WorldWideScience

Sample records for thermal systems voc

  1. VOC emissions control systems

    International Nuclear Information System (INIS)

    Spessard, J.E.

    1993-01-01

    The air pollution control equipment marketplace offers many competing technologies for controlling emissions of volatile organic compounds (VOC) in air. If any technology was economically and technically superior under all conditions, it would be the only one on the market. In fact, each technology used to control VOCs is superior under some set of conditions. The reasons for choosing one control technology over another are situation-specific. Some general guidelines to VOC control technologies and the situations where each may be appropriate are presented in this article. The control technologies and applications are summarized in a table

  2. Non-thermal plasmas for non-catalytic and catalytic VOC abatement

    International Nuclear Information System (INIS)

    Vandenbroucke, Arne M.; Morent, Rino; De Geyter, Nathalie; Leys, Christophe

    2011-01-01

    Highlights: → We review the current status of catalytic and non-catalytic VOC abatement based on a vast number of research papers. → The underlying mechanisms of plasma-catalysis for VOC abatement are discussed. → Critical process parameters that determine the influent are discussed and compared. - Abstract: This paper reviews recent achievements and the current status of non-thermal plasma (NTP) technology for the abatement of volatile organic compounds (VOCs). Many reactor configurations have been developed to generate a NTP at atmospheric pressure. Therefore in this review article, the principles of generating NTPs are outlined. Further on, this paper is divided in two equally important parts: plasma-alone and plasma-catalytic systems. Combination of NTP with heterogeneous catalysis has attracted increased attention in order to overcome the weaknesses of plasma-alone systems. An overview is given of the present understanding of the mechanisms involved in plasma-catalytic processes. In both parts (plasma-alone systems and plasma-catalysis), literature on the abatement of VOCs is reviewed in close detail. Special attention is given to the influence of critical process parameters on the removal process.

  3. Evaluation of the Tekmar 3100 Purge and Trap Agilent GC/MSD system for VOC analysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Fingas, M.F. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Div

    2004-07-01

    This presentation described the Tekmar automated purge and trap (PAT) modular analyzer for detecting and quantifying volatile organic compounds (VOCs) in relatively clean water samples. A large percentage of emergency response work involves VOC analysis under various matrices such as water or soil. PAT analysis is an extraction method in which the VOCs from a liquid sample are purged by helium and concentrated on an internal trap, where the analytes are thermally desorbed into a gas chromatograph or a gas chromatograph/mass spectrometer (GS/MS). This high degree of concentration results in good detection limits. The performance of the Tekmar PAT 31000 concentrator with autosampler and GC/MS system was evaluated using a 1 ppb and 100 ppb standard of the Method 524 mixture for some selected VOC on the list. The study also examined the purging parameters such as time and temperature. It also examined a new way of introducing gaseous samples through the 3-way purge vessel valve on the concentrator. The objective was to determine if the versatility of the system could be extended by using the the same instrument configuration for air sampling. Preliminary results indicate that it is not yet practical to use the system for air sampling. 3 tabs., 4 figs.

  4. A Gas Chromatographic Continuous Emissions Monitoring System for the Determination of VOCs and HAPs.

    Science.gov (United States)

    Coleman, William M; Gordon, Bert M

    1996-01-01

    This article describes a new gas chromatography-based emissions monitoring system for measuring volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). The system is composed of a dual-column gas chromatograph equipped with thermal conductivity detectors, in which separation is optimized for fast chromatography. The system has the necessary valving for stream selection, which allows automatic calibration of the system at predetermined times and successive measurement of individual VOCs before and after a control device. Nine different VOCs (two of which are HAPs), plus methane (CH4) and carbon dioxide (CO2) are separated and quantified every two minutes. The accuracy and precision of this system has been demonstrated to be greater than 95%. The system employs a mass flow measurement device and also calculates and displays processed emission data, such as control device efficiency and total weight emitted during given time periods. Two such systems have been operational for one year in two separate gravure printing facilities; minimal upkeep is required, about one hour per month. One of these systems, used before and after a carbon adsorber, has been approved by the pertinent local permitting authority.

  5. Evaluation of an adsorption system to concentrate VOC in air streams prior to catalytic incineration.

    Science.gov (United States)

    Campesi, María A; Luzi, Carlos D; Barreto, Guillermo F; Martínez, Osvaldo M

    2015-05-01

    Catalytic combustion is a well-developed process for the removal of volatile organic compounds (VOCs). In order to reduce both the amount of catalyst needed for incineration and the surface area of recuperative heat exchangers, an evaluation of the use of thermal swing adsorption as a previous step for VOC concentration is made. An air stream containing ethyl acetate and ethanol (employed as solvents in printing processes) has been taken as a case study. Based on the characteristics of the adsorption/desorption system and the properties of the stream to be treated, a monolithic rotor concentrator with activated carbon as adsorbent material is adopted. Once the temperature of the inlet desorption stream TD is chosen, the minimum possible desorption flow rate, WD,min, and the amount of adsorbent material can be properly defined according to the extent of the Mass Transfer Zone (MTZ) at the end of the adsorption stage. An approximate procedure to speed up the calculations needed for sizing the bed and predicting the operating variables is also presented. In the case studied here, the concentration of the VOC stream can reach 6 times that of the primary effluent when TD = 200 °C is chosen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Biofiltration of airborne VOCs with green wall systems-Microbial and chemical dynamics.

    Science.gov (United States)

    Mikkonen, A; Li, T; Vesala, M; Saarenheimo, J; Ahonen, V; Kärenlampi, S; Blande, J D; Tiirola, M; Tervahauta, A

    2018-05-06

    Botanical air filtration is a promising technology for reducing indoor air contaminants, but the underlying mechanisms need better understanding. Here, we made a set of chamber fumigation experiments of up to 16 weeks of duration, to study the filtration efficiencies for seven volatile organic compounds (VOCs; decane, toluene, 2-ethylhexanol, α-pinene, octane, benzene, and xylene) and to monitor microbial dynamics in simulated green wall systems. Biofiltration functioned on sub-ppm VOC levels without concentration-dependence. Airflow through the growth medium was needed for efficient removal of chemically diverse VOCs, and the use of optimized commercial growth medium further improved the efficiency compared with soil and Leca granules. Experimental green wall simulations using these components were immediately effective, indicating that initial VOC removal was largely abiotic. Golden pothos plants had a small additional positive impact on VOC filtration and bacterial diversity in the green wall system. Proteobacteria dominated the microbiota of rhizosphere and irrigation water. Airborne VOCs shaped the microbial communities, enriching potential VOC-utilizing bacteria (especially Nevskiaceae and Patulibacteraceae) in the irrigation water, where much of the VOC degradation capacity of the biofiltration systems resided. These results clearly show the benefits of active air circulation and optimized growth media in modern green wall systems. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Smartphone-based sensing system using ZnO and graphene modified electrodes for VOCs detection.

    Science.gov (United States)

    Liu, Lei; Zhang, Diming; Zhang, Qian; Chen, Xing; Xu, Gang; Lu, Yanli; Liu, Qingjun

    2017-07-15

    Volatile organic compounds (VOCs) detection is in high demand for clinic treatment, environment monitoring, and food quality control. Especially, VOCs from human exhaled breath can serve as significant biomarkers of some diseases, such as lung cancer and diabetes. In this study, a smartphone-based sensing system was developed for real-time VOCs monitoring using alternative current (AC) impedance measurement. The interdigital electrodes modified with zinc oxide (ZnO), graphene, and nitrocellulose were used as sensors to produce impedance responses to VOCs. The responses could be detected by a hand-held device, sent out to a smartphone by Bluetooth, and reported with concentration on an android program of the smartphone. The smartphone-based system was demonstrated to detect acetone at concentrations as low as 1.56ppm, while AC impedance spectroscopy was used to distinguish acetone from other VOCs. Finally, measurements of the exhalations from human being were carried out to obtain the concentration of acetone in exhaled breath before and after exercise. The results proved that the smartphone-based system could be applied on the detection of VOCs in real settings for healthcare diagnosis. Thus, the smartphone-based system for VOCs detection provided a convenient, portable and efficient approach to monitor VOCs in exhaled breath and possibly allowed for early diagnosis of some diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. DEMONSTRATION OF A NO-VOC/NO-HAP WOOD KITCHEN CABINET COATING SYSTEM

    Science.gov (United States)

    The report gives results of the development and demonstration of a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating system at two cabinet manufacturing plants: one in Portland, OR, and the other in Redwood City, CA. Technology transfer ef...

  9. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation

    NARCIS (Netherlands)

    De Biase, C.; Carminati, A.; Oswald, S.E.; Thullner, M.

    2013-01-01

    Vertical flow systems filled with porous medium have been shown to efficiently remove volatile organic contaminants (VOCs) from contaminated groundwater. To apply this semi-natural remediation strategy it is however necessary to distinguish between removal due to biodegradation and due to volatile

  10. VOC flux measurements using a novel Relaxed Eddy Accumulation GC-FID system in urban Houston, Texas

    Science.gov (United States)

    Park, C.; Schade, G.; Boedeker, I.

    2008-12-01

    Houston experiences higher ozone production rates than most other major cities in the US, which is related to high anthropogenic VOC emissions from both area/mobile sources (car traffic) and a large number of petrochemical facilities. The EPA forecasts that Houston is likely to still violate the new 8-h NAAQS in 2020. To monitor neighborhood scale pollutant fluxes, we established a tall flux tower installation a few kilometers north of downtown Houston. We measure energy and trace gas fluxes, including VOCs from both anthropogenic and biogenic emission sources in the urban surface layer using eddy covariance and related techniques. Here, we describe a Relaxed Eddy Accumulation (REA) system combined with a dual-channel GC-FID used for VOC flux measurements, including first results. Ambient air is sampled at approximately 15 L min-1 through a 9.5 mm OD PFA line from 60 m above ground next to a sonic anemometer. Subsamples of this air stream are extracted through an ozone scrubber and pushed into two Teflon bag reservoirs, from which they are transferred to the GC pre-concentration units consisting of carbon-based adsorption traps encapsulated in heater blocks for thermal desorption. We discuss the performance of our system and selected measurement results from the 2008 spring and summer seasons in Houston. We present diurnal variations of the fluxes of the traffic tracers benzene, toluene, ethylbenzene, and xylenes (BTEX) during different study periods. Typical BTEX fluxes ranged from -0.36 to 3.10 mg m-2 h-1 for benzene, and -0.47 to 5.04 mg m-2 h-1 for toluene, and exhibited diurnal cycles with two dominant peaks related to rush-hour traffic. A footprint analysis overlaid onto a geographic information system (GIS) will be presented to reveal the dominant emission sources and patterns in the study area.

  11. Airborne VOC measurements on board the Zeppelin NT during the PEGASOS campaigns in 2012 deploying the improvement Fast-GC-MSD system

    International Nuclear Information System (INIS)

    Jaeger, Julia Elisabeth

    2014-01-01

    Volatile organic compounds (VOCs) comprise a large number of different species, estimated to 10 4 -10 6 . They are emitted on the Earth's surface from a variety of biogenic and anthropogenic sources. VOCs are removed by multiple pathways from the atmosphere, by oxidation and finally by dry or wet deposition. Most primary emitted VOCs are non-polar and therefore have a low solubility in water. Oxidation facilitates efficient VOC removal by wet deposition. In the atmosphere the main photochemical VOC oxidation agent is the OH radical. As a consequence the polarity of the VOCs is increased and they can be removed faster. The oxidation of VOCs proceeds in several steps until the VOCs are deposited or are eventually oxidized to carbon dioxide. A downside of the VOCs oxidation process lies in the production of significant amounts ozone if nitrogen oxide is present which is a serious health hazard. Most of the VOC oxidation takes place in lower part of the atmosphere between the altitudes of 100 to 1000 m, which is only sparsely analyzed. Therefore, fast VOCs measurements by GC-MSD on board the Zeppelin NT offered new important insights in the distribution of VOCs. The measurements were performed within the PEAGSOS campaigns in the Netherlands and in Italy in 2012. For the implementation of the GC-MSD system (HCG) on board the Zeppelin it was reconstructed to enhance its performance and to meet aviation requirements. The system was optimized to measure VOCs ranging from C4 to C10 as well as oxygenated VOCs (OVOCs) with a detection limit below 10 ppt. The analyzed VOCs for both parts of the campaigns showed low mean concentration below 5 ppb for all VOCs. Especially, the mixing ratios of the primary emitted VOCs were very low with mean values lower than 200 ppt. Higher concentrations could be observed for the OVOCs with mean concentrations up to 5 ppb. The most abundant OVOCs apart from formaldehyde were methanol, ethanol, acetone and acetaldehyde.

  12. The SOA/VOC/NOx system: an explicit model of secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    S. Madronich

    2007-11-01

    Full Text Available Our current understanding of secondary organic aerosol (SOA formation is limited by our knowledge of gaseous secondary organics involved in gas/particle partitioning. The objective of this study is to explore (i the potential for products of multiple oxidation steps contributing to SOA, and (ii the evolution of the SOA/VOC/NOx system. We developed an explicit model based on the coupling of detailed gas-phase oxidation schemes with a thermodynamic condensation module. Such a model allows prediction of SOA mass and speciation on the basis of first principles. The SOA/VOC/NOx system is studied for the oxidation of 1-octene under atmospherically relevant concentrations. In this study, gaseous oxidation of octene is simulated to lead to SOA formation. Contributors to SOA formation are shown to be formed via multiple oxidation steps of the parent hydrocarbon. The behaviour of the SOA/VOC/NOx system simulated using the explicit model agrees with general tendencies observed during laboratory chamber experiments. This explicit modelling of SOA formation appears as a useful exploratory tool to (i support interpretations of SOA formation observed in laboratory chamber experiments, (ii give some insights on SOA formation under atmospherically relevant conditions and (iii investigate implications for the regional/global lifetimes of the SOA.

  13. Thermal systems; Systemes thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Lalot, S. [Valenciennes Univ. et du Hainaut Cambresis, LME, 59 (France); Lecoeuche, S. [Ecole des Mines de Douai, Dept. GIP, 59 - Douai (France)]|[Lille Univ. des Sciences et Technologies, 59 - Villeneuve d' Ascq (France); Ahmad, M.; Sallee, H.; Quenard, D. [CSTB, 38 - Saint Martin d' Heres (France); Bontemps, A. [Universite Joseph Fourier, LEGI/GRETh, 38 - Grenoble (France); Gascoin, N.; Gillard, P.; Bernard, S. [Laboratoire d' Energetique, Explosion, Structure, 18 - Bourges (France); Gascoin, N.; Toure, Y. [Laboratoire Vision et Robotique, 18 - Bourges (France); Daniau, E.; Bouchez, M. [MBDA, 18 - Bourges (France); Dobrovicescu, A.; Stanciu, D. [Bucarest Univ. Polytechnique, Faculte de Genie Mecanique (Romania); Stoian, M. [Reims Univ. Champagne Ardenne, Faculte des Sciences, UTAP/LTM, 51 (France); Bruch, A.; Fourmigue, J.F.; Colasson, S. [CEA Grenoble, Lab. Greth, 38 (France); Bontemps, A. [Universite Joseph Fourier, LEGI/GRETh, 38 - Grenoble (France); Voicu, I.; Mare, T.; Miriel, J. [Institut National des Sciences Appliquees (INSA), LGCGM, IUT, 35 - Rennes (France); Galanis, N. [Sherbrooke Univ., Genie Mecanique, QC (Canada); Nemer, M.; Clodic, D. [Ecole des Mines de Paris, Centre Energetique et Procedes, 75 (France); Lasbet, Y.; Auvity, B.; Castelain, C.; Peerhossaini, H. [Nantes Univ., Ecole Polytechnique, Lab. de Thermocinetiquede Nantes, UMR-CNRS 6607, 44 (France)

    2005-07-01

    This session about thermal systems gathers 26 articles dealing with: neural model of a compact heat exchanger; experimental study and numerical simulation of the thermal behaviour of test-cells with walls made of a combination of phase change materials and super-insulating materials; hydraulic and thermal modeling of a supercritical fluid with pyrolysis inside a heated channel: pre-dimensioning of an experimental study; energy analysis of the heat recovery devices of a cryogenic system; numerical simulation of the thermo-hydraulic behaviour of a supercritical CO{sub 2} flow inside a vertical tube; mixed convection inside dual-tube exchangers; development of a nodal approach with homogenization for the simulation of the brazing cycle of a heat exchanger; chaotic exchanger for the cooling of low temperature fuel cells; structural optimization of the internal fins of a cylindrical generator; a new experimental approach for the study of the local boiling inside the channels of exchangers with plates and fins; experimental study of the flow regimes of boiling hydrocarbons on a bundle of staggered tubes; energy study of heat recovery exchangers used in Claude-type refrigerating systems; general model of Carnot engine submitted to various operating constraints; the free pistons Stirling cogeneration system; natural gas supplied cogeneration system with polymer membrane fuel cell; influence of the CRN coating on the heat flux inside the tool during the wood unrolling process; transport and mixture of a passive scalar injected inside the wake of a Ahmed body; control of a laser welding-brazing process by infrared thermography; 2D self-adaptative method for contours detection: application to the images of an aniso-thermal jet; exergy and exergy-economical study of an 'Ericsson' engine-based micro-cogeneration system; simplified air-conditioning of telephone switching equipments; parametric study of the 'low-energy' individual dwelling; brief synthesis of

  14. Optimization of an Innovative Biofiltration System as a VOC Control Technology for Aircraft Painting Facilities

    Science.gov (United States)

    2004-04-20

    plants. Since the 1980s, however, biofiltration has also been used to eliminate VOCs in gases emitted from a wide range of processes (van Groenestijn...process for the VOC-laden waste gases exiting paint spray booths at DoD maintenance facilities. Conceptually, the biofiltration process can be divided...recently, biofiltration applications have been expanded to treat VOC-laden waste gases emitted by industry (Ottengraf, 1986, van Groenestijn, 1994; Swanson

  15. Airborne VOC measurements on board the Zeppelin NT during the PEGASOS campaigns in 2012 deploying the improvement Fast-GC-MSD system

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Julia Elisabeth

    2014-04-01

    Volatile organic compounds (VOCs) comprise a large number of different species, estimated to 10{sup 4}-10{sup 6}. They are emitted on the Earth's surface from a variety of biogenic and anthropogenic sources. VOCs are removed by multiple pathways from the atmosphere, by oxidation and finally by dry or wet deposition. Most primary emitted VOCs are non-polar and therefore have a low solubility in water. Oxidation facilitates efficient VOC removal by wet deposition. In the atmosphere the main photochemical VOC oxidation agent is the OH radical. As a consequence the polarity of the VOCs is increased and they can be removed faster. The oxidation of VOCs proceeds in several steps until the VOCs are deposited or are eventually oxidized to carbon dioxide. A downside of the VOCs oxidation process lies in the production of significant amounts ozone if nitrogen oxide is present which is a serious health hazard. Most of the VOC oxidation takes place in lower part of the atmosphere between the altitudes of 100 to 1000 m, which is only sparsely analyzed. Therefore, fast VOCs measurements by GC-MSD on board the Zeppelin NT offered new important insights in the distribution of VOCs. The measurements were performed within the PEAGSOS campaigns in the Netherlands and in Italy in 2012. For the implementation of the GC-MSD system (HCG) on board the Zeppelin it was reconstructed to enhance its performance and to meet aviation requirements. The system was optimized to measure VOCs ranging from C4 to C10 as well as oxygenated VOCs (OVOCs) with a detection limit below 10 ppt. The analyzed VOCs for both parts of the campaigns showed low mean concentration below 5 ppb for all VOCs. Especially, the mixing ratios of the primary emitted VOCs were very low with mean values lower than 200 ppt. Higher concentrations could be observed for the OVOCs with mean concentrations up to 5 ppb. The most abundant OVOCs apart from formaldehyde were methanol, ethanol, acetone and acetaldehyde.

  16. Airborne VOC measurements on board the Zeppelin NT during the PEGASOS campaigns in 2012 deploying the improvement Fast-GC-MSD system

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Julia Elisabeth

    2014-04-01

    Volatile organic compounds (VOCs) comprise a large number of different species, estimated to 10{sup 4}-10{sup 6}. They are emitted on the Earth's surface from a variety of biogenic and anthropogenic sources. VOCs are removed by multiple pathways from the atmosphere, by oxidation and finally by dry or wet deposition. Most primary emitted VOCs are non-polar and therefore have a low solubility in water. Oxidation facilitates efficient VOC removal by wet deposition. In the atmosphere the main photochemical VOC oxidation agent is the OH radical. As a consequence the polarity of the VOCs is increased and they can be removed faster. The oxidation of VOCs proceeds in several steps until the VOCs are deposited or are eventually oxidized to carbon dioxide. A downside of the VOCs oxidation process lies in the production of significant amounts ozone if nitrogen oxide is present which is a serious health hazard. Most of the VOC oxidation takes place in lower part of the atmosphere between the altitudes of 100 to 1000 m, which is only sparsely analyzed. Therefore, fast VOCs measurements by GC-MSD on board the Zeppelin NT offered new important insights in the distribution of VOCs. The measurements were performed within the PEAGSOS campaigns in the Netherlands and in Italy in 2012. For the implementation of the GC-MSD system (HCG) on board the Zeppelin it was reconstructed to enhance its performance and to meet aviation requirements. The system was optimized to measure VOCs ranging from C4 to C10 as well as oxygenated VOCs (OVOCs) with a detection limit below 10 ppt. The analyzed VOCs for both parts of the campaigns showed low mean concentration below 5 ppb for all VOCs. Especially, the mixing ratios of the primary emitted VOCs were very low with mean values lower than 200 ppt. Higher concentrations could be observed for the OVOCs with mean concentrations up to 5 ppb. The most abundant OVOCs apart from formaldehyde were methanol, ethanol, acetone and acetaldehyde.

  17. COST EFFECTIVE VOC EMISSION CONTROL STARTEGIES FOR MILITARY, AEROSPACE,AND INDUSTRIAL PAINT SPRAY BOOTH OPERATIONS: COMBINING IMPROVED VENTILATION SYSTEMS WITH INNOVATIVE, LOW COST EMISSION CONTROL TECHNOLOGIES

    Science.gov (United States)

    The paper describes a full-scale demonstration program in which several paint booths were modified for recirculation ventilation; the booth exhaust streams are vented to an innovative volatile organic compound (VOC) emission control system having extremely low operating costs. ...

  18. DEMONSTRATION OF NO-VOC/NO-HAP WOOD FURNITURE COATING SYSTEM

    Science.gov (United States)

    The United States Environmental Protection Agency has contracted with AeroVironment Environmental Services, Inc. and its subcontractor, Adhesives Coating Co., to develop and demonstrate a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating s...

  19. Thermal Management and Thermal Protection Systems

    Science.gov (United States)

    Hasnain, Aqib

    2016-01-01

    During my internship in the Thermal Design Branch (ES3), I contributed to two main projects: i) novel passive thermal management system for future human exploration, ii) AVCOAT undercut thermal analysis. i) As NASA prepares to further expand human and robotic presence in space, it is well known that spacecraft architectures will be challenged with unprecedented thermal environments. Future exploration activities will have the need of thermal management systems that can provide higher reliability, mass and power reduction and increased performance. In an effort to start addressing the current technical gaps the NASA Johnson Space Center Passive Thermal Discipline has engaged in technology development activities. One of these activities was done through an in-house Passive Thermal Management System (PTMS) design for a lunar lander. The proposed PTMS, functional in both microgravity and gravity environments, consists of three main components: a heat spreader, a novel hybrid wick Variable Conductance Heat Pipe (VCHP), and a radiator. The aim of this PTMS is to keep electronics on a vehicle within their temperature limits (0 and 50 C for the current design) during all mission phases including multiple lunar day/night cycles. The VCHP was tested to verify its thermal performance. I created a thermal math model using Thermal Desktop (TD) and analyzed it to predict the PTMS performance. After testing, the test data provided a means to correlate the thermal math model. This correlation took into account conduction and convection heat transfer, representing the actual benchtop test. Since this PTMS is proposed for space missions, a vacuum test will be taking place to provide confidence that the system is functional in space environments. Therefore, the model was modified to include a vacuum chamber with a liquid nitrogen shroud while taking into account conduction and radiation heat transfer. Infrared Lamps were modelled and introduced into the model to simulate the sun

  20. Ablative thermal protection systems

    International Nuclear Information System (INIS)

    Vaniman, J.; Fisher, R.; Wojciechowski, C.; Dean, W.

    1983-01-01

    The procedures used to establish the TPS (thermal protection system) design of the SRB (solid rocket booster) element of the Space Shuttle vehicle are discussed. A final evaluation of the adequacy of this design will be made from data obtained from the first five Shuttle flights. Temperature sensors installed at selected locations on the SRB structure covered by the TPS give information as a function of time throughout the flight. Anomalies are to be investigated and computer design thermal models adjusted if required. In addition, the actual TPS ablator material loss is to be measured after each flight and compared with analytically determined losses. The analytical methods of predicting ablator performance are surveyed. 5 references

  1. Determination of HCl and VOC Emission from Thermal Degradation of PVC in the Absence and Presence of Copper, Copper(II Oxide and Copper(II Chloride

    Directory of Open Access Journals (Sweden)

    Ahamad J. Jafari

    2009-01-01

    Full Text Available Polyvinyl chloride (PVC has played a key role in the development of the plastic industry over the past 40 years. Thermal degradation of PVC leads to formation of many toxic pollutants such as HCl, aromatic and volatile organic carbon vapors. Thermal degradation of PVC and PVC in the present of copper, cupric oxide and copper(II chloride were investigated in this study using a laboratory scale electrical furnace. HCl and Cl- ion were analyzed by a Dionex ion chromatograph and VOCs compounds were analyzed using GC or GC-MS. The results showed that HCl plus Cl- ion and benzene formed about 99% and 80% respectively in the first step of thermal degradation under air atmosphere. The presence of cupric oxide increases the percentage of short chain hydrocarbons more than 184% and decreases the amount of the major aromatic hydrocarbon and HCl plus Cl- ion to 90% and 65% respectively. The total aromatic hydrocarbon emitted less than when atmosphere was air and difference was statistically significant (Pvalue<0.000

  2. Solar thermal power system

    Science.gov (United States)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  3. Concentrations and flux measurements of volatile organic compounds (VOC) in boreal forest soil

    Science.gov (United States)

    Mäki, Mari; Aaltonen, Hermanni; Heinonsalo, Jussi; Hellén, Heidi; Pumpanen, Jukka; Bäck, Jaana

    2017-04-01

    Volatile organic compounds (VOC) impact soil processes as VOCs transmit signals between roots and rhizosphere (Ditengou et al., 2015), VOCs can regulate microbial activity (Asensio et al., 2012), and VOCs can also promote root growth (Hung et al., 2012). Belowground concentrations of VOCs have not been measured in situ and for this reason, knowledge of how different soil organisms such as roots, rhizosphere and decomposers contribute to VOC production is limited. The aim of this study was to determine and quantify VOC fluxes and concentrations of different horizons from boreal forest soil. The VOC concentrations and fluxes were measured from Scots pine (Pinus sylvestris) forest soil at the SMEAR II station in southern Finland from 21th of April to 2nd of December in 2016. VOC fluxes were measured using dynamic (flow-through) chambers from five soil collars placed on five different locations. VOC concentrations were also measured in each location from four different soil horizons with the measurement depth 1-107 cm. VOCs were collected from underground gas collectors into the Tenax-Carbopack-B adsorbent tubes using portable pumps ( 100 ml min-1). The VOC concentrations and fluxes of isoprene, 11 monoterpenes, 13 sesquiterpenes and different oxygenated VOCs were measured. Sample tubes were analyzed using thermal desorption-gas chromatograph-mass spectrometry (TD-GC-MS). Soil temperature and soil water content were continuously monitored for each soil horizon. Our preliminary results show that the primary source of VOCs is organic soil layer and the contribution of mineral soil to the VOC formation is minor. VOC fluxes and concentrations were dominated by monoterpenes such as α-pinene, camphene, β-pinene, and Δ3-carene. Monoterpene concentration is almost 10-fold in organic soil compared to the deeper soil layers. However, the highest VOC fluxes on the soil surface were measured in October, whereas the monoterpene concentrations in organic soil were highest in July

  4. VOC emissions chambers

    Data.gov (United States)

    Federal Laboratory Consortium — In order to support the development of test methods and reference materials for volatile organic compounds (VOC) emissions from building materials and furnishings,...

  5. Apollo telescope mount thermal systems unit thermal vacuum test

    Science.gov (United States)

    Trucks, H. F.; Hueter, U.; Wise, J. H.; Bachtel, F. D.

    1971-01-01

    The Apollo Telescope Mount's thermal systems unit was utilized to conduct a full-scale thermal vacuum test to verify the thermal design and the analytical techniques used to develop the thermal mathematical models. Thermal vacuum test philosophy, test objectives configuration, test monitoring, environment simulation, vehicle test performance, and data correlation are discussed. Emphasis is placed on planning and execution of the thermal vacuum test with particular attention on problems encountered in conducting a test of this maguitude.

  6. Thermal transport in fractal systems

    DEFF Research Database (Denmark)

    Kjems, Jørgen

    1992-01-01

    Recent experiments on the thermal transport in systems with partial fractal geometry, silica aerogels, are reviewed. The individual contributions from phonons, fractons and particle modes, respectively, have been identified and can be described by quantitative models consistent with heat capacity...

  7. Vacuum systems - thermal issues

    International Nuclear Information System (INIS)

    Howell, J.W.

    1992-01-01

    The new high-energy synchrotron light sources currently under construction and the B-factories that are still in the planning stage present new challenges in the management of synchrotron radiation thermal loading. With particle energies from 6 to 9 GeV and currents from 0.3 to 2.5 mA, the total power and the power density of the resulting synchrotron radiation each present unique problems. The design issues involved in managing these new power levels are presented, as well as a survey of some of the proposed design solutions

  8. Lighting system with thermal management system

    Science.gov (United States)

    Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2013-05-07

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  9. Monitoring system for thermal plasma

    International Nuclear Information System (INIS)

    Romero G, M.; Vilchis P, A.E.

    1999-01-01

    In the Thermal plasma applications laboratory it has been the degradation project of oils for isolation in transformers. These are a very hazardous residues and at this time in the country they are stored in metal barrels. It has been the intention to undergo the oils to plasma for degradate them to non-hazardous residues. The system behavior must be monitored to establish the thermal plasma behavior. (Author)

  10. Advanced honeycomb adsorbent and scaling-up technique for thermal swing adsorptive VOC concentrator; Samarusuingu kyuchakushiki VOC noshuku sochiyo hanikamu kyuchakutai no kaizen to sukeru up gijutsu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuma, Y.; Kuwa, T.; Yamauchi, H. [Seibu Giken Co. Ltd., Fukuoka (Japan); Hirose, T. [Kumamoto Univ. (Japan). Faculty of Engineering

    1998-03-01

    On the honeycomb type adsorptive concentrator, a manufacturing method of the honeycomb adsorbent rotor, retention of mechanical strength corresponding with a large-scale processing and minimization of air leakage resulting in performance deterioration were technically examined. Honeycomb structure was formed from an alumina-silica fiber paper, and high silica-content zeolite was deposited in the fiber void of the matrix. The adsorbent rotor using sepiolite as an inorganic adhesive for honeycomb fabrication showed fracture strength of from 1.6 to 3.2 times the conventional adsorbent rotor. Two types of differently shaped fluorinated rubber seal were developed for the adsorbent rotor. Amount of air leakage from the seal between each zone as well as to outside was sufficiently small. A large-scale VOC concentrator with the 3950 mm diameter and 450 mm length was manufactured with the adsorbent rotor and seal structure in accordance with the aforementioned method. Results of the real machine operation showed same concentration performance at those of the small-scale experiment. 10 refs., 15 figs., 2 tabs.

  11. Drainback solar thermal systems

    DEFF Research Database (Denmark)

    Botpaev, R.; Louvet, Y.; Perers, Bengt

    2016-01-01

    Although solar drainback systems have been used for a long time, they are still generating questions regarding smooth functioning. This paper summarises publications on drainback systems and compiles the current knowledge, experiences, and ideas on the technology. The collective research exhibits...... of this technology has been developed, with a brief description of each hydraulic typology. The operating modes have been split into three stages: filling, operation, and draining, which have been studied separately. A difference in the minimal filling velocities for a siphon development in the solar loop has been...

  12. Thermal animal detection system (TADS)

    Energy Technology Data Exchange (ETDEWEB)

    Desholm, M.

    2003-03-01

    This report presents data from equipment tests and software development for the Thermal Animal Detection System (TADS) development project: 'Development of a method for estimating collision frequency between migrating birds and offshore wind turbines'. The technical tests were performed to investigate the performance of remote controlling, video file compression tool and physical stress of the thermal camera when operating outdoors and under the real time vibration conditions at a 2 MW turbine. Furthermore, experimental tests on birds were performed to describe the decreasing detectability with distance on free flying birds, the performance of the thermal camera during poor visibility, and finally, the performance of the thermal sensor software developed for securing high -quality data. In general, it can be concluded that the thermal camera and its related hardware and software, the TADS, are capable of recording migrating birds approaching the rotating blades of a turbine, even under conditions with poor visibility. If the TADS is used in a vertical viewing scenario it would comply with the requirements for a setup used for estimating the avian collision frequency at offshore wind turbines. (au)

  13. Thermal animal detection system (TADS)

    Energy Technology Data Exchange (ETDEWEB)

    Desholm, M

    2003-03-01

    This report presents data from equipment tests and software development for the Thermal Animal Detection System (TADS) development project: 'Development of a method for estimating collision frequency between migrating birds and offshore wind turbines'. The technical tests were performed to investigate the performance of remote controlling, video file compression tool and physical stress of the thermal camera when operating outdoors and under the real time vibration conditions at a 2 MW turbine. Furthermore, experimental tests on birds were performed to describe the decreasing detectability with distance on free flying birds, the performance of the thermal camera during poor visibility, and finally, the performance of the thermal sensor software developed for securing high -quality data. In general, it can be concluded that the thermal camera and its related hardware and software, the TADS, are capable of recording migrating birds approaching the rotating blades of a turbine, even under conditions with poor visibility. If the TADS is used in a vertical viewing scenario it would comply with the requirements for a setup used for estimating the avian collision frequency at offshore wind turbines. (au)

  14. New photocatalytic process provides 99.9+% reduction of VOC at Superfund site

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-03-01

    A new photocatalytic process, dubbed the A-I-R-2000 Process, is described. The process is said to offer marked economic advantages, while providing consistent 99.9+% reduction of volatile organic compounds (VOCs) from soil vapours and groundwater at the Stamina Mills Superfund site in North Smithfield, Rhode Island. The A-I-R-2000 process has been developed by KSE Inc., of Amherst, Massachusetts, and has been licensed exclusively worldwide to Trojan Technologies, Inc., of London, Ontario. The process consists essentially of adsorption of VOCs onto a UV light-activated proprietary catalysts, for breakdown to carbon dioxide and water, and also to hydrochloric acid and a small amount of chlorine gas when the VOCs are chlorinated. With a maximum internal operating temperature of 125 degrees F, it is a low-energy system when compared to other catalytic technologies that feature thermal catalytic equipment. 1 photo.

  15. [Evaluation and selection of VOCs treatment technologies in packaging and printing industry].

    Science.gov (United States)

    Wang, Hai-Lin; Wang, Jun-Hui; Zhu, Chun-Lei; Nie, Lei; Hao, Zheng-Ping

    2014-07-01

    Volatile organic compounds (VOCs) play an important role in urban air pollution. Activities of industries including the packaging and printing industries are regarded as the major sources. How to select the suitable treating techniques is the major problem for emission control. In this article, based on the VOCs emission characteristics of the packaging and printing industry and the existing treatment technologies, using the analytic hierarchy process (AHP) model, an evaluation system for VOCs selection was established and all the technologies used for treatment were assessed. It showed that the priority selection was in the following order: Carbon Fiber Adsorption-Desorption > Granular Carbon Adsorption-Desorption > Thermal Combustion > Regenerative Combustion > Catalytic combustion > Rotary adsorption-concentration and combustion > Granular Carbon adsorption-concentration and combustion. Carbon Fiber Adsorption-Desorption was selected as the best available technology due to its highest weight among those technologies.

  16. Methods of forming thermal management systems and thermal management methods

    Science.gov (United States)

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  17. Analysis of Sidestream Smoke VOCs and Characterization of their Odor Profiles by VOC Preconcentrator-GC-O Techniques

    Directory of Open Access Journals (Sweden)

    Higashi N

    2014-12-01

    Full Text Available Various techniques have been employed in the analysis of volatile organic compounds (VOCs. However, these techniques are insufficient for the precise analysis of tobacco smoke VOCs because of the complexity of the operating system, system instability, or poor sensitivity. To overcome these problems, a combined system of VOC preconcentrator, gas chromatograph, and olfactometer has been developed. The performance of this new system was evaluated in the analysis of VOCs in tobacco smoke and applied to the odor profiling of sidestream smoke (SSS that has not been sufficiently investigated in the past.

  18. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China.

    Science.gov (United States)

    Yan, Yulong; Peng, Lin; Li, Rumei; Li, Yinghui; Li, Lijuan; Bai, Huiling

    2017-04-01

    Volatile organic compounds (VOCs) from two sampling sites (HB and XB) in a power station centralized area, in Shuozhou city, China, were sampled by stainless steel canisters and measured by gas chromatography-mass selective detection/flame ionization detection (GC-MSD/FID) in the spring and autumn of 2014. The concentration of VOCs was higher in the autumn (HB, 96.87 μg/m 3 ; XB, 58.94 μg/m 3 ) than in the spring (HB, 41.49 μg/m 3 ; XB, 43.46 μg/m 3 ), as lower wind speed in the autumn could lead to pollutant accumulation, especially at HB, which is a new urban area surrounded by residential areas and a transportation hub. Alkanes were the dominant group at both HB and XB in both sampling periods, but the contribution of aromatic pollutants at HB in the autumn was much higher than that of the other alkanes (11.16-19.55%). Compared to other cities, BTEX pollution in Shuozhou was among the lowest levels in the world. Because of the high levels of aromatic pollutants, the ozone formation potential increased significantly at HB in the autumn. Using the ratio analyses to identify the age of the air masses and analyze the sources, the results showed that the atmospheric VOCs at XB were strongly influenced by the remote sources of coal combustion, while at HB in the spring and autumn were affected by the remote sources of coal combustion and local sources of vehicle emission, respectively. Source analysis conducted using the Positive Matrix Factorization (PMF) model at Shuozhou showed that coal combustion and vehicle emissions made the two largest contributions (29.98% and 21.25%, respectively) to atmospheric VOCs. With further economic restructuring, the influence of vehicle emissions on the air quality should become more significant, indicating that controlling vehicle emissions is key to reducing the air pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Utilisation of VOC in Diesel Engines. Ignition and combustion of VOC released in crude oil tankers

    International Nuclear Information System (INIS)

    Melhus, Oeyvin

    2002-01-01

    The emission of VOC (Volatile Organic Compound) is a significant source of hydrocarbon pollution. In Norway, the offshore oil industry represents a major source. This emission represents both an energy loss and an environmental problem. Gas tankers have used boil-off gas from the cargo tanks as fuel for some time. However, for the current VOC project a new fuel injection concept is designed for tankers to take advantage of the energy present in the VOC evaporated from crude oil. The VOC is mixed with inert gas in these tankers, and thus the utilisation of this gas represents new challenges. The VOC project uses the concept of ''Condensate Diesel Process'' with pilot ignition. An experimental study of ignition and combustion of VOC Fuels reported here was initiated by the time it was decided to start a pilot project converting propulsion engines in shuttle tankers to use VOC Fuel. It is an experimental study carried out at the Marine Technology Centre (MTS). The objective was to study ignition and combustion of the chosen process in comparison with an ordinary diesel process. The experimental results have been discussed and compared with theoretical considerations of injection, ignition and combustion. For experiments on combustion, a rapid compression machine ''DyFo'' was redesigned to use VOC Fuel. The DyFo test rig was initially designed to study ignition and early combustion of spark ignited homogeneous gas/air charges. To study the ignition and early combustion of VOC Fuel injected at high pressure and ignited by pilot diesel fuel, a redesign was necessary. An important feature of the DyFo, is the visualisation of the combustion. The advantage of the DyFo test rig over an engine, is its simplicity and controllability. In an engine the visualisation would suffer from combustion deposits disturbing the view through the quartz glasses, making the images more difficult to interpret. The simplicity is on the other side a drawback. Correct thermal conditions inside

  20. Thermal states of anyonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Iblisdir, S., E-mail: iblisdir@ecm.ub.e [Dpt. Estructura i Constituents de la Materia, Universitat Barcelona, 08028 Barcelona (Spain); Perez-Garcia, D. [Dpt. Analisis Matematico, Universitad Complutense de Madrid, 28040 Madrid (Spain); Aguado, M. [Max Planck Institut fuer Quantenoptik, Garching D-85748 (Germany); Pachos, J. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2010-04-21

    A study of the thermal properties of two-dimensional topological lattice models is presented. This work is relevant to assess the usefulness of these systems as a quantum memory. For our purposes, we use the topological mutual information I{sub topo} as a 'topological order parameter'. For Abelian models, we show how I{sub topo} depends on the thermal topological charge probability distribution. More generally, we present a conjecture that I{sub topo} can (asymptotically) be written as a Kullback-Leitner distance between this probability distribution and that induced by the quantum dimensions of the model at hand. We also explain why I{sub topo} is more suitable for our purposes than the more familiar entanglement entropy S{sub topo}. A scaling law, encoding the interplay of volume and temperature effects, as well as different limit procedures, are derived in detail. A non-Abelian model is next analyzed and similar results are found. Finally, we also consider, in the case of a one-plaquette toric code, an environment model giving rise to a simulation of thermal effects in time.

  1. VOC and HAP recovery using ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Michael R. Milota : Kaichang Li

    2007-05-29

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy

  2. Photovoltaic Thermal panels in collective thermal solar systems

    International Nuclear Information System (INIS)

    Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M.; De Lange, E.T.N.; Smit, W.F.

    2003-12-01

    A feasibility study has been carried out to assess the options to apply photovoltaic/thermal panels (PVT-panels) in collective solar thermal systems in urban areas in the Netherlands. The study was focused on the technical (architecture and installations) and the economical feasibility of collective PVT-systems in comparison with conventional solar thermal systems and combinations of photovoltaic (PV) panels and solar collectors. The results of the study also give insight into cost and the market for PVT-panels. Three case studies in which collective solar collector systems were applied are analyzed again by simulating the installation of a PVT-panels system and a separate solar thermal PV system [nl

  3. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov (United States)

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows low as 10% of its full load level). The 60-ton chiller cools water with continuous thermal control

  4. Survey of thermal insulation systems

    International Nuclear Information System (INIS)

    Kinoshita, Izumi

    1983-01-01

    Better thermal insulations have been developed to meet the growing demands of industry, and studies on thermal insulation at both high temperature and low temperature have been widely performed. The purpose of this survey is to summarize data on the performances and characteristics of thermal insulation materials and thermal insulation structures (for instance, gas cooled reactors, space vehicles and LNG storage tanks), and to discuss ravious problems regarding the design of thermal insulation structures of pool-type LMFBRs. (author)

  5. Enhanced Anti-Ultraviolet and Thermal Stability of a Pesticide via Modification of a Volatile Organic Compound (VOC-Free Vinyl-Silsesquioxane in Desert Areas

    Directory of Open Access Journals (Sweden)

    Derong Lin

    2016-08-01

    Full Text Available Due to the effect of severe environmental conditions, such as intense heat, blowing sand, and ultraviolet light, conventional pesticide applications have repeatedly failed to adequately control mosquito and sandfly populations in desert areas. In this study, a vinyl silsesquioxane (VS was added to a pesticide (citral to enhance residual, thermal and anti-ultraviolet properties via three double-bond reactions in the presence of an initiator: (1 the connection of VS and citral, (2 a radical self-polymerization of VS and (3 a radical self-polymerization of citral. VS-citral, the expected and main product of the copolymerization of VS and citral, was characterized using standard spectrum techniques. The molecular consequences of the free radical polymerization were analyzed by MALDITOF spectrometry. Anti-ultraviolet and thermal stability properties of the VS-citral system were tested using scanning spectrophotometry (SSP and thermogravimetric analysis (TGA. The repellency of VS-citral decreased over time, from 97.63% at 0 h to 72.98% at 1 h and 60.0% at 2 h, as did the repellency of citral, from 89.56% at 0 h to 62.73% at 1 h and 50.95% at 2 h.

  6. Indoor air quality (IAQ) assessment in a multistorey shopping mall by high-spatial-resolution monitoring of volatile organic compounds (VOC).

    Science.gov (United States)

    Amodio, M; Dambruoso, P R; de Gennaro, Gianluigi; de Gennaro, L; Loiotile, A Demarinis; Marzocca, A; Stasi, F; Trizio, L; Tutino, M

    2014-12-01

    In order to assess indoor air quality (IAQ), two 1-week monitoring campaigns of volatile organic compounds (VOC) were performed in different areas of a multistorey shopping mall. High-spatial-resolution monitoring was conducted at 32 indoor sites located in two storehouses and in different departments of a supermarket. At the same time, VOC concentrations were monitored in the mall and parking lot area as well as outdoors. VOC were sampled at 48-h periods using diffusive samplers suitable for thermal desorption. The samples were then analyzed with gas chromatography-mass spectrometry (GC-MS). The data analysis and chromatic maps indicated that the two storehouses had the highest VOC concentrations consisting principally of terpenes. These higher TVOC concentrations could be a result of the low efficiency of the air exchange and intake systems, as well as the large quantity of articles stored in these small spaces. Instead, inside the supermarket, the food department was the most critical area for VOC concentrations. To identify potential emission sources in this department, a continuous VOC analyzer was used. The findings indicated that the highest total VOC concentrations were present during cleaning activities and that these activities were carried out frequently in the food department. The study highlights the importance of conducting both high-spatial-resolution monitoring and high-temporal-resolution monitoring. The former was able to identify critical issues in environments with a complex emission scenario while the latter was useful in interpreting the dynamics of each emission source.

  7. Continuous hydrino thermal power system

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Randell L.; Zhao, Guibing; Good, William [BlackLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512 (United States)

    2011-03-15

    The specifics of a continuous hydrino reaction system design are presented. Heat from the hydrino reactions within individual cells provide both reactor power and the heat for regeneration of the reactants. These processes occur continuously and the power from each cell is constant. The conversion of thermal power to electrical power requires the use of a heat engine exploiting a cycle such as a Rankine, Brayton, Stirling, or steam-engine cycle. Due to the temperatures, economy goal, and efficiency, the Rankine cycle is the most practical and can produce electricity at 30-40% efficiency with a component capital cost of about $300 per kW electric. Conservatively, assuming a conversion efficiency of 25% the total cost with the addition of the boiler and chemical components is estimated at $1064 per kW electric. (author)

  8. Continuous hydrino thermal power system

    International Nuclear Information System (INIS)

    Mills, Randell L.; Zhao, Guibing; Good, William

    2011-01-01

    The specifics of a continuous hydrino reaction system design are presented. Heat from the hydrino reactions within individual cells provide both reactor power and the heat for regeneration of the reactants. These processes occur continuously and the power from each cell is constant. The conversion of thermal power to electrical power requires the use of a heat engine exploiting a cycle such as a Rankine, Brayton, Stirling, or steam-engine cycle. Due to the temperatures, economy goal, and efficiency, the Rankine cycle is the most practical and can produce electricity at 30-40% efficiency with a component capital cost of about $300 per kW electric. Conservatively, assuming a conversion efficiency of 25% the total cost with the addition of the boiler and chemical components is estimated at $1064 per kW electric.

  9. Failure mechanism for thermal fatigue of thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Giolli, C.; Scrivani, A.; Rizzi, G. [Turbocoating S.p.A., Rubbiano di Solignano (Italy); Borgioli, F. [Firenze Univ., Sesto Fiorentino (Italy); Bolelli, G.; Lusvarghi, L. [Univ. di Modena e Reggio Emilia, Modena (Italy)

    2008-07-01

    High temperature thermal fatigue causes the failure of Thermal Barrier Coating (TBC) systems. Due to the difference in thickness and microstructure between thick TBCs and traditional thin TBCs, they cannot be assumed a-priori to possess the same failure mechanisms. Thick TBCs, consisting of a CoNiCrAlY bond coat and Yttria Partially Stabilised Zirconia top coat with different values of porosity, were produced by Air Plasma Spray. Thermal fatigue resistance limit of TBCs was tested by Furnace Cycling Tests (FCT) according to the specifications of an Original Equipment Manufacturer (OEM). TBC systems were analyzed before and after FCT. The morphological and chemical evolution of CoNiCrAlY/TGO microstructure was studied. Sintering effect, residual stress, phase transformation and fracture toughness were evaluated in the ceramic Top Coat. All the tested samples passed FCT according to the specification of an important OEM. Thermal fatigue resistance increases with the amount of porosity in the top coat. The compressive in-plane stresses increase in the TBC systems after thermal cycling, nevertheless the increasing rate has a trend contrary to the porosity level of top coat. The data suggest that the spallation happens at the TGO/Top Coat interface. The failure mechanism of thick TBCs subjected to thermal fatigue was eventually found to be similar to the failure mechanism of thin TBC systems made by APS. (orig.)

  10. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  11. Efficient thermal management for multiprocessor systems

    OpenAIRE

    Coşkun, Ayşe Kıvılcım

    2009-01-01

    High temperatures and large thermal variations on the die create severe challenges in system reliability, performance, leakage power, and cooling costs. Designing for worst-case thermal conditions is highly costly and time-consuming. Therefore, dynamic thermal management methods are needed to maintain safe temperature levels during execution. Conventional management techniques sacrifice performance to control temperature and only consider the hot spots, neglecting the effects of thermal varia...

  12. VOC Control in Kraft Mills; FINAL

    International Nuclear Information System (INIS)

    Zhu, J.Y.; Chai, X.-S.; Edwards, L.L.; Gu, Y.; Teja, A.S.; Kirkman, A.G.; Pfromm, P.H.; Rezac, M.E.

    2001-01-01

    The formation of volatile organic compounds (VOCs), such as methanol, in kraft mills has been an environmental concern. Methanol is soluble in water and can increase the biochemical oxygen demand. Furthermore, it can also be released into atmosphere at the process temperatures of kraft mill-streams. The Cluster Rule of the EPA now requires the control of the release of methanol in pulp and paper mills. This research program was conducted to develop a computer simulation tool for mills to predict VOC air emissions. To achieve the objective of the research program, much effort was made in the development of analytical techniques for the analysis of VOC and determination of vapor liquid partitioning coefficient of VOCs in kraft mill-streams using headspace gas chromatography. With the developed analytical tool, methanol formation in alkaline pulping was studied in laboratory to provide benchmark data of the amount of methanol formation in pulping in kraft mills and for the validation of VOC formation and vapor-liquid equilibrium submodels. Several millwide air and liquid samplings were conducted using the analytical tools developed to validate the simulation tool. The VOC predictive simulation model was developed based on the basic chemical engineering concepts, i.e., reaction kinetics, vapor liquid equilibrium, combined with computerized mass and energy balances. Four kraft mill case studies (a continuous digester, two brownstock washing lines, and a pre-evaporator system) are presented and compared with mill measurements. These case studies provide valuable, technical information for issues related to MACT I and MACT II compliance, such as condensate collection and Clean-Condensate-Alternatives (CCA)

  13. Thermal management of EV battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Birch, P.K.

    1984-01-01

    The thermal limitations of the actual design and the benefits of more extensive thermal management of electric vehicle systems are described. During this work a number of practical limitations in vehicle design, which has to be frozen relatively early in the project, made it impossible to take advantage of the benefits of thermal management in connection with the design of the modular battery system. This study, therfore, deals only very briefly with the actual project. The aim has been to show the possibilities of improvement based on traditional electrochemical systems (e.g., all lead-acid) by means of thermal management.

  14. Development of aromatic VOC control technology by electron beam hybrid

    International Nuclear Information System (INIS)

    Kim, Jo-Chun; Kim, Ki-Joon

    2006-01-01

    As a fundamental study, the decomposition of volatile organic compounds (VOCs) using electron beam (EB) irradiation has been extensively investigated. EB treatments of VOCs such as toluene and styrene are discussed. The degradation characteristics were intensively investigated under various concentrations and irradiation doses to determine and improve VOC removal efficiencies. This work illustrates that the removal efficiencies of aromatic VOCs generally increase as their concentrations decrease and the irradiation doses increase. Based on these basic studies, it was found that by-products produced from EB irradiation of VOCs would cause a secondary pollution problem. Therefore, a novel hybrid technology has been applied to control aromatic VOC emissions by annexing the catalyst technique with conventional treatment study using EB technology. The experiments were carried out using a bench-scale at first, then a pilot-scale system was followed. Toluene was selected as a typical VOC for EB hybrid control to investigate by-products, effects of ceramic and catalyst, and factors affecting overall efficiency of degradation. It was concluded that VOCs could be destroyed more effectively by a novel hybrid system than single EB irradiation. (author)

  15. Thermal processing systems for TRU mixed waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

    1992-01-01

    This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended

  16. Influence of adhesive bonding on quantity of emissions VOCs

    Directory of Open Access Journals (Sweden)

    Petr Čech

    2008-01-01

    Full Text Available The study deals with the influence of urea-formaldehyde glue and veneered bolstering on technological operation veneering on quantity of emission VOCs (volatile organic compounds.The so-called Volatile Organic Compounds (VOC are among the largest pollution sources of both the internal and external environments.VOC is defined as emission of any organic compound or a mixture thereof, with the exception of methane, whereby the compound exerts the pressure of 0.01 kPa or more at the temperature of 20 °C (293.15 K and reaches the corresponding volatility under the specific conditions of its use and can undergo photochemical reactions with nitrogen oxides when exposed to solar radiation.The effects of VOC upon environment can be described by equation:VOC + NOx + UV radiation + heat = tropospheric ozone (O3.In this work there were tested background working environment in various parts of multi-storeyed press, next was judged emissive charge of veneered device and used glue. We used surface material such as chipboard. We used urea-formaldehyde glue KRONOCOL U300 on technological operation veneering.The VOC emissions from the wooden surfaces with or without finishing were tested in the Equipment for VOC Measuring with a small-space chamber. This equipment was installed in and made available by the Institute of Furniture, Design and Habitation. The small-space chamber is suitable for testing small parts of wood products. The device equipped with small-chamber satisfies all conditions mandated in the standard ENV 13 419 DIN -V-ENV 13 419 ”Determination of the emissions of Volatile organic compounds”.The VOC emissions were collected in columns with sorbent Tenax TA. We analyzed the columns with the VOC emissions by: the gas chromatography in conjunction with mass spectrometer and Direct Thermal Desorption.

