WorldWideScience

Sample records for thermal simulation experiments

  1. Designing solar thermal experiments based on simulation

    International Nuclear Information System (INIS)

    Huleihil, Mahmoud; Mazor, Gedalya

    2013-01-01

    In this study three different models to describe the temperature distribution inside a cylindrical solid body subjected to high solar irradiation were examined, beginning with the simpler approach, which is the single dimension lump system (time), progressing through the two-dimensional distributed system approach (time and vertical direction), and ending with the three-dimensional distributed system approach with azimuthally symmetry (time, vertical direction, and radial direction). The three models were introduced and solved analytically and numerically. The importance of the models and their solution was addressed. The simulations based on them might be considered as a powerful tool in designing experiments, as they make it possible to estimate the different effects of the parameters involved in these models

  2. Equipping simulators with an advanced thermal hydraulics model EDF's experience

    International Nuclear Information System (INIS)

    Soldermann, R.; Poizat, F.; Sekri, A.; Faydide, B.; Dumas, J.M.

    1997-01-01

    The development of an accelerated version of the advanced CATHARe-1 thermal hydraulics code designed for EDF training simulators (CATHARE-SIMU) was successfully completed as early as 1991. Its successful integration as the principal model of the SIPA Post-Accident Simulator meant that its use could be extended to full-scale simulators as part of the renovation of the stock of existing simulators. In order to further extend the field of application to accidents occurring in shutdown states requiring action and to catch up with developments in respect of the CATHARE code, EDF initiated the SCAR Project designed to adapt CATHARE-2 to simulator requirements (acceleration, parallelization of the computation and extension of the simulation range). In other respects, the installation of SIPA on workstations means that the authors can envisage the application of this remarkable training facility to the understanding of thermal hydraulics accident phenomena

  3. In-flight thermal experiments for LISA Pathfinder: Simulating temperature noise at the Inertial Sensors

    International Nuclear Information System (INIS)

    Armano, M; Audley, H; Born, M; Danzmann, K; Diepholz, I; Auger, G; Binetruy, P; Baird, J; Bortoluzzi, D; Brandt, N; Fitzsimons, E; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Dolesi, R; Ferroni, V; Cruise, M; Dunbar, N; Ferraioli, L

    2015-01-01

    Thermal Diagnostics experiments to be carried out on board LISA Pathfinder (LPF) will yield a detailed characterisation of how temperature fluctuations affect the LTP (LISA Technology Package) instrument performance, a crucial information for future space based gravitational wave detectors as the proposed eLISA. Amongst them, the study of temperature gradient fluctuations around the test masses of the Inertial Sensors will provide as well information regarding the contribution of the Brownian noise, which is expected to limit the LTP sensitivity at frequencies close to 1 mHz during some LTP experiments. In this paper we report on how these kind of Thermal Diagnostics experiments were simulated in the last LPF Simulation Campaign (November, 2013) involving all the LPF Data Analysis team and using an end-to-end simulator of the whole spacecraft. Such simulation campaign was conducted under the framework of the preparation for LPF operations. (paper)

  4. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    International Nuclear Information System (INIS)

    Scalerandi, M; Delsanto, P P; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model

  5. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    CERN Document Server

    Scalerandi, M; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model.

  6. Experiments and numerical simulations of fluctuating thermal stratification in a branch pipe

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Akira; Murase, Michio; Sasaki, Toru [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan); Takenaka, Nobuyuki; Hamatani, Daisuke [Kobe Univ. (Japan)

    2002-09-01

    Many pipes branch off from the main pipe in plants. When the main flow in the main pipe is hotter than a branch pipe that branches off downward, the hot water penetrates into the branch pipe with the cavity flow that is induced by the main flow and causes thermal stratification. If the interface of the stratification fluctuates in an occluded branch pipe, thermal fatigue may occur in pipe wall. Some experiments and numerical simulations were conducted to elucidate the mechanism of this fluctuating thermal stratification. The vortex structures were observed in the experiments of straight or bent branch pipes. When the main flow was heated and the thermal stratification interface was at the elbow, a ''burst'' phenomenon occurred in the interface in connection with large heat fluctuation. The effects of pipe shape on the length of penetration were investigated in order to modify simulation conditions. The vortex structures and the fluctuating thermal stratification at elbow in the numerical simulation showed good agreement with experiments. (author)

  7. Design of 6 Mev linear accelerator based pulsed thermal neutron source: FLUKA simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B.J., E-mail: bjp@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India); Chavan, S.T.; Pethe, S.N.; Krishnan, R. [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India)

    2012-01-15

    The 6 MeV LINAC based pulsed thermal neutron source has been designed for bulk materials analysis. The design was optimized by varying different parameters of the target and materials for each region using FLUKA code. The optimized design of thermal neutron source gives flux of 3 Multiplication-Sign 10{sup 6}ncm{sup -2}s{sup -1} with more than 80% of thermal neutrons and neutron to gamma ratio was 1 Multiplication-Sign 10{sup 4}ncm{sup -2}mR{sup -1}. The results of prototype experiment and simulation are found to be in good agreement with each other. - Highlights: Black-Right-Pointing-Pointer The optimized 6 eV linear accelerator based thermal neutron source using FLUKA simulation. Black-Right-Pointing-Pointer Beryllium as a photonuclear target and reflector, polyethylene as a filter and shield, graphite as a moderator. Black-Right-Pointing-Pointer Optimized pulsed thermal neutron source gives neutron flux of 3 Multiplication-Sign 10{sup 6} n cm{sup -2} s{sup -1}. Black-Right-Pointing-Pointer Results of the prototype experiment were compared with simulations and are found to be in good agreement. Black-Right-Pointing-Pointer This source can effectively be used for the study of bulk material analysis and activation products.

  8. Simulation and experiment on the thermal performance of U-vertical ground coupled heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinguo; Chen, Zhihao; Zhao, Jun [Department of Thermal Engineering, School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China)

    2006-10-15

    This paper presented both the numerical simulations and experiments on the thermal performance of U-vertical ground coupled heat exchanger (UGCHE). The variation of the ground temperature and heat balance of the system were analyzed and compared in different operation modes in the numerical simulation. Experiments on the operation performance of the ground-coupled heat pump (GCHP) with the UGCHE were carried out. It shows that the ground source can be used as the heat source/sink for GCHP systems to have higher efficiency in saving energy. To preserve the ground resource for the sustainable utilization as heat source/sink, the heat emitted to ground and heat extracted from ground should be balanced. (author)

  9. Simulated experiments

    International Nuclear Information System (INIS)

    Bjerknes, R.

    1977-01-01

    A cybernetic model has been developed to elucidate some of the main principles of the growth regulation system in the epidermis of the hairless mouse. A number of actual and theoretical biological experiments have been simulated on the model. These included simulating the cell kinetics as measured by pulse labelling with tritiated thymidine and by continuous labelling with tritiated thymidine. Other simulated experiments included steady state, wear and tear, painting with a carcinogen, heredity and heredity and tumour. Numerous diagrams illustrate the results of these simulated experiments. (JIW)

  10. Thermal Expansion of Ni3Al Intermetallic Compound: Experiment and Simulation

    International Nuclear Information System (INIS)

    Wang Hai-Peng; Lü Peng; Zhou Kai; Wei Bing-Bo

    2016-01-01

    The thermal expansion of Ni 3 Al intermetallic compound is determined by a thermal dilatometer and simulated by the molecular dynamics method. The results of the linear thermal expansion coefficients are presented from 200 K up to the maximum temperature of 1600 K. The single phase of Ni 3 Al intermetallic compound is confirmed by x-ray diffraction together with DSC melting and solidification peaks, from which the solidus and the liquidus temperatures are obtained to be 1660 and 1695 K, respectively. The measured linear thermal expansion coefficient increases from 1.5 × 10 −5 to 2.7 × 10 −5 K −1 in the experimental temperature range, in good agreement with the data obtained by the molecular dynamics simulation, just a slight difference from the temperature dependence coefficient. Furthermore, the atomic structure and position are presented to reveal the atom distribution change during thermal expansion of Ni 3 Al compound. (paper)

  11. Designing experiments on thermal interactions by secondary-school students in a simulated laboratory environment

    Science.gov (United States)

    Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides

    2011-07-01

    Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and communication technology, and specifically of the simulated virtual laboratory 'ThermoLab'. Design and methods A pre-post comparison was applied. Students' design of experiments was rated in eight dimensions; namely, hypothesis forming and verification, selection of variables, initial conditions, device settings, materials and devices used, process and phenomena description. A three-level ranking scheme was employed for the evaluation of students' answers in each dimension. Results A Wilcoxon signed-rank test revealed a statistically significant difference between the students' pre- and post-test scores. Additional analysis by comparing the pre- and post-test scores using the Hake gain showed high gains in all but one dimension, which suggests that this improvement was almost inclusive. Conclusions We consider that our findings support the statement that there was an improvement in students' ability to design experiments.

  12. Thermal large Eddy simulations and experiments in the framework of non-isothermal blowing

    International Nuclear Information System (INIS)

    Brillant, G.

    2004-06-01

    The aim of this work is to study thermal large-eddy simulations and to determine the nonisothermal blowing impact on a turbulent boundary layer. An experimental study is also carried out in order to complete and validate simulation results. In a first time, we developed a turbulent inlet condition for the velocity and the temperature, which is necessary for the blowing simulations.We studied the asymptotic behavior of the velocity, the temperature and the thermal turbulent fluxes in a large-eddy simulation point of view. We then considered dynamics models for the eddy-diffusivity and we simulated a turbulent channel flow with imposed temperature, imposed flux and adiabatic walls. The numerical and experimental study of blowing permitted to obtain to the modifications of a thermal turbulent boundary layer with the blowing rate. We observed the consequences of the blowing on mean and rms profiles of velocity and temperature but also on velocity-velocity and velocity-temperature correlations. Moreover, we noticed an increase of the turbulent structures in the boundary layer with blowing. (author)

  13. Using Coupled Mesoscale Experiments and Simulations to Investigate High Burn-Up Oxide Fuel Thermal Conductivity

    Science.gov (United States)

    Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.

    2014-12-01

    Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.

  14. Comparison of thermal behavior of different PWR fuel rod simulators for LOCA experiments

    International Nuclear Information System (INIS)

    Casal, V.; Malang, S.; Rust, K.

    1982-10-01

    For experimental investigations of a loss-of-coolant accident (LOCA) of a PWR electrical heater rods are applied as thermal fuel rod simulators. To substitute heater rods from the SEMISCALE program by INTERATOM-KfK heater rods in a current experimental program at the Instituut for Energiteknikk-(OECD-Halden), the thermodynamic behavior of different heater rods during a LOCA were compared. The results show, that SEMISCALE-heater rods can be replaced by those fabricated by INTERATOM. (orig.) [de

  15. Thermal analysis of laser additive manufacturing of aluminium alloys: Experiment and simulation

    Science.gov (United States)

    Bock, Frederic E.; Froend, Martin; Herrnring, Jan; Enz, Josephin; Kashaev, Nikolai; Klusemann, Benjamin

    2018-05-01

    Laser additive manufacturing (LAM) has become increasingly popular in industry in recent decades because it enables exceptional degrees of freedom regarding the structural design of lightweight components compared to subtractive manufacturing techniques. Laser metal deposition (LMD) of wire-fed material shows in particular the advantages such as high process velocity and efficient use of material compared to other LAM processes. During wire-based LMD, the material is deposited onto a substrate and supplemented by successive layers allowing a layer-wise production of complex three-dimensional structures. Despite the increased productivity of LMD, regarding the ability to process aluminium alloys, there is still a lack in quality and reproducibility due to the inhomogeneous temperature distribution during the process, leading to undesired residual stresses, distortions and inconsistent layer geometries and poor microstructures. In this study, the aluminium alloy AA5087 as wire and AA5754 as substrate material were utilized for LMD. In order to obtain information about the temperature field during LMD, thermocouple and thermography measurements were performed during the process. The temperature measurements were used to validate a finite element model regarding the heat distribution, which will be further used to investigate the temperature field evolution over time. To consider the continuous addition of material within the FE-model, an inactive/active element approach was chosen, where initially deactivated elements are activated corresponding to the deposition of material. The first results of the simulation and the experiments show good agreement. Therefore, the model can be used in the future for LMD process optimization, e.g., in terms of minimizing local variations of the thermal load for each layer.

  16. Fundamental validation of simulation method for thermal stratification in upper plenum of fast reactors. Analysis of sodium experiment

    International Nuclear Information System (INIS)

    Ohno, Shuji; Ohshima, Hiroyuki; Sugahara, Akihiro; Ohki, Hiroshi

    2010-01-01

    Three-dimensional thermal-hydraulic analyses have been carried out for a sodium experiment in a relatively simple axis-symmetric geometry using a commercial CFD code in order to validate simulating methods for thermal stratification behavior in an upper plenum of sodium-cooled fast reactor. Detailed comparison between simulated results and experimental measurement has demonstrated that the code reproduced fairly well the fundamental thermal stratification behaviors such as vertical temperature gradient and upward movement of a stratification interface when utilizing high-order discretization scheme and appropriate mesh size. Furthermore, the investigation has clarified the influence of RANS type turbulence models on phenomena predictability; i.e. the standard k-ε model, the RNG k-ε model and the Reynolds Stress Model. (author)

  17. Casting thermal simulation

    International Nuclear Information System (INIS)

    Shamsuddin bin Sulaiman

    1994-01-01

    The whole of this study is concerned with process simulation in casting processes. This study describes the application of the finite element method as an aid to simulating the thermal design of a high pressure die casting die by analysing the cooling transients in the casting cycle. Two types of investigation were carried out to model the linear and non-linear cooling behavior with consideration of a thermal interface effect. The simulated cooling for different stages were presented in temperature contour form. These illustrate the successful application of the Finite Element Method to model the process and they illustrate the significance of the thermal interface at low pressure

  18. Study on the thermal ignition of gasoline-air mixture in underground oil depots based on experiment and numerical simulation

    Science.gov (United States)

    Ou, Yihong; Du, Yang; Jiang, Xingsheng; Wang, Dong; Liang, Jianjun

    2010-04-01

    The study on the special phenomenon, occurrence process and control mechanism of gasoline-air mixture thermal ignition in underground oil depots is of important academic and applied value for enriching scientific theories of explosion safety, developing protective technology against fire and decreasing the number of fire accidents. In this paper, the research on thermal ignition process of gasoline-air mixture in model underground oil depots tunnel has been carried out by using experiment and numerical simulation methods. The calculation result has been demonstrated by the experiment data. The five stages of thermal ignition course, which are slow oxidation stage, rapid oxidation stage, fire stage, flameout stage and quench stage, have been firstly defined and accurately descried. According to the magnitude order of concentration, the species have been divided into six categories, which lay the foundation for explosion-proof design based on the role of different species. The influence of space scale on thermal ignition in small-scale space has been found, and the mechanism for not easy to fire is that the wall reflection causes the reflux of fluids and changes the distribution of heat and mass, so that the progress of chemical reactions in the whole space are also changed. The novel mathematical model on the basis of unification chemical kinetics and thermodynamics established in this paper provides supplementary means for the analysis of process and mechanism of thermal ignition.

  19. Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: Simulation and experiments

    International Nuclear Information System (INIS)

    Dai, Donghua; Gu, Dongdong

    2014-01-01

    Highlights: • Thermal behavior and densification activity during SLM of composites are simulated. • Temperature distributions and melt pool dimensions during SLM are disclosed. • Motion behaviors of gaseous bubbles in laser induced melt pool are elucidated. • Simulation results show good agreement with the obtained experimental results. - Abstract: Simulation of temperature distribution and densification process of selective laser melting (SLM) WC/Cu composite powder system has been performed, using a finite volume method (FVM). The transition from powder to solid, the surface tension induced by temperature gradient, and the movement of laser beam power with a Gaussian energy distribution are taken into account in the physical model. The effect of the applied linear energy density (LED) on the temperature distribution, melt pool dimensions, behaviors of gaseous bubbles and resultant densification activity has been investigated. It shows that the temperature distribution is asymmetric with respect to the laser beam scanning area. The center of the melt pool does not locate at the center of the laser beam but slightly shifts towards the side of the decreasing X-axis. The dimensions of the melt pool are in sizes of hundreds of micrometers and increase with the applied LED. For an optimized LED of 17.5 kJ/m, an enhanced efficiency of gas removal from the melt pool is realized, and the maximum relative density of laser processed powder reaches 96%. As the applied LED surpasses 20 kJ/m, Marangoni flow tends to retain the entrapped gas bubbles. The flow pattern has a tendency to deposit the gas bubbles at the melt pool bottom or to agglomerate gas bubbles by the rotating flow in the melt pool, resulting in a higher porosity in laser processed powder. The relative density and corresponding pore size and morphology are experimentally acquired, which are in a good agreement with the results predicted by simulation

  20. PNS and statistical experiments simulation in subcritical systems using Monte-Carlo method on example of Yalina-Thermal assembly

    International Nuclear Information System (INIS)

    Sadovich, S.; Burnos, V.; Kiyavitskaya, H.; Fokov, Y.; Talamo, A.

    2013-01-01

    In subcritical systems driven by an external neutron source, the experimental methods based on pulsed neutron source (PNS) and statistical techniques play an important role for reactivity measurement. Simulation of these methods is very time-consumed procedure. For simulations in Monte-Carlo programs several improvements for neutronic calculations have been made. This paper introduces a new method for simulating PNS and statistical measurements. In this method all events occurred in the detector during simulation are stored in a file using PTRAC feature in the MCNP. After that with a special code (or post-processing) PNS and statistical methods can be simulated. Additionally different shapes of neutron pulses and its lengths as well as dead time of detectors can be included into the simulation. The methods described above have been tested on the sub-critical assembly Yalina-Thermal, located in the Joint Institute for Power and Nuclear Research SOSNY in Minsk (Belarus). A good agreement between experiment and simulation was shown. (authors)

  1. Simulation - modeling - experiment; Simulation - modelisation - experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F

  2. 3D COMSOL Simulations for Thermal Deflection of HFIR Fuel Plate in the "Cheverton-Kelley" Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K [ORNL; Freels, James D [ORNL; Cook, David Howard [ORNL

    2012-08-01

    Three dimensional simulation capabilities are currently being developed at Oak Ridge National Laboratory using COMSOL Multiphysics, a finite element modeling software, to investigate thermal expansion of High Flux Isotope Reactor (HFIR) s low enriched uranium fuel plates. To validate simulations, 3D models have also been developed for the experimental setup used by Cheverton and Kelley in 1968 to investigate the buckling and thermal deflections of HFIR s highly enriched uranium fuel plates. Results for several simulations are presented in this report, and comparisons with the experimental data are provided when data are available. A close agreement between the simulation results and experimental findings demonstrates that the COMSOL simulations are able to capture the thermal expansion physics accurately and that COMSOL could be deployed as a predictive tool for more advanced computations at realistic HFIR conditions to study temperature-induced fuel plate deflection behavior.

  3. Experiment and simulation on the thermal instability of a heavily deformed Cu-Fe composite

    International Nuclear Information System (INIS)

    Qu Lei; Wang Engang; Zuo Xiaowei; Zhang Lin; He Jicheng

    2011-01-01

    Research highlights: → Fe fibers undergo thermal instability at temperature above 600 deg. C. → Longitudinal boundary splitting is the dominant instability process. → Instability of cylindrical fibers is controlled by breakup, growth and coarsening. → Breakup times can be predicted by Rayleigh perturbation model accurately. → The increase of fiber diameters is due to the coarsening and growth. - Abstract: The thermal instability of the Fe fibers in the heavily deformed Cu-12.8 wt.%Fe composites is investigated experimentally and numerically. The fiber evolution is characterized by a field emission scanning electron microscopy (FESEM). The results show that the dominant instability of the Fe fibers is the longitudinal boundary splitting which is determined by the greater cross sectional aspect ratio (width/thickness, w/t) and the larger ratio of boundary to interfacial energy (γ B /γ S ). The longitudinal boundary splitting makes the ribbon-like Fe fibers evolve into a series of cylindrical fibers. Then the cylindrical Fe fibers undergo the instability process in terms of the breakup, growth and coarsening concurrently. The breakup times are accurately predicted by the Rayleigh perturbation model. The growth process primarily contributes to the higher increasing rate of the fiber radius during isothermal annealing at 700 deg. C than that calculated by the coarsening theory developed for cylindrical fibers, since the Cu-matrix of composites is highly supersaturated after casting/cold-working process.

  4. Direct numerical simulation of the thermal dehydration reaction in a TGA experiment

    NARCIS (Netherlands)

    Lan, S.; Gaeini, M.; Zondag, H.A.; van Steenhoven, A.A.; Rindt, C.C.M.

    2018-01-01

    This work presents a detailed mathematical model of the coupled mass and heat transfer processes in salt hydrate grains in a TGA experiment. The purpose of developing this numerical model is to get a more fundamental understanding of the influence of parameters like particle size, nucleation rate

  5. Experiment-based thermal micromagnetic simulations of the magnetization reversal for ns-range clocked nanomagnetic logic

    Science.gov (United States)

    Ziemys, Grazvydas; Breitkreutz-v. Gamm, Stephan; Csaba, Gyorgy; Schmitt-Landsiedel, Doris; Becherer, Markus

    2017-05-01

    Extensive thermal micromagnetic simulations, based on experimental data and parameters, were performed to investigate the magnetization reversal in Co/Pt nanomagnets with locally reduced perpendicular anisotropy on the nanosecond range. The simulations were supported by experimental data gained on manufactured Co/Pt nanomagnets, as used in nanomagnetic logic. It is known that magnetization reversal is governed by two mechanisms. At pulse lengths longer than 100 ns, thermal activation dominates the magnetization reversal processes and follows the common accepted Arrhenius law. For pulse lengths shorter than 100 ns, the dynamic reversal dominates. With the help of thermal micro-magnetic simulations we found out that the point where the both mechanisms meet is determined by the damping constant α of the multilayer film stack. The optimization of ferromagnetic multilayer film stacks enables higher clocking rates with lower power consumption and, therefore, further improve the performance of pNML.

