phonon dispersion relations. This work demonstrates the importance of studying both period and sample thickness dependencies of thermal conductivity to understand the

  20. Numerical Modeling of Water Thermal Plumes Emitted by Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Azucena Durán-Colmenares

    2016-10-01

    Full Text Available This work focuses on the study of thermal dispersion of plumes emitted by power plants into the sea. Wastewater discharge from power stations causes impacts that require investigation or monitoring. A study to characterize the physical effects of thermal plumes into the sea is carried out here by numerical modeling and field measurements. The case study is the thermal discharges of the Presidente Adolfo López Mateos Power Plant, located in Veracruz, on the coast of the Gulf of Mexico. This plant is managed by the Federal Electricity Commission of Mexico. The physical effects of such plumes are related to the increase of seawater temperature caused by the hot water discharge of the plant. We focus on the implementation, calibration, and validation of the Delft3D-FLOW model, which solves the shallow-water equations. The numerical simulations consider a critical scenario where meteorological and oceanographic parameters are taken into account to reproduce the proper physical conditions of the environment. The results show a local physical effect of the thermal plumes within the study zone, given the predominant strong winds conditions of the scenario under study.

  1. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    Song, C. H.; Baek, W. P.; Chung, M. K.

    2007-06-01

    The objectives of the project are to study thermal hydraulic characteristics of advanced nuclear reactor system for evaluating key thermal-hydraulic phenomena relevant to new safety concepts. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. The Followings are main research topics: - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation-induced Thermal Mixing in a Pool - Development of Thermal-Hydraulic Models for Two-Phase Flow - Construction of T-H Data Base

  2. THERMLIB: a material property data library for thermal analysis of radioactive material transport casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1998-03-01

    The paper describes an heat conduction data library and graphical program for analysis of radioactive material transport casks. More than 1000 of material data are compiled in the data library which was produced by Lawrence Livermore Laboratory. Thermal data such as, density, thermal conductivity, specific heat, phase-change or solid-state, transition temperature and latent heat have been tabulated. Using this data library, a data library processing program THERMLIB for thermal analysis has been developed. Main features of THERMLIB are as follows: (1) data have been tabulated against temperature, (2) more than 1000 material data are available, (3) it is capable of graphical representations for thermal data and (4) not only main frame computer but also work stations (OS UNIX) and personal computer (OS Windows) are available for use of THERMLIB. In the paper, brief illustration of data library is presented in the first section. The second section presents descriptions of structural data. The third section provides an user's guide for computer program and input data for THERMLIB. (author)

  3. THERMLIB: a material property data library for thermal analysis of radioactive material transport casks

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    The paper describes an heat conduction data library and graphical program for analysis of radioactive material transport casks. More than 1000 of material data are compiled in the data library which was produced by Lawrence Livermore Laboratory. Thermal data such as, density, thermal conductivity, specific heat, phase-change or solid-state, transition temperature and latent heat have been tabulated. Using this data library, a data library processing program THERMLIB for thermal analysis has been developed. Main features of THERMLIB are as follows: (1) data have been tabulated against temperature, (2) more than 1000 material data are available, (3) it is capable of graphical representations for thermal data and (4) not only main frame computer but also work stations (OS UNIX) and personal computer (OS Windows) are available for use of THERMLIB. In the paper, brief illustration of data library is presented in the first section. The second section presents descriptions of structural data. The third section provides an user`s guide for computer program and input data for THERMLIB. (author)

  4. Power Electronics Thermal Management | Transportation Research | NREL

    Science.gov (United States)

    Power Electronics Thermal Management Power Electronics Thermal Management A photo of water boiling in liquid cooling lab equipment. Power electronics thermal management research aims to help lower the investigates and develops thermal management strategies for power electronics systems that use wide-bandgap

  5. Non-LTE considerations in spectral diagnostics of thermal transport and implosion experiments

    International Nuclear Information System (INIS)

    Epstein, R.; Skupsky, S.; Delettrez, J.; Yaakobi, B.

    1984-01-01

    Recent thermal-transport and target-implosion experiments have used the emission of radiation from highly-ionized ions to signal the advance of laser-driven heat fronts and to mark the trajectories and stagnation points of imploding shells. We examine the results of such experiments with particular attention given to non-LTE effects of non-Maxwellian electrons and of finite ionization times on the populations of signature-emitting atomic species and on the formation of signature spectra and x-ray images in these experiments

  6. Thermal structure of the ionosphere of Mars - simulations with one- and two-dimensional models

    International Nuclear Information System (INIS)

    Singhal, R.P.; Whitten, R.C.