  17. Simulation-based optimization of thermal systems

    International Nuclear Information System (INIS)

    Jaluria, Yogesh

    2009-01-01

    This paper considers the design and optimization of thermal systems on the basis of the mathematical and numerical modeling of the system. Many complexities are often encountered in practical thermal processes and systems, making the modeling challenging and involved. These include property variations, complicated regions, combined transport mechanisms, chemical reactions, and intricate boundary conditions. The paper briefly presents approaches that may be used to accurately simulate these systems. Validation of the numerical model is a particularly critical aspect and is discussed. It is important to couple the modeling with the system performance, design, control and optimization. This aspect, which has often been ignored in the literature, is considered in this paper. Design of thermal systems based on concurrent simulation and experimentation is also discussed in terms of dynamic data-driven optimization methods. Optimization of the system and of the operating conditions is needed to minimize costs and improve product quality and system performance. Different optimization strategies that are currently used for thermal systems are outlined, focusing on new and emerging strategies. Of particular interest is multi-objective optimization, since most thermal systems involve several important objective functions, such as heat transfer rate and pressure in electronic cooling systems. A few practical thermal systems are considered in greater detail to illustrate these approaches and to present typical simulation, design and optimization results

  18. How Accurately can we Calculate Thermal Systems?

    International Nuclear Information System (INIS)

    Cullen, D; Blomquist, R N; Dean, C; Heinrichs, D; Kalugin, M A; Lee, M; Lee, Y; MacFarlan, R; Nagaya, Y; Trkov, A

    2004-01-01

    I would like to determine how accurately a variety of neutron transport code packages (code and cross section libraries) can calculate simple integral parameters, such as K eff , for systems that are sensitive to thermal neutron scattering. Since we will only consider theoretical systems, we cannot really determine absolute accuracy compared to any real system. Therefore rather than accuracy, it would be more precise to say that I would like to determine the spread in answers that we obtain from a variety of code packages. This spread should serve as an excellent indicator of how accurately we can really model and calculate such systems today. Hopefully, eventually this will lead to improvements in both our codes and the thermal scattering models that they use in the future. In order to accomplish this I propose a number of extremely simple systems that involve thermal neutron scattering that can be easily modeled and calculated by a variety of neutron transport codes. These are theoretical systems designed to emphasize the effects of thermal scattering, since that is what we are interested in studying. I have attempted to keep these systems very simple, and yet at the same time they include most, if not all, of the important thermal scattering effects encountered in a large, water-moderated, uranium fueled thermal system, i.e., our typical thermal reactors

  19. Improving Thermal and Electrical Efficiency in Photovoltaic Thermal Systems for Sustainable Cooling System Integration

    Directory of Open Access Journals (Sweden)

    Mohammad Alobaid

    2018-06-01

    Full Text Available Research into photovoltaic thermal systems is important in solar technologies as photovoltaic thermal systems are designed to produce both electrical and thermal energy, this can lead to improved performance of the overall system. The performance of photovoltaic thermal systems is based on several factors that include photovoltaic thermal materials, design, ambient temperature, inlet and outlet fluid temperature and photovoltaic cell temperature. The aim of this study is to investigate the effect of photovoltaic thermal outlet water temperatures and solar cell temperature on both electrical and thermal efficiency for different range of inlet water temperature. To achieve this, a mathematical model of a photovoltaic thermal system was developed to calculate the anticipated system performance. The factors that affect the efficiency of photovoltaic thermal collectors were discussed and the outlet fluid temperature from the photovoltaic thermal is investigated in order to reach the highest overall efficiency for the solar cooling system. An average thermal and electrical efficiency of 65% and 13.7%, respectively, was achieved and the photovoltaic thermal mathematical model was validated with experimental data from literature.

  20. A miniature concentrating photovoltaic and thermal system

    International Nuclear Information System (INIS)

    Kribus, Abraham; Kaftori, Daniel; Mittelman, Gur; Hirshfeld, Amir; Flitsanov, Yuri; Dayan, Abraham

    2006-01-01

    A novel miniature concentrating PV (MCPV) system is presented and analyzed. The system is producing both electrical and thermal energy, which is supplied to a nearby consumer. In contrast to PV/thermal (PV/T) flat collectors, the heat from an MCPV collector is not limited to low-temperature applications. The work reported here refers to the evaluation and preliminary design of the MCPV approach. The heat transport system, the electric and thermal performance, the manufacturing cost, and the resulting cost of energy in case of domestic water heating have been analyzed. The results show that the new approach has promising prospects

  1. Thermal energy systems design and analysis

    CERN Document Server

    Penoncello, Steven G

    2015-01-01

    IntroductionThermal Energy Systems Design and AnalysisSoftwareThermal Energy System TopicsUnits and Unit SystemsThermophysical PropertiesEngineering DesignEngineering EconomicsIntroductionCommon Engineering Economics NomenclatureEconomic Analysis Tool: The Cash Flow DiagramTime Value of MoneyTime Value of Money ExamplesUsing Software to Calculate Interest FactorsEconomic Decision MakingDepreciation and TaxesProblemsAnalysis of Thermal Energy SystemsIntroductionNomenclatureThermophysical Properties of SubstancesSuggested Thermal Energy Systems Analysis ProcedureConserved and Balanced QuantitiesConservation of MassConservation of Energy (The First Law of Thermodynamics)Entropy Balance (The Second Law of Thermodynamics)Exergy Balance: The Combined LawEnergy and Exergy Analysis of Thermal Energy CyclesDetailed Analysis of Thermal Energy CyclesProblemsFluid Transport in Thermal Energy SystemsIntroductionPiping and Tubing StandardsFluid Flow FundamentalsValves and FittingsDesign and Analysis of Pipe NetworksEconomi...

  2. Investigation of thermal fatigue behavior of thermal barrier coating systems

    International Nuclear Information System (INIS)

    Zhu Dongming; Miller, R.A.

    1997-01-01

    In the present study, the mechanisms of fatigue crack initiation and propagation, and of coating failure under thermal loads that simulate those in diesel engines are investigated. Surface cracks initiate early and grow continuously under thermal low cycle fatigue (LCF) and high cycle fatigue (HCF) stresses. It is found that, in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures. Significant LCF and HCF interactions have been observed in the thermal fatigue tests. The fatigue crack growth rate in the ceramic coating strongly depends on the characteristic HCF cycle number, N* HCF which is defined as the number of HCF cycles per LCF cycle. The crack growth rate is increased from 0.36 μm/LCF cycle for a pure LCF test to 2.8 μm/LCF cycle for a combined LCF and HCF test at N* HCF about 20 000. A surface wedging model has been proposed to account for the HCF crack growth in the coating systems. This mechanism predicts that the HCF damage effect increases with heat flux and thus with increasing surface temperature swing, thermal expansion coefficient and elastic modulus of the ceramic coating, as well as with the HCF interacting depth. Good correlation has been found between the analysis and experimental evidence. (orig.)

  3. Thermal-hydraulic unreliability of passive systems

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Saltos, N.T.

    1995-01-01

    Advanced light water reactor designs like AP600 and the simplified boiling water reactor (SBWR) use passive safety systems for accident prevention and mitigation. Because these systems rely on natural forces for their operation, their unavailability due to hardware failures and human error is significantly smaller than that of active systems. However, the coolant flows predicted to be delivered by these systems can be subject to significant uncertainties, which in turn can lead to a significant uncertainty in the predicted thermal-hydraulic performance of the plant under accident conditions. Because of these uncertainties, there is a probability that an accident sequence for which a best estimate thermal-hydraulic analysis predicts no core damage (success sequence) may actually lead to core damage. For brevity, this probability will be called thermal-hydraulic unreliability. The assessment of this unreliability for all the success sequences requires very expensive computations. Moreover, the computational cost increases drastically as the required thermal-hydraulic reliability increases. The required computational effort can be greatly reduced if a bounding approach can be used that either eliminates the need to compute thermal-hydraulic unreliabilities, or it leads to the analysis of a few bounding sequences for which the required thermal-hydraulic reliability is relatively small. The objective of this paper is to present such an approach and determine the order of magnitude of the thermal-hydraulic unreliabilities that may have to be computed

  4. Thermal History Devices, Systems For Thermal History Detection, And Methods For Thermal History Detection

    KAUST Repository

    Caraveo Frescas, Jesus Alfonso; Alshareef, Husam N.

    2015-01-01

    Embodiments of the present disclosure include nanowire field-effect transistors, systems for temperature history detection, methods for thermal history detection, a matrix of field effect transistors, and the like.

  5. Thermal History Devices, Systems For Thermal History Detection, And Methods For Thermal History Detection

    KAUST Repository

    Caraveo Frescas, Jesus Alfonso

    2015-05-28

    Embodiments of the present disclosure include nanowire field-effect transistors, systems for temperature history detection, methods for thermal history detection, a matrix of field effect transistors, and the like.

  6. The fight against Volatile Organic Compounds (VOC)

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This paper strikes the balance of the fight against organic volatile compounds emissions in France and in Europe. The first part describes the influence of VOC on production of Ozone in troposphere and gives numerical data on permissive emission values in atmosphere. The second part describes french and european policy and regulations. The third part gives the principle methods and devices for COV measurement in the atmosphere. In the last part, effluents treatment is given: thermal incineration, catalytic incineration, adsorption on active carbon, biologic purification, condensation and separative processes on membrane

  7. Identification of the Vibrio parahaemolyticus type III secretion system 2-associated chaperone VocC for the T3SS2-specific effector VopC.

    Science.gov (United States)

    Akeda, Yukihiro; Kodama, Toshio; Saito, Kazunobu; Iida, Tetsuya; Oishi, Kazunori; Honda, Takeshi

    2011-11-01

    The enteropathogen Vibrio parahaemolyticus possesses two sets of type III secretion systems, T3SS1 and T3SS2. Effector proteins secreted by these T3SSs are delivered into host cells, leading to cell death or diarrhea. However, it is not known how specific effectors are secreted through a specific T3SS when both T3SSs are expressed within bacteria. One molecule thought to determine secretion specificity is a T3SS-associated chaperone; however, no T3SS2-specific chaperone has been identified. Therefore, we screened T3SS2 chaperone candidates by a pull-down assay using T3SS2 effectors fused with glutathione-S-transferase. A secretion assay revealed that the newly identified cognate chaperone VocC for the T3SS2-specific effector VopC was required for the efficient secretion of the substrate through T3SS2. Further experiments determined the chaperone-binding domain and the amino-terminal secretion signal of the cognate effector. These findings, in addition to the previously identified T3SS1-specific chaperone, VecA, provide a strategy to clarify the specificity of effector secretion through T3SSs of V. parahaemolyticus. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  9. Autonomous gas chromatograph system for Thermal Enhanced Vapor Extraction System (TEVES) proof of concept demonstration

    International Nuclear Information System (INIS)

    Peter, F.J.; Laguna, G.R.

    1996-09-01

    An autonomous gas chromatograph system was designed and built to support the Thermal Enhanced Vapor Extraction System (TEVES) demonstration. TEVES is a remediation demonstration that seeks to enhance an existing technology (vacuum extraction) by adding a new technology (soil heating). A pilot scale unit was set up at one of the organic waste disposal pits at the Sandia National Laboratories Chemical Waste Landfill (CWL) in Tech Area 3. The responsibility for engineering a major part of the process instrumentation for TEVES belonged to the Manufacturing Control Subsystems Department. The primary mission of the one-of-a-kind hardware/software system is to perform on-site gas sampling and analysis to quantify a variety of volatile organic compounds (VOCs) from various sources during TEVES operations. The secondary mission is to monitor a variety of TEVES process physical parameters such as extraction manifold temperature, pressure, humidity, and flow rate, and various subsurface pressures. The system began operation in September 1994 and was still in use on follow-on projects when this report was published

  10. Modelling and Control of Thermal System

    Directory of Open Access Journals (Sweden)

    Vratislav Hladky

    2014-01-01

    Full Text Available Work presented here deals with the modelling of thermal processes in a thermal system consisting of direct and indirect heat exchangers. The overal thermal properties of the medium and the system itself such as liquid mixing or heat capacity are shortly analysed and their features required for modelling are reasoned and therefore simplified or neglected. Special attention is given to modelling heat losses radiated into the surroundings through the walls as they are the main issue of the effective work with the heat systems. Final part of the paper proposes several ways of controlling the individual parts’ temperatures as well as the temperature of the system considering heating elements or flowage rate as actuators.

  11. The Application of Stationary VOC-PR with PLL for Grid side Converter-based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Li, Lijuan

    2010-01-01

    Voltage oriented control PR is combined with space vector modulation and phase locked loop to control the grid side converter in wind power generation system in this paper. First the mathematical models of grid side converter and LCL filter as well as grid are given. Then the control strategy...... of grid side converter-based wind power generation system is given in detail. Finally the simulation model consisting of the grid side converter wind power generation system is set up. The simulation results have verified that the control strategy is feasible to be used for control of gird currents......, active power, reactive power and DC-link voltage in wind power generation system. It has laid a good basis for the real system development....

  12. Pulse thermal energy transport/storage system

    Science.gov (United States)

    Weislogel, Mark M.

    1992-07-07

    A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.

  13. Mars Science Laboratory Rover System Thermal Test

    Science.gov (United States)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.

    2012-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.

  14. Thermal performance advisor expert system development

    International Nuclear Information System (INIS)

    McClintock, M.; Hirota, N.; Metzinger, R.

    1991-01-01

    In recent years the electric industry has developed an increased interest in improving efficiency of nuclear power plants. EPRI has embarked upon a research project RP2407, Nuclear Plant Performance Improvements which is designed to address needs in this area. One product of this project has been the Thermal Performance Diagnostic Manual for Nuclear Power Plants (NP-4990P). The purpose of this manual is to provide engineering personnel at nuclear power plants with a consistent way in which to identify thermal performance problems. General Physics is also involved in the development of another computer system called Fossil Thermal Performance Advisor (FTPA) which helps operators improve performance for fossil power plants. FTPA is a joint venture between General Physics and New York State Electric and Gas Company. This paper describes both of these computer systems and uses the FTPA as an interesting comparison that illustrates the considerations required for the development of a computer system that effectively addresses the needs of the users

  15. Graded thermal insulation layer systems; Gradierte Waermedaemmschichtsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Leushake, U.; Krell, T. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany). Inst. fuer Werkstoff-Forschung

    1996-12-31

    Graded thermal insulation systems reduce local stresses between two layers. Grading usually involves a concentration variation in a second phase but may also involve variations of the microstructure or chemical composition. The contribution discusses the application of this technique for thermal protection of turbine blades in aircraft propulsion systems. [Deutsch] Mit Hilfe gradierter Waermeschichtsysteme ist es moeglich die lokalen Spannungen zwischen zwei Schichten zu verringern. Die Gradierung umfasst meistens eine Variation des Gehaltes einer zweiten Phase, kann aber auch die Variation der Mikrostruktur oder der chemischen Zusammensetzung beinhalten. In diesem Beitrag wird auf die Anwendung als thermischer Schutz von Turbinenschaufeln fuer Flugtriebwerke eingegangen.

  16. Solar thermal systems successful planning and construction

    CERN Document Server

    Peuser, Dr Felix A; Schnauss, Martin

    2013-01-01

    Solar Thermal Systems summarizes the theoretical and practical knowledge gained from over 20 years of research, implementation and operation of thermal solar installations. This work provides answers to a variety of key questions by examining current solar installations, drawing upon past experiences and making proposals for future planning.- how do system components and materials behave under continuous operation?- which components have proven themselves and how are they used properly?- what are the causes of defects and how can they be avoided?- how long is the service life of modern solar i

  17. Artificial heart system thermal insulation component development

    International Nuclear Information System (INIS)

    Svedberg, R.C.; Buckman, R.W. Jr.

    1975-01-01

    A concentric cup vacuum multifoil insulation system has been selected by virtue of its size, weight, and thermal performance to insulate the hot radioisotope portion of the thermal converter of an artificial implantable heart system. A factor of 2 improvement in thermal performance, based on the heat loss per number of foil layers (minimum system weight and volume) has been realized over conventional spiral wrapped multifoil vacuum insulation. This improvement is the result of the concentric cup construction to maintain a uniform interfoil spacing and the elimination of corner heat losses. Based on external insulation system dimensions (surface area in contact with host body), heat losses of 0.019 W/ cm 2 at 1140 0 K (1600 0 F) and 0.006 W/cm 2 at 920 0 K (1200 0 F) have been achieved. Factors which influence thermal performance of the nickel foil concentric cup insulation system include the number of cups, configuration and method of application of zirconia (ZrO 2 ) spacer material, system pressure, emittance of the cups, and operating temperature

  18. Verification of T2VOC using an analytical solution for VOC transport in vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    Shan, C. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    T2VOC represents an adaption of the STMVOC to the TOUGH2 environment. In may contaminated sites, transport of volatile organic chemicals (VOC) is a serious problem which can be simulated by T2VOC. To demonstrate the accuracy and robustness of the code, we chose a practical problem of VOC transport as the test case, conducted T2VOC simulations, and compared the results of T2VOC with those of an analytical solution. The agreements between T2VOC and the analytical solutions are excellent. In addition, the numerical results of T2VOC are less sensitive to grid size and time step to a certain extent.

  19. Status and Needs Research for On-line Monitoring of VOCs Emissions from Stationary Sources

    Science.gov (United States)

    Zhou, Gang; Wang, Qiang; Zhong, Qi; Zhao, Jinbao; Yang, Kai

    2018-01-01

    Based on atmospheric volatile organic compounds (VOCs) pollution control requirements during the twelfth-five year plan and the current status of monitoring and management at home and abroad, instrumental architecture and technical characteristics of continuous emission monitoring systems (CEMS) for VOCs emission from stationary sources are investigated and researched. Technological development needs of VOCs emission on-line monitoring techniques for stationary sources in china are proposed from the system sampling pretreatment technology and analytical measurement techniques.

  20. Large thermal protection system panel

    Science.gov (United States)

    Weinberg, David J. (Inventor); Myers, Franklin K. (Inventor); Tran, Tu T. (Inventor)

    2003-01-01

    A protective panel for a reusable launch vehicle provides enhanced moisture protection, simplified maintenance, and increased temperature resistance. The protective panel includes an outer ceramic matrix composite (CMC) panel, and an insulative bag assembly coupled to the outer CMC panel for isolating the launch vehicle from elevated temperatures and moisture. A standoff attachment system attaches the outer CMC panel and the bag assembly to the primary structure of the launch vehicle. The insulative bag assembly includes a foil bag having a first opening shrink fitted to the outer CMC panel such that the first opening and the outer CMC panel form a water tight seal at temperatures below a desired temperature threshold. Fibrous insulation is contained within the foil bag for protecting the launch vehicle from elevated temperatures. The insulative bag assembly further includes a back panel coupled to a second opening of the foil bag such that the fibrous insulation is encapsulated by the back panel, the foil bag, and the outer CMC panel. The use of a CMC material for the outer panel in conjunction with the insulative bag assembly eliminates the need for waterproofing processes, and ultimately allows for more efficient reentry profiles.

  1. Quaternion Based Thermal Condition Monitoring System

    Science.gov (United States)

    Wong, Wai Kit; Loo, Chu Kiong; Lim, Way Soong; Tan, Poi Ngee

    In this paper, we will propose a new and effective machine condition monitoring system using log-polar mapper, quaternion based thermal image correlator and max-product fuzzy neural network classifier. Two classification characteristics namely: peak to sidelobe ratio (PSR) and real to complex ratio of the discrete quaternion correlation output (p-value) are applied in the proposed machine condition monitoring system. Large PSR and p-value observe in a good match among correlation of the input thermal image with a particular reference image, while small PSR and p-value observe in a bad/not match among correlation of the input thermal image with a particular reference image. In simulation, we also discover that log-polar mapping actually help solving rotation and scaling invariant problems in quaternion based thermal image correlation. Beside that, log-polar mapping can have a two fold of data compression capability. Log-polar mapping can help smoother up the output correlation plane too, hence makes a better measurement way for PSR and p-values. Simulation results also show that the proposed system is an efficient machine condition monitoring system with accuracy more than 98%.

  2. Towards an Ultimate Battery Thermal Management System

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    The prevailing standards and scientific literature offer a wide range of options for the construction of a battery thermal management system (BTMS). The design of an innovative yet well-functioning BTMS requires strict supervision, quality audit and continuous improvement of the whole process...

  3. Abatement of VOCs with Alternate Adsorption and Plasma-Assisted Regeneration: A Review

    Directory of Open Access Journals (Sweden)

    Sharmin Sultana

    2015-04-01

    Full Text Available Energy consumption is an important concern for the removal of volatile organic compounds (VOCs from waste air with non-thermal plasma (NTP. Although the combination of NTP with heterogeneous catalysis has shown to reduce the formation of unwanted by-products and improve the energy efficiency of the process, further optimization of these hybrid systems is still necessary to evolve to a competitive air purification technology. A newly developed innovative technique, i.e., the cyclic operation of VOC adsorption and NTP-assisted regeneration has attracted growing interest of researchers due to the optimized energy consumption and cost-effectiveness. This paper reviews this new technique for the abatement of VOCs as well as for regeneration of adsorbents. In the first part, a comparison of the energy consumption between sequential and continuous treatment is given. Next, studies dealing with adsorption followed by NTP oxidation are reviewed. Particular attention is paid to the adsorption mechanisms and the regeneration of catalysts with in-plasma and post-plasma processes. Finally, the influence of critical process parameters on the adsorption and regeneration steps is summarized.

  4. System design description PFP thermal stabilization

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    1998-01-01

    The purpose of this document is to provide a system design description and design basis for the Plutonium Finishing P1ant (PFP) Thermal Stabilization project. The sources of material for this project are residues scraped from glovebox floors and materials already stored in vault storage that need further stabilizing to meet the 3013 storage requirements. Stabilizing this material will promote long term storage and reduced worker exposure. This document addresses: function design, equipment, and safety requirements for thermal stabilization of plutonium residues and oxides

  5. Stand Alone Battery Thermal Management System

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Brad [Denso International America, Incorporated, Southfield, MI (United States)

    2015-09-30

    The objective of this project is research, development and demonstration of innovative thermal management concepts that reduce the cell or battery weight, complexity (component count) and/or cost by at least 20%. The project addresses two issues that are common problems with current state of the art lithium ion battery packs used in vehicles; low power at cold temperatures and reduced battery life when exposed to high temperatures. Typically, battery packs are “oversized” to satisfy the two issues mentioned above. The first phase of the project was spent making a battery pack simulation model using AMEsim software. The battery pack used as a benchmark was from the Fiat 500EV. FCA and NREL provided vehicle data and cell data that allowed an accurate model to be created that matched the electrical and thermal characteristics of the actual battery pack. The second phase involved using the battery model from the first phase and evaluate different thermal management concepts. In the end, a gas injection heat pump system was chosen as the dedicated thermal system to both heat and cool the battery pack. Based on the simulation model. The heat pump system could use 50% less energy to heat the battery pack in -20°C ambient conditions, and by keeping the battery cooler at hot climates, the battery pack size could be reduced by 5% and still meet the warranty requirements. During the final phase, the actual battery pack and heat pump system were installed in a test bench at DENSO to validate the simulation results. Also during this phase, the system was moved to NREL where testing was also done to validate the results. In conclusion, the heat pump system can improve “fuel economy” (for electric vehicle) by 12% average in cold climates. Also, the battery pack size, or capacity, could be reduced 5%, or if pack size is kept constant, the pack life could be increased by two years. Finally, the total battery pack and thermal system cost could be reduced 5% only if the

  6. Demand specifying variables and current ventilation rate requirements with respect to the future use of voc sensing for dcv control

    DEFF Research Database (Denmark)

    Kolarik, Jakub

    be also taken into account in the ventilation control. Recent development in gas sensing technology resulted in a new generation of relatively cheap and practically applicable sensors that can offer measurements of some of the pollutants mentioned above – mainly Volatile Organic Compounds (VOC......Demand Controlled Ventilation (DCV) is a well established principle to provide a certain indoor environmental quality, defined both in the terms of air quality and thermal comfort. This is accomplished by adjusting the supplied airflow rate according to a certain demand indicator, which......). This seems to bring a new dimension into the control of DCV systems. This paper is a contribution to the workshop on utilization of VOC sensing technology used for DCV control. The aim of the paper is to provide a short review of different types of demand variables used to control DCV systems and summarize...

  7. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 1: Simple VOCs and model PM

    Science.gov (United States)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    considered likely to partition to the condensed phase, the VOC-modified-PM showed significantly more damage and inflammation to lung cells than did the original PM. Because gases and PM are transported and deposited differently within the atmosphere and the lungs, these results have significant consequences for a wide range of people. For example, current US policies for research and regulation of PM do not recognize this "effect modification" phenomena (NAS, 2004). These results present an unambiguous demonstration that - even in these simple mixtures - physical and thermal interactions alone can cause a modification of the distribution of species among the phases of airborne pollution mixtures that can result in a non-toxic phase becoming toxic due to atmospheric thermal processes only. Subsequent work (described in companion papers) extends the simple results reported here to systems with photochemical transformations of complex urban mixtures and to systems with diesel exhaust produced by different fuels.

  8. Use of Combined Observational- and Model-Derived Photochemical Indicators to Assess the O3-NOx-VOC System Sensitivity in Urban Areas

    Directory of Open Access Journals (Sweden)

    Edson R. Carrillo-Torres

    2017-01-01

    Full Text Available Tropospheric levels of O3 have historically exceeded the official annual Mexican standards within the Monterrey Metropolitan Area (MMA in NE Mexico. High-frequency and high-precision measurements of tropospheric O3, NOy, NO2, NO, CO, SO2, PM10 and PM2.5 were made at the Obispado monitoring site near the downtown MMA from September 2012 to August 2013. The seasonal cycles of O3 and NOy are driven by changes in meteorology and to a lesser extent by variations in primary emissions. The NOy levels were positively correlated with O3 precursors and inversely correlated with O3 and wind speed. Recorded data were used to assess the O3-Volatile Organic Compounds (VOC-NOx system’s sensitivity through an observational-based approach. The photochemical indicator O3/NOy was derived from measured data during the enhanced O3 production period (12:00–18:00 Central Daylight Time (CDT, GMT-0500. The O3/NOy ratios calculated for this time period showed that the O3 production within the MMA is VOC sensitive. A box model simulation of production rates of HNO3 (PHNO3 and total peroxides (Pperox carried out for O3 episodes in fall and spring confirmed the VOC sensitivity within the MMA environment. No significant differences were observed in O3/NOy from weekdays to weekends or for PHNO3/Pperox ratios, confirming the limiting role of VOCs in O3 production within the MMA. The ratified photochemical regime observed may allow the environmental authorities to revise and verify the current policies for air quality control within the MMA.

  9. Equilibration and thermalization in finite quantum systems

    International Nuclear Information System (INIS)

    Yukalov, V I

    2011-01-01

    Experiments with trapped atomic gases have opened novel possibilities for studying the evolution of nonequilibrium finite quantum systems, which revived the necessity of reconsidering and developing the theory of such processes. This review analyzes the basic approaches to describing the phenomena of equilibration, thermalization, and decoherence in finite quantum systems. Isolated, nonisolated, and quasi-isolated quantum systems are considered. The relations between equilibration, decoherence, and the existence of time arrow are emphasized. The possibility for the occurrence of rare events, preventing complete equilibration, are mentioned

  10. System Design Description PFP Thermal Stabilization

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    2000-01-01

    The purpose of this document is to provide a system design description (SDD) and design basis for the Plutonium Finishing Plant (PFP) Thermal Stabilization project. The chief objective of the SDD is to document the Structures, Systems, and Components (SSCs) that establish and maintain the facility Safety Envelope necessary for normal safe operation of the facility; as identified in the FSAR, the OSRs, and Safety Assessment Documents (SADs). This safety equipment documentation should satisfy guidelines for the SDD given in WHC-SD-CP-TI-18 1, Criteria for Identification and Control of Equipment Necessary for Preservation of the Safety Envelope and Safe Operation of PFP. The basis for operational, alarm response, maintenance, and surveillance procedures are also identified and justified in this document. This document and its appendices address the following elements of the PFP Thermal Stabilization project: Functional and design requirements; Design description; Safety Envelope Analysis; Safety Equipment Class; and Operational, maintenance and surveillance procedures

  11. Advanced materials for thermal protection system

    Science.gov (United States)

    Heng, Sangvavann; Sherman, Andrew J.

    1996-03-01

    Reticulated open-cell ceramic foams (both vitreous carbon and silicon carbide) and ceramic composites (SiC-based, both monolithic and fiber-reinforced) were evaluated as candidate materials for use in a heat shield sandwich panel design as an advanced thermal protection system (TPS) for unmanned single-use hypersonic reentry vehicles. These materials were fabricated by chemical vapor deposition/infiltration (CVD/CVI) and evaluated extensively for their mechanical, thermal, and erosion/ablation performance. In the TPS, the ceramic foams were used as a structural core providing thermal insulation and mechanical load distribution, while the ceramic composites were used as facesheets providing resistance to aerodynamic, shear, and erosive forces. Tensile, compressive, and shear strength, elastic and shear modulus, fracture toughness, Poisson's ratio, and thermal conductivity were measured for the ceramic foams, while arcjet testing was conducted on the ceramic composites at heat flux levels up to 5.90 MW/m2 (520 Btu/ft2ṡsec). Two prototype test articles were fabricated and subjected to arcjet testing at heat flux levels of 1.70-3.40 MW/m2 (150-300 Btu/ft2ṡsec) under simulated reentry trajectories.

  12. Thermal Performance of ATLAS Laser Thermal Control System Demonstration Unit

    Science.gov (United States)

    Ku, Jentung; Robinson, Franklin; Patel, Deepak; Ottenstein, Laura

    2013-01-01

    The second Ice, Cloud, and Land Elevation Satellite mission currently planned by National Aeronautics and Space Administration will measure global ice topography and canopy height using the Advanced Topographic Laser Altimeter System {ATLAS). The ATLAS comprises two lasers; but only one will be used at a time. Each laser will generate between 125 watts and 250 watts of heat, and each laser has its own optimal operating temperature that must be maintained within plus or minus 1 degree Centigrade accuracy by the Laser Thermal Control System (LTCS) consisting of a constant conductance heat pipe (CCHP), a loop heat pipe (LHP) and a radiator. The heat generated by the laser is acquired by the CCHP and transferred to the LHP, which delivers the heat to the radiator for ultimate rejection. The radiator can be exposed to temperatures between minus 71 degrees Centigrade and minus 93 degrees Centigrade. The two lasers can have different operating temperatures varying between plus 15 degrees Centigrade and plus 30 degrees Centigrade, and their operating temperatures are not known while the LTCS is being designed and built. Major challenges of the LTCS include: 1) A single thermal control system must maintain the ATLAS at 15 degrees Centigrade with 250 watts heat load and minus 71 degrees Centigrade radiator sink temperature, and maintain the ATLAS at plus 30 degrees Centigrade with 125 watts heat load and minus 93 degrees Centigrade radiator sink temperature. Furthermore, the LTCS must be qualification tested to maintain the ATLAS between plus 10 degrees Centigrade and plus 35 degrees Centigrade. 2) The LTCS must be shut down to ensure that the ATLAS can be maintained above its lowest desirable temperature of minus 2 degrees Centigrade during the survival mode. No software control algorithm for LTCS can be activated during survival and only thermostats can be used. 3) The radiator must be kept above minus 65 degrees Centigrade to prevent ammonia from freezing using no more

  13. Solar Thermal System Evaluation in China

    Directory of Open Access Journals (Sweden)

    Xinyu Zhang

    2015-01-01

    Full Text Available More than 581 solar thermal systems (STSs, 98 counties, and 47 renewable application demonstration cites in China need to be inspected by the end of 2015. In this study, the baseline for performance and economic evaluation of STSs are presented based on the site test data and related references. An index used to evaluate STSs was selected, and methods to acquire the parameters used to calculate the related index were set. The requirements for sensors for testing were specified. The evaluation method was applied to three systems and the result shows that the evaluation method is suitable for the evaluation of STSs in China.

  14. thermal power stations' reliability evaluation in a hydrothermal system

    African Journals Online (AJOL)

    Dr Obe

    A quantitative tool for the evaluation of thermal power stations reliability in a hydrothermal system is presented. ... (solar power); wind (wind power) and the rest, thermal power and ... probability of a system performing its function adequately for ...

  15. Thermal Excitation System for Shearography (TESS)

    Science.gov (United States)

    Lansing, Matthew D.; Bullock, Michael W.

    1996-01-01

    One of the most convenient and effective methods of stressing a part or structure for shearographic evaluation is thermal excitation. This technique involves heating the part, often convectively with a heat gun, and then monitoring with a shearography device the deformation during cooling. For a composite specimen, unbonds, delaminations, inclusions, or matrix cracking will deform during cooling differently than other more structurally sound regions and thus will appear as anomalies in the deformation field. However, one of the difficulties that cause this inspection to be dependent on the operator experience is the conventional heating process. Fanning the part with a heat gun by hand introduces a wide range of variability from person to person and from one inspection to the next. The goal of this research effort was to conduct research in the methods of thermal excitation for shearography inspection. A computerized heating system was developed for inspection of 0.61 m (24 in.) square panels. The Thermal Excitation System for Shearography (TESS) provides radiant heating with continuous digital measurement of the surface temperature profile to ensure repeatability. The TESS device functions as an accessory to any electronic shearography device.

  16. Integrated operation of hydro thermal system

    International Nuclear Information System (INIS)

    Nanthakumar, J.

    1994-01-01

    Long-term power system expansion planning studies are carried out to meet the electricity requirement in the future. Prior to the expansion planning studies, it is essential to know the energy potential of the existing generating system, especially the hydro power plants. Detailed hydro thermal stimulation studies of the integrated system is therefore carried out to determine the best way to maximise the hydro energy of the existing and committed plants. The results of the integrated system simulated model are stored in numerous files and are available for retrieval. Most important output used for expansion analysis is the energy production of each hydro plant. The annual hydro energy potential of the total hydro system of Sri Lanka for the hydrological year from 1949 to 1988 is given. Hydro condition data with different probability levels are also indicated

  17. System model development for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Walton, J.T.; Perkins, K.R.; Buksa, J.J.; Worley, B.A.; Dobranich, D.

    1992-01-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. Since October 1991, US (DOE), (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review. The vision and strategy of the interagency team for developing NTP system models will be discussed in this paper. A review of the progress on the Level 1 interagency model is also presented

  18. Towards an Ultimate Battery Thermal Management System

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    The prevailing standards and scientific literature offer a wide range of options for the construction of a battery thermal management system (BTMS). The design of an innovative yet well-functioning BTMS requires strict supervision, quality audit and continuous improvement of the whole process....... It must address all the current quality and safety (Q&S) standards. In this review article, an effective battery thermal management is sought considering the existing battery Q&S standards and scientific literature. The article contains a broad overview of the current existing standards and literature...... on a generic compliant BTMS. The aim is to assist in the design of a novel compatible BTMS. Additionally, the article delivers a set of recommendations to make an effective BTMS....

  19. Modeling VOC transport in simulated waste drums

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1993-06-01

    A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the VOC permeability had been measured. Permeabilities for five VOCs [methylene chloride, 1,1,2-trichloro-1,2,2-trifluoroethane (Freon-113), 1,1,1-trichloroethane, carbon tetrachloride, and trichloroethylene] were measured across a polyethylene bag. Comparison of model and experimental results of VOC concentration as a function of time indicate that model accurately accounts for significant VOC transport mechanisms in a lab-scale waste drum

  20. Characteristics of Ambient Volatile Organic Compounds (VOCs) Measured in Shanghai, China

    Science.gov (United States)

    Cai, Chang-Jie; Geng, Fu-Hai; Tie, Xue-Xi; Yu, Qiong; Peng, Li; Zhou, Guang-Qiang

    2010-01-01

    To better understand the characteristics of ambient abundance of volatile organic compounds (VOCs) in Shanghai, one of the biggest metropolis of China, VOCs were measured with a gas chromatography system equipped with a mass-selective detector (GC/MSD) from July 2006 to February 2010. An intensive measurement campaign was conducted (eight samples per day with a 3 hour interval) during May 2009. The comparison of ambient VOCs collected in different regions of Shanghai shows that the concentrations are slightly higher in the busy commercial area (28.9 ppbv at Xujiaui) than in the urban administrative area (24.3 ppbv at Pudong). However, during the intensive measurement period, the concentrations in the large steel industrial area (28.7 ppbv at Baoshan) were much higher than in the urban administrative area (18 ppbv at Pudong), especially for alkanes, alkenes, and toluene. The seasonal variations of ambient VOC concentrations measured at the Xujiahui sampling site indicate that the VOC concentrations are significantly affected by meteorological conditions (such as wind direction and precipitation). In addition, although alkanes are the most abundant VOCs at the Xujiahui measurement site, the most important VOCs contributing to ozone formation potential (OFP) are aromatics, accounting for 57% of the total OFP. The diurnal variations of VOC concentrations show that VOC concentrations are higher on weekdays than in weekends at the Xujiahui sampling site, suggesting that traffic condition and human activities have important impacts on VOC emissions in Shanghai. The evidence also shows that the major sources of isoprene are mainly resulted from gasoline evaporation at a particular time (06:00–09:00) in the busy commercial area. The results gained from this study provide useful information for better understanding the characteristics of ambient VOCs and the sources of VOCs in Shanghai. PMID:22163629

  1. Characteristics of Ambient Volatile Organic Compounds (VOCs Measured in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Guang-Qiang Zhou

    2010-08-01

    Full Text Available To better understand the characteristics of ambient abundance of volatile organic compounds (VOCs in Shanghai, one of the biggest metropolis of China, VOCs were measured with a gas chromatography system equipped with a mass-selective detector (GC/MSD from July 2006 to February 2010. An intensive measurement campaign was conducted (eight samples per day with a 3 hour interval during May 2009. The comparison of ambient VOCs collected in different regions of Shanghai shows that the concentrations are slightly higher in the busy commercial area (28.9 ppbv at Xujiaui than in the urban administrative area (24.3 ppbv at Pudong. However, during the intensive measurement period, the concentrations in the large steel industrial area (28.7 ppbv at Baoshan were much higher than in the urban administrative area (18 ppbv at Pudong, especially for alkanes, alkenes, and toluene. The seasonal variations of ambient VOC concentrations measured at the Xujiahui sampling site indicate that the VOC concentrations are significantly affected by meteorological conditions (such as wind direction and precipitation. In addition, although alkanes are the most abundant VOCs at the Xujiahui measurement site, the most important VOCs contributing to ozone formation potential (OFP are aromatics, accounting for 57% of the total OFP. The diurnal variations of VOC concentrations show that VOC concentrations are higher on weekdays than in weekends at the Xujiahui sampling site, suggesting that traffic condition and human activities have important impacts on VOC emissions in Shanghai. The evidence also shows that the major sources of isoprene are mainly resulted from gasoline evaporation at a particular time (06:00–09:00 in the busy commercial area. The results gained from this study provide useful information for better understanding the characteristics of ambient VOCs and the sources of VOCs in Shanghai.

  2. Measurement of VOC permeability of polymer bags and VOC solubility in polyethylene drum liner

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Peterson, E.S.

    1995-03-01

    A test program conducted at the Idaho National Engineering Laboratory (INEL) investigated the use of a transport model to estimate the volatile organic compound (VOC) concentration in the void volume of a waste drum. Unsteady-state VOC transport model equations account for VOC permeation of polymer bags, VOC diffusion across openings in layers of confinement, and VOC solubility in a polyethylene drum liner. In support of this program, the VOC permeability of polymer bags and VOC equilibrium concentration in a polyethylene drum liner were measured for nine VOCs. The VOCs used in experiments were dichloromethane, carbon tetrachloride, cyclohexane, toluene, 1,1,1-trichloroethane, methanol, 1,1,2-trichloro-1,2,2-trifluoroethane (Freon-113), trichloroethylene, and p-xylene. The experimental results of these measurements as well as a method of estimating both parameters in the absence of experimental data are described in this report

  3. Thermal Components Boost Performance of HVAC Systems

    Science.gov (United States)

    2012-01-01

    As the International Space Station (ISS) travels 17,500 miles per hour, normal is having a constant sensation of free-falling. Normal is no rain, but an extreme amount of shine.with temperatures reaching 250 F when facing the Sun. Thanks to a number of advanced control systems onboard the ISS, however, the interior of the station remains a cool, comfortable, normal environment where astronauts can live and work for extended periods of time. There are two main control systems on the ISS that make it possible for humans to survive in space: the Thermal Control System (TCS) and the Environmental Control and Life Support system. These intricate assemblies work together to supply water and oxygen, regulate temperature and pressure, maintain air quality, and manage waste. Through artificial means, these systems create a habitable environment for the space station s crew. The TCS constantly works to regulate the temperature not only for astronauts, but for the critical instruments and machines inside the spacecraft as well. To do its job, the TCS encompasses several components and systems both inside and outside of the ISS. Inside the spacecraft, a liquid heat-exchange process mechanically pumps fluids in closed-loop circuits to collect, transport, and reject heat. Outside the ISS, an external system circulates anhydrous ammonia to transport heat and cool equipment, and radiators release the heat into space. Over the years, NASA has worked with a variety of partners.public and private, national and international. to develop and refine the most complex thermal control systems ever built for spacecraft, including the one on the ISS.

  4. An intercomparison of airborne VOC measurements

    International Nuclear Information System (INIS)

    Wisthaler, A.; Hansel, A.; Fall, R.

    2002-01-01

    Full text: During the Texas Air Quality Study (TexAQS) 2000 ambient air samples were analyzed on-board the NSF/NCAR ELECTRA research aircraft by two VOC measurement techniques: 1) an in-situ gas chromatograph named TACOH (Tropospheric Airborne Chromatograph for Oxy-hydrocarbons and Hydrocarbons), operated by NOAA' Aeronomy Laboratory, and 2) a chemical ionization mass spectrometer named PTR-MS (Proton-Transfer-Reaction Mass Spectrometer) and operated by the University of Innsbruck. The sample protocols were quite different for the two methods: the TACOH system collected air samples for 15-60 sec (depending upon altitude) every 15 min, the PTR-MS system monitored selected VOCs on a time-shared basis for 2 sec respectively, once every 4-20 sec, depending upon the number of monitored species. Simultaneous measurements of acetaldehyde, isoprene, the sum* of acetone and propanal, the sum* of methyl vinyl ketone and methacrolein (* PTR-MS does not distinguish between isobaric species) and toluene show good agreement despite being performed in the complex and highly polluted Houston air matrix. (author)

  5. Thermal Protection Systems: Past, Present and Future

    Science.gov (United States)

    Johnson, Sylvia M.

    2015-01-01

    Thermal protection materials and systems (TPS) have been critical to fulfilling humankinds desire to explore space. Composite and ceramic materials have enabled the early missions to orbit, the moon, the space station, Mars with robots, and sample return. Crewed missions to Mars are being considered, and this places even more demands on TPS materials. This talk will give some history on the materials used for earth and planetary entry and the demands placed upon such materials. TPS needs for future missions, especially to Mars, will be identified and potential solutions discussed.

  6. Thermally activated, single component epoxy systems

    KAUST Repository

    Unruh, David A.

    2011-08-23

    A single component epoxy system in which the resin and hardener components found in many two-component epoxies are combined onto the same molecule is described. The single molecule precursor to the epoxy resin contains both multiple epoxide moieties and a diamine held latent by thermally degradable carbamate linkages. These bis-carbamate "single molecule epoxies" have an essentially infinite shelf life and access a significant range in curing temperatures related to the structure of the carbamate linkages used. © 2011 American Chemical Society.

  7. Thermally activated, single component epoxy systems

    KAUST Repository

    Unruh, David A.; Pastine, Stefan J.; Moreton, Jessica C.; Frechet, Jean

    2011-01-01

    A single component epoxy system in which the resin and hardener components found in many two-component epoxies are combined onto the same molecule is described. The single molecule precursor to the epoxy resin contains both multiple epoxide moieties and a diamine held latent by thermally degradable carbamate linkages. These bis-carbamate "single molecule epoxies" have an essentially infinite shelf life and access a significant range in curing temperatures related to the structure of the carbamate linkages used. © 2011 American Chemical Society.

  8. A chromia forming thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M.P.; Evans, H.E. [Metallurgy and Materials, The University of Birmingham, Birmingham, B15 2TT (United Kingdom); Gray, S.; Nicholls, J.R. [Surface Science and Engineering Centre, Cranfield University, Cranfield, MK43 0AL (United Kingdom)

    2011-07-15

    Conventional thermal barrier coating (TBC) systems consist of an insulating ceramic topcoat, a bond coat for oxidation protection and the underlying superalloy designed to combat the oxidising conditions in aero- and land-based gas turbines. Under high-temperature oxidation, the use of an alumina forming bond coat is warranted, thus all current TBC systems are optimised for the early formation of a dense, protective thermally grown oxide (TGO) of alumina. This also offers protection against Type I hot corrosion but a chromia layer gives better protection against Type II corrosion and intermediate temperatures, the conditions found in land-based gas turbines. In this paper the authors present the first known results for a chromia forming TBC system. Tests have been performed under oxidising conditions, up to 1000 h, at temperatures between 750 C and 900 C, and under Type I (900 C) and Type II (700 C) hot corrosion conditions up to 500 h. Under all these conditions no cracking, spallation or degradation was observed. Examination showed the formation of an adherent, dense chromia TGO at the bond coat / topcoat interface. These initial results are very encouraging and the TGO thicknesses agree well with comparable results reported in the literature. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Choice of thermal reactor systems: a report

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    This is a report by the UK National Nuclear Corporation published by the UK Secretary of State for Energy (Mr. Benn) on 29th July 1977. It is concerned with the advantages and disadvantages of three thermal reactor systems -the AGR (advanced gas cooled reactor), the PWR (pressurised water reactor), and the SGHWR (steam generating heavy water reactor). The object was to help in the future choice of a thermal system for the UK to cover the next 25 years. The matter of export potential is also considered. A programme of four stations of 1100 to 1300 MW each over six years starting from 1979 was assumed. It is emphasised that a decision must be taken now both about reactor systems and actual orders. Headings are as follows: Extract from conclusions reached; Summary of main features of assessment; General conclusions regarding the following - safety, security of the investment, operational characteristics, development and launching requirements, effect on industry, and capital and generation costs. It is stated that in order to make an overall judgement on reactor choice the technical, commercial and social issues involved must be weighed in conjunction with cost differentials.

  10. Theoretical prediction of thermal conductivity for thermal protection systems

    International Nuclear Information System (INIS)

    Gori, F.; Corasaniti, S.; Worek, W.M.; Minkowycz, W.J.

    2012-01-01

    The present work is aimed to evaluate the effective thermal conductivity of an ablative composite material in the state of virgin material and in three paths of degradation. The composite material is undergoing ablation with formation of void pores or char and void pores. The one dimensional effective thermal conductivity is evaluated theoretically by the solution of heat conduction under two assumptions, i.e. parallel isotherms and parallel heat fluxes. The paper presents the theoretical model applied to an elementary cubic cell of the composite material which is made of two crossed fibres and a matrix. A numerical simulation is carried out to compare the numerical results with the theoretical ones for different values of the filler volume fraction. - Highlights: ► Theoretical models of the thermal conductivity of an ablative composite. ► Composite material is made of two crossed fibres and a matrix. ► Three mechanisms of degradation are investigated. ► One dimensional thermal conductivity is evaluated by the heat conduction equation. ► Numerical simulations to be compared with the theoretical models.

  11. Design of Thermal Systems Using Topology Optimization

    DEFF Research Database (Denmark)

    Haertel, Jan Hendrik Klaas

    printeddry-cooled power plant condensers using a simpliffed thermouid topology optimizationmodel is presented in another study. A benchmarking of the optimized geometriesagainst a conventional heat exchanger design is conducted and the topologyoptimized designs show a superior performance. A thermouid......The goalof this thesis is to apply topology optimization to the design of differentthermal systems such as heat sinks and heat exchangers in order to improve thethermal performance of these systems compared to conventional designs. Thedesign of thermal systems is a complex task that has...... of optimized designs are presentedwithin this thesis.  The maincontribution of the thesis is the development of several numerical optimizationmodels that are applied to different design challenges within thermalengineering.  Topology optimization isapplied in an industrial project to design the heat rejection...

  12. Thermal insulation performance of green roof systems

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Serdar; Morgan, Susan; Retzlaff, William; Once, Orcun [southern Illinois University (United States)], e-mail: scelik@siue.edu, e-mail: smorgan@siue.edu, e-mail: wretzla@siue.edu, e-mail: oonce@siue.edu

    2011-07-01

    With the increasing costs of energy, good building insulation has become increasingly important. Among existing insulation techniques is the green roof system, which consists of covering the roof of a building envelop with plants. The aim of this paper is to assess the impact of vegetation type and growth media on the thermal performance of green roof systems. Twelve different green roof samples were made with 4 different growth media and 3 sedum types. Temperature at the sample base was recorded every 15 minutes for 3 years; the insulation behavior was then analysed. Results showed that the insulation characteristics were achieved with a combination of haydite and sedum sexangulare. This study demonstrated that the choice of growth media and vegetation is important to the green roof system's performance; further research is required to better understand the interactions between growth media and plant roots.

  13. Design, demonstration and evaluation of a thermal enhanced vapor extraction system

    International Nuclear Information System (INIS)

    Phelan, J.; Reavis, B.; Swanson, J.

    1997-08-01

    The Thermal Enhanced Vapor Extraction System (TEVES), which combines powerline frequency heating (PLF) and radio frequency (RF) heating with vacuum soil vapor extraction, was used to effectively remove volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) from a pit in the chemical waste landfill (CWL) at Sandia National Laboratories (SNL) within a two month heating period. Volume average temperatures of 83 degrees C and 112 degrees C were reached for the PLF and RF heating periods, respectively, within the 15 ft x 45 ft x 18.5 ft deep treated volume. This resulted in the removal of 243 lb of measured toxic organic compounds (VOCs and SVOCs), 55 gallons of oil, and 11,000 gallons of water from the site. Reductions of up to 99% in total chromatographic organics (TCO) was achieved in the heated zone. Energy balance calculations for the PLF heating period showed that 36.4% of the heat added went to heating the soil, 38.5% went to evaporating water and organics, 4.2% went to sensible heat in the water, 7.1% went to heating the extracted air, and 6.6% was lost. For the RF heating period went to heating the soil, 23.5% went to evaporating water and organics, 2.4% went to sensible heat in the water, 7.5% went to heating extracted air, and 9.7% went to losses. Energy balance closure was 92.8% for the PLF heating and 98% for the RF heating. The energy input requirement per unit soil volume heated per unit temperature increase was 1.63 kWH/yd 3 -degrees C for PLF heating and 0.73 kWH/yd 3 degrees C for RF heating

  14. Revisit ocean thermal energy conversion system

    International Nuclear Information System (INIS)

    Huang, J.C.; Krock, H.J.; Oney, S.K.

    2003-01-01

    The earth, covered more than 70.8% by the ocean, receives most of its energy from the sun. Solar energy is transmitted through the atmosphere and efficiently collected and stored in the surface layer of the ocean, largely in the tropical zone. Some of the energy is re-emitted to the atmosphere to drive the hydrologic cycle and wind. The wind field returns some of the energy to the ocean in the form of waves and currents. The majority of the absorbed solar energy is stored in vertical thermal gradients near the surface layer of the ocean, most of which is in the tropical region. This thermal energy replenished each day by the sun in the tropical ocean represents a tremendous pollution-free energy resource for human civilization. Ocean Thermal Energy Conversion (OTEC) technology refers to a mechanical system that utilizes the natural temperature gradient that exists in the tropical ocean between the warm surface water and the deep cold water, to generate electricity and produce other economically valuable by-products. The science and engineering behind OTEC have been studied in the US since the mid-seventies, supported early by the U.S. Government and later by State and private industries. There are two general types of OTEC designs: closed-cycle plants utilize the evaporation of a working fluid, such as ammonia or propylene, to drive the turbine-generator, and open-cycle plants use steam from evaporated sea water to run the turbine. Another commonly known design, hybrid plants, is a combination of the two. OTEC requires relatively low operation and maintenance costs and no fossil fuel consumption. OTEC system possesses a formidable potential capacity for renewable energy and offers a significant elimination of greenhouse gases in producing power. In addition to electricity and drinking water, an OTEC system can produce many valuable by-products and side-utilizations, such as: hydrogen, air-conditioning, ice, aquaculture, and agriculture, etc. The potential of these

  15. Tropospheric VOC measurements by PTR-MS

    International Nuclear Information System (INIS)

    Hansel, A.; Wisthaler, A.; Graus, M.; Grabmer, W.

    2002-01-01

    Full text: O 3 is formed photochemically from the photolysis of NO 2 , and because O 3 reacts rapidly with NO these reactions result in a photoequilibrium between NO, NO 2 with no net formation or loss of O 3 , However, in the presence of volatile organic compounds (VOCs), the degradation reactions of VOCs lead to the formation of intermediate peroxy radicals which react with NO, converting NO to NO 2 , which then photolyze to form O 3 . Thus, in order to understand quantitatively tropospheric ozone chemistry, it is necessary to know the VOC distribution within the troposphere as well as VOC fluxes from individual sources. Examples will be presented how the use of Proton Transfer Reaction Mass Spectrometry (PTR-MS) has enhanced our understanding of anthropogenic VOC emissions, biosphere-atmosphere exchange processes, and photochemical processing of both anthropogenic and biogenic VOCs in the troposphere. (author)

  16. 3D Multifunctional Ablative Thermal Protection System

    Science.gov (United States)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  17. Proliferation resistance assessment of thermal recycle systems

    International Nuclear Information System (INIS)

    1979-02-01

    This paper examines the major proliferation aspects of thermal recycle systems and the extent to which technical or institutional measures could increase the difficulty or detectability of misuse of the system by would-be proliferators. It does this by examining the various activities necessary to acquire weapons-usable material using a series of assessment factors; resources required, time required, detectability. It is concluded that resistance to proliferation could be improved substantially by collecting reprocessing, conversion and fuel fabrication plants under multi national control and instituting new measures to protect fresh MOX fuel. Resistance to theft at sub-national level could be improved by co-location of sensitive facilities high levels of physical protection at plants and during transportation and possibly by adding a radiation barrier to MOX prior to shipment

  18. 21 CFR 870.5900 - Thermal regulating system.

    Science.gov (United States)

    2010-04-01

    ... system. (a) Identification. A thermal regulating system is an external system consisting of a device that is placed in contact with the patient and a temperature controller for the device. The system is used... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thermal regulating system. 870.5900 Section 870...

  19. Electrical power system integrated thermal/electrical system simulation

    International Nuclear Information System (INIS)

    Freeman, W.E.

    1992-01-01

    This paper adds thermal properties to previously developed electrical Saber templates and incorporates these templates into a functional Electrical Power Subsystem (EPS) simulation. These combined electrical and thermal templates enable the complete and realistic simulation of a vehicle EPS on-orbit. Applications include on-orbit energy balance determinations for system load changes, initial array and battery EPS sizing for new EPS development, and array and battery technology trade studies. This effort proves the versatility of the Saber simulation program in handling varied and complex simulations accurately and in a reasonable amount of computer time. 9 refs

  20. Volatile Organic Compounds (VOCs in Conventional and High Performance School Buildings in the U.S.

    Directory of Open Access Journals (Sweden)

    Lexuan Zhong

    2017-01-01

    Full Text Available Exposure to volatile organic compounds (VOCs has been an indoor environmental quality (IEQ concern in schools and other buildings for many years. Newer designs, construction practices and building materials for “green” buildings and the use of “environmentally friendly” products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m3, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ by limiting emissions from building-related sources and by increasing ventilation rates.