  6. Simulation - modeling - experiment

    International Nuclear Information System (INIS)

    2004-01-01

    After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F

  7. A test-type hyper-thermal neutron generator for neutron capture therapy - estimation of neutron energy spectrum by simulation calculations and TOF experiments

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kobayashi, Katsuhei

    1999-01-01

    In order to clarify the irradiation characteristics of hyper-thermal neutrons and the feasibility of a hyper-thermal neutron irradiation field for neutron capture therapy, a 'test-type' hyper-thermal neutron generator was designed and made. Graphite of 6 cm thickness and 21 cm diameter was selected as the high temperature scatterer. The scatterer is heated up to 1200 deg. C maximum using molybdenum heaters. The radiation heat is shielded by reflectors of molybdenum and stainless steel. The temperature is measured using three R-type thermo-couples and controlled by a program controller. The total thickness of the generator is designed to be as thin as possible, 20 cm in maximum, in the standing point of the neutron beam intensity. The thermal stability, controllability and safety of the generator at high temperature employment were confirmed by the heating tests. As one of the experiments for the characteristics estimation, the neutron energy spectrum dependent on the scatterer temperature was measured by the TOF (time of flight) method using the LINAC neutron generator. The estimations by simulation calculations were also performed. From the experiment and calculation results, it was confirmed that the neutron temperature shifted higher as the scatterer temperature was higher. The prospect of the feasibility of the 'hyper-thermal neutron irradiation field for NCT' was opened from the estimation results of the generator characteristics by the simulation calculations and experiments

  8. A comprehensive review on the methodologies to simulate the nuclear fuel bundle for the thermal hydraulic experiments

    International Nuclear Information System (INIS)

    Vishnoi, A.K.; Chandraker, D.K.; Pal, A.K.; Vijayan, P.K.; Saha, D.

    2011-01-01

    The designer of a nuclear reactor system has to ensure its safety during normal operation as well as accidental conditions. This requires, among other things, a proper understanding of the various thermal hydraulic phenomena occurring in the reactor core. In a nuclear reactor core the fuel elements are the heat source and highly loaded components of the reactor system. Therefore their behaviour under normal and accidental conditions must be extensively investigated. Data generation for Critical heat flux (CHF) in full scale bundle and parallel channel instability studies with at least two full size channels are required in order to evaluate the thermal margin and stability margin of the reactor. The complex nature of these phenomena calls for exhaustive experimental investigations. Fuel Rod Cluster Simulator (FRCS) is a very important component required for the experimental investigation of the thermal hydraulic behaviour of reactor fuel elements under normal and accidental conditions. This paper brings out a comprehensive review of the FRCS elaborating the challenges and important design aspects of the FRCS. Some of the main features and analysis results on the performance of the developed FRCS with respect to the actual nuclear fuel bundle will be presented in the paper. (author)

  9. Pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Whitman, G.D.; McCulloch, R.W.

    1982-01-01

    The primary objective of the ORNL pressurized-thermal-shock (PTS) experiments is to verify analytical methods that are used to predict the behavior of pressurized-water-reactor vessels under these accident conditions involving combined pressure and thermal loading. The criteria on which the experiments are based are: scale large enough to attain effective flaw border triaxial restraint and a temperature range sufficiently broad to produce a progression from frangible to ductile behavior through the wall at a given time; use of materials that can be completely characterized for analysis; stress states comparable to the actual vessel in zones of potential flaw extension; range of behavior to include cleavage initiation and arrest, cleavage initiation and arrest on the upper shelf, arrest in a high K/sub I/ gradient, warm prestressing, and entirely ductile behavior; long and short flaws with and without stainless steel cladding; and control of loads to prevent vessel burst, except as desired. A PTS test facility is under construction which will enable the establishment and control of wall temperature, cooling rate, and pressure on an intermediate test vessel (ITV) in order to simulate stress states representative of an actual reactor pressure vessel

  10. Numerical Simulation of Tuff Dissolution and Precipitation Experiments: Validation of Thermal-Hydrologic-Chemical (THC) Coupled-Process Modeling

    Science.gov (United States)

    Dobson, P. F.; Kneafsey, T. J.

    2001-12-01

    As part of an ongoing effort to evaluate THC effects on flow in fractured media, we performed a laboratory experiment and numerical simulations to investigate mineral dissolution and precipitation. To replicate mineral dissolution by condensate in fractured tuff, deionized water equilibrated with carbon dioxide was flowed for 1,500 hours through crushed Yucca Mountain tuff at 94° C. The reacted water was collected and sampled for major dissolved species, total alkalinity, electrical conductivity, and pH. The resulting steady-state fluid composition had a total dissolved solids content of about 140 mg/L; silica was the dominant dissolved constituent. A portion of the steady-state reacted water was flowed at 10.8 mL/hr into a 31.7-cm tall, 16.2-cm wide vertically oriented planar fracture with a hydraulic aperture of 31 microns in a block of welded Topopah Spring tuff that was maintained at 80° C at the top and 130° C at the bottom. The fracture began to seal within five days. A 1-D plug-flow model using the TOUGHREACT code developed at Berkeley Lab was used to simulate mineral dissolution, and a 2-D model was developed to simulate the flow of mineralized water through a planar fracture, where boiling conditions led to mineral precipitation. Predicted concentrations of the major dissolved constituents for the tuff dissolution were within a factor of 2 of the measured average steady-state compositions. The fracture-plugging simulations result in the precipitation of amorphous silica at the base of the boiling front, leading to a hundred-fold decrease in fracture permeability in less than 6 days, consistent with the laboratory experiment. These results help validate the use of the TOUGHREACT code for THC modeling of the Yucca Mountain system. The experiment and simulations indicate that boiling and concomitant precipitation of amorphous silica could cause significant reductions in fracture porosity and permeability on a local scale. The TOUGHREACT code will be used

  11. Thermal-hydraulic study of the LBE-cooled fuel assembly in the MYRRHA reactor: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pacio, J., E-mail: Julio.pacio@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies (IKET), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Wetzel, T. [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies (IKET), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Doolaard, H.; Roelofs, F. [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Van Tichelen, K. [Belgian Nuclear Reseach Center (SCK-CEN), Boeretang 200, Mol (Belgium)

    2017-02-15

    Heavy liquid metals (HLMs), such as lead-bismuth eutectic (LBE) and pure lead are prominent candidate coolants for many advanced systems based on fast neutrons. In particular, LBE is used in the first-of-its-kind MYRRHA fast reactor, to be built in Mol (Belgium), which can be operated either in critical mode or as a sub-critical accelerator-driven system. With a strong focus on safety, key thermal-hydraulic aspects of these systems, such as the proper cooling of fuel assemblies, must be assessed. Considering the complex geometry and low Prandtl number of LBE (Pr ∼ 0.025), this flow scenario is challenging for the models used in Computational Fluid Dynamics (CFD), e.g. for relating the turbulent transport of momentum and heat. Thus, reliable experimental data for the relevant scenario are needed for validation. In this general context, this topic is studied both experimentally and numerically in the framework of the European FP7 project SEARCH (2011–2015). An experimental campaign, including a 19-rod bundle with wire spacers, cooled by LBE is undertaken at KIT. With prototypical geometry and operating conditions, it is intended to evaluate the validity of current empirical correlations for the MYRRHA conditions and, at the same time, to provide validation data for the CFD simulations performed at NRG. The results of one benchmarking case are presented in this work. Moreover, this validated approach is then used for simulating a complete MYRRHA fuel assembly (127 rods).

  12. Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets

    Science.gov (United States)

    Lin, Chunjing; Xu, Sichuan; Chang, Guofeng; Liu, Jinling

    2015-02-01

    A passive thermal management system (TMS) for LiFePO4 battery modules using phase change material (PCM) as the heat dissipation source to control battery temperature rise is developed. Expanded graphite matrix and graphite sheets are applied to compensate low thermal conductivity of PCM and improve temperature uniformity of the batteries. Constant current discharge and mixed charge-discharge duties were applied on battery modules with and without PCM on a battery thermal characteristics test platform. Experimental results show that PCM cooling significantly reduces the battery temperature rise during short-time intense use. It is also found that temperature uniformity across the module deteriorates with the increasing of both discharge time and current rates. The maximum temperature differences at the end of 1C and 2C-rate discharges are both less than 5 °C, indicating a good performance in battery thermal uniformity of the passive TMS. Experiments on warm-keeping performance show that the passive TMS can effectively keep the battery within its optimum operating temperature for a long time during cold weather uses. A three dimensional numerical model of the battery pack with the passive TMS was conducted using ANSYS Fluent. Temperature profiles with respect to discharging time reveal that simulation shows good agreement with experiment at 1C-discharge rate.

  13. Thermal Shock Experiment (TSEX): a ''proof-of-principle'' evaluation of the use of electron beam heating to simulate the thermal mechanical environment anticipated for the first wall of the Reference Theta-Pinch Reactor (RTPR)

    International Nuclear Information System (INIS)

    Armstrong, P.E.; Krakowski, R.A.

    1977-06-01

    The results of a ''proof-of-principle'' Thermal Shock Experiment (TSEX), designed to simulate the thermal mechanical response of insulator-metal composite first walls anticipated for pulsed high-density fusion reactors, are given. A programmable 10-kV, 1.0-A electron beam was used to pulse repeatedly (0.30-mm)Al 2 O 3 /(1.0-mm) Nb-1Zr composite samples 200 to 300 K, relative to a base-line temperature of 1000 K. The experimental goals of TSEX were established relative to the first-wall environment anticipated for the Reference Theta-Pinch Reactor (RTPR). A detailed description of the TSEX ''proof-of-principle'' apparatus, experimental procedure, and diagnostics is given. The results of extensive thermal analyses are given, which are used to estimate the thermal stresses generated. Although little or no control was exercised over the sample fabrication and thermal history, one sample experienced in excess of 800 thermal cycles of approximately 250 K at approximately 1000 K, and the results of optical and SEM examination of this specimen are presented. The resistance of this sample to macroscopic failure was truly impressive. Recommendations for the construction of an apparatus dedicated to extensive testing of first-wall composites are given on the basis of these ''proof-of-principle'' TSEX results

  14. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery

    International Nuclear Information System (INIS)

    Rao Zhonghao; Wang Shuangfeng; Zhang Guoqing

    2011-01-01

    Highlights: → We study the thermal energy management performance of ageing LiFePO 4 power battery. → 3-D modules of single cell and battery pack are formulated according to the experimental results. → Thermal resistance in the battery cell leaded to an inevitable temperature difference. → It is necessary to improve the thermal conductivity and lower the melting point of phase change material. → Thermal conductivity of phase change material and battery exist an effective proportion. - Abstract: Thermal energy management performance of ageing commercial rectangular LiFePO 4 power batteries using phase change material (PCM) and thermal behavior related to thermal conductivity between the PCM and the cell are discussed in this paper. The heat sources are simplified according to the experimental results of the cells discharged at 35 A (∼5 C). 3-D modules of a single cell and battery pack are formulated, respectively. The results show that the thermal resistance in the cell leads to an inevitable temperature difference. It is necessary to improve the thermal conductivity and to lower the melting point of the PCM for heat transfer enhancement. The PCM with a melting point lower than 45 deg. C will be more effective for heat dissipation, with a desired maximum temperature below 50 deg. C. The temperature difference in the whole unit before PCM melting will be decreased significantly. In addition, a proper k PCM :k c is necessary for a well designed battery thermal energy management system.

  15. Experiments and Simulations of the Use of Time-Correlated Thermal Neutron Counting to Determine the Multiplication of an Assembly of Highly Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Mathew T. Kinlaw; Scott M. Watson; Jeffrey M. Kalter; Eric C. Miller; William A. Noonan

    2014-11-01

    A series of experiments and numerical simulations using thermal-neutron time-correlated measurements has been performed to determine the neutron multiplication, M, of assemblies of highly enriched uranium available at Idaho National Laboratory. The experiments used up to 14.4 kg of highly-enriched uranium, including bare assemblies and assemblies reflected with high-density polyethylene, carbon steel, and tungsten. A small 252Cf source was used to initiate fission chains within the assembly. Both the experiments and the simulations used 6-channel and 8-channel detector systems, each consisting of 3He proportional counters moderated with polyethylene; data was recorded in list mode for analysis. 'True' multiplication values for each assembly were empirically derived using basic neutron production and loss values determined through simulation. A total of one-hundred and sixteen separate measurements were performed using fifty-seven unique measurement scenarios, the multiplication varied from 1.75 to 10.90. This paper presents the results of these comparisons and discusses differences among the various cases.

  16. GCFR thermal-hydraulic experiments

    International Nuclear Information System (INIS)

    Schlueter, G.; Baxi, C.B.; Dalle Donne, M.; Gat, U.; Fenech, H.; Hanson, D.; Hudina, M.

    1980-01-01

    The thermal-hydraulic experimental studies performed and planned for the Gas-Cooled Fast Reactor (GCFR) core assemblies are described. The experiments consist of basic studies performed to obtain correlations, and bundle experiments which provide input for code validation and design verification. These studies have been performed and are planned at European laboratories, US national laboratories, Universities in the US, and at General Atomic Company

  17. Thermal large Eddy simulations and experiments in the framework of non-isothermal blowing; Simulations des grandes echelles thermiques et experiences dans le cadre d'effusion anisotherme

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, G

    2004-06-15

    The aim of this work is to study thermal large-eddy simulations and to determine the nonisothermal blowing impact on a turbulent boundary layer. An experimental study is also carried out in order to complete and validate simulation results. In a first time, we developed a turbulent inlet condition for the velocity and the temperature, which is necessary for the blowing simulations.We studied the asymptotic behavior of the velocity, the temperature and the thermal turbulent fluxes in a large-eddy simulation point of view. We then considered dynamics models for the eddy-diffusivity and we simulated a turbulent channel flow with imposed temperature, imposed flux and adiabatic walls. The numerical and experimental study of blowing permitted to obtain to the modifications of a thermal turbulent boundary layer with the blowing rate. We observed the consequences of the blowing on mean and rms profiles of velocity and temperature but also on velocity-velocity and velocity-temperature correlations. Moreover, we noticed an increase of the turbulent structures in the boundary layer with blowing. (author)

  18. Two-dimensional thermal simulations of aluminum and carbon ion strippers for experiments at SPIRAL2 using the highest beam intensities

    International Nuclear Information System (INIS)

    Tahir, N.A.; Kim, V.; Lamour, E.; Lomonosov, I.V.; Piriz, A.R.; Rozet, J.P.; Stöhlker, Th.; Sultanov, V.; Vernhet, D.

    2012-01-01

    In this paper we report on two-dimensional numerical simulations of heating of a rotating, wheel shaped target impacted by the full intensity of the ion beam that will be delivered by the SPIRAL2 facility at Caen, France. The purpose of this work is to study heating of solid targets that will be used to strip the fast ions of SPIRAL2 to the required high charge state for the FISIC (Fast Ion–Slow Ion Collision) experiments. Strippers of aluminum with different emissivities and of carbon are exposed to high beam current of different ion species as oxygen, neon and argon. These studies show that carbon, due to its much higher sublimation temperature and much higher emissivity, is more favorable compared to aluminum. For the highest beam intensities, an aluminum stripper does not survive. However, problem of the induced thermal stresses and long term material fatigue needs to be investigated before a final conclusion can be drawn.

  19. Thermal and Mechanical Non-Equilibrium Effects on Turbulent Flows: Fundamental Studies of Energy Exchanges Through Direct Numerical Simulations, Molecular Simulations and Experiments

    Science.gov (United States)

    2016-02-26

    photochemical TNE generation, and chemistry of non- equilibrium phenomena. We have investigated a new concept to generate turbulence using photo-initiated...AFRL-AFOSR-VA-TR-2016-0104 Thermal and mechanical non- equilibrium effects on turbulent flows:fundamental studies of energy exchanges through direct...Performance 3. DATES COVERED (From - To) 15-09-2012 to 14-11-2015 4. TITLE AND SUBTITLE Thermal and mechanical non- equilibrium effects on turbulent

  20. Thermal energy management process experiment

    Science.gov (United States)

    Ollendorf, S.

    1984-01-01

    The thermal energy management processes experiment (TEMP) will demonstrate that through the use of two-phase flow technology, thermal systems can be significantly enhanced by increasing heat transport capabilities at reduced power consumption while operating within narrow temperature limits. It has been noted that such phenomena as excess fluid puddling, priming, stratification, and surface tension effects all tend to mask the performance of two-phase flow systems in a 1-g field. The flight experiment approach would be to attack the experiment to an appropriate mounting surface with a 15 to 20 meter effective length and provide a heat input and output station in the form of heaters and a radiator. Using environmental data, the size, location, and orientation of the experiment can be optimized. The approach would be to provide a self-contained panel and mount it to the STEP through a frame. A small electronics package would be developed to interface with the STEP avionics for command and data handling. During the flight, heaters on the evaporator will be exercised to determine performance. Flight data will be evaluated against the ground tests to determine any anomalous behavior.

  1. Thermal simulation of storage in TSS-Galleries

    International Nuclear Information System (INIS)

    Lain Huerta, R.; Martinez Santiago, T.; Ramirez Oyangueren, P.

    1993-01-01

    This report describes the experiment ''thermal simulation of storage in TSS-galleries'' what is been developed in salt mine of Asse, Germany. The report has 3 part: 1) Analysis of objectives and general description of boundary layers. 2) Geomechanics parameters of salt mine. 3) Thermal modelization, thermomechanics modelization and data acquisition

  2. Simulation of chamber experiments

    International Nuclear Information System (INIS)

    Ivanov, V.G.

    1981-01-01

    The description of the system of computer simulation of experiments conducted by means of track detectors with film data output is given. Considered is the principle of organization of computer model of the chamber experiment comprising the following stages: generation of events, generation of measurements, ge-- neration of scanning results, generation of distorbions, generated data calibration, filtration, events reconstruction, kinematic identification, total results tape formation, analysis of the results. Generation programs are formed as special RAM-files, where the RAM-file is the text of the program written in FORTRAN and divided into structural elements. All the programs are a ''part of the ''Hydra'' system. The system possibilities are considered on the base of the CDSC-6500 computer. The five-beam event generation, creation data structure for identification and calculation by the kinematic program take about 1s of CDC-6500 computer time [ru

  3. Argonne Bubble Experiment Thermal Model Development III

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-11

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development” and “Argonne Bubble Experiment Thermal Model Development II”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at beam power levels between 6 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was recorded. The previous report2 described the Monte-Carlo N-Particle (MCNP) calculations and Computational Fluid Dynamics (CFD) analysis performed on the as-built solution vessel geometry. The CFD simulations in the current analysis were performed using Ansys Fluent, Ver. 17.2. The same power profiles determined from MCNP calculations in earlier work were used for the 12 and 15 kW simulations. The primary goal of the current work is to calculate the temperature profiles for the 12 and 15 kW cases using reasonable estimates for the gas generation rate, based on images of the bubbles recorded during the irradiations. Temperature profiles resulting from the CFD calculations are compared to experimental measurements.

  4. Nuclear waste repository simulation experiments

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Wieczorek, K.; Feddersen, H.K.; Staupendahl, G.; Coyle, A.J.; Kalia, H.; Eckert, J.

    1986-12-01

    This document is the third joint annual report on the Cooperative German-American 'Brine Migration Tests' that are in progress at the Asse salt mine in the Federal Republic of Germany (FRG). This Government supported mine serves as an underground test facility for research and development (R and D)-work in the field of nuclear waste repository research and simulation experiments. The tests are designed to simulate a nuclear waste repository to measure the effects of heat and gamma radiation on brine migration, salt decrepitation, disassociation of brine, and gases collected. The thermal mechanical behavior of salt, such as room closure, stresses and changes of the properties of salt are measured and compared with predicted behavior. This document covers the following sections: Issues and test objectives: This section presents issues that are investigated by the Brine Migration Test, and the test objectives derived from these issues; test site: This section describes the test site location and geology in the Asse mine; test description: A description of the test configuration, procedures, equipment, and instrumentation is given in this section; actual test chronology: The actual history of the test, in terms of the dates at which major activities occured, is presented in this section. Test results: This section presents the test results observed to data and the planned future work that is needed to complete the test; conclusions and recommendations: This section summarizes the conclusions derived to date regarding the Brine Migration Test. Additional work that would be useful to resolve the issues is discussed. (orig.)

  5. Simulation-based optimization of thermal systems

    International Nuclear Information System (INIS)

    Jaluria, Yogesh

    2009-01-01

    This paper considers the design and optimization of thermal systems on the basis of the mathematical and numerical modeling of the system. Many complexities are often encountered in practical thermal processes and systems, making the modeling challenging and involved. These include property variations, complicated regions, combined transport mechanisms, chemical reactions, and intricate boundary conditions. The paper briefly presents approaches that may be used to accurately simulate these systems. Validation of the numerical model is a particularly critical aspect and is discussed. It is important to couple the modeling with the system performance, design, control and optimization. This aspect, which has often been ignored in the literature, is considered in this paper. Design of thermal systems based on concurrent simulation and experimentation is also discussed in terms of dynamic data-driven optimization methods. Optimization of the system and of the operating conditions is needed to minimize costs and improve product quality and system performance. Different optimization strategies that are currently used for thermal systems are outlined, focusing on new and emerging strategies. Of particular interest is multi-objective optimization, since most thermal systems involve several important objective functions, such as heat transfer rate and pressure in electronic cooling systems. A few practical thermal systems are considered in greater detail to illustrate these approaches and to present typical simulation, design and optimization results

  6. Computer simulation of thermal plant operations

    CERN Document Server

    O'Kelly, Peter

    2012-01-01

    This book describes thermal plant simulation, that is, dynamic simulation of plants which produce, exchange and otherwise utilize heat as their working medium. Directed at chemical, mechanical and control engineers involved with operations, control and optimization and operator training, the book gives the mathematical formulation and use of simulation models of the equipment and systems typically found in these industries. The author has adopted a fundamental approach to the subject. The initial chapters provide an overview of simulation concepts and describe a suitable computer environment.