    1988-01-01

    Heat flux saturation effects are included in the present one- and two-dimensional models of the Martian upper ionosphere's thermal structure. The inclusion of small upper boundary and volume heat sources is found to yield satisfactory simulations of the dayside ion temperature observation results obtained by Viking 1's retarding potential analyzers. It is noted that the plasma flow-transport of heat from the dayside to the nightside makes no contribution to the ion and electron temperatures that have been calculated for the nightside. 22 references

  7. Analytical modeling for thermal errors of motorized spindle unit

    OpenAIRE

    Liu, Teng; Gao, Weiguo; Zhang, Dawei; Zhang, Yifan; Chang, Wenfen; Liang, Cunman; Tian, Yanling

    2017-01-01

    Modeling method investigation about spindle thermal errors is significant for spindle thermal optimization in design phase. To accurately analyze the thermal errors of motorized spindle unit, this paper assumes approximately that 1) spindle linear thermal error on axial direction is ascribed to shaft thermal elongation for its heat transfer from bearings, and 2) spindle linear thermal errors on radial directions and angular thermal errors are attributed to thermal variations of bearing relati...

  8. Methods for testing transport models

    International Nuclear Information System (INIS)

    Singer, C.; Cox, D.

    1993-01-01

    This report documents progress to date under a three-year contract for developing ''Methods for Testing Transport Models.'' The work described includes (1) choice of best methods for producing ''code emulators'' for analysis of very large global energy confinement databases, (2) recent applications of stratified regressions for treating individual measurement errors as well as calibration/modeling errors randomly distributed across various tokamaks, (3) Bayesian methods for utilizing prior information due to previous empirical and/or theoretical analyses, (4) extension of code emulator methodology to profile data, (5) application of nonlinear least squares estimators to simulation of profile data, (6) development of more sophisticated statistical methods for handling profile data, (7) acquisition of a much larger experimental database, and (8) extensive exploratory simulation work on a large variety of discharges using recently improved models for transport theories and boundary conditions. From all of this work, it has been possible to define a complete methodology for testing new sets of reference transport models against much larger multi-institutional databases

  9. Numerical simulation of gas-phonon coupling in thermal transpiration flows.

    Science.gov (United States)

    Guo, Xiaohui; Singh, Dhruv; Murthy, Jayathi; Alexeenko, Alina A

    2009-10-01

    Thermal transpiration is a rarefied gas flow driven by a wall temperature gradient and is a promising mechanism for gas pumping without moving parts, known as the Knudsen pump. Obtaining temperature measurements along capillary walls in a Knudsen pump is difficult due to extremely small length scales. Meanwhile, simplified analytical models are not applicable under the practical operating conditions of a thermal transpiration device, where the gas flow is in the transitional rarefied regime. Here, we present a coupled gas-phonon heat transfer and flow model to study a closed thermal transpiration system. Discretized Boltzmann equations are solved for molecular transport in the gas phase and phonon transport in the solid. The wall temperature distribution is the direct result of the interfacial coupling based on mass conservation and energy balance at gas-solid interfaces and is not specified a priori unlike in the previous modeling efforts. Capillary length scales of the order of phonon mean free path result in a smaller temperature gradient along the transpiration channel as compared to that predicted by the continuum solid-phase heat transfer. The effects of governing parameters such as thermal gradients, capillary geometry, gas and phonon Knudsen numbers and, gas-surface interaction parameters on the efficiency of thermal transpiration are investigated in light of the coupled model.

  10. Computing the transport time scales of a stratified lake on the basis of Tonolli’s model

    Directory of Open Access Journals (Sweden)

    Marco Pilotti

    2014-05-01

    Full Text Available This paper deals with a simple model to evaluate the transport time scales in thermally stratified lakes that do not necessarily completely mix on a regular annual basis. The model is based on the formalization of an idea originally proposed in Italian by Tonolli in 1964, who presented a mass balance of the water initially stored within a lake, taking into account the known seasonal evolution of its thermal structure. The numerical solution of this mass balance provides an approximation to the water age distribution for the conceptualised lake, from which an upper bound to the typical time scales widely used in limnology can be obtained. After discussing the original test case considered by Tonolli, we apply the model to Lake Iseo, a deep lake located in the North of Italy, presenting the results obtained on the basis of a 30 year series of data.

  11. A computational model for thermal fluid design analysis of nuclear thermal rockets

    International Nuclear Information System (INIS)

    Given, J.A.; Anghaie, S.