  1. Volatile Organic Compounds (VOCs) in Conventional and High Performance School Buildings in the U.S.

    Science.gov (United States)

    Zhong, Lexuan; Su, Feng-Chiao; Batterman, Stuart

    2017-01-21

    Exposure to volatile organic compounds (VOCs) has been an indoor environmental quality (IEQ) concern in schools and other buildings for many years. Newer designs, construction practices and building materials for "green" buildings and the use of "environmentally friendly" products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED)-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m³, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ) by limiting emissions from building-related sources and by increasing ventilation rates.

  2. Thermal Signature Identification System (TheSIS)

    Science.gov (United States)

    Merritt, Scott; Bean, Brian

    2015-01-01

    We characterize both nonlinear and high order linear responses of fiber-optic and optoelectronic components using spread spectrum temperature cycling methods. This Thermal Signature Identification System (TheSIS) provides much more detail than conventional narrowband or quasi-static temperature profiling methods. This detail allows us to match components more thoroughly, detect subtle reversible shifts in performance, and investigate the cause of instabilities or irreversible changes. In particular, we create parameterized models of athermal fiber Bragg gratings (FBGs), delay line interferometers (DLIs), and distributed feedback (DFB) lasers, then subject the alternative models to selection via the Akaike Information Criterion (AIC). Detailed pairing of components, e.g. FBGs, is accomplished by means of weighted distance metrics or norms, rather than on the basis of a single parameter, such as center wavelength.

  3. Accelerated hydrocarbon removal with the NoVOCs trademark process

    International Nuclear Information System (INIS)

    Dawson, G.W.; McKeon, T.J.

    1996-01-01

    It has been estimated that by 1990, there were over 240,000 leaking underground storage tanks in the US and that the majority of those tanks had contained some type of petroleum fuel. The resulting hydrocarbon contamination from those leaking tanks became the focus of a significant amount of environmental restoration effort. Free product was collected and removed from the water table. Contaminated soils were excavated for thermal desorption or land farming, or aerated in place to promote bioremediation. Affected ground water was withdrawn by means of extraction wells and routed to air stripping towers or, more recently, stripped in place with in situ air sparging. NoVOCs trademark is a patented design for the application of in-well stripping as an alternative to pump and treat systems over which it offers two unique advantages: (1) Development of a circulation pattern within the saturated zone that optimizes dissolution and transport of contaminants to the well; and (2) Separation of the volatile contaminants for the ground water in the well so that only vapor is transported above ground and there are no water discharges to be managed

  4. Automatic Thermal Control System with Temperature Difference or Derivation Feedback

    Directory of Open Access Journals (Sweden)

    Darina Matiskova

    2016-02-01

    Full Text Available Automatic thermal control systems seem to be non-linear systems with thermal inertias and time delay. A controller is also non-linear because its information and power signals are limited. The application of methods that are available to on-linear systems together with computer simulation and mathematical modelling creates a possibility to acquire important information about the researched system. This paper provides a new look at the heated system model and also designs the structure of the thermal system with temperature derivation feedback. The designed system was simulated by using a special software in Turbo Pascal. Time responses of this system are compared to responses of a conventional thermal system. The thermal system with temperature derivation feedback provides better transients, better quality of regulation and better dynamical properties.

  5. Total OH reactivity study from VOC photochemical oxidation in the SAPHIR chamber

    Science.gov (United States)

    Yu, Z.; Tillmann, R.; Hohaus, T.; Fuchs, H.; Novelli, A.; Wegener, R.; Kaminski, M.; Schmitt, S. H.; Wahner, A.; Kiendler-Scharr, A.

    2015-12-01

    It is well known that hydroxyl radicals (OH) act as a dominant reactive species in the degradation of VOCs in the atmosphere. In recent field studies, directly measured total OH reactivity often showed poor agreement with OH reactivity calculated from VOC measurements (e.g. Nölscher et al., 2013; Lu et al., 2012a). This "missing OH reactivity" is attributed to unaccounted biogenic VOC emissions and/or oxidation products. The comparison of total OH reactivity being directly measured and calculated from single component measurements of VOCs and their oxidation products gives us a further understanding on the source of unmeasured reactive species in the atmosphere. This allows also the determination of the magnitude of the contribution of primary VOC emissions and their oxidation products to the missing OH reactivity. A series of experiments was carried out in the atmosphere simulation chamber SAPHIR in Jülich, Germany, to explore in detail the photochemical degradation of VOCs (isoprene, ß-pinene, limonene, and D6-benzene) by OH. The total OH reactivity was determined from the measurement of VOCs and their oxidation products by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS) with a GC/MS/FID system, and directly measured by a laser-induced fluorescence (LIF) at the same time. The comparison between these two total OH reactivity measurements showed an increase of missing OH reactivity in the presence of oxidation products of VOCs, indicating a strong contribution to missing OH reactivity from uncharacterized oxidation products.

  6. Development of a novel biofilter for aerobic biodegradation of volatile organic compounds (VOCs)

    International Nuclear Information System (INIS)

    Govind, R.; Utgikar, V.; Shan, Y.; Zhao, Wang; Sayles, G.D.; Bishop, D.F.; Safferman, S.I.

    1992-01-01

    In recent years, the emission into the atmosphere of volatile organic compounds (VOCs) has undergone increased regulation by EPA, OSHA and other government agencies due to potential human health hazards. The sources of these VOCs include releases during industrial production and use, from contaminated wastewaters in collection systems and treatment plants, and from hazardous wastes in landfills and contaminated ground water. Conventional methods for treating VOC emissions include adsorption on solids, absorption in solvents, incineration and catalytic oxidation. One alternative to these conventional treatment methods is the biological destruction of the VOCs in gas phase biofilters. This method has the advantage of pollution destruction (as compared to transfer to another medium) at lower operation and maintenance costs. The biofilter method also can be combined with various stripping or vapor extraction separation processes which effectively transfer VOCs from liquid or solid matrices into the gas phase entering biofilters

  7. Allelopatic Potential of Dittrichia viscosa (L. W. Greuter Mediated by VOCs: A Physiological and Metabolomic Approach.

    Directory of Open Access Journals (Sweden)

    Fabrizio Araniti

    Full Text Available Dittrichia viscosa (L. W. Greuter is a pioneer species belonging to the Compositae family. It is widespread in the Mediterranean basin, where it is considered invasive. It is a source of secondary metabolites, playing an important ecological role. D. viscosa plant extracts showed a phytotoxic activity on several physiological processes of different species. In the current study, the allelopathic potential of D. viscosa VOCs, released by its foliage, was evaluated on seed germination and root growth of lettuce. The VOCs effect was also studied on lettuce adult plants in microcosm systems, which better mimicked the open field conditions. D. viscosa VOCs inhibited both seed germination and root growth of lettuce. The VOCs composition revealed a large presence of terpenoids, responsible of the effects observed. Moreover, D. viscosa VOCs caused an alteration on plant water status accompanied by oxidative damages and photoinhibition on lettuce adult plants.

  8. Power and Thermal Management of System-on-Chip

    DEFF Research Database (Denmark)

    Liu, Wei

    , are necessary at the chip design level. In this work, we investigate the power and thermal management of System-on- Chips (SoCs). Thermal analysis is performed in a SPICE simulation approach based on the electrical-thermal analogy. We investigate the impact of inter- connects on heat distribution...

  9. Temperature Distribution and Thermal Performance of an Aquifer Thermal Energy Storage System

    Science.gov (United States)

    Ganguly, Sayantan

    2017-04-01

    Energy conservation and storage has become very crucial to make use of excess energy during times of future demand. Excess thermal energy can be captured and stored in aquifers and this technique is termed as Aquifer Thermal Energy Storage (ATES). Storing seasonal thermal energy in water by injecting it into subsurface and extracting in time of demand is the principle of an ATES system. Using ATES systems leads to energy savings, reduces the dependency on fossil fuels and thus leads to reduction in greenhouse gas emission. This study numerically models an ATES system to store seasonal thermal energy and evaluates the performance of it. A 3D thermo-hydrogeological numerical model for a confined ATES system is presented in this study. The model includes heat transport processes of advection, conduction and heat loss to confining rock media. The model also takes into account regional groundwater flow in the aquifer, geothermal gradient and anisotropy in the aquifer. Results show that thermal injection into the aquifer results in the generation of a thermal-front which grows in size with time. Premature thermal-breakthrough causes thermal interference in the system when the thermal-front reaches the production well and consequences in the fall of system performance and hence should be avoided. This study models the transient temperature distribution in the aquifer for different flow and geological conditions. This may be effectively used in designing an efficient ATES project by ensuring safety from thermal-breakthrough while catering to the energy demand. Based on the model results a safe well spacing is proposed. The thermal energy discharged by the system is determined and strategy to avoid the premature thermal-breakthrough in critical cases is discussed. The present numerical model is applied to simulate an experimental field study which is found to approximate the field results quite well.

  10. MEMBRANE BIOTREATMENT OF VOC-LADEN AIR

    Science.gov (United States)

    The paper discusses membrane biotreatment of air laden with volatile organic compounds (VOCs). Microporous flat-sheet and hollow-fiber membrane contactors were used to support air-liquid mass transfer interfaces. These modules were used in a two-step process to transfer VOCs fr...

  11. Removal of VOCs from groundwater using membrane-assisted solvent extraction

    International Nuclear Information System (INIS)

    Hutter, J.C.; Vandegrift, G.F.; Nunez, L.; Redfield, D.H.

    1992-01-01

    A membrane-assisted solvent extraction (MASX) system coupled to a membrane-assisted distillation stripping (MADS) system for use in decontaminating groundwater is discussed. Volatile organic compounds (VOCs) are extracted in the MASX using a sunflower oil solvent. In the MADS, VOCs are stripped from the sunflower oil, and the oil is recycled to the MASX. Thermodynamic data for the sunflower oil-water-VOCs system were experimentally collected. Published membrane-mass transfer results along with these data were used to design the MASX and MADS modules

  12. Thermally conductive, dielectric PCM-boron nitride nanosheet composites for efficient electronic system thermal management.

    Science.gov (United States)

    Yang, Zhi; Zhou, Lihui; Luo, Wei; Wan, Jiayu; Dai, Jiaqi; Han, Xiaogang; Fu, Kun; Henderson, Doug; Yang, Bao; Hu, Liangbing

    2016-11-24

    Phase change materials (PCMs) possessing ideal properties, such as superior mass specific heat of fusion, low cost, light weight, excellent thermal stability as well as isothermal phase change behavior, have drawn considerable attention for thermal management systems. Currently, the low thermal conductivity of PCMs (usually less than 1 W mK -1 ) greatly limits their heat dissipation performance in thermal management applications. Hexagonal boron nitride (h-BN) is a two-dimensional material known for its excellent thermally conductive and electrically insulating properties, which make it a promising candidate to be used in electronic systems for thermal management. In this work, a composite, consisting of h-BN nanosheets (BNNSs) and commercialized paraffin wax was developed, which inherits high thermally conductive and electrically insulating properties from BNNSs and substantial heat of fusion from paraffin wax. With the help of BNNSs, the thermal conductivity of wax-BNNS composites reaches 3.47 W mK -1 , which exhibits a 12-time enhancement compared to that of pristine wax (0.29 W mK -1 ). Moreover, an 11.3-13.3 MV m -1 breakdown voltage of wax-BNNS composites was achieved, which shows further improved electrical insulating properties. Simultaneously enhanced thermally conductive and electrically insulating properties of wax-BNNS composites demonstrate their promising application for thermal management in electronic systems.

  13. Study of thermal sensitivity and thermal explosion violence of energetic materials in the LLNL ODTX system

    International Nuclear Information System (INIS)

    Hsu, P C; Hust, G; Zhang, M X; Lorenz, T K; Reynolds, J G; Fried, L; Springer, H K; Maienschein, J L

    2014-01-01

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 °C) and the violence from thermal explosion may cause significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. Recent ODTX experimental data are reported in the paper.

  14. Technical Note: A fully automated purge and trap GC-MS system for quantification of volatile organic compound (VOC fluxes between the ocean and atmosphere

    Directory of Open Access Journals (Sweden)

    S. J. Andrews

    2015-04-01

    Full Text Available The oceans are a key source of a number of atmospherically important volatile gases. The accurate and robust determination of trace gases in seawater is a significant analytical challenge, requiring reproducible and ideally automated sample handling, a high efficiency of seawater–air transfer, removal of water vapour from the sample stream, and high sensitivity and selectivity of the analysis. Here we describe a system that was developed for the fully automated analysis of dissolved very short-lived halogenated species (VSLS sampled from an under-way seawater supply. The system can also be used for semi-automated batch sampling from Niskin bottles filled during CTD (conductivity, temperature, depth profiles. The essential components comprise a bespoke, automated purge and trap (AutoP & T unit coupled to a commercial thermal desorption and gas chromatograph mass spectrometer (TD-GC-MS. The AutoP & T system has completed five research cruises, from the tropics to the poles, and collected over 2500 oceanic samples to date. It is able to quantify >25 species over a boiling point range of 34–180 °C with Henry's law coefficients of 0.018 and greater (CH22l, kHcc dimensionless gas/aqueous and has been used to measure organic sulfurs, hydrocarbons, halocarbons and terpenes. In the eastern tropical Pacific, the high sensitivity and sampling frequency provided new information regarding the distribution of VSLS, including novel measurements of a photolytically driven diurnal cycle of CH22l within the surface ocean water.

  15. Pollution profiles, health risk of VOCs and biohazards emitted from municipal solid waste transfer station and elimination by an integrated biological-photocatalytic flow system: A pilot-scale investigation

    International Nuclear Information System (INIS)

    Li, Guiying; Zhang, Zhengyong; Sun, Hongwei; Chen, Jiangyao; An, Taicheng; Li, Bing

    2013-01-01

    Highlights: ► VOCs and biohazards emitted during garbage compressing process were monitored. ► BTF–PC integrated reactor was employed for VOCs and biohazards removal. ► Health risk of target VOCs and biohazards were assessed before and after treatment. -- Abstract: Volatile organic compounds (VOCs) and biohazards air pollution in municipal solid waste transfer station were investigated. As compressor working, the concentrations of almost all quantified 14 VOCs (0.32–306.03 μg m −3 ) were much higher than those as compressor off (0–13.31 μg m −3 ). Comparatively, only 3 VOCs with extremely low concentrations could be detected at control area. Total microorganism was 7567 CFU m −3 as compressor working, which was 1.14 and 6.22 times higher than that of compressor off and control area, respectively. Bacteria were the most abundant microorganism at all three sampling places. At pilot-scale, during whole 60-day treatment, for VOCs, the average removal efficiencies were over 92% after biotrickling filter–photocatalytic (BTF–PC) treatment. Although non-cancer and cancer risks of some VOCs were over the concern level before treatment, almost all VOCs were removed substantially and both potential risks were below the concern after BTF–PC treatment. Additionally, biohazard concentrations decreased dramatically and air quality was purified from polluted to cleanness after PC treatment. All results demonstrated that the integrated technology possessed high removal capacity and long stability for the removal of VOCs and biohazards at a pilot scale

  16. VOCs in Non-Arid Soils Integrated Demonstration: Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The Volatile Organic Compounds (VOCs) in Non-Arid Soils Integrated Demonstration (ID) was initiated in 1989. Objectives for the ID were to test the integrated demonstration concept, demonstrate and evaluate innovative technologies/systems for the remediation of VOC contamination in soils and groundwater, and to transfer technologies and systems to internal and external customers for use in fullscale remediation programs. The demonstration brought together technologies from DOE laboratories, other government agencies, and industry for demonstration at a single test bed. The Savannah River Site was chosen as the location for this ID as the result of having soil and groundwater contaminated with VOCS. The primary contaminants, trichlorethylene and tetrachloroethylene, originated from an underground process sewer line servicing a metal fabrication facility at the M-Area. Some of the major technical accomplishments for the ID include the successful demonstration of the following: In situ air stripping coupled with horizontal wells to remediate sites through air injection and vacuum extraction; Crosshole geophysical tomography for mapping moisture content and lithologic properties of the contaminated media; In situ radio frequency and ohmic heating to increase mobility, of the contaminants, thereby speeding recovery and the remedial process; High-energy corona destruction of VOCs in the off-gas of vapor recovery wells; Application of a Brayton cycle heat pump to regenerate carbon adsorption media used to trap VOCs from the offgas of recovery wells; In situ permeable flow sensors and the colloidal borescope to determine groundwater flow; Chemical sensors to rapidly quantify chlorinated solvent contamination in the subsurface; In situ bioremediation through methane/nutrient injection to enhance degradation of contaminants by methanotrophic bateria

  17. Increasing competitiveness of wine producers in strategic alliances VOC

    Directory of Open Access Journals (Sweden)

    Martin Prokeš

    2012-01-01

    Full Text Available The paper describes the main reasons for the formation of new regional association of wineries, based on a different origin for wines in the wine region of Moravia in the southeast part of the Czech Republic. This research aim is to create a plan for new development of such strategic alliances on the basis of results of localization factors. There coefficient of localization is used for identification of cluster. Results are compared with already operating on associations for the appellation in Austria DAC. They were traced changes in consumer preferences in the Czech wine market. Consumers are placing more emphasis on the selection of wine on its descent from a particular area, growing community and the individual grower. This paper specifically introduces new associations for appellation system VOC. This alliance is described in the context of the establishment, operation, development and expansion, respectively the possibility of involvement of additional organizations suppliers and research institutions. The application of the results of research was a plan for the establishment of new alliance VOC Modré Hory, where are associated 30 wine producers of wine in 5 villages around the center Velké Pavlovice. Based on the experience of newly emerging VOC system of appellations was setting up a plan of formation association with the proposed methodological approach. Open cooperation between associations VOC appellation and other entities involving suppliers, customers, research institutions and universities has the possibility of creating an institutionalized wine cluster. The plan to create a wine cluster was proposed to establish cooperation between the newly emerging associations of VOC at three sub-regions of South Moravia, in order to achieve competitive advantage.

  18. Extended Research on Detection of Deception Using Volatile Organic Compound (VOC) Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Center for Human Reliability Studies

    2006-06-01

    A system that captures and analyzes volatile organic compound (VOC) emissions from skin surfaces may offer a viable alternative method to the polygraph instrument currently in use for detecting deception in U.S. government settings. Like the involuntary autonomic central nervous system response data gathered during polygraph testing, VOC emissions from the skin may provide data that can be used to detect stress caused by deception. Detecting VOCs, then, may present a noninvasive, non-intrusive method for observing, recording, and quantifying evidence of stress or emotional change.

  19. System evaluation of improved thermal stability jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Binns, K.E.; Dieterle, G.L.; Williams, T. [Univ. of Dayton Research Institute, OH (United States)

    1995-05-01

    A single-pass, single-tube heat exchanger device called the Phoenix rig and a single-pass, dual-heat exchanger system called the Extended Duration Thermal Stability Test system are specific devices/systems developed for evaluating jet fuel thermal stability. They have been used extensively in the evaluation of various jet fuels and thermal stability additives. The test results have indicated that additives can substantially improve the thermal stability of conventional jet fuels. Relationships of oxygen consumption, residence time, bulk, and wetted wall temperatures on coking deposits that form in the heated tubes have also been investigated.

  20. Thermalization and prethermalization in isolated quantum systems: a theoretical overview

    Science.gov (United States)

    Mori, Takashi; Ikeda, Tatsuhiko N.; Kaminishi, Eriko; Ueda, Masahito

    2018-06-01

    The approach to thermal equilibrium, or thermalization, in isolated quantum systems is among the most fundamental problems in statistical physics. Recent theoretical studies have revealed that thermalization in isolated quantum systems has several remarkable features, which emerge from quantum entanglement and are quite distinct from those in classical systems. Experimentally, well isolated and highly controllable ultracold quantum gases offer an ideal testbed to study the nonequilibrium dynamics in isolated quantum systems, promoting intensive recent theoretical endeavors on this fundamental subject. Besides thermalization, many isolated quantum systems show intriguing behavior in relaxation processes, especially prethermalization. Prethermalization occurs when there is a clear separation of relevant time scales and has several different physical origins depending on individual systems. In this review, we overview theoretical approaches to the problems of thermalization and prethermalization.

  1. Thermal rectification and negative differential thermal conductance in harmonic chains with nonlinear system-bath coupling

    Science.gov (United States)

    Ming, Yi; Li, Hui-Min; Ding, Ze-Jun

    2016-03-01

    Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011), 10.1038/nnano.2011.71]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.

  2. Biogenic volatile organic compound (VOC) emissions from forests in Finland

    International Nuclear Information System (INIS)

    Lindfors, V.; Laurila, T.

    2000-01-01

    We present model estimates of biogenic volatile organic compound (VOC) emissions from the forests in Finland. The emissions were calculated for the years 1995-1997 using the measured isoprene and monoterpene emission factors of boreal tree species together with detailed satellite land cover information and meteorological data. The three-year average emission is 319 kilotonnes per annum, which is significantly higher than the estimated annual anthropogenic VOC emissions of 193 kilotonnes. The biogenic emissions of the Finnish forests are dominated by monoterpenes, which contribute approximately 45% of the annual total. The main isoprene emitter is the Norway spruce (Picea abies) due to its high foliar biomass density. Compared to the monoterpenes, however, the total isoprene emissions are very low, contributing only about 7% of the annual forest VOC emissions. The isoprene emissions are more sensitive to the meteorological conditions than the monoterpene emissions, but the progress of the thermal growing season is clearly reflected in all biogenic emission fluxes. The biogenic emission densities in northern Finland are approximately half of the emissions in the southern parts of the country. (orig.)

  3. Antibacterial characteristics of thermal plasma spray system.

    Science.gov (United States)

    Goudarzi, M; Saviz, Sh; Ghoranneviss, M; Salar Elahi, A

    2018-03-15

    The objective of this study is to investigate antibacterial characteristics of a thermal plasma spray system. For this purpose, copper powder was coated on a handmade atmospheric plasma spraying system made by the stainless steel 316 substrate, which is preheated at different temperatures before spraying. A number of deposition characteristics such as antibacterial characteristics, adhesion strength and hardness of coating, was investigated. All of the spray parameters are fixed except the substrate temperature. The chemical composition was analyzed by X-ray diffraction (XRD). A scanning electron microscopy (SEM) and back scattering electron microscopy (BSE) were used to show the coating microstructure, its thickness and also the powder micrograph. The energy dispersive X-ray spectroscopy (EDX) was used to analyze the coating particles. Hardness of the deposition was examined by Vickers tester (HV0.1). Its adhesion strength was declared by cross cut tester (TQC). In addition, the percentage of bactericidal coating was evidenced with Staphylococcus aurous and Escherichia coli bacteria. Study results show that as the substrates temperature increases, the number of splats in the shape of pancake increases, the greatness and percentage of the deposition porosity both decrease. The increment of the substrate temperature leads to more oxidation and makes thicker dendrites on the splat. The enhancement of the substrate temperature also enlarges thickness and efficiency of coating. The interesting results are that antibacterial properties of coatings against the Escherichia coli are more than Staphylococcus aurous bacteria. However the bactericidal percentage of the coatings against Staphylococcus aurous and Escherichia coli bacteria roughly does not change with increasing the substrate temperature. Furthermore, by increment of the substrate temperature, coatings with both high adhesion and hardness are obtained. Accordingly, the temperature of substrate can be an

  4. Economic feasibility of thermal energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Habeebullah, B.A. [Faculty of Engineering, King Abdulaziz University, Jeddah (Saudi Arabia)

    2007-07-01

    This paper investigates the economic feasibility of both building an ice thermal storage and structure a time of rate tariff for the unique air conditioning (A/C) plant of the Grand Holy Mosque of Makkah, Saudi Arabia. The features of the building are unique where the air-conditioned 39,300 m{sup 2} zone is open to the atmosphere and the worshippers fully occupy the building five times a day, in addition hundreds of thousands of worshippers attend the blessed weekend's prayer at noontime, which escalates the peak electricity load. For economic analysis, the objective function is the daily electricity bill that includes the operation cost and the capital investment of the ice storage system. The operation cost is function of the energy imported for operating the plant in which the tariff structure, number of operating hours and the ambient temperature are parameters. The capital recovery factor is calculated for 10% interest rate and payback period of 10 years. Full and partial load storage scenarios are considered. The results showed that with the current fixed electricity rate (0.07 $/kWh), there is no gain in introducing ice storage systems for both storage schemes. Combining energy storage and an incentive time structured rate showed reasonable daily bill savings. For base tariff of 0.07 $/kWh during daytime operation and 0.016 $/kWh for off-peak period, savings were achieved for full load storage scenario. Different tariff structure is discussed and the break-even nighttime rate was determined (varies between 0.008 and 0.03 $/kWh). Partial load storage scenario showed to be unattractive where the savings for the base structured tariff was insignificant. (author)

  5. Thermal performance of marketed SDHW systems under laboratory conditions

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Fan, Jianhua

    A test facility for solar domestic hot water systems, SDHW systems was established at the Technical University of Denmark in 1992. During the period 1992-2012 21 marketed SDHW systems, 16 systems from Danish manufacturers and 5 systems from manufacturers from abroad, have been tested in the test...... comfort, avoiding simple errors, using the low flow principle and heat stores with a high degree of thermal stratification and by using components with good thermal characteristics....

  6. Use of the Long Duration Exposure Facility's thermal measurement system for the verification of thermal models

    Science.gov (United States)

    Berrios, William M.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) postflight thermal model predicted temperatures were matched to flight temperature data recorded by the Thermal Measurement System (THERM), LDEF experiment P0003. Flight temperatures, recorded at intervals of approximately 112 minutes for the first 390 days of LDEF's 2105 day mission were compared with predictions using the thermal mathematical model (TMM). This model was unverified prior to flight. The postflight analysis has reduced the thermal model uncertainty at the temperature sensor locations from +/- 40 F to +/- 18 F. The improved temperature predictions will be used by the LDEF's principal investigators to calculate improved flight temperatures experienced by 57 experiments located on 86 trays of the facility.

  7. Market potential of solar thermal system in Malaysia

    International Nuclear Information System (INIS)

    Othman, M.Y.H.; Sopian, K.; Dalimin, M.N.

    1992-01-01

    This paper reviews the market potential for solar thermal systems in Malaysia. Our study indicates that solar thermal systems such as solar drying, solar water heating and process heating have a good potential for commercialization. The primary obstacle facing the utilization of these technologies is the financial aspects. (author)

  8. Real-time thermal neutron radiographic detection systems

    International Nuclear Information System (INIS)

    Berger, H.; Bracher, D.A.

    1976-01-01

    Systems for real-time detection of thermal neutron images are reviewed. Characteristics of one system are presented; the data include contrast, resolution and speed of response over the thermal neutron intensity range 2.5 10 3 n/cm 2 -sec to 10 7 n/cm 2 -sec

  9. The role of Solar thermal in Future Energy Systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Hansen, Kenneth

    This report deals with solar thermal technologies and investigates possible roles for solar thermal in future energy systems for four national energy systems; Germany, Austria, Italy and Denmark. The project period started in January 2014 and finished by October 2017. This report is based...

  10. Nonequilibrium Distribution of the Microscopic Thermal Current in Steady Thermal Transport Systems

    KAUST Repository

    Yukawa, Satoshi; Ogushi, Fumiko; Shimada, Takashi; Ito, Nobuyasu

    2010-01-01

    Nonequilibrium distribution of the microscopic thermal current is investigated by direct molecular dynamics simulations. The microscopic thermal current in this study is defined by a flow of kinetic energy carried by a single particle. Asymptotic parallel and antiparallel tails of the nonequilibrium distribution to an average thermal current are identical to ones of equilibrium distribution with different temperatures. These temperatures characterizing the tails are dependent on a characteristic length in which a memory of dynamics is completely erased by several particle collisions. This property of the tails of nonequilibrium distribution is confirmed in other thermal transport systems. In addition, statistical properties of a particle trapped by a harmonic potential in a steady thermal conducting state are also studied. This particle feels a finite force parallel to the average thermal current as a consequence of the skewness of the distribution of the current. This force is interpreted as the microscopic origin of thermophoresis.

  11. Thermal-hydraulics for space power, propulsion, and thermal management system design

    International Nuclear Information System (INIS)

    Krotiuk, W.J.

    1990-01-01

    The present volume discusses thermal-hydraulic aspects of current space projects, Space Station thermal management systems, the thermal design of the Space Station Free-Flying Platforms, the SP-100 Space Reactor Power System, advanced multi-MW space nuclear power concepts, chemical and electric propulsion systems, and such aspects of the Space Station two-phase thermal management system as its mechanical pumped loop and its capillary pumped loop's supporting technology. Also discussed are the startup thaw concept for the SP-100 Space Reactor Power System, calculational methods and experimental data for microgravity conditions, an isothermal gas-liquid flow at reduced gravity, low-gravity flow boiling, computations of Space Shuttle high pressure cryogenic turbopump ball bearing two-phase coolant flow, and reduced-gravity condensation

  12. Passive thermal management system for downhole electronics in harsh thermal environments

    International Nuclear Information System (INIS)

    Shang, Bofeng; Ma, Yupu; Hu, Run; Yuan, Chao; Hu, Jinyan; Luo, Xiaobing

    2017-01-01

    Highlights: • A passive thermal management system is proposed for downhole electronics. • Electronics temperature can be maintained within 125 °C for six-hour operating time. • The result shows potential application for the logging tool in oil and gas industry. - Abstract: The performance and reliability of downhole electronics will degrade in high temperature environments. Various active cooling techniques have been proposed for thermal management of such systems. However, these techniques require additional power input, cooling liquids and other moving components which complicate the system. This study presents a passive Thermal Management System (TMS) for downhole electronics. The TMS includes a vacuum flask, Phase Change Material (PCM) and heat pipes. The thermal characteristics of the TMS is evaluated experimentally. The results show that the system maintains equipment temperatures below 125 °C for a six-hour operating period in a 200 °C downhole environment, which will effectively protect the downhole electronics.

  13. In-vehicle VOCs composition of unconditioned, newly produced cars.

    Science.gov (United States)

    Brodzik, Krzysztof; Faber, Joanna; Łomankiewicz, Damian; Gołda-Kopek, Anna

    2014-05-01

    The in-vehicle volatile organic compounds (VOCs) concentrations gains the attention of both car producers and users. In the present study, an attempt was made to determine if analysis of air samples collected from an unconditioned car cabin can be used as a quality control measure. The VOCs composition of in-vehicle air was analyzed by means of active sampling on Carbograph 1TD and Tenax TA sorbents, followed by thermal desorption and simultaneous analysis on flame ionization and mass detector (TD-GC/FID-MS). Nine newly produced cars of the same brand and model were chosen for this study. Within these, four of the vehicles were equipped with identical interior materials and five others differed in terms of upholstery and the presence of a sunroof; one car was convertible. The sampling event took place outside of the car assembly plant and the cars tested left the assembly line no later than 24 hr before the sampling took place. More than 250 compounds were present in the samples collected; the identification of more than 160 was confirmed by comparative mass spectra analysis and 80 were confirmed by both comparison with single/multiple compounds standards and mass spectra analysis. In general, aliphatic hydrocarbons represented more than 60% of the total VOCs (TVOC) determined. Depending on the vehicle, the concentration of aromatic hydrocarbons varied from 12% to 27% of total VOCs. The very short period between car production and sampling of the in-vehicle air permits the assumption that the entire TVOC originates from off-gassing of interior materials. The results of this study expand the knowledge of in-vehicle pollution by presenting information about car cabin air quality immediately after car production. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  14. Numerical modeling of aquifer thermal energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongchan [Korea Institute of Geoscience and Mineral Resources, Geothermal Resources Department, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Kongju National University, Department of Geoenvironmental Sciences, 182 Singwan-dong, Gongju-si, Chungnam 314-701 (Korea, Republic of); Lee, Youngmin [Korea Institute of Geoscience and Mineral Resources, Geothermal Resources Department, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Yoon, Woon Sang; Jeon, Jae Soo [nexGeo Inc., 134-1 Garak 2-dong, Songpa-gu, Seoul 138-807 (Korea, Republic of); Koo, Min-Ho; Keehm, Youngseuk [Kongju National University, Department of Geoenvironmental Sciences, 182 Singwan-dong, Gongju-si, Chungnam 314-701 (Korea, Republic of)

    2010-12-15

    The performance of the ATES (aquifer thermal energy storage) system primarily depends on the thermal interference between warm and cold thermal energy stored in an aquifer. Additionally the thermal interference is mainly affected by the borehole distance, the hydraulic conductivity, and the pumping/injection rate. Thermo-hydraulic modeling was performed to identify the thermal interference by three parameters and to estimate the system performance change by the thermal interference. Modeling results indicate that the thermal interference grows as the borehole distance decreases, as the hydraulic conductivity increases, and as the pumping/injection rate increases. The system performance analysis indicates that if {eta} (the ratio of the length of the thermal front to the distance between two boreholes) is lower than unity, the system performance is not significantly affected, but if {eta} is equal to unity, the system performance falls up to {proportional_to}22%. Long term modeling for a factory in Anseong was conducted to test the applicability of the ATES system. When the pumping/injection rate is 100 m{sup 3}/day, system performances during the summer and winter after 3 years of operation are estimated to be {proportional_to}125 kW and {proportional_to}110 kW, respectively. Therefore, 100 m{sup 3}/day of the pumping/injection rate satisfies the energy requirements ({proportional_to}70 kW) for the factory. (author)

  15. Pollution profiles, health risk of VOCs and biohazards emitted from municipal solid waste transfer station and elimination by an integrated biological-photocatalytic flow system: a pilot-scale investigation.

    Science.gov (United States)

    Li, Guiying; Zhang, Zhengyong; Sun, Hongwei; Chen, Jiangyao; An, Taicheng; Li, Bing

    2013-04-15

    Volatile organic compounds (VOCs) and biohazards air pollution in municipal solid waste transfer station were investigated. As compressor working, the concentrations of almost all quantified 14 VOCs (0.32-306.03 μg m(-3)) were much higher than those as compressor off (0-13.31 μg m(-3)). Comparatively, only 3 VOCs with extremely low concentrations could be detected at control area. Total microorganism was 7567 CFU m(-3) as compressor working, which was 1.14 and 6.22 times higher than that of compressor off and control area, respectively. Bacteria were the most abundant microorganism at all three sampling places. At pilot-scale, during whole 60-day treatment, for VOCs, the average removal efficiencies were over 92% after biotrickling filter-photocatalytic (BTF-PC) treatment. Although non-cancer and cancer risks of some VOCs were over the concern level before treatment, almost all VOCs were removed substantially and both potential risks were below the concern after BTF-PC treatment. Additionally, biohazard concentrations decreased dramatically and air quality was purified from polluted to cleanness after PC treatment. All results demonstrated that the integrated technology possessed high removal capacity and long stability for the removal of VOCs and biohazards at a pilot scale. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Small Spacecraft Integrated Power System with Active Thermal Control

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop an integrated power generation and energy storage system with an active thermal management system. Carbon fiber solar panels will contain...

  17. Field demonstration and transition of SCAPS direct push VOC in-situ sensing technologies

    International Nuclear Information System (INIS)

    Davis, William M.

    1999-01-01

    This project demonstrated two in-situ volatile organic compound (VOC) samplers in combination with the direct sampling ion trap mass spectrometer (DSITMS). The technologies chosen were the Vadose Sparge and the Membrane Interface Probe (MIP) sensing systems. Tests at two demonstration sites showed the newer VOC technologies capable of providing in situ contaminant measurements at two to four times the rate of the previously demonstrated Hydrosparge sensor. The results of this project provide initial results supporting the utility of these new technologies to provide rapid site characterization of VOC contaminants in the subsurface

  18. Value and cost analyses for solar thermal-storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Luft, W.; Copeland, R.J.

    1983-04-01

    Value and cost data for thermal energy storage are presented for solar thermal central receiver systems for which thermal energy storage appears to be attractive. Both solar thermal electric power and industrial process heat applications are evaluated. The value of storage is based on the cost for fossil fuel and solar thermal collector systems in 1990. The costing uses a standard lifetime methodology with the storage capacity as a parameter. Both value and costs are functions of storage capacity. However, the value function depends on the application. Value/cost analyses for first-generation storage concepts for five central receiver systems (molten salt, water/steam, organic fluid, air, and liquid metal) established the reference against which new systems were compared. Some promising second-generation energy storage concepts have been identified, and some more advanced concepts have also been evaluated.

  19. [Development of biogenic VOC emissions inventory with high temporal and spatial resolution].

    Science.gov (United States)

    Hu, Y; Zhang, Y; Xie, S; Zeng, L

    2001-11-01

    A new method was developed to estimate biogenic VOC emissions with high temporal and spatial resolution by use of Mesoscale Meteorology Modeling System Version5 (MM5). In this method, the isoprene and monoterpene standard emission factors for some types of tree in China were given and the standard VOC emission factors and seasonally average densities of leaf biomass for all types of vegetation were determined. A biogenic VOC emissions inventory in South China was established which could meet the requirement of regional air quality modeling. Total biogenic VOC emissions in a typical summer day were estimated to be 1.12 x 10(4) metric tons in an area of 729 km x 729 km of South China. The results showed the temporal and spatial distributions of biogenic VOC emission rates in this area. The results also showed that the geographical distribution of biogenic VOC emission rates depended on vegetation types and their distributions and the diurnal variation mainly depended on the solar radiation and temperature. The uncertainties of estimating biogenic VOC emissions were also discussed.

  20. Volatile organic compounds (VOCs) in air from Nisyros Island (Dodecanese Archipelago, Greece): Natural versus anthropogenic sources

    International Nuclear Information System (INIS)

    Tassi, F.; Capecchiacci, F.; Giannini, L.; Vougioukalakis, G.E.; Vaselli, O.

    2013-01-01

    This study presents the chemical composition of VOCs in air and gas discharges collected at Nisyros Island (Dodecanese Archipelago, Greece). The main goals are i) to discriminate between natural and anthropogenic VOC sources and ii) to evaluate their impact on local air quality. Up to 63 different VOCs were recognized and quantitatively determined in 6 fumaroles and 19 air samples collected in the Lakki caldera, where fumarolic emissions are located, and the outer ring of the island, including the Mandraki village and the main harbor. Air samples from the crater area show significant concentrations of alkanes, alkenes, cyclic, aromatics, and S- and O-bearing heterocycles directly deriving from the hydrothermal system, as well as secondary O-bearing compounds from oxidation of primary VOCs. At Mandraki village, C 6 H 6 /Σ(methylated aromatics) and Σ(linear)/Σ(branched) alkanes ratios 2 O–CO 2 –H 2 S rich and discharge a large variety of VOC species. •Benzene/toluene ratios identify anthropogenic and natural sources of VOCs in air. •Aldehydes in air are produced by oxidation of alkanes and alkenes. •Geogenic furans and hydrogenated halocarbons in air are recalcitrant. -- Anthropogenic and natural VOCs in air are distinguished on the basis of aromatic, O-substituted, S-substituted and halogenated compounds

  1. Performance analysis of a lunar based solar thermal power system with regolith thermal storage

    International Nuclear Information System (INIS)

    Lu, Xiaochen; Ma, Rong; Wang, Chao; Yao, Wei

    2016-01-01

    The manned deep-space exploration is a hot topic of the current space activities. The continuous supply of thermal and electrical energy for the scientific equipment and human beings is a crucial issue for the lunar outposts. Since the night lasts for periods of about 350 h at most locations on the lunar surface, massive energy storage is required for continuous energy supply during the lengthy lunar night and the in-situ resource utilization is demanded. A lunar based solar thermal power system with regolith thermal storage is presented in this paper. The performance analysis is carried out by the finite-time thermodynamics to take into account major irreversible losses. The influences of some key design parameters are analyzed for system optimization. The analytical results shows that the lunar based solar thermal power system with regolith thermal storage can meet the requirement of the continuous energy supply for lunar outposts. - Highlights: • A lunar based solar thermal power system with regolith thermal storage is presented. • The performance analysis is carried out by the finite-time thermodynamics. • The influences of some key design parameters are analyzed.

  2. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    Science.gov (United States)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  3. Photovoltaic solar panel for a hybrid PV/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenko, R.; Licea-Jimenez, L.; Perez-Garcia, S.A.; Perez-Robles, J.F.; Gonzalez-Hernandez, J.; Vorobiev, Y. [CINVESTAV-Queretaro, (Mexico); Vorobiev, P. [Universidad Autonoma de Queretaro, (Mexico). Facultad de Ingenieria; Dehesa-Carrasco, U. [Instituto Tec. Del Istmo, Oaxaco (Mexico). Dep. de Ingenieria Electromecanica

    2004-05-01

    The hybrid PV-thermal system was studied, with the photovoltaic panel (PVP) area much smaller than that of the solar collector. Performance of the different panels in the system was investigated, in particular, those made of crystalline (c-) Si, {alpha}-Si and CuInSe{sub 2} as well as different materials and constructions for the thermal contact between the panel and the collector. Our conclusion is that the PVP for application in a hybrid system needs a special design providing efficient heat extraction from it. PVP was designed and made. Its study has shown that this design provides the high electrical and thermal efficiency of the hybrid system. (author)

  4. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  5. Dismantling system of concrete thermal shielding walls

    International Nuclear Information System (INIS)

    Machida, Nobuhiro; Saiki, Yoshikuni; Ono, Yorimasa; Tokioka, Masatake; Ogino, Nobuyuki.

    1985-01-01

    Purpose: To enable safety and efficient dismantling of concrete thermal shielding walls in nuclear reactors. Method: Concrete thermal shielding walls are cut and dismantled into dismantled blocks by a plasma cutting tool while sealing the top opening of bioshielding structures. The dismantled blocks are gripped and conveyed. The cutting tool is remote-handled while monitoring on a television receiver. Slugs and dusts produced by cutting are removed to recover. Since the dismantling work is carried out while sealing the working circumstance and by the remote control of the cutting tool, the operators' safety can be secured. Further, since the thermal sealing walls are cut and dismantled into blocks, dismantling work can be done efficiently. (Moriyama, K.)

  6. 688 AMBIENT VOLATILE ORGANIC COMPOUNDS (VOCS ...

    African Journals Online (AJOL)

    Osondu

    using Gas Chromatography (GC) fitted with Flame Ionization Detector (FID). ... and Industrial emission were identified as sources of VOCs in the studied .... Wax, IIasamaja Market, Chesebrough way, ... A validation processes for diffusive.

  7. Membrane Biotreatment of VOC-Laden Air

    National Research Council Canada - National Science Library

    Peretti, Stephen

    2000-01-01

    ...%, depending primarily on air contact time. Octanol was used as the stripping fluid because of its low vapor pressure and water solubility, its high partitioning of VOCs from air, and its compatibility...

  8. Experimental investigation of thermal storage integrated micro trigeneration system

    International Nuclear Information System (INIS)

    Johar, Dheeraj Kishor; Sharma, Dilip; Soni, Shyam Lal; Goyal, Rahul; Gupta, Pradeep K.

    2017-01-01

    Highlights: • Energy Storage System is integrated with Micro trigeneration system. • Erythritol is used as Phase Change Material. • Maximum energy saved is 15.30%. • Combined systems are feasible to increase energy efficiency. - Abstract: In this study a 4.4 kW stationary compression ignition engine is coupled with a double pipe heat exchanger, vapour absorption refrigeration system and thermal energy storage system to achieve Trigeneration i.e. power, heating and cooling. A shell and tube type heat exchanger filled with erythritol is used to store thermal energy of engine exhaust. Various combinations of thermal energy storage system integrated micro-trigeneration were investigated and results related to performance and emissions are reported in this paper. The test results show that micro capacity (4.4 kW) stationary single cylinder diesel engine can be successfully modified to simultaneously produce power, heating and cooling and also store thermal energy.

  9. Air exchange rates and migration of VOCs in basements and residences.

    Science.gov (United States)

    Du, L; Batterman, S; Godwin, C; Rowe, Z; Chin, J-Y

    2015-12-01

    Basements can influence indoor air quality by affecting air exchange rates (AERs) and by the presence of emission sources of volatile organic compounds (VOCs) and other pollutants. We characterized VOC levels, AERs, and interzonal flows between basements and occupied spaces in 74 residences in Detroit, Michigan. Flows were measured using a steady-state multitracer system, and 7-day VOC measurements were collected using passive samplers in both living areas and basements. A walk-through survey/inspection was conducted in each residence. AERs in residences and basements averaged 0.51 and 1.52/h, respectively, and had strong and opposite seasonal trends, for example, AERs were highest in residences during the summer, and highest in basements during the winter. Airflows from basements to occupied spaces also varied seasonally. VOC concentration distributions were right-skewed, for example, 90th percentile benzene, toluene, naphthalene, and limonene concentrations were 4.0, 19.1, 20.3, and 51.0 μg/m(3), respectively; maximum concentrations were 54, 888, 1117, and 134 μg/m(3). Identified VOC sources in basements included solvents, household cleaners, air fresheners, smoking, and gasoline-powered equipment. The number and type of potential VOC sources found in basements are significant and problematic, and may warrant advisories regarding the storage and use of potentially strong VOCs sources in basements. Few IAQ studies have examined basements. A sizable volume of air can flow between the basement and living area, and AERs in these two zones can differ considerably. In many residences, the basement contains significant emission sources and contributes a large fraction of VOC concentrations found in the living area. Exposures can be lowered by removing VOC sources from the basement; other exposure management options, such as local ventilation or isolation, are unlikely to be practical. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Dynamic thermal performance of alveolar brick construction system

    International Nuclear Information System (INIS)

    Gracia, A. de; Castell, A.; Medrano, M.; Cabeza, L.F.

    2011-01-01

    Highlights: → Even though U-value does not measure thermal inertia, it is the commonly used parameter. → The thermal performance analysis of buildings must include the evaluation of transient parameters. → Transient parameters of alveolar brick constructive system show good agreement with its low energy consumption. -- Abstract: Alveolar bricks are being introduced in building sector due to the simplicity of their construction system and to the elimination of the insulation material. Nevertheless, it is not clear if this new system is energetically efficient and which is its thermal behaviour. This paper presents an experimental and theoretical study to evaluate the thermal behaviour of the alveolar brick construction system, compared with a traditional Mediterranean brick system with insulation. The experimental study consists of measuring the thermal performance of four real house-like cubicles. The thermal transmittance in steady-state, also known as U-value, is calculated theoretically and experimentally for each cubicle, presenting the insulated cubicles as the best construction system, with differences around 45% in comparison to the alveolar one. On the other hand, experimental results show significantly smaller differences on the energy consumption between the alveolar and insulated construction systems during summer period (around 13% higher for the alveolar cubicle). These values demonstrate the high thermal efficiency of the alveolar system. In addition, the lack of agreement between the measured energy consumption and the calculated U-values, guides the authors to analyze the thermal inertia of the different building components. Therefore, several transient parameters, extracted from the heat transfer matrix and from experimental data, are also evaluated. It can be concluded that the alveolar brick construction system presents higher thermal inertia than the insulated one, justifying the low measured energy consumption.

  11. Process control and monitoring system: Thermal Power Plant Gacko

    International Nuclear Information System (INIS)

    Jeremovic, Dragan; Skoko, Maksim; Gjokanovic, Zdravko

    2004-01-01

    DCS Ovation system, manufactured by Westinghouse, USA, is described in this paper. Emphasize on concept of realization and basic characteristic in Thermal Power Plant Gacko is given in this paper. The most important, noticed by now, comparative effects and performances of new monitoring and control system according to classical monitoring and control system of 300 MW units Thermal Power Plant Gacko in Gacko, are given in the conclusion. (Author)

  12. Thermal and hydraulic analyses of the System 81 cold traps

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.

    1977-06-15

    Thermal and hydraulic analyses of the System 81 Type I and II cold traps were completed except for thermal transients analysis. Results are evaluated, discussed, and reported. Analytical models were developed to determine the physical dimensions of the cold traps and to predict the performance. The FFTF cold trap crystallizer performances were simulated using the thermal model. This simulation shows that the analytical model developed predicts reasonably conservative temperatures. Pressure drop and sodium residence time calculations indicate that the present design will meet the requirements specified in the E-Specification. Steady state temperature data for the critical regions were generated to assess the magnitude of the thermal stress.

  13. Boson spectra and correlations for thermal locally equilibrium systems

    International Nuclear Information System (INIS)

    Sinyukov, Y.M.

    1999-01-01

    The single- and multi-particle inclusive spectra for strongly inhomogeneous thermal boson systems are studied using the method of statistical operator. The thermal Wick's theorem is generalized and the analytical solution of the problem for a boost-invariant expanding boson gas is found. The results demonstrate the effects of inhomogeneity for such a system: the spectra and correlations for particles with wavelengths larger than the system's homogeneity lengths change essentially as compared with the results based on the local Bose-Einstein thermal distributions. The effects noticeably grow for overpopulated media, where the chemical potential associated with violation of chemical equilibrium is large enough. (author)

  14. Displacements of Metallic Thermal Protection System Panels During Reentry

    Science.gov (United States)

    Daryabeigi, Kamran; Blosser, Max L.; Wurster, Kathryn E.

    2006-01-01

    Bowing of metallic thermal protection systems for reentry of a previously proposed single-stage-to-orbit reusable launch vehicle was studied. The outer layer of current metallic thermal protection system concepts typically consists of a honeycomb panel made of a high temperature nickel alloy. During portions of reentry when the thermal protection system is exposed to rapidly varying heating rates, a significant temperature gradient develops across the honeycomb panel thickness, resulting in bowing of the honeycomb panel. The deformations of the honeycomb panel increase the roughness of the outer mold line of the vehicle, which could possibly result in premature boundary layer transition, resulting in significantly higher downstream heating rates. The aerothermal loads and parameters for three locations on the centerline of the windward side of this vehicle were calculated using an engineering code. The transient temperature distributions through a metallic thermal protection system were obtained using 1-D finite volume thermal analysis, and the resulting displacements of the thermal protection system were calculated. The maximum deflection of the thermal protection system throughout the reentry trajectory was 6.4 mm. The maximum ratio of deflection to boundary layer thickness was 0.032. Based on previously developed distributed roughness correlations, it was concluded that these defections will not result in tripping the hypersonic boundary layer.

  15. Development of thermal fatigue evaluation methods of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo; Matsumoto, Masaaki

    2013-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and so many patterns, that their problems still occur even though well-known issues. To prevent thermal fatigue due to above thermal loads, the JSME guideline is adopted. Both thermal load and fatigue failure mechanism have been investigated and summarized into the knowledgebase. Based on above knowledge, improved methods for the JSME guideline and Numerical simulation methods for thermal fatigue evaluation were studied. Furthermore, probabilistic failure analysis approach with main influence parameters were investigated to be applied for the plant system safety. (author)

  16. Thermal Management Tools for Propulsion System Trade Studies and Analysis

    Science.gov (United States)

    McCarthy, Kevin; Hodge, Ernie

    2011-01-01

    Energy-related subsystems in modern aircraft are more tightly coupled with less design margin. These subsystems include thermal management subsystems, vehicle electric power generation and distribution, aircraft engines, and flight control. Tighter coupling, lower design margins, and higher system complexity all make preliminary trade studies difficult. A suite of thermal management analysis tools has been developed to facilitate trade studies during preliminary design of air-vehicle propulsion systems. Simulink blocksets (from MathWorks) for developing quasi-steady-state and transient system models of aircraft thermal management systems and related energy systems have been developed. These blocksets extend the Simulink modeling environment in the thermal sciences and aircraft systems disciplines. The blocksets include blocks for modeling aircraft system heat loads, heat exchangers, pumps, reservoirs, fuel tanks, and other components at varying levels of model fidelity. The blocksets have been applied in a first-principles, physics-based modeling and simulation architecture for rapid prototyping of aircraft thermal management and related systems. They have been applied in representative modern aircraft thermal management system studies. The modeling and simulation architecture has also been used to conduct trade studies in a vehicle level model that incorporates coupling effects among the aircraft mission, engine cycle, fuel, and multi-phase heat-transfer materials.

  17. The art of software thermal management for embedded systems

    CERN Document Server

    Benson, Mark

    2014-01-01

    This book introduces Software Thermal Management (STM) as a means of reducing power consumption in a computing system, in order to manage heat, improve component reliability, and increase system safety.  Readers will benefit from this pragmatic guide to the field of STM for embedded systems and its catalog of software power management techniques.  Since thermal management is a key bottleneck in embedded systems design, this book focuses on power as the root cause of heat. Since software has an enormous impact on power consumption in an embedded system, this book guides readers to manage heat effectively by understanding, categorizing, and developing new ways to reduce dynamic power. Whereas most books on thermal management describe mechanisms to remove heat, this book focuses on ways to avoid generating heat in the first place.   • Explains fundamentals of software thermal management, application techniques and advanced optimization strategies; • Describes a novel method for managing dynamic power, e...

  18. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system

    International Nuclear Information System (INIS)

    Basu, Suman; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Sohn, Dong Kee; Yeo, Taejung

    2016-01-01

    Highlights: • Three-dimensional electrochemical thermal model of Li-ion battery pack using computational fluid dynamics (CFD). • Novel pack design for compact liquid cooling based thermal management system. • Simple temperature estimation algorithm for the cells in the pack using the results from the model. • Sensitivity of the thermal performance to contact resistance has been investigated. - Abstract: Thermal management system is of critical importance for a Li-ion battery pack, as high performance and long battery pack life can be simultaneously achieved when operated within a narrow range of temperature around the room temperature. An efficient thermal management system is required to keep the battery temperature in this range, despite widely varying operating conditions. A novel liquid coolant based thermal management system, for 18,650 battery pack has been introduced herein. This system is designed to be compact and economical without compromising safety. A coupled three-dimensional (3D) electrochemical thermal model is constructed for the proposed Li-ion battery pack. The model is used to evaluate the effects of different operating conditions like coolant flow-rate and discharge current on the pack temperature. Contact resistance is found to have the strongest impact on the thermal performance of the pack. From the numerical solution, a simple and novel temperature correlation of predicting the temperatures of all the individual cells given the temperature measurement of one cell is devised and validated with experimental results. Such coefficients have great potential of reducing the sensor requirement and complexity in a large Li-ion battery pack, typical of an electric vehicle.

  19. Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System

    Science.gov (United States)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.

  20. Thermal protection system gap analysis using a loosely coupled fluid-structural thermal numerical method

    Science.gov (United States)

    Huang, Jie; Li, Piao; Yao, Weixing

    2018-05-01

    A loosely coupled fluid-structural thermal numerical method is introduced for the thermal protection system (TPS) gap thermal control analysis in this paper. The aerodynamic heating and structural thermal are analyzed by computational fluid dynamics (CFD) and numerical heat transfer (NHT) methods respectively. An interpolation algorithm based on the control surface is adopted for the data exchanges on the coupled surface. In order to verify the analysis precision of the loosely coupled method, a circular tube example was analyzed, and the wall temperature agrees well with the test result. TPS gap thermal control performance was studied by the loosely coupled method successfully. The gap heat flux is mainly distributed in the small region at the top of the gap which is the high temperature region. Besides, TPS gap temperature and the power of the active cooling system (CCS) calculated by the traditional uncoupled method are higher than that calculated by the coupled method obviously. The reason is that the uncoupled method doesn't consider the coupled effect between the aerodynamic heating and structural thermal, however the coupled method considers it, so TPS gap thermal control performance can be analyzed more accurately by the coupled method.