  7. Thermal simulation of the magnesium thermal of metallic uranium reduction

    International Nuclear Information System (INIS)

    Borges, W.A.; Saliba-Silva, A.M.

    2008-01-01

    Metallic uranium production is vital to fabricate fuel elements for nuclear research reactors and to produce radioisotopes and radiopharmaceuticals. Metallic uranium is got via magnesiothermal reduction of UF 4 . This reaction is carried out inside a closed graphite crucible inserted in a metallic reactor adequately sealed without any outside contact. The assembled set is gradually heated up inside a pit furnace up to reach the reaction ignition temperature (between 600-650 deg C). The optimization of the reactive system depends on the mathematical modeling using simulation by finite elements and computational calculation with specialized programs. In this way, the reactants' thermal behavior is forecast until they reach the ignition temperature. The optimization of the uranium production reaction is based on minimization of thermal losses using better the exo thermal reaction heat. As lower the thermal losses, as higher would be the heat amount to raise the temperature of reaction products. This promotes the adequate melting of uranium and slag, so allowing better metal/slag separation with higher metallic yield. This work shows how the mathematical simulation is made and supplies some preliminary results. (author)

  8. Quantification of Uncertainty in Thermal Building Simulation

    DEFF Research Database (Denmark)

    Brohus, Henrik; Haghighat, F.; Frier, Christian

    In order to quantify uncertainty in thermal building simulation stochastic modelling is applied on a building model. An application of stochastic differential equations is presented in Part 1 comprising a general heat balance for an arbitrary number of loads and zones in a building to determine...

  9. Strain measurements during pressurized thermal shock experiment

    International Nuclear Information System (INIS)

    Tarso Vida Gomes, P. de; Julio Ricardo Barreto Cruz; Tanius Rodrigues Mansur; Denis Henrique Bianchi Scaldaferri; Miguel Mattar Neto

    2005-01-01

    For the life extension of nuclear power plants, the residual life of most of their components must be evaluated along all their operating time. Concerning the reactor pressure vessel, the pressurized thermal shock (PTS) is a very important event to be considered. For better understanding the effects of this kind of event, tests are made. The approach described here consisted of building a simplified in-scale physical model of the reactor pressure vessel, submitting it to the actual operating temperature and pressure conditions and provoking a thermal shock by means of cold water flow in its external surface. To conduct such test, the Nuclear Technology Development Center (CDTN) has been conducting several studies related to PTS and has also built a laboratory that has made possible the simulation of the PTS loading conditions. Several cracks were produced in the external surface of the reactor pressure vessel model. Strain gages were fixed by means of electrical discharge welding over the cracks regions in both external and internal surfaces. The temperature was monitored in 10 points across the vessel wall. The internal pressure was manually controlled and monitored using a pressure transducer. Two PTS experiments were conducted and this paper presents the strain measurement procedures applied to the reactor pressure vessel model, during the PTS, using strain gages experimental methodology. (authors)

  10. Thermal simulation and validation of 8W LED lamp

    NARCIS (Netherlands)

    Jakovenko, J.; Werkhoven, R.J.; Formánek, J.; Kunen, J.M.G.; Bolt, P.J.; Kulha, P.

    2011-01-01

    This work deals with thermal simulation and characterization of solid state lightening (SSL) LED Lamp in order to get precise 3D thermal models for further lamp thermal optimization. Simulations are performed with ANSYS-CFX and CoventorWare software tools. The simulated thermal distribution has been

  11. Hopper Flow: Experiments and Simulation

    Science.gov (United States)

    Li, Zhusong; Shattuck, Mark

    2013-03-01

    Jamming and intermittent granular flow are important problems in industry, and the vertical hopper is a canonical example. Clogging of granular hoppers account for significant losses across many industries. We use realistic DEM simulations of gravity driven flow in a hopper to examine flow and jamming of 2D disks and compare with identical companion experiments. We use experimental data to validate simulation parameters and the form of the inter particle force law. We measure and compare flow rate, emptying times, jamming statistics, and flow fields as a function of opening angle and opening size in both experiment and simulations. Suppored by: NSF-CBET-0968013

  12. YALINA-Thermal Facility Experiments

    International Nuclear Information System (INIS)

    Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Sadovich, S.; Cintas, A.; Márquez Damián, J.I.; Lopasso, E.M.; Maiorino, J.R.; Carluccio, T.; Rossi, P.C.R.; Antunes, A.; Oliveira, F.L. de; Lee, S.M.; Xia, P.; Shi, Y.; Xia, H.; Zhu, Q.; Yu, T.; Wu, X.; Zhang, W.; Cao, J.; Luo, H.; Quan, Y.; Kulkarni, K.; Yadav, R.D.S.; Bajpai, A.; Degweker, S.B.; Modak, R.S.; Park, H.J.; Shim, H.J.; Kim, C.H.; Wojciechowski, A.; Zuta, M.; Pešić, M.; Avramović, I.; Beličev, P.; Gohar, Y.; Talamo, A.; Aliberti, G.

    2017-01-01

    This Section discussed the results obtained by the Member States participating in the IAEA coordinated research project on Analytical and Experimental Benchmark Analysis on Accelerator Driven Systems, and Low Enriched Uranium Fuel Utilization in Accelerator Driven Subcritical Assembly Systems for the YALINA Thermal facility. Member States used both Monte Carlo and deterministic computational tools to analyse the YALINA Thermal subcritical assembly, including: MCNP5, MCNPX, McCARD, PARTISN, and ERANOS computer programs. All calculations have been performed using the ENDF/B-VI (different modes) nuclear data libraries with the exception of Republic of Korea which used the ENDF/B-VII.0 nuclear data library. Generally, there is a good agreement between the results obtained by all the Member States. Deterministic codes perform space, energy, and angle discretization and materials homogenizations, which introduce approximations affecting the obtained results. In subcritical assemblies, the neutron multiplication and the detector counting rate depend strongly on the external neutron source. Cf and D-D sources provide similar results since they emit neutrons with similar average energy. D-T neutrons trigger (n,xn) reactions and have a longer mean free path, which increases the neutron leakage if the geometry dimensions of the assembly are small, as in the case of the YALINA-Thermal subcritical assembly. Close to criticality, the effect of the external neutron source diminishes since fission neutrons dominate the neutron population.

  13. Simulation Exploration Experience 2018 Overview

    Science.gov (United States)

    Paglialonga, Stephen; Elfrey, Priscilla; Crues, Edwin Z.

    2018-01-01

    The Simulation Exploration Experience (SEE) joins students, industry, professional associations, and faculty together for an annual modeling and simulation (M&S) challenge. SEE champions collaborative collegiate-level modeling and simulation by providing a venue for students to work in highly dispersed inter-university teams to design, develop, test, and execute simulated missions associated with space exploration. Participating teams gain valuable knowledge, skills, and increased employability by working closely with industry professionals, NASA, and faculty advisors. This presentation gives and overview of the SEE and the upcoming 2018 SEE event.

  14. Evaluation of uranium dioxide thermal conductivity using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Kim, Woongkee; Kaviany, Massoud; Shim, J. H.

    2014-01-01

    It can be extended to larger space, time scale and even real reactor situation with fission product as multi-scale formalism. Uranium dioxide is a fluorite structure with Fm3m space group. Since it is insulator, dominant heat carrier is phonon, rather than electrons. So, using equilibrium molecular dynamics (MD) simulation, we present the appropriate calculation parameters in MD simulation by calculating thermal conductivity and application of it to the thermal conductivity of polycrystal. In this work, we investigate thermal conductivity of uranium dioxide and optimize the parameters related to its process. In this process, called Green Kubo formula, there are two parameters i.e correlation length and sampling interval, which effect on ensemble integration in order to obtain thermal conductivity. Through several comparisons, long correlation length and short sampling interval give better results. Using this strategy, thermal conductivity of poly crystal is obtained and comparison with that of pure crystal is made. Thermal conductivity of poly crystal show lower value that that of pure crystal. In further study, we broaden the study to transport coefficient of radiation damaged structures using molecular dynamics. Although molecular dynamics is tools for treating microscopic scale, most macroscopic issues related to nuclear materials such as voids in fuel materials and weakened mechanical properties by radiation are based on microscopic basis. Thus, research on microscopic scale would be expanded in this field and many hidden mechanism in atomic scales will be revealed via both atomic scale simulations and experiments

  15. Simulated experiments in modern physics

    International Nuclear Information System (INIS)

    Tirnini, Mahmud Hasan

    1981-01-01

    Author.In this thesis a number of the basic experiments of atomic and nuclear physics are simulated on a microcomputer interfaced to a chart recorder and CRT. These will induce the student to imagine that he is actually performing the experiments. He will collect data to be worked out. The thesis covers the relevant material to set up such experiments in the modern physics laboratory

  16. Monte Carlo simulation of experiments

    International Nuclear Information System (INIS)

    Opat, G.I.

    1977-07-01

    An outline of the technique of computer simulation of particle physics experiments by the Monte Carlo method is presented. Useful special purpose subprograms are listed and described. At each stage the discussion is made concrete by direct reference to the programs SIMUL8 and its variant MONTE-PION, written to assist in the analysis of the radiative decay experiments μ + → e + ν sub(e) antiνγ and π + → e + ν sub(e)γ, respectively. These experiments were based on the use of two large sodium iodide crystals, TINA and MINA, as e and γ detectors. Instructions for the use of SIMUL8 and MONTE-PION are given. (author)

  17. Simulation of Thermal Transients using CSMP

    International Nuclear Information System (INIS)

    Konuk, A.A.

    1981-01-01

    A mathematical model has been developed to simulate thermal transientes for the Hellum Loop of the 'Instituto de Pesquisas Energeticas e Nuleares', Sao Paulo. The model is based on the energy equation applied to the various components of the loop. The non-linear system of first order ordinary differential equation and algebraic equations has been solved using IBM'S 'System/360-Continuous System Modeling Program-CSMP'. The model has been tested satisfactory with experimental results. (Author) [pt

  18. GOTHIC code simulation of thermal stratification in POOLEX facility

    International Nuclear Information System (INIS)

    Li, H.; Kudinov, P.

    2009-07-01

    Pressure suppression pool is an important element of BWR containment. It serves as a heat sink and steam condenser to prevent containment pressure buildup during loss of coolant accident or safety relief valve opening during normal operations of a BWR. Insufficient mixing in the pool, in case of low mass flow rate of steam, can cause development of thermal stratification and reduction of pressure suppression pool capacity. For reliable prediction of mixing and stratification phenomena validation of simulation tools has to be performed. Data produced in POOLEX/PPOOLEX facility at Lappeenranta University of Technology about development of thermal stratification in a large scale model of a pressure suppression pool is used for GOTHIC lumped and distributed parameter validation. Sensitivity of GOTHIC solution to different boundary conditions and grid convergence study for 2D simulations of POOLEX STB-20 experiment are performed in the present study. CFD simulation was carried out with FLUENT code in order to get additional insights into physics of stratification phenomena. In order to support development of experimental procedures for new tests in the PPOOLEX facility lumped parameter pre-test GOTHIC simulations were performed. Simulations show that drywell and wetwell pressures can be kept within safety margins during a long transient necessary for development of thermal stratification. (au)

  19. GOTHIC code simulation of thermal stratification in POOLEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Kudinov, P. (Royal Institute of Technology (KTH) (Sweden))

    2009-07-15

    Pressure suppression pool is an important element of BWR containment. It serves as a heat sink and steam condenser to prevent containment pressure buildup during loss of coolant accident or safety relief valve opening during normal operations of a BWR. Insufficient mixing in the pool, in case of low mass flow rate of steam, can cause development of thermal stratification and reduction of pressure suppression pool capacity. For reliable prediction of mixing and stratification phenomena validation of simulation tools has to be performed. Data produced in POOLEX/PPOOLEX facility at Lappeenranta University of Technology about development of thermal stratification in a large scale model of a pressure suppression pool is used for GOTHIC lumped and distributed parameter validation. Sensitivity of GOTHIC solution to different boundary conditions and grid convergence study for 2D simulations of POOLEX STB-20 experiment are performed in the present study. CFD simulation was carried out with FLUENT code in order to get additional insights into physics of stratification phenomena. In order to support development of experimental procedures for new tests in the PPOOLEX facility lumped parameter pre-test GOTHIC simulations were performed. Simulations show that drywell and wetwell pressures can be kept within safety margins during a long transient necessary for development of thermal stratification. (au)

  20. Simulation and analysis of the thermal and deformation behaviour of `as-received` and `hydrided` pressure tubes used in the circumferential temperature distribution experiments (end of life/pressure tube behaviour)

    Energy Technology Data Exchange (ETDEWEB)

    Muir, W C; Bayoumi, M H [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    It is postulated that in-reactor pressure tubes may be subjected to radiation damage and dissolved deuterium which could change the pressure tube characteristics and lead to different behaviour than that of as-received pressure tubes under large LOCA (loss of coolant) conditions. A hydrided pressure tube was used to study the effect of dissolved hydrogen on thermal-mechanical behaviour. In the experiment, simulating an in-reactor (hydrided) pressure tube with circumferential differential temperature under boil-off conditions, the pressure tube ballooned into contact with the calandria tube. The pressure tube used in this experiment was hydrided in a furnace to a nominal value of 200 {mu}g/g dissolved hydrogen. This test was a repeat of the first supplementary boil-off test (S-5-1) which used an as-received pressure tube. The objective of this paper is to analyze the results obtained from the simulation of this Boil-Off test using the SMARTT computer code and to examine the effect of hydriding on the thermal and ballooning behaviour of the pressure tube by comparison with the results obtained from test S-5-1. A discussion of the results obtained from this comparison is presented together with an analysis of their application to the analysis of pressure tube behaviour in CANDU reactors. (author). 13 refs., 1 tab., 16 figs.

  1. Simulation and analysis of the thermal and deformation behaviour of 'as-received' and 'hydrided' pressure tubes used in the circumferential temperature distribution experiments (end of life/pressure tube behaviour)

    International Nuclear Information System (INIS)

    Muir, W.C.; Bayoumi, M.H.

    1995-01-01

    It is postulated that in-reactor pressure tubes may be subjected to radiation damage and dissolved deuterium which could change the pressure tube characteristics and lead to different behaviour than that of as-received pressure tubes under large LOCA (loss of coolant) conditions. A hydrided pressure tube was used to study the effect of dissolved hydrogen on thermal-mechanical behaviour. In the experiment, simulating an in-reactor (hydrided) pressure tube with circumferential differential temperature under boil-off conditions, the pressure tube ballooned into contact with the calandria tube. The pressure tube used in this experiment was hydrided in a furnace to a nominal value of 200 μg/g dissolved hydrogen. This test was a repeat of the first supplementary boil-off test (S-5-1) which used an as-received pressure tube. The objective of this paper is to analyze the results obtained from the simulation of this Boil-Off test using the SMARTT computer code and to examine the effect of hydriding on the thermal and ballooning behaviour of the pressure tube by comparison with the results obtained from test S-5-1. A discussion of the results obtained from this comparison is presented together with an analysis of their application to the analysis of pressure tube behaviour in CANDU reactors. (author). 13 refs., 1 tab., 16 figs

  2. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    International Nuclear Information System (INIS)

    Emrich, William J. Jr.

    2008-01-01

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts

  3. Toward Improved Fidelity of Thermal Explosion Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, A L; Becker, R; Howard, W M; Wemhoff, A

    2009-07-17

    We will present results of an effort to improve the thermal/chemical/mechanical modeling of HMX based explosive like LX04 and LX10 for thermal cook-off. The original HMX model and analysis scheme were developed by Yoh et.al. for use in the ALE3D modeling framework. The current results were built to remedy the deficiencies of that original model. We concentrated our efforts in four areas. The first area was addition of porosity to the chemical material model framework in ALE3D that is used to model the HMX explosive formulation. This is needed to handle the roughly 2% porosity in solid explosives. The second area was the improvement of the HMX reaction network, which included the inclusion of a reactive phase change model base on work by Henson et.al. The third area required adding early decomposition gas species to the CHEETAH material database to develop more accurate equations of state for gaseous intermediates and products. Finally, it was necessary to improve the implicit mechanics module in ALE3D to more naturally handle the long time scales associated with thermal cook-off. The application of the resulting framework to the analysis of the Scaled Thermal Explosion (STEX) experiments will be discussed.

  4. Plasma thermal energy transport: theory and experiments

    International Nuclear Information System (INIS)

    Coppi, B.

    Experiments on the transport across the magnetic field of electron thermal energy are reviewed (Alcator, Frascati Torus). In order to explain the experimental results, a transport model is described that reconfirmed the need to have an expression for the local diffusion coefficient with a negative exponent of the electron temperature

  5. Thermal Simulations, Open Boundary Conditions and Switches

    Science.gov (United States)

    Burnier, Yannis; Florio, Adrien; Kaczmarek, Olaf; Mazur, Lukas

    2018-03-01

    SU(N) gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  6. Thermal Simulations, Open Boundary Conditions and Switches

    Directory of Open Access Journals (Sweden)

    Burnier Yannis

    2018-01-01

    Full Text Available SU(N gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  7. Large Eddy Simulation of a thermal mixing tee in order to assess the thermal fatigue

    International Nuclear Information System (INIS)

    Galpin, J.; Simoneau, J.P.

    2011-01-01

    Highlights: → In this study, we perform a Large Eddy Simulation of a mixing tee, for which experimental thermal statistics are available. → A special methodology has been set up for comparing properly the fluctuations with the experiment. → A comparison between the Smagorinsky and the structure-function sub-grid scale model is achieved out. → Slight better predictions are obtained with the structure-function model. → The possibility to reduce the computational domain by prescribing synthetic turbulence at the inlet is tested. First results are encouraging and underline the advantage of considering this technique instead of a standard noise at the entrance of the domain. - Abstract: The present paper deals with thermal fatigue phenomenon, and more particularly with the numerical simulation using Large Eddy Simulation technique of a mixing tee, for which experimental thermal statistics are available. The sensitivity to the sub-grid scale closure is first evaluated by comparing the experimental statistics with the numerical results obtained via both the Smagorinsky and the structure-function models. Because of a difference of temporal resolution between the experiment and the simulation, the direct comparison of the fluctuations is not possible. Therefore, a methodology based on filtering the numerical results is proposed in order to achieve a proper comparison. The comparison of the numerical results with the experiment suggests that slight better predictions are obtained with the structure-function model even if the dependency of the results to the sub-grid scale model is low. Then, the possibility to reduce the fluid computational domain by prescribing synthetic turbulence at the inlet is tested. First results are encouraging and underline the advantage of considering this technique instead of a standard noise at the entrance of the domain. All the simulations are conducted with the commercial CFD code STAR-CD.

  8. Thermal-Hydraulic Experiment Facility (THEF)

    International Nuclear Information System (INIS)

    Martinell, J.S.

    1982-01-01

    This paper provides an overview of the Thermal-Hydraulic Experiment Facility (THEF) at the Idaho National Engineering Laboratory (INEL). The overview describes the major test systems, measurements, and data acquisition system, and presents objectives, facility configuration, and results for major experimental projects recently conducted at the THEF. Plans for future projects are also discussed. The THEF is located in the Water Reactor Research Test Facility (WRRTF) area at the INEL

  9. Practical considerations in developing numerical simulators for thermal recovery

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, Al-Ain (United Arab Emirates)

    1996-08-15

    Numerical simulation of steam injection and in-situ combustion-based oil recovery processes is of great importance in project design. Development of such numerical simulators is an on-going process, with improvements made as the process description becomes more complete, and also as better methods are devised to resolve certain numerical difficulties. This paper addresses some of the latter, and based on the author`s experience gives useful guidelines for developing more efficient numerical simulators of steam injection and in-situ combustion. The paper takes up a series of questions related to simulating thermal processes. Included are: the elimination of constraint equations at the matrix level, phase change, steam injection rate, alternative treatments of heat loss, relative permeabilities and importance of hysteresis effects, improved solutions to the grid orientation problem and other simulation problems such as potential inversion, grid block size, time-step size control and induced fractures. The points discussed in the paper should be of use to both simulator developers and users alike, and will lead to a better understanding of simulation results

  10. TMX-U thermal-barrier experiments

    International Nuclear Information System (INIS)

    Simonen, T.C.; Allen, S.L.; Barter, J.D.

    1988-01-01

    This review of thermal-barrier experiments in the Tandem Mirror Experiment Upgrade (TMX-U) describes our progress at Lawrence Livermore National Laboratory in plasma confinement and central-cell heating. Thermal barriers in TMX-U improved axial confinement by two orders of magnitude over a limited range of densities, compared with confinement in single-cell mirrors at the same ion temperature. Our study shows that central-cell radial nonambipolar confinement scales as neoclassical theory and can be eliminated by floating the end walls. Radial ambipolar losses can also be measured and reduced. The electron energy balance is improved in tandem mirrors to near classical, resulting in T/sub e/ up to 0.28 keV. Electron cyclotron heating (ECH) efficiencies up to 42 percent, with low levels of electron microinstability, were achieved when hot electrons in the thermal barrier were heated to average betas as large as 15 percent. The hot-electron distribution is measured from X rays and is modeled by a Fokker-Planck code that includes heating from cavity radio-frequency (RF) fields. Neutral-beam injection in the central cell created average ion betas up to 5 percent with radial profiles of hot ions that are modeled accurately by a radial Fokker-Planck code. Gas fueling between two fundamental ion cyclotron heating (ICH) resonances resulted in symmetrical heating of passing ions toward both ends

  11. A horizontal vane radiometer: experiment, theory and simulation

    OpenAIRE

    Wolfe, David; Lazarra, Andres; Garcia, Alejandro

    2015-01-01

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte C...