    1997-01-01

    A computational model for simulation and design analysis of nuclear thermal propulsion systems has been developed. The model simulates a full-topping expander cycle engine system and the thermofluid dynamics of the core coolant flow, accounting for the real gas properties of the hydrogen propellant/coolant throughout the system. Core thermofluid studies reveal that near-wall heat transfer models currently available may not be applicable to conditions encountered within some nuclear rocket cores. Additionally, the possibility of a core thermal fluid instability at low mass fluxes and the effects of the core power distribution are investigated. Results indicate that for tubular core coolant channels, thermal fluid instability is not an issue within the possible range of operating conditions in these systems. Findings also show the advantages of having a nonflat centrally peaking axial core power profile from a fluid dynamic standpoint. The effects of rocket operating conditions on system performance are also investigated. Results show that high temperature and low pressure operation is limited by core structural considerations, while low temperature and high pressure operation is limited by system performance constraints. The utility of these programs for finding these operational limits, optimum operating conditions, and thermal fluid effects is demonstrated

  12. Erosion, Transportation, and Deposition on Outer Solar System Satellites: Landform Evolution Modeling Studies

    Science.gov (United States)

    Moore, Jeffrey Morgan; Howard, Alan D.; Schenk, Paul M.

    2013-01-01

    Mass movement and landform degradation reduces topographic relief by moving surface materials to a lower gravitational potential. In addition to the obvious role of gravity, abrasive mechanical erosion plays a role, often in combination with the lowering of cohesion, which allows disaggregation of the relief-forming material. The identification of specific landform types associated with mass movement and landform degradation provides information about local sediment particle size and abundance and transportation processes. Generally, mass movements can be classified in terms of the particle sizes of the transported material and the speed the material moved during transport. Most degradation on outer planet satellites appears consistent with sliding or slumping, impact erosion, and regolith evolution. Some satellites, such as Callisto and perhaps Hyperion and Iapetus, have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. A variant on this process is thermally driven frost segregation as seen on all three icy Galilean satellites and perhaps elsewhere. Titan is unique among outer planet satellites in that Aeolian and fluvial processes also operate to erode, transport, and deposit material. We will evaluate the sequence and extent of various landform-modifying erosional and volatile redistribution processes that have shaped these icy satellites using a 3-D model that simulates the following surface and subsurface processes: 1) sublimation and re-condensation of volatiles; 2) development of refractory lag deposits; 3) disaggregation and downward sloughing of surficial material; 4) radiative heating/cooling of the surface (including reflection, emission, and shadowing by other surface elements); 5) thermal diffusion; and 6) vapor diffusion. The model will provide explicit simulations of landform development and thusly predicts the topographic and volatile evolution of the surface

  13. Modeling of thermalization phenomena in coaxial plasma accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Panneerchelvam, Premkumar; Raja, Laxminarayan L.

    2018-05-01

    Coaxial plasma accelerators are electromagnetic acceleration devices that employ a self-induced Lorentz force to produce collimated plasma jets with velocities ~50 km s‑1. The accelerator operation is characterized by the formation of an ionization/thermalization zone near gas inlet of the device that continually processes the incoming neutral gas into a highly ionized thermal plasma. In this paper, we present a 1D non-equilibrium plasma model to resolve the plasma formation and the electron-heavy species thermalization phenomena that take place in the thermalization zone. The non-equilibrium model is based on a self-consistent multi-species continuum description of the plasma with finite-rate chemistry. The thermalization zone is modelled by tracking a 1D gas-bit as it convects down the device with an initial gas pressure of 1 atm. The thermalization process occurs in two stages. The first is a plasma production stage, associated with a rapid increase in the charged species number densities facilitated by cathode surface electron emission and volumetric production processes. The production stage results in the formation of a two-temperature plasma with electron energies of ~2.5 eV in a low temperature background gas of ~300 K. The second, a temperature equilibration stage, is characterized by the energy transfer between the electrons and heavy species. The characteristic length scale for thermalization is found to be comparable to axial length of the accelerator thus putting into question the equilibrium magnetohydrodynamics assumption used in modeling coaxial accelerators.

  14. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  15. Thermal diffusivity and electron transport properties of NTC samples obtained by the photoacoustic method

    International Nuclear Information System (INIS)

    Savic, S.M.; Aleksic, O.S.; Nikolic, M.V.; Lukovic, D.T.; Pejovic, V.Z.; Nikolic, P.M.