  1. DoubleFace: Adjustable translucent system to improve thermal comfort

    Directory of Open Access Journals (Sweden)

    Michela Turrin

    2014-11-01

    Full Text Available The DoubleFace project aims at developing a new product that passively improves thermal comfort of indoor and semi-indoor spaces by means of lightweight materials for latent heat storage, while simultaneously allowing daylight to pass through as much as possible. Specifically, the project aims at designing and prototyping an adjustable translucent modular system featuring thermal insulation and thermal absorption in a calibrated manner, which is adjustable according to different heat loads during summer- and wintertime. The output consists of a proof of concept, a series of performance simulations and measurement and a prototype of an adjustable thermal mass system based on lightweight and translucent materials: phase-changing materials (PCM for latent heat storage and translucent aerogel particles for thermal insulation.

  2. Thermal fatigue evaluation of piping system Tee-connections

    International Nuclear Information System (INIS)

    Metzner, K.J.; Braillard, O.; Faidy, C.; Marcelles, I.; Solin, J.; Stumpfrock, L.

    2004-01-01

    Thermal fatigue is one significant long-term degradation mechanism nuclear power plants (NPP), in particular, as operating plants become older and life time extension activities have been initiated. In general, the common thermal fatigue issues are understood and controlled by plant instrumentation systems. However, incidents in some plants indicate that certain piping system Tees are susceptible to turbulent temperature mixing effects that cannot be adequately monitored by common thermocouple instrumentation. The THERFAT project has been initiated to advance the accuracy and reliability of thermal fatigue load determination in engineering tools and research oriented approaches to outline a science based practical methodology for managing thermal fatigue risks in Tee-connections susceptible to high cyclic thermal fatigue. (orig.)

  3. Thermal management, systems and modules; Thermomanagement, Systeme und Module

    Energy Technology Data Exchange (ETDEWEB)

    Flik, M. [Behr GmbH und Co., Stuttgart (Germany)

    1999-11-01

    Up till now the individual systems for engine temperature control and air conditioning of the vehicle cabin have to a large extent been viewed independently of one another. With the progress of electronic control systems, however, Behr has adopted an integrative approach to managing all heat and substance flows outside of the engine. This perspective, which is known as thermal management, has significantly boosted the rate of innovation. In a short period of time, new and optimized modules and systems have allowed considerable improvements to be made in relation to passenger comfort and safety, the integration of subsystems and modules into the vehicle and environmental compatibility. This innovation drive, which also extends to the design of major modules, will continue to gain impetus in the future. (orig.) [German] Bisher wurden die verschiedenen Systeme zur Temperierung des Motors und zur Klimatisierung der Fahrzeugkabine weitgehend unabhaengig voneinander betrachtet. Mit dem Vordringen der elektronischen Regelung hat bei Behr jedoch eine gesamtheitliche Betrachtung aller Waerme- und Stoffstroeme ausserhalb des Motors eingesetzt. Diese Sichtweise, Thermomanagement genannt, hat eine erhebliche Innovationsdynamik ermoeglicht. Mit neuen und optimierten Modulen und Systemen konnten in kurzer Zeit betraechtliche Verbesserungen erzielt werden - bei Komfort und Sicherheit der Fahrzeuginsassen, bei der Integration der Subsysteme und Module ins Fahrzeug sowie bei seiner oekologischen Vertraeglichkeit. Diese Innovationsdynamik, die auch die Bildung von Grossmodulen einschliesst, wird in Zukunft noch zunehmen. (orig.)

  4. VOC emissions and carbon balance of two bioenergy plantations in response to nitrogen fertilization: A comparison of Miscanthus and Salix.

    Science.gov (United States)

    Hu, Bin; Jarosch, Ann-Mareike; Gauder, Martin; Graeff-Hönninger, Simone; Schnitzler, Jörg-Peter; Grote, Rüdiger; Rennenberg, Heinz; Kreuzwieser, Jürgen

    2018-06-01

    Energy crops are an important renewable source for energy production in future. To ensure high yields of crops, N fertilization is a common practice. However, knowledge on environmental impacts of bioenergy plantations, particularly in systems involving trees, and the effects of N fertilization is scarce. We studied the emission of volatile organic compounds (VOC), which negatively affect the environment by contributing to tropospheric ozone and aerosols formation, from Miscanthus and willow plantations. Particularly, we aimed at quantifying the effect of N fertilization on VOC emission. For this purpose, we determined plant traits, photosynthetic gas exchange and VOC emission rates of the two systems as affected by N fertilization (0 and 80 kg ha -1 yr -1 ). Additionally, we used a modelling approach to simulate (i) the annual VOC emission rates as well as (ii) the OH . reactivity resulting from individual VOC emitted. Total VOC emissions from Salix was 1.5- and 2.5-fold higher compared to Miscanthus in non-fertilized and fertilized plantations, respectively. Isoprene was the dominating VOC in Salix (80-130 μg g -1 DW h -1 ), whereas it was negligible in Miscanthus. We identified twenty-eight VOC compounds, which were released by Miscanthus with the green leaf volatile hexanal as well as dimethyl benzene, dihydrofuranone, phenol, and decanal as the dominant volatiles. The pattern of VOC released from this species clearly differed to the pattern emitted by Salix. OH . reactivity from VOC released by Salix was ca. 8-times higher than that of Miscanthus. N fertilization enhanced stand level VOC emissions, mainly by promoting the leaf area index and only marginally by enhancing the basal emission capacity of leaves. Considering the higher productivity of fertilized Miscanthus compared to Salix together with the considerably lower OH . reactivity per weight unit of biomass produced, qualified the C 4 -perennial grass Miscanthus as a superior source of future

  5. PARAMETRIC EVALUATION OF VOC CONVERSION VIA CATALYTIC INCINERATION

    Directory of Open Access Journals (Sweden)

    Kaskantzis Neto G.

    1997-01-01

    Full Text Available Abstract - A pilot-scale catalytic incineration system was used to investigate the effectiveness of catalytic incineration as a means of reducing volatile organic compound (VOC air pollutants. The objectives of the study were: 1 to investigate the effects of operating and design variables on the reduction efficiency of VOCs; and 2 to evaluate reduction efficiencies for specific compounds in different chemical classes. The study results verified that the following factors affect the catalyst performance: inlet temperature, space velocity, compound type, and compound inlet concentration. Tests showed that reduction efficiencies exceeding 98% were possible, given sufficiently high inlet gas temperatures for the following classes of compounds: alcohols, acetates, ketones, hydrocarbons, and aromatics

  6. Kinetic Integrated Thermal Protection System (KnITPS)

    Data.gov (United States)

    National Aeronautics and Space Administration — Use the flexibility and shape formation possibilities inherent in knitting to form thermal protection systems that can be custom fitted to a heat shield carrier...

  7. NDE for Ablative Thermal Protection Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This program addresses the need for non-destructive evaluation (NDE) methods for quality assessment and defect evaluation of thermal protection systems (TPS),...

  8. NDE for Ablative Thermal Protection Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This program addresses the need for non-destructive evaluation (NDE) methods for quality assessment and defect evaluation of thermal protection systems (TPS). Novel...

  9. Thermal Protection System Materials (TPSM): 3D MAT

    Data.gov (United States)

    National Aeronautics and Space Administration — The 3D MAT Project seeks to design and develop a game changing Woven Thermal Protection System (TPS) technology tailored to meet the needs of the Orion Multi-Purpose...

  10. Chip Integrated, Hybrid EHD/Capillary Driven Thermal Management System

    Data.gov (United States)

    National Aeronautics and Space Administration — Chip-Integrated, Hybrid EHD/Capillary-Driven Thermal Management System is a two year that will leverage independently attained yet related prototype hardware...

  11. VOCs in Arid soils: Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The Volatile Organic Compounds In Arid Soils Integrated Demonstration (VOC-Arid ID) focuses on technologies to clean up volatile organic compounds and associated contaminants in soil and groundwater at arid sites. The initial host site is the 200 West Area at DOE's Hanford site in southeastern Washington state. The primary VOC contaminant is carbon tetrachloride, in association with heavy metals and radionuclides. An estimated 580--920 metric tons of carbon tetrachloride were disposed of between 1955 and 1973, resulting in extensive soil and groundwater contamination. The VOC-Arid ID schedule has been divided into three phases of implementation. The phased approach provides for: rapid transfer of technologies to the Environmental Restoration (EM-40) programs once demonstrated; logical progression in the complexity of demonstrations based on improved understanding of the VOC problem; and leveraging of the host site EM-40 activities to reduce the overall cost of the demonstrations. During FY92 and FY93, the primary technology demonstrations within the ID were leveraged with an ongoing expedited response action at the Hanford 200 West Area, which is directed at vapor extraction of VOCs from the vadose (unsaturated) zone. Demonstration efforts are underway in the areas of subsurface characterization including: drilling and access improvements, off-gas and borehole monitoring of vadose zone VOC concentrations to aid in soil vapor extraction performance evaluation, and treatment of VOC-contaminated off-gas. These current demonstration efforts constitute Phase 1 of the ID and, because of the ongoing vadose zone ERA, can result in immediate transfer of successful technologies to EM-40

  12. Thermal processing system concepts and considerations for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  13. Thermal processing system concepts and considerations for RWMC buried waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided

  14. Battery management systems with thermally integrated fire suppression

    Science.gov (United States)

    Bandhauer, Todd M.; Farmer, Joseph C.

    2017-07-11

    A thermal management system is integral to a battery pack and/or individual cells. It relies on passive liquid-vapor phase change heat removal to provide enhanced thermal protection via rapid expulsion of inert high pressure refrigerant during abnormal abuse events and can be integrated with a cooling system that operates during normal operation. When a thermal runaway event occurs and sensed by either active or passive sensors, the high pressure refrigerant is preferentially ejected through strategically placed passages within the pack to rapidly quench the battery.

  15. Innovative approaches to remediation for VOC sites using recirculating wells

    International Nuclear Information System (INIS)

    Dawson, G.W.

    1996-01-01

    In-well air stripping with approaches such as the patented NoVOCs system offer both cost and operational advantages over pump and treat, and in situ air sparging technologies. With in-well stripping, the water is treated in the well and discharged without being brought to the surface. Discharged water is circulated through the saturated zone acting as a carrier to continually flush contaminants from the aquifer matrix and transport them to the well for treatment. With pumping rates up to four times those of comparable extraction wells, large radii of influence can be maintained and remediation is achieved faster and more efficiently. In-well stripping is applicable to any strippable contaminant including chlorinated solvents (i.e., TCE and PCE) and hydrocarbons such as the aromatic components in petroleum fuels. Growing costs associated with water discharge, NPDES permits, water rights and, in some areas, salt water intrusion have provided economic incentives to retrofit existing pump and treat systems with NoVOCs units. A large number of wells are amenable to retrofitting depending on their diameter, location and length of screens, and back fill. Even with the new initiatives for intrinsic remediation for petroleum fuel releases, there is a role for the NoVOCs technology. Free product removal wells based on the NoVOCs design eliminate the need to treat and permit water discharges produced when generating a cone of depression for collecting the floating fuel. Additionally, the stripping action and introduction of dissolved oxygen reduce soluble hydrocarbon concentrations to risk levels that can be easily addressed through intrinsic bioremediation

  16. Modeling thermal effects in braking systems of railway vehicles

    Directory of Open Access Journals (Sweden)

    Milošević Miloš S.

    2012-01-01

    Full Text Available The modeling of thermal effects has become increasingly important in product design in different transport means, road vehicles, airplanes, railway vehicles, and so forth. The thermal analysis is a very important stage in the study of braking systems, especially of railway vehicles, where it is necessary to brake huge masses, because the thermal load of a braked railway wheel prevails compared to other types of loads. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of railway wheels. Thus induced thermal loads determine thermomechanical behavior of the structure of railway wheels. In cases of thermal overloads, which mainly occur as a result of long-term braking on down-grade railroads, the generation of stresses and deformations occurs, whose consequences are the appearance of cracks on the rim of a wheel and the final total wheel defect. The importance to precisely determine the temperature distribution caused by the transfer process of the heat generated during braking due to the friction on contact surfaces of the braking system makes it a challenging research task. Therefore, the thermal analysis of a block-braked solid railway wheel of a 444 class locomotive of the national railway operator Serbian Railways is processed in detail in this paper, using analytical and numerical modeling of thermal effects during long-term braking for maintaining a constant speed on a down-grade railroad.

  17. Modeling the uncertainty of several VOC and its impact on simulated VOC and ozone in Houston, Texas

    Science.gov (United States)

    Pan, Shuai; Choi, Yunsoo; Roy, Anirban; Li, Xiangshang; Jeon, Wonbae; Souri, Amir Hossein

    2015-11-01

    A WRF-SMOKE-CMAQ modeling system was used to study Volatile Organic Compound (VOC) emissions and their impact on surface VOC and ozone concentrations in southeast Texas during September 2013. The model was evaluated against the ground-level Automated Gas Chromatograph (Auto-GC) measurement data from the Texas Commission on Environmental Quality (TCEQ). The comparisons indicated that the model over-predicted benzene, ethylene, toluene and xylene, while under-predicting isoprene and ethane. The mean biases between simulated and observed values of each VOC species showed clear daytime, nighttime, weekday and weekend variations. Adjusting the VOC emissions using simulated/observed ratios improved model performance of each VOC species, especially mitigating the mean bias substantially. Simulated monthly mean ozone showed a minor change: a 0.4 ppb or 1.2% increase; while a change of more than 5 ppb was seen in hourly ozone data on high ozone days, this change moved model predictions closer to observations. The CMAQ model run with the adjusted emissions better reproduced the variability in the National Aeronautics and Space Administration (NASA)'s Ozone Monitoring Instrument (OMI) formaldehyde (HCHO) columns. The adjusted model scenario also slightly better reproduced the aircraft HCHO concentrations from NASA's DISCOVER-AQ campaign conducted during the simulation episode period; Correlation, Mean Bias and RMSE improved from 0.34, 1.38 ppb and 2.15 ppb to 0.38, 1.33 ppb and 2.08 ppb respectively. A process analysis conducted for both industrial/urban and rural areas suggested that chemistry was the main process contributing to ozone production in both areas, while the impact of chemistry was smaller in rural areas than in industrial and urban areas. For both areas, the positive chemistry contribution increased in the sensitivity simulation largely due to the increase in emissions. Nudging VOC emissions to match the observed concentrations shifted the ozone hotspots

  18. Thermal-Acoustic Fatigue of a Multilayer Thermal Protection System in Combined Extreme Environments

    Directory of Open Access Journals (Sweden)

    Liu Liu

    2014-06-01

    Full Text Available In order to ensure integrity of thermal protection system (TPS structure for hypersonic vehicles exposed to severe operating environments, a study is undertaken to investigate the response and thermal-acoustic fatigue damage of a representative multilayer TPS structure under combined thermal and acoustic loads. An unsteady-state flight of a hypersonic vehicle is composed of a series of steady-state snapshots, and for each snapshot an acoustic load is imposed to a static steady-state TPS structure. A multistep thermal-acoustic fatigue damage intensity analysis procedure is given and consists of a heat transfer analysis, a nonlinear thermoelastic analysis, and a random response analysis under a combined loading environment and the fatigue damage intensity has been evaluated with two fatigue analysis techniques. The effects of thermally induced deterministic stress and nondeterministic dynamic stress due to the acoustic loading have been considered in the damage intensity estimation with a maximum stress fatigue model. The results show that the given thermal-acoustic fatigue intensity estimation procedure is a viable approach for life prediction of TPS structures under a typical mission cycle with combined loadings characterized by largely different time-scales. A discussion of the effects of the thermal load, the acoustic load, and fatigue analysis methodology on the fatigue damage intensity has been provided.

  19. Earth evolution as a thermal system

    Science.gov (United States)

    Tang, C.

    2014-12-01

    After fifty years of plate-tectonic theory, the reasons why earth sometime freezed as a snowball or sometime became lethally hot resulting in mass extinction remain enigmatic. This article proposes a new hypothesis on Earth evolution. The unbalance of heat between the input and output is considered as the driving force for the Earth evolution, the lithospheric expansion and associated uplift are the triggers, the self-organized progressive failure leading to collapse of the Earth are the amplifier, and the global scale response in terms of volcanism and magmatism is the globalizer. This shallow process of lithosphere may reach a critical state with a positive feedback loop, and result in the formation of no-plume original Large Igneous Provinces (NPOLIP) in a top-down pattern. Endothermic phase changes during de-compressive melting remove heat from and cool their surroundings, including the upper parts of the lithosphere. The huge loss of Earth's heat during eruption of LIPs, together with the endothermic cooling, may put the thermal cycle to an end and a new start of the cycle initiates. In summary, Earth drives itself to evolve in terms of thermal cycles. Global cooling and warming are the two stages of the many cycles during the Earth evolution. Glaciations are the extreme result of global cooling, whereas the LIPs, sometime accompanied with remarkable sea level dropping, are the extreme result of global warming, with a long recovering age, the interglacialstage, between them. They come and go as thermal cycle evolves, with climate warming, being caused by Earth itself rather than by external forces or human activities, as the most attractive prediction.

  20. Solar thermal repowering systems integration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.

    1979-08-01

    This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.

  1. Preliminary thermal sizing of intermediate heat exchanger for NHDD system

    International Nuclear Information System (INIS)

    Kim, Chan Soo; Hong, Sung Deok; Kim, Yong Wan; Chang, Jongh Wa

    2009-01-01

    Nuclear Hydrogen Development and Demonstration (NHDD) system is a Very High Temperature gascooled Reactor (VHTR) coupled with hydrogen production systems. Intermediate heat exchanger transfers heat from the nuclear reactor to the hydrogen production system. This study presented the sensitivity analysis on a preliminary thermal sizing of the intermediate heat exchanger. Printed Circuit Heat Exchanger (PCHE) was selected for the thermal sizing because the printed circuit heat exchanger has the largest compactness among the heat exchanger types. The analysis was performed to estimate the effect of key parameters including the operating condition of the intermediate system, the geometrical factors of the PCHE, and the working fluid of the intermediate system.

  2. Monitoring of volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year

    Science.gov (United States)

    Zheng, Huang; Kong, Shaofei; Xing, Xinli; Mao, Yao; Hu, Tianpeng; Ding, Yang; Li, Gang; Liu, Dantong; Li, Shuanglin; Qi, Shihua

    2018-04-01

    Oil and natural gas are important for energy supply around the world. The exploring, drilling, transportation and processing in oil and gas regions can release a lot of volatile organic compounds (VOCs). To understand the VOC levels, compositions and sources in such regions, an oil and gas station in northwest China was chosen as the research site and 57 VOCs designated as the photochemical precursors were continuously measured for an entire year (September 2014-August 2015) using an online monitoring system. The average concentration of total VOCs was 297 ± 372 ppbv and the main contributor was alkanes, accounting for 87.5 % of the total VOCs. According to the propylene-equivalent concentration and maximum incremental reactivity methods, alkanes were identified as the most important VOC groups for the ozone formation potential. Positive matrix factorization (PMF) analysis showed that the annual average contributions from natural gas, fuel evaporation, combustion sources, oil refining processes and asphalt (anthropogenic and natural sources) to the total VOCs were 62.6 ± 3.04, 21.5 ± .99, 10.9 ± 1.57, 3.8 ± 0.50 and 1.3 ± 0.69 %, respectively. The five identified VOC sources exhibited various diurnal patterns due to their different emission patterns and the impact of meteorological parameters. Potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) models based on backward trajectory analysis indicated that the five identified sources had similar geographic origins. Raster analysis based on CWT analysis indicated that the local emissions contributed 48.4-74.6 % to the total VOCs. Based on the high-resolution observation data, this study clearly described and analyzed the temporal variation in VOC emission characteristics at a typical oil and gas field, which exhibited different VOC levels, compositions and origins compared with those in urban and industrial areas.

  3. The Earth Observing System AM Spacecraft - Thermal Control Subsystem

    Science.gov (United States)

    Chalmers, D.; Fredley, J.; Scott, C.

    1993-01-01

    Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.

  4. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo

    2012-10-01

    Full Text Available The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1 reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2 using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

  5. Locating industrial VOC sources with aircraft observations

    International Nuclear Information System (INIS)

    Toscano, P.; Gioli, B.; Dugheri, S.; Salvini, A.; Matese, A.; Bonacchi, A.; Zaldei, A.; Cupelli, V.; Miglietta, F.

    2011-01-01

    Observation and characterization of environmental pollution, focussing on Volatile Organic Compounds (VOCs), in a high-risk industrial area, are particularly important in order to provide indications on a safe level of exposure, indicate eventual priorities and advise on policy interventions. The aim of this study is to use the Solid Phase Micro Extraction (SPME) method to measure VOCs, directly coupled with atmospheric measurements taken on a small aircraft environmental platform, to evaluate and locate the presence of VOC emission sources in the Marghera industrial area. Lab analysis of collected SPME fibres and subsequent analysis of mass spectrum and chromatograms in Scan Mode allowed the detection of a wide range of VOCs. The combination of this information during the monitoring campaign allowed a model (Gaussian Plume) to be implemented that estimates the localization of emission sources on the ground. - Highlights: → Flight plan aimed at sampling industrial area at various altitudes and locations. → SPME sampling strategy was based on plume detection by means of CO 2 . → Concentrations obtained were lower than the limit values or below the detection limit. → Scan mode highlighted presence of γ-butyrolactone (GBL) compound. → Gaussian dispersion modelling was used to estimate GBL source location and strength. - An integrated strategy based on atmospheric aircraft observations and dispersion modelling was developed, aimed at estimating spatial location and strength of VOC point source emissions in industrial areas.

  6. Transient Thermal Analyses of Passive Systems on SCEPTOR X-57

    Science.gov (United States)

    Chin, Jeffrey C.; Schnulo, Sydney L.; Smith, Andrew D.

    2017-01-01

    As efficiency, emissions, and noise become increasingly prominent considerations in aircraft design, turning to an electric propulsion system is a desirable solution. Achieving the intended benefits of distributed electric propulsion (DEP) requires thermally demanding high power systems, presenting a different set of challenges compared to traditional aircraft propulsion. The embedded nature of these heat sources often preclude the use of traditional thermal management systems in order to maximize performance, with less opportunity to exhaust waste heat to the surrounding environment. This paper summarizes the thermal analyses of X-57 vehicle subsystems that don't employ externally air-cooled heat sinks. The high-power battery, wires, high-lift motors, and aircraft outer surface are subjected to heat loads with stringent thermal constraints. The temperature of these components are tracked transiently, since they never reach a steady-state equilibrium. Through analysis and testing, this report demonstrates that properly characterizing the material properties is key to accurately modeling peak temperature of these systems, with less concern for spatial thermal gradients. Experimentally validated results show the thermal profile of these systems can be sufficiently estimated using reduced order approximations.

  7. THERMAL PROTECTION AND THERMAL STABILIZATION OF FIBER-OPTICAL GYROSCOPE INCLUDED IN STRAPDOWN INERTIAL NAVIGATION SYSTEM

    Directory of Open Access Journals (Sweden)

    D. S. Gromov

    2014-03-01

    Full Text Available It is known, that temperature perturbations and thermal modes have significant influence on the accuracy of a fiber-optical gyroscope. Nowadays, thermal perturbations are among the main problems in the field of navigation accuracy. Review of existing methods for decrease of temperature influences on the accuracy of a strapdown inertial navigation system with fiberoptical gyros showed, that the usage of constructive and compensation methods only is insufficient and, therefore, thermostabilization is required. Reversible thermostabilization system is offered, its main executive elements are thermoelectric modules (Peltier’s modules, heat transfer from which is provided by heatsinks at work surfaces of modules. This variant of thermostabilization maintenance is considered; Peltier’s modules and temperature sensors for the system are chosen. Parameters of heatsinks for heat transfer intensification are calculated. Fans for necessary air circulation in the device are chosen and thickness of thermal isolation is calculated. Calculations of thermal modes of navigation system with thermostabilization are made in modern software Autodesk Simulation CFD. Comparison of results for present and previous researches and calculations shows essential decrease in gradients of temperature on gyro surfaces and better uniformity of temperature field in the whole device. Conclusions about efficiency of the given method usage in view of accuracy improvement of navigation system are made. Thermostabilization provision of a strapdown inertial navigation system with fiberoptical gyros is proved. Thermostabilization application in combination with compensational methods can reach a necessary accuracy of navigation system.

  8. Integrated thermal treatment system sudy: Phase 2, Results

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

  9. Integrated thermal treatment system sudy: Phase 2, Results

    International Nuclear Information System (INIS)

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr)

  10. Improved Thermal-Insulation Systems for Low Temperatures

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stanislaw D.

    2003-01-01

    Improved thermal-insulation materials and structures and the techniques for manufacturing them are undergoing development for use in low-temperature applications. Examples of low-temperature equipment for which these thermal insulation systems could provide improved energy efficiency include storage tanks for cryogens, superconducting electric-power-transmission equipment, containers for transport of food and other perishable commodities, and cold boxes for low-temperature industrial processes. These systems could also be used to insulate piping used to transfer cryogens and other fluids, such as liquefied natural gas, refrigerants, chilled water, crude oil, or low-pressure steam. The present thermal-insulation systems are layer composites based partly on the older class of thermal-insulation systems denoted generally as multilayer insulation (MLI). A typical MLI structure includes an evacuated jacket, within which many layers of radiation shields are stacked or wrapped close together. Low-thermal-conductivity spacers are typically placed between the reflection layers to keep them from touching. MLI can work very well when a high vacuum level (less than 10(exp-4) torr) is maintained and utmost care is taken during installation, but its thermal performance deteriorates sharply as the pressure in the evacuated space rises into the soft vacuum range [pressures greater than 0.1 torr (greater than 13 Pa)]. In addition, the thermal performance of MLI is extremely sensitive to mechanical compression and edge effects and can easily decrease from one to two orders of magnitude from its ideal value even when the MLI is kept under high vacuum condition. The present thermal-insulation systems are designed to perform well under soft vacuum level, in particular the range of 1 to 10 torr. They are also designed with larger interlayer spacings to reduce vulnerability to compression (and consequent heat leak) caused by installation and use. The superiority of these systems is the

  11. Thermal imaging comparison of Signature, Infiniti, and Stellaris phacoemulsification systems

    OpenAIRE

    Ryoo, NK; Kwon, J-W; Wee, WR; Miller, KM; Han, YK

    2013-01-01

    Abstract Background To compare the heat production of 3 different phacoemulsification machines under strict laboratory test conditions. More specifically, the thermal behavior was analyzed between the torsional modality of the Infiniti system and longitudinal modalities of the Abbot WhiteStar Signature Phacoemulsification system and Bausch and Lomb Stellaris system. Methods Experiments were performed under in-...

  12. Integrated thermal treatment system study -- Phase 2 results. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Quapp, W.J.

    1996-02-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.

  13. Integrated thermal treatment system study -- Phase 2 results. Revision 1

    International Nuclear Information System (INIS)

    Feizollahi, F.; Quapp, W.J.

    1996-02-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs

  14. First Biogenic VOC Flux Results from the UCI Fluxtron Plant Chamber Facility

    Science.gov (United States)

    Seco, R.; Gu, D.; Joo, E.; Nagalingam, S.; Aristizabal, B. H.; Basu, C.; Kim, S.; Guenther, A. B.

    2017-12-01

    Atmospheric biogenic volatile organic compounds (BVOCs) have key environmental, ecological and biological roles, and can influence atmospheric chemistry, secondary aerosol formation, and regional climate. Quantifying BVOC emission rates and their impact on atmospheric chemistry is one of the greatest challenges with respect to predicting future air pollution in the context of a changing climate. A new facility, the UCI Fluxtron, has been developed at the Department of Earth System Science at the University of California Irvine to study the response of BVOC emissions to extreme weather and pollution stress. The UCI Fluxtron is designed for automated, continuous measurement of plant physiology and multi-modal BVOC chemical analysis from multiple plants. It consists of two controlled-environment walk-in growth chambers that contain several plant enclosures, a gas make-up system to precisely control the composition (e.g., H2O, CO2, O3 and VOC concentrations) of the air entering each enclosure. A sample manifold with automated inlet switching is used for measurements with in-situ and real-time VOC analysis instruments: H2O, CO2 fluxes can be measured continually with an infrared gas analyzer (IRGA) and BVOCs with a proton transfer reaction -time of flight- mass spectrometer (PTR-TOF-MS). Offline samples can also be taken via adsorbent cartridges to be analyzed in a thermal desorption gas chromatograph coupled to a TOF-MS detector. We present the first results of H2O, CO2 and BVOC fluxes, including the characterization and testing of the Fluxtron system. For example, measurements of young dragon tree (Paulownia elongata) individuals using whole-plant enclosures.

  15. Thermal energy storage and utilization system

    International Nuclear Information System (INIS)

    1976-01-01

    The power output from a nuclear power plant or fossil fuel power plant operating under constant reactor (or furnace) and boiler conditions is varied by regulating the rate of turbine extraction steam and primary high pressure steam used to heat boiler feed water (BFW). During periods of low power demand, excess extraction steam is drawn off to heat excess quantities of boiler feed water. Such boiler feed water can be heated to the maximum extent possible and used to reheat interstage steam before being sent at slightly reduced temperature to the boilers. In this way, maximum use can be made of the thermal energy stored in the low vapor pressure organic material. Alternatively, or simultaneously, the stored hot LVP organic material can be used to raise intermediate pressure steam and this steam can be injected into the steam turbines between appropriate stages or into auxiliary turbines used solely for this purpose

  16. Thermal Gradient Data Acquisition System Documentation

    National Research Council Canada - National Science Library

    Walker, Larry D; Robinson, Scott B; Leon, Lisa

    2004-01-01

    ... that can be recorded in mice. Since acceptable commercial systems are not available, this system was custom-built to acquire data using National Instruments' versatile hardware components and LabVIEW...

  17. An engineering code to analyze hypersonic thermal management systems

    Science.gov (United States)

    Vangriethuysen, Valerie J.; Wallace, Clark E.

    1993-01-01

    Thermal loads on current and future aircraft are increasing and as a result are stressing the energy collection, control, and dissipation capabilities of current thermal management systems and technology. The thermal loads for hypersonic vehicles will be no exception. In fact, with their projected high heat loads and fluxes, hypersonic vehicles are a prime example of systems that will require thermal management systems (TMS) that have been optimized and integrated with the entire vehicle to the maximum extent possible during the initial design stages. This will not only be to meet operational requirements, but also to fulfill weight and performance constraints in order for the vehicle to takeoff and complete its mission successfully. To meet this challenge, the TMS can no longer be two or more entirely independent systems, nor can thermal management be an after thought in the design process, the typical pervasive approach in the past. Instead, a TMS that was integrated throughout the entire vehicle and subsequently optimized will be required. To accomplish this, a method that iteratively optimizes the TMS throughout the vehicle will not only be highly desirable, but advantageous in order to reduce the manhours normally required to conduct the necessary tradeoff studies and comparisons. A thermal management engineering computer code that is under development and being managed at Wright Laboratory, Wright-Patterson AFB, is discussed. The primary goal of the code is to aid in the development of a hypersonic vehicle TMS that has been optimized and integrated on a total vehicle basis.

  18. Inversion Approach For Thermal Data From A Convecting Hydrothermal System

    Energy Technology Data Exchange (ETDEWEB)

    Kasameyer, P.; Younker, L.; Hanson, J.

    1985-01-01

    Hydrothermal systems are often studied by collecting thermal gradient data and temperature depth curves. These data contain important information about the flow field, the evolution of the hydrothermal system, and the location and nature of the ultimate heat sources. Thermal data are conventionally interpreted by the ''forward'' method; the thermal field is calculated based on selected initial conditions and boundary conditions such as temperature and permeability distributions. If the calculated thermal field matches the data, the chosen conditions are inferred to be possibly correct. Because many sets of initial conditions may produce similar thermal fields, users of the ''forward'' method may inadvertently miss the correct set of initial conditions. Analytical methods for ''inverting'' data also allow the determination of all the possible solutions consistent with the definition of the problem. In this paper we suggest an approach for inverting thermal data from a hydrothermal system, and compare it to the more conventional approach. We illustrate the difference in the methods by comparing their application to the Salton Sea Geothermal Field by Lau (1980a) and Kasameyer, et al. (1984). In this particular example, the inverse method was used to draw conclusions about the age and total rate of fluid flow into the hydrothermal system.

  19. VOC emissions from residential combustion of Southern and mid-European woods

    Science.gov (United States)

    Evtyugina, Margarita; Alves, Célia; Calvo, Ana; Nunes, Teresa; Tarelho, Luís; Duarte, Márcio; Prozil, Sónia O.; Evtuguin, Dmitry V.; Pio, Casimiro

    2014-02-01

    Emissions of trace gases (carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbons (THC)), and volatile organic compounds (VOCs) from combustion of European beech, Pyrenean oak and black poplar in a domestic woodstove and fireplace were studied. These woods are widely used as biofuel in residential combustion in Southern and mid-European countries. VOCs in the flue gases were collected in Tedlar bags, concentrated in sorbent tubes and analysed by thermal desorption-gas chromatography-flame ionisation detection (GC-FID). CO2 emissions ranged from 1415 ± 136 to 1879 ± 29 g kg-1 (dry basis). The highest emission factors for CO and THC, 115.8 ± 11.7 and 95.6 24.7 ± 6.3 g kg-1 (dry basis), respectively, were obtained during the combustion of black poplar in the fireplace. European beech presented the lowest CO and THC emission factors for both burning appliances. Significant differences in emissions of VOCs were observed among wood species burnt and combustion devices. In general the highest emission factors were obtained from the combustion of Pyrenean oak in the woodstove. Among the VOCs identified, benzene and related compounds were always the most abundant group, followed by oxygenated compounds and aliphatic hydrocarbons. The amount and the composition of emitted VOCs were strongly affected by the wood composition, the type of burning device and operating conditions. Emission data obtained in this work are useful for modelling the impact of residential wood combustion on air quality and tropospheric ozone formation.

  20. Reducing VOC Press Emission from OSB Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gary D. McGinnis; Laura S. WIlliams; Amy E. Monte; Jagdish Rughani: Brett A. Niemi; Thomas M. Flicker

    2001-12-31

    Current regulations require industry to meet air emission standards with regard to particulates, volatile organic compounds (VOCs), hazardous air pollutants (HAPs) and other gases. One of many industries that will be affected by the new regulations is the wood composites industry. This industry generates VOCs, HAPs, and particulates mainly during the drying and pressing of wood. Current air treatment technologies for the industry are expensive to install and operate. As regulations become more stringent, treatment technologies will need to become more efficient and cost effective. The overall objective of this study is to evaluate the use of process conditions and chemical additives to reduce VOC/HAPs in air emitted from presses and dryers during the production of oriented strand board.

  1. Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    KAUST Repository

    Yukawa, Satoshi

    2009-02-15

    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.

  2. Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    KAUST Repository

    Yukawa, Satoshi; Shimada, Takashi; Ogushi, Fumiko; Ito, Nobuyasu

    2009-01-01

    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.

  3. Development of thermal fatigue evaluation methods of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo; Matsumoto, Masaaki

    2014-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and many patterns, so that their problems still occur in spite of well-known issues. The guideline of the JSME (Japan Society of Mechanical Engineering) for estimation of thermal fatigue failures in piping system is employed as Japanese regulation. To improve this guideline, generation mechanisms of thermal load and fatigue failure have been investigated and summarized into the knowledgebase. And numerical simulation methods to replace experimental based methods were studied. Furthermore, probabilistic failure analysis approach with main influence parameters was investigated to be applied for the plant system safety. Thus, based on the knowledge, estimation methods revised from the JSME guideline were proposed. (author)

  4. Volatile organic compounds (VOCs) emission characteristics and control strategies for a petrochemical industrial area in middle Taiwan.

    Science.gov (United States)

    Yen, Chia-Hsien; Horng, Jao-Jia

    2009-11-01

    This study investigated VOC emissions from the largest petrochemical industrial district in Taiwan and recommended some control measures to reduce VOC emissions. In addition to the petrochemical industry, the district encompasses a chemical and fiber industry, a plastics industry and a harbor, which together produce more than 95% of the VOC emissions in the area. The sequence of VOC emission was as follows: components (e.g., valves, flanges, and pumps) (47%) > tanks (29%) > stacks (15%) > wastewater treatment facility (6%) > loading (2%) > flares (1%). Other plants producing high-density polyethylene (HDPE), styrene, ethylene glycol (EG), gas oil, and iso-nonyl-alchol (INA) were measured to determine the VOC leaching in the district. The VOC emissions of these 35 plants (90% of all plants) were less than 100 tons/year. About 74% of the tanks were fixed-roof tanks that leached more VOCs than the other types of tanks. To reduce leaching, the components should be checked periodically, and companies should be required to follow the Taiwan EPA regulations. A VOC emission management system was developed in state implementation plans (SIPs) to inspect and reduce emissions in the industrial district.

  5. Thermal stress analysis of space shuttle orbiter wing skin panel and thermal protection system

    Science.gov (United States)

    Ko, William L.; Jenkins, Jerald M.

    1987-01-01

    Preflight thermal stress analysis of the space shuttle orbiter wing skin panel and the thermal protection system (TPS) was performed. The heated skin panel analyzed was rectangular in shape and contained a small square cool region at its center. The wing skin immediately outside the cool region was found to be close to the state of elastic instability in the chordwise direction based on the conservative temperature distribution. The wing skin was found to be quite stable in the spanwise direction. The potential wing skin thermal instability was not severe enough to tear apart the strain isolation pad (SIP) layer. Also, the preflight thermal stress analysis was performed on the TPS tile under the most severe temperature gradient during the simulated reentry heating. The tensile thermal stress induced in the TPS tile was found to be much lower than the tensile strength of the TPS material. The thermal bending of the TPS tile was not severe enough to cause tearing of the SIP layer.

  6. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies.

    Science.gov (United States)

    Huang, Binbin; Lei, Chao; Wei, Chaohai; Zeng, Guangming

    2014-10-01

    Chlorinated volatile organic compounds (Cl-VOCs), including polychloromethanes, polychloroethanes and polychloroethylenes, are widely used as solvents, degreasing agents and a variety of commercial products. These compounds belong to a group of ubiquitous contaminants that can be found in contaminated soil, air and any kind of fluvial mediums such as groundwater, rivers and lakes. This review presents a summary of the research concerning the production levels and sources of Cl-VOCs, their potential impacts on human health as well as state-of-the-art remediation technologies. Important sources of Cl-VOCs principally include the emissions from industrial processes, the consumption of Cl-VOC-containing products, the disinfection process, as well as improper storage and disposal methods. Human exposure to Cl-VOCs can occur through different routes, including ingestion, inhalation and dermal contact. The toxicological impacts of these compounds have been carefully assessed, and the results demonstrate the potential associations of cancer incidence with exposure to Cl-VOCs. Most Cl-VOCs thus have been listed as priority pollutants by the Ministry of Environmental Protection (MEP) of China, Environmental Protection Agency of the U.S. (U.S. EPA) and European Commission (EC), and are under close monitor and strict control. Yet, more efforts will be put into the epidemiological studies for the risk of human exposure to Cl-VOCs and the exposure level measurements in contaminated sites in the future. State-of-the-art remediation technologies for Cl-VOCs employ non-destructive methods and destructive methods (e.g. thermal incineration, phytoremediation, biodegradation, advanced oxidation processes (AOPs) and reductive dechlorination), whose advantages, drawbacks and future developments are thoroughly discussed in the later sections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Thermal Characterization of Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  8. Interior thermal insulation systems for historical building envelopes

    Science.gov (United States)

    Jerman, Miloš; Solař, Miloš; Černý, Robert

    2017-11-01

    The design specifics of interior thermal insulation systems applied for historical building envelopes are described. The vapor-tight systems and systems based on capillary thermal insulation materials are taken into account as two basic options differing in building-physical considerations. The possibilities of hygrothermal analysis of renovated historical envelopes including laboratory methods, computer simulation techniques, and in-situ tests are discussed. It is concluded that the application of computational models for hygrothermal assessment of interior thermal insulation systems should always be performed with a particular care. On one hand, they present a very effective tool for both service life assessment and possible planning of subsequent reconstructions. On the other, the hygrothermal analysis of any historical building can involve quite a few potential uncertainties which may affect negatively the accuracy of obtained results.

  9. CFD Analysis of Thermal Control System Using NX Thermal and Flow

    Science.gov (United States)

    Fortier, C. R.; Harris, M. F. (Editor); McConnell, S. (Editor)

    2014-01-01

    The Thermal Control Subsystem (TCS) is a key part of the Advanced Plant Habitat (APH) for the International Space Station (ISS). The purpose of this subsystem is to provide thermal control, mainly cooling, to the other APH subsystems. One of these subsystems, the Environmental Control Subsystem (ECS), controls the temperature and humidity of the growth chamber (GC) air to optimize the growth of plants in the habitat. The TCS provides thermal control to the ECS with three cold plates, which use Thermoelectric Coolers (TECs) to heat or cool water as needed to control the air temperature in the ECS system. In order to optimize the TCS design, pressure drop and heat transfer analyses were needed. The analysis for this system was performed in Siemens NX Thermal/Flow software (Version 8.5). NX Thermal/Flow has the ability to perform 1D or 3D flow solutions. The 1D flow solver can be used to represent simple geometries, such as pipes and tubes. The 1D flow method also has the ability to simulate either fluid only or fluid and wall regions. The 3D flow solver is similar to other Computational Fluid Dynamic (CFD) software. TCS performance was analyzed using both the 1D and 3D solvers. Each method produced different results, which will be evaluated and discussed.

  10. Seasonal thermal energy storage in shallow geothermal systems: thermal equilibrium stage

    Directory of Open Access Journals (Sweden)

    Nowamooz Hossein

    2016-01-01

    Full Text Available This paper is dedicated to the study of seasonal heat storage in shallow geothermal installations in unsaturated soils for which hydrothermal properties such as degree of saturation and thermal conductivity vary with time throughout the profile. In the model, a semi-analytical model which estimates time-spatial thermal conductivity is coupled with a 2D cylindrical heat transfer modeling using finite difference method. The variation of temperature was obtained after 3 heating and cooling cycles for the different types of loads with maximum thermal load of qmax = 15 W.m−1 with variable angular frequency (8 months of heating and 4 months of cooling.and constant angular frequency (6 months of heating and 6 months of cooling to estimate the necessary number of cycles to reach the thermal equilibrium stage. The results show that we approach a thermal equilibrium stage where the same variation of temperature can be observed in soils after several heating and cooling cycles. Based on these simulations, the necessary number of cycles can be related to the total applied energy on the system and the minimum number of cycles is for a system with the total applied energy of 1.9qmax.

  11. Handling effluent from nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Allen, G.C.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests

  12. NUMERICAL THERMAL ANALYSIS OF A CAR BRAKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2017-06-01

    Full Text Available The study involved performing a numerical thermal analysis of selected components in a car braking system. The primary goal of the study was to determine the regions which are the most susceptible to variations in temperature, and to determine the degree of thermal impact upon them. The analysis was performed using the Abaqus environment. The examined components of the braking system were made of materials reflecting the mechanical properties of the real subassemblies. The FEM analysis enabled determination of the distribution of temperature in the system with respect to the properties of the investigated materials and applied boundary conditions.

  13. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  14. Phase change thermal storage for a solar total energy system

    Science.gov (United States)

    Rice, R. E.; Cohen, B. M.

    1978-01-01

    An analytical and experimental program is being conducted on a one-tenth scale model of a high-temperature (584 K) phase-change thermal energy storage system for installation in a solar total energy test facility at Albuquerque, New Mexico, U.S.A. The thermal storage medium is anhydrous sodium hydroxide with 8% sodium nitrate. The program will produce data on the dynamic response of the system to repeated cycles of charging and discharging simulating those of the test facility. Data will be correlated with a mathematical model which will then be used in the design of the full-scale system.

  15. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    Science.gov (United States)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  16. DNA - A Thermal Energy System Simulator

    DEFF Research Database (Denmark)

    2008-01-01

    DNA is a general energy system simulator for both steady-state and dynamic simulation. The program includes a * component model library * thermodynamic state models for fluids and solid fuels and * standard numerical solvers for differential and algebraic equation systems and is free and portable...... (open source, open use, standard FORTRAN77). DNA is text-based using whichever editor, you like best. It has been integerated with the emacs editor. This is usually available on unix-like systems. for windows we recommend the Installation instructions for windows: First install emacs and then run...... the DNA installer...

  17. Residential Photovoltaic/Thermal Energy System

    Science.gov (United States)

    Selcuk, M. K.

    1987-01-01

    Proposed system supplies house with both heat and electricity. Pair of reports describes concept for self-sufficient heating, cooling, and power-generating system for house. Panels on walls of house provide hot water, space heating, and heat to charge heat-storage system, and generate electricity for circulation pumps and fans. Roof panels generate electricity for household, operate heat pump for summer cooling, and provide supplementary winter heating via heat pump, using solar-cell cooling-fluid loop. Wall and roof panels used independently.

  18. Hot Thermal Storage in a Variable Power, Renewable Energy System

    Science.gov (United States)

    2014-06-01

    where cost effective, increase the utilization of distributed electric power generation through wind, solar, geothermal , and biomass renewable...characteristics and may not necessarily be available in all cases. Types of direct heat energy systems include solar thermal, waste heat, and geothermal ...of super capacitor energy storage system in microgrid,” in International Conference on Sustainable Power Generation and Supply, Janjing, China

  19. Thermal management evaluation of the complex electro-optical system

    Directory of Open Access Journals (Sweden)

    Nijemčević Srećko S.

    2017-01-01

    Full Text Available The thermal management of a complex electro-optical system aimed for outdoor application is challenging task due to the requirement of having an air-sealed enclosure, harsh working environment, and an additional thermal load generated by sunlight. It is essential to consider the effect of heating loads in the system components, as well as the internal temperature distribution, that can have influence on the system life expectancy, operational readiness and parameters, and possibility for catastrophic failure. The main objective of this paper is to analyze internal temperature distribution and evaluate its influence on system component operation capability. The electro-optical system simplified model was defined and related thermal balance simulation model based on Solid Works thermal analysis module was set and applied for temperature distribution calculation. Various outdoor environment scenarios were compared to evaluate system temperature distribution and evaluate its influence on system operation, reliability, and life time in application environment. This work was done during the design process as a part of the electro-optical system optimization. The results show that temperature distribution will not be cause for catastrophic failure and malfunction operation during operation in the expected environment.

  20. Review of the integrated thermal and nonthermal treatment system studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

  1. Review of the integrated thermal and nonthermal treatment system studies

    International Nuclear Information System (INIS)

    1996-08-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering

  2. VOC amounts in ambient areas of a high-technology science park in Taiwan: their reciprocal correlations and impact on inhabitants.

    Science.gov (United States)

    Liu, Hsin-Wang; Wu, Bei-Zen; Nian, Hung-Chi; Chen, Hsing-Jung; Lo, Jiunn-Guang; Chiu, Kong-Hwa

    2012-02-01

    This study presents bihourly, seasonal, and yearly concentration changes in volatile organic compounds (VOCs) in the inlet and effluent water of the wastewater treatment plant (WWTP) of a high-technology science park (HTIP) in Taiwan, with the VOC amounts at different sites correlated geologically. This research adopted a combination of two systems, solid-phase microextraction with a gas chromatography/flame ionization detector and an assembly of purge and trap coupled with gas chromatography/mass spectrometry, to monitor polar and nonpolar VOCs in wastewater. This paper investigated the total VOCs, acetone, isopropyl alcohol (IPA), and dimethylsulfide (DMS) concentrations in real water samples collected in the ambient area of the HTIP. The major contents of VOCs measured in the effluent of the WWTP in the HTIP and the surrounding river region were DMS (14-176 ppb), acetone (5-95 ppb), and IPA (15-316 ppb). In comparison with the total VOCs in the inlet wastewater of the WWTP, no corresponding relationship for total VOC concentration in the wastewater was observed between the inlet water and effluent water of the WWTP. The peak VOC concentrations appeared in the third season, and the correlation of different VOC amounts reflects the production situation of the factories. In addition, VOC concentrations at different sites indicate that the Ke-Ya River is seemingly an effective channel for transporting wastewater to its final destination. The data are good indications for the management of environmental pollution near the HTIP.

  3. Outdoor thermal and electrical characterisation of photovoltaic modules and systems

    OpenAIRE

    Herteleer, Bert

    2016-01-01

    Current and future investors in photovoltaic systems are interested in how well the system performs, and how predictable this is over the expected lifetime. To do so, models have been developed and measurements of photovoltaic systems have been done. This dissertation presents the outdoor measurement set-up that has been developed for thermal and electrical characterisation of photovoltaic modules and systems, aimed at measuring transient effects and changes. The main design decisions and ...

  4. Development & Characterization of a Whole Plant Chamber for the Investigation of Environmental Perturbations on Biogenic VOC Emissions

    Science.gov (United States)

    Holder, J.; Riches, M.; Abeleira, A.; Farmer, D.

    2017-12-01

    Accurate prediction of both climate and air quality under a changing earth system requires a full understanding of the sources, feedbacks, and ultimate fate of all atmospherically relevant chemical species, including volatile organic compounds (VOCs). Biogenic VOCs (BVOC) from plant emissions are the main source of VOCs to the atmosphere. However, the impact of global change on BVOC emissions is poorly understood. For example, while short-term increases in temperature are typically associated with increased BVOC emissions, the impact of long-term temperature increases are less clear. Our study aims to investigate the effects of long-term, singular and combined environmental perturbations on plant BVOC emissions through the use of whole plant chambers in order to better understand the effects of global change on BVOC-climate-air quality feedbacks. To fill this knowledge gap and provide a fundamental understanding of how BVOC emissions respond to environmental perturbations, specifically elevated temperature, CO2, and drought, whole citrus trees were placed in home-built chambers and monitored for monoterpene and other BVOC emissions utilizing thermal desorption gas chromatography mass spectrometry (TD-GC-MS). Designing and building a robust whole plant chamber to study atmospherically relevant chemical species while accommodating the needs of live plants over timescales of days to weeks is not a trivial task. The environmental conditions within the chamber must be carefully controlled and monitored. The inter-plant and chamber variability must be characterized. Finally, target BVOCs need to be sampled and detected from the chamber. Thus, the chamber design, control and characterization considerations along with preliminary BVOC results will be presented and discussed.

  5. Suns-VOC characteristics of high performance kesterite solar cells

    Science.gov (United States)

    Gunawan, Oki; Gokmen, Tayfun; Mitzi, David B.

    2014-08-01

    Low open circuit voltage (VOC) has been recognized as the number one problem in the current generation of Cu2ZnSn(Se,S)4 (CZTSSe) solar cells. We report high light intensity and low temperature Suns-VOC measurement in high performance CZTSSe devices. The Suns-VOC curves exhibit bending at high light intensity, which points to several prospective VOC limiting mechanisms that could impact the VOC, even at 1 sun for lower performing samples. These VOC limiting mechanisms include low bulk conductivity (because of low hole density or low mobility), bulk or interface defects, including tail states, and a non-ohmic back contact for low carrier density CZTSSe. The non-ohmic back contact problem can be detected by Suns-VOC measurements with different monochromatic illuminations. These limiting factors may also contribute to an artificially lower JSC-VOC diode ideality factor.

  6. Solar thermally driven cooling systems: Some investigation results and perspectives

    International Nuclear Information System (INIS)

    Ajib, Salman; Günther, Wolfgang

    2013-01-01

    Highlights: ► Two types of solar thermally driven absorption refrigeration machines (ARMs) have been investigated. ► We investigated the influence of the operating conditions on the effectiveness of the ARMs. ► The influence of the flow rate of the work solution on the effectiveness of the ARMs has been tested. ► Two laboratory test plants have been built and tested under different operating conditions. - Abstract: A big increase in the number of solar thermal cooling installations and research efforts could be seen over the last years worldwide. Especially the producers of solar thermal collectors and systems have been looking for thermal chillers in the small capacity range to provide air conditioning for one or two family houses. Furthermore, many developments aim to increase the efficiency of the system and to decrease the specific costs of the produced refrigeration capacity. The growth in the use of solar thermal cooling systems amounted about 860% from 52 units in 2004 to 450 units in 2009 [1]. This tendency is expected to be continuously in the next years. The practical examinations on solar thermally driven absorption machines with refrigeration capacity of 15, 10 and 5 kW have shown that this technology has a good chance to be standardized and to replace partly the conventional one. These systems can save more primary energy at high fraction of solar thermally driving by suitable control and regulation of the system. The investing costs still higher as the conventional one, however, the operating costs are less than the conventional one. The Coefficient of Performance (COP) depends on the kind of the system, work temperatures and conditions as well as the refrigeration capacity of the systems. It lies between 0.4 and 1.2. In the framework of the research on this field, we built, tested and measured two prototypes. After measuring the first prototype, the chillers were redesigned to reduce internal heat losses and make the heat and mass transfer

  7. Solar thermal power systems point-focusing thermal and electric applications projects. Volume 1: Executive summary

    Science.gov (United States)

    Marriott, A.

    1980-01-01

    The activities of the Point-Focusing Thermal and Electric Applications (PETEA) project for the fiscal year 1979 are summarized. The main thrust of the PFTEA Project, the small community solar thermal power experiment, was completed. Concept definition studies included a small central receiver approach, a point-focusing distributed receiver system with central power generation, and a point-focusing distributed receiver concept with distributed power generation. The first experiment in the Isolated Application Series was initiated. Planning for the third engineering experiment series, which addresses the industrial market sector, was also initiated. In addition to the experiment-related activities, several contracts to industry were let and studies were conducted to explore the market potential for point-focusing distributed receiver (PFDR) systems. System analysis studies were completed that looked at PFDR technology relative to other small power system technology candidates for the utility market sector.

  8. Improvements in or relating to thermal barrier systems

    International Nuclear Information System (INIS)

    Birch, W.; Pearson, R.

    1976-01-01

    Reference is made to thermal barrier systems for the internal surface of gas cooled reactor prestressed concrete pressure vessels. Provision has to be made to anchor the thermal barrier system to a metal limit within the pressure vessel, and the object of the arrangement described is to provided a suitable attachment means. The thermal barrier may consist of a number of plates arranged in overlapped fashion or having flexible joint portions. A problem that arises concerns anchoring of the hot plates to the cold pressure vessel by a rigid attachment, and the design must be such as to ensure adequate bending and axial strength compatible with a minimum heat conduction area and allowable thermal stress. The arrangement must also allow easy installation. The arrangement described also provides for a 'fail-safe' structure. It comprises a metal stud with a hollow body; two or more helical channels are provided through the side walls of the body. The body portion expands or contracts to accommodate axial temperature gradient stress set up by the temperature difference between the pressure vessel and the thermal barrier. The space between the thermal barrier and the pressure vessel may contain solid insulating material. (U.K.)

  9. A Thermal Test System for Helmet Cooling Studies

    Directory of Open Access Journals (Sweden)

    Shaun Fitzgerald

    2018-02-01

    Full Text Available One of the primary causes of discomfort to both irregular and elite cyclists is heat entrapment by a helmet resulting in overheating and excessive sweating of the head. To accurately assess the cooling effectiveness of bicycle helmets, a heated plastic thermal headform has been developed. The construction consists of a 3D-printed headform of low thermal conductivity with an internal layer of high thermal mass that is heated to a constant uniform temperature by an electrical heating element. Testing is conducted in a wind tunnel where the heater power remains constant and the resulting surface temperature distribution is directly measured by 36 K-type thermocouples embedded within the surface of the head in conjunction with a thermal imaging camera. Using this new test system, four bicycle helmets were studied in order to measure their cooling abilities and to identify ‘hot spots’ where cooling performance is poor.