  12. Mechanical Contact Experiments and Simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P; Zhang, W.

    2011-01-01

    Mechanical contact is studied under dynamic development by means of a combined numerical and experimental investigation. The experiments are designed to allow dynamical development of non-planar contact areas with significant expansion in all three directions as the load is increased. Different....... The overall investigation serves for testing and validating the numerical implementation of the mechanical contact, which is one of the main contributions to a system intended for 3D simulation of resistance welding. Correct modelling of contact between parts to be welded, as well as contact with electrodes......, is crucial for satisfactory modelling of the resistance welding process. The resistance heating at the contact interfaces depends on both contact area and pressure, and as the contact areas develop dynamically, the presented tests are relevant for assessing the validity and accuracy of the mechanical contact...

  13. Operational Experience from Solar Thermal Energy Projects

    Science.gov (United States)

    Cameron, C. P.

    1984-01-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  14. Recent developments in numerical simulation techniques of thermal recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Tamim, M. [Bangladesh University of Engineering and Technology, Bangladesh (Bangladesh); Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, Al-Ain 17555 (United Arab Emirates); Farouq Ali, S.M. [University of Alberta, Alberta (Canada)

    2000-05-01

    Numerical simulation of thermal processes (steam flooding, steam stimulation, SAGD, in-situ combustion, electrical heating, etc.) is an integral part of a thermal project design. The general tendency in the last 10 years has been to use commercial simulators. During the last decade, only a few new models have been reported in the literature. More work has been done to modify and refine solutions to existing problems to improve the efficiency of simulators. The paper discusses some of the recent developments in simulation techniques of thermal processes such as grid refinement, grid orientation, effect of temperature on relative permeability, mathematical models, and solution methods. The various aspects of simulation discussed here promote better understanding of the problems encountered in the simulation of thermal processes and will be of value to both simulator users and developers.

  15. Modelling and simulation of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eborn, J.

    1998-02-01

    Mathematical modelling and simulation are important tools when dealing with engineering systems that today are becoming increasingly more complex. Integrated production and recycling of materials are trends that give rise to heterogenous systems, which are difficult to handle within one area of expertise. Model libraries are an excellent way to package engineering knowledge of systems and units to be reused by those who are not experts in modelling. Many commercial packages provide good model libraries, but they are usually domain-specific and closed. Heterogenous, multi-domain systems requires open model libraries written in general purpose modelling languages. This thesis describes a model database for thermal power plants written in the object-oriented modelling language OMOLA. The models are based on first principles. Subunits describe volumes with pressure and enthalpy dynamics and flows of heat or different media. The subunits are used to build basic units such as pumps, valves and heat exchangers which can be used to build system models. Several applications are described; a heat recovery steam generator, equipment for juice blending, steam generation in a sulphuric acid plant and a condensing steam plate heat exchanger. Model libraries for industrial use must be validated against measured data. The thesis describes how parameter estimation methods can be used for model validation. Results from a case-study on parameter optimization of a non-linear drum boiler model show how the technique can be used 32 refs, 21 figs

  16. Nuclear Thermal Rocket Simulation in NPSS

    Science.gov (United States)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  17. Molecular dynamics simulation of thermal conductivities of superlattice nanowires

    Institute of Scientific and Technical Information of China (English)

    YANG; Juekuan(杨决宽); CHEN; Yunfei(陈云飞); YAN; Jingping(颜景平)

    2003-01-01

    Nonequilibrium molecular dynamics simulations were carried out to investigate heat transfer in superlattice nanowires. Results show that for fixed period length superlattice nanowires, the ratio of the total interfacial thermal resistance to the total thermal resistance and the effective thermal conductivities are invariant with the changes in interface numbers. Increasing the period length leads to an increase in the average interfacial thermal resistance, which indicates that the interfacial thermal resistance depends not only on the materials that constitute the alternating segments of superlattice nanowires, but also on the lattice strain throughout the segments. The modification of the lattice structure due to the lattice mismatch should be taken into account in the acoustic mismatch model. Simulation results also demonstrated the size confinement effect on the thermal conductivities for low dimensional structures, i.e. the thermal conductivities and the interfacial thermal resistance increase as the nanowire cross-sectional area increases.

  18. Thermal expansion of UO2 and simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Ho Kang, Kweon; Jin Ryu, Ho; Chan Song, Kee; Seung Yang, Myung

    2002-01-01

    The lattice parameters of simulated DUPIC fuel and UO 2 were measured from room temperature to 1273 K using neutron diffraction to investigate the thermal expansion and density variation with temperature. The lattice parameter of simulated DUPIC fuel is lower than that of UO 2 , and the linear thermal expansion of simulated DUPIC fuel is higher than that of UO 2 . For the temperature range from 298 to 1273 K, the average linear thermal expansion coefficients for UO 2 and simulated DUPIC fuel are 10.471x10 -6 and 10.751x10 -6 K -1 , respectively

  19. Thermal expansion study of simulated DUPIC fuel using neutron diffraction

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Bae, J. H.; Kim, H. S.; Song, K. C.; Yang, M. S.; Choi, Y. N.; Han, Y. S.; Oh, H. S.

    2001-07-01

    The lattice parameters of simulated DUPIC fuel and UO2 were measured from room temperature to 1273 K using neutron diffraction to investigate the thermal expansion and density variation with temperature. The lattice parameter of simulated DUPIC fuel is lower than that of UO2 and the linear thermal expansion of simulated DUPIC fuel is higher than that of UO2. For the temperature range from 298 to 1273 K, the average linear thermal expansion coefficients for UO2 and simulated DUPIC fuel are 10.471 ''10-6 and 10.751 ''10-6 K-1, respectively

  20. Thermal Properties of Lunar Regolith Simulants

    Science.gov (United States)

    Street, Kenneth; Ray, Chandra; Rickman, Doug

    2010-01-01

    Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH-, the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Themo-Gravimetric Analysis (TGA) with mass spectrometric (MS) determination of evolved gas species yields chemical information on various oxygenated volatiles (water, carbon dioxide, sulfur oxides, nitrogen oxides and phosphorus oxides) and their evolution temperature profiles. The DTA and TGAMS studies included JSC-1A fine, NU-LHT-2M and its proposed feed stocks: anorthosite; dunite; HQ (high quality) glass and the norite from which HQ glass is produced. Fig 1 is a data profile for anorthosite. The DTA (Fig 1a) indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water (Molecular Weight, MW, 18 in Fig 1c) is lost accounting for approximately 0.1% mass loss due to water removal (Fig 1b). Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals. Between 490 and the 970 transition other volatile oxides are lost including those of hydrogen (third water type), carbon (MW = 44), sulfur (MW = 64 and 80), nitrogen (MW 30 and 46) and possibly phosphorus (MW = 79, 95 or 142). Peaks at MW = 35 and 19 may be attributable to loss of chlorine and fluorine respectively. Negative peaks in the NO (MW = 30) and oxygen (MW = 32) MS profiles may indicate the production of NO2 (MW = 46). Because so many compounds are volatilized in this temperature range quantification of

  1. PPOOLEX experiments on thermal stratification and mixing

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2009-08-15

    The results of the thermal stratification experiments in 2008 with the PPOOLEX test facility are presented. PPOOLEX is a closed vessel divided into two compartments, dry well and wet well. Extra temperature measurements for capturing different aspects of the investigated phenomena were added before the experiments. The main purpose of the experiment series was to generate verification data for evaluating the capability of GOTHIC code to predict stratification and mixing phenomena. Altogether six experiments were carried out. Heat-up periods of several thousand seconds by steam injection into the dry well compartment and from there into the wet well water pool were recorded. The initial water bulk temperature was 20 deg. C. Cooling periods of several days were included in three experiments. A large difference between the pool bottom and top layer temperature was measured when small steam flow rates were used. With higher flow rates the mixing effect of steam discharge delayed the start of stratification until the pool bulk temperature exceeded 50 deg. C. The stratification process was also different in these two cases. With a small flow rate stratification was observed only above and just below the blowdown pipe outlet elevation. With a higher flow rate over a 30 deg. C temperature difference between the pool bottom and pipe outlet elevation was measured. Elevations above the pipe outlet indicated almost linear rise until the end of steam discharge. During the cooling periods the measurements of the bottom third of the pool first had an increasing trend although there was no heat input from outside. This was due to thermal diffusion downwards from the higher elevations. Heat-up in the gas space of the wet well was quite strong, first due to compression by pressure build-up and then by heat conduction from the hot dry well compartment via the intermediate floor and test vessel walls and by convection from the upper layers of the hot pool water. The gas space

  2. PPOOLEX experiments on thermal stratification and mixing

    International Nuclear Information System (INIS)

    Puustinen, M.; Laine, J.; Raesaenen, A.

    2009-08-01

    The results of the thermal stratification experiments in 2008 with the PPOOLEX test facility are presented. PPOOLEX is a closed vessel divided into two compartments, dry well and wet well. Extra temperature measurements for capturing different aspects of the investigated phenomena were added before the experiments. The main purpose of the experiment series was to generate verification data for evaluating the capability of GOTHIC code to predict stratification and mixing phenomena. Altogether six experiments were carried out. Heat-up periods of several thousand seconds by steam injection into the dry well compartment and from there into the wet well water pool were recorded. The initial water bulk temperature was 20 deg. C. Cooling periods of several days were included in three experiments. A large difference between the pool bottom and top layer temperature was measured when small steam flow rates were used. With higher flow rates the mixing effect of steam discharge delayed the start of stratification until the pool bulk temperature exceeded 50 deg. C. The stratification process was also different in these two cases. With a small flow rate stratification was observed only above and just below the blowdown pipe outlet elevation. With a higher flow rate over a 30 deg. C temperature difference between the pool bottom and pipe outlet elevation was measured. Elevations above the pipe outlet indicated almost linear rise until the end of steam discharge. During the cooling periods the measurements of the bottom third of the pool first had an increasing trend although there was no heat input from outside. This was due to thermal diffusion downwards from the higher elevations. Heat-up in the gas space of the wet well was quite strong, first due to compression by pressure build-up and then by heat conduction from the hot dry well compartment via the intermediate floor and test vessel walls and by convection from the upper layers of the hot pool water. The gas space

  3. Thermal Runaways in LHC Interconnections: Experiments

    CERN Document Server

    Willering, G P; Bottura, L; Scheuerlein, C; Verweij, A P

    2011-01-01

    The incident in the LHC in September 2008 occurred in an interconnection between two magnets of the 13 kA dipole circuit. This event was traced to a defect in one of the soldered joints between two superconducting cables stabilized by a copper busbar. Further investigation revealed defective joints of other types. A combination of (1) a poor contact between the superconducting cable and the copper stabilizer and (2) an electrical discontinuity in the stabilizer at the level of the connection can lead to an unprotected quench of the busbar. Once the heating power in the unprotected superconducting cable exceeds the heat removal capacity a thermal run-away occurs, resulting in a fast melt-down of the non-stabilized cable. We have performed a thorough investigation of the conditions upon which a thermal run-away in the defect can occur. To this aim, we have prepared heavily instrumented samples with well-defined and controlled defects. In this paper we describe the experiment, and the analysis of the data, and w...

  4. Design and Analysis of simulation experiments : Tutorial

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2017-01-01

    This tutorial reviews the design and analysis of simulation experiments. These experiments may have various goals: validation, prediction, sensitivity analysis, optimization (possibly robust), and risk or uncertainty analysis. These goals may be realized through metamodels. Two types of metamodels

  5. Simulation of pool scrubbing experiments using BUSCA

    International Nuclear Information System (INIS)

    Dehbi, A.; Guentay, S.

    1994-01-01

    BUSCA-PSI is a computer code which predicts the aerosol scrubbing taking place when gas bubbles containing fission products rise through stagnant pools of water after a postulated severe accident. A Lagrangian formulation is adopted to follow the path of a bubble as it rises toward the surface of the pool. The BUSCA model includes most aerosol removal mechanisms which are thought to be significant, namely: Jet Impaction at tile orifice, Convection/Diffusiophoresis during steam condensation, Thermophoresis, Sedimentation, Centrifugal Impaction during bubble rise, and Brownian Diffusion. The hydraulic modelling offers a variety of options for the initial globule volume, the stable bubble size, tile bubble rise velocity, and the bubble shape. The heat and mass transfer part of tile model uses correlations found in the relevant literature. BUSCA simulations were performed to determine the decontamination factor (DF) dependence on key aerosol and thermal hydraulic parameters. The decontamination factor increases with height, pool temperature subcooling, and steam content. The decontamination factor exhibits a parabolic dependence on the particle radius. At low particle sizes, the DF is high due to Brownian Diffusion which is the dominant removal mechanism. The DF hits a minimum and then increases with particle size as Centrifugal Impaction and Sedimentation become important. In separate calculations, BUSCA was used to the simulate the aerosol scrubbing experiments performed by EPRI. For cold pool tests, the predicted scrubbing efficiencies were in a good, conservative agreement with the data for both Tin and CsI, and the discrepancies were within the reported measurement errors. For hot pool tests, the code systematically underpredicted the scrubbing DF's; this is potentially due to condensation in the gas space above the pool, a situation not currently modelled by BUSCA. The code was also tested against data produced by the Tepco-Toshiba-Hitachi experiments. The

  6. Haptization of molecular dynamics simulation with thermal display

    International Nuclear Information System (INIS)

    Tamura, Yuichi; Fujiwara, Susumu; Nakamura, Hiroaki

    2010-01-01

    Thermal display, which is a type of haptic display, is effective in providing intuitive information of temperature. However, in many studies, the user has assumed a sitting position during the use of these devices. In contrast, the user generally watches 3D objects while standing and walking around in large-scale virtual reality system, In addition, in scientific visualization, the response time is very important for observing physical phenomena, especially for dynamic numerical simulation. One solution is to provide two types of thermal information: information about the rate of thermal change and information about the actual temperature. We propose a thermal display with two Peltier elements which can show above two pairs of information and the result (for example energy and temperature, as thermal information) of numerical simulation. Finally, we represent an example of visualizing and haptizing the result of molecular dynamics simulation. (author)

  7. Contact Thermal Analysis and Wear Simulation of a Brake Block

    Directory of Open Access Journals (Sweden)

    Nándor Békési

    2013-01-01

    Full Text Available The present paper describes an experimental test and a coupled contact-thermal-wear analysis of a railway wheel/brake block system through the braking process. During the test, the friction, the generated heat, and the wear were evaluated. It was found that the contact between the brake block and the wheel occurs in relatively small and slowly moving hot spots, caused by the wear and the thermal effects. A coupled simulation method was developed including numerical frictional contact, transient thermal and incremental wear calculations. In the 3D simulation, the effects of the friction, the thermal expansion, the wear, and the temperature-dependent material properties were also considered. A good agreement was found between the results of the test and the calculations, both for the thermal and wear results. The proposed method is suitable for modelling the slowly oscillating wear caused by the thermal expansions in the contact area.

  8. Simulation of ROCOM Experiment using CUPID Code

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yun Je; Lee, Jae Ryong; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of)

    2016-10-15

    KAERI has developed CUPID, which is a three dimensional thermal hydraulics code for the transient analysis of two-phase flows in nuclear reactor components. To validate the capability of CUPID for simulation of multi-dimensional flow mixing behavior, ROCOM (ROssenforf COolant Mixing) test was simulated. ROCOM test has been conducted in the OECD PKL2 Project to investigate in more detail the thermal hydraulic behavior inside the RPV. Thus far, many researchers used the ROCOM data to validate the CFD code capability of thermal mixing behavior. In this study, a hybrid grid was generated using SALOME software and the ROCOM simulation was performed using CUPID. In addition, the effect of turbulence model was also investigated. Test ROCOM 2.1 and 1.2 cases were simulated using the CUPID code. It was shown that CUPID had capabilities to properly simulate the thermal mixing behavior in the case where the cold water is injected asymmetrically. As the result of calculations, it was found that the mixing efficiency in the downcomer and lower plenum was varied according to the turbulence model. In particular, the calculation results showed that the low Reynolds number turbulence model resulted in good agreement with the experimental data. The further works may involve the finer grid generation and the test of other turbulence models.

  9. Argonne Bubble Experiment Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations. The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.

  10. Electrical power system integrated thermal/electrical system simulation

    International Nuclear Information System (INIS)

    Freeman, W.E.

    1992-01-01

    This paper adds thermal properties to previously developed electrical Saber templates and incorporates these templates into a functional Electrical Power Subsystem (EPS) simulation. These combined electrical and thermal templates enable the complete and realistic simulation of a vehicle EPS on-orbit. Applications include on-orbit energy balance determinations for system load changes, initial array and battery EPS sizing for new EPS development, and array and battery technology trade studies. This effort proves the versatility of the Saber simulation program in handling varied and complex simulations accurately and in a reasonable amount of computer time. 9 refs

  11. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    Science.gov (United States)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  12. Labotratory Simulation Experiments of Cometary Plasma

    OpenAIRE

    MINAMI, S.; Baum, P. J.; Kamin, G.; White, R. S.; 南, 繁行

    1986-01-01

    Laboratory simulation experiment to study the interaction between a cometary plasma and the solar wind has been performed using the UCR-T 1 space simulation facility at the Institute of Geophysics and Planetary Physics, the University of California, Riverside. Light emitting plasma composed of Sr, Ba and/or C simulating cometary coma plasma is produced by a plasma emitter which interacts with intense plasma flow produced by a co-axial plasma gun simulating the solar wind. The purpose of this ...

  13. Computer Simulation in Problems of Thermal Strength

    Directory of Open Access Journals (Sweden)

    Olga I. Chelyapina

    2012-05-01

    Full Text Available This article discusses informative technology of using graphical programming environment LabVIEW 2009 when calculating and predicting the thermal strength of materials with an inhomogeneous structure. Algorithm for processing the experimental data was developed as part of the problem.

  14. Micromagnetic simulation of thermally activated switching in fine particles

    International Nuclear Information System (INIS)

    Scholz, Werner; Schrefl, Thomas; Fidler, J.

    2001-01-01

    Effects of thermal activation are included in micromagnetic simulations by adding a random thermal field to the effective magnetic field. As a result, the Landau-Lifshitz equation is converted into a stochastic differential equation of Langevin type with multiplicative noise. The Stratonovich interpretation of the stochastic Landau-Lifshitz equation leads to the correct thermal equilibrium properties. The proper generalization of Taylor expansions to stochastic calculus gives suitable time integration schemes. For a single rigid magnetic moment the thermal equilibrium properties are investigated. It is found, that the Heun scheme is a good compromise between numerical stability and computational complexity. Small cubic and spherical ferromagnetic particles are studied

  15. RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jie; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Carlsson, Mats, E-mail: dmd@nju.edu.cn [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)

    2017-08-20

    Ellerman bombs (EBs) are brightenings in the H α line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the H α line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the H α line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the H α line will be unrealistically strong and there are still no clear UV burst signatures.

  16. RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs

    Science.gov (United States)

    Hong, Jie; Carlsson, Mats; Ding, M. D.

    2017-08-01

    Ellerman bombs (EBs) are brightenings in the Hα line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the Hα line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the Hα line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the Hα line will be unrealistically strong and there are still no clear UV burst signatures.

  17. Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram; Zhang, Chao; Sprague, Michael A.; Pesaran, Ahmad

    2016-06-01

    Models capture the force response for single-cell and cell-string levels to within 15%-20% accuracy and predict the location for the origin of failure based on the deformation data from the experiments. At the module level, there is some discrepancy due to poor mechanical characterization of the packaging material between the cells. The thermal response (location and value of maximum temperature) agrees qualitatively with experimental data. In general, the X-plane results agree with model predictions to within 20% (pending faulty thermocouples, etc.); the Z-plane results show a bigger variability both between the models and test-results, as well as among multiple repeats of the tests. The models are able to capture the timing and sequence in voltage drop observed in the multi-cell experiments; the shapes of the current and temperature profiles need more work to better characterize propagation. The cells within packaging experience about 60% less force under identical impact test conditions, so the packaging on the test articles is robust. However, under slow-crush simulations, the maximum deformation of the cell strings with packaging is about twice that of cell strings without packaging.

  18. Strangeness by Thermal Model Simulation at RHIC

    Institute of Scientific and Technical Information of China (English)

    SHI Xing-Hua; MA Yu-Gang; CAI Xiang-Zhou; CHEN Jin-Hui; MA Guo-Liang; ZHONG Chen

    2009-01-01

    The local temperature effect on strangeness enhancement in relativistic heavy ion collisions is discussed in the framework of the thermal model in which the K+ /h+ ratio becomes smaller with increasing freeze-out temperature.Considering that most strangeness particles of final-state particles are from the kaon meson,the temperature effect may play a role in strangeness production in hot dense matter where a slightly different temperature distribution in different areas could be produced by jet energy loss.This phenomenon is predicted by thermal model calculation at RHIC energy.The Ε-/φ ratio in central Au+Au collisions at 200 GeV from the thermal model depends on the freeze-out temperature obviously when γs is different.It should be one of the reasons why strangeness enhancements of Ε and φ are different though they include two strange quarks.These results indicate that thermodynamics is an important factor for strangeness production and the strangeness enhancement phenomenon.

  19. Simulator experiments: effects of NPP operator experience on performance

    International Nuclear Information System (INIS)

    Beare, A.N.; Gray, L.H.