    2006-01-01

    Thermal diffusivity and electron transport parameters of sintered NTC samples were determined by the photoacoustic (PA) technique. Powder mixtures composed of MnO, NiO, CoO and Fe 2 O 3 were milled to nanometer particle size. NTC discs were dry powder pressed and sintered at different temperatures in the range from 900 deg. C to 1300 deg. C for 30 min. A second group of NTC discs was sintered at 1200 deg. C with the sintering time varying from 30 min to 360 min. These NTC samples were polished and exposed to a chopped laser beam in order to plot a response in the acoustic range. The thermal diffusivity of sintered NTC layers based on a metal oxide powder mixture was measured at room temperature by the photoacoustic technique. An increase of thermal diffusivity with the sintering temperature and time of sintering was observed

  16. Thermal diffusivity and electron transport properties of NTC samples obtained by the photoacoustic method

    Energy Technology Data Exchange (ETDEWEB)

    Savic, S.M. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Aleksic, O.S. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Nikolic, M.V. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Lukovic, D.T. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Pejovic, V.Z. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Nikolic, P.M. [Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia)]. E-mail: nikolic@sanu.ac.yu

    2006-07-15

    Thermal diffusivity and electron transport parameters of sintered NTC samples were determined by the photoacoustic (PA) technique. Powder mixtures composed of MnO, NiO, CoO and Fe{sub 2}O{sub 3} were milled to nanometer particle size. NTC discs were dry powder pressed and sintered at different temperatures in the range from 900 deg. C to 1300 deg. C for 30 min. A second group of NTC discs was sintered at 1200 deg. C with the sintering time varying from 30 min to 360 min. These NTC samples were polished and exposed to a chopped laser beam in order to plot a response in the acoustic range. The thermal diffusivity of sintered NTC layers based on a metal oxide powder mixture was measured at room temperature by the photoacoustic technique. An increase of thermal diffusivity with the sintering temperature and time of sintering was observed.

  17. The european Trans-Tools transport model

    NARCIS (Netherlands)

    Rooijen, T. van; Burgess, A.

    2008-01-01

    The paper presents the use of ArcGIS in the Transtools Transport Model, TRANS-TOOLS, created by an international consortium for the European Commission. The model describe passenger as well as freight transport in Europe with all medium and long distance modes (cars, vans, trucks, train, inland

  18. Two-point model for divertor transport

    International Nuclear Information System (INIS)

    Galambos, J.D.; Peng, Y.K.M.

    1984-04-01

    Plasma transport along divertor field lines was investigated using a two-point model. This treatment requires considerably less effort to find solutions to the transport equations than previously used one-dimensional (1-D) models and is useful for studying general trends. It also can be a valuable tool for benchmarking more sophisticated models. The model was used to investigate the possibility of operating in the so-called high density, low temperature regime

  19. Observation of non-chemical equilibrium effect on Ar-CO2-H2 thermal plasma model by changing pressure

    International Nuclear Information System (INIS)

    Al-Mamun, Sharif Abdullah; Tanaka, Yasunori; Uesugi, Yoshihiko

    2009-01-01

    The authors developed a two-dimensional one-temperature chemical non-equilibrium (1T-NCE) model of Ar-CO 2 -H 2 inductively coupled thermal plasmas (ICTP) to investigate the effect of pressure variation. The basic concept of one-temperature model is the assumption and treatment of the same energy conservation equation for electrons and heavy particles. The energy conservation equations consider reaction heat effects and energy transfer among the species produced as well as enthalpy flow resulting from diffusion. Assuming twenty two (22) different particles in this model and by solving mass conservation equations for each particle, considering diffusion, convection and net production terms resulting from hundred and ninety eight (198) chemical reactions, chemical non-equilibrium effects were taken into account. Transport and thermodynamic properties of Ar-CO 2 -H 2 thermal plasmas were self-consistently calculated using the first-order approximation of the Chapman-Enskog method. Finally results obtained at atmospheric pressure (760 Torr) and at reduced pressure (500, 300 Torr) were compared with results from one-temperature chemical equilibrium (1T-CE) model. And of course, this comparison supported discussion of chemical non-equilibrium effects in the inductively coupled thermal plasmas (ICTP).

  20. Neutronic and Thermal-hydraulic Modelling of High Performance Light Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, Malla [VTT Technical Research Centre of Finland, P.O.Box 1000, FI02044 VTT (Finland)

    2008-07-01

    High Performance Light Water Reactor (HPLWR), which is studied in EU project 'HPLWR2', uses water at supercritical pressures as coolant and moderator to achieve higher core outlet temperature and thus higher efficiency compared to present reactors. At VTT Technical Research Centre of Finland, functionality of the thermal-hydraulics in the coupled reactor dynamics code TRAB3D/ SMABRE was extended to supercritical pressures for the analyses of HPLWR. Input models for neutronics and thermal-hydraulics were made for TRAB3D/ SMABRE according to the latest HPLWR design. A preliminary analysis was performed in which the capability of SMABRE in the transition from supercritical pressures to subcritical pressures was demonstrated. Parameterized two-group cross sections for TRAB3D neutronics were received from Hungarian Academy of Sciences KFKI Atomic Energy Research Institute together with a subroutine for handling them. PSG, a new Monte Carlo transport code developed at VTT, was also used to generate two-group constants for HPLWR and comparisons were made with the KFKI cross sections and MCNP calculations. (author)