  10. System to Measure Thermal Conductivity and Seebeck Coefficient for Thermoelectrics

    Science.gov (United States)

    Kim, Hyun-Jung; Skuza, Jonathan R.; Park, Yeonjoon; King, Glen C.; Choi, Sang H.; Nagavalli, Anita

    2012-01-01

    The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at elevated temperatures. This has led to the implementation of nonstandardized practices that have further complicated the confirmation of reported high ZT materials. The major objective of the procedure described is for the simultaneous measurement of the Seebeck coefficient and thermal diffusivity within a given temperature range. These thermoelectric measurements must be precise, accurate, and reproducible to ensure meaningful interlaboratory comparison of data. The custom-built thermal characterization system described in this NASA-TM is specifically designed to measure the inplane thermal diffusivity, and the Seebeck coefficient for materials in the ranging from 73 K through 373 K.

  11. Thermal performance of various multilayer insulation systems below 80K

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1992-04-01

    The SSC collider dipole cryostat consists of a vacuum shell operating at room temperature, two thermal shields operating near 80K and 20K respectively, and the superconducting magnet assembly operating near 4K. The cryostat design incorporates multilayer insulation (MLI) blankets to limit radiant heat transfer into the 80K and 20K thermal shields. Also, an MLI blanket is used to impede heat transfer through residual gas conduction into the 4K superconducting magnet assembly. A measurement facility at Fermilab has been used to experimentally optimize the thermal insulation system for the dipole cryostat. Previous thermal measurements have been used to define the 80K MLI system configuration and verify system performance. With the 80K MLI system defined, the current effort has focused on experimentally defining the optimum insulation scheme for the 20K thermal shield. The SSC design specification requires that radiant heat transfer be limited to 0.093 W/m 2 at an insulating vacuum of 10 -6 torr

  12. Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  13. Review of the integrated thermal and nonthermal treatment system studies

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, H.A.; Schmidt, L.J.; Erickson, T.A.; Sondreal, E.A.; Erjavec, J.; Steadman, E.N.; Fabrycky, W.J.; Wilson, J.S.; Musich, M.A.

    1996-07-01

    This report analyzes three systems engineering (SE) studies performed on integrated thermal treatment systems (ITTSs) and integrated nonthermal treatment systems (INTSs) for the remediation of mixed low-level waste (MLLW) stored throughout the US Department of Energy (DOE) weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center (EERC), Science Applications International Corporation (SAIC), the Waste Policy Institute (WPI), and Virginia Tech (VT). The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions taken in the studies might bias the resulting economic evaluations of both thermal and nonthermal systems, (2) identify the critical areas of the studies that would benefit from further investigation, and (3) develop a standard template that could be used in future studies to produce sound SE applications.

  14. Tehachapi solar thermal system first annual report

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, A. [Southwest Technology Development Inst., Las Cruces, NM (US)

    1993-05-01

    The staff of the Southwest Technology Development Institute (SWTDI), in conjunction with the staff of Industrial Solar Technology (IST), have analyzed the performance, operation, and maintenance of a large solar process heat system in use at the 5,000 inmate California Correctional Institution (CCI) in Tehachapi, CA. This report summarizes the key design features of the solar plant, its construction and maintenance histories through the end of 1991, and the performance data collected at the plant by a dedicated on-site data acquisition system (DAS).

  15. Modeling and analysis of a robust thermal control system based on forced convection thermal switches

    Science.gov (United States)

    Williams, Andrew D.; Palo, Scott E.

    2006-05-01

    There is a critical need, not just in the Department of Defense (DOD) but the entire space industry, to reduce the development time and overall cost of satellite missions. To that end, the DOD is actively pursuing the capability to reduce the deployment time of a new system from years to weeks or even days. The goal is to provide the advantages space affords not just to the strategic planner but also to the battlefield commanders. One of the most challenging aspects of this problem is the satellite's thermal control system (TCS). Traditionally the TCS must be vigorously designed, analyzed, tested, and optimized from the ground up for every satellite mission. This "reinvention of the wheel" is costly and time intensive. The next generation satellite TCS must be modular and scalable in order to cover a wide range of applications, orbits, and mission requirements. To meet these requirements a robust thermal control system utilizing forced convection thermal switches was investigated. The problem was investigated in two separate stages. The first focused on the overall design of the bus. The second stage focused on the overarching bus architecture and the design impacts of employing a thermal switch based TCS design. For the hot case, the fan provided additional cooling to increase the heat transfer rate of the subsystem. During the cold case, the result was a significant reduction in survival heater power.

  16. Energy demand and thermal comfort of HVAC systems with thermally activated building systems as a function of user profile

    Science.gov (United States)

    Pałaszyńska, Katarzyna; Bandurski, Karol; Porowski, Mieczysław

    2017-11-01

    Thermally Activated Building Systems (TABS) are a way to use building structure as a thermal energy storage. As a result, renewable energy sources may be used more efficiently. The paper presents numerical analysis of a HVAC system with TABS energy demand and indoor thermal comfort of a representative room in a non-residential building (governmental, commercial, educational). The purpose of analysis is to investigate the influence of a user profile on system performance. The time span of the analysis is one year - a typical meteorological year. The model was prepared using a generally accepted simulation tool - TRNSYS 17. The results help to better understand the interaction of a user profile with TABS. Therefore they are important for the development of optimal control algorithms for energy efficient buildings equipped with such systems.

  17. Energy demand and thermal comfort of HVAC systems with thermally activated building systems as a function of user profile

    Directory of Open Access Journals (Sweden)

    Pałaszyńska Katarzyna

    2017-01-01

    Full Text Available Thermally Activated Building Systems (TABS are a way to use building structure as a thermal energy storage. As a result, renewable energy sources may be used more efficiently. The paper presents numerical analysis of a HVAC system with TABS energy demand and indoor thermal comfort of a representative room in a non-residential building (governmental, commercial, educational. The purpose of analysis is to investigate the influence of a user profile on system performance. The time span of the analysis is one year – a typical meteorological year. The model was prepared using a generally accepted simulation tool – TRNSYS 17. The results help to better understand the interaction of a user profile with TABS. Therefore they are important for the development of optimal control algorithms for energy efficient buildings equipped with such systems.

  18. Low VOC Barrier Coating for Industrial Maintenance

    Science.gov (United States)

    2012-09-01

    VOC Total Solids (wt) Total Solids (volume) Percent Pigment Stormer Viscosity Brookfield Viscosity Pot Life Sag Resistance Theoretical...Percent Pigment – Stormer Viscosity – Brookfield Viscosity – Pot Life – Sag Resistance – Theoretical Coverage – Drying Times – Mixing Ratio

  19. Improved thermal isolation for superconducting magnet systems

    Science.gov (United States)

    Wiebe, E. R.

    1974-01-01

    Closed-cycle refrigerating system for superconductive magnet and maser is operated in vacuum environment. Each wire leading from external power source passes through cooling station which blocks heat conduction. In connection with these stations, switch with small incandescent light bulb, which generates heat, is used to stop superconduction.

  20. Thermal photovoltaic solar integrated system analysis using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    The energy demand in Jordan is primarily met by petroleum products. As such, the development of renewable energy systems is quite attractive. In particular, solar energy is a promising renewable energy source in Jordan and has been used for food canning, paper production, air-conditioning and sterilization. Artificial neural networks (ANNs) have received significant attention due to their capabilities in forecasting, modelling of complex nonlinear systems and control. ANNs have been used for forecasting solar energy. This paper presented a study that examined a thermal photovoltaic solar integrated system that was built in Jordan. Historical input-output system data that was collected experimentally was used to train an ANN that predicted the collector, PV module, pump and total efficiencies. The model predicted the efficiencies well and can therefore be utilized to find the operating conditions of the system that will produce the maximum system efficiencies. The paper provided a description of the photovoltaic solar system including equations for PV module efficiency; pump efficiency; and total efficiency. The paper also presented data relevant to the system performance and neural networks. The results of a neural net model were also presented based on the thermal PV solar integrated system data that was collected. It was concluded that the neural net model of the thermal photovoltaic solar integrated system set the background for achieving the best system performance. 10 refs., 6 figs.

  1. High temperature underground thermal energy storage system for solar energy

    Science.gov (United States)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  2. Performance of a thermal neutron radiographic system using imaging plates

    International Nuclear Information System (INIS)

    Silvani, Maria Ines; Almeida, Gevaldo L. de; Furieri, Rosanne; Lopes, Ricardo T.

    2009-01-01

    A performance evaluation of a neutron radiographic system equipped with a thermal neutron sensitive imaging plate has been undertaken. It includes the assessment of spatial resolution, linearity, dynamic range and the response to exposure time, as well as a comparison of these parameters with the equivalent ones for neutron radiography employing conventional films and a gadolinium foil as converter. The evaluation and comparison between the radiographic systems have been performed at the Instituto de Engenharia Nuclear - CNEN, using the Argonauta Reactor as source of thermal neutrons and a commercially available imaging plate reader. (author)

  3. Thermal Design of a Protomodel Space Infrared Cryogenic System

    Directory of Open Access Journals (Sweden)

    Hyung Suk Yang

    2006-06-01

    Full Text Available A Protomodel Space Infrared Cryogenic System (PSICS cooled by a stirling cryocooler has been designed. The PSICS has an IR sensor inside the cold box which is cooled by a stirling cryocooler with refrigeration capacity of 500mW at 80K in a vacuum vessel. It is important to minimize the heat load so that the background thermal noise can be reduced. In order to design the cryogenic system with low heat load and to reduce the remained heat load, we have performed numerical analyses. In this paper, we present the design factors and the results obtained by the thermal analysis of the PSICS.

  4. Fungal colonization of fiberglass insulation in the air distribution system of a multi-story office building: VOC production and possible relationship to a sick building syndrome

    Science.gov (United States)

    Ahearn, D. G.; Crow, S. A.; Simmons, R. B.; Price, D. L.; Noble, J. A.; Mishra, S. K.; Pierson, D. L.

    1996-01-01

    Complaints characteristic of those for sick building syndrome prompted mycological investigations of a modern multi-story office building on the Gulf coast in the Southeastern United States (Houston-Galveston area). The air handling units and fiberglass duct liner of the heating, ventilating and air conditioning system of the building, without a history of catastrophic or chronic water damage, demonstrated extensive colonization with Penicillium spp and Cladosporium herbarum. Although dense fungal growth was observed on surfaces within the heating-cooling system, most air samples yielded fewer than 200 CFU m-3. Several volatile compounds found in the building air were released also from colonized fiberglass. Removal of colonized insulation from the floor receiving the majority of complaints of mouldy air and continuous operation of the units supplying this floor resulted in a reduction in the number of complaints.

  5. MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance

    Science.gov (United States)

    Nasir, Farah H. M.; Husaini, Yusnira

    2018-03-01

    The efficiency of the photovoltaic reduces when the photovoltaic cell temperature increased due to solar irradiance. One solution is come up with the cooling system photovoltaic system. This combination is forming the photovoltaic-thermal (PV/T) system. Not only will it generate electricity also heat at the same time. The aim of this research is to focus on the modeling and simulation of photovoltaic (PV) and photovoltaic-thermal (PV/T) electrical performance by using single-diode equivalent circuit model. Both PV and PV/T models are developed in Matlab/Simulink. By providing the cooling system in PV/T, the efficiency of the system can be increased by decreasing the PV cell temperature. The maximum thermal, electrical and total efficiency values of PV/T in the present research are 35.18%, 15.56% and 50.74% at solar irradiance of 400 W/m2, mass flow rate of 0.05kgs-1 and inlet temperature of 25 °C respectively has been obtained. The photovoltaic-thermal shows that the higher efficiency performance compared to the photovoltaic system.

  6. Thermal Storage Systems Assessment for Energy Sustainability in Housing Units

    Directory of Open Access Journals (Sweden)

    Tania I. Lagunes Vega

    2016-04-01

    Full Text Available In order to achieve greater enhancements in energy sustainability for housing, the function and efficiency of two different passive cooling systems were studied: encapsulated water in recycled bottles of Polyethylene terephthalate (PET and polystyrene plates, in comparison with standard concrete slab systems, which are customarily used in housing. Experiments were placed over a tile surface, in which temperature changes were monitored for a period of 20 days from 08:00 to 20:00. The efficiency of passive thermal storage systems was endorsed through statistical analysis using the “SPSS” software. This resulted in a 17% energy saving, thus promoting energy sustainability in housing units, which reduces the use of electrical appliances required to stabilize conditions to achieve optimum thermal comfort for the human body inside a house, therefore, reducing electrical power consumption, CO2 emissions to the atmosphere and generating savings. Due to the complexity of a system with temperature changes, a fractal analysis was performed for each experimental system, using the “Benoit” software (V.1.3 with self-compatible tools of rescaled range (R/S and a wavelets method, showing that the thermal fluctuations on the tiles with the thermal storage system adapt to the rescaled range analysis and the regular tiles adapt to the wavelets method.

  7. Thermal performance of Danish solar combi systems in practice and in theory

    DEFF Research Database (Denmark)

    Andersen, Elsa; Shah, Louise Jivan; Furbo, Simon

    2004-01-01

    An overview of measured thermal performances of Danish solar combi systems in practice is given. The thermal performance varies greatly from system to system. Measured and calculated thermal performances of different solar combi systems are compared and the main reasons for the different thermal ...... as theoretically expected....

  8. Ambient Volatile Organic Compounds (VOCs) pollution in Isolo ...

    African Journals Online (AJOL)

    The adsorbed VOCs were desorbed with carbondisulphide (CS2) and the solution analysed using Gas Chromatography (GC) fitted with Flame Ionization Detector (FID). The results from analysis of the air samples collected showed that twenty-six (26) VOCs were captured in Isolo Industrial area. The VOCs were classified ...

  9. Avoided operating costs in thermal generating systems

    International Nuclear Information System (INIS)

    Chowdhury, N.; Billinton, R.; Gupta, R.

    1995-01-01

    A simple and straightforward technique was developed to assess avoided system operating costs associated with non-utility generation (NUG). The technique was based on optimum loading configurations of the committed units both before and after the inclusion of NUG energy. The salient features of the technique were presented in this paper. Assessment of avoided operating cost with deterministic and probabilistic criteria were explained. A time differentiated price system was adopted in the algorithms to reflect the different value placed on purchased price by a utility at different times of the day. The algorithms show the utility effects of dispatchable and non-dispatchable NUG energies. The IEEE Reliability Test System (RTS) was utilized for numerical analysis. Results were illustrated. It was found that sensitivity studies similar to those performed on the IEEE-RTS could be utilized to determine the amount of energy and the time period during which utilities and NUGs can maximize their economic benefits. 7 refs., 5 figs., 1 tab

  10. Comprehensive Analysis of the Gas- and Particle-Phase Products of VOC Oxidation

    Science.gov (United States)

    Bakker-Arkema, J.; Ziemann, P. J.

    2017-12-01

    Controlled environmental chamber studies are important for determining atmospheric reaction mechanisms and gas and aerosol products formed in the oxidation of volatile organic compounds (VOCs). Such information is necessary for developing detailed chemical models for use in predicting the atmospheric fate of VOCs and also secondary organic aerosol (SOA) formation. However, complete characterization of atmospheric oxidation reactions, including gas- and particle-phase product yields, and reaction branching ratios, are difficult to achieve. In this work, we investigated the reactions of terminal and internal alkenes with OH radicals in the presence of NOx in an attempt to fully characterize the chemistry of these systems while minimizing and accounting for the inherent uncertainties associated with environmental chamber experiments. Gas-phase products (aldehydes formed by alkoxy radical decomposition) and particle-phase products (alkyl nitrates, β-hydroxynitrates, dihydroxynitrates, 1,4-hydroxynitrates, 1,4-hydroxycarbonyls, and dihydroxycarbonyls) formed through pathways involving addition of OH to the C=C double bond as well as H-atom abstraction were identified and quantified using a suite of analytical techniques. Particle-phase products were analyzed in real time with a thermal desorption particle beam mass spectrometer; and off-line by collection onto filters, extraction, and subsequent analysis of functional groups by derivatization-spectrophotometric methods developed in our lab. Derivatized products were also separated by liquid chromatography for molecular quantitation by UV absorbance and identification using chemical ionization-ion trap mass spectrometry. Gas phase aldehydes were analyzed off-line by collection onto Tenax and a 5-channel denuder with subsequent analysis by gas chromatography, or by collection onto DNPH-coated cartridges and subsequent analysis by liquid chromatography. The full product identification and quantitation, with careful

  11. Electric vehicles batteries thermal management systems employing phase change materials

    Science.gov (United States)

    Ianniciello, Lucia; Biwolé, Pascal Henry; Achard, Patrick

    2018-02-01

    Battery thermal management is necessary for electric vehicles (EVs), especially for Li-ion batteries, due to the heat dissipation effects on those batteries. Usually, air or coolant circuits are employed as thermal management systems in Li-ion batteries. However, those systems are expensive in terms of investment and operating costs. Phase change materials (PCMs) may represent an alternative which could be cheaper and easier to operate. In fact, PCMs can be used as passive or semi-passive systems, enabling the global system to sustain near-autonomous operations. This article presents the previous developments introducing PCMs for EVs battery cooling. Different systems are reviewed and solutions are proposed to enhance PCMs efficiency in those systems.

  12. Thermal effects in gravitational Hartree systems

    Energy Technology Data Exchange (ETDEWEB)

    Aki, Gonca L. [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Dolbeault, Jean [Paris-Dauphine Univ. (FR). Ceremade (UMR CNRS 7534); Sparber, Christof [Illinois Univ., Chicago, IL (United States). Dept. of Mathematics, Statistics, and Computer Science

    2010-07-01

    We consider the non-relativistic Hartree model in the gravitational case, i.e. with attractive Coulomb-Newton interaction. For a given mass M>0, we construct stationary states with non-zero temperature T by minimizing the corresponding free energy functional. It is proved that minimizers exist if and only if the temperature of the system is below a certain threshold T*>0 (possibly infinite), which itself depends on the specific choice of the entropy functional. We also investigate whether the corresponding minimizers are mixed or pure quantum states and characterize a critical temperature T{sub c} element of (0,T*) above which mixed states appear. (orig.)

  13. Thermal Effects in Gravitational Hartree Systems

    KAUST Repository

    Aki, Gonca L.

    2011-04-06

    We consider the non-relativistic Hartree model in the gravitational case, i. e. with attractive Coulomb-Newton interaction. For a given mass M > 0, we construct stationary states with non-zero temperature T by minimizing the corresponding free energy functional. It is proved that minimizers exist if and only if the temperature of the system is below a certain threshold T* > 0 (possibly infinite), which itself depends on the specific choice of the entropy functional. We also investigate whether the corresponding minimizers are mixed or pure quantum states and characterize a critical temperature Tc ∈ (0,T*) above which mixed states appear. © 2011 Springer Basel AG.

  14. Thermal-economic analysis of cogeneration systems

    International Nuclear Information System (INIS)

    Walter, A.C.S.; Bajay, S.V.

    1992-01-01

    Approximately 80 countries produce sugar, and fortuitously alcohol, from sugar cane. In all these countries the cogeneration technology of steam turbines is utilized, although almost always inefficient. The greater potential of cogeneration in Brazil is in sugar and alcohol sector, because of the use of sugar cane bagasse as combustible. This work applies the techniques of simulation and economic analysis to different configuration of plants, to determine power generation and associated costs of each alternative. The application of the same procedure at operating condition of several configurations in transient system permits the determination of production profile of exceeding during one day. (C.M.)

  15. Thermal Effects in Gravitational Hartree Systems

    KAUST Repository

    Aki, Gonca L.; Dolbeault, Jean; Sparber, Christof

    2011-01-01

    We consider the non-relativistic Hartree model in the gravitational case, i. e. with attractive Coulomb-Newton interaction. For a given mass M > 0, we construct stationary states with non-zero temperature T by minimizing the corresponding free energy functional. It is proved that minimizers exist if and only if the temperature of the system is below a certain threshold T* > 0 (possibly infinite), which itself depends on the specific choice of the entropy functional. We also investigate whether the corresponding minimizers are mixed or pure quantum states and characterize a critical temperature Tc ∈ (0,T*) above which mixed states appear. © 2011 Springer Basel AG.

  16. A comparative study of fungal and bacterial biofiltration treating a VOC mixture

    International Nuclear Information System (INIS)

    Estrada, José M.; Hernández, Sergio; Muñoz, Raúl; Revah, Sergio

    2013-01-01

    Highlights: ► Bacterial biofilter showed better EC and ΔP than fungal biofilter. ► The preferential biodegradation order was: propanal > hexanol > MIBK > toluene. ► Propanal partially inhibited the biodegradation of the rest of VOCs. ► The two-stage biofilter showed a higher stability than the individual units. -- Abstract: Bacterial biofilters usually exhibit a high microbial diversity and robustness, while fungal biofilters have been claimed to better withstand low moisture contents and pH values, and to be more efficient coping with hydrophobic volatile organic compounds (VOCs). However, there are only few systematic evaluations of both biofiltration technologies. The present study compared fungal and bacterial biofiltration for the treatment of a VOC mixture (propanal, methyl isobutyl ketone-MIBK, toluene and hexanol) under the same operating conditions. Overall, fungal biofiltration supported lower elimination capacities than its bacterial counterpart (27.7 ± 8.9 vs 40.2 ± 5.4 g C m −3 reactor h −1 ), which exhibited a final pressure drop 60% higher than that of the bacterial biofilter due to mycelial growth. The VOC mineralization ratio was also higher in the bacterial bed (≈63% vs ≈43%). However, the substrate biodegradation preference order was similar for both biofilters (propanal > hexanol > MIBK > toluene) with propanal partially inhibiting the consumption of the rest of the VOCs. Both systems supported an excellent robustness versus 24 h VOC starvation episodes. The implementation of a fungal/bacterial coupled system did not significantly improve the VOC removal performance compared to the individual biofilter performances

  17. A comparative study of fungal and bacterial biofiltration treating a VOC mixture

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, José M. [Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Artificios 40, Col. Miguel Hidalgo, Delegación Álvaro Obregón (Mexico); Departamento de Ingeniería Química y Tecnología del Medio Ambiente – Universidad de Valladolid, Valladolid (Spain); Hernández, Sergio [Departmento de Procesos e Hidráulica – Universidad Autónoma Metropolitana – Iztapalapa Mexico D.F. Mexico (Mexico); Muñoz, Raúl [Departamento de Ingeniería Química y Tecnología del Medio Ambiente – Universidad de Valladolid, Valladolid (Spain); Revah, Sergio, E-mail: srevah@xanum.uam.mx [Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Artificios 40, Col. Miguel Hidalgo, Delegación Álvaro Obregón (Mexico)

    2013-04-15

    Highlights: ► Bacterial biofilter showed better EC and ΔP than fungal biofilter. ► The preferential biodegradation order was: propanal > hexanol > MIBK > toluene. ► Propanal partially inhibited the biodegradation of the rest of VOCs. ► The two-stage biofilter showed a higher stability than the individual units. -- Abstract: Bacterial biofilters usually exhibit a high microbial diversity and robustness, while fungal biofilters have been claimed to better withstand low moisture contents and pH values, and to be more efficient coping with hydrophobic volatile organic compounds (VOCs). However, there are only few systematic evaluations of both biofiltration technologies. The present study compared fungal and bacterial biofiltration for the treatment of a VOC mixture (propanal, methyl isobutyl ketone-MIBK, toluene and hexanol) under the same operating conditions. Overall, fungal biofiltration supported lower elimination capacities than its bacterial counterpart (27.7 ± 8.9 vs 40.2 ± 5.4 g C m{sup −3} reactor h{sup −1}), which exhibited a final pressure drop 60% higher than that of the bacterial biofilter due to mycelial growth. The VOC mineralization ratio was also higher in the bacterial bed (≈63% vs ≈43%). However, the substrate biodegradation preference order was similar for both biofilters (propanal > hexanol > MIBK > toluene) with propanal partially inhibiting the consumption of the rest of the VOCs. Both systems supported an excellent robustness versus 24 h VOC starvation episodes. The implementation of a fungal/bacterial coupled system did not significantly improve the VOC removal performance compared to the individual biofilter performances.

  18. Thermal Effect on Fracture Integrity in Enhanced Geothermal Systems

    Science.gov (United States)

    Zeng, C.; Deng, W.; Wu, C.; Insall, M.

    2017-12-01

    In enhanced geothermal systems (EGS), cold fluid is injected to be heated up for electricity generation purpose, and pre-existing fractures are the major conduits for fluid transport. Due to the relative cold fluid injection, the rock-fluid temperature difference will induce thermal stress along the fracture wall. Such large thermal stress could cause the failure of self-propping asperities and therefore change the fracture integrity, which could affect the heat recovery efficiency and fluid recycling. To study the thermal effect on fracture integrity, two mechanisms pertinent to thermal stress are proposed to cause asperity contact failure: (1) the crushing between two pairing asperities leads to the failure at contact area, and (2) the thermal spalling expedites this process. Finite element modeling is utilized to investigate both failure mechanisms by idealizing the asperities as hemispheres. In the numerical analysis, we have implemented meso-scale damage model to investigate coupled failure mechanism induced by thermomechanical stress field and original overburden pressure at the vicinity of contact point. Our results have shown that both the overburden pressure and a critical temperature determine the threshold of asperity failure. Since the overburden pressure implies the depth of fractures in EGS and the critical temperature implies the distance of fractures to the injection well, our ultimate goal is to locate a region of EGS where the fracture integrity is vulnerable to such thermal effect and estimate the influences.

  19. Active Wireless Temperature Sensors for Aerospace Thermal Protection Systems

    Science.gov (United States)

    Milos, Frank S.; Karunaratne, K.; Arnold, Jim (Technical Monitor)

    2002-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and Korteks to develop active wireless sensors that can be embedded in the thermal protection system to monitor sub-surface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuitry to enable acquisition and non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 2.54-cm square integrated circuit.

  20. Integrated thermal treatment systems study. Internal review panel report

    International Nuclear Information System (INIS)

    Cudahy, J.; Escarda, T.; Gimpel, R.

    1995-04-01

    The U.S. Department of Energy (DOE) Office of Technology Development (OTD) commissioned two studies to evaluate nineteen thermal treatment technologies for treatment of DOE mixed low-level waste. These studies were called the Integrated Thermal Treatment System (ITTS) Phase I and Phase II. With the help of the DOE Office of Environmental Management (EM) Mixed Waste Focus Group, OTD formed an ITTS Internal Review Panel to review and comment on the ITTS studies. This Panel was composed of scientists and engineers from throughout the DOE complex, the U.S. Environmental Protection Agency, the California EPA, and private experts. The Panel met from November 15-18, 1994 to review the ITTS studies and to make recommendations on the most promising thermal treatment systems for DOE mixed low-level wastes and on research and development necessary to prove the performance of the technologies. This report describes the findings and presents the recommendations of the Panel

  1. Thermal conductivity in one-dimensional nonlinear systems

    Science.gov (United States)

    Politi, Antonio; Giardinà, Cristian; Livi, Roberto; Vassalli, Massimo

    2000-03-01

    Thermal conducitivity of one-dimensional nonlinear systems typically diverges in the thermodynamic limit, whenever the momentum is conserved (i.e. in the absence of interactions with an external substrate). Evidence comes from detailed studies of Fermi-Pasta-Ulam and diatomic Toda chains. Here, we discuss the first example of a one-dimensional system obeying Fourier law : a chain of coupled rotators. Numerical estimates of the thermal conductivity obtained by simulating a chain in contact with two thermal baths at different temperatures are found to be consistent with those ones based on linear response theory. The dynamics of the Fourier modes provides direct evidence of energy diffusion. The finiteness of the conductivity is traced back to the occurrence of phase-jumps. Our conclusions are confirmed by the analysis of two variants of the rotator model.

  2. Thermal System Upgrade of the Space Environment Simulation Test Chamber

    Science.gov (United States)

    Desai, Ashok B.

    1997-01-01

    The paper deals with the refurbishing and upgrade of the thermal system for the existing thermal vacuum test facility, the Space Environment Simulator, at NASA's Goddard Space Flight Center. The chamber is the largest such facility at the center. This upgrade is the third phase of the long range upgrade of the chamber that has been underway for last few years. The first phase dealt with its vacuum system, the second phase involved the GHe subsystem. The paper describes the considerations of design philosophy options for the thermal system; approaches taken and methodology applied, in the evaluation of the remaining "life" in the chamber shrouds and related equipment by conducting special tests and studies; feasibility and extent of automation, using computer interfaces and Programmable Logic Controllers in the control system and finally, matching the old components to the new ones into an integrated, highly reliable and cost effective thermal system for the facility. This is a multi-year project just started and the paper deals mainly with the plans and approaches to implement the project successfully within schedule and costs.

  3. Preliminary measurements of aromatic VOCs in public transportation modes in Guangzhou, China.

    Science.gov (United States)

    Chan, L Y; Lau, W L; Wang, X M; Tang, J H

    2003-07-01

    This study examined the exposure level of aromatic volatile organic compounds (VOCs) in public transportation modes in Guangzhou, China. A total of 40 VOC samples were conducted in four popular public commuting modes (subway, taxis, non-air-conditioned buses and air-conditioned buses) while traversing in urban areas of Guangzhou. Traffic-related VOCs (benzene, toluene, ethylbenzene, m/p-xylene and o-xylene) were collected on adsorbent tubes and analyzed by thermal desorption (TD) and gas chromatography/mass-selective detector (GC/MSD) technique. The results indicate that commuter exposure to VOCs is greatly influenced by the choice of public transport. For the benzene measured, the mean exposure level in taxis (33.6 microg/m(3)) was the highest and was followed by air-conditioned buses (13.5 microg/m(3)) and non-air-conditioned buses (11.3 microg/m(3)). The exposure level in the subway (7.6 microg/m(3)) is clearly lower than that in roadway transports. The inter-microenvironment variations of other target compounds were similar to that of benzene. The target VOCs were well correlated to each other in all the measured transports. The concentration profile of the measured transport was also investigated and was found to be similar to each other. Based on the experiment results, the average B/T/E/X found in this study was about (1.0/4.3/0.7/1.4). In this study, the VOC levels measured in evening peak hours were only slightly higher than those in afternoon non-peak hours. This is due to the insignificant change of traffic volume on the measured routes between these two set times. The out-dated vehicle emission controls and slow-moving traffic conditions may be the major reasons leading elevated in-vehicle exposure level in some public commuting journeys.

  4. Removal of VOCs by hybrid electron beam reactor with catalyst bed

    International Nuclear Information System (INIS)

    Kim, Jinkyu; Han, Bumsoo; Kim, Yuri; Lee, J.H.; Park, C.R.; Kim, J.C.; Kim, J.C.; Kim, K.J.

    2004-01-01

    Electron beam decomposition of volatile organic compounds (VOCs) was studied in order to obtain information for developing effective treatment method of off-gases from industries. We have examined the combination of electron beam and catalyst honeycomb which is either 1% platinum based or ceramic honeycomb- based aluminum oxide, using a hybrid reactor in order to improve removal efficiency and CO 2 formation; and to suppress undesirable by-product formation e.g. O 3 , aerosol, H x C y. , and tar. The experiments were conducted using a pilot-scale treatment system (maximum capacity; 1800 N m 3 /h) that fitted the field size to scale up from the traditional laboratory scale system for VOC removal with electron beam irradiation. Toluene was selected as a typical VOC that was irradiated to investigate product formation, effect of ceramic and catalyst, and factors effecting overall efficiency of degradation. Styrene was selected as the most odorous compound among the VOCs of interest. It was found that VOCs could be destroyed more effectively using a hybrid system with catalyst bed than with electron beam irradiation only

  5. Review of the integrated thermal and nonthermal treatment system studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

  6. Review of the integrated thermal and nonthermal treatment system studies

    International Nuclear Information System (INIS)

    1996-01-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering

  7. Thermal oxidation vitrification flue gas elimination system

    International Nuclear Information System (INIS)

    Kephart, W.; Angelo, F.; Clemens, M.

    1995-01-01

    With minor modifications to a Best Demonstrated Available Technology hazardous waste incinerator, it is possible to obtain combustion without potentially toxic emissions by using technology currently employed in similar applications throughout industry. Further, these same modifications will reduce waste handling over an extended operating envelope while minimizing energy consumption. Three by-products are produced: industrial grade carbon dioxide, nitrogen, and a final waste form that will exceed Toxicity Characteristics Leaching Procedures requirements and satisfy nuclear waste product consistency tests. The proposed system utilizes oxygen rather than air as an oxidant to reduce the quantities of total emissions, improve the efficiency of the oxidation reactions, and minimize the generation of toxic NO x emissions. Not only will less potentially hazardous constituents be generated; all toxic substances can be contained and the primary emission, carbon dioxide -- the leading ''greenhouse gas'' contributing to global warming -- will be converted to an industrial by-product needed to enhance the extraction of energy feedstocks from maturing wells. Clearly, the proposed configuration conforms to the provisions for Most Achievable Control Technology as defined and mandated for the private sector by the Clear Air Act Amendments of 1990 to be implemented in 1997 and still lacking definition

  8. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, A. I., E-mail: gor@tornado.nsk.ru [JSC “Tornado Modular Systems” (Russian Federation); Serdyukov, O. V. [Siberian Branch of the Russian Academy of Sciences, Institute of Automation and Electrometry (Russian Federation)

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  9. Moessbauer thermal scan study of a spin crossover system

    Energy Technology Data Exchange (ETDEWEB)

    Zelis, P Mendoza; Pasquevich, G A; Sanchez, F H; Veiga, A; Cabrera, A F [Departamento de Fisica, FCE-UNLP, La Plata (Argentina); Ceolin, M [Instituto de Investigaciones FIsico-Quimicas Teoricas y Aplicadas (UNLP-CONICET), La Plata (Argentina); Coronado-Miralles, E; Monrabal-Capilla, M; Galan-Mascaros, J R, E-mail: pmendoza@fisica.unlp.edu.a [Instituto de Ciencias Moleculares, Universidad de Valencia, Valencia (Spain)

    2010-03-01

    Programmable Velocity equipment was used to perform a Moessbauer Thermal Scans to allow a quasi-continuous temperature study of the magnetic transition between the low-spin and a high-spin configurations in [Fe(Htrz){sub 2}(trz)](BF4) system. The material was studied both in bulk as in nanoparticles sample forms.

  10. Phonons and solitons in the "thermal" sine-Gordon system

    DEFF Research Database (Denmark)

    Salerno, Mario; Jørgensen, E.; Samuelsen, Mogens Rugholm

    1984-01-01

    Standard methods of stochastic processes are used to study the coupling of the sine-Gordon system with a heat reservoir. As a result we find thermal phonons with an average energy of kB T per mode. The translational mode (zero mode) is found to carry an average energy of 1 / 2kBT. This last value...

  11. On the establishment of thermal equilibrium in simplest mechanical systems

    International Nuclear Information System (INIS)

    Kotsinyan, Ar.M.

    1987-01-01

    The process of the establishment of thermal equilibrium of the damping oscillators and a ''free'' particle in interaction with the blackbody radiation field is considered. A special attention is payed to the principal role of non-closedness of real systems as well as to the irreversibility of the microscopic equations of motion in the question of grounding of the statistical physics

  12. Monte Carlo calculations of neutron thermalization in a heterogeneous system

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, T

    1959-07-15

    The slowing down of neutrons in a heterogeneous system (a slab geometry) of uranium and heavy water has been investigated by Monte Carlo methods. Effects on the neutron spectrum due to the thermal motions of the scattering and absorbing atoms are taken into account. It has been assumed that the speed distribution of the moderator atoms are Maxwell-Boltzmann in character.

  13. Damage Detection/Locating System Providing Thermal Protection

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Jones, Thomas W. (Inventor); Taylor, Bryant D. (Inventor); Qamar, A. Shams (Inventor)

    2010-01-01

    A damage locating system also provides thermal protection. An array of sensors substantially tiles an area of interest. Each sensor is a reflective-surface conductor having operatively coupled inductance and capacitance. A magnetic field response recorder is provided to interrogate each sensor before and after a damage condition. Changes in response are indicative of damage and a corresponding location thereof.

  14. Commercial thermal distribution systems, Final report for CIEE/CEC

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang; Bechu, Olivier; Carrie, Remi; Dickerhoff, Darryl; Fisk, William; Franconi, Ellen; Kristiansen, Oyvind; Levinson, Ronnen; McWilliams, Jennifer; Wang, Duo; Modera, Mark; Webster, Tom; Ring, Erik; Zhang, Qiang; Huizenga, Charlie; Bauman, Fred; Arens, Ed

    1999-12-01

    According to the California Energy Commission (CEC 1998a), California commercial buildings account for 35% of statewide electricity consumption, and 16% of statewide gas consumption. Space conditioning accounts for roughly 16,000 GWh of electricity and 800 million therms of natural gas annually, and the vast majority of this space conditioning energy passes through thermal distribution systems in these buildings. In addition, 8600 GWh per year is consumed by fans and pumps in commercial buildings, most of which is used to move the thermal energy through these systems. Research work at Lawrence Berkeley National Laboratory (LBNL) has been ongoing over the past five years to investigate the energy efficiency of these thermal distribution systems, and to explore possibilities for improving that energy efficiency. Based upon that work, annual savings estimates of 1 kWh/ft{sup 2} for light commercial buildings, and 1-2 kWh/ft{sup 2} in large commercial buildings have been developed for the particular aspects of thermal distribution system performance being addressed by this project. Those savings estimates, combined with a distribution of the building stock based upon an extensive stock characterization study (Modera et al. 1999a), and technical penetration estimates, translate into statewide saving potentials of 2000 GWh/year and 75 million thermal/year, as well as an electricity peak reduction potential of 0.7 GW. The overall goal of this research program is to provide new technology and application knowledge that will allow the design, construction, and energy services industries to reduce the energy waste associated with thermal distribution systems in California commercial buildings. The specific goals of the LBNL efforts over the past year were: (1) to advance the state of knowledge about system performance and energy losses in commercial-building thermal distribution systems; (2) to evaluate the potential of reducing thermal losses through duct sealing, duct

  15. Space Station thermal storage/refrigeration system research and development

    Science.gov (United States)

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  16. Experimental and statistical characterization of Volatile Organic Compounds (VOC) within the ile-de-France region

    International Nuclear Information System (INIS)

    Baudic, Alexia

    2016-01-01

    Volatile organic compounds (VOCs) play a key role within the atmospheric system acting as precursors of ground-level ozone and secondary organic aerosols (causing health and climatic impacts); hence the growing interest of better characterizing them. Significant uncertainties are still associated with compounds speciation, quantification and respective contributions from the different emission sources. This thesis proposes, through several laboratory and intensive field campaigns, a detailed characterization of VOCs and their main emissions sources within the Ile-de-France region. We used methods based on the determination of speciation profiles indicative of road traffic, wood burning and natural gas sources obtained from near-field investigations (inside a tunnel, at a fireplace and from a domestic gas flue). These different source profiles were used as chemical fingerprints for the identification of the main VOC emission sources, which respective contributions were estimated using the Positive Matrix Factorization (PMF) source-receptor model applied to one-year VOCs (including NMHC+OVOC) measurements in Paris. This thesis allowed, for the first time, to evaluate the seasonal variability of VOCs and their main emission sources. Road traffic-related emissions are major VOC local/regional sources in Paris (contributing to a quarter of total annual emissions). The important impact of wood burning in winter (50 % of the VOC total mass) was observed. Results obtained from this approach were compared with the regional emissions inventory provided by the air quality monitoring network Airparif. Finally, a good agreement was found between our observations and the inventory for road traffic and wood burning-related sources. This independent assessment of inventories is of great interest because they are currently used as input data within air quality prediction models. (author) [fr

  17. Thermal Stabilization of Cryogenic System in Superconducting Cyclotron

    International Nuclear Information System (INIS)

    Shin, Seung Jae; Kim, Kyung Min; Cho, Hyung Hee; Hong, Bong Hwan; Kang, Joon Sun; Ahn, Dong Hyun

    2011-01-01

    Radiology has some useful applications for medical purpose. For cancer therapy, the superconducting cyclotron should generate heavy ion beams. It radiates heavy ion beams to cancer patients. In order to make cyclotron system stable, the cryogenic system which makes superconducting state should work constantly. However, radiation heat transfer of cryogenic system should be considered because liquid helium's boiling point is extremely low and there is huge temperature difference between the cryogenic system and ambient temperature. Accordingly, thermal analysis should be carried out. In this paper, the numerical analysis of the cryogenic system in practical superconducting cyclotron show temperature distribution and suggest the number of coolers using ANSYS Workbench program

  18. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    Science.gov (United States)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  19. Thermal modeling and design of electronic systems and devices

    International Nuclear Information System (INIS)

    Wirtz, R.A.; Lehmann, G.L.

    1990-01-01

    The thermal control electronic devices, particularly those in complex systems with high heat flux density, continues to be of interest to engineers involved in system cooling design and analysis. This volume contains papers presented at the 1990 ASME Winter Annual Meeting in two K-16 sponsored sessions: Empirical Modeling of Heat Transfer in Complex Electronic Systems and Design and Modeling of Heat Transfer Devices in High-Density Electronics. The first group deals with understanding the heat transfer processes in these complex systems. The second group focuses on the use of analysis techniques and empirically determined data in predicting device and system operating performance

  20. Electrochemical energy storage systems for solar thermal applications

    Science.gov (United States)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  1. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    Science.gov (United States)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  2. Lighting system with thermal management system having point contact synthetic jets

    Science.gov (United States)

    Arik, Mehmet; Weaver, Stanton Earl; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Sharma, Rajdeep

    2013-12-10

    Lighting system having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system includes a plurality of synthetic jets. The synthetic jets are arranged within the lighting system such that they are secured at contact points.

  3. Engine cycle design considerations for nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Pelaccio, D.G.; Scheil, C.M.; Collins, J.T.

    1993-01-01

    A top-level study was performed which addresses nuclear thermal propulsion system engine cycle options and their applicability to support future Space Exploration Initiative manned lunar and Mars missions. Technical and development issues associated with expander, gas generator, and bleed cycle near-term, solid core nuclear thermal propulsion engines are identified and examined. In addition to performance and weight the influence of the engine cycle type on key design selection parameters such as design complexity, reliability, development time, and cost are discussed. Representative engine designs are presented and compared. Their applicability and performance impact on typical near-term lunar and Mars missions are shown

  4. Modeling unsteady-state VOC transport in simulated waste drums

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1994-01-01

    This report is a revision of an EG ampersand G Idaho informal report originally titled Modeling VOC Transport in Simulated Waste Drums. A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the permeability had been measured

  5. A survey of manufacturers of solar thermal energy systems

    Science.gov (United States)

    Levine, N.; Slonski, M. L.

    1982-01-01

    Sixty-seven firms that had received funding for development of solar thermal energy systems (STES) were surveyed. The effect of the solar thermal technology systems program in accelerating (STES) were assessed. The 54 firms still developing STES were grouped into a production typology comparing the three major technologies with three basic functions. It was discovered that large and small firms were developing primarily central receiver systems, but also typically worked on more than one technology. Most medium-sized firms worked only on distributed systems. Federal support of STES was perceived as necessary to allow producers to take otherwise unacceptable risks. Approximately half of the respondents would drop out of STES if support were terminated, including a disproportionate number of medium-sized firms. A differentiated view of the technology, taking into account differing firm sizes and the various stages of technology development, was suggested for policy and planning purposes.

  6. Impact Testing of Orbiter Thermal Protection System Materials

    Science.gov (United States)

    Kerr, Justin

    2006-01-01

    This viewgraph presentation reviews the impact testing of the materials used in designing the shuttle orbiter thermal protection system (TPS). Pursuant to the Columbia Accident Investigation Board recommendations a testing program of the TPS system was instituted. This involved using various types of impactors in different sizes shot from various sizes and strengths guns to impact the TPS tiles and the Leading Edge Structural Subsystem (LESS). The observed damage is shown, and the resultant lessons learned are reviewed.

  7. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1979-01-01

    A simultaneous pulsed neutron porosity and thermal neutron capture cross section logging system is provided for radiological well logging of subsurface earth formations. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a combination gamma ray and fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations; and, during the bursts, the fast neutron and epithermal neutron populations are sampled. During the interval between bursts the thermal neutron capture gamma ray population is sampled in two or more time intervals. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity phi. The capture gamma ray measurements are combined to provide a simultaneous determination of the thermal neutron capture cross section Σ

  8. Computational design and experimental validation of new thermal barrier systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shengmin [Louisiana State Univ., Baton Rouge, LA (United States)

    2015-03-31

    The focus of this project is on the development of a reliable and efficient ab initio based computational high temperature material design method which can be used to assist the Thermal Barrier Coating (TBC) bond-coat and top-coat design. Experimental evaluations on the new TBCs are conducted to confirm the new TBCs’ properties. Southern University is the subcontractor on this project with a focus on the computational simulation method development. We have performed ab initio density functional theory (DFT) method and molecular dynamics simulation on screening the top coats and bond coats for gas turbine thermal barrier coating design and validation applications. For experimental validations, our focus is on the hot corrosion performance of different TBC systems. For example, for one of the top coatings studied, we examined the thermal stability of TaZr2.75O8 and confirmed it’s hot corrosion performance.

  9. Photocatalysts: ambient temperature destruction of VOCs

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R [IT Corp., Oak Ridge, TN (United States)

    1994-12-31

    Photocatalysis was a failure as a solar energy driven organic synthesis technique, but as this study indicates, it has undergone a renaissance as a promising treatment method for volatile organic compounds (VOCs) in air streams. Photocatalytic oxidation (PCO) relies upon the ability of certain semiconductors to be stimulated by UV radiation. UV light excites valence band electrons in the semiconductor catalyst to jump to a conductance band leaving holes in the valence band. The electrons and holes can react with compounds such as organic contaminants present in an air stream. Hallmarks of the technology include rapid destruction kinetics for many VOCs at ambient temperature and efficient use energy in the form of UV-A photons. Studies clearly indicate that PCO is competitive on capital cost and offers significant operating cost savings on selected applications. 6 refs., 3 tabs., 2 figs.

  10. Photocatalysts: ambient temperature destruction of VOCs

    International Nuclear Information System (INIS)

    Miller, R.

    1994-01-01

    Photocatalysis was a failure as a solar energy driven organic synthesis technique, but as this study indicates, it has undergone a renaissance as a promising treatment method for volatile organic compounds (VOCs) in air streams. Photocatalytic oxidation (PCO) relies upon the ability of certain semiconductors to be stimulated by UV radiation. UV light excites valence band electrons in the semiconductor catalyst to jump to a conductance band leaving holes in the valence band. The electrons and holes can react with compounds such as organic contaminants present in an air stream. Hallmarks of the technology include rapid destruction kinetics for many VOCs at ambient temperature and efficient use energy in the form of UV-A photons. Studies clearly indicate that PCO is competitive on capital cost and offers significant operating cost savings on selected applications. 6 refs., 3 tabs., 2 figs

  11. [VOCs tax policy on China's economy development].

    Science.gov (United States)

    Liu, Chang-Xin; Wang, Yu-Fei; Wang, Hai-Lin; Hao, Zheng-Ping; Wang, Zheng

    2011-12-01

    In this paper, environmental tax was designed to control volatile organic compounds (VOCs) emissions. Computable general equilibrium (CGE) model was used to explore the impacts of environmental tax (in forms of indirect tax) on the macro-economy development at both national and sector levels. Different levels of tax were simulated to find out the proper tax rate. It is found out that imposing environmental tax on high emission sectors can cause the emission decreased immediately and can lead to negative impacts on macro-economy indicators, such as GDP (gross domestic products), total investment, total product and the whole consumption etc. However, only the government income increased. In addition, the higher the tax rate is, the more pollutants can be reduced and the worse economic effects can be caused. Consequently, it is suggested that, the main controlling policies of VOCs abatement should be mandatory orders, and low environmental tax can be implemented as a supplementary.

  12. Comparison of different real time VOC measurement techniques in a ponderosa pine forest

    Directory of Open Access Journals (Sweden)

    L. Kaser

    2013-03-01

    Full Text Available Volatile organic compound (VOC mixing ratios measured by five independent instruments are compared at a forested site dominated by ponderosa pine (Pinus Ponderosa during the BEACHON-ROCS field study in summer 2010. The instruments included a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS, a Proton Transfer Reaction Quadrupole Mass Spectrometer (PTR-MS, a Fast Online Gas-Chromatograph coupled to a Mass Spectrometer (GC/MS; TOGA, a Thermal Dissociation Chemical Ionization Mass Spectrometer (PAN-CIMS and a Fiber Laser-Induced Fluorescence Instrument (FILIF. The species discussed in this comparison include the most important biogenic VOCs and a selected suite of oxygenated VOCs that are thought to dominate the VOC reactivity at this particular site as well as typical anthropogenic VOCs that showed low mixing ratios at this site. Good agreement was observed for methanol, the sum of the oxygenated hemiterpene 2-methyl-3-buten-2-ol (MBO and the hemiterpene isoprene, acetaldehyde, the sum of acetone and propanal, benzene and the sum of methyl ethyl ketone (MEK and butanal. Measurements of the above VOCs conducted by different instruments agree within 20%. The ability to differentiate the presence of toluene and cymene by PTR-TOF-MS is tested based on a comparison with GC-MS measurements, suggesting a study-average relative contribution of 74% for toluene and 26% for cymene. Similarly, 2-hydroxy-2-methylpropanal (HMPR is found to interfere with the sum of methyl vinyl ketone and methacrolein (MVK + MAC using PTR-(TOF-MS at this site. A study-average relative contribution of 85% for MVK + MAC and 15% for HMPR was determined. The sum of monoterpenes measured by PTR-MS and PTR-TOF-MS was generally 20–25% higher than the sum of speciated monoterpenes measured by TOGA, which included α-pinene, β-pinene, camphene, carene, myrcene, limonene, cineole as well as other terpenes. However, this difference is consistent throughout the study

  13. Thermal energy storage for a space solar dynamic power system

    Science.gov (United States)

    Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.

    1985-01-01

    In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.

  14. Biogenic VOC Emissions from Tropical Landscapes

    Science.gov (United States)

    Guenther, A.; Greenberg, J.; Harley, P.; Otter, L.; Vanni Gatti, L.; Baker, B.

    2003-04-01

    Biogenic VOC have an important role in determining the chemical composition of atmosphere. As a result, these compounds are important for visibility, biogeochemical cycling, climate and radiative forcing, and the health of the biosphere. Tropical landscapes are estimated to release about 80% of total global biogenic VOC emissions but have been investigated to lesser extent than temperate regions. Tropical VOC emissions are particularly important due to the strong vertical transport and the rapid landuse change that is occurring there. This presentation will provide an overview of field measurements of biogenic VOC emissions from tropical landscapes in Amazonia (Large-scale Biosphere-atmosphere experiment in Amazonia, LBA) Central (EXPRESSO) and Southern (SAFARI 2000) Africa, Asia and Central America. Flux measurement methods include leaf-scale (enclosure measurements), canopy-scale (above canopy tower measurements), landscape-scale (tethered balloon), and regional-scale (aircraft measurements) observations. Typical midday isoprene emission rates for different landscapes vary by more than a factor of 20 with the lowest emissions observed from degraded forests. Emissions of alpha-pinene vary by a similar amount with the highest emissions associated with landscapes dominated by light dependent monoterpene emitting plants. Isoprene emissions tend to be higher for neotropical forests (Amazon and Costa Rica) in comparison to Africa and Asian tropical forests but considerable differences are observed within regions. Strong seasonal variations were observed in both the Congo and the Amazon rainforests with peak emissions during the dry seasons. Substantial emissions of light dependent monoterpenes, methanol and acetone are characteristic of at least some tropical landscapes.

  15. Origin of 2-ethylhexanol as a VOC

    International Nuclear Information System (INIS)

    Nalli, Sandro; Horn, Owen J.; Grochowalski, Adam R.; Cooper, David G.; Nicell, Jim A.

    2006-01-01

    2-Ethylhexanol has been identified as a volatile organic compound (VOC) that contributes to the deterioration of indoor air quality. Plasticizers are common components of dust and building materials and are shown to be degraded by a variety of bacteria and fungi to produce 2-ethyhexanol and other metabolites. Of these, the 2-ethylhexanol has significant volatility and was observed in appreciable quantities. The degree to which 2-ethylhexanol is observed as a VOC in air samples would be limited by the fact that many of the microorganisms that are capable of producing this compound are also able to oxidize it to 2-ethylhexanoic acid, which is much less volatile. It is argued that an abiotic degradation mechanism of plasticizers that results in the generation of 2-ethylhexanol is unlikely and, if this did occur, other metabolites should have been observed. Thus, the microbial degradation of plasticizers is the most likely source of 2-ethylhexanol in indoor air. - A link has been observed between the partial biodegradation of plasticizers by microorganisms and VOCs associated with poor indoor air quality

  16. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  17. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    Energy Technology Data Exchange (ETDEWEB)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  18. High-speed thermal cycling system and method of use

    Science.gov (United States)

    Hansen, A.D.A.; Jaklevic, J.M.

    1996-04-16

    A thermal cycling system and method of use are described. The thermal cycling system is based on the circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 microliters of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded. 13 figs.

  19. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    International Nuclear Information System (INIS)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios

  20. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    Science.gov (United States)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  1. Thermal Vacuum Integrated System Test at B-2

    Science.gov (United States)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3x10(exp -4)Pa (1x10(exp -6)torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (140deg R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber s cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality.

  2. Chlorinated and Non chlorinated-Volatile Organic Compounds (Vocs) in Drinking Water of Peninsular Malaysia

    International Nuclear Information System (INIS)

    Mohd Pauzi Abdullah; Chian, S.S.

    2011-01-01

    A survey undertaken in Peninsular Malaysia has shown that volatile organic compounds (VOCs), both chlorinated and non-chlorinated, are present in selected drinking water samples. In this study, analyses of VOCs were performed by means of solid phase micro extraction (SPME) with a 100 μm polydimethylsiloxane (PDMS) fibre followed by gas chromatography - mass spectrometry detector (GC-MSD). Samples from different points of the distribution system networks were taken and analysed for 54 VOCs of different chemical families. The results of the study indicated that chloroform constituted the major portion of the VOCs in all samples analysed. In addition to trihalo methanes (THMs), other abundant compounds detected were cis and trans-1,2-dichloroethylene, trichloroethylene, 1,2-dibromoethane, benzene, toluene, ethylbenzene, chlorobenzene, 1,4-dichlorobenzene and 1,2-dichlorobenzene. However, the measured concentrations did not exceed the National Guideline for Drinking Water Quality 2000 in any case. No clear relationship between the status of development of a state in Malaysia to the levels and types of VOCs detected in its drinking water was noted. Nevertheless, the finding of anthropogenic chemicals, even at low concentrations, gave credibility to the viewpoint that improper development and disposal practices threatened the purity of the drinking water. (author)

  3. Metal hydride-based thermal energy storage systems

    Science.gov (United States)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  4. Neural computing thermal comfort index for HVAC systems

    International Nuclear Information System (INIS)

    Atthajariyakul, S.; Leephakpreeda, T.