    1984-01-01

    During the FY83 research, a simulator experiment was conducted at the control room simulator for a GE Boiling Water Reactor (BWR) NPP. The research subjects were licensed operators undergoing requalification training and shift technical advisors (STAs). This experiment was designed to investigate the effects of senior reactor operator (SRO) experience, operating crew augmentation with an STA and practice, as a crew, upon crew and individual operator performance, in response to anticipated plant transients. Sixteen two-man crews of licensed operators were employed in a 2 x 2 factorial design. The SROs leading the crews were split into high and low experience groups on the basis of their years of experience as an SRO. One half of the high- and low-SRO experience groups were assisted by an STA. The crews responded to four simulated plant casualties. A five-variable set of content-referenced performance measures was derived from task analyses of the procedurally correct responses to the four casualties. System parameters and control manipulations were recorded by the computer controlling the simulator. Data on communications and procedure use were obtained from analysis of videotapes of the exercises. Questionnaires were used to collect subject biographical information and data on subjective workload during each simulated casualty. For four of the five performance measures, no significant differences were found between groups led by high (25 to 114 months) and low (1 to 17 months as an SRO) experience SROs. However, crews led by low experience SROs tended to have significantly shorter task performance times than crews led by high experience SROs. The presence of the STA had no significant effect on overall team performance in responding to the four simulated casualties. The FY84 experiments are a partial replication and extension of the FY83 experiment, but with PWR operators and simulator

  20. Tutorial: Determination of thermal boundary resistance by molecular dynamics simulations

    Science.gov (United States)

    Liang, Zhi; Hu, Ming

    2018-05-01

    Due to the high surface-to-volume ratio of nanostructured components in microelectronics and other advanced devices, the thermal resistance at material interfaces can strongly affect the overall thermal behavior in these devices. Therefore, the thermal boundary resistance, R, must be taken into account in the thermal analysis of nanoscale structures and devices. This article is a tutorial on the determination of R and the analysis of interfacial thermal transport via molecular dynamics (MD) simulations. In addition to reviewing the commonly used equilibrium and non-equilibrium MD models for the determination of R, we also discuss several MD simulation methods which can be used to understand interfacial thermal transport behavior. To illustrate how these MD models work for various interfaces, we will show several examples of MD simulation results on thermal transport across solid-solid, solid-liquid, and solid-gas interfaces. The advantages and drawbacks of a few other MD models such as approach-to-equilibrium MD and first-principles MD are also discussed.

  1. DNA - A Thermal Energy System Simulator

    DEFF Research Database (Denmark)

    2008-01-01

    DNA is a general energy system simulator for both steady-state and dynamic simulation. The program includes a * component model library * thermodynamic state models for fluids and solid fuels and * standard numerical solvers for differential and algebraic equation systems and is free and portable...... (open source, open use, standard FORTRAN77). DNA is text-based using whichever editor, you like best. It has been integerated with the emacs editor. This is usually available on unix-like systems. for windows we recommend the Installation instructions for windows: First install emacs and then run...... the DNA installer...

  2. Main factors of thermal fatigue failure induced by thermal striping and total simulation of thermal hydraulic and structural behaviors (research report)

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Muramatsu, Toshiharu

    1999-01-01

    At incomplete mixing area of high temperature and low temperature fluids near the surface of structures, temperature fluctuation of fluid gives thermal fatigue damage to wall structures. This phenomenon is called thermal striping, which becomes sometimes a critical problem in LMFR plants. Since thermal striping phenomenon is characterized by the complex thermohydraulic and thermomechanical coupled problem, conventional evaluation procedures require mock-up experiments. In order to replace them by simulation-base methods, the authors have developed numerical simulation codes and applied them to analyze a tee junction of the PHENIX secondary circuit due to thermal striping phenomenon, in the framework of the IAEA coordinated research program (CRP). Through this analysis, thermohydraulic and thermomechanical mechanism of thermal striping phenomenon was clarified, and main factors on structural integrity was extracted in each stage of thermal striping phenomenon. Furthermore, simulation base evaluation methods were proposed taking above factors of structural integrity into account. Finally, R and D problems were investigated for future development of design evaluation methods. (author)

  3. Adaptive implicit method for thermal compositional reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, A.; Tchelepi, H.A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Stanford Univ., Palo Alto (United States)

    2008-10-15

    As the global demand for oil increases, thermal enhanced oil recovery techniques are becoming increasingly important. Numerical reservoir simulation of thermal methods such as steam assisted gravity drainage (SAGD) is complex and requires a solution of nonlinear mass and energy conservation equations on a fine reservoir grid. The most currently used technique for solving these equations is the fully IMplicit (FIM) method which is unconditionally stable, allowing for large timesteps in simulation. However, it is computationally expensive. On the other hand, the method known as IMplicit pressure explicit saturations, temperature and compositions (IMPEST) is computationally inexpensive, but it is only conditionally stable and restricts the timestep size. To improve the balance between the timestep size and computational cost, the thermal adaptive IMplicit (TAIM) method uses stability criteria and a switching algorithm, where some simulation variables such as pressure, saturations, temperature, compositions are treated implicitly while others are treated with explicit schemes. This presentation described ongoing research on TAIM with particular reference to thermal displacement processes such as the stability criteria that dictate the maximum allowed timestep size for simulation based on the von Neumann linear stability analysis method; the switching algorithm that adapts labeling of reservoir variables as implicit or explicit as a function of space and time; and, complex physical behaviors such as heat and fluid convection, thermal conduction and compressibility. Key numerical results obtained by enhancing Stanford's General Purpose Research Simulator (GPRS) were also presented along with a list of research challenges. 14 refs., 2 tabs., 11 figs., 1 appendix.

  4. Operator training and the training simulator experience

    International Nuclear Information System (INIS)

    Mills, D.

    The author outlines the approach used by Ontario Hydro to train operators from the day they are hired as Operators-in-Training until they are Authorized Unit First Operators. He describes in detail the use of the simulator in the final year of the authorization program, drawing on experience with the Pickering NGS A simulator. Simulators, he concludes, are important aids to training but by no means all that is required to guarantee capable First Operators

  5. Global field experiments for potato simulations

    DEFF Research Database (Denmark)

    Raymundo, Rubí; Asseng, Senthold; Prasad, Rishi

    2018-01-01

    A large field potato experimental dataset has been assembled for simulation modeling. The data are from temperate, subtropical, and tropical regions across the world and include 87 experiments with 204 treatments. Treatments include nitrogen fertilizer, irrigation, atmospheric CO2 levels, tempera......A large field potato experimental dataset has been assembled for simulation modeling. The data are from temperate, subtropical, and tropical regions across the world and include 87 experiments with 204 treatments. Treatments include nitrogen fertilizer, irrigation, atmospheric CO2 levels...

  6. Power plant simulation: Experience and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Barabino, M; Durando, S [Bailey Esacontrol SpA, Genoa (Italy)

    1991-04-01

    In the recent years, a growing number of thermal power plants have been equipped with digital distributed control systems (DCS). This paper, following a brief introduction to the architecture of a DCS, points out how the simulation techniques can be integrated within a DCS, allowing either the building up of training simulators or giving the operator adequate help. The issue describes a new concept in the architecture of 'real time' training simulators developed by ENEL (Italian National Electricity Board) and Krupp Atlas Elektronik, together with Bailey Esacontrol for the Piacenza and Port Kelang (Malaysia) training centres. New developments and new architectures are considered for the integration of the control system with process simulation, aimed at global automation and optimization of industrial processes.

  7. Bridging experiments, models and simulations

    DEFF Research Database (Denmark)

    Carusi, Annamaria; Burrage, Kevin; Rodríguez, Blanca

    2012-01-01

    Computational models in physiology often integrate functional and structural information from a large range of spatiotemporal scales from the ionic to the whole organ level. Their sophistication raises both expectations and skepticism concerning how computational methods can improve our...... understanding of living organisms and also how they can reduce, replace, and refine animal experiments. A fundamental requirement to fulfill these expectations and achieve the full potential of computational physiology is a clear understanding of what models represent and how they can be validated. The present...... that contributes to defining the specific aspects of cardiac electrophysiology the MSE system targets, rather than being only an external test, and that this is driven by advances in experimental and computational methods and the combination of both....

  8. Simulator experiments: effects of NPP operator experience on performance

    International Nuclear Information System (INIS)

    Beare, A.N.; Gray, L.H.

    1985-01-01

    Experiments are being conducted on nuclear power plant (NPP) control room training simulators by the Oak Ridge National Laboratory, its subcontractor, General Physics Corporation, and participating utilities. The experiments are sponsored by the Nuclear Regulatory Commission's (NRC) Human Factors and Safeguards Branch, Division of Risk Analysis and Operations, and are a continuation of prior research using simulators, supported by field data collection, to provide a technical basis for NRC human factors regulatory issues concerned with the operational safety of nuclear power plants. During the FY83 research, a simulator experiment was conducted at the control room simulator for a GE boiling water reactor (BWR) NPP. The research subjects were licensed operators undergoing requalification training and shift technical advisors (STAs). This experiment was designed to investigate the effects of (a) senior reactor operator (SRO) experience, (b) operating crew augmentation with an STA and (c) practice, as a crew, upon crew and individual operator performance, in response to anticipated plant transients. The FY84 experiments are a partial replication and extension of the FY83 experiment, but with PWR operators and simulator. Methodology and results to date are reported

  9. Simulation of integrated beam experiment designs

    International Nuclear Information System (INIS)

    Grote, D.P.; Sharp, W.M.

    2004-01-01

    Simulation of designs of an Integrated Beam Experiment (IBX) class accelerator have been carried out. These simulations are an important tool for validating such designs. Issues such as envelope mismatch and emittance growth can be examined in a self-consistent manner, including the details of injection, accelerator transitions, long-term transport, and longitudinal compression. The simulations are three-dimensional and time-dependent, and begin at the source. They continue up through the end of the acceleration region, at which point the data is passed on to a separate simulation of the drift compression. Results are be presented

  10. COMPASS Simulation for PHEBUS FPT-3 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jun Ho; Kim, Jongtae; Park, Rae-Jun; Son, Donggun; Kim, Dong Ha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The objective of this paper is to assess the core degradation modeling in COMPASS code by simulating the PHEBUS FPT3 experiment. For the comparison purpose, the numerical simulation by using MELCOR 2.1 have also conducted for the FPT3 experiment. Consequently, COMPASS results of PHEBUS FPT3 have been compared with the experimental data and MELCOR results. For the purpose of COMPASS code validation, the numerical simulation for PHEBUS FPT3 experiment has been conducted. The temperature of the main component has been secured by using COMPASS code for a fuel, cladding, control rod and surrounding structure. And they are compared with that of experimental data as well as MELCOR simulation results. MELCOR are showing that an oxidational reaction starts a little bit earlier time and has the slightly higher value of the accumulated hydrogen mass, while COMPASS code predicts the slightly lower value of the accumulated hydrogen mass.

  11. Simulation of microtearing turbulence in national spherical torus experiment

    Energy Technology Data Exchange (ETDEWEB)

    Guttenfelder, W.; Kaye, S. M.; Bell, R. E.; Hammett, G. W.; LeBlanc, B. P.; Mikkelsen, D. R.; Ren, Y. [Princeton Plasma Physics Laboratory, Princeton New Jersey 08543 (United States); Candy, J. [General Atomics, San Diego, California 92186 (United States); Nevins, W. M.; Wang, E. [Lawrence Livermore National Laboratory, Livermore, California 04551 (United States); Zhang, J.; Crocker, N. A. [University of California Los Angeles, California 90095 (United States); Yuh, H. [Nova Photonics Inc., Princeton, New Jersey 08540 (United States)

    2012-05-15

    Thermal energy confinement times in National Spherical Torus Experiment (NSTX) dimensionless parameter scans increase with decreasing collisionality. While ion thermal transport is neoclassical, the source of anomalous electron thermal transport in these discharges remains unclear, leading to considerable uncertainty when extrapolating to future spherical tokamak (ST) devices at much lower collisionality. Linear gyrokinetic simulations find microtearing modes to be unstable in high collisionality discharges. First non-linear gyrokinetic simulations of microtearing turbulence in NSTX show they can yield experimental levels of transport. Magnetic flutter is responsible for almost all the transport ({approx}98%), perturbed field line trajectories are globally stochastic, and a test particle stochastic transport model agrees to within 25% of the simulated transport. Most significantly, microtearing transport is predicted to increase with electron collisionality, consistent with the observed NSTX confinement scaling. While this suggests microtearing modes may be the source of electron thermal transport, the predictions are also very sensitive to electron temperature gradient, indicating the scaling of the instability threshold is important. In addition, microtearing turbulence is susceptible to suppression via sheared E Multiplication-Sign B flows as experimental values of E Multiplication-Sign B shear (comparable to the linear growth rates) dramatically reduce the transport below experimental values. Refinements in numerical resolution and physics model assumptions are expected to minimize the apparent discrepancy. In cases where the predicted transport is strong, calculations suggest that a proposed polarimetry diagnostic may be sensitive to the magnetic perturbations associated with the unique structure of microtearing turbulence.

  12. Pyro shock simulation: Experience with the MIPS simulator

    Science.gov (United States)

    Dwyer, Thomas J.; Moul, David S.

    1988-01-01

    The Mechanical Impulse Pyro Shock (MIPS) Simulator at GE Astro Space Division is one version of a design that is in limited use throughout the aerospace industry, and is typically used for component shock testing at levels up to 10,000 response g's. Modifications to the force imput, table and component boundary conditions have allowed a range of test conditions to be achieved. Twelve different designs of components with weights up to 23 Kg are in the process or have completed qualification testing in the Dynamic Simulation Lab at GE in Valley Forge, Pa. A summary of the experience gained through the use of this simulator is presented as well as examples of shock experiments that can be readily simulated at the GE Astro MIPS facility.

  13. The simulation of transients in thermal plant. Part II: Applications

    International Nuclear Information System (INIS)

    Morini, G.L.; Piva, S.

    2008-01-01

    This paper deals with the simulation of the transients of thermal plant with control systems. In the companion paper forming part I of this article [G.L. Morini, S. Piva, The simulation of transients in thermal plant. Part I: Mathematical model, Applied Thermal Engineering 27 (2007) 2138-2144] it has been described how a 'thermal-library' of customised blocks can be built and used, in an intuitive way, to study the transients of any kind of thermal plant. Each component of plant such as valves, boilers, and pumps, is represented by a single block. In this paper, the 'thermal-library' approach is demonstrated by the analysis of the dynamic behaviour of a central heating plant of a typical apartment house during a sinusoidal variation of the external temperature. A comparison of the behaviour of such a plant with three way valve working either in flow rate or in temperature control, is presented and discussed. Finally, the results show the delaying effect of the thermal capacity of the building on the performance of the control system

  14. Experiment on thermal insulation and sodium deposition of shield plug

    International Nuclear Information System (INIS)

    Hashiguchi, K.; Honda, M.; Shiratori, H.; Ozaki, O.; Suzuki, M.

    1986-01-01

    A series of experiments on temperature distribution and thermal insulation characteristics was conducted using a reduced scale model of LMFBR shield plug. Observation and measurement of sodium deposition were also conducted on the model after the experiment. The effect of annulus natural convection was clarified for temperature and the thermal insulation characteristics from evaluating the result. Temperature distribution analysis was conducted successfully by combining the general purpose structural analysis program NASTRAN and vertical annulus natural convection analysis program VANAC. Moreover, significant effect was substantiated for the annulus convection barrier to increase the thermal insulation performance, narrow horizontal gap structure to prevent sodium deposition and thermal insulation plates. (author)

  15. Electro-Thermal-Mechanical Simulation Capability Final Report

    International Nuclear Information System (INIS)

    White, D

    2008-01-01

    This is the Final Report for LDRD 04-ERD-086, 'Electro-Thermal-Mechanical Simulation Capability'. The accomplishments are well documented in five peer-reviewed publications and six conference presentations and hence will not be detailed here. The purpose of this LDRD was to research and develop numerical algorithms for three-dimensional (3D) Electro-Thermal-Mechanical simulations. LLNL has long been a world leader in the area of computational mechanics, and recently several mechanics codes have become 'multiphysics' codes with the addition of fluid dynamics, heat transfer, and chemistry. However, these multiphysics codes do not incorporate the electromagnetics that is required for a coupled Electro-Thermal-Mechanical (ETM) simulation. There are numerous applications for an ETM simulation capability, such as explosively-driven magnetic flux compressors, electromagnetic launchers, inductive heating and mixing of metals, and MEMS. A robust ETM simulation capability will enable LLNL physicists and engineers to better support current DOE programs, and will prepare LLNL for some very exciting long-term DoD opportunities. We define a coupled Electro-Thermal-Mechanical (ETM) simulation as a simulation that solves, in a self-consistent manner, the equations of electromagnetics (primarily statics and diffusion), heat transfer (primarily conduction), and non-linear mechanics (elastic-plastic deformation, and contact with friction). There is no existing parallel 3D code for simulating ETM systems at LLNL or elsewhere. While there are numerous magnetohydrodynamic codes, these codes are designed for astrophysics, magnetic fusion energy, laser-plasma interaction, etc. and do not attempt to accurately model electromagnetically driven solid mechanics. This project responds to the Engineering R and D Focus Areas of Simulation and Energy Manipulation, and addresses the specific problem of Electro-Thermal-Mechanical simulation for design and analysis of energy manipulation systems

  16. Low gravity fluid-thermal experiments

    International Nuclear Information System (INIS)

    Krotiuk, W.J.; Cuta, J.M.

    1987-06-01

    Pacific Northwest Laboratory (PNL) is the lead laboratory for the thermal-hydraulic research in the US Department of Energy Multimegawatt Space Nuclear Power Program. PNL must provide the tools necessary to analyze proposed space reactor concepts, which include single- and two-phase alkali metal and gas-cooled designs. PNL has divided its activities for this task into three basic areas: computer code development, thermal-hydraulic modeling, and experimentation. The subject of this paper is the low-gravity experimental program currently underway at PNL in support of the MMW Program

  17. Effects of Anisotropic Thermal Conductivity in Magnetohydrodynamics Simulations of a Reversed-Field Pinch

    International Nuclear Information System (INIS)

    Onofri, M.; Malara, F.; Veltri, P.

    2010-01-01

    A compressible magnetohydrodynamics simulation of the reversed-field pinch is performed including anisotropic thermal conductivity. When the thermal conductivity is much larger in the direction parallel to the magnetic field than in the perpendicular direction, magnetic field lines become isothermal. As a consequence, as long as magnetic surfaces exist, a temperature distribution is observed displaying a hotter confined region, while an almost uniform temperature is produced when the magnetic field lines become chaotic. To include this effect in the numerical simulation, we use a multiple-time-scale analysis, which allows us to reproduce the effect of a large parallel thermal conductivity. The resulting temperature distribution is related to the existence of closed magnetic surfaces, as observed in experiments. The magnetic field is also affected by the presence of an anisotropic thermal conductivity.

  18. SIMULATED ANIMAL EXPERIMENTS IN TEACHING AND RESEARCH

    Directory of Open Access Journals (Sweden)

    Chirag B. Mistry, Shreya M. Shah, Jagatkumar D. Bhatt

    2015-07-01

    Full Text Available Animal experiments are of paramount importance in the pre-clinical screening of new chemical entity. On the other hand, various regulatory guidelines for animal experiments are becoming more stringent in the face of worldwide protests by animal rights activists. Moreover, simulated animal experiments’ softwares are being developed and they can be implemented in the postgraduate and graduate students’ curriculum for demonstration of standard physiological and pharmacological principles compared to real time animal experiments. In fact, implementation of virtual experiment will decrease hand on experience of animal experiments among medical students, but after medical graduation, animal experiment is lest utilized during their day to day clinical practice. Similarly, in case of postgraduate pharmacology curriculum, computer based virtual animal experiments can facilitate teaching and learning in a short span of time with various protocols, without sacrificing any animal for already established experimental outcomes.

  19. Survival of juvenile fishes receiving thermal and mechanical stresses in a simulated power plant condenser

    International Nuclear Information System (INIS)

    Kedl, R.J.; Coutant, C.C.

    Experiments were conducted in a water-recirculating loop to determine the effects of fluid-induced stresses (e.g., turbulence, pressure, and vacuum) on six species of larval fish and one species each of frog tadpoles and zooplankton. These stresses simulate the insults developed in the condenser portion, but not including the pump, of a steam power plant. Some experiments were conducted with thermal stresses superimposed on fluid-induced stresses. Fluid-induced stresses of the magnitude developed in these experiments were generally not fatal to the larval fish within the precision of the experiments, although some sublethal effects were noted. When thermal stress was superimposed on the fluid-induced stresses, the mortalities were equivalent to those resulting from thermal stress alone. Fluid-induced stresses of low magnitude were not fatal to Daphnia magna, but fluid-induced stresses of higher magnitude were responsible for significant mortalities. (U.S.)

  20. Comparing simulation of plasma turbulence with experiment

    International Nuclear Information System (INIS)

    Ross, David W.; Bravenec, Ronald V.; Dorland, William; Beer, Michael A.; Hammett, G. W.; McKee, George R.; Fonck, Raymond J.; Murakami, Masanori; Burrell, Keith H.; Jackson, Gary L.; Staebler, Gary M.