    2005-01-01

    The primary purpose of a heating, ventilating and air conditioning (HVAC) system within a building is to make occupants comfortable. Without real time determination of human thermal comfort, it is not feasible for the HVAC system to yield controlled conditions of the air for human comfort all the time. This paper presents a practical approach to determine human thermal comfort quantitatively via neural computing. The neural network model allows real time determination of the thermal comfort index, where it is not practical to compute the conventional predicted mean vote (PMV) index itself in real time. The feed forward neural network model is proposed as an explicit function of the relation of the PMV index to accessible variables, i.e. the air temperature, wet bulb temperature, globe temperature, air velocity, clothing insulation and human activity. An experiment in an air conditioned office room was done to demonstrate the effectiveness of the proposed methodology. The results show good agreement between the thermal comfort index calculated from the neural network model in real time and those calculated from the conventional PMV model

  5. Physical, thermal and structural properties of Calcium Borotellurite glass system

    Energy Technology Data Exchange (ETDEWEB)

    Paz, E.C. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Açailândia, MA (Brazil); Dias, J.D.M. [CCSST – UFMA, Imperatriz, MA (Brazil); Melo, G.H.A. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Imperatriz, MA (Brazil); Lodi, T.A. [CCSST – UFMA, Imperatriz, MA (Brazil); Carvalho, J.O. [CCSST – UFMA, Imperatriz, MA (Brazil); IFTO, Araguaína, TO (Brazil); Façanha Filho, P.F.; Barboza, M.J.; Pedrochi, F. [CCSST – UFMA, Imperatriz, MA (Brazil); Steimacher, A., E-mail: steimacher@hotmail.com [CCSST – UFMA, Imperatriz, MA (Brazil)

    2016-08-01

    In this work the glass forming ability in Calcium Borotellurite (CBTx) glass system was studied. Six glass samples were prepared by melt-quenching technique and the obtained samples are transparent, lightly yellowish, with no visible crystallites. The structural studies were carried out by using XRD, FTIR, Raman Spectra, density measurements, and the thermal analysis by using DTA and specific heat. The results are discussed in terms of tellurium oxide content and their changes in structural and thermal properties of glass samples. The addition of TeO{sub 2} increased the density and thermal stability values and decreased glass transition temperature (Tg). Raman and FTIR spectroscopies indicated that the network structure of CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. CBTx system showed good glass formation ability and good thermal stability, which make CBTx glasses suitable for manufacturing process and a candidate for rare-earth doping for several optical applications. - Highlights: • Glass forming ability on Calcium Borotellurite system was studied. • The glass structure was investigated by XRD, Raman and FTIR. • The glass network structure of the CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. • The density and thermal stability of the CBTx glass decreases with TeO{sub 2} while the Cp and the Tg decreases. • The obtained CBTx glasses are suitable for manufacturing process and rare-earth doping for several optical applications.

  6. The removal of VOC from air using EB, MW and catalyst - Laboratory plant results

    International Nuclear Information System (INIS)

    Calinescu, I.; Ighigeanu, D.; Martin, D.

    2011-01-01

    A new hybrid technique for the VOCs removal from gases, based on the combined use of EB induced NTP (non-thermal plasma), MW induced NTP and catalytic oxidation, named “EB+MW-plasma catalysis”, is presented. The main goal of our research was to combine the features of each known technique used in gas pollution control, i.e. the very high efficiency of EB in converting VOCs to intermediate products, the ability of MW to produce and sustain NTP in large electrodeless reactors, and the important role of catalysts in the complete conversion to CO 2 and H 2 O. Our experiences shown that the two means of treating the gases are complementary: the catalytic oxidation in the presence of MW is efficient for high VOC initial concentrations and low flow rates while the exclusive use of the EB irradiation determines high decomposition efficiencies only in the case of very low concentrations of VOC but for large flow rates. Real synergistic effects between NTP and catalysis were obtained by introducing the catalyst into the irradiation zone. The main conclusion of this work is that the combined treatment EB+MW+catalyst improves both decomposition efficiency and oxidation efficiency. The EB+MW+Catalysis method demonstrated good results on a wide range of concentrations and flow rates. (author)

  7. The removal of VOC from air using EB, MW and catalyst - Laboratory plant results

    Energy Technology Data Exchange (ETDEWEB)

    Calinescu, I. [Polytechnic University, Bucharest (Romania); Ighigeanu, D.; Martin, D. [National Institute for Lasers, Plasma and Radiation Physics, Bucharest (Romania)

    2011-07-01

    A new hybrid technique for the VOCs removal from gases, based on the combined use of EB induced NTP (non-thermal plasma), MW induced NTP and catalytic oxidation, named “EB+MW-plasma catalysis”, is presented. The main goal of our research was to combine the features of each known technique used in gas pollution control, i.e. the very high efficiency of EB in converting VOCs to intermediate products, the ability of MW to produce and sustain NTP in large electrodeless reactors, and the important role of catalysts in the complete conversion to CO{sub 2} and H{sub 2}O. Our experiences shown that the two means of treating the gases are complementary: the catalytic oxidation in the presence of MW is efficient for high VOC initial concentrations and low flow rates while the exclusive use of the EB irradiation determines high decomposition efficiencies only in the case of very low concentrations of VOC but for large flow rates. Real synergistic effects between NTP and catalysis were obtained by introducing the catalyst into the irradiation zone. The main conclusion of this work is that the combined treatment EB+MW+catalyst improves both decomposition efficiency and oxidation efficiency. The EB+MW+Catalysis method demonstrated good results on a wide range of concentrations and flow rates. (author)

  8. Microwave wood strand drying: energy consumption, VOC emission and drying quality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Du, G.; Zhang, Y. [Tennessee Univ., Knoxville, TN (United States). Dept. of Forestry, Wildlife and Fisheries

    2005-07-01

    The objective of this research was to develop microwave drying technology for wood strand drying for oriented strand board (OSB) manufacturing. The advantages of microwave drying included a reduction in the drying time of wood strands and a reduction in the release of volatile organic compounds (VOC) through a decrease in the thermal degradation of the wood material. Temperature and moisture content changes under different microwave drying conditions were investigated. The effects of microwave drying on VOC emissions were evaluated and analyzed using gas chromatography and mass spectrometry. Microwave power input and the mass of drying materials in the microwave oven were found to have a dominant effect on drying quality. Results indicated that an increase in microwave power input and a decrease in sample weights resulted in high drying temperatures, short drying times and a high drying rate. The effect of microwave drying on the strand surfaces was also investigated. Different strand geometries and initial moisture content resulted in varying warm-up curves, but did not influence final moisture content. VOC emissions were quantified by comparing alpha-pinene concentrations. The microwave drying resulted in lower VOC emissions compared with conventional drying methods. It was concluded that the microwave drying technique provided faster strand drying and reduced energy consumption by up to 50 per cent. In addition, the surface wettability of wood strands dried with microwaves was better than with an industrial rotary drum drier. 12 refs., 3 tabs., 5 figs.

  9. Effect of catalyst for the decomposition of VOCs in a NTP reactor

    International Nuclear Information System (INIS)

    Mohanty, Suchitra; Das, Smrutiprava; Paikaray, Rita; Sahoo, Gourishankar; Samantaray, Subrata

    2015-01-01

    Air pollution has become a major cause of human distress both directly and indirectly. VOCs are becoming the major air pollutants. So the decomposition of VOCs is present need of our society. Non-thermal plasma reactor (NTP) is proven to be effective for low concentration VOCs decomposition. For safe and effective application of DBD, optimization of treatment process requires different plasma parameter characterization. So electron temperature and electron density parameters of VOCs show the decomposition path ways. In this piece of work by taking the emission spectra and comparing the line intensity ratios, the electron temperature and density were determined. Also the decomposition rate in terms of the deposited products on the dielectric surface was studied. Decomposition rate increases in presence of catalyst as compared to the pure compound in presence of a carrier gas. Decomposition process was studied by UV-VIS, FTIR, OES Spectroscopic methods and by GCMS. Deposited products are analyzed by UV-VIS and FTIR spectroscopy. Plasma parameters like electron temperature, density are studied with OES. And gaseous products are studied by GCMS showing the peaks for the by products. (author)

  10. Thermal Design for Extra-Terrestrial Regenerative Fuel Cell System

    Science.gov (United States)

    Gilligan, R.; Guzik, M.; Jakupca, I.; Bennett, W.; Smith, P.; Fincannon, J.

    2017-01-01

    The Advanced Exploration Systems (AES) Advanced Modular Power Systems (AMPS) Project is investigating different power systems for various lunar and Martian mission concepts. The AMPS Fuel Cell (FC) team has created two system-level models to evaluate the performance of regenerative fuel cell (RFC) systems employing different fuel cell chemistries. Proton Exchange Membrane fuel cells PEMFCs contain a polymer electrolyte membrane that separates the hydrogen and oxygen cavities and conducts hydrogen cations (protons) across the cell. Solid Oxide fuel cells (SOFCs) operate at high temperatures, using a zirconia-based solid ceramic electrolyte to conduct oxygen anions across the cell. The purpose of the modeling effort is to down select one fuel cell chemistry for a more detailed design effort. Figures of merit include the system mass, volume, round trip efficiency, and electrolyzer charge power required. PEMFCs operate at around 60 C versus SOFCs which operate at temperatures greater than 700 C. Due to the drastically different operating temperatures of the two chemistries the thermal control systems (TCS) differ. The PEM TCS is less complex and is characterized by a single pump cooling loop that uses deionized water coolant and rejects heat generated by the system to the environment via a radiator. The solid oxide TCS has its own unique challenges including the requirement to reject high quality heat and to condense the steam produced in the reaction. This paper discusses the modeling of thermal control systems for an extraterrestrial RFC that utilizes either a PEM or solid oxide fuel cell.

  11. Experiment Investigation on Electrical and Thermal Performances of a Semitransparent Photovoltaic/Thermal System with Water Cooling

    Directory of Open Access Journals (Sweden)

    Guiqiang Li

    2014-01-01

    Full Text Available Different from the semitransparent building integrated photovoltaic/thermal (BIPV/T system with air cooling, the semitransparent BIPV/T system with water cooling is rare, especially based on the silicon solar cells. In this paper, a semitransparent photovoltaic/thermal system (SPV/T with water cooling was set up, which not only would provide the electrical power and hot water, but also could attain the natural illumination for the building. The PV efficiency, thermal efficiency, and exergy analysis were all adopted to illustrate the performance of SPV/T system. The results showed that the PV efficiency and the thermal efficiency were about 11.5% and 39.5%, respectively, on the typical sunny day. Furthermore, the PV and thermal efficiencies fit curves were made to demonstrate the SPV/T performance more comprehensively. The performance analysis indicated that the SPV/T system has a good application prospect for building.

  12. Smartphone-Based VOC Sensor Using Colorimetric Polydiacetylenes.

    Science.gov (United States)

    Park, Dong-Hoon; Heo, Jung-Moo; Jeong, Woomin; Yoo, Young Hyuk; Park, Bum Jun; Kim, Jong-Man

    2018-02-07

    Owing to a unique colorimetric (typically blue-to-red) feature upon environmental stimulation, polydiacetylenes (PDAs) have been actively employed in chemosensor systems. We developed a highly accurate and simple volatile organic compound (VOC) sensor system that can be operated using a conventional smartphone. The procedure begins with forming an array of four different PDAs on conventional paper using inkjet printing of four corresponding diacetylenes followed by photopolymerization. A database of color changes (i.e., red and hue values) is then constructed on the basis of different solvatochromic responses of the 4 PDAs to 11 organic solvents. Exposure of the PDA array to an unknown solvent promotes color changes, which are imaged using a smartphone camera and analyzed using the app. A comparison of the color changes to the database promoted by the 11 solvents enables the smartphone app to identify the unknown solvent with 100% accuracy. Additionally, it was demonstrated that the PDA array sensor was sufficiently sensitive to accurately detect the 11 VOC gases.

  13. Layered Thermal Insulation Systems for Industrial and Commercial Applications

    Science.gov (United States)

    Fesmire, James E.

    2015-01-01

    From the high performance arena of cryogenic equipment, several different layered thermal insulation systems have been developed for industrial and commercial applications. In addition to the proven areas in cold-work applications for piping and tanks, the new Layered Composite Insulation for Extreme Environments (LCX) has potential for broader industrial use as well as for commercial applications. The LCX technology provides a unique combination of thermal, mechanical, and weathering performance capability that is both cost-effective and enabling. Industry applications may include, for example, liquid nitrogen (LN2) systems for food processing, liquefied natural gas (LNG) systems for transportation or power, and chilled water cooling facilities. Example commercial applications may include commercial residential building construction, hot water piping, HVAC systems, refrigerated trucks, cold chain shipping containers, and a various consumer products. The LCX system is highly tailorable to the end-use application and can be pre-fabricated or field assembled as needed. Product forms of LCX include rigid sheets, semi-flexible sheets, cylindrical clam-shells, removable covers, or flexible strips for wrapping. With increasing system control and reliability requirements as well as demands for higher energy efficiencies, thermal insulation in harsh environments is a growing challenge. The LCX technology grew out of solving problems in the insulation of mechanically complex cryogenic systems that must operate in outdoor, humid conditions. Insulation for cold work includes equipment for everything from liquid helium to chilled water. And in the middle are systems for LNG, LN2, liquid oxygen (LO2), liquid hydrogen (LH2) that must operate in the ambient environment. Different LCX systems have been demonstrated for sub-ambient conditions but are capable of moderately high temperature applications as well.

  14. Quantum chaos and thermalization in isolated systems of interacting particles

    Energy Technology Data Exchange (ETDEWEB)

    Borgonovi, F., E-mail: fausto.borgonovi@unicatt.it [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics, Universitá Cattolica, via Musei 41, 25121 Brescia, and INFN, Sezione di Pavia (Italy); Izrailev, F.M., E-mail: felix.izrailev@gmail.com [Instituto de Física, Universidad Autónoma de Puebla, Apt. Postal J-48, Puebla, Pue., 72570 (Mexico); NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); Santos, L.F., E-mail: lsantos2@yu.edu [Department of Physics, Yeshiva University, 245 Lexington Ave, New York, NY 10016 (United States); Zelevinsky, V.G., E-mail: Zelevins@nscl.msu.edu [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States)

    2016-04-15

    This review is devoted to the problem of thermalization in a small isolated conglomerate of interacting constituents. A variety of physically important systems of intensive current interest belong to this category: complex atoms, molecules (including biological molecules), nuclei, small devices of condensed matter and quantum optics on nano- and micro-scale, cold atoms in optical lattices, ion traps. Physical implementations of quantum computers, where there are many interacting qubits, also fall into this group. Statistical regularities come into play through inter-particle interactions, which have two fundamental components: mean field, that along with external conditions, forms the regular component of the dynamics, and residual interactions responsible for the complex structure of the actual stationary states. At sufficiently high level density, the stationary states become exceedingly complicated superpositions of simple quasiparticle excitations. At this stage, regularities typical of quantum chaos emerge and bring in signatures of thermalization. We describe all the stages and the results of the processes leading to thermalization, using analytical and massive numerical examples for realistic atomic, nuclear, and spin systems, as well as for models with random parameters. The structure of stationary states, strength functions of simple configurations, and concepts of entropy and temperature in application to isolated mesoscopic systems are discussed in detail. We conclude with a schematic discussion of the time evolution of such systems to equilibrium.

  15. Comparative analysis of thermally activated, environmentally friendly cooling systems

    International Nuclear Information System (INIS)

    Gupta, Y.; Metchop, L.; Frantzis, A.; Phelan, P.E.

    2008-01-01

    This paper compares the relative performances of three different thermally activated, environmentally friendly cooling systems, e.g. a silica-gel-water adsorption system, a LiBr-H 2 O absorption system and a desiccant air system. The adsorption and absorption systems in the current study employ water as the refrigerant, while the desiccant system cools atmospheric air directly. Each of these systems can be utilized at relatively low heat source temperatures such as achieved by flat plate solar collectors, but it is unclear which of these systems is best suited to what range of heat source temperature. Our study explores answers to this question by generating quantitative results comparing their relative thermal performance, i.e. COP and refrigeration capacity, and a qualitative comparison based on the size, maturity of technology, safe operation etc. In order to provide a fair comparison between the fundamentally different systems, a UA (overall heat transfer coefficient multiplied by the heat transfer area) value of 1.0 kW deg. C -1 is considered for the heat exchanger that transfers heat from the supplied hot water. Furthermore, to compare systems of similar size, the mass of silica-gel in the adsorption and desiccant systems and the mass of LiBr-H 2 O solution in the absorption system were specified such that each system provides the same amount of refrigeration (8.0 kW) at a source temperature of 90 deg. C. It is found that the absorption and adsorption cooling systems have a higher refrigeration capacity at heat source temperatures below 90 deg. C, while the desiccant air system outperforms the others at temperatures above 90 deg. C

  16. Late Lutetian Thermal Maximum—Crossing a Thermal Threshold in Earth's Climate System?

    Science.gov (United States)

    Westerhold, T.; Röhl, U.; Donner, B.; Frederichs, T.; Kordesch, W. E. C.; Bohaty, S. M.; Hodell, D. A.; Laskar, J.; Zeebe, R. E.

    2018-01-01

    Recognizing and deciphering transient global warming events triggered by massive release of carbon into Earth's ocean-atmosphere climate system in the past are important for understanding climate under elevated pCO2 conditions. Here we present new high-resolution geochemical records including benthic foraminiferal stable isotope data with clear evidence of a short-lived (30 kyr) warming event at 41.52 Ma. The event occurs in the late Lutetian within magnetochron C19r and is characterized by a ˜2°C warming of the deep ocean in the southern South Atlantic. The magnitudes of the carbon and oxygen isotope excursions of the Late Lutetian Thermal Maximum are comparable to the H2 event (53.6 Ma) suggesting a similar response of the climate system to carbon cycle perturbations even in an already relatively cooler climate several million years after the Early Eocene Climate Optimum. Coincidence of the event with exceptionally high insolation values in the Northern Hemisphere at 41.52 Ma might indicate that Earth's climate system has a thermal threshold. When this tipping point is crossed, rapid positive feedback mechanisms potentially trigger transient global warming. The orbital configuration in this case could have caused prolonged warm and dry season leading to a massive release of terrestrial carbon into the ocean-atmosphere system initiating environmental change.

  17. Numerical Modeling of a Shallow Borehole Thermal Energy Storage System

    Science.gov (United States)

    Catolico, N.; Ge, S.; Lu, N.; McCartney, J. S.

    2014-12-01

    Borehole thermal energy storage (BTES) combined with solar thermal energy harvesting is an economic technological system to garner and store energy as well as an environmentally-sustainable alternative for the heating of buildings. The first community-scale BTES system in North America was installed in 2007 in the Drake Landing Solar Community (DLSC), about 35 miles south of Calgary, Canada. The BTES system involves direct circulation of water heated from solar thermal panels in the summer into a storage tank, after which it is circulate within an array of 144 closed-loop geothermal heat exchangers having a depth of 35 m and a spacing of 2.5 m. In the winter the circulation direction is reversed to supply heat to houses. Data collection over a six year period indicates that this system can supply more than 90% of the winter heating energy needs for 52 houses in the community. One major challenge facing the BTES system technology is the relatively low annual efficiency, i.e., the ratio of energy input and output is in the range of 15% to 40% for the system in Drake Landing. To better understand the working principles of BTES and to improve BTES performance for future applications at larger scales, a three-dimensional transient coupled fluid and heat transfer model is established using TOUGH2. The time-dependent injection temperatures and circulation rate measured over the six years of monitoring are used as model input. The simulations are calibrated using soil temperature data measured at different locations over time. The time-dependent temperature distributions within the borehole region agree well with the measured temperatures for soil with an intrinsic permeability of 10e-19 m2, an apparent thermal conductivity of 2.03 W/m°C, and a volumetric heat capacity of 2.31 MJ/m-3°C. The calibrated model serves as the basis for a sensitivity analysis of soil and operational parameters on BTES system efficiency preformed with TOUGH2. Preliminary results suggest 1) BTES

  18. Heat engine development for solar thermal power systems

    Science.gov (United States)

    Pham, H. Q.; Jaffe, L. D.

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  19. Analysis of dynamic effects in solar thermal energy conversion systems

    Science.gov (United States)

    Hamilton, C. L.

    1978-01-01

    The paper examines a study the purpose of which is to assess the performance of solar thermal power systems insofar as it depends on the dynamic character of system components and the solar radiation which drives them. Using a dynamic model, the daily operation of two conceptual solar conversion systems was simulated under varying operating strategies and several different time-dependent radiation intensity functions. These curves ranged from smoothly varying input of several magnitudes to input of constant total energy whose intensity oscillated with periods from 1/4 hour to 6 hours.

  20. Thermal-hydraulic tests for reactor safety system

    International Nuclear Information System (INIS)

    Chun, Se Young; Chung, Moon Ki; Baek, Won Pil

    2002-05-01

    Tests for the safety depressurization system, Sparger adopted for the Korean next generation reactor, APR1400 are carried out for several geometries with the B and C (Blowdown and Condensation) facility in the condition of high temperature and pressure and with a small test facility in the condition of atmospheric temperature and pressure. Tests for the critical heat flux are performed with the RCS(Reactor Coolant System) facility as well as with the Freon CHF Loop in the condition of high temperature and pressure. The atmospheric temperature and pressure facility is utilized for development of the high standard thermal hydraulic measurement technology. The optical method is developed to measure the local thermal-hydraulic behavior for the single and two-phase boiling phenomena

  1. Preliminary design of the thermal protection system for solar probe

    Science.gov (United States)

    Dirling, R. B., Jr.; Loomis, W. C.; Heightland, C. N.

    1982-01-01

    A preliminary design of the thermal protection system for the NASA Solar Probe spacecraft is presented. As presently conceived, the spacecraft will be launched by the Space Shuttle on a Jovian swing-by trajectory and at perihelion approach to three solar radii of the surface of the Earth's sun. The system design satisfies maximum envelope, structural integrity, equipotential, and mass loss/contamination requirements by employing lightweight carbon-carbon emissive shields. The primary shield is a thin shell, 15.5-deg half-angle cone which absorbs direct solar flux at up to 10-deg off-nadir spacecraft pointing angles. Secondary shields of sandwich construction and low thickness-direction thermal conductivity are used to reduce the primary shield infrared radiation to the spacecraft payload.

  2. Coupled fast-thermal system at the 'RB' nuclear reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    1987-04-01

    The results of the analyses of the possibility of the coupled fast-thermal system (CFTS) design at the 'RB' nuclear reactor are shown. As the proof of the theoretical analyses the first stage CFTS-1 has been designed, realized, and tested. The excellent agreement between the results of the CFTS-1 studies and the theoretical predictions opens a straight way to the second, the final stage - realization of the designed CFST at the 'RB' nuclear reactor. (author)

  3. Engineered Barrier System Thermal-Hydraulic-Chemical Column Test Report

    International Nuclear Information System (INIS)

    W.E. Lowry

    2001-01-01

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M and O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01

  4. Study of system safety evaluation on LTO of national project. Thermal fatigue evaluation of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo

    2012-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and so many patterns, that their problems still occur even though well-known issues. To prevent thermal fatigue due to above thermal loads, the JSME guideline is adopted. Both thermal load and fatigue failure mechanism have been investigated and summarized into the knowledgebase. Numerical simulation methods for thermal fatigue evaluation were studied to replace structural tests. Theses knowledge was utilized to validate and justify the JSME guideline. Furthermore, new studies have been launched to apply above knowledge to enhance plant system safety. (author)

  5. Mathematical modeling and simulation of a thermal system

    Science.gov (United States)

    Toropoc, Mirela; Gavrila, Camelia; Frunzulica, Rodica; Toma, Petrica D.

    2016-12-01

    The aim of the present paper is the conception of a mathematical model and simulation of a system formed by a heatexchanger for domestic hot water preparation, a storage tank for hot water and a radiator, starting from the mathematical equations describing this system and developed using Scilab-Xcos program. The model helps to determine the evolution in time for the hot water temperature, for the return temperature in the primary circuit of the heat exchanger, for the supply temperature in the secondary circuit, the thermal power for heating and for hot water preparation to the consumer respectively. In heating systems, heat-exchangers have an important role and their performances influence the energy efficiency of the systems. In the meantime, it is very important to follow the behavior of such systems in dynamic regimes. Scilab-Xcos program can be utilized to follow the important parameters of the systems in different functioning scenarios.

  6. Mathematical modelling of thermal storage systems for the food industry

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, A.; Lacarra, G. [Universidad Publica de Navarra Campus Arrosadia, Pamplona (Spain). Area de Tecnologia de Alimentos

    1999-07-01

    Dynamic mathematical models of two thermal storage systems used in the food industry to produce chilled water are presented; an ice-bank system and a holding tank system. The variability of the refrigeration demand with time was taken into account in the model. A zoned approach using mass and energy balances was applied. Heat transfer phenomena in the evaporator were modelled using empirical correlations. The experimental validation of the mathematical models on an ice-bank system at pilot plant scale, and a centralized refrigeration system with a holding tank in a winery, showed accurate prediction. Simple models are adequate to predict the dynamic behaviour of these refrigeration systems under variable heat loads. (Author)

  7. Ice thermal storage air conditioning system for electric load leveling; Denryoku heijunka to hyochikunetsu system

    Energy Technology Data Exchange (ETDEWEB)

    Shigenaga, Y. [Daikin Industries Ltd., Osaka (Japan)

    1998-08-15

    Thermal storage air conditioning system is the one to use energy stored into thermal storing materials by using night electric power and to operate effective air conditioning. Therefore, as load can be treated by the stored energy, volume of the apparatus can be reduced. And, by reduction of the consumed power at day time, it can contribute to leveling of electric power demand. In general, there are two types in the thermal storage method: one is a method to store as thermal energy, and the other is that to store as chemical energy. For conditions required for the storing materials, important elements on their actual uses are not only physical properties such as large thermal storage per unit and easy thermal in- and out-puts, but also safety, long-term reliability, and easy receiving and economics containing future. The ice thermal storage air conditioning system is classified at the viewpoint of type of ice, kind of thermal storing medium, melting method on using cooling and heating, kinds of thermal medium on cooling and heating. 3 refs., 5 figs., 2 tabs.

  8. An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs

    International Nuclear Information System (INIS)

    Pesaran, Ahmad A.; Keyser, Matthew; Burch, Steve

    1999-01-01

    If battery packs for electric vehicles (EVs) and hybrid electric vehicles (HEVs) are to operate effectively in all climates, thermal management of the packs is essential. In this paper, we will review a systematic approach for designing and evaluating battery pack thermal management systems. A thermal management system using air as the heat transfer medium is less complicated than a system using liquid cooling/heating. Generally, for parallel HEVs, an air thermal management system is adequate, whereas for EVs and series HEVs, liquid-based systems may be required for optimum thermal performance. Further information on battery thermal management can be found on the Web site www.ctts.nrel.gov/BTM

  9. Investigation of atmospheric pressure capillary non-thermal plasmas and their applications to the degradation of volatile organic compounds

    Science.gov (United States)

    Yin, Shu-Min

    Atmospheric pressure capillary non-thermal plasma (AP-CNTP) has been investigated as a potential technology far the removal of volatile organic compounds (VOCs) in Advanced Life Support Systems (ALS). AP-CNTP is a destructive technology far the removal of VOCs from air streams by active plasma species, such as electrons, ions, and excited molecules. Complete VOC destruction ideally results in the formation of water, carbon dioxide (CO2), and other by-product's may also form, including ozone (O3), nitrous oxide (N2O), nitrogen dioxide (NO2), and decomposed hydrocarbons. Several organic compounds, such as BTEX, ethylene, n-heptane, isooctane, methanol and NH3, were tested in an AP-CNTP system. Parametric experiments were carried out by varying plasma discharge power, flowrates, and initial concentrations. The degradation efficiency varied depending on the chemical nature of the compounds. A plasmochemical kinetic model was derived for toluene, ethylbenzene, and m-xylene and n-heptane.

  10. Fighting against VOC emissions; Lutter contre les emissions de COV

    Energy Technology Data Exchange (ETDEWEB)

    Fanlo, J.L. [Ecole des Mines d' Ales, 30 (France); Puech, G. [APAVE, 75 - Paris (France); Patoux, R. [Rhodia Rhoditech (France)] [and others

    2001-12-01

    This document brings together 15 testimonies of experts about the processes used in the industry for the abatement of volatile organic compound (VOC) emissions. The different points approached concern: the first industrial experiments of fight against VOC emissions, how to audit the facilities, how to make a diagnosis, to hierarchized and to measure continuously VOC emissions, how to anticipate the explosion risks linked with VOC treatment processes, the techniques of VOC abatement at the source implemented by industrialists, the implementation of an emission mastery scheme by Crow Cork and Seal company, the implementation of a solvent management plan by Turbomeca company and of a paints strategy by Renault car-making company, the combination of VOC abatement techniques implemented by industrialists, the classification of destruction and recovery processes: the experience feedback of Sanofi Synthelabo and of Air Liquide companies, the combination of upstream and downstream techniques implemented by Pechiney Rhenalu, Ashland Polyester and Quebecor companies. (J.S.)

  11. Integrated thermal treatment system study: Phase 1 results. Volume 1

    International Nuclear Information System (INIS)

    Feizollahi, F.; Quapp, W.J.; Hempill, H.G.; Groffie, F.J.

    1994-07-01

    An integrated systems engineering approach is used for uniform comparison of widely varying thermal treatment technologies proposed for management of contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. Ten different systems encompassing several incineration design options are studied. All subsystems, including facilities, equipment, and methods needed for integration of each of the ten systems are identified. Typical subsystems needed for complete treatment of MLLW are incoming waste receiving and preparation (characterization, sorting, sizing, and separation), thermal treatment, air pollution control, primary and secondary stabilization, metal decontamination, metal melting, mercury recovery, lead recovery, and special waste and aqueous waste treatment. The evaluation is performed by developing a preconceptual design package and planning life-cycle cost (PLCC) estimates for each system. As part of the preconceptual design process, functional and operational requirements, flow sheets and mass balances, and conceptual equipment layouts are developed for each system. The PLCC components estimated are technology development, production facility construction, pre-operation, operation and maintenance, and decontamination and decommissioning. Preconceptual design data and other technology information gathered during the study are examined and areas requiring further development, testing, and evaluation are identified and recommended. Using a qualitative method, each of the ten systems are ranked

  12. PREFACE: Eurotherm Seminar 102: Thermal Management of Electronic Systems

    Science.gov (United States)

    Punch, J.; Walsh, E.

    2014-07-01

    About EUROTHERM The aim of the EUROTHERM Committee (www.eurothermcommittee.eu) is to promote and foster European cooperation in Thermal Sciences and Heat Transfer by gathering together scientists and engineers working in specialized areas. The Committee consists of members representing and appointed by national bodies in the EU countries. The current President of EUROTHERM is Professor Anton van Steenhoven from the University of Eindhoven (The Netherlands). The Committee organizes and coordinates European scientific events such as the EUROTHERM Seminars (about 4 per year) and the European Thermal Sciences Conference (every 4 years). About EUROTHERM Seminar 102 (www.eurothermseminar102.com) This seminar, part of the long-running series of European seminars on the thermal sciences, took place in June 2014 at the University of Limerick in Limerick, Ireland. The seminar addressed the topic of 'Thermal Management of Electronic Systems', a critical contemporary application area which represents a vibrant challenge for practitioners of the thermal sciences. We convey special thanks to the reviewers who have evaluated these papers. We also thank the scientific committee, consisting of internationally recognized experts. Their role has been to manage the evaluation of abstracts and the papers selection process as co-coordinators for specific topics. This seminar was hosted by the Stokes Institute at the University of Limerick. It could not have been organized without the efficient help of our administrators and technicians for IT support. This volume of Journal of Physics: Conference Series includes 27 articles presented at the seminar. Dr. Jeff Punch, Chair Stokes Institute, University of Limerick, Limerick, Ireland Email: jeff.punch@ul.ie Prof. Edmond Walsh, Co-Chair Associate Professor, Osney Laboratories, Department of Engineering Science, University of Oxford, UK Email: edmond.walsh@bnc.ox.ac.uk

  13. Aeolian system dynamics derived from thermal infrared data

    Science.gov (United States)

    Scheidt, Stephen Paul

    Thermal infrared (TIR) remote-sensing and field-based observations were used to study aeolian systems, specifically sand transport pathways, dust emission sources and Saharan atmospheric dust. A method was developed for generating seamless and radiometrically accurate mosaics of thermal infrared data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. Using a combination of high resolution thermal emission spectroscopy results of sand samples and mosaic satellite data, surface emissivity was derived to map surface composition, which led to improvement in the understanding of sand accumulation in the Gran Desierto of northern Sonora, Mexico. These methods were also used to map sand transport pathways in the Sahara Desert, where the interaction between sand saltation and dust emission sources was explored. The characteristics and dynamics of dust sources were studied at White Sands, NM and in the Sahara Desert. At White Sands, an application was developed for studying the response of dust sources to surface soil moisture based on the relationship between soil moisture, apparent thermal inertia and the erosion potential of dust sources. The dynamics of dust sources and the interaction with sand transport pathways were also studied, focusing on the Bodele Depression of Chad and large dust sources in Mali and Mauritania. A dust detection algorithm was developed using ASTER data, and the spectral emissivity of observed atmospheric dust was related to the dust source area in the Sahara. At the Atmospheric Observatory (IZO) in Tenerife, Spain where direct measurement of the Saharan Air Layer could be made, the cycle of dust events occurring in July 2009 were examined. From the observation tower at the IZO, measurements of emitted longwave atmospheric radiance in the TIR wavelength region were made using a Forward Looking Infrared Radiometer (FLIR) handheld camera. The use of the FLIR to study atmospheric dust from the Saharan is a

  14. SO2 oxidation catalyst model systems characterized by thermal methods

    DEFF Research Database (Denmark)

    Hatem, G; Eriksen, Kim Michael; Gaune-Escard, M

    2002-01-01

    The molten salts M2S2O7 and MHSO4, the binary molten salt Systems M2S2O7-MHSO4 and the molten salt-gas systems M2S2O7 V2O5 and M2S2O7-M2SO4 V2O5 (M = Na, K, Rb, Cs) in O-2, SO2 and At atmospheres have been investigated by thermal methods like calorimetry, Differential Enthalpic Analysis (DEA) and...... to the mechanism Of SO2 oxidation by V2O5 based industrial catalysts....

  15. Theoretical bases on thermal stability of layered metallic systems

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Rusakov, V.S.; Turkebaev, T.Eh.; Zhankadamova, A.M.; Ensebaeva, M.Z.

    2003-01-01

    The paper is dedicated to implementation of the theoretical bases for layered metallic systems thermal stabilization. The theory is based on the stabilization mechanism expense of the intermediate two-phase field formation. As parameters of calculated model are coefficients of mutual diffusion and inclusions sizes of generated phases in two-phase fields. The stabilization time dependence for beryllium-iron (Be (1.1 μm)-Fe(5.5 μm)) layered system from iron and beryllium diffusion coefficients, and inclusions sizes is shown as an example. Conclusion about possible mechanisms change at transition from microscopic consideration to the nano-crystal physics level is given

  16. Possibilities and Limitations of Thermally Activated Building Systems

    DEFF Research Database (Denmark)

    Behrendt, Benjamin

    The strong political market drive towards energy savings in the building sector calls for efficient solutions. Using so called low temperature heating and high temperature cooling systems such as for instance thermally activated building systems (TABS) has a significant impact on the required...... will be mostly needed to operate the building within acceptable boundaries. It will also allow the user to see if dehumidification will be needed for undisturbed operation of TABS. With the combination of both tools it is possible to provide a holistic evaluation of a building proposal at a very early design...

  17. Environmental Impacts of Solar Thermal Systems with Life Cycle Assessment

    OpenAIRE

    De Laborderie , Alexis; Puech , Clément; Adra , Nadine; Blanc , Isabelle; Beloin-Saint-Pierre , Didier; Padey , Pierryves; Payet , Jérôme; Sie , Marion; Jacquin , Philippe

    2011-01-01

    Available on: http://www.ep.liu.se/ecp/057/vol14/002/ecp57vol14_002.pdf; International audience; Solar thermal systems are an ecological way of providing domestic hot water. They are experiencing a rapid growth since the beginning of the last decade. This study characterizes the environmental performances of such installations with a life-cycle approach. The methodology is based on the application of the international standards of Life Cycle Assessment. Two types of systems are presented. Fir...

  18. Progressive reduction of the thermal wall system by modal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A.; Meslem, A.; Bounif, A.; Kadi, L. [Universite des Sciences et de la Technologie, Oran (Algeria)

    1993-12-31

    A reduction method of thermal systems called ``progress`` using the modal Analysis is presented. It allows to do, at each time of simulation, a synthesis information in the system evolution. Consequently, the limited number of descriptive and significant parameters (proper modes), can produce some extremely useful indication about dynamic evolution. However this method can eliminate proper modes of which the energetic contribution will be neglected or amortized. Some examples were studied, showing the efficiency of this method by reducing the computing time, as well as, having high precision on predicted dynamic response over time of simulation. (Authors). 4 refs., 4 figs.

  19. Design of a Heat Pump Assisted Solar Thermal System

    OpenAIRE

    Krockenberger, Kyle G.; DeGrove, John M.; Hutzel, William J.; Foreman, J. Christopher

    2014-01-01

    This paper outlines the design of an active solar thermal loop system that will be integrated with an air source heat pump hot water heater to provide highly efficient heating of a water/propylene glycol mixture. This system design uses solar energy when available, but reverts to the heat pump at night or during cloudy weather. This new design will be used for hydronic heating in the Applied Energy Laboratory, a teaching laboratory at Purdue University, but it is more generally applicable for...

  20. Nuclear thermal rocket workshop reference system Rover/NERVA

    International Nuclear Information System (INIS)

    Borowski, S.K.

    1991-01-01

    The Rover/NERVA engine system is to be used as a reference, against which each of the other concepts presented in the workshop will be compared. The following topics are reviewed: the operational characteristics of the nuclear thermal rocket (NTR); the accomplishments of the Rover/NERVA programs; and performance characteristics of the NERVA-type systems for both Mars and lunar mission applications. Also, the issues of ground testing, NTR safety, NASA's nuclear propulsion project plans, and NTR development cost estimates are briefly discussed

  1. Ballistic Performance of Porous-Ceramic, Thermal Protection Systems

    Science.gov (United States)

    Miller, J. E.; Bohl, W. E.; Christiansen, Eric C.; Davis, B. A.; Foreman, C. D.

    2011-01-01

    Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of US manned spacecraft, Orion. These systems insulate reentry critical components of a spacecraft against the intense thermal environments of atmospheric reentry. Additionally, these materials are highly exposed to space environment hazards like solid particle impacts. This paper discusses impact studies up to 10 km/s on 8 lb/cu ft alumina-fiber-enhanced-thermal-barrier (AETB8) tiles coated with a toughened-unipiece-fibrous-insulation/ reaction-cured-glass layer (TUFI/RCG). A semi-empirical, first principals impact model that describes projectile dispersion is described that provides excellent agreement with observations over a broad range of impact velocities, obliquities and projectile materials. Model extensions to look at the implications of greater than 10 GPa equation of state is also discussed. Predicted penetration probabilities for a vehicle visiting the International Space Station is 60% lower for orbital debris and 95% lower for meteoroids with this model compared to an energy scaled approach.

  2. Thermal power terms in the Einstein-dilaton system

    International Nuclear Information System (INIS)

    Zuo, Fen

    2014-01-01

    We employ the gauge/string duality to study the thermal power terms of various thermodynamic quantities in gauge theories and the renormalized Polyakov loop above the deconfinement phase transition. We restrict ourselves to the five-dimensional Einstein gravity coupled to a single scalar, the dilaton. The asymptotic solutions of the system for a general dilaton potential are employed to study the power contributions of various quantities. If the dilaton is dual to the dimension-4 operator TrF μν 2 , no power corrections would be generated. Then the thermal quantities approach their asymptotic values much more quickly than those observed in lattice simulation. When the dimension of the dual operator is different from 4, various power terms are generated. The lowest power contributions to the thermal quantities are always quadratic in the dilaton, while that of the Polyakov loop is linear. As a result, the quadratic terms in inverse temperature for both the trace anomaly and the Polyakov loop, observed in lattice simulation, cannot be implemented consistently in the system. This is in accordance with the field theory expectation, where no gauge-invariant operator can accommodate such contributions. Two simple models, where the dilaton is dual to operators with different dimensions, are studied in detail to clarify the conclusion.

  3. High efficiency thermal energy storage system for utility applications

    International Nuclear Information System (INIS)

    Vrable, D.L.; Quade, R.N.

    1979-01-01

    A concept of coupling a high efficiency base loaded coal or nuclear power plant with a thermal energy storage scheme for efficient and low-cost intermediate and peaking power is presented. A portion of the power plant's thermal output is used directly to generate superheated steam for continuous operation of a conventional turbine-generator to product base-load power. The remaining thermal output is used on a continuous basis to heat a conventional heat transfer salt (such as the eutectic composition of KaNO 3 /NaNO 3 /NaNO 2 ), which is stored in a high-temperature reservoir [538 0 C (1000 0 F)]. During peak demand periods, the salt is circulated from the high-temperature reservoir to a low-temperature reservoir through steam generators in order to provide peaking power from a conventional steam cycle plant. The period of operation can vary, but may typically be the equivalent of about 4 to 8 full-power hours each day. The system can be tailored to meet the utilities' load demand by varying the base-load level and the period of operation of the peak-load system

  4. Decreasing the Thermal Load on the Environment with the Help of Thermal Pumps in the Sewage Treatment System

    Science.gov (United States)

    Lozovetskii, V. V.; Lebedev, V. V.; Cherkina, V. M.; Ivanchuk, M. S.

    2018-05-01

    We propose designs for practical use of residual heat of sewage by means of thermal-pump transformation of thermal energy in plants operating on inverse Rankine and Lorentz cycles, as well as a method for sewage heat removal in drainage canals of water removal systems based on the application of double-pipe heat exchangers known as Field tubes.

  5. Thermal entanglement and teleportation in a dipolar interacting system

    Energy Technology Data Exchange (ETDEWEB)

    Castro, C.S., E-mail: ccastro@if.uff.br [Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoatá, 24210-346 Niterói, RJ (Brazil); Centro de Formação de Professores, Universidade Federal do Recôncavo da Bahia, Av. Nestor de Mello Pita, n. 535, 45.300-000 Amargosa, BA (Brazil); Duarte, O.S.; Pires, D.P.; Soares-Pinto, D.O. [Instituto de Física de São Carlos, Universidade de São Paulo, P.O. Box 369, São Carlos, 13560-970 SP (Brazil); Reis, M.S. [Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoatá, 24210-346 Niterói, RJ (Brazil)

    2016-04-22

    Quantum teleportation, which depends on entangled states, is a fascinating subject and an important branch of quantum information processing. The present work reports the use of a dipolar spin thermal system as a noisy quantum channel to perform quantum teleportation. Non-locality, tested by violation of Bell's inequality and thermal entanglement, measured by negativity, shows that for the present model all entangled states, even those that do not violate Bell's inequality, are useful for teleportation. - Highlights: • The effects of a dipolar interaction between two spins on their degree of entanglement and non-locality is reported. • The model presents some degree of non-locality and entanglement at a given coupling parameters. • It is shown how the magnetic anisotropies can influence the fidelity of teleportation.

  6. Separation of Kr-Xe system by thermal diffusion method

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Numata, Kazuyoshi; Matsuda, Yuji; Ouchi, Misao; Naruse, Yuji

    1979-11-01

    Separation experiments of Kr-Xe system were carried out to study the possibility of adapting thermal diffusion method for concentration of krypton in a fuel reprocessing off-gas treatment process. The results are as follows. (1) A batchwise thermal diffusion column of hot tube diameter 21 mm, cold tube diameter 32 mm, effective hight 1000 mm and volume -- 500 CC is the best in separation characteristics and in ease of operation under the different conditions. (2) The overall separation factor increases with increase of the operating temperature in the column with and without reservoir. (3) The optimum operating pressure (about 400 Torr) is independent of the operating conditions such as temperature, reservoir volume and feed gas content. (4) A preliminary design of the Kr-Xe separating plant for a reprocessing plant (1500 ton-U/yr) shows the required number of columns and the total electric power. (author)

  7. Ballistic Performance of Porous-Ceramic, Thermal-Protection-Systems

    Science.gov (United States)

    Christiansen, E. L.; Davis, B. A.; Miller, J. E.; Bohl, W. E.; Foreman, C. D.

    2009-01-01

    Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Space Shuttle and are currently being proposed for the next generation of manned spacecraft, Orion. These materials insulate the structural components of a spacecraft against the intense thermal environments of atmospheric reentry. Furthermore, these materials are also highly exposed to space environmental hazards like meteoroid and orbital debris impacts. This paper discusses recent impact testing up to 9 km/s, and the findings of the influence of material equation-of-state on the simulation of the impact event to characterize the ballistic performance of these materials. These results will be compared with heritage models1 for these materials developed from testing at lower velocities. Assessments of predicted spacecraft risk based upon these tests and simulations will also be discussed.

  8. Final design of thermal diagnostic system in SPIDER ion source

    Energy Technology Data Exchange (ETDEWEB)

    Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Dalla Palma, M.; Pasqualotto, R.; Pomaro, N. [Consorzio RFX, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2016-11-15

    The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H{sup −} production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements. This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.

  9. Final design of thermal diagnostic system in SPIDER ion source

    International Nuclear Information System (INIS)

    Brombin, M.; Dalla Palma, M.; Pasqualotto, R.; Pomaro, N.

    2016-01-01

    The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H"− production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements. This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.

  10. Development of Tailorable Electrically Conductive Thermal Control Material Systems

    Science.gov (United States)

    Deshpande, M. S.; Harada, Y.

    1997-01-01

    The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and have been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties as well as mechanical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has added to already existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The objective of this program was to develop two types of passive electrically conductive TCMS. The first was a highly absorbing/emitting black surface and the second was a low (alpha(sub s)/epsilon(sub N)) type white surface. The surface resistance goals for the black absorber was 10(exp 4) to 10(exp 9) Omega/square, and for the white surfaces it was 10(exp 6) to 10(exp 10) Omega/square. Several material system concepts were suggested and evaluated for space environment stability and electrical performance characterization. Our efforts in designing and evaluating these material systems have resulted in several developments. New concepts, pigments and binders have been developed to provide new engineering quality TCMS. Some of these have already found application on space hardware, some are waiting to be recognized by thermal designers, and some require further detailed studies to become state-of-the-art for future space hardware and space structures. Our studies on baseline state-of-the-art materials and

  11. Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    International Nuclear Information System (INIS)

    Clark, J.S.; Borowski, S.K.; Mcilwain, M.C.; Pellaccio, D.G.

    1992-09-01

    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the next generation of space propulsion systems - the key to space exploration

  12. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  13. PREDICTING THERMAL PERFORMANCE OF ROOFING SYSTEMS IN SURABAYA

    Directory of Open Access Journals (Sweden)

    MINTOROGO Danny Santoso

    2015-07-01

    Full Text Available Traditional roofing systems in the developing country likes Indonesia are still be dominated by the 30o, 45o, and more pitched angle roofs; the roofing cover materials are widely used to traditional clay roof tiles, then modern concrete roof tiles, and ceramic roof tiles. In the 90’s decay, shop houses are prosperous built with flat concrete roofs dominant. Green roofs and roof ponds are almost rarely built to meet the sustainable environmental issues. Some tested various roof systems in Surabaya were carried out to observe the roof thermal performances. Mathematical equation model from three references are also performed in order to compare with the real project tested. Calculated with equation (Kabre et al., the 30o pitched concrete-roof-tile, 30o clay-roof-tile, 45o pitched concrete-roof-tile are the worst thermal heat flux coming to room respectively. In contrast, the bare soil concrete roof and roof pond system are the least heat flux streamed onto room. Based on predicted calculation without insulation and cross-ventilation attic space, the roof pond and bare soil concrete roof (greenery roof are the appropriate roof systems for the Surabaya’s climate; meanwhile the most un-recommended roof is pitched 30o or 45o angle with concrete-roof tiles roofing systems.

  14. Thermal hydraulic analysis of BWR containment venting system

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Sharma, Prashant; Paul, U.K.; Gaikwad, Avinash

    2015-01-01

    Installation of additional containment filtered venting system (CFVS) is necessary to depressurize the containment to maintain its mechanical integrity due to over pressurization during severe accident condition. A typical venting system for BWR is modelled using RELAP5 and analysed to investigate the effect of various thermal hydraulic parameters on the operational parameters of the venting system. The venting system consists of piping from the containment to the scrubber tank and exit line from the scrubber tank. The scrubber tank is partially filled with water to enable the scrubbing action to remove the particulate radionuclides from the incoming containment air. The pipe line from the containment is connected to the venturi inlet and the throat of the venturi is open to the scrubber tank water inventory at designed submergence level. The exit of the venturi is open to scrubber tank water. Filters are used in the upper air space of the scrubber tank as mist separator before venting out the air into the atmosphere through the exit vent line. The effect of thermal hydraulic parameters such as inlet fluid temperature, inlet steam content and venturi submergence in the scrubber tank on the venting flow rate, exit steam content, scrubber tank inventory, overflow line and siphon breaker flow rate is analysed. Results show that inlet steam content and the venturi nozzle submergence influence the venting system parameters. (author)

  15. An unheated permeation device for calibrating atmospheric VOC measurements

    Directory of Open Access Journals (Sweden)

    J. Brito

    2011-10-01

    Full Text Available The development of an unpowered permeation device for continuous calibration of in-situ instruments measuring atmospheric volatile organic compounds (VOCs is described. Being lightweight and compact, and containing only negligible amounts of chemicals, the device is especially suited for field use such as on board aircraft. Its speciality is to maintain the permeation process in thermal equilibrium, so that the instantaneous permeation rate can be ascribed to a simple temperature measurement. This equilibrium state is maintained by a combination of three features: (i a thin PTFE membrane as permeation medium which guarantees short stabilization times, (ii a water bath as heat buffer, and (iii a vacuum-panel based insulation, in which features (ii and (iii minimize temperature drifts to ~30 mK h−1 per Kelvin temperature difference to the environment. The respective uncertainty of the permeation rate due to thermal non-equilibrium is kept below 1%. An extensive theory part details the major permeation processes of gases through porous polymers, being Fick's diffusion, Knudsen flow, and viscous flow. Both the measured stabilization time and the measured temperature dependence of the permeation rate independently indicate that the permeation can be described by a viscous flow model, where diffusion of the gas molecules in large pores (having a diameter of >0.05 μm dominates.

  16. Source profiles of volatile organic compounds (VOCs) measured in China: Part I

    Science.gov (United States)

    Liu, Ying; Shao, Min; Fu, Linlin; Lu, Sihua; Zeng, Limin; Tang, Dagang

    The profiles of major volatile organic compound (VOC) sources in China, including vehicle exhaust, gasoline vapor, paint, asphalt, industrial and residential coal burning, biomass burning, and the petrochemical industry, were experimentally determined. Source samples were taken using a dilution chamber for mobile and stationary sources, biomass burning in an actual Chinese farmer's house, and ambient air in a petrochemical industrial area. The concentrations of 92 VOC species were quantified using canister sampling and a gas chromatography-flame ionization detection/mass spectrometry system, and VOC source profiles were developed for source apportionment of VOCs in the Pearl River Delta region. Based on the measurement of source profiles, possible tracers for various emission sources were identified; e.g., 2-methylpentane and 1,3-butadiene could be used as tracers for vehicle exhaust; the characteristic compounds of architectural coating were aromatics such as toluene and m, p-xylene; the light hydrocarbons, namely n-butane, trans-2-butene, and n-pentane, dominated the composition of gasoline vapor; and n-nonane, n-decane, and n-undecane were found to be typical of diesel vapor and asphalt application processes. As different emission sources are characterized by overlapping VOC species, the ratio of possible VOC tracers could be used to assess the contribution of various sources. The ratios between n-butane and isobutane, 1,3-butadiene and isoprene, and the ratios of aromatics (e.g., toluene to benzene and ethylbenzene to m, p-xylene) in the measured sources were compared.

  17. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    Science.gov (United States)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  18. Power Loss Calculation and Thermal Modelling for a Three Phase Inverter Drive System

    Directory of Open Access Journals (Sweden)

    Z. Zhou

    2005-12-01

    Full Text Available Power losses calculation and thermal modelling for a three-phase inverter power system is presented in this paper. Aiming a long real time thermal simulation, an accurate average power losses calculation based on PWM reconstruction technique is proposed. For carrying out the thermal simulation, a compact thermal model for a three-phase inverter power module is built. The thermal interference of adjacent heat sources is analysed using 3D thermal simulation. The proposed model can provide accurate power losses with a large simulation time-step and suitable for a long real time thermal simulation for a three phase inverter drive system for hybrid vehicle applications.

  19. Occurrence and removal of volatile organic compounds (VOC) relative to water treatment plants in Malaysia

    International Nuclear Information System (INIS)

    Soh Shiau Chian

    2005-01-01

    pollution, the overall atmosphere in water treatment plant and the material used in water treatment processes should also be noted. This is because VOC compounds such as 1,1-dichloroethane, 1,2-dichloroethylene, 1,3-dichloropropene, 2,2-dichloropropane and methylene chloride concentrations were found increased in setteled and filtered water samples. This study also used chemometric analysis method such as principal component analysis (PCA) with the aid of varimax rotation, and parallel factor analysis (PARAFAC) method to verify the correlation between VOC compounds and the source of pollution, statistically. Chemometric results suggested that the drinking water quality did not only depend on the quality of its raw water and treatment processes involved but also relied on the effectiveness of the distribution system. On the study in Semenyih Catchment, three tributaries of Semenyih River, namely Saringgit River, Rinching River and Beranang River were held responsible for pollution. On the other hand, chemometric analysis also confirmed that the pollution of VOC compounds occurred during sedimentation and filtration process in treatment plant, which also indicated that the Semenyih River water treatment plant did not remove VOC compounds. Thus, it is suggested that granulated activated carbon (GAC) and tower aeration (PTA) are used as part of the water treatment process in order to remove VOC compounds. (author)

  20. Proportional and Integral Thermal Control System for Large Scale Heating Tests

    Science.gov (United States)

    Fleischer, Van Tran

    2015-01-01

    The National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) Flight Loads Laboratory is a unique national laboratory that supports thermal, mechanical, thermal/mechanical, and structural dynamics research and testing. A Proportional Integral thermal control system was designed and implemented to support thermal tests. A thermal control algorithm supporting a quartz lamp heater was developed based on the Proportional Integral control concept and a linearized heating process. The thermal control equations were derived and expressed in terms of power levels, integral gain, proportional gain, and differences between thermal setpoints and skin temperatures. Besides the derived equations, user's predefined thermal test information generated in the form of thermal maps was used to implement the thermal control system capabilities. Graphite heater closed-loop thermal control and graphite heater open-loop power level were added later to fulfill the demand for higher temperature tests. Verification and validation tests were performed to ensure that the thermal control system requirements were achieved. This thermal control system has successfully supported many milestone thermal and thermal/mechanical tests for almost a decade with temperatures ranging from 50 F to 3000 F and temperature rise rates from -10 F/s to 70 F/s for a variety of test articles having unique thermal profiles and test setups.

  1. Molten salt thermal energy storage systems: salt selection

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Dullea, J.F.; Huang, V.S.

    1976-08-01

    A research program aimed at the development of a molten salt thermal energy storage system commenced in June 1976. This topical report describes Work performed under Task I: Salt Selection is described. A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000/sup 0/F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. We concluded that because alkali carbonate mixtures show high thermal conductivity, low volumetric expansion on melting, low corrosivity and good stability, they are attractive as heat-of-fusion storage materials in this temperature range. A 35 wt percent Li/sub 2/CO/sub 3/-65 wt percent K/sub 2/CO/sub 3/ (50 mole percent Li/sub 2/CO/sub 3/-50 mole percent K/sub 2/CO/sub 3/) mixture was selected as a model system for further experimental work. This is a eutectoid mixture having a heat of fusion of 148 Btu/lb (82 cal/g) that forms an equimolar compound, LiKCO/sub 3/. The Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ mixture is intended to serve as a model system to define heat transfer characteristics, potential problems, and to provide ''first-cut'' engineering data required for the prototype system. The cost of a thermal energy storage system containing this mixture cannot be predicted until system characteristics are better defined. However, our comparison of different salts indicated that alkali and alkaline earth chlorides may be more attractive from a salt cost point of view. The long-term corrosion characteristics and the effects of volume change on melting for the chlorides should be investigated to determine their overall suitability as a heat-of-fusion storage medium.

  2. submitter Thermal, Hydraulic, and Electromagnetic Modeling of Superconducting Magnet Systems

    CERN Document Server

    Bottura, L

    2016-01-01

    Modeling techniques and tailored computational tools are becoming increasingly relevant to the design and analysis of large-scale superconducting magnet systems. Efficient and reliable tools are useful to provide an optimal forecast of the envelope of operating conditions and margins, which are difficult to test even when a prototype is available. This knowledge can be used to considerably reduce the design margins of the system, and thus the overall cost, or increase reliability during operation. An integrated analysis of a superconducting magnet system is, however, a complex matter, governed by very diverse physics. This paper reviews the wide spectrum of phenomena and provides an estimate of the time scales of thermal, hydraulic, and electromagnetic mechanisms affecting the performance of superconducting magnet systems. The analysis is useful to provide guidelines on how to divide the complex problem into building blocks that can be integrated in a design and analysis framework for a consistent multiphysic...

  3. Magnet system for a thermal barrier Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Kim, N.S.; Conn, R.W.

    1981-01-01

    The magnet system for a thermal barrier D-D tandem mirror reactor has been studied as part of the UCLA tandem mirror reactor design study SATYR. Three main considerations in designing the SATYR magnet system are to obtain the desired field strength variation throughout the system, to have proper space for plasma and neutron shielding, and to satisfy the MHD stability to achieve maximum central cell /beta/. Due to the importance and the complexity, the 'internal' field reversal magnet is the main concern in the entire magnet system for SATYR. Two different magnet designs, a non-uniform current density solenoid and a higher-order solenoid, are discussed. Coil levitation for the internal field reversal magnet has been analyzed

  4. Generalized thermalization for integrable system under quantum quench.

    Science.gov (United States)

    Muralidharan, Sushruth; Lochan, Kinjalk; Shankaranarayanan, S

    2018-01-01

    We investigate equilibration and generalized thermalization of the quantum Harmonic chain under local quantum quench. The quench action we consider is connecting two disjoint harmonic chains of different sizes and the system jumps between two integrable settings. We verify the validity of the generalized Gibbs ensemble description for this infinite-dimensional Hilbert space system and also identify equilibration between the subsystems as in classical systems. Using Bogoliubov transformations, we show that the eigenstates of the system prior to the quench evolve toward the Gibbs Generalized Ensemble description. Eigenstates that are more delocalized (in the sense of inverse participation ratio) prior to the quench, tend to equilibrate more rapidly. Further, through the phase space properties of a generalized Gibbs ensemble and the strength of stimulated emission, we identify the necessary criterion on the initial states for such relaxation at late times and also find out the states that would potentially not be described by the generalized Gibbs ensemble description.

  5. A performance analysis of solar chimney thermal power systems

    Directory of Open Access Journals (Sweden)

    Al-Dabbas Awwad Mohammed

    2011-01-01

    Full Text Available The objective of this study was to evaluate the solar chimney performance theoretically (techno-economic. A mathematical model was developed to estimate the following parameter: Power output, Pressure drop across the turbine, the max chimney height, Airflow temperature, and the overall efficiency of solar chimney. The mathematical model was validated with experimental data from the prototype in Manzanares power. It can be concluded that the differential pressure of collector-chimney transition section in the system, is increase with the increase of solar radiation intensity. The specific system costs are between 2000 Eur/kW and 5000 Eur/kW depending on the system size, system concept and storage size. Hence, a 50 MWe solar thermal power plant will cost 100-250 Eur million. At very good sites, today’s solar thermal power plants can generate electricity in the range of 0.15 Eur/kWh, and series production could soon bring down these costs below 0.10 Eur /kWh.

  6. Thermal Hydraulic Analysis of RPV Support Cooling System for HTGR

    International Nuclear Information System (INIS)

    Min Qi; Wu Xinxin; Li Xiaowei; Zhang Li; He Shuyan

    2014-01-01

    Passive safety is now of great interest for future generation reactors because of its reduction of human interaction and avoidance of failures of active components. reactor pressure vessel (RPV) support cooling system (SCS) for high temperature gas-cooled reactor (HTGR) is a passive safety system and is used to cool the concrete seats for the four RPV supports at its bottom. The SCS should have enough cooling capacity to ensure the temperature of the concrete seats for the supports not exceeding the limit temperature. The SCS system is composed of a natural circulation water loop and an air cooling tower. In the water loop, there is a heat exchanger embedded in the concrete seat, heat is transferred by thermal conduction and convection to the cooling water. Then the water is cooled by the air cooler mounted in the air cooling tower. The driving forces for water and air are offered by the density differences caused by the temperature differences. In this paper, the thermal hydraulic analysis for this system was presented. Methods for decoupling the natural circulation and heat transfer between the water loop and air flow were introduced. The operating parameters for different working conditions and environment temperatures were calculated. (author)

  7. Remote Thermal IR Spectroscopy of our Solar System

    Science.gov (United States)

    Kostiuk, Theodor; Hewagama, Tilak; Goldstein, Jeffrey; Livengood, Timothy; Fast, Kelly

    1999-01-01

    Indirect methods to detect extrasolar planets have been successful in identifying a number of stars with companion planets. No direct detection of an extrasolar planet has yet been reported. Spectroscopy in the thermal infrared region provides a potentially powerful approach to detection and characterization of planets and planetary systems. We can use knowledge of our own solar system, its planets and their atmospheres to model spectral characteristics of planets around other stars. Spectra derived from modeling our own solar system seen from an extrasolar perspective can be used to constrain detection strategies, identification of planetary class (terrestrial vs. gaseous) and retrieval of chemical, thermal and dynamical information. Emission from planets in our solar system peaks in the thermal infrared region, approximately 10 - 30 microns, substantially displaced from the maximum of the much brighter solar emission in the visible near 0.5 microns. This fact provides a relatively good contrast ratio to discriminate between stellar (solar) and planetary emission and optimize the delectability of planetary spectra. Important molecular constituents in planetary atmospheres have rotational-vibrational spectra in the thermal infrared region. Spectra from these molecules have been well characterized in the laboratory and studied in the atmospheres of solar system planets from ground-based and space platforms. The best example of such measurements are the studies with Fourier transform spectrometers, the Infrared Interferometer Spectrometers (IRIS), from spacecraft: Earth observed from NIMBUS 8, Mars observed from Mariner 9, and the outer planets observed from Voyager spacecraft. An Earth-like planet is characterized by atmospheric spectra of ozone, carbon dioxide, and water. Terrestrial planets have oxidizing atmospheres which are easily distinguished from reducing atmospheres of gaseous giant planets which lack oxygen-bearing species and are characterized by spectra

  8. Hybrid intelligent monironing systems for thermal power plant trips

    Science.gov (United States)

    Barsoum, Nader; Ismail, Firas Basim

    2012-11-01

    Steam boiler is one of the main equipment in thermal power plants. If the steam boiler trips it may lead to entire shutdown of the plant, which is economically burdensome. Early boiler trips monitoring is crucial to maintain normal and safe operational conditions. In the present work two artificial intelligent monitoring systems specialized in boiler trips have been proposed and coded within the MATLAB environment. The training and validation of the two systems has been performed using real operational data captured from the plant control system of selected power plant. An integrated plant data preparation framework for seven boiler trips with related operational variables has been proposed for IMSs data analysis. The first IMS represents the use of pure Artificial Neural Network system for boiler trip detection. All seven boiler trips under consideration have been detected by IMSs before or at the same time of the plant control system. The second IMS represents the use of Genetic Algorithms and Artificial Neural Networks as a hybrid intelligent system. A slightly lower root mean square error was observed in the second system which reveals that the hybrid intelligent system performed better than the pure neural network system. Also, the optimal selection of the most influencing variables performed successfully by the hybrid intelligent system.

  9. VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan

    Science.gov (United States)

    Wang, Qiaoli; Li, Sujing; Dong, Minli; Li, Wei; Gao, Xiang; Ye, Rongmin; Zhang, Dongxiao

    2018-06-01

    Zhoushan is an island city with booming tourism and service industry, but also has many developed VOCs and/or NOX emission industries. It is necessary to carry out regional VOCs and O3 pollution control in Zhoushan as the only new area owns the provincial economic and social administration rights. Anthropogenic VOCs emission inventories were built based on emission factor method and main emission sources were identified according to the emission inventories. Then, localized VOCs source profiles were built based on in-site sampling and referring to other studies. Furthermore, ozone formation potentials (OFPs) profiles were built through VOCs source profiles and maximum incremental reactivity (MIR) theory. At last, the priority control analysis results showed that industrial processes, especially surface coating, are the key of VOCs and O3 control. Alkanes were the most emitted group, accounting for 58.67%, while aromatics contributed the most to ozone production accounting for 69.97% in total OFPs. n-butane, m/p-xylene, i-pentane, n-decane, toluene, propane, n-undecane, o-xylene, methyl cyclohexane and ethyl benzene were the top 10 VOC species that should be preferentially controlled for VOCs emission control. However, m/p-xylene, o-xylene, ethylene, n-butane, toluene, propene, 1,2,4-trimethyl benzene, 1,3,5-trimethyl benzene, ethyl benzene and 1,2,3-trimethyl benzene were the top 10 VOC species that required preferential control for O3 pollution control.

  10. Modeling of thermal explosion under pressure in metal ceramic systems

    International Nuclear Information System (INIS)

    Shapiro, M.; Dudko, V.; Skachek, B.; Matvienko, A.; Gotman, I.; Gutmanas, E.Y.

    1998-01-01

    The process of reactive in situ synthesis of dense ceramic matrix composites in Ti-B-C, Ti-B-N, Ti-Si-N systems is modeled. These ceramics are fabricated on the basis of compacted blends of ceramic powders, namely Ti-B 4 C and/or Ti-BN. The objectives of the project are to identify and investigate the optimal thermal conditions preferable for production of fully dense ceramic matrix composites. Towards this goal heat transfer and combustion in dense and porous ceramic blends are investigated during monotonous heating at a constant rate. This process is modeled using a heat transfer-combustion model with kinetic parameters determined from the differential thermal analysis of the experimental data. The kinetic burning parameters and the model developed are further used to describe the thermal explosion synthesis in a restrained die under pressure. It is shown that heat removal from the reaction zone affects the combustion process and the final phase composition

  11. Thermal Hydraulic Analysis on Containment Filtered Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Suk; Park, Tong Kyu; Lee, Doo Yong; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Lee, Sang Won; Kim, Hyeong Taek [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this study, the thermal hydraulic conditions (e. g. pressure and flow rate) at each component have been examined and the sensitivity analysis on CFVS design parameters (e. g. water inventory, volumetric flow rate). The purpose is to know the possible range of flow conditions at each component to determine the optimum size of filtration system. GOTHIC code has been used to simulate the thermal-hydraulic behavior inside of CFVS. The behavior of flows in the CFVS has been investigated. The vessel water level and the flow rates during the CFVS operation are examined. It was observed that the vessel water level would be changed significantly due to steam condensation/thermal expansion and steam evaporation. Therefore, the vessel size and the initial water inventory should be carefully determined to keep the minimum water level required for filtration components and not to flood the components in the upper side of the vessel. It has been also observed that the volumetric flow rate is maintained during the CFVS operation, which is beneficial for pool scrubbing units. However, regarding the significant variations at the orifice downstream, careful design would be necessary.

  12. Improved thermal storage material for portable life support systems

    Science.gov (United States)

    Kellner, J. D.

    1975-01-01

    The availability of thermal storage materials that have heat absorption capabilities substantially greater than water-ice in the same temperature range would permit significant improvements in performance of projected portable thermal storage cooling systems. A method for providing increased heat absorption by the combined use of the heat of solution of certain salts and the heat of fusion of water-ice was investigated. This work has indicated that a 30 percent solution of potassium bifluoride (KHF2) in water can absorb approximately 52 percent more heat than an equal weight of water-ice, and approximately 79 percent more heat than an equal volume of water-ice. The thermal storage material can be regenerated easily by freezing, however, a lower temperature must be used, 261 K as compared to 273 K for water-ice. This work was conducted by the United Aircraft Research Laboratories as part of a program at Hamilton Standard Division of United Aircraft Corporation under contract to NASA Ames Research Center.

  13. Thermal-hydraulic analysis of spent fuel storage systems

    International Nuclear Information System (INIS)

    Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

    1987-01-01

    This paper describes the COBRA-SFS (Spent Fuel Storage) computer code, which is designed to predict flow and temperature distributions in spent nuclear fuel storage and transportation systems. The decay heat generated by spent fuel in a dry storage cask is removed through a combination of conduction, natural convection, and thermal radiation. One major advantage of COBRA-SFS is that fluid recirculation within the cask is computed directly by solving the mass and momentum conservation equations. In addition, thermal radiation heat transfer is modeled using detailed radiation exchange factors based on quarter-rod segments. The equations governing mass, momentum, and energy conservation for incompressible flows are presented, and the semi-implicit solution method is described. COBRA-SFS predictions are compared to temperature data from a spent fuel storage cask test and the effect of different fill media on the cladding temperature distribution is discussed. The effect of spent fuel consolidation on cask thermal performance is also investigated. 16 refs., 6 figs., 2 tabs

  14. Emission of VOC's from modified rendering process

    International Nuclear Information System (INIS)

    Bhatti, Z.A.; Raja, I.A.; Saddique, M.; Langenhove, H.V.

    2005-01-01

    Rendering technique for processing of dead animal and slaughterhouse wastes into valuable products. It involves cooking of raw material and later Sterilization was added to reduce the Bovine Spongiform Encephalopathy (BSE). Studies have been carried out on rendering emission, with the normal cooking process. Our study shows, that the sterilization step in rendering process increases the emission of volatile organic compounds (VOC's). Gas samples, containing VOC's, were analyzed by the GC/MS (Gas Chromatograph and Mass Spectrometry). The most important groups of compounds- alcohols and cyclic hydrocarbons were identified. In the group of alcohol; 1-butanol, l-pentanol and l-hexanol compounds were found while in the group of cyclic hydrocarbon; methyl cyclopentane and cyclohexane compounds were detected. Other groups like aldehyde, sulphur containing compounds, ketone and furan were also found. Some compounds, like l-pentanol, 2-methyl propanal, dimethyl disulfide and dimethyl trisulfide, which belong to these groups, cause malodor. It is important to know these compounds to treat odorous gasses. (author)

  15. Adsorption of VOCs on reduced graphene oxide.

    Science.gov (United States)

    Yu, Lian; Wang, Long; Xu, Weicheng; Chen, Limin; Fu, Mingli; Wu, Junliang; Ye, Daiqi

    2018-05-01

    A modified Hummer's method was adopted for the synthesis of graphene oxide (GO) and reduced graphene oxide (rGO). It was revealed that the modified method is effective for the production of GO and rGO from graphite. Transmission electron microscopy (TEM) images of GO and rGO showed a sheet-like morphology. Because of the presence of oxygenated functional groups on the carbon surface, the interlayer spacing of the prepared GO was higher than that of rGO. The presence of OH and CO groups in the Fourier transform infrared spectra (FTIR) spectrum and G-mode and 2D-mode in Raman spectra confirmed the synthesis of GO and rGO. rGO (292.6m 2 /g) showed higher surface area than that of GO (236.4m 2 /g). The prepared rGO was used as an adsorbent for benzene and toluene (model pollutants of volatile organic compounds (VOCs)) under dynamic adsorption/desorption conditions. rGO showed higher adsorption capacity and breakthrough times than GO. The adsorption capacity of rGO for benzene and toluene was 276.4 and 304.4mg/g, respectively. Desorption experiments showed that the spent rGO can be successfully regenerated by heating at 150.0°C. Its excellent adsorption/desorption performance for benzene and toluene makes rGO a potential adsorbent for VOC adsorption. Copyright © 2017. Published by Elsevier B.V.

  16. Indoor Air Quality Assessment and Study of Different VOC Contributions within a School in Taranto City, South of Italy

    Directory of Open Access Journals (Sweden)

    Annalisa Marzocca

    2017-03-01

    Full Text Available Children spend a large amount of time in school environments and when Indoor Air Quality (IAQ is poor, comfort, productivity and learning performances may be affected. The aim of the present study is to characterize IAQ in a primary school located in Taranto city (south of Italy. Because of the proximity of a large industrial complex to the urban settlement, this district is one of the areas identified as being at high environmental risk in Italy. The study carried out simultaneous monitoring of indoor and outdoor Volatile Organic Compounds (VOC concentrations and assessed different pollutants’ contributions on the IAQ of the investigated site. A screening study of VOC and determination of Benzene, Toluene, Ethylbenzene, Xylenes (BTEX, sampled with Radiello® diffusive samplers suitable for thermal desorption, were carried out in three classrooms, in the corridor and in the yard of the school building. Simultaneously, Total VOC (TVOC concentration was measured by means of real-time monitoring, in order to study the activation of sources during the monitored days. The analysis results showed a prevalent indoor contribution for all VOC except for BTEX which presented similar concentrations in indoor and outdoor air. Among the determined VOC, Terpenes and 2-butohxyethanol were shown to be an indoor source, the latter being the indoor pollutant with the highest concentration.

  17. Thermal imaging comparison of Signature, Infiniti, and Stellaris phacoemulsification systems.

    Science.gov (United States)

    Ryoo, Na Kyung; Kwon, Ji-Won; Wee, Won Ryang; Miller, Kevin M; Han, Young Keun

    2013-10-12

    To compare the heat production of 3 different phacoemulsification machines under strict laboratory test conditions. More specifically, the thermal behavior was analyzed between the torsional modality of the Infiniti system and longitudinal modalities of the Abbot WhiteStar Signature Phacoemulsification system and Bausch and Lomb Stellaris system. Experiments were performed under in-vitro conditions in this study.Three phacoemulsification handpieces (Infiniti, Signature, and Stellaris) were inserted into balanced salt solution-filled silicone test chambers and were imaged side-by-side by using a thermal camera. Incision compression was simulated by suspending 30.66-gram weights from the silicone chambers. The irrigation flow rate was set at 0, 1, 2, 3, 4, and 5 cc/min and the phacoemulsification power on the instrument consoles was set at 40, 60, 80, and 100%. The highest temperatures generated from each handpiece around the point of compression were measured at 0, 10, 30, and 60 seconds. Under the same displayed phacoemulsification power settings, the peak temperatures measured when using the Infiniti were lower than when using the other two machines, and the Signature was cooler than the Stellaris. At 10 seconds, torsional phacoemulsification with Infiniti at 100% power showed data comparable to that of the Signature at 80% and the Stellaris at 60%. At 30 seconds, the temperature from the Infiniti at 100% power was lower than the Signature at 60% and the Stellaris at 40%. Torsional phacoemulsification with the Infiniti generates less heat than longitudinal phacoemulsification with the Signature and the Stellaris. Lower operating temperatures indicate lower heat generation within the same fluid volume, which may provide additional thermal protection during cataract surgery.

  18. Determination of volatile organic compounds (VOCs) using tedlar bag/solid-phase microextraction/gas chromatography/mass spectrometry (SPME/GC/MS) in ambient and workplace air

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hwan; Lee, Dai Woon [Yonsei Univ., Seoul (Korea, Republic of); Hwang, Seung Man; Heo, Gwi Suk [Korea Research Institute of Standards and Science, Taejon (Korea, Republic of)

    2002-03-01

    SPME techniques have proven to be very useful tools in the analysis of wide VOCs in the air. In this study, we estimated VOCs in ambient and workplace air using a Tedlar ba/SPME/GC/MS system. The calibration curve was set to be linear over the range of 1-30 ppbv. The detection limits ranged from 10 pptv 0.93 ppbv for all VOCs. Reproducibility of TO-14 target gas mixtures by SPME/GC/MS averaged at 8.8 R.S.D (%). Air toxic VOCs (hazardous air pollutants, HAPs) containing a total of forty halohydrocarbons, aromatics, and haloaro-matic carbons could be analyzed with significant accuracy, detection limit and linearity at low ppbv level. Only reactive VOCs with low molecular weight, such as chloromethane, vinylchloride, ethylchloride and 1,2-dichloro-ethane, yielded relatively poor results using this technique. In ambient air samples, ten VOCs were identified and quantified after external calibration. VOC concentration in ambient and workplace air ranged from 0.04 to 1.85 ppbv. The overall process was successfully applied to identify and quantify VOCs in ambient/workplace air.

  19. Determination of volatile organic compounds (VOCs) using tedlar bag/solid-phase microextraction/gas chromatography/mass spectrometry (SPME/GC/MS) in ambient and workplace air

    International Nuclear Information System (INIS)

    Lee, Jae Hwan; Lee, Dai Woon; Hwang, Seung Man; Heo, Gwi Suk

    2002-01-01

    SPME techniques have proven to be very useful tools in the analysis of wide VOCs in the air. In this study, we estimated VOCs in ambient and workplace air using a Tedlar ba/SPME/GC/MS system. The calibration curve was set to be linear over the range of 1-30 ppbv. The detection limits ranged from 10 pptv 0.93 ppbv for all VOCs. Reproducibility of TO-14 target gas mixtures by SPME/GC/MS averaged at 8.8 R.S.D (%). Air toxic VOCs (hazardous air pollutants, HAPs) containing a total of forty halohydrocarbons, aromatics, and haloaro-matic carbons could be analyzed with significant accuracy, detection limit and linearity at low ppbv level. Only reactive VOCs with low molecular weight, such as chloromethane, vinylchloride, ethylchloride and 1,2-dichloro-ethane, yielded relatively poor results using this technique. In ambient air samples, ten VOCs were identified and quantified after external calibration. VOC concentration in ambient and workplace air ranged from 0.04 to 1.85 ppbv. The overall process was successfully applied to identify and quantify VOCs in ambient/workplace air

  20. Design and simulation of a low concentrating photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Rosell, J.I.; Vallverdu, X.; Lechon, M.A.; Ibanez, M.

    2005-01-01

    The advantages of photovoltaic/thermal (PV/T) collectors and low solar concentration technologies are combined into a photovoltaic/thermal system to increase the solar energy conversion efficiency. This paper presents a prototype 11X concentration rate and two axis tracking system. The main novelty is the coupling of a linear Fresnel concentrator with a channel photovoltaic/thermal collector. An analytical model to simulate the thermal behaviour of the prototype is proposed and validated. Measured thermal performance of the solar system gives values above 60%. Theoretical analysis confirms that thermal conduction between the PV cells and the absorber plate is a critical parameter

  1. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Schultz, W.E.; Smith, H.D.; Smith, M.P.

    1980-01-01

    An improved method and apparatus are described for simultaneously measuring the porosity and thermal neutron capture cross section of earth formations in situ in the vicinity of a well borehole using pulsed neutron well logging techniques. The logging tool which is moved through the borehole consists of a 14 MeV pulsed neutron source, an epithermal neutron detector and a combination gamma ray and fast neutron detector. The associated gating systems, counters and combined digital computer are sited above ground. (U.K.)

  2. Solar-thermal-energy collection/storage-pond system

    Science.gov (United States)

    Blahnik, D.E.

    1982-03-25

    A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

  3. Development of intelligent system for a thermal analysis instrument

    International Nuclear Information System (INIS)

    Xu Xiaoli; Wu Guoxin; Shi Yongchao

    2005-01-01

    The key techniques for the intelligent analysis instrument developed are proposed. Based on the technique of virtual instrumentation, the intelligent PID control algorithm to control the temperature of thermal analysis instrument is described. The dynamic character and the robust performance of traditional PID controls are improved through the dynamic gain factor, temperature rate change factor, the forecast factor, and the temperature correction factor is introduced. Using the graphic development environment of LabVIEW, the design of system modularization and the graphic display are implemented. By means of multiple mathematical modules, intelligent data processing is realized

  4. Thermal coupling system analysis of a nuclear desalination plant

    International Nuclear Information System (INIS)

    Adak, A.K.; Srivastava, V.K.; Tewari, P.K.

    2010-01-01

    When a nuclear reactor is used to supply steam for desalination plant, the method of coupling has a significant technical and economic impact. The exact method of coupling depends upon the type of reactor and type of desalination plant. As a part of Nuclear Desalination Demonstration Project (NDDP), BARC has successfully commissioned a 4500 m 3 /day MSF desalination plant coupled to Madras Atomic Power Station (MAPS) at Kalpakkam. Desalination plant coupled to nuclear power plant of Pressurized Heavy Water Reactor (PHWR) type is a good example of dual-purpose nuclear desalination plant. This paper presents the thermal coupling system analysis of this plant along with technical and safety aspects. (author)

  5. New water intake systems for thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Ishchuk, T.B.; Samodel'nikov, B.T.

    1989-01-01

    Problems arising during design of water intake and spillway structures for the auxiliary water supply system of thermal and nuclear power plants connected with the provision of their reliable operation and with the effect on the temperature condition of reservoirs and their ecology are investigated. Design providing for the connection of intake channel and catch drain for a through (transition) channel and supplying a water transition flow by ejecting water outputs is suggested. The variant considered is effective for seas, lakes and reservoirs with adverse conditions for natural cooling and it is suitable for regions with seismicity up to 5-6 balls

  6. The proposed combustion standards and DOE thermal treatment systems

    International Nuclear Information System (INIS)

    McFee, J.; Hinman, M.B.; Eaton, D.; NcNeel, K.

    1997-01-01

    Under the provisions of the Clean Air Act (CAA) concerning emission of hazardous air pollutants (HAPs), the Environmental Protection Agency (EPA) published the proposed Revised Standards for Hazardous Waste Combustors on April 19, 1996 (EPA, 1996). These standards would apply to the existing Department of Energy (DOE) radioactive and mixed waste incinerators, and may be applied to several developing alternatives to incineration. The DOE has reviewed the basis for these regulations and prepared extensive comments to present concerns about the bases and implications of the standards. DOE is now discussing compliance options with the EPA for regulation of radioactive and mixed waste thermal treatment systems

  7. An Integrated Thermal Compensation System for MEMS Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Sheng-Ren Chiu

    2014-03-01

    Full Text Available An active thermal compensation system for a low temperature-bias-drift (TBD MEMS-based gyroscope is proposed in this study. First, a micro-gyroscope is fabricated by a high-aspect-ratio silicon-on-glass (SOG process and vacuum packaged by glass frit bonding. Moreover, a drive/readout ASIC, implemented by the 0.25 µm 1P5M standard CMOS process, is designed and integrated with the gyroscope by directly wire bonding. Then, since the temperature effect is one of the critical issues in the high performance gyroscope applications, the temperature-dependent characteristics of the micro-gyroscope are discussed. Furthermore, to compensate the TBD of the micro-gyroscope, a thermal compensation system is proposed and integrated in the aforementioned ASIC to actively tune the parameters in the digital trimming mechanism, which is designed in the readout ASIC. Finally, some experimental results demonstrate that the TBD of the micro-gyroscope can be compensated effectively by the proposed compensation system.

  8. Development of realistic thermal hydraulic system analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, B. D; Kim, K. D. [and others

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others.

  9. Development of realistic thermal hydraulic system analysis code

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, B. D; Kim, K. D.

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others

  10. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    International Nuclear Information System (INIS)

    Lewis, W.S.

    1994-01-01

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment

  11. Inversion approach for thermal data from a convecting hydrothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Kasameyer, P.; Younker, L.; Hanson, J.

    1983-08-01

    Efforts to invert thermal data from 13 deep geothermal wells, and from additional shallow heat-flow holes, in order to determine the age and total flow rate of the Salton Sea hydrothermal system are described. The data were inverted for a very restrictive model: single-phase, horizontal flow along prescribed flowlines in a single aquifer bounded by an impermeable cap and base. With simplifying assumptions, the results are shown to depend on only two parameters, the system age, and the aquifer/cap thickness ratio. The surface gradient and temperature distribution within the cap are calculated analytically for all possible parameter values. Those parameters producing temperatures that agree with observations are identified, and the range of acceptable parameters is reduced by conclusions drawn from other geophysical data. The cap thickness is inferred to be 500m from thermal and lithologic data from the wells. The aquifer thickness is limited to less than 2500m by seismic, resistivity and magnetic data. It is concluded that if this model is valid, the system age is constrained between 3000 and 20,000 years.

  12. Scaling of Thermal-Hydraulic Phenomena and System Code Assessment

    International Nuclear Information System (INIS)

    Wolfert, K.

    2008-01-01

    In the last five decades large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Many separate effects tests and integral system tests were carried out to establish a data base for code development and code validation. In this context the question has to be answered, to what extent the results of down-scaled test facilities represent the thermal-hydraulic behaviour expected in a full-scale nuclear reactor under accidental conditions. Scaling principles, developed by many scientists and engineers, present a scientific technical basis and give a valuable orientation for the design of test facilities. However, it is impossible for a down-scaled facility to reproduce all physical phenomena in the correct temporal sequence and in the kind and strength of their occurrence. The designer needs to optimize a down-scaled facility for the processes of primary interest. This leads compulsorily to scaling distortions of other processes with less importance. Taking into account these weak points, a goal oriented code validation strategy is required, based on the analyses of separate effects tests and integral system tests as well as transients occurred in full-scale nuclear reactors. The CSNI validation matrices are an excellent basis for the fulfilling of this task. Separate effects tests in full scale play here an important role.

  13. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  14. Integrated Thermal Protection Systems and Heat Resistant Structures

    Science.gov (United States)

    Pichon, Thierry; Lacoste, Marc; Glass, David E.

    2006-01-01

    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop integrated thermal protection systems and heat resistant structures for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled early. This presentation provides an overview of the work that was accomplished prior to cancellation. The Snecma team chose an Apollo-type capsule as the reference vehicle for the work. They began with the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield, a C/SiC deployable decelerator and several ablators. They additionally developed a health monitoring system, high temperature structures testing, and the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  15. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    Science.gov (United States)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  16. Standard Guide for Specifying Thermal Performance of Geothermal Power Systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide covers power plant performance terms and criteria for use in evaluation and comparison of geothermal energy conversion and power generation systems. The special nature of these geothermal systems makes performance criteria commonly used to evaluate conventional fossil fuel-fired systems of limited value. This guide identifies the limitations of the less useful criteria and defines an equitable basis for measuring the quality of differing thermal cycles and plant equipment for geothermal resources. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  17. Outer skin protection of columbium Thermal Protection System (TPS) panels

    Science.gov (United States)

    Culp, J. D.

    1973-01-01

    A coated columbium alloy material system 0.04 centimeter thick was developed which provides for increased reliability to the load bearing character of the system in the event of physical damage to and loss of the exterior protective coating. The increased reliability to the load bearing columbium alloy (FS-85) was achieved by interposing an oxidation resistant columbium alloy (B-1) between the FS-85 alloy and a fused slurry silicide coating. The B-1 alloy was applied as a cladding to the FS-85 and the composite was fused slurry silicide coated. Results of material evaluation testing included cyclic oxidation testing of specimens with intentional coating defects, tensile testing of several material combinations exposed to reentry profile conditions, and emittance testing after cycling of up to 100 simulated reentries. The clad material, which was shown to provide greater reliability than unclad materials, holds significant promise for use in the thermal protection system of hypersonic reentry vehicles.

  18. Internal Thermal Control System Hose Heat Transfer Fluid Thermal Expansion Evaluation Test Report

    Science.gov (United States)

    Wieland, P. O.; Hawk, H. D.

    2001-01-01

    During assembly of the International Space Station, the Internal Thermal Control Systems in adjacent modules are connected by jumper hoses referred to as integrated hose assemblies (IHAs). A test of an IHA has been performed at the Marshall Space Flight Center to determine whether the pressure in an IHA filled with heat transfer fluid would exceed the maximum design pressure when subjected to elevated temperatures (up to 60 C (140 F)) that may be experienced during storage or transportation. The results of the test show that the pressure in the IHA remains below 227 kPa (33 psia) (well below the 689 kPa (100 psia) maximum design pressure) even at a temperature of 71 C (160 F), with no indication of leakage or damage to the hose. Therefore, based on the results of this test, the IHA can safely be filled with coolant prior to launch. The test and results are documented in this Technical Memorandum.

  19. Enthalpy estimation for thermal comfort and energy saving in air conditioning system

    International Nuclear Information System (INIS)

    Chu, C.-M.; Jong, T.-L.

    2008-01-01

    The thermal comfort control of a room must consider not only the thermal comfort level but also energy saving. This paper proposes an enthalpy estimation that is conducive for thermal comfort control and energy saving. The least enthalpy estimator (LEE) combines the concept of human thermal comfort with the theory of enthalpy to predict the load for a suitable setting pair in order to maintain more precisely the thermal comfort level and save energy in the air conditioning system

  20. FORMULATING ULTRA-LOW-VOC WOOD FURNITURE COATINGS

    Science.gov (United States)

    The article discusses the formulation of ultra-low volatile organic compound (VOC) wood furniture coatings. The annual U.S. market for wood coatings is about 240, 000 cu m (63 million gal). In this basis, between 57 and 91 million kg (125 and 200 million lb) of VOCs are emitted i...

  1. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    Song, C. H.; Baek, W. P.; Chung, M. K.

    2007-06-01

    The objectives of the project are to study thermal hydraulic characteristics of advanced nuclear reactor system for evaluating key thermal-hydraulic phenomena relevant to new safety concepts. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. The Followings are main research topics: - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation-induced Thermal Mixing in a Pool - Development of Thermal-Hydraulic Models for Two-Phase Flow - Construction of T-H Data Base

  2. Influence of the ventilation system on thermal comfort of the chilled panel system in heating mode

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhe; Ding, Yan; Wang, Shuo; Yin, Xinglei; Wang, Menglei [Tianjin University, Tianjin 300072 (China)

    2010-12-15

    In heating mode, fresh air is still essential for a chilled panel system in order to ensure the indoor air quality. In this paper, a chilled ceiling panel system was designed and built in a typical office room. The thermal environment and thermal comfort in the room were fully measured and evaluated by using the Fanger's PMV-PPD model and the standard of ISO 7730 respectively, when room was heated in two modes, one of which is the chilled panel heating mode and the other of which is the combined heating mode of chilled panel and supply air. The research results indicate that in the combined mode, ceiling ventilation improves the general thermal comfort and reduces the risk of local discomfort. Under the condition of same general thermal comfort, the heating supply upper limit of chilled panel can be increased by 12.3% because of air mixing effect caused by introduction of air ventilation. (author)

  3. High Efficiency and Low Cost Thermal Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-29

    BgtL, LLC (BgtL) is focused on developing and commercializing its proprietary compact technology for processes in the energy sector. One such application is a compact high efficiency Thermal Energy Storage (TES) system that utilizes the heat of fusion through phase change between solid and liquid to store and release energy at high temperatures and incorporate state-of-the-art insulation to minimize heat dissipation. BgtL’s TES system would greatly improve the economics of existing nuclear and coal-fired power plants by allowing the power plant to store energy when power prices are low and sell power into the grid when prices are high. Compared to existing battery storage technology, BgtL’s novel thermal energy storage solution can be significantly less costly to acquire and maintain, does not have any waste or environmental emissions, and does not deteriorate over time; it can keep constant efficiency and operates cleanly and safely. BgtL’s engineers are experienced in this field and are able to design and engineer such a system to a specific power plant’s requirements. BgtL also has a strong manufacturing partner to fabricate the system such that it qualifies for an ASME code stamp. BgtL’s vision is to be the leading provider of compact systems for various applications including energy storage. BgtL requests that all technical information about the TES designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.

  4. Challenges in thermal and hydraulic analysis of ADS target systems

    International Nuclear Information System (INIS)

    Groetzbach, G.; Batta, A.; Lefhalm, C.-H.; Otic, I.

    2004-01-01

    The liquid metal cooled spallation targets of Accelerator Driven nuclear reactor Systems obey high thermal loads; in addition some flow and cooling conditions are of a prototypical character; in contrast the operating conditions for the engaged materials are narrow; thus, the target development requires a very careful analysis by experimental and numerical means. Especially the cooling of the steel window, which is heated by the proton beam, needs special care. Some of the main goals of the experimental and numerical analyses of the thermal dynamics of those systems are discusses. The prediction of locally detached flows and of flows with larger recirculation areas suffers from insufficient turbulence modeling; this has to be compensated by using prototypical model experiments, e.g. with water, to select the adequate models and numerical schemes. The well known problems with the Reynolds analogy in predicting the heat transfer in liquid metals requires always prototypic liquid metal experiments to select and adapt the turbulent heat flux models. The uncertainties in liquid metal experiments cannot be neglected; so it is necessary to perform CFD calculations and experiments always hand in hand and to develop improve turbulent heat flux models. One contribution to an improved 3 or 4-equation model is deduced from recent Direct Numerical Simulation (DNS) data. (author)

  5. Computational Design and Experimental Validation of New Thermal Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

    2011-12-31

    This project (10/01/2010-9/30/2013), “Computational Design and Experimental Validation of New Thermal Barrier Systems”, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This proposal will directly support the technical goals specified in DE-FOA-0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. We will develop novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; we will perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; we will perform material characterizations and oxidation/corrosion tests; and we will demonstrate our new Thermal barrier coating (TBC) systems experimentally under Integrated gasification combined cycle (IGCC) environments. The durability of the coating will be examined using the proposed High Temperature/High Pressure Durability Test Rig under real syngas product compositions.

  6. Flexible Thermal Protection System Development for Hypersonic Inflatable Aerodynamic Decelerators

    Science.gov (United States)

    DelCorso, Joseph A.; Bruce, Walter E., III; Hughes, Stephen J.; Dec, John A.; Rezin, Marc D.; Meador, Mary Ann B.; Guo, Haiquan; Fletcher, Douglas G.; Calomino, Anthony M.; Cheatwood, McNeil

    2012-01-01

    The Hypersonic Inflatable Aerodynamic Decelerators (HIAD) project has invested in development of multiple thermal protection system (TPS) candidates to be used in inflatable, high downmass, technology flight projects. Flexible TPS is one element of the HIAD project which is tasked with the research and development of the technology ranging from direct ground tests, modelling and simulation, characterization of TPS systems, manufacturing and handling, and standards and policy definition. The intent of flexible TPS is to enable large deployable aeroshell technologies, which increase the drag performance while significantly reducing the ballistic coefficient of high-mass entry vehicles. A HIAD requires a flexible TPS capable of surviving aerothermal loads, and durable enough to survive the rigors of construction, handling, high density packing, long duration exposure to extrinsic, in-situ environments, and deployment. This paper provides a comprehensive overview of key work being performed within the Flexible TPS element of the HIAD project. Included in this paper is an overview of, and results from, each Flexible TPS research and development activity, which includes ground testing, physics-based thermal modelling, age testing, margins policy, catalysis, materials characterization, and recent developments with new TPS materials.

  7. Plant communication: mediated by individual or blended VOCs?

    Science.gov (United States)

    Ueda, Hirokazu; Kikuta, Yukio; Matsuda, Kazuhiko

    2012-02-01

    Plants emit volatile organic compounds (VOCs) as a means to warn other plants of impending danger. Nearby plants exposed to the induced VOCs prepare their own defense weapons in response. Accumulated data supports this assertion, yet much of the evidence has been obtained in laboratories under artificial conditions where, for example, a single VOC might be applied at a concentration that plants do not actually experience in nature. Experiments conducted outdoors suggest that communication occurs only within a limited distance from the damaged plants. Thus, the question remains as to whether VOCs work as a single component or a specific blend, and at which concentrations VOCs elicit insect and pathogen defenses in undamaged plants. We discuss these issues based on available literature and our recent work, and propose future directions in this field.

  8. Analysis of thermal systems using the entropy balance method

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C L.D.; Fartaj, S A; Fenton, D L [Kansas State Univ., Manhattan, KS (United States). Dept. of Mechanical Engineering

    1992-04-01

    This study investigates the applicability of the second law of thermodynamics using an entropy balance method to analyse and design thermal systems. As examples, the entropy balance method is used to analyse a single stage chiller system and a single stage heat transformer, both with lithium-bromide/water as the working fluid. The entropy method yields not only the same information as is conveyed by the methods of energy and exergy analysis, but it also predicts clearly the influence of irreversibilities of individual components on the coefficient of performance and its effectiveness, based on the process properties, rather than on ambient conditions. Furthermore, this method is capable of presenting the overall distribution of the heat input by displaying the additional heat required to overcome irreversibility of each component without ambiguity. (Author).

  9. Different Approaches to Control of TISO Thermal System

    Directory of Open Access Journals (Sweden)

    Jaroslava KRÁLOVÁ

    2009-06-01

    Full Text Available The contribution is aimed on problematic of multivariable control. Multivariable system can be controlled by multivariable controller or we can use decentralized control. Control of thermal system with two inputs and one output is shown in the paper. The goal of paper is to find what sort of results we can get by classical approaches and by more sophisticated strategies. Two discrete-time PID controllers are selected as a representative of classical approach and split-range with discrete-time PID controller is selected as a representative of more sophisticated strategy. Control strategies are compared in the view of control quality and costs, information and knowledge required by control design and application.

  10. Thermal hydraulic tests for reactor safety system -Research on the improvement of nuclear safety-

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Park, Chun Kyeong; Yang, Seon Kyu; Chung, Chang Hwan; Chun, Shee Yeong; Song, Cheol Hwa; Chun, Hyeong Gil; Chang, Seok Kyu; Chung, Heung Joon; Won, Soon Yeon; Cho, Yeong Ro; Kim, Bok Deuk; Min, Kyeong Ho

    1994-07-01

    The present research aims at the development of the thermal hydraulic verification test technology for the reactor safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. (Author)

  11. Advanced Oxide Material Systems for 1650 Deg. C Thermal/Environmental Barrier Coating Applications

    National Research Council Canada - National Science Library

    Zhu, Dongming; Fox, Dennis S; Bansal, Narottam P; Miller, Robert A

    2004-01-01

    ... systems under engine high-heat-flux and severe thermal cycling conditions. In this report, the thermal conductivity and water vapor stability of selected candidate hafnia-, pyrochlore-, and magnetoplumbite-based TEBC materials are evaluated...

  12. Secondary organic aerosol from VOC mixtures in an oxidation flow reactor

    Science.gov (United States)

    Ahlberg, Erik; Falk, John; Eriksson, Axel; Holst, Thomas; Brune, William H.; Kristensson, Adam; Roldin, Pontus; Svenningsson, Birgitta

    2017-07-01

    The atmospheric organic aerosol is a tremendously complex system in terms of chemical content. Models generally treat the mixtures as ideal, something which has been questioned owing to model-measurement discrepancies. We used an oxidation flow reactor to produce secondary organic aerosol (SOA) mixtures containing oxidation products of biogenic (α-pinene, myrcene and isoprene) and anthropogenic (m-xylene) volatile organic compounds (VOCs). The resulting volume concentration and chemical composition was measured using a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), respectively. The SOA mass yield of the mixtures was compared to a partitioning model constructed from single VOC experiments. The single VOC SOA mass yields with no wall-loss correction applied are comparable to previous experiments. In the mixtures containing myrcene a higher yield than expected was produced. We attribute this to an increased condensation sink, arising from myrcene producing a significantly higher number of nucleation particles compared to the other precursors. Isoprene did not produce much mass in single VOC experiments but contributed to the mass of the mixtures. The effect of high concentrations of isoprene on the OH exposure was found to be small, even at OH reactivities that previously have been reported to significantly suppress OH exposures in oxidation flow reactors. Furthermore, isoprene shifted the particle size distribution of mixtures towards larger sizes, which could be due to a change in oxidant dynamics inside the reactor.

  13. Design and Construction of a Thermal Contact Resistance and Thermal Conductivity Measurement System

    Science.gov (United States)

    2015-09-01

    thank my Mom, Dad , Allison, Jessica, and father-in-law, Tom, for always being there to listen and encourage me. xxiv THIS PAGE INTENTIONALLY...thermal conductivity is temperature measurement inaccuracies. A probe constructed of a poor thermally conductive material when inserted into a hot...interface- resistance-measurement-using-a-transient-method/ [26] H. Fukushima, L. T. Drzal, B. P. Rook and M. J. Rich , “Thermal conductivity of exfoliated

  14. An Analysis of Air Pollution Control Technologies for Shipyard Emitted Volatile Organic Compounds (VOCS)

    National Research Council Canada - National Science Library

    Snider, Thomas J

    1993-01-01

    ...) emissions from industrial operations. One approach to VOC reduction is through air pollution control technology to remove the contaminants from the exhaust airstream of VOC generating processes...

  15. The thermal impact of aquifer thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling

    Science.gov (United States)

    Visser, Philip W.; Kooi, Henk; Stuyfzand, Pieter J.

    2015-05-01

    Results are presented of a comprehensive thermal impact study on an aquifer thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the thermal impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the thermal plumes. The fine-scale heterogeneity model resulted in larger thermally impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the thermal impact.

  16. Thermal mixing in T-junction piping system concerned with high-cycle thermal fatigue in structure

    International Nuclear Information System (INIS)

    Tanaka, Masaaki; Ohshima, Hiroyuki; Monji, Hideaki

    2008-01-01

    In Japan Atomic Energy Agency (JAEA), a numerical simulation code 'MUGTHES' has been developed to investigate thermal striping phenomena caused by turbulence mixing of fluids in different temperature and to provide transient data for an evaluation method of high-cycle thermal fatigue. MUGTHES adopts Large Eddy Simulation (LES) approach to predict unsteady phenomena in thermal mixing and employs boundary fitted coordinate system to be applied to complex geometry in a power reactor. Numerical simulation of thermal striping phenomena in a T-junction piping system (T-pipe) is conducted. Boundary condition for the simulation is chosen from an existing water experiment in JAEA, named as WATLON experiment. In the numerical simulation, standard Smagorinsky model is employed as eddy viscosity model with the model coefficient of 0.14 (=Cs). Numerical results of MUGTHES are verified by the comparisons with experimental results of velocity and temperature. Through the numerical simulation in the T-pipe, applicability of MUGTHES to the thermal striping phenomena is confirmed and the characteristic large-scale eddy structure which dominates thermal mixing and may cause high-cycle thermal fatigue is revealed. (author)

  17. Robotic system for the servicing of the orbiter thermal protection system

    Science.gov (United States)

    Graham, Todd; Bennett, Richard; Dowling, Kevin; Manouchehri, Davoud; Cooper, Eric; Cowan, Cregg

    1994-01-01

    This paper describes the design and development of a mobile robotic system to process orbiter thermal protection system (TPS) tiles. This work was justified by a TPS automation study which identified tile rewaterproofing and visual inspection as excellent applications for robotic automation.

  18. Dynamic thermal analysis of a concentrated photovoltaic system

    Science.gov (United States)

    Avrett, John T., II; Cain, Stephen C.; Pochet, Michael

    2012-02-01

    Concentrated photovoltaic (PV) technology represents a growing market in the field of terrestrial solar energy production. As the demand for renewable energy technologies increases, further importance is placed upon the modeling, design, and simulation of these systems. Given the U.S. Air Force cultural shift towards energy awareness and conservation, several concentrated PV systems have been installed on Air Force installations across the country. However, there has been a dearth of research within the Air Force devoted to understanding these systems in order to possibly improve the existing technologies. This research presents a new model for a simple concentrated PV system. This model accurately determines the steady state operating temperature as a function of the concentration factor for the optical part of the concentrated PV system, in order to calculate the optimum concentration that maximizes power output and efficiency. The dynamic thermal model derived is validated experimentally using a commercial polysilicon solar cell, and is shown to accurately predict the steady state temperature and ideal concentration factor.

  19. Scaling in nuclear reactor system thermal-hydraulics

    International Nuclear Information System (INIS)

    D'Auria, F.; Galassi, G.M.

    2010-01-01

    Scaling is a reference 'key-word' in engineering and in physics. The relevance of scaling in the water cooled nuclear reactor technology constitutes the motivation for the present paper. The origin of the scaling-issue, i.e. the impossibility to get access to measured data in case of accident in nuclear reactors, is discussed at first. The so-called 'scaling-controversy' constitutes an outcome. Then, a critical survey (or 'scaling state-of-art';) is given of the attempts and of the approaches to provide a solution to the scaling-issue in the area of Nuclear Reactor System Thermal-Hydraulics (NRSTH): dimensionless design factors for Integral Test Facilities (ITF) are distinguished from scaling factors. The last part of the paper has a two-fold nature: (a) classifying the information about achievements in the area of thermal-hydraulics which are relevant to scaling: the concepts of 'scaling-pyramid' and the related 'scaling bridges' are introduced; (b) establishing a logical path across the scaling achievements (represented as a 'scaling puzzle'). In this context, the 'roadmap for scaling' is proposed: the objective is addressing the scaling issue when demonstrating the applicability of system codes in the licensing process of nuclear power plants. The code itself is referred hereafter as the 'key-to-scaling'. The database from the operation of properly scaled ITF and the availability of qualified system codes are identified as main achievements in NRSTH connected with scaling. The 'roadmap to scaling' constitutes a unified approach to scaling which aims at solving the 'scaling puzzle' created by researches performed during a half-a-century period.

  20. Scaling in nuclear reactor system thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    D' Auria, F., E-mail: dauria@ing.unipi.i [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy); Galassi, G.M. [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy)

    2010-10-15

    Scaling is a reference 'key-word' in engineering and in physics. The relevance of scaling in the water cooled nuclear reactor technology constitutes the motivation for the present paper. The origin of the scaling-issue, i.e. the impossibility to get access to measured data in case of accident in nuclear reactors, is discussed at first. The so-called 'scaling-controversy' constitutes an outcome. Then, a critical survey (or 'scaling state-of-art';) is given of the attempts and of the approaches to provide a solution to the scaling-issue in the area of Nuclear Reactor System Thermal-Hydraulics (NRSTH): dimensionless design factors for Integral Test Facilities (ITF) are distinguished from scaling factors. The last part of the paper has a two-fold nature: (a) classifying the information about achievements in the area of thermal-hydraulics which are relevant to scaling: the concepts of 'scaling-pyramid' and the related 'scaling bridges' are introduced; (b) establishing a logical path across the scaling achievements (represented as a 'scaling puzzle'). In this context, the 'roadmap for scaling' is proposed: the objective is addressing the scaling issue when demonstrating the applicability of system codes in the licensing process of nuclear power plants. The code itself is referred hereafter as the 'key-to-scaling'. The database from the operation of properly scaled ITF and the availability of qualified system codes are identified as main achievements in NRSTH connected with scaling. The 'roadmap to scaling' constitutes a unified approach to scaling which aims at solving the 'scaling puzzle' created by researches performed during a half-a-century period.

  1. System Level Analysis of a Water PCM HX Integrated into Orion's Thermal Control System

    Science.gov (United States)

    Navarro, Moses; Hansen, Scott; Seth, Rubik; Ungar, Eugene

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development an Orion system level analysis was performed using Thermal Desktop for a water PCM HX integrated into Orion's thermal control system in a 100km Lunar orbit. The study verified of the thermal model by using a wax PCM and analyzed 1) placing the PCM on the Internal Thermal Control System (ITCS) versus the External Thermal Control System (ETCS) 2) use of 30/70 PGW verses 50/50 PGW and 3) increasing the radiator area in order to reduce PCM freeze times. The analysis showed that for the assumed operating and boundary conditions utilizing a water PCM HX on Orion is not a viable option for any case. Additionally, it was found that the radiator area would have to be increased by at least 40% in order to support a viable water-based PCM HX.

  2. Effects of thermal activated building systems in schools on thermal comfort in winter

    NARCIS (Netherlands)

    Zeiler, W.; Boxem, G.

    2009-01-01

    There is a growing attention for the Indoor Air Quality problems in schools, but there is far less attention for the thermal comfort aspects within schools. A literature review is done to clear the effects of thermal quality in schools on the learning performance of the students: it clearly shows

  3. Mathematical modeling of photovoltaic thermal PV/T system with v-groove collector

    Science.gov (United States)

    Zohri, M.; Fudholi, A.; Ruslan, M. H.; Sopian, K.

    2017-07-01

    The use of v-groove in solar collector has a higher thermal efficiency in references. Dropping the working heat of photovoltaic panel was able to raise the electrical efficiency performance. Electrical and thermal efficiency were produced by photovoltaic thermal (PV/T) system concurrently. Mathematical modeling based on steady-state thermal analysis of PV/T system with v-groove was conducted. With matrix inversion method, the energy balance equations are explained by means of the investigative method. The comparison results show that in the PV/T system with the V-groove collector is higher temperature, thermal and electrical efficiency than other collectors.

  4. Thermal decay in underfloor air distribution (UFAD) systems: Fundamentals and influence on system performance

    International Nuclear Information System (INIS)

    Lee, Kwang Ho; Schiavon, Stefano; Bauman, Fred; Webster, Tom

    2012-01-01

    Graphical abstract: Surface heat transfer breakdown for an underfloor air distribution (UFAD) system supply plenum. Highlights: ► Thermal decay of a UFAD system is considerable (annual median = 3.7 K). ► Thermal decay is driven by heat transfer through both the concrete slab and the raised floor. ► Thermal decay may lead to higher airflow rates and increased fan and chiller energy consumption. -- Abstract: Underfloor air distribution (UFAD) is a mechanical ventilation strategy in which the conditioned air is primarily delivered to the zone from a pressurized plenum through floor mounted diffusers. Compared to conventional overhead (OH) mixing systems, UFAD has several potential advantages, such as improved thermal comfort and indoor air quality (IAQ), layout flexibility, reduced life cycle costs and improved energy efficiency in suitable climates. In ducted OH systems designers have reasonably accurate control of the diffuser supply temperature, while in UFAD this temperature is difficult to predict due to the heat gain of the conditioned air in the supply plenum. The increase in temperature between the air entering the plenum and air leaving through a diffuser is known as thermal decay. In this study, the detailed whole-building energy simulation program, EnergyPlus, was used to explain the fundamentals of thermal decay, to investigate its influence on energy consumption and to study the parameters that affect thermal decay. It turns out that the temperature rise is considerable (annual median = 3.7 K, with 50% of the values between 2.4 and 4.7 K based on annual simulations). Compared to an idealized simulated UFAD case with no thermal decay, elevated diffuser air temperatures can lead to higher supply airflow rate and increased fan and chiller energy consumption. The thermal decay in summer is higher than in winter and it also depends on the climate. The ground floor with a slab on grade has less temperature rise compared to middle and top floors. An

  5. Analysis and optimization of hybrid electric vehicle thermal management systems

    Science.gov (United States)

    Hamut, H. S.; Dincer, I.; Naterer, G. F.