    2002-01-01

    The direct quantitative correspondence between theoretical predictions and the measured plasma fluctuations and transport is tested by performing nonlinear gyro-Landau-fluid simulations with the GRYFFIN (or ITG) code [W. Dorland and G. W. Hammett, Phys. Fluids B 5, 812 (1993); M. A. Beer and G. W. Hammett, Phys. Plasmas 3, 4046 (1996)]. In an L-mode reference discharge in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)], which has relatively large fluctuations and transport, the turbulence is dominated by ion temperature gradient (ITG) modes. Trapped electron modes and impurity drift waves also play a role. Density fluctuations are measured by beam emission spectroscopy [R. J. Fonck, P. A. Duperrex, and S. F. Paul, Rev. Sci. Instrum. 61, 3487 (1990)]. Experimental fluxes and corresponding diffusivities are analyzed by the TRANSP code [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, edited by B. Coppi, G. G. Leotta, D. Pfirsch, R. Pozzoli, and E. Sindoni (Pergamon, Oxford, 1980), Vol. 1, p. 19]. The shape of the simulated wave number spectrum is close to the measured one. The simulated ion thermal transport, corrected for ExB low shear, exceeds the experimental value by a factor of 1.5 to 2.0. The simulation overestimates the density fluctuation level by an even larger factor. On the other hand, the simulation underestimates the electron thermal transport, which may be accounted for by modes that are not accessible to the simulation or to the BES measurement

  1. Thermal simulation of quenching uranium-0.75% titanium alloy in water

    International Nuclear Information System (INIS)

    Siman-Tov, M.; Llewellyn, G.H.; Childs, K.W.; Ludtka, G.M.; Aramayo, G.A.

    1985-01-01

    A computer model, The Quench Simulator, has been developed to simulate and predict in detail the behavior of U-0.75 Ti alloy when quenched at high temperature (about 850 0 C) in cold water. The code allows one to determine the time- and space-dependent distributions of temperature, residual stress, distortion, and microstructure that evolve during the quenching process. The nonlinear temperature- and microstructure-dependent properties, as well as the cooling rate-dependent heats of transformation, are incorporated into the model. The complex boiling heat transfer with its various regimes and other thermal boundary conditions are simulated. Experiments have been performed and incorporated into the model. Both sudden submersion and gradual controlled immersion can be applied. A parametric and sensitivity study has been performed demonstrating the importance of the thermal boundary conditions applied for achieving certain product characteristics. The thermal aspects of the model and its applications are discussed and demonstrated

  2. Thermal Hydraulic Computational Fluid Dynamics Simulations and Experimental Investigation of Deformed Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Brian [AREVA Federal Services, Lynchburg, VA (United States); Jackson, R. Brian [TerraPower, Bellevue, WA (United States)

    2017-03-08

    The project, Toward a Longer Life Core: Thermal Hydraulic CFD Simulations and Experimental Investigation of Deformed Fuel Assemblies, DOE Project code DE-NE0008321, was a verification and validation project for flow and heat transfer through wire wrapped simulated liquid metal fuel assemblies that included both experiments and computational fluid dynamics simulations of those experiments. This project was a two year collaboration between AREVA, TerraPower, Argonne National Laboratory and Texas A&M University. Experiments were performed by AREVA and Texas A&M University. Numerical simulations of these experiments were performed by TerraPower and Argonne National Lab. Project management was performed by AREVA Federal Services. The first of a kind project resulted in the production of both local point temperature measurements and local flow mixing experiment data paired with numerical simulation benchmarking of the experiments. The project experiments included the largest wire-wrapped pin assembly Mass Index of Refraction (MIR) experiment in the world, the first known wire-wrapped assembly experiment with deformed duct geometries and the largest numerical simulations ever produced for wire-wrapped bundles.

  3. A simulation program for the VIRGO experiment

    International Nuclear Information System (INIS)

    Caron, B.; Dominjon, A.; Flaminio, R.; Marion, F.; Massonet, L.; Morand, R.; Mours, B.; Verkindt, D.; Yvert, M.

    1994-07-01

    Within the VIRGO experiment a simulation program is developed providing an accurate description of the interferometric antenna behaviour, taking into account all sources of noise. Besides its future use as a tool for data analysis and for the commissioning of the apparatus, the simulation helps finalizing the design of the detector. Emphasis is put at the present time on the study of the stability of optical components implied in the global feedback control system of the interferometer. (author). 5 refs., 4 figs

  4. Weldability investigation steel P 91 by weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2015-07-01

    Full Text Available This paper elaborates results of hardness and impact energy of thermal cycle simulated specimens of high-alloy steel P 91 and their dependence on cooling time from 800 to 500 °C. Results were obtained by measuring hardness HV 1 and by experimental testing of Charpy notched specimens. Metallographic analysis of samples was performed on scanning electronic microscope.

  5. Numerical simulation of thermal fracture in functionally graded

    Indian Academy of Sciences (India)

    Numerical simulation of thermal fracture in functionally graded materials using element-free ... Initially, the temperature distribution over the domain is obtained by solving the heat transfer problem. ... Department of Mechanical Engineering, National Institute of Technology, Hamirpur 177005, India ... Contact | Site index.

  6. Optical and thermal simulation chain for LED package

    NARCIS (Netherlands)

    Tapaninen, O.; Myohanen, P.; Majanen, M.; Sitomaniemi, A.; Olkkonen, J.; Hildenbrand, V.; Gielen, A.W.J.; Mackenzie, F.V.; Barink, M.; Smilauer, V.; Patzak, B.

    2016-01-01

    This paper presents a test case for coupling two physical aspects of an LED, optical and thermal, using specific simulation models coupled through an open source platform for distributed multi-physics modelling. The glue code for coupling is written with Python programming language including

  7. Simulation Application for the LHCb Experiment

    CERN Document Server

    Pokorski, Witold

    2003-01-01

    We describe the LHCb detector simulation application (Gauss) based on the Geant4 toolkit. The application is built using the Gaudi software framework, which is used for all event-processing applications in the LHCb experiment. The existence of an underlying framework allows several common basic services such as persistency, interactivity, as well as detector geometry description or particle data to be shared between simulation, reconstruction and analysis applications. The main benefits of such common services are coherence between different event-processing stages as well as reduced development effort. The interfacing to Geant4 toolkit is realized through a façade (GiGa) which minimizes the coupling to the simulation engine and provides a set of abstract interfaces for configuration and event-by-event communication. The Gauss application is composed of three main blocks, i.e. event generation, detector response simulation and digitization which reflect the different stages performed during the simulation jo...

  8. Simulation Application for the LHCb Experiment

    CERN Document Server

    Belyaev, I; Easo, S; Mato, P; Palacios, J; Pokorski, Witold; Ranjard, F; Van Tilburg, J; Charpentier, Ph.

    2003-01-01

    We describe the LHCb detector simulation application (Gauss) based on the Geant4 toolkit. The application is built using the Gaudi software framework, which is used for all event-processing applications in the LHCb experiment. The existence of an underlying framework allows several common basic services such as persistency, interactivity, as well as detector geometry description or particle data to be shared between simulation, reconstruction and analysis applications. The main benefits of such common services are coherence between different event-processing stages as well as reduced development effort. The interfacing to Geant4 toolkit is realized through a facade (GiGa) which minimizes the coupling to the simulation engine and provides a set of abstract interfaces for configuration and event-by-event communication. The Gauss application is composed of three main blocks, i.e. event generation, detector response simulation and digitization which reflect the different stages performed during the simulation job...

  9. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid; van Oort, Eric; Patzek, Tadeusz

    2018-01-01

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  10. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid

    2018-05-17

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  11. MHD simulations of coronal dark downflows considering thermal conduction

    Science.gov (United States)

    Zurbriggen, E.; Costa, A.; Esquivel, A.; Schneiter, M.; Cécere, M.

    2017-10-01

    While several scenarios have been proposed to explain supra-arcade downflows (SADs) observed descending through turbulent hot regions, none of them have systematically addressed the consideration of thermal conduction. The SADs are known to be voided cavities. Our model assumes that SADs are triggered by bursty localized reconnection events that produce non-linear waves generating the voided cavity. These subdense cavities are sustained in time because they are hotter than their surrounding medium. Due to the low density and large temperature values of the plasma we expect the thermal conduction to be an important process. Our main aim here is to study if it is possible to generate SADs in the framework of our model considering thermal conduction. We carry on 2D MHD simulations including anisotropic thermal conduction, and find that if the magnetic lines envelope the cavities, they can be isolated from the hot environment and be identified as SADs.

  12. Erosion products in disruption simulation experiments

    International Nuclear Information System (INIS)

    Safronov, V.; Arkhipov, N.; Bakhtin, V.; Barsuk, V.; Kurkin, S.; Mironova, E.; Toporkov, D.; Vasenin, S.; Zhitlukhin, A.; Arkhipov, I.; Werle, H.; Wuerz, H.

    1998-01-01

    Erosion of divertor materials under tokamak disruption event presents a serious problem of ITER technology. Erosion restricts the divertor lifetime and leads to production of redeposited layers of the material retaining large amount of tritium, which is a major safety issue for future fusion reactor. Since ITER disruptive heat loads are not achievable in existing tokamaks, material erosion is studied in special simulation experiments. Till now the simulation experiments have focused mainly on investigation of shielding effect and measurement of erosion rate. In the present work the properties of eroded and redeposited graphite are studied under condition typical for hard ITER disruption. (author)

  13. Comments on thermal runaway experiments in sub-ignition tokamaks

    International Nuclear Information System (INIS)

    Yamazaki, K.

    1982-09-01

    Justification of deuterium-tritium operations is discussed from the physics viewpoint and optimal thermal runaway experiments in high-field, high-density compact tokamaks are suggested within the minimization of the induced radioactivation. (author)

  14. Thermal transport in semicrystalline polyethylene by molecular dynamics simulation

    Science.gov (United States)

    Lu, Tingyu; Kim, Kyunghoon; Li, Xiaobo; Zhou, Jun; Chen, Gang; Liu, Jun

    2018-01-01

    Recent research has highlighted the potential to achieve high-thermal-conductivity polymers by aligning their molecular chains. Combined with other merits, such as low-cost, corrosion resistance, and light weight, such polymers are attractive for heat transfer applications. Due to their quasi-one-dimensional structural nature, the understanding on the thermal transport in those ultra-drawn semicrystalline polymer fibers or films is still lacking. In this paper, we built the ideal repeating units of semicrystalline polyethylene and studied their dependence of thermal conductivity on different crystallinity and interlamellar topology using the molecular dynamics simulations. We found that the conventional models, such as the Choy-Young's model, the series model, and Takayanagi's model, cannot accurately predict the thermal conductivity of the quasi-one-dimensional semicrystalline polyethylene. A modified Takayanagi's model was proposed to explain the dependence of thermal conductivity on the bridge number at intermediate and high crystallinity. We also analyzed the heat transfer pathways and demonstrated the substantial role of interlamellar bridges in the thermal transport in the semicrystalline polyethylene. Our work could contribute to the understanding of the structure-property relationship in semicrystalline polymers and shed some light on the development of plastic heat sinks and thermal management in flexible electronics.

  15. A study on the thermal expansion characteristics of simulated spent fuel and simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Kim, H. S.; Song, K. C.; Yang, M. S.

    2001-10-01

    Thermal expansions of simulated spent PWR fuel and simulated DUPIC fuel were studied using a dilatometer in the temperature range from 298 to 1900 K. The densities of simulated spent PWR fuel and simulated DUPIC fuel used in the measurement were 10.28 g/cm3 (95.35 % of TD) and 10.26 g/cm3 (95.14 % of TD), respectively. Their linear thermal expansions of simulated fuels are higher than that of UO2, and the difference between these fuels and UO2 increases progressively as temperature increases. However, the difference between simulated spent PWR fuel and simulated DUPIC fuel can hardly be observed. For the temperature range from 298 to 1900 K, the values of the average linear thermal expansion coefficients for simulated spent PWR fuel and simulated DUPIC fuel are 1.391 10-5 and 1.393 10-5 K-1, respectively. As temperature increases to 1900 K, the relative densities of simulated spent PWR fuel and simulated DUPIC fuel decrease to 93.81 and 93.76 % of initial densities at 298 K, respectively

  16. Engineering-Based Thermal CFD Simulations on Massive Parallel Systems

    KAUST Repository

    Frisch, Jérôme

    2015-05-22

    The development of parallel Computational Fluid Dynamics (CFD) codes is a challenging task that entails efficient parallelization concepts and strategies in order to achieve good scalability values when running those codes on modern supercomputers with several thousands to millions of cores. In this paper, we present a hierarchical data structure for massive parallel computations that supports the coupling of a Navier–Stokes-based fluid flow code with the Boussinesq approximation in order to address complex thermal scenarios for energy-related assessments. The newly designed data structure is specifically designed with the idea of interactive data exploration and visualization during runtime of the simulation code; a major shortcoming of traditional high-performance computing (HPC) simulation codes. We further show and discuss speed-up values obtained on one of Germany’s top-ranked supercomputers with up to 140,000 processes and present simulation results for different engineering-based thermal problems.

  17. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    Science.gov (United States)

    Emrich, William J. Jr.; Moran, Robert P.; Pearson, J. Boise

    2012-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities

  18. A horizontal vane radiometer: Experiment, theory, and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, David; Larraza, Andres, E-mail: larraza@nps.edu [Department of Physics, Naval Postgraduate School, Monterey, California 93940 (United States); Garcia, Alejandro [Department of Physics and Astronomy, San Jose State University, San Jose, California 95152 (United States)

    2016-03-15

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article, we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte Carlo (DSMC) method. The qualitative agreement between the three methods of investigation is good except for a dependence of the force on the width of the vane even when the temperature gradient is narrower than the vane which is present in the DSMC method results but not in the theory. The experimental results qualitatively resemble the theory in this regard. The quantitative agreement between the three methods of investigation is better than an order of magnitude in the cases examined. The theory is closer to the experimental values for narrow vanes and the simulations are closer to the experimental values for the wide vanes. We find that the thermal creep force acts from the hot side to the cold side of the vane. We also find the peak in the radiometer’s angular speed as a function of pressure is explained as much by the behavior of the drag force as by the behavior of the thermal creep force.

  19. A horizontal vane radiometer: Experiment, theory, and simulation

    International Nuclear Information System (INIS)

    Wolfe, David; Larraza, Andres; Garcia, Alejandro

    2016-01-01

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article, we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte Carlo (DSMC) method. The qualitative agreement between the three methods of investigation is good except for a dependence of the force on the width of the vane even when the temperature gradient is narrower than the vane which is present in the DSMC method results but not in the theory. The experimental results qualitatively resemble the theory in this regard. The quantitative agreement between the three methods of investigation is better than an order of magnitude in the cases examined. The theory is closer to the experimental values for narrow vanes and the simulations are closer to the experimental values for the wide vanes. We find that the thermal creep force acts from the hot side to the cold side of the vane. We also find the peak in the radiometer’s angular speed as a function of pressure is explained as much by the behavior of the drag force as by the behavior of the thermal creep force.

  20. Simulations of DT experiments in TFTR

    International Nuclear Information System (INIS)

    Budny, R.; Bell, M.G.; Biglari, H.; Bitter, M.; Bush, C.; Cheng, C.Z.; Fredrickson, E.; Grek, B.; Hill, K.W.; Hsuan, H.; Janos, A.; Jassby, D.L.; Johnson, D.; Johnson, L.C.; LeBlanc, B.; McCune, D.C.; Mikkelsen, D.R.; Park, H.; Ramsey, A.T.; Sabbagh, S.A.; Scott, S.; Schivell, J.; Strachan, J.D.; Stratton, B.C.; Synakowski, E.; Taylor, G.; Zarnstorff, M.C.; Zweben, S.J.

    1991-12-01

    A transport code (TRANSP) is used to simulate future deuterium-tritium experiments (DT) in TFTR. The simulations are derived from 14 TFTR DD discharges, and the modeling of one supershot is discussed in detail to indicate the degree of accuracy of the TRANSP modeling. Fusion energy yields and α-particle parameters are calculated, including profiles of the α slowing down time, average energy, and of the Alfven speed and frequency. Two types of simulations are discussed. The main emphasis is on the DT equivalent, where an equal mix of D and T is substituted for the D in the initial target plasma, and for the D O in the neutral-beam injection, but the other measured beam and plasma parameters are unchanged. This simulation does not assume that α heating will enhance the plasma parameters, or that confinement will increase with T. The maximum relative fusion yield calculated for these simulations is Q DT ∼ 0.3, and the maximum α contribution to the central toroidal β is β α (0) ∼ 0.5%. The stability of toroidicity-induced Alfven eigenmodes (TAE) and kinetic ballooning modes (KBM) is discussed. The TAE mode is predicted to become unstable for some of the equivalent simulations, particularly after the termination of neutral beam injection. In the second type of simulation, empirical supershot scaling relations are used to project the performance at the maximum expected beam power. The MHD stability of the simulations is discussed

  1. Thermal Fluctuations in Smooth Dissipative Particle Dynamics simulation of mesoscopic thermal systems

    Science.gov (United States)

    Gatsonis, Nikolaos; Yang, Jun

    2013-11-01

    The SDPD-DV is implemented in our work for arbitrary 3D wall bounded geometries. The particle position and momentum equations are integrated with a velocity-Verlet algorithm and the entropy equation is integrated with a Runge-Kutta algorithm. Simulations of nitrogen gas are performed to evaluate the effects of timestep and particle scale on temperature, self-diffusion coefficient and shear viscosity. The hydrodynamic fluctuations in temperature, density, pressure and velocity from the SDPD-DV simulations are evaluated and compared with theoretical predictions. Steady planar thermal Couette flows are simulated and compared with analytical solutions. Simulations cover the hydrodynamic and mesocopic regime and show thermal fluctuations and their dependence on particle size.

  2. Virtual geotechnical laboratory experiments using a simulator

    Science.gov (United States)

    Penumadu, Dayakar; Zhao, Rongda; Frost, David

    2000-04-01

    The details of a test simulator that provides a realistic environment for performing virtual laboratory experimentals in soil mechanics is presented. A computer program Geo-Sim that can be used to perform virtual experiments, and allow for real-time observations of material response is presented. The results of experiments, for a given set of input parameters, are obtained with the test simulator using well-trained artificial neural-network-based soil models for different soil types and stress paths. Multimedia capabilities are integrated in Geo-Sim, using software that links and controls a laser disc player with a real-time parallel processing ability. During the simulation of a virtual experiment, relevant portions of the video image of a previously recorded test on an actual soil specimen are dispalyed along with the graphical presentation of response from the feedforward ANN model predictions. The pilot simulator developed to date includes all aspects related to performing a triaxial test on cohesionless soil under undrained and drained conditions. The benefits of the test simulator are also presented.

  3. Electrically Driven Thermal Management: Flight Validation, Experiment Development, Future Technologies

    Science.gov (United States)

    Didion, Jeffrey R.

    2018-01-01

    Electrically Driven Thermal Management is an active research and technology development initiative incorporating ISS technology flight demonstrations (STP-H5), development of Microgravity Science Glovebox (MSG) flight experiment, and laboratory-based investigations of electrically based thermal management techniques. The program targets integrated thermal management for future generations of RF electronics and power electronic devices. This presentation reviews four program elements: i.) results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched in February 2017 ii.) development of the Electrically Driven Liquid Film Boiling Experiment iii.) two University based research efforts iv.) development of Oscillating Heat Pipe evaluation at Goddard Space Flight Center.

  4. Solar thermal power plants simulation using the TRNSYS software

    Energy Technology Data Exchange (ETDEWEB)

    Popel, O.S.; Frid, S.E.; Shpilrain, E.E. [Institute for High Temperatures, Russian Academy of Sciences (IVTAN), Moscow (Russian Federation)

    1999-03-01

    The paper describes activity directed on the TRNSYS software application for mathematical simulation of solar thermal power plants. First stage of developments has been devoted to simulation and thermodynamic analysis of the Hybrid Solar-Fuel Thermal Power Plants (HSFTPP) with gas turbine installations. Three schemes of HSFTPP, namely: Gas Turbine Regenerative Cycle, Brayton Cycle with Steam Injection and Combined Brayton-Rankine Cycle,- have been assembled and tested under the TRNSYS. For this purpose 18 new models of the schemes components (gas and steam turbines, compressor, heat-exchangers, steam generator, solar receiver, condenser, controllers, etc) have been elaborated and incorporated into the TRNSYS library of 'standard' components. The authors do expect that this initiative and received results will stimulate experts involved in the mathematical simulation of solar thermal power plants to join the described activity to contribute to acceleration of development and expansion of 'Solar Thermal Power Plants' branch of the TRNSYS. The proposed approach could provide an appropriate basis for standardization of analysis, models and assumptions for well-founded comparison of different schemes of advanced solar power plants. (authors)

  5. Global field experiments for potato simulations

    NARCIS (Netherlands)

    Raymundo, Rubi; Asseng, Senthold; Prasad, Rishi; Kleinwechter, Ulrich; Condori, Bruno; Bowen, Walter; Wolf, Joost; Olesen, Jørgen E.; Dong, Qiaoxue; Zotarelli, Lincoln; Gastelo, Manuel; Alva, Ashok; Travasso, Maria; Arora, Vijay

    2018-01-01

    A large field potato experimental data set has been assembled for simulation modeling. The data are from temperate, subtropical, and tropical regions across the world and include 87 experiments with 204 treatments. Treatments include nitrogen fertilizer, irrigation, atmospheric CO2 levels,

  6. TO THE QUESTION ABOUT THE SIMULATION OF TURBULENT THERMAL FLOWS

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The main purpose of this work was the simulation of turbulent thermal flows, which is aimed at improving the visualization and the modeling of the flow fields of wind flows, which are necessary for aviation. The physical-mathematical model of gas flow in thermal is proposed on the basis of thermodynamic model and dynamic model under the assumption that the condensation energy, when the movement of the thermal is upward, becomes the turbulent fluctuations. A thermal is an air mass, which goes up and is capable to intermix with ambient air. In the work the thermodynamic model of thermal is presented, the equations and the system of equations are derived, that describe the main characteristics of wind flow, which are required for the modeling of airflows. The generation of vertical turbulent gust with von Karman spectrum is shown. The basic assumption in the construction of the dynamic model of generation was that the energy, which is stood out in the thermal due to the condensation of steam, is converted into the energy of turbulent pulsations. Some examples of numerical simulation are given in the article. The visualizations of the generation of the vertical velocity of random wind gust are given depending on the size of the considered space and depending on the pitch of cell partition. The analysis and comparison of the obtained results of the calculation are presented. The conducted studies are aimed at the simulation of the atmospheric background and atmospheric processes and, in the final result, at the increasing of flight safety.

  7. Advances in Integrated Vehicle Thermal Management and Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-10-01

    Full Text Available With the increasing demands for vehicle dynamic performance, economy, safety and comfort, and with ever stricter laws concerning energy conservation and emissions, vehicle power systems are becoming much more complex. To pursue high efficiency and light weight in automobile design, the power system and its vehicle integrated thermal management (VITM system have attracted widespread attention as the major components of modern vehicle technology. Regarding the internal combustion engine vehicle (ICEV, its integrated thermal management (ITM mainly contains internal combustion engine (ICE cooling, turbo-charged cooling, exhaust gas recirculation (EGR cooling, lubrication cooling and air conditioning (AC or heat pump (HP. As for electric vehicles (EVs, the ITM mainly includes battery cooling/preheating, electric machines (EM cooling and AC or HP. With the rational effective and comprehensive control over the mentioned dynamic devices and thermal components, the modern VITM can realize collaborative optimization of multiple thermodynamic processes from the aspect of system integration. Furthermore, the computer-aided calculation and numerical simulation have been the significant design methods, especially for complex VITM. The 1D programming can correlate multi-thermal components and the 3D simulating can develop structuralized and modularized design. Additionally, co-simulations can virtualize simulation of various thermo-hydraulic behaviors under the vehicle transient operational conditions. This article reviews relevant researching work and current advances in the ever broadening field of modern vehicle thermal management (VTM. Based on the systematic summaries of the design methods and applications of ITM, future tasks and proposals are presented. This article aims to promote innovation of ITM, strengthen the precise control and the performance predictable ability, furthermore, to enhance the level of research and development (R&D.

  8. Adsorption thermal energy storage for cogeneration in industrial batch processes: Experiment, dynamic modeling and system analysis

    International Nuclear Information System (INIS)

    Schreiber, Heike; Graf, Stefan; Lanzerath, Franz; Bardow, André

    2015-01-01

    Adsorption thermal energy storage is investigated for heat supply with cogeneration in industrial batch processes. The feasibility of adsorption thermal energy storage is demonstrated with a lab-scale prototype. Based on these experiments, a dynamic model is developed and successfully calibrated to measurement data. Thereby, a reliable description of the dynamic behavior of the adsorption thermal energy storage unit is achieved. The model is used to study and benchmark the performance of adsorption thermal energy storage combined with cogeneration for batch process energy supply. As benchmark, we consider both a peak boiler and latent thermal energy storage based on a phase change material. Beer brewing is considered as an example of an industrial batch process. The study shows that adsorption thermal energy storage has the potential to increase energy efficiency significantly; primary energy consumption can be reduced by up to 25%. However, successful integration of adsorption thermal storage requires appropriate integration of low grade heat: Preferentially, low grade heat is available at times of discharging and in demand when charging the storage unit. Thus, adsorption thermal energy storage is most beneficial if applied to a batch process with heat demands on several temperature levels. - Highlights: • A highly efficient energy supply for industrial batch processes is presented. • Adsorption thermal energy storage (TES) is analyzed in experiment and simulation. • Adsorption TES can outperform both peak boilers and latent TES. • Performance of adsorption TES strongly depends on low grade heat temperature.

  9. Impact of cross-section generation procedures on the simulation of the VVER 1000 pump startup experiment in the OECD/DOE/CEA V1000CT benchmark by coupled 3-D thermal hydraulics/ neutron kinetics models

    International Nuclear Information System (INIS)

    Boyan D Ivanov; Kostadin N Ivanov; Sylvie Aniel; Eric Royer

    2005-01-01

    Full text of publication follows: In the framework of joint effort between the Nuclear Energy Agency (NEA) of OECD, the United States Department of Energy (US DOE), and the Commissariat a l'Energie Atomique (CEA), France a coupled 3-D thermal hydraulics/neutron kinetics benchmark was defined. The overall objective OECD/NEA V1000CT benchmark is to assess computer codes used in analysis of VVER-1000 reactivity transients where mixing phenomena (mass flow and temperature) in the reactor pressure vessel are complex. Original data from the Kozloduy-6 Nuclear Power Plant are available for the validation of computer codes: one experiment of pump start-up (V1000CT-1) and one experiment of steam generator isolation (V1000CT-2). Additional scenarios are defined for code-to-code comparison. As a 3D core model is necessary for a best-estimate computation of all the scenarios of the V1000CT benchmark, all participants were asked to develop their own core coupled 3-D thermal hydraulics/ neutron kinetics models based on the data available in the benchmark specifications. The first code to code comparisons based on the V1000CT-1 Exercise 2 specifications exhibited unacceptable discrepancies between 2 sets of results, one of them being close to experimental results. The present paper focuses first on the analysis of the observed discrepancies. The VVER 1000 3-D thermal hydraulics/neutron kinetics models are based on thermal-hydraulic and neutronic data homogenized at the assembly scale. The neutronic data, provided as part of the benchmark specifications, consist thus in a set of parametrized 2 group cross sections libraries representing the different assemblies and the reflectors. The origin of the high observed discrepancies was found to lie in the use of these neutronic libraries. The concern was then to find a way to provide neutronic data, compatible with all the benchmark participants neutronic models, that enable also comparisons with experimental results. An analysis of the

  10. Thermal Simulation of the Component Rework Profile Temperature

    OpenAIRE

    Nurminen, Janne

    2015-01-01

    The aim of this study was to clarify the possibilities and feasibility of the ther-mal simulation for the modeling of the rework process. The rework process modeling could enable an easy and fast access to the component and PWB level thermally critical effects like over and under heating of the component during the rework process. The modeling could also be used as a help of the real rework profile definition at an early phase of the electrical device development. The work includes a...

  11. Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-01-01

    Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsic mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.

  12. Simulation of sodium boiling experiments with THERMIT sodium version

    International Nuclear Information System (INIS)

    Huh, K.Y.

    1982-05-01

    Natural and forced convection experiments (SBTF and French) are simulated with the sodium version of the thermal-hydraulic computer code THERMIT. Simulation is done for the test section with the pressure-velocity boundary condition and subsequently extended to the whole loop. For the test section simulation, a steady-state and transient calculations are performed and compared with experimental data. For the loop simulation, two methods are used, a simulated 1-D loop and an actual 1-D loop. In the simulated 1-D loop analysis, the vapor density is increased by one hundred and two hundred times to avoid the code failure and the results still showed some of the important characteristics of the two-phase flow oscillation in a loop. A mathematical model is suggested for the two-phase flow oscillation. In the actual 1-D loop, only the single phase calculation was performed and turned out to be nearly the same as the simulated 1-D loop single phase results

  13. Thermal hydraulic reactor safety analyses and experiments

    International Nuclear Information System (INIS)

    Holmstroem, H.; Eerikaeinen, L.; Kervinen, T.; Kilpi, K.; Mattila, L.; Miettinen, J.; Yrjoelae, V.

    1989-04-01

    The report introduces the results of the thermal hydraulic reactor safety research performed in the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) during the years 1972-1987. Also practical applications i.e. analyses for the safety authorities and power companies are presented. The emphasis is on description of the state-of-the-art know how. The report describes VTT's most important computer codes, both those of foreign origin and those developed at VTT, and their assessment work, VTT's own experimental research, as well as international experimental projects and other forms of cooperation VTT has participated in. Appendix 8 contains a comprehensive list of the most important publications and technical reports produced. They present the content and results of the research in detail.(orig.)

  14. Thermal experiments in the ADS target model

    International Nuclear Information System (INIS)

    Efanov, A.D.; Orlov, Yu.I.; Sorokin, A.P.; Ivanov, E.F.; Bogoslovskaya, G.P.; Li, N.

    2002-01-01

    Experiments on the development of the target heat model project and method of investigation into heat exchange in target were conducted with the aim of analysis of thermomechanical and strength characteristics of device; experimental data on the temperature distribution in coolant and membrane were obtained. Obtained data demonstrate that the temperature heterogeneity of membrane and coolant are connected with the temperature distribution variability near the membrane. Peculiarities of the experiment are noted: maximal temperature of oscillations at high point of the membrane, and power bearing temperature oscillations in the range 0 - 1 Hz [ru

  15. Argonne Bubble Experiment Thermal Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-03

    This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiation. It is based on the model used to calculate temperatures and volume fractions in an annular vessel containing an aqueous solution of uranium . The experiment was repeated at several electron beam power levels, but the CFD analysis was performed only for the 12 kW irradiation, because this experiment came the closest to reaching a steady-state condition. The aim of the study is to compare results of the calculation with experimental measurements to determine the validity of the CFD model.

  16. The effects of pen partitions and thermal pig simulators on airflow in a livestock test room

    DEFF Research Database (Denmark)

    Bjerg, B.; Svidt, Kjeld; Zhang, G.

    2000-01-01

    measurements and CFD simulations showed that the introduction of pen partitions and thermal pig simulators reduced the air velocities in the occupied zone of the test room. Detailed geometric modelling of the animals might often be unnecessary for simulation of airflow in livestock rooms. This will especially......The aim of this work was to investigate the influence of pen partitions and heated simulated pigs on airflow in a slot ventilated test room and to evaluate computer fluid dynamics (CFD) as a tool to predict airflow in livestock rooms. To obtain two-dimensional flow in the occupied zone, four...... guiding plates were mounted beneath the ceiling in the test room. Experiments were carried out in three arrangements: (a) the room with guiding plates; (b) the room with guiding plates and eight heated pig simulators; and (c) the room with guiding plates, eight heated pig simulators and 0.8 m high...

  17. The thermal pressure distribution of a simulated cold neutral medium

    Energy Technology Data Exchange (ETDEWEB)

    Gazol, Adriana, E-mail: a.gazol@crya.unam.mx [Centro de Radioastronomía y Astrofísica, UNAM, A. P. 3-72, c.p. 58089 Morelia, Michoacán (Mexico)

    2014-07-01

    We numerically study the thermal pressure distribution in a gas with thermal properties similar to those of the cold neutral interstellar gas by analyzing three-dimensional hydrodynamic models in boxes with sides of 100 pc with turbulent compressible forcing at 50 pc and different Mach numbers. We find that at high pressures and for large Mach numbers, both the volume-weighted and the density-weighted distributions can be appropriately described by a log-normal distribution, whereas for small Mach numbers they are better described by a power law. Thermal pressure distributions resulting from similar simulations but with self-gravity differ only for low Mach numbers; in this case, they develop a high pressure tail.

  18. Thermal unit availability modeling in a regional simulation model

    International Nuclear Information System (INIS)

    Yamayee, Z.A.; Port, J.; Robinett, W.

    1983-01-01

    The System Analysis Model (SAM) developed under the umbrella of PNUCC's System Analysis Committee is capable of simulating the operation of a given load/resource scenario. This model employs a Monte-Carlo simulation to incorporate uncertainties. Among uncertainties modeled is thermal unit availability both for energy simulation (seasonal) and capacity simulations (hourly). This paper presents the availability modeling in the capacity and energy models. The use of regional and national data in deriving the two availability models, the interaction between the two and modifications made to the capacity model in order to reflect regional practices is presented. A sample problem is presented to show the modification process. Results for modeling a nuclear unit using NERC-GADS is presented

  19. Experiences using multigrid for geothermal simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bullivant, D.P.; O`Sullivan, M.J. [Univ. of Auckland (New Zealand); Yang, Z. [Univ. of New South Wales (Australia)

    1995-03-01

    Experiences of applying multigrid to the calculation of natural states for geothermal simulations are discussed. The modelling of natural states was chosen for this study because they can take a long time to compute and the computation is often dominated by the development of phase change boundaries that take up a small region in the simulation. For the first part of this work a modified version of TOUGH was used for 2-D vertical problems. A {open_quotes}test-bed{close_quotes} program is now being used to investigate some of the problems encountered with implementing multigrid. This is ongoing work. To date, there have been some encouraging but not startling results.

  20. Titan's organic chemistry: Results of simulation experiments

    Science.gov (United States)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  1. Simulation of Thermal Hydraulic at Supercritical Pressures with APROS

    Energy Technology Data Exchange (ETDEWEB)

    Kurki, Joona [VTT Technical Research Centre of Finland, P.O. Box 1000, FI02044 VTT (Finland)

    2008-07-01

    The proposed concepts for the fourth generation of nuclear reactors include a reactor operating with water at thermodynamically supercritical state, the Supercritical Water Reactor (SCWR). For the design and safety demonstrations of such a reactor, the possibility to accurately simulate the thermal hydraulics of the supercritical coolant is an absolute prerequisite. For this purpose, the one-dimensional two-phase thermal hydraulics solution of APROS process simulation software was developed to function at the supercritical pressure region. Software modifications included the redefinition of some parameters that have physical significance only at the subcritical pressures, improvement of the steam tables, and addition of heat transfer and friction correlations suitable for the supercritical pressure region. (author)

  2. Experience of Milled Peat Burning at Thermal Electric Power Plant

    Directory of Open Access Journals (Sweden)

    G. I. Zhikhar

    2013-01-01

    Full Text Available The paper presents extensive knowledge and practical experience on burning of milled peat in the boilers of thermal electric power plants in Belarus and Russia. The accumulated experience can be used for solution of problems pertaining to substitution of some types of fuel imported to Belarus by milled peat which is extracted at many fuel effective peat enterprises of the Republic.

  3. Specimen environments in thermal neutron scattering experiments

    International Nuclear Information System (INIS)

    Cebula, D.J.

    1980-11-01

    This report is an attempt to collect into one place outline information concerning the techniques used and basic design of sample environment apparatus employed in neutron scattering experiments. Preliminary recommendations for the specimen environment programme of the SNS are presented. The general conclusion reached is that effort should be devoted towards improving reliability and efficiency of operation of specimen environment apparatus and developing systems which are robust and easy to use, rather than achieving performance at the limits of technology. (author)

  4. Thermal properties of graphene from path-integral simulations

    Science.gov (United States)

    Herrero, Carlos P.; Ramírez, Rafael

    2018-03-01

    Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures in the range from 12 to 2000 K and zero external stress, by describing the interatomic interactions through the LCBOPII effective potential. We analyze the internal energy and specific heat and compare the results derived from the simulations with those yielded by a harmonic approximation for the vibrational modes. This approximation turns out to be rather precise up to temperatures of about 400 K. At higher temperatures, we observe an influence of the elastic energy due to the thermal expansion of the graphene sheet. Zero-point and thermal effects on the in-plane and "real" surface of graphene are discussed. The thermal expansion coefficient α of the real area is found to be positive at all temperatures, in contrast to the expansion coefficient αp of the in-plane area, which is negative at low temperatures and becomes positive for T ≳ 1000 K.

  5. Modeling and simulation of thermally actuated bilayer plates

    Science.gov (United States)

    Bartels, Sören; Bonito, Andrea; Muliana, Anastasia H.; Nochetto, Ricardo H.

    2018-02-01

    We present a mathematical model of polymer bilayers that undergo large bending deformations when actuated by non-mechanical stimuli such as thermal effects. The simple model captures a large class of nonlinear bending effects and can be discretized with standard plate elements. We devise a fully practical iterative scheme and apply it to the simulation of folding of several practically useful compliant structures comprising of thin elastic layers.

  6. Experiments on thermal conductivity in buffer materials for geologic repository

    International Nuclear Information System (INIS)

    Kanno, T.; Yano, T.; Wakamatsu, H.; Matsushima, E.

    1989-01-01

    Engineered barriers for geologic disposal for HLW are planned to consist of canister, overpack and buffer elements. One of important physical characteristics of buffer materials is determining temperature profiles within the near field in a repository. Buffer materials require high thermal conductivity to disperse radiogenic heat away to the host rock. As the buffer materials, compacted blocks of the mixture of sodium bentonite and sand have been the most promising candidate in some countries, e.g. Sweden, Switzerland and Japan. The authors have been carrying out a series of thermal dispersion experiments to evaluate thermal conductivity of bentonite/quartz sand blocks. In this study, the following two factors considered to affect thermal properties of the near field were examined: effective thermal conductivities of buffer materials, and heat transfer characteristics of the gap between overpack and buffer materials

  7. Experience with simulator training for emergency conditions

    International Nuclear Information System (INIS)

    1987-12-01

    The training of operators by the use of simulators is common to most countries with nuclear power plants. Simulator training programmes are generally well developed, but their value can be limited by the age, type, size and capability of the simulator. Within these limits, most full scope simulators have a capability of training operators for a range of design basis accidents. It is recognized that human performance under accident conditions is difficult to predict or analyse, particularly in the area of severe accidents. These are rare events and by their very nature, unpredictable. Of importance, therefore, is to investigate the training of operators for severe accident conditions, and to examine ways in which simulators may be used in this task. The International Nuclear Safety Advisory Group (INSAG) has reviewed this field and the associated elements of human behaviour. It has recommended that activities are concentrated on this area. Initially it is encouraging the following objectives: i) To train operators for accident conditions including severe accidents and to strongly encourage the development and use of simulators for this purpose; ii) To improve the man-machine interface by the use of computer aids to the operator; iii) To develop human performance requirements for plant operating staff. As part of this work, the IAEA convened a technical committee on 15-19 September 1986 to review the experience with simulator training for emergency conditions, to review simulator modelling for severe accident training, to examine the role of human cognitive behaviour modelling, and to review guidance on accident scenarios. A substantial deviation may be a major fuel failure, a Loss of Coolant Accident (LOCA), etc. Examples of engineered safety features are: an Emergency Core Cooling System (ECCS), and Containment Systems. This report was prepared by the participants during the meeting and reviewed further in a Consultant's Meeting. It also includes papers which were

  8. Nursing Student Perceptions Regarding Simulation Experience Sequencing.

    Science.gov (United States)

    Woda, Aimee A; Gruenke, Theresa; Alt-Gehrman, Penny; Hansen, Jamie

    2016-09-01

    The use of simulated learning experiences (SLEs) have increased within nursing curricula with positive learning outcomes for nursing students. The purpose of this study is to explore nursing students' perceptions of their clinical decision making (CDM) related to the block sequencing of different patient care experiences, SLEs versus hospital-based learning experiences (HLEs). A qualitative descriptive design used open-ended survey questions to generate information about the block sequencing of SLEs and its impact on nursing students' perceived CDM. Three themes emerged from the data: Preexperience Anxiety, Real-Time Decision Making, and Increased Patient Care Experiences. Nursing students identified that having SLEs prior to HLEs provided several benefits. Even when students preferred SLEs prior to HLEs, the sequence did not impact their CDM. This suggests that alternating block sequencing can be used without impacting the students' perceptions of their ability to make decisions. [J Nurs Educ. 2016;55(9):528-532.]. Copyright 2016, SLACK Incorporated.

  9. thermal characteristics of a simulated non-radioactive agricultural waste

    International Nuclear Information System (INIS)

    Ahmed, A.Z.; Soliman, H.M.; Abdelmoniem, M.

    2004-01-01

    characterization of thermal degradation of a mixture of a simulated non radioactive contaminated almond shell and cotton straw is important to check possibility of its safe treatment by pyrolysis. thermal analysis of the mixture was carried out using thermal gravimetric analysis (TGA) under inert atmosphere. thermal degradation of almond shell and cotton straw mixture takes place in two stages namely, volatilization stage and decarbonization stage. kinetics of the thermal degradation was studied to determine the reaction rate, activation energy, entropy change, enthalpy change and free energy for both stages. during pyrolysis, 5.8% water Vapor, 46.4% condensed gases, 29.2% condensed gases, and 18.6% pyrolysis coke residue by weight were obtained . analysis of pyrolysis condensed gases showed that it contained 24.2% N 2 ,7.1% CO, 14% H 2 and 17.3 CO 2 by weight. in addition, results revealed that the heavy elements are concentrated in the coke residue. it was found that the rate constant of the reacion increases by the increase in the temperature for both sages. more above, results revealed that the activation energy for volatilization stage is higher than decarbonization stage

  10. Guiding Simulations and Experiments using Continuation

    DEFF Research Database (Denmark)

    When applying continuation of periodic solutions to high-dimensional finite element models one might face a dilemma. The mesh resolution and thus the dimension N of the model are typically chosen such that a given computer system can store the information necessary to perform one integration step...... for dimension N, but not for larger dimensions. In other words, a model is usually implemented as a carefully derived implicit integration scheme tailored for numerically stable simulations with the highest spacial resolution admitted by the computational power available. On the other hand, stable numerical...... developed method of control based continuation allows the continuation of periodic solutions without a reduction of the model resolution, and even directly in physical experiments. Moreover, both a simulation as well as an experiment can run asynchronously from the actual continuation method, which...

  11. Preliminary experiments on wastes degradation by thermal plasma

    International Nuclear Information System (INIS)

    Cota S, G.; Pacheco S, J.; Segovia R, A.; Pena E, R.; Merlo S, L.

    1996-01-01

    This work presents the fundamental aspects involved in the installation and start up of an experimental equipment for the hazardous wastes degradation using the thermal plasma technology. It is mentioned about the form in which the thermal plasma is generated and the characteristics that its make to be an appropriate technology for the hazardous wastes degradation. Just as the installed structures for to realize the experiments and results of the first studies on degradation, using nylon as problem sample. (Author)

  12. SEFLEX - fuel rod simulator effects in flooding experiments. Pt. 2

    International Nuclear Information System (INIS)

    Ihle, P.; Rust, K.