    2014-02-01

    In this study, the thermal management system of a hybrid electric vehicle is optimized using single and multi-objective evolutionary algorithms in order to maximize the exergy efficiency and minimize the cost and environmental impact of the system. The objective functions are defined and decision variables, along with their respective system constraints, are selected for the analysis. In the multi-objective optimization, a Pareto frontier is obtained and a single desirable optimal solution is selected based on LINMAP decision-making process. The corresponding solutions are compared against the exergetic, exergoeconomic and exergoenvironmental single objective optimization results. The results show that the exergy efficiency, total cost rate and environmental impact rate for the baseline system are determined to be 0.29, ¢28 h-1 and 77.3 mPts h-1 respectively. Moreover, based on the exergoeconomic optimization, 14% higher exergy efficiency and 5% lower cost can be achieved, compared to baseline parameters at an expense of a 14% increase in the environmental impact. Based on the exergoenvironmental optimization, a 13% higher exergy efficiency and 5% lower environmental impact can be achieved at the expense of a 27% increase in the total cost.

  6. VOCs and odors: key factors in selecting `green` building materials?

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, C. [Steven Winter Associates Inc., Norwalk, CT and Washington DC (United States)

    1998-12-01

    The current state of knowledge available for selecting building materials on the basis of emissions of volatile organic compounds (VOCs) and odors is reviewed. The significance of VOCs and odors in building materials is related to their role in influencing indoor air quality. As far as toxicity is concerned, many of the VOCs detected in indoor air are relatively inert when considered singly. They are not however, unimportant because in actual fact they are invariably found in mixtures some of which can be toxic. Although knowledge of VOCs is incomplete, it is important to specify ozone-resistant polymeric building products, i.e. those that are chemically stable and inert to oxidation. In addition to VOCs, attention should also be focused on semi-volatile organic compounds (SVOCs) since they are even more persistent than VOCs and tend to offgas for prolonged periods of time. Similarly, it is reasonable to specify low-odor materials. Inclusion of issues related to complex indoor chemistry, less volatile emissions, in addition to VOCs and odor, should in time result in expanded choices of building materials that promote indoor air quality. 16 refs.,2 tabs.

  7. Thermal hydraulics of accelerator driven system: validation and analysis

    International Nuclear Information System (INIS)

    Kumari, I.; Khanna, A.

    2014-01-01

    This paper presents validation of RELAP5/Mod4.0 code modified to incorporate Lead Bismuth Eutectic (LBE)fluid properties for simulation of Accelerator Driven System (ADS) against Barone's NACIE facility.Results of mass flow rates (MFR), Reynolds number, heat transfer coefficients, temperatures and temperature difference for three powers (10.8, 21.7 and 32.5 kW) under natural circulation of LBE match with Barone's values within 7%,18%,37%, 5% and 8% of relative error respectively. After this validation Indian ADS for thermal power of 15 kW has been simulated. Simulated profiles of temperature, MFR and pressure drop LBE and air are reported. Air and LBE temperatures of present work match with literature design values within 5% of relative error. (author)

  8. A thermal insulation system intended for a prestressed concrete vessel

    International Nuclear Information System (INIS)

    Aubert, Gilles; Petit, Guy.

    1975-01-01

    The description is given of a thermal insulation system withstanding the pressure of a vaporisable fluid for a prestressed concrete vessel, particularly the vessel of a boiling water nuclear reactor. The ring in the lower part of the vessel has, between the fluid inlet pipes and the bottom of the vessel, an annular opening of which the bottom edge is integral with an annular part rising inside the ring and parallel to it. This ring is hermetically connected to the bottom of the vessel and is coated with a metal lagging, at least facing the annular opening. This annular opening is made in the ring half-way up between the fluid inlet pipes and the bottom of the vessel. It is connected to the bottom of the vessel through the internal structure enveloping the reactor core [fr

  9. Comprehensive assessment of the role and potential for solar thermal in future energy systems

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Mathiesen, Brian Vad

    2018-01-01

    to the energy system configurations. Solar thermal benefits reduce when moving towards a high-renewable energy system as other renewable energy sources start competing with solar thermal on energy prices and energy system flexibility. The findings can be applied to a diversity of energy systems also beyond...

  10. Stability, rheology and thermal analysis of functionalized alumina- thermal oil-based nanofluids for advanced cooling systems

    International Nuclear Information System (INIS)

    Ilyas, Suhaib Umer; Pendyala, Rajashekhar; Narahari, Marneni; Susin, Lim

    2017-01-01

    Highlights: • Alumina nanoparticles are functionalized with oleic acid. • Functionalization of alumina nanoparticles gives better dispersion in thermal oil. • Thermophysical properties of nanofluids are experimentally measured. • TGA confirms the improvement in life of nanofluids. - Abstract: Thermal oils are widely used as cooling media in heat transfer processes. However, their potential has not been utilised exquisitely in many applications due to low thermal properties. Thermal oil-based nanofluids are prepared by dispersing functionalized alumina with varying concentrations of 0.5–3 wt.% to enhance thermal properties of oil for advanced cooling systems. The oleic acid coated alumina is prepared and then dispersed in the oil to overcome the aggregation of nanoparticles in base fluid. The surface characterizations of functionalized nanoparticles are performed using different analysis such as XRD, EDS, SEM, TEM and FTIR. Dispersion behaviour and agglomeration studies are conducted at natural and functionalized conditions using different analysis to ensure long-term stability of nanofluids. In addition, rheological behaviour of non-Newtonian nanofluids is studied at high shear rates (100–2000 s"−"1). Effective densities and enhancement in thermal conductivities are measured for different nanofluids concentrations. Specific heat capacity is measured using Differential Scanning Calorimetry. The correlations are developed for thermophysical properties of nanofluids. Thermogravimetric analysis is performed with respect to temperature and time to exploit the effect of the addition of nanoparticles on the degradation of nanofluids. Significant improvement in the thermal properties of oil is observed using highly stable functionalized alumina nano-additives.

  11. On the Thermal Protection Systems of Landers for Venus Exploration

    Science.gov (United States)

    Ekonomov, A. P.; Ksanfomality, L. V.

    2018-01-01

    The landers of the Soviet Venera series—from Venera-9 to Venera-14—designed at the Lavochkin Association are a man-made monument to spectacular achievements of Soviet space research. For more than 40 years, they have remained the uneclipsed Soviet results in space studies of the Solar System. Within the last almost half a century, the experiments carried out by the Venera-9 to Venera-14 probes for studying the surface of the planet have not been repeated by any space agency in the world, mainly due to quite substantial technical problems. Since that time, no Russian missions with landers have been sent to Venus either. On Venus, there is an anoxic carbon dioxide atmosphere, where the pressure is 9.2 MPa and the temperature is 735 K near the surface. A long-lived lander should experience these conditions for an appreciable length of time. What technical solutions could provide a longer operation time for a new probe investigating the surface of Venus, if its thermal scheme is constructed similar to that of the Venera series? Onboard new landers, there should be a sealed module, where the physical conditions required for operating scientific instruments are maintained for a long period. At the same time, new high-temperature electronic equipment that remains functional under the above-mentioned conditions have appeared. In this paper, we consider and discuss different variants of the system for a long-lived sealed lander, in particular, the absorption of the penetrating heat due to water evaporation and the thermal protection construction for the instruments with intermediate characteristics.

  12. An Approximate Ablative Thermal Protection System Sizing Tool for Entry System Design

    Science.gov (United States)

    Dec, John A.; Braun, Robert D.

    2006-01-01

    A computer tool to perform entry vehicle ablative thermal protection systems sizing has been developed. Two options for calculating the thermal response are incorporated into the tool. One, an industry-standard, high-fidelity ablation and thermal response program was integrated into the tool, making use of simulated trajectory data to calculate its boundary conditions at the ablating surface. Second, an approximate method that uses heat of ablation data to estimate heat shield recession during entry has been coupled to a one-dimensional finite-difference calculation that calculates the in-depth thermal response. The in-depth solution accounts for material decomposition, but does not account for pyrolysis gas energy absorption through the material. Engineering correlations are used to estimate stagnation point convective and radiative heating as a function of time. The sizing tool calculates recovery enthalpy, wall enthalpy, surface pressure, and heat transfer coefficient. Verification of this tool is performed by comparison to past thermal protection system sizings for the Mars Pathfinder and Stardust entry systems and calculations are performed for an Apollo capsule entering the atmosphere at lunar and Mars return speeds.

  13. Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants

    Science.gov (United States)

    Bracho-Nunez, A.; Knothe, , N. M.; Welter, S.; Staudt, M.; Costa, W. R.; Liberato, M. A. R.; Piedade, M. T. F.; Kesselmeier, J.

    2013-09-01

    Emission inventories defining regional and global biogenic volatile organic compounds (VOC) emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity) and physics (secondary organic aerosol formation and effects). The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS) and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed heterogeneous emissions, including reactive VOC species which are not

  14. Leaf level emissions of volatile organic compounds (VOC from some Amazonian and Mediterranean plants

    Directory of Open Access Journals (Sweden)

    A. Bracho-Nunez

    2013-09-01

    Full Text Available Emission inventories defining regional and global biogenic volatile organic compounds (VOC emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity and physics (secondary organic aerosol formation and effects. The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene < limonene < sabinene < ß-pinene. Mediterranean plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed

  15. Use of thermal sieve to allow optical testing of cryogenic optical systems.

    Science.gov (United States)

    Kim, Dae Wook; Cai, Wenrui; Burge, James H

    2012-05-21

    Full aperture testing of large cryogenic optical systems has been impractical due to the difficulty of operating a large collimator at cryogenic temperatures. The Thermal Sieve solves this problem by acting as a thermal barrier between an ambient temperature collimator and the cryogenic system under test. The Thermal Sieve uses a set of thermally controlled baffles with array of holes that are lined up to pass the light from the collimator without degrading the wavefront, while attenuating the thermal background by nearly 4 orders of magnitude. This paper provides the theory behind the Thermal Sieve system, evaluates the optimization for its optical and thermal performance, and presents the design and analysis for a specific system.

  16. TRASYS - THERMAL RADIATION ANALYZER SYSTEM (DEC VAX VERSION WITH NASADIG)

    Science.gov (United States)

    Anderson, G. E.

    1994-01-01

    The Thermal Radiation Analyzer System, TRASYS, is a computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems. TRASYS computes the total thermal radiation environment for a spacecraft in orbit. The software calculates internode radiation interchange data as well as incident and absorbed heat rate data originating from environmental radiant heat sources. TRASYS provides data of both types in a format directly usable by such thermal analyzer programs as SINDA/FLUINT (available from COSMIC, program number MSC-21528). One primary feature of TRASYS is that it allows users to write their own driver programs to organize and direct the preprocessor and processor library routines in solving specific thermal radiation problems. The preprocessor first reads and converts the user's geometry input data into the form used by the processor library routines. Then, the preprocessor accepts the user's driving logic, written in the TRASYS modified FORTRAN language. In many cases, the user has a choice of routines to solve a given problem. Users may also provide their own routines where desirable. In particular, the user may write output routines to provide for an interface between TRASYS and any thermal analyzer program using the R-C network concept. Input to the TRASYS program consists of Options and Edit data, Model data, and Logic Flow and Operations data. Options and Edit data provide for basic program control and user edit capability. The Model data describe the problem in terms of geometry and other properties. This information includes surface geometry data, documentation data, nodal data, block coordinate system data, form factor data, and flux data. Logic Flow and Operations data house the user's driver logic, including the sequence of subroutine calls and the subroutine library. Output from TRASYS consists of two basic types of data: internode radiation interchange data, and incident and absorbed heat rate data

  17. TRASYS - THERMAL RADIATION ANALYZER SYSTEM (DEC VAX VERSION WITHOUT NASADIG)

    Science.gov (United States)

    Vogt, R. A.

    1994-01-01

    The Thermal Radiation Analyzer System, TRASYS, is a computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems. TRASYS computes the total thermal radiation environment for a spacecraft in orbit. The software calculates internode radiation interchange data as well as incident and absorbed heat rate data originating from environmental radiant heat sources. TRASYS provides data of both types in a format directly usable by such thermal analyzer programs as SINDA/FLUINT (available from COSMIC, program number MSC-21528). One primary feature of TRASYS is that it allows users to write their own driver programs to organize and direct the preprocessor and processor library routines in solving specific thermal radiation problems. The preprocessor first reads and converts the user's geometry input data into the form used by the processor library routines. Then, the preprocessor accepts the user's driving logic, written in the TRASYS modified FORTRAN language. In many cases, the user has a choice of routines to solve a given problem. Users may also provide their own routines where desirable. In particular, the user may write output routines to provide for an interface between TRASYS and any thermal analyzer program using the R-C network concept. Input to the TRASYS program consists of Options and Edit data, Model data, and Logic Flow and Operations data. Options and Edit data provide for basic program control and user edit capability. The Model data describe the problem in terms of geometry and other properties. This information includes surface geometry data, documentation data, nodal data, block coordinate system data, form factor data, and flux data. Logic Flow and Operations data house the user's driver logic, including the sequence of subroutine calls and the subroutine library. Output from TRASYS consists of two basic types of data: internode radiation interchange data, and incident and absorbed heat rate data

  18. TRASYS - THERMAL RADIATION ANALYZER SYSTEM (CRAY VERSION WITH NASADIG)

    Science.gov (United States)

    Anderson, G. E.

    1994-01-01

    The Thermal Radiation Analyzer System, TRASYS, is a computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems. TRASYS computes the total thermal radiation environment for a spacecraft in orbit. The software calculates internode radiation interchange data as well as incident and absorbed heat rate data originating from environmental radiant heat sources. TRASYS provides data of both types in a format directly usable by such thermal analyzer programs as SINDA/FLUINT (available from COSMIC, program number MSC-21528). One primary feature of TRASYS is that it allows users to write their own driver programs to organize and direct the preprocessor and processor library routines in solving specific thermal radiation problems. The preprocessor first reads and converts the user's geometry input data into the form used by the processor library routines. Then, the preprocessor accepts the user's driving logic, written in the TRASYS modified FORTRAN language. In many cases, the user has a choice of routines to solve a given problem. Users may also provide their own routines where desirable. In particular, the user may write output routines to provide for an interface between TRASYS and any thermal analyzer program using the R-C network concept. Input to the TRASYS program consists of Options and Edit data, Model data, and Logic Flow and Operations data. Options and Edit data provide for basic program control and user edit capability. The Model data describe the problem in terms of geometry and other properties. This information includes surface geometry data, documentation data, nodal data, block coordinate system data, form factor data, and flux data. Logic Flow and Operations data house the user's driver logic, including the sequence of subroutine calls and the subroutine library. Output from TRASYS consists of two basic types of data: internode radiation interchange data, and incident and absorbed heat rate data

  19. Contrasting VOC Composition in London, UK and Beijing, China

    Science.gov (United States)

    Dunmore, R.; Hopkins, J. R.; Shaw, M.; Squires, F. A.; Lee, J. D.; Lewis, A. C.; Hamilton, J. F.

    2017-12-01

    With an increasing fraction of the world's population now living in megacities, urban air quality in those locations has the potential to be one of the largest controllable factors for public health. Both London and Beijing are classified as megacities, with the latter almost twice as densely populated. The key drivers and trajectory of air pollution are unique to each location; London has substantially reduced PM10 concentrations over the past two decades but continues to have high urban NO2. Beijing has had well-reported high levels of PM, is now in a phase of gradual decline, and has proportionately low NO2. Both locations however, continue to emit a mix of gas phase pollutants with the potential to form photochemical ozone. Whilst the abundance of NOx in each city is relatively straightforward to quantify, the VOC mixtures that are present differ between these two cities and this has consequential impacts on the downwind ozone formation potential. This work reports a comprehensive assessment of VOC speciation, reactivity and abundance in the two cities using a common set of inter-comparable measurement approaches. Hourly observations of VOCs over the range C2 - C13+ were made using two gas chromatography (GC) instruments; a PLOT column based GC for the most volatile fraction (C2-C7) and a comprehensive two-dimensional GC (GCxGC) for VOCs with more than 7 carbons. London has atmospheric VOC concentrations that in mass and reactivity terms are dominated by longer chain VOCs from diesel fuel. The VOC mixture in ambient Beijing air is dominated by short chain VOCs, a mix of both alkenes from incomplete combustion sources and alkanes and aromatics from petrochemical sources. The substantial difference in the fleet proportions of gasoline and diesel powered vehicles between the two cities is clearly reflected in ambient VOCs. In summertime, isoprene was a notable contributor to VOC reactivity in both cities despite both being highly urbanised locations. The absolute

  20. Influence of synoptic condition and holiday effects on VOCs and ozone production in the Yangtze River Delta region, China

    Science.gov (United States)

    Xu, Zhengning; Huang, Xin; Nie, Wei; Chi, Xuguang; Xu, Zheng; Zheng, Longfei; Sun, Peng; Ding, Aijun

    2017-11-01

    Both anthropogenic emission and synoptic conditions play important roles in ozone (O3) formation and accumulation. In order to understand the influence of synoptic condition and holiday effects on ozone production in the Yangtze River Delta region, China, concentrations of speciated volatile organic compounds (VOCs) and O3 as well as other relevant trace gases were simultaneously measured at the Station for Observing Regional Processes of the Earth System (SORPES) in Nanjing around the National Day holidays of China in 2014, which featured substantial change of emissions and dominated by typical anti-cyclones. Different groups of VOC species and their chemical reactivities were comprehensively analyzed. We observed clear diurnal variations of short alkenes during the measurement period, considerable amount of short alkenes were observed during night (more than 10 ppb) while almost no alkenes were measured during daytime, which might be attributed to different chemical processes. The obvious enhancement of the VOC tracers during the National Day holidays (Oct. 1st-Oct. 7th) indicated that the holiday effect strongly influenced the distribution of VOC profile and chemical reactivity in the atmosphere. At the same time, two meso-scale anticyclone processes were also observed during the measurement period. The synoptic condition contributed to the accumulation of VOCs and other precursors, which consequently impacted the ozone production in this region. The integrated influence of synoptic and holiday effects was also analyzed with an Observation Based Model (OBM) based on simplified MCM (Master Chemical Mechanism) chemical mechanism. The calculated relative increment reactivity (RIR) of different VOC groups revealed that during the holidays, this region was in VOC-limited regime and the variation of RIR shows a close linkage to the development and elimination of anti-cyclones, indicating an in-negligible contribution of synoptic effect toward ozone production in this

  1. Thermal dimensioning of wet natural draft cooling systems

    International Nuclear Information System (INIS)

    Bourillot, Claudine.

    1975-01-01

    The conventional models of calculating wet natural draft cooling systems include two different parts. First, the thermal calculation of the dispersion is made either with an ''exact'' method of separating convection and evaporation phenomena and taking account for the steam in exces in the saturated air, or with a ''simplified'' method considering the heat transfer in the whole as resulting of a difference in enthalpies. (The latter is the Merkel theory). Secondly, the draft equation is solved for calculating air flow rate. Values of the mass transfer coefficients and pressure drops of the dispersion being needed for the computation, test bench measurements are made by the designers. As for counter-current cooling systems the models of the dispersion calculation are one-dimensional models not allowing the radial flow and air temperature distributions to be simulated; exchanges inside the rain zone are also neglected. As for crossed-current cooling systems the flow geometry entails a more complicated two-dimensional model to be used for the dispersion. In both cases, the dependence on meteorological factors such as wind, height gradients of temperature, or sunny features are disregarded [fr

  2. Characteristics of large thermal energy storage systems in Poland

    Science.gov (United States)

    Zwierzchowski, Ryszard

    2017-11-01

    In District Heating Systems (DHS) there are significant fluctuations in demand for heat by consumers during both the heating and the summer seasons. These variations are considered primarily in the 24-hour time horizon. These problems are aggravated further if the DHS is supplied by a CHP plant, because fluctuations in heat demand adversely affect to a significant degree the stable production of electricity at high overall efficiency. Therefore, introducing Thermal Energy Storage (TES) would be highly recommended on these grounds alone. The characteristics of Large (i.e. over 10 000 m3) TES in operation in Poland are presented. Information is given regarding new projects (currently in design or construction) that apply TES technology in DHS in Poland. The paper looks at the methodology used in Poland to select the TES system for a particular DHS, i.e., procedure for calculating capacity of the TES tank and the system to prevent water stored in the tank from absorbing oxygen from atmospheric air. Implementation of TES in DHS is treated as a recommended technology in the Polish District Heating sector. This technology offers great opportunities to improve the operating conditions of DHS, cutting energy production costs and emissions of pollutants to the atmosphere.

  3. A Novel Silicon Micromachined Integrated MCM Thermal Management System

    Science.gov (United States)

    Kazmierczak, M. J.; Henderson, H. T.; Gerner, F. M.

    1997-01-01

    "Micromachining" is a chemical means of etching three-dimensional structures, typically in single- crystalline silicon. These techniques are leading toward what is coming to be referred to as MEMS (Micro Electro Mechanical Systems), where in addition to the ordinary two-dimensional (planar) microelectronics, it is possible to build three-dimensional n-ticromotors, electrically- actuated raicrovalves, hydraulic systems and much more on the same microchip. These techniques become possible because of differential etching rates of various crystallographic planes and materials used for semiconductor n-ticrofabfication. The University of Cincinnati group in collaboration with Karl Baker at NASA Lewis were the first to form micro heat pipes in silicon by the above techniques. Current work now in progress using MEMS technology is now directed towards the development of the next generation in MCM (Multi Chip Module) packaging. Here we propose to develop a complete electronic thermal management system which will allow densifica6on in chip stacking by perhaps two orders of magnitude. Furthermore the proposed technique will allow ordinary conu-nercial integrated chips to be utilized. Basically, the new technique involves etching square holes into a silicon substrate and then inserting and bonding commercially available integrated chips into these holes. For example, over a 100 1/4 in. by 1 /4 in. integrated chips can be placed on a 4 in. by 4 in. silicon substrate to form a Multi-Chip Module (MCM). Placing these MCM's in-line within an integrated rack then allows for three-diniensional stacking. Increased miniaturization of microelectronic circuits will lead to very high local heat fluxes. A high performance thermal management system will be specifically designed to remove the generated energy. More specifically, a compact heat exchanger with milli / microchannels will be developed and tested to remove the heat through the back side of this MCM assembly for moderate and high

  4. Surface emission determination of volatile organic compounds (VOC) from a closed industrial waste landfill using a self-designed static flux chamber.

    Science.gov (United States)

    Gallego, E; Perales, J F; Roca, F J; Guardino, X

    2014-02-01

    Closed landfills can be a source of VOC and odorous nuisances to their atmospheric surroundings. A self-designed cylindrical air flux chamber was used to measure VOC surface emissions in a closed industrial landfill located in Cerdanyola del Vallès, Catalonia, Spain. The two main objectives of the study were the evaluation of the performance of the chamber setup in typical measurement conditions and the determination of the emission rates of 60 different VOC from that industrial landfill, generating a valuable database that can be useful in future studies related to industrial landfill management. Triplicate samples were taken in five selected sampling points. VOC were sampled dynamically using multi-sorbent bed tubes (Carbotrap, Carbopack X, Carboxen 569) connected to SKC AirCheck 2000 pumps. The analysis was performed by automatic thermal desorption coupled with a capillary gas chromatograph/mass spectrometry detector. The emission rates of sixty VOC were calculated for each sampling point in an effort to characterize surface emissions. To calculate average, minimum and maximum emission values for each VOC, the results were analyzed by three different methods: Global, Kriging and Tributary area. Global and Tributary area methodologies presented similar values, with total VOC emissions of 237 ± 48 and 222 ± 46 g day(-1), respectively; however, Kriging values were lower, 77 ± 17 gd ay(-1). The main contributors to the total emission rate were aldehydes (nonanal and decanal), acetic acid, ketones (acetone), aromatic hydrocarbons and alcohols. Most aromatic hydrocarbon (except benzene, naphthalene and methylnaphthalenes) and aldehyde emission rates exhibited strong correlations with the rest of VOC of their family, indicating a possible common source of these compounds. B:T ratio obtained from the emission rates of the studied landfill suggested that the factors that regulate aromatic hydrocarbon distributions in the landfill emissions are different from the ones

  5. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    International Nuclear Information System (INIS)

    O'Brien, Robert C.; Klein, Andrew C.; Taitano, William T.; Gibson, Justice; Myers, Brian; Howe, Steven D.

    2011-01-01

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  6. Integrated System Modeling for Nuclear Thermal Propulsion (NTP)

    Science.gov (United States)

    Ryan, Stephen W.; Borowski, Stanley K.

    2014-01-01

    Nuclear thermal propulsion (NTP) has long been identified as a key enabling technology for space exploration beyond LEO. From Wernher Von Braun's early concepts for crewed missions to the Moon and Mars to the current Mars Design Reference Architecture (DRA) 5.0 and recent lunar and asteroid mission studies, the high thrust and specific impulse of NTP opens up possibilities such as reusability that are just not feasible with competing approaches. Although NTP technology was proven in the Rover / NERVA projects in the early days of the space program, an integrated spacecraft using NTP has never been developed. Such a spacecraft presents a challenging multidisciplinary systems integration problem. The disciplines that must come together include not only nuclear propulsion and power, but also thermal management, power, structures, orbital dynamics, etc. Some of this integration logic was incorporated into a vehicle sizing code developed at NASA's Glenn Research Center (GRC) in the early 1990s called MOMMA, and later into an Excel-based tool called SIZER. Recently, a team at GRC has developed an open source framework for solving Multidisciplinary Design, Analysis and Optimization (MDAO) problems called OpenMDAO. A modeling approach is presented that builds on previous work in NTP vehicle sizing and mission analysis by making use of the OpenMDAO framework to enable modular and reconfigurable representations of various NTP vehicle configurations and mission scenarios. This approach is currently applied to vehicle sizing, but is extensible to optimization of vehicle and mission designs. The key features of the code will be discussed and examples of NTP transfer vehicles and candidate missions will be presented.

  7. System Level Analysis of a Water PCM HX Integrated Into Orion's Thermal Control System Abstract

    Science.gov (United States)

    Navarro, Moses; Hansen, Scott; Ungar, Eugene; Sheth, Rubik

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development an Orion system level analysis was performed using Thermal Desktop for a water PCM HX integrated into Orion's thermal control system and in a 100km Lunar orbit. The study analyzed 1) placing the PCM on the Internal Thermal Control System (ITCS) versus the External Thermal Control System (ETCS) 2) use of 30/70 PGW verses 50/50 PGW and 3) increasing the radiator area in order to reduce PCM freeze times. The analysis showed that for the assumed operating and boundary conditions utilizing a water PCM HX on Orion is not a viable option. Additionally, it was found that the radiator area would have to be increased over 20% in order to have a viable water-based PCM HX.

  8. Solar-energy conversion system provides electrical power and thermal control for life-support systems

    Science.gov (United States)

    Davis, B. K.

    1974-01-01

    System utilizes Freon cycle and includes boiler turbogenerator with heat exchanger, regenerator and thermal-control heat exchangers, low-pressure and boiler-feed pumps, and condenser. Exchanger may be of interest to engineers and scientists investigating new energy sources.

  9. Integrated photovoltaic-thermal solar energy conversion systems

    Science.gov (United States)

    Samara, G. A.

    1975-01-01

    A combined photovoltaic/thermal collector has been built and is now being tested. Initial tests have concentrated on evaluating the thermal efficiency of the collector before and after the silicon cells are mounted. With likely improvements in bonding between cells and receiver and in the absorptivity of the cells, thermal efficiencies greater than 50% can be expected for the combined receiver operating at 100 C.

  10. Advanced Thermal Protection Systems (ATPS), Aerospace Grade Carbon Bonded Carbon Fiber Material, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon bonded carbon fiber (CBCF) insulating material is the basis for several highly successful NASA developed thermal protection systems (TPS). Included among...

  11. Protection and thermal management of thermoelectric generator system using phase change materials: An experimental investigation

    DEFF Research Database (Denmark)

    Ahmadi Atouei, Saeed; Rezaniakolaei, Alireza; Ranjbar, A.A.

    2018-01-01

    In most thermoelectric systems the thermal boundary conditions are transient, and thermal manage-ment of the system is critical to improve electrical performance of the system. In this study, effect of using phase change materials (PCM) to control the hot and cold side temperatures...

  12. Design of thermal protection system for 8 foot HTST combustor

    Science.gov (United States)

    Moskowitz, S.

    1973-01-01

    The combustor in the 8-foot high temperature structures tunnel at the NASA-Langley Research Center has encountered cracking over a period of 50-250 tunnel tests within a limited range of the required operating envelope. A program was conducted which analyzed the failed combustor liner hardware and determined that the mechanism of failure was vibratory fatigue. A vibration damper system using wave springs located axially between the liner T-bar and the liner support was designed as an intermediate solution to extend the life of the current two-pass regenerative air-cooled liner. The effects of liner wall thickness, cooling air passage height, stiffener ring geometry, reflective coatings, and liner material selection were investigated for these designs. Preliminary layout design arrangements including the external water-cooling system requirements, weight estimates, installation requirements and preliminary estimates of manufacturing costs were prepared for the most promissing configurations. A state-of-the-art review of thermal barrier coatings and an evaluation of reflective coatings for the gasside surface of air-cooled liners are included.

  13. Thermal analysis of the failed equipment storage vault system

    International Nuclear Information System (INIS)

    Jerrell, J.; Lee, S.Y.; Shadday, A.

    1995-07-01

    A storage facility for failed glass melters is required for radioactive operation of the Defense Waste Processing Facility (DWPF). It is currently proposed that the failed melters be stored in the Failed Equipment Storage Vaults (FESV's) in S area. The FESV's are underground reinforced concrete structures constructed in pairs, with adjacent vaults sharing a common wall. A failed melter is to be placed in a steel Melter Storage Box (MSB), sealed, and lowered into the vault. A concrete lid is then placed over the top of the FESV. Two melters will be placed within the FESV/MSB system, separated by the common wall. There is no forced ventilation within the vault so that the melter is passively cooled. Temperature profiles in the Failed Equipment Storage Vault Structures have been generated using the FLOW3D software to model heat conduction and convection within the FESV/MSB system. Due to complexities in modeling radiation with FLOW3D, P/THERMAL software has been used to model radiation using the conduction/convection temperature results from FLOW3D. The final conjugate model includes heat transfer by conduction, convection, and radiation to predict steady-state temperatures. Also, the FLOW3D software has been validated as required by the technical task request

  14. Preliminary thermal analysis of grids for twin source extraction system

    International Nuclear Information System (INIS)

    Pandey, Ravi; Bandyopadhyay, Mainak; Chakraborty, Arun K.

    2017-01-01

    The TWIN (Two driver based Indigenously built Negative ion source) source provides a bridge between the operational single driver based negative ion source test facility, ROBIN in IPR and an ITER-type multi driver based ion source. The source is designed to be operated in CW mode with 180kW, 1MHz, 5s ON/600s OFF duty cycle and also in 5Hz modulation mode with 3s ON/20s OFF duty cycle for 3 such cycle. TWIN source comprises of ion source sub-assembly (consist of driver and plasma box) and extraction system sub-assembly. Extraction system consists of Plasma grid (PG), extraction grid (EG) and Ground grid (GG) sub assembly. Negative ion beams produced at plasma grid seeing the plasma side of ion source will receive moderate heat flux whereas the extraction grid and ground grid would be receiving majority of heat flux from extracted negative ion and co-extracted electron beams. Entire Co-extracted electron beam would be dumped at extraction grid via electron deflection magnetic field making the requirement of thermal and hydraulic design for extraction grid to be critical. All the three grids are made of OFHC Copper and would be actively water cooled keeping the peak temperature rise of grid surface within allowable limit with optimum uniformity. All the grids are to be made by vacuum brazing process where joint strength becomes crucial at elevated temperature. Hydraulic design must maintain the peak temperature at the brazing joint within acceptable limit

  15. Intelligent MRTD testing for thermal imaging system using ANN

    Science.gov (United States)

    Sun, Junyue; Ma, Dongmei

    2006-01-01

    The Minimum Resolvable Temperature Difference (MRTD) is the most widely accepted figure for describing the performance of a thermal imaging system. Many models have been proposed to predict it. The MRTD testing is a psychophysical task, for which biases are unavoidable. It requires laboratory conditions such as normal air condition and a constant temperature. It also needs expensive measuring equipments and takes a considerable period of time. Especially when measuring imagers of the same type, the test is time consuming. So an automated and intelligent measurement method should be discussed. This paper adopts the concept of automated MRTD testing using boundary contour system and fuzzy ARTMAP, but uses different methods. It describes an Automated MRTD Testing procedure basing on Back-Propagation Network. Firstly, we use frame grabber to capture the 4-bar target image data. Then according to image gray scale, we segment the image to get 4-bar place and extract feature vector representing the image characteristic and human detection ability. These feature sets, along with known target visibility, are used to train the ANN (Artificial Neural Networks). Actually it is a nonlinear classification (of input dimensions) of the image series using ANN. Our task is to justify if image is resolvable or uncertainty. Then the trained ANN will emulate observer performance in determining MRTD. This method can reduce the uncertainties between observers and long time dependent factors by standardization. This paper will introduce the feature extraction algorithm, demonstrate the feasibility of the whole process and give the accuracy of MRTD measurement.

  16. Multicriteria analysis of thermal and energy systems for tourist facilities

    International Nuclear Information System (INIS)

    Raguzin, I.

    1999-01-01

    The introductory part of the paper briefly presents the technological, economic and environmental optimisation procedure of thermal and energy systems for tourist facilities with the multicriteria ranging method when choosing an optimum solution. The procedure described includes a systematic analysis of the system's structure, energy-mass balance, balance of costs, environmental impact analysis and the choice of an optimum solution. Special attention was paid to criteria quantification for the choice of solution and the most appropriate ranging method.The procedure's application has been illustrated on an example of a potential tourist facility on the Island of Loinj, i.e. the locality with a potential highest category tourist development. This example includes (a) consumers (heating of rooms, preparation of hot water, heating of swimming pool water and cooling of rooms), and (b) producers (boiler room, cooling engine-rooms, a cogeneration plant and heat pumps). The data have been supplied from the project documentation for the reconstruction of the existing facilities mainly preliminary designs. The multicriteria ranging was conducted based on an appropriate computer programme for problem solution. (author)

  17. Thermal energy storage systems using fluidized bed heat exchangers

    Science.gov (United States)

    Weast, T.; Shannon, L.

    1980-06-01

    A rotary cement kiln and an electric arc furnace were chosen for evaluation to determine the applicability of a fluid bed heat exchanger (FBHX) for thermal energy storage (TES). Multistage shallow bed FBHX's operating with high temperature differences were identified as the most suitable for TES applications. Analysis of the two selected conceptual systems included establishing a plant process flow configuration, an operational scenario, a preliminary FBHX/TES design, and parametric analysis. A computer model was developed to determine the effects of the number of stages, gas temperatures, gas flows, bed materials, charge and discharge time, and parasitic power required for operation. The maximum national energy conservation potential of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnance application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.

  18. Application of ion chemistry to tropospheric VOC measurements

    International Nuclear Information System (INIS)

    Hansel, A.; Wisthaler, A.; Graus, M.; Grabmer, W.

    2002-01-01

    The main interest in tropospheric volatile organic compounds (VOCs) originating from biogenic sources such as forests and anthropogenic sources such as cities is because these reactive trace gases can have a significant impact on levels of oxidants such as ozone (O 3 ) and the hydroxyl radical (OH). The proton-transfer-reaction mass-spectrometry (PTR-MS) technique developed by Werner Lindingers Laboratory, utilizes positive ion chemistry to measure trace neutral concentrations in air. It has been applied in food research, medicine and environmental studies to gain gas phase information about VOCs at parts per trillion (pptv) levels.The real-time method relies on proton transfer reactions between H 3 O + primary ions and VOCs which have a higher proton affinity than water molecules. Organic trace gases such as hydrocarbons, carbonyls, alcohols, acetonitrile, and others can be monitored on-line.Results on tropospheric VOCs measurements in tropical regions and in cities are discussed. (nevyjel)

  19. Direct measurement of VOC diffusivities in tree tissues

    DEFF Research Database (Denmark)

    Baduru, K.K.; Trapp, Stefan; Burken, Joel G.

    2008-01-01

    Recent discoveries in the phytoremediation of volatile organic compounds (VOCs) show that vapor-phase transport into roots leads to VOC removal from the vadose zone and diffusion and volatilization out of plants is an important fate following uptake. Volatilization to the atmosphere constitutes one...... in numerous vegetation−VOC interactions, including the phytoremediation of soil vapors and dissolved aqueous-phase contaminants. The diffusion of VOCs through freshly excised tree tissue was directly measured for common groundwater contaminants, chlorinated compounds such as trichloroethylene, perchloroethene......, and tetrachloroethane and aromatic hydrocarbons such as benzene, toluene, and methyl tert-butyl ether. All compounds tested are currently being treated at full scale with tree-based phytoremediation. Diffusivities were determined by modeling the diffusive transport data with a one-dimensional diffusive flux model...

  20. VOCs and formaldehyde emissions from cleaning products and air fresheners

    OpenAIRE

    Solal , Cécilia; Rousselle , Christophe; Mandin , Corinne; Manel , Jacques; Maupetit , François

    2008-01-01

    International audience; Human indoor exposure to Volatile Organic Compounds (VOCs) may be associated with the use of household products. However little is known about their emissions and to what extent they contribute to indoor air pollution. The French Agency for Environmental and Occupational Health Safety (Afsset) conducted tests in order to characterize VOCs emissions from 32 consumer products: air fresheners, glass cleaners, furniture polishes, toilet products, carpet and floor cleaning ...

  1. New device for time-averaged measurement of volatile organic compounds (VOCs)

    Energy Technology Data Exchange (ETDEWEB)

    Santiago Sánchez, Noemí; Tejada Alarcón, Sergio; Tortajada Santonja, Rafael; Llorca-Pórcel, Julio, E-mail: julio.llorca@aqualogy.net

    2014-07-01

    through a glass cell containing adsorbent material where the VOCs are retained. The adsorbent used, made in LABAQUA, is a mixture of alginic acid and activated carbon. Due to its high permeability it allows the passage and retention of THMs in a suitable way, thus solving many of the problems of other common adsorbents. Also, to avoid degradation of the adsorbent, it is wrapped in a low density polyethylene (LDPE) membrane. After a sampling period of between 1 and 14 days, the adsorbent is collected and analyzed in the laboratory to quantify the VOC average concentration. This device resolves some of the limitations of the classical sampling system (spot samples), since we will take into account the fluctuations in the concentration of VOCs by averaging the same over time. This study presents the results obtained by the device for quantifying the VOCs legislated in the Directive 2000/60/EC. We present the validation of linearity over time and the limits of quantification, as well as the results of sample rate (Rs) obtained for each compound. The results demonstrate the high robustness and high sensitivity of the device. In addition the system has been validated in real waste water samples, comparing the results obtained with this device with the values of classical spot sampling, obtaining excellent results. - Highlights: • Device to determine time weighted average concentrations of VOCs in water • This device is presented as an important alternative to spot sampling. • Very low LOD values of VOCs are obtained over 7 days of sampling. • Optimization, validation and application of the device in waters.

  2. Lightweight Ablative and Ceramic Thermal Protection System Materials for NASA Exploration Systems Vehicles

    Science.gov (United States)

    Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2006-01-01

    As a collaborative effort among NASA Centers, the "Lightweight Nonmetallic Thermal Protection Materials Technology" Project was set up to assist mission/vehicle design trade studies, to support risk reduction in thermal protection system (TPS) material selections, to facilitate vehicle mass optimization, and to aid development of human-rated TPS qualification and certification plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on advanced heatshields that allow reductions in spacecraft mass by minimizing propellant requirements. Information will be presented on candidate materials for such reentry approaches and on screening tests conducted (material property and space environmental effects tests) to evaluate viable candidates. Seventeen materials, in three classes (ablatives, tiles, and ceramic matrix composites), were studied. In additional to physical, mechanical, and thermal property tests, high heat flux laser tests and simulated-reentry oxidation tests were performed. Space environmental effects testing, which included exposures to electrons, atomic oxygen, and hypervelocity impacts, was also conducted.

  3. ABOUT THE STUDY OF THE THERMAL STRESS FOR NAVAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    ANASASE PRUIU

    2016-06-01

    Full Text Available In this paper are presented and analyzed the effects of thermal expansion on gas evacuation piping from naval power plants an d technical protection possibilities to prevent structures from deformations; also are analyzed the possibilities for the use of thermal expansion for tightening the main screws for power plant propulsion.

  4. PV Thermal systems: PV panels supplying renewable electricity and heat

    NARCIS (Netherlands)

    Helden, van W.G.J.; Zolingen, van R.J.C.; Zondag, H.A.

    2004-01-01

    With PV Thermal panels sunlight is converted into electricity and heat simultaneously. Per unit area the total efficiency of a PVT panel is higher than the sum of the efficiencies of separate PV panels and solar thermal collectors. During the last 20 years research into PVT techniques and concepts

  5. A work procedure of utilising PCMs as thermal storage systems based on air-TES systems

    International Nuclear Information System (INIS)

    Iten, M.; Liu, S.

    2014-01-01

    Highlights: • A procedure to design effective thermal energy storage (TES) system. • A guidance for the selection of the working material (PCM) and the heat exchanger development. • Suggestions for heat transfer enhancement techniques for the air-TES system. • Mathematical, computational and experimental methods optimising the air-TES system. - Abstract: The paper seeks to offer a procedure to design an effective short term thermal energy storage (TES) system using phase change materials. The methodology focus on two main aspects: the selection of the working material and the heat exchanger development. The selection of the appropriate PCMs is one of the main keys for any TES therefore their classifications, properties, advantages and disadvantages need to be investigated. Due to the intensive researches using this kind of materials in the recent years, there are a range of commercial PCMs available and supplied by different companies. However, all types of PCM present their specific problems and therefore requirements are defined in order to select the most suitable PCMs. The other main key when designing TES is related to the heat exchanger formed by the PCM and the cold/hot heat sources. For this step, the choice of the appropriate container to encapsulate the PCM and the heat transfer enhancement techniques are analysed. Distinct methodologies such as experimental and numerical study methods and modelling software tools are presented to analyse the thermal energy performance of the system and achieve the optimal design of the TES system

  6. Thermal stress analysis of gravity support system for ITER based on ANSYS

    International Nuclear Information System (INIS)

    Liang Shangming; Yan Xijiang; Huang Yufeng; Wang Xianzhou; Hou Binglin; Li Pengyuan; Jian Guangde; Liu Dequan; Zhou Caipin

    2009-01-01

    A method for building the finite element model of the gravity support system for International Thermonuclear Experimental Reactor (ITER) was proposed according to the characteristics of the gravity support system with the cyclic symmetry. A mesh dividing method, which has high precision and an acceptable calculating scale, was used, and a three dimensional finite element model for the toroidal 20 degree sector of the gravity support system was built by using ANSYS. Meantime, the steady-state thermal analysis and thermal-structural coupling analysis of the gravity support system were performed. The thermal stress distributions and the maximal thermal stress values of all parts of the gravity support system were obtained, and the stress intensity of parts of the gravity support system was analyzed. The results of thermal stress analysis lay the solid foundation for design and improvement for gravity supports system for ITER. (authors)

  7. Optimizing Performance of a Thermal Energy Storage System

    Science.gov (United States)

    Subirats Soler, Monica

    In this thesis, the problem of electricity demand shifting for the cooling needs of a large institution using a thermal energy storage (TES) tank is considered. The system is formed by electric chillers, cooling towers and a TES tank that can store energy for the cooling demand of most days, but not for the hottest ones. The goal is to supply all the cooling needed while minimizing the cost. This is done by shifting the cooling demand to night and early morning hours, when electricity is cheaper and due to lower temperatures, the chillers work more efficiently. This is all done with the help of the TES tank, that acts as a buffer storing chilled water. After a series of assumptions and simplifications, the cost function becomes convex and thus a minimum solution exists. However, from previous work only the chillers were considered, omitting the negative effect that other components of the system, such as cooling towers, had on the overall cost of operation. Using data from the operation of the power plant under real conditions, a method to model the whole system is presented in this thesis. In addition, the algorithm relied on the knowledge of an accurate prediction of the cooling demand, which obviously is not known in advance. A method to predict it starting from a forecasting of the temperature is presented. Finally, the algorithm can be easily modified to allow the imposition constraints that limit the maximum power use of chillers, during specific periods, in response to the overall needs of the micro-grid.

  8. Cross-cutting european thermal-hydraulics research for innovative nuclear systems

    International Nuclear Information System (INIS)

    Roelofs, F.; Class, A.; Cheng, X.; Meloni, P.; Van Tichelen, K.; Boudier, P.; Prasser, M.

    2010-01-01

    Thermal-hydraulics is recognized as a key scientific subject in the development of different innovative nuclear reactor systems. From the thermal-hydraulic point of view, different innovative reactors are mainly characterized by their coolants (gas, water, liquid metals and molten salt). This results in different micro- and macroscopic behavior of flow and heat transfer and requires specific models and advanced analysis tools. However, many common thermal-hydraulic issues are identified among various innovative nuclear systems. In Europe, such cross-cutting thermal-hydraulic issues are the subject of the 7. framework programme THINS (Thermal-Hydraulics of Innovative Nuclear Systems) project which runs from 2010 until 2014. This paper will describe the activities in this project which address the main identified thermal hydraulics issues for innovative nuclear systems. (authors)

  9. Experimental investigation of high cycle thermal fatigue in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)

    2015-10-15

    High cycle thermal fatigue damage of structure in the vicinity of T-junction piping systems in nuclear power plants is of importance. Mixing of coolant streams at significant temperature differences causes thermal fluctuations near piping wall leading to gradual thermal degradation. Flow mixing in a T-junction is performed. The determined factors result in bending stresses being imposed on the piping system ('Banana effect').

  10. Assessment of proliferation resistance of thermal recycle systems

    International Nuclear Information System (INIS)

    1979-02-01

    An assessment is made of the proliferation resistance of thermal recycle systems. The safeguards aspects are not addressed. Three routes to the acquisition of materials for nuclear weapons are addressed namely; a deliberate political decision by a government involving the use of dedicated facilities, a deliberate political decision by government involving abuse of nuclear fuel cycle facilities and theft by a subnational group. The most sensitive parts of the reference fuel cycle and the alternative technical measures are examined to judge their relative sensitivity. This is done by examining the difference forms in which plutonium can exist in the fuel cycle. The role which different institutional arrangements can play is also evaluated. From this comparative assessment it is concluded that, taking into account the qualitative nature of the assessment, the different stages of development of the various fuel cycles, the various realizations possible in respect of the deployment of facilities within individual countries and the evolutionary nature of the technical and institutional improvements foreseeable no fuel cycle can be made completely free from abuse. Furthermore it appears that following progressive introduction of features that will improve proliferation resistance there will not be significant differences between the various fuel cycles when compared at the point in time when they are introduced into widespread use. Provided such features are developed and implemented there is no reason on proliferation grounds to prefer one cycle to another

  11. Thermal Analysis for Ion-Exchange Column System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models were used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.

  12. Recent progress in the modelling of thermal plasma systems

    International Nuclear Information System (INIS)

    Xi Chen

    2002-01-01

    Plasma flow and heat transfer in thermal plasma systems are often of three-dimensional (3-D) features and cannot be well studied by use of a two-dimensional modelling approach. 3-D modelling studies are recently performed in our group. It is found that appreciable 3-D effects exist within non-transferred DC arc plasma torches even for the case with axisymmetrical external conditions. The key for the successful 3-D modelling of the non-transferred arc plasma torch is that the anode-nozzle wall is included in the computational domain. The predicted results are favorably compared with experimental observation. 3-D modelling of the plasma jets with lateral injection of particulate matter and its carrier gas also reveals distinct 3-D effects with the injection velocity and the distance between the carrier-gas injection-tube tip and the jet edge as critical parameters. The 3-D effects appreciably influence the trajectories and heating histories of particles injected into the plasma jet. (author)

  13. Thermal hydraulics of accelerator driven system windowless targets

    Directory of Open Access Journals (Sweden)

    Bruno ePanella

    2015-07-01

    Full Text Available The study of the fluid dynamics of the windowless spallation target of an Accelerator Driven System (ADS is presented. Several target mockup configurations have been investigated: the first one was a symmetrical target, that was made by two concentric cylinders, the other configurations are not symmetrical. In the experiments water has been used as hydraulic equivalent to lead-bismuth eutectic fluid. The experiments have been carried out at room temperature and flow rate up to 24 kg/s. The fluid velocity components have been measured by an ultrasound technique. The velocity field of the liquid within the target region either for the approximately axial-symmetrical configuration or for the not symmetrical ones as a function of the flow rate and the initial liquid level is presented. A comparison of experimental data with the prediction of the finite volume FLUENT code is also presented. Moreover the results of a 2D-3D numerical analysis that investigates the effect on the steady state thermal and flow fields due to the insertion of guide vanes in the windowless target unit of the EFIT project ADS nuclear reactor are presented, by analysing both the cold flow case (absence of power generation and the hot flow case (nominal power generation inside the target unit.

  14. Phonon transmission and thermal conductance in one-dimensional system with on-site potential disorder

    International Nuclear Information System (INIS)

    Ma Songshan; Xu Hui; Deng Honggui; Yang Bingchu

    2011-01-01

    The role of on-site potential disorder on phonon transmission and thermal conductance of one-dimensional system is investigated. We found that the on-site potential disorder can lead to the localization of phonons, and has great effect on the phonon transmission and thermal conductance of the system. As on-site potential disorder W increases, the transmission coefficients decrease, and approach zero at the band edges. Corresponding, the thermal conductance decreases drastically, and the curves for thermal conductance exhibit a series of steps and plateaus. Meanwhile, when the on-site potential disorder W is strong enough, the thermal conductance decreases dramatically with the increase of system size N. We also found that the efficiency of reducing thermal conductance by increasing the on-site potential disorder strength is much better than that by increasing the on-site potential's amplitude. - Highlights: → We studied the effect of on-site potential disorder on thermal transport. → Increasing disorder will decrease thermal transport. → Increasing system size will also decrease its thermal conductance. → Increasing disorder is more efficient than other in reducing thermal conductance.

  15. Thermal Insulation System for Non-Vacuum Applications Including a Multilayer Composite

    Science.gov (United States)

    Fesmire, James E. (Inventor)

    2017-01-01

    The thermal insulation system of the present invention is for non-vacuum applications and is specifically tailored to the ambient pressure environment with any level of humidity or moisture. The thermal insulation system includes a multilayered composite including i) at least one thermal insulation layer and at least one compressible barrier layer provided as alternating, successive layers, and ii) at least one reflective film provided on at least one surface of the thermal insulation layer and/or said compressible barrier layer. The different layers and materials and their combinations are designed to provide low effective thermal conductivity for the system by managing all modes of heat transfer. The thermal insulation system includes an optional outer casing surrounding the multilayered composite. The thermal insulation system is particularly suited for use in any sub-ambient temperature environment where moisture or its adverse effects are a concern. The thermal insulation system provides physical resilience against damaging mechanical effects including compression, flexure, impact, vibration, and thermal expansion/contraction.

  16. Test facilities for evaluating nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C.; Todosow, M.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized

  17. Development of a direct push based in-situ thermal conductivity measurement system

    Science.gov (United States)

    Chirla, Marian Andrei; Vienken, Thomas; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    Heat pump systems are commonly utilized in Europe, for the exploitation of the shallow geothermal potential. To guarantee a sustainable use of the geothermal heat pump systems by saving resources and minimizing potential negative impacts induced by temperature changes within soil and groundwater, new geothermal exploration methods and tools are required. The knowledge of the underground thermal properties is a necessity for a correct and optimum design of borehole heat exchangers. The most important parameter that indicates the performance of the systems is thermal conductivity of the ground. Mapping the spatial variability of thermal conductivity, with high resolution in the shallow subsurface for geothermal purposes, requires a high degree of technical effort to procure adequate samples for thermal analysis. A collection of such samples from the soil can disturb sample structure, so great care must be taken during collection to avoid this. Factors such as transportation and sample storage can also influence measurement results. The use of technologies like Thermal Response Test (TRT) require complex mechanical and electrical systems for convective heat transport in the subsurface and longer monitoring times, often three days. Finally, by using thermal response tests, often only one integral value is obtained for the entire coupled subsurface with the borehole heat exchanger. The common thermal conductivity measurement systems (thermal analyzers) can perform vertical thermal conductivity logs only with the aid of sample procurement, or by integration into a drilling system. However, thermal conductivity measurements using direct push with this type of probes are not possible, due to physical and mechanical limitations. Applying vertical forces using direct push technology, in order to penetrate the shallow subsurface, can damage the probe and the sensors systems. The aim of this study is to develop a new, robust thermal conductivity measurement probe, for direct

  18. Development of space heating and domestic hot water systems with compact thermal energy storage. Compact thermal energy storage: Material development for System Integration

    NARCIS (Netherlands)

    Davidson, J.H.; Quinnell, J.; Burch, J.; Zondag, H.A.; Boer, R. de; Finck, C.J.; Cuypers, R.; Cabeza, L.F.; Heinz, A.; Jahnig, D.; Furbo, S.; Bertsch, F.

    2013-01-01

    Long-term, compact thermal energy storage (TES) is essential to the development of cost-effective solar and passive building-integrated space heating systems and may enhance the annual technical and economic performance of solar domestic hot water (DHW) systems. Systems should provide high energy

  19. Thermal System Modeling for Lunar and Martian Surface Regenerative Fuel Cell Systems

    Science.gov (United States)

    Gilligan, Ryan Patrick; Smith, Phillip James; Jakupca, Ian Joseph; Bennett, William Raymond; Guzik, Monica Christine; Fincannon, Homer J.

    2017-01-01

    The Advanced Exploration Systems (AES) Advanced Modular Power Systems (AMPS) Project is investigating different power systems for various lunar and Martian mission concepts. The AMPS Fuel Cell (FC) team has created two system-level models to evaluate the performance of regenerative fuel cell (RFC) systems employing different fuel cell chemistries. Proton Exchange Membrane fuel cells PEMFCs contain a polymer electrolyte membrane that separates the hydrogen and oxygen cavities and conducts hydrogen cations (protons) across the cell. Solid Oxide fuel cells (SOFCs) operate at high temperatures, using a zirconia-based solid ceramic electrolyte to conduct oxygen anions across the cell. The purpose of the modeling effort is to down select one fuel cell chemistry for a more detailed design effort. Figures of merit include the system mass, volume, round trip efficiency, and electrolyzer charge power required. PEMFCs operate at around 60 degrees Celsius versus SOFCs which operate at temperatures greater than 700 degrees Celsius. Due to the drastically different operating temperatures of the two chemistries the thermal control systems (TCS) differ. The PEM TCS is less complex and is characterized by a single pump cooling loop that uses deionized water coolant and rejects heat generated by the system to the environment via a radiator. The solid oxide TCS has its own unique challenges including the requirement to reject high quality heat and to condense the steam produced in the reaction. This paper discusses the modeling of thermal control systems for an extraterrestrial RFC that utilizes either a PEM or solid oxide fuel cell.

  20. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    Science.gov (United States)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.