    1986-03-01

    This report presents typical data and a limited heat transfer analysis from unblocked bundle reflood tests of an experimental thermal-hydraulic program. Full-length bundles of 5 x 5 fuel rod simulators having a gas-filled gap between the Zy cladding and the alumina pellets were tested in the test rig designed for the earlier Flooding Experiments with Blocked Arrays (FEBA-program). The 5 x 5 FEBA rod bundle tests were performed with gapless heater rods. These rods have a close thermal contact between the stainless steel cladding and the electric insulation material. A comparison of the SEFLEX data with the reference data of FEBA obtained under identical initial and reflood conditions shows the influence of different fuel rod simulators on the thermal-hydraulic behavior during forced feed bottom reflooding of unblocked and blocked arrays. Compared to bundles of gapless rods, bundles of rods with Zy claddings and a gas filled gap between claddings and pellets, which more closely represent the features that exist in an actual fuel rod geometry, produced higher quench front velocities, enhanced removal of stored heat in the rods, reduced peak cladding temperatures, increased grid spacer effects and absolutely unproblematic coolability of 90 percent blockages with bypass. The data offer the opportunity for further validation of computer codes to make realistic predictions of safety margins during a LOCA in a PWR. (orig./HP) [de

  13. SEFLEX fuel rod simulator effects in flooding experiments. Pt. 3

    International Nuclear Information System (INIS)

    Ihle, P.; Rust, K.

    1986-03-01

    This report presents typical data and a limited heat transfer analysis from blocked bundle reflood tests of an experimental thermal-hydraulic program. Full-length bundles of 5x5 fuel rod simulators having a gas-filled gap between the Zy cladding and the alumina pellets were tested in the test rig designed for the earlier Flooding Experiments with Blocked Arrays (FEBA-program). The 5x5 FEBA rod bundle tests were performed with gapless heater rods. These rods have a close thermal contact between the stainless steel cladding and the electric insulation material. A comparison of the SEFLEX data with the reference data of FEBA obtained under identical initial and reflood conditions shows the influence of different fuel rod simulators on the thermal-hydraulic behavior during forced feed bottom reflooding of unblocked and blocked arrays. Compared to bundles of gapless rods, bundles of rods with Zy claddings and a gas filled gap between claddings and pellets, which more closely represent the features that exist in an actual fuel rod geometry, produced higher quench front velocities, enhanced removal of stored heat in the rods, reduced peak cladding temperatures, increased grid spacer effects and absolutely unproblematic coolability of 90 percent blockages with bypass. The data offer the opportunity for further validation of computer codes to make realistic predictions of safety margins during a LOCA in a PWR. (orig./HP) [de

  14. Experiments and Numerical Simulations of Electrodynamic Tether

    Science.gov (United States)

    Iki, Kentaro; Kawamoto, Satomi; Takahashi, Ayaka; Ishimoto, Tomori; Yanagida, Atsushi; Toda, Susumu

    As an effective means of suppressing space debris growth, the Aerospace Research and Development Directorate of the Japan Aerospace Exploration Agency (JAXA) has been investigating an active space debris removal system that employs highly efficient electrodynamic tether (EDT) technology for orbital transfer. This study investigates tether deployment dynamics by means of on-ground experiments and numerical simulations of an electrodynamic tether system. Some key parameters used in the numerical simulations, such as the elastic modulus and damping ratio of the tether, the spring constant of the coiling of the tether, and deployment friction, must be estimated, and various experiments are conducted to determine these values. As a result, the following values were obtained: The elastic modulus of the tether was 40 GPa, and the damping ratio of the tether was 0.02. The spring constant and the damping ratio of the tether coiling were 10-4 N/m and 0.025 respectively. The deployment friction was 0.038ν + 0.005 N. In numerical simulations using a multiple mass tether model, tethers with lengths of several kilometers are deployed and the attitude dynamics of satellites attached to the end of the tether and tether libration are calculated. As a result, the simulations confirmed successful deployment of the tether with a length of 500 m using the electrodynamic tether system.

  15. Numerical simulation of hypersonic flight experiment vehicle

    OpenAIRE

    Yamamoto, Yukimitsu; Yoshioka, Minako; 山本 行光; 吉岡 美菜子

    1994-01-01

    Hypersonic aerodynamic characteristics of Hypersonic FLight EXperiment (HYFLEX vehicle were investigated by numerical simulations using Navier-Stokes CFD (Computational Fluid Dynamics) code of NAL. Numerical results were compared with experimental data obtained at Hypersonic Wind Tunnel at NAL. In order to investigate real flight aerodynamic characteristics. numerical calculations corresponding to the flight conditions suffering from maximum aero thermodynamic heating were also made and the d...

  16. Thermal Field Analysis and Simulation of an Infrared Belt Furnace Used for Solar Cells

    Directory of Open Access Journals (Sweden)

    Bai Lu

    2014-01-01

    Full Text Available During solar cell firing, volatile organic compounds (VOC and a small number of metal particles were removed using the gas flow. When the gas flow was disturbed by the thermal field of infrared belt furnace and structure, the metal particles in the discharging gas flow randomly adhered to the surface of solar cell, possibly causing contamination. Meanwhile, the gas flow also affected the thermal uniformity of the solar cell. In this paper, the heating mechanism of the solar cell caused by radiation, convection, and conduction during firing was analyzed. Afterward, four 2-dimensional (2D models of the furnace were proposed. The transient thermal fields with different gas inlets, outlets, and internal structures were simulated. The thermal fields and the temperature of the solar cell could remain stable and uniform when the gas outlets were installed at the ends and in the middle of the furnace, with the gas inlets being distributed evenly. To verify the results, we produced four types of furnaces according to the four simulated results. The experimental results indicated that the thermal distribution of the furnace and the characteristics of the solar cells were consistent with the simulation. These experiments improved the efficiency of the solar cells while optimizing the solar cell manufacturing equipment.

  17. Simulations and Experiments in Astronomy and Physics

    Science.gov (United States)

    Maloney, F. P.; Maurone, P. A.; Dewarf, L. E.

    1998-12-01

    There are new approaches to teaching astronomy and physics in the laboratory setting, involving the use of computers as tools to simulate events and concepts which can be illuminated in no other reasonable way. With the computer, it is possible to travel back in time to replicate the sky as Galileo saw it. Astronomical phenomena which reveal themselves only after centuries of real time may be compressed in the computer to a simulation of several minutes. Observations simulated on the computer do not suffer from the vagaries of weather, fixed time or geographic position, or non-repeatability. In physics, the computer allows us to secure data for experiments which, by their nature, may not be amenable to human interaction. These could include experiments with very fast or very slow timescales, large number of data samples, complex or tedious manipulation of the data which hides the fundamental nature of the experiment, or data sampling which would need a specialized probe, such as for acid rain. This innovation has become possible only recently, due to the availability and affordability of sophisticated computer hardware and software. We have developed a laboratory experience for non-scientists who need an introductory course in astronomy or physics. Our approach makes extensive use of computers in this laboratory. Using commercially available software, the students use the computer as a time machine and a space craft to explore and rediscover fundamental science. The physics experiments are classical in nature, and the computer acts as a data collector and presenter, freeing the student from the tedium of repetitive data gathering and replotting. In this way, the student is encouraged to explore, to try new things, to refine the measurements, and to discover the principles underlying the observed phenomena.

  18. Minerve: thermal-hydraulic phenomena simulation and virtual reality

    International Nuclear Information System (INIS)

    Laffont, A.; Pentori, B.

    2003-01-01

    MINERVE is a 3D interactive application representing the thermal-hydraulic phenomena happening in a nuclear plant. Therefore, the 3D geometric model of the French 900 MW PWR installations has been built. The users can interact in real time with this model to see at each step of the simulation what happens in the pipes. The thermal-hydraulic simulation is made by CATHARE-2, which calculates at every time step data on about one thousand meshes (the whole primary circuit, a part of the second circuit, and the Residual Heat Removal System). The simulation covers incidental and accidental cases on these systems. There are two main innovations in MINERVE: In the domain of nuclear plant's visualization, it is to introduce interactive 3D software mechanisms to visualize results of a physical simulation. In the domain of real-time 3D, it is to visualize fluids in a pipe, while they can have several configurations, like bubbles or single liquid phase. These mechanisms enable better comprehension and better visual representation of the possible phenomena. This paper describes the functionalities of MINERVE, and the difficulties to represent fluids with several characteristics like speed, configuration,..., in 3D. On the end, we talk about the future of MINERVE, and more widely of the possible futures of such an application in scientific visualization. (authors)

  19. Minerve: thermal-hydraulic phenomena simulation and virtual reality

    Energy Technology Data Exchange (ETDEWEB)

    Laffont, A.; Pentori, B. [EDF R and D, EDF SEPTEN Electricity of France - Research and Development, Department SINETICS, 92 - Clamart (France)

    2003-07-01

    MINERVE is a 3D interactive application representing the thermal-hydraulic phenomena happening in a nuclear plant. Therefore, the 3D geometric model of the French 900 MW PWR installations has been built. The users can interact in real time with this model to see at each step of the simulation what happens in the pipes. The thermal-hydraulic simulation is made by CATHARE-2, which calculates at every time step data on about one thousand meshes (the whole primary circuit, a part of the second circuit, and the Residual Heat Removal System). The simulation covers incidental and accidental cases on these systems. There are two main innovations in MINERVE: In the domain of nuclear plant's visualization, it is to introduce interactive 3D software mechanisms to visualize results of a physical simulation. In the domain of real-time 3D, it is to visualize fluids in a pipe, while they can have several configurations, like bubbles or single liquid phase. These mechanisms enable better comprehension and better visual representation of the possible phenomena. This paper describes the functionalities of MINERVE, and the difficulties to represent fluids with several characteristics like speed, configuration,..., in 3D. On the end, we talk about the future of MINERVE, and more widely of the possible futures of such an application in scientific visualization. (authors)

  20. Transport simulations of ohmic ignition experiment: IGNITEX

    International Nuclear Information System (INIS)

    Uckan, N.A.; Howe, H.C.

    1987-01-01

    The IGNITEX device, proposed by Rosenbluth et al., is a compact, super-high-field, high-current, copper-coil tokamak envisioned to reach ignition with ohmic (OH) heating alone. Several simulations of IGNITEX were made with a 0-D global model and with the 1-D PROCTR transport code. It is shown that OH ignition is a sensitive function of the assumptions about density profile, wall reflectivity of synchrotron radiation, impurity radiation, plasma edge conditions, and additional anomalous losses. In IGNITEX, OH ignition is accessible with nearly all scalings based on favorable OH confinement (such as neo-Alcator). Also, OH ignition appears to be accessible for most (not all) L-mode scalings (such as Kaye-Goldston), provided that the density profile is not too broad (parabolic or more peaked profiles are needed), Z/sub eff/ is not too large (≤2), and anomalous radiation and alpha losses and/or other enhanced transport losses (/eta//sub i/ modes, edge convective energy losses, etc.) are not present. In IGNITEX, because the figure-of-merit parameters (aB 0 2 /q* /approximately/ IB 0 , etc.) are large, ignition can be accessed (either with OH heating alone or with the aid of a small amount of auxiliary power) at relatively low beta, far from stability limits. Once the plasma is ignited, thermal runaway is prevented naturally by a combination of increased synchrotron radiation, burnout of the fuel in the plasma core and replacement by thermal alphas, and the reduction in the thermal plasma confinement assumed in L-mode-like scalings. 12 refs., 5 figs., 1 tab

  1. Transport simulations of ohmic ignition experiment: IGNITEX

    International Nuclear Information System (INIS)

    Uckan, N.A.; Howe, H.C.

    1987-12-01

    The IGNITEX device, proposed by Rosenbluth et al., is a compact, super-high-field, high-current, copper-coil tokamak envisioned to reach ignition with ohmic (OH) heating alone. Several simulations of IGNITEX were made with a 0-D global model and with the 1-D PROCTR transport code. It is shown that OH ignition is a sensitive function of the assumptions about density profile, wall reflectivity of synchrotron radiation, impurity radiation, plasma edge conditions, and additional anomalous losses. In IGNITEX, OH ignition is accessible with nearly all scalings based on favorable OH confinement (such as neo-Alcator). Also, OH ignition appears to be accessible for most (not all) L-mode scalings (such as Kaye-Goldston), provided that the density profile is not too broad (parabolic or more peaked profiles are needed), Z/sub eff/ is not too large, and anomalous radiation and alpha losses and/or other enhanced transport losses (eta/sub i/ modes, edge convective energy losses, etc.) are not present. In IGNITEX, because the figure-of-merit parameters are large, ignition can be accessed (either with OH heating alone or with the aid of a small amount of auxiliary power) at relatively low beta, far from stability limits. Once the plasma is ignited, thermal runaway is prevented naturally by a combination of increased synchrotron radiation, burnout of the fuel in the plasma core and replacement by thermal alphas, and the reduction in the thermal plasma confinement assumed in L-mode-like scalings. 12 refs., 5 figs., 1 tab

  2. Thermal responses in underground experiments in a dome salt formation

    International Nuclear Information System (INIS)

    Llewellyn, G.H.

    1977-01-01

    To provide design information for a radwaste repository in dome salt, in-situ experiments with nonradioactive heat sources are planned. Three such experiments using electrical heat sources are scheduled to be carried out in a salt dome. The purpose of these experiments is to acquire rock mechanics data to ascertain the structural deformation due to the thermal load imposed, to study brine migration and corrosion, and to provide thermal data. A data acquisition system is provided with these experiments to monitor temperatues, heat fluxes, stresses, and ground displacement. A thermal analysis was made on models of each of these experiments. The objective of the analysis is to verify the capability of making accurate transient temperature predictions by the use of computer modeling techniques. Another purpose is to measure in-situ thermal conductivity and compare the results with measurements taken from core samples. The HEATING5 computer program was used to predict transient temperatures around the experiments for periods up to 2 years using two-dimensional and three-dimensional heat transfer models. The results of analysis are presented with the associated boundary conditions used in the individual models

  3. Occupant evaluation of 7-hour exposures in a simulated aircraft cabin - Part 2: Thermal effects

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Wyon, David Peter; Zukowska, Daria

    2005-01-01

    Experiments were carried out in a simulated section of an aircraft cabin with 21 seats installed in a climate chamber, to determine the extent to which passengers’ perception of cabin air quality is affected by air temperature. The temperature inside the cabin was set at three differ-ent levels, 20......, and thermal sensation - the lower the temperature, the higher the perceived air quality and freshness....

  4. Simulation, optimization and control of a thermal cracking furnace

    International Nuclear Information System (INIS)

    Masoumi, M.E.; Sadrameli, S.M.; Towfighi, J.; Niaei, A.

    2006-01-01

    The ethylene production process is one of the most important aspect of a petrochemical plant and the cracking furnace is the heart of the process. Since, ethylene is one of the raw materials in the chemical industry and the market situation of not only the feed and the product, but also the utility is rapidly changing, the optimal operation and control of the plant is important. A mathematical model, which describes the static and dynamic operations of a pilot plant furnace, was developed. The static simulation was used to predict the steady-state profiles of temperature, pressure and products yield. The dynamic simulation of the process was used to predict the transient behavior of thermal cracking reactor. Using a dynamic programming technique, an optimal temperature profile was developed along the reactor. Performances of temperature control loop were tested for different controller parameters and disturbances. The results of the simulation were tested experimentally in a computer control pilot plant

  5. MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance

    Science.gov (United States)

    Nasir, Farah H. M.; Husaini, Yusnira

    2018-03-01

    The efficiency of the photovoltaic reduces when the photovoltaic cell temperature increased due to solar irradiance. One solution is come up with the cooling system photovoltaic system. This combination is forming the photovoltaic-thermal (PV/T) system. Not only will it generate electricity also heat at the same time. The aim of this research is to focus on the modeling and simulation of photovoltaic (PV) and photovoltaic-thermal (PV/T) electrical performance by using single-diode equivalent circuit model. Both PV and PV/T models are developed in Matlab/Simulink. By providing the cooling system in PV/T, the efficiency of the system can be increased by decreasing the PV cell temperature. The maximum thermal, electrical and total efficiency values of PV/T in the present research are 35.18%, 15.56% and 50.74% at solar irradiance of 400 W/m2, mass flow rate of 0.05kgs-1 and inlet temperature of 25 °C respectively has been obtained. The photovoltaic-thermal shows that the higher efficiency performance compared to the photovoltaic system.

  6. Simulation and test of the thermal behavior of pressure switch

    Science.gov (United States)

    Liu, Yifang; Chen, Daner; Zhang, Yao; Dai, Tingting

    2018-04-01

    Little, lightweight, low-power microelectromechanical system (MEMS) pressure switches offer a good development prospect for small, ultra-long, simple atmosphere environments. In order to realize MEMS pressure switch, it is necessary to solve one of the key technologies such as thermal robust optimization. The finite element simulation software is used to analyze the thermal behavior of the pressure switch and the deformation law of the pressure switch film under different temperature. The thermal stress releasing schemes are studied by changing the structure of fixed form and changing the thickness of the substrate, respectively. Finally, the design of the glass substrate thickness of 2.5 mm is used to ensure that the maximum equivalent stress is reduced to a quarter of the original value, only 154 MPa when the structure is in extreme temperature (80∘C). The test results show that after the pressure switch is thermally optimized, the upper and lower electrodes can be reliably contacted to accommodate different operating temperature environments.

  7. Thermal System Upgrade of the Space Environment Simulation Test Chamber

    Science.gov (United States)

    Desai, Ashok B.

    1997-01-01

    The paper deals with the refurbishing and upgrade of the thermal system for the existing thermal vacuum test facility, the Space Environment Simulator, at NASA's Goddard Space Flight Center. The chamber is the largest such facility at the center. This upgrade is the third phase of the long range upgrade of the chamber that has been underway for last few years. The first phase dealt with its vacuum system, the second phase involved the GHe subsystem. The paper describes the considerations of design philosophy options for the thermal system; approaches taken and methodology applied, in the evaluation of the remaining "life" in the chamber shrouds and related equipment by conducting special tests and studies; feasibility and extent of automation, using computer interfaces and Programmable Logic Controllers in the control system and finally, matching the old components to the new ones into an integrated, highly reliable and cost effective thermal system for the facility. This is a multi-year project just started and the paper deals mainly with the plans and approaches to implement the project successfully within schedule and costs.

  8. Monte Carlo simulations of the pulsed thermal neutron flux in two-region hydrogenous systems (using standard MCNP data libraries)

    International Nuclear Information System (INIS)

    Wiacek, U.; Krynicka, E.

    2005-02-01

    Monte Carlo simulations of the pulsed neutron experiment in two- region systems (two concentric spheres and two coaxial finite cylinders) are presented. The MCNP code is used. Aqueous solutions of H 3 BO 3 or KCl are used in the inner region. The outer region is the moderator of Plexiglas. Standard data libraries of the thermal neutron scattering cross-sections of hydrogen in hydrogenous substances are used. The time-dependent thermal neutron transport is simulated when the inner region has a constant size and the external size of the surrounding outer region is variable. The time decay constant of the thermal neutron flux in the system is found in each simulation. The results of the simulations are compared with results of real pulsed neutron experiments on the corresponding systems. (author)

  9. Recent results from TMX-U thermal barrier experiments

    International Nuclear Information System (INIS)

    Molvik, A.W.; Allen, S.; Barter, J.

    1984-01-01

    The Tandem Mirror Experiment-Upgrade (TMX-U) device was designed to study plasma confinement in a tandem mirror with thermal barriers. Previously the author reported improved axial confinement with high end-plug potentials, consistent with thermal barrier operation. Now, the existence of thermal barriers in TMX-U confirmed by measuring the axial potential profile. Specifically, measured the change in energy of a 5-keV deuterium neutral beam that is injected nearly parallel to the axis and is ionized between the barrier and the central cell. The authors found that the barrier potential is lower than the central cell potential, as required for a thermal barrier. The peak potential is at least 2.4 keV, as determined from the minimum energy of end loss ions. In addition, radial transport is reduced by the use of floating and electrodes that map to concentric cylinders in the central cell. Sloshing ions continue to be microstable

  10. THERMAL EVALUATION OF ALTERNATE SHIPPING CASK FOR GTRI EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2014-06-01

    The Global Threat Reduction Initiative (GTRI) has many experiments yet to be irradiated in support of the High Performance Research Reactor fuels development program. Most of the experiments will be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL), then later shipped to the Hot Fuel Examination Facility (HFEF) located at the Materials and Fuels Complex for post irradiation examination. To date, the General Electric (GE)-2000 cask has been used to transport GTRI experiments between these facilities. However, the availability of the GE-2000 cask to support future GTRI experiments is at risk. In addition, the internal cavity of the GE-2000 cask is too short to accommodate shipping the larger GTRI experiments. Therefore, an alternate shipping capability is being pursued. The Battelle Energy Alliance, LLC, Research Reactor (BRR) cask has been determined to be the best alternative to the GE-2000 cask. An evaluation of the thermal performance of the BRR cask is necessary before proceeding with fabrication of the newly designed cask hardware and the development of handling, shipping, and transport procedures. This paper presents the results of the thermal evaluation of the BRR cask loaded with a representative set of fueled and non-fueled experiments. When analyzed with identical payloads, experiment temperatures were found to be lower with the BRR cask than with the GE-2000 cask. From a thermal standpoint, the BRR cask was found to be a suitable alternate to the GE-2000 cask.

  11. Simulation of the Phebus FPT1 experiment

    International Nuclear Information System (INIS)

    Amador G, R.; Nunez C, A.; Angel M, E. Del

    2003-01-01

    The present work describes the pattern of the denominated installation Phebus developed and used by the National Commission of Nuclear Security and Safeguards for their participation in the International Standard Problem ISP-46, organized by the Nuclear Energy Agency (NEA). The exercise consisted on the simulation of the denominated experiment Phebus FPT1 carried out in the experimental installation Phebus located in the Institut de Protection et de Surete Nucleaire of France. The experiment Phebus FP1 had as objective to evaluate the capacity of different computer codes to model in integral form the physical processes that are carried out during a severe accident in a pressurized water reactor (PWR), from the degradation of the core until the late stage with the formation of a pool of fused material, hydrogen production, liberation and transport of fission products, phenomena in the contention and chemistry of the iodine. The CNSNS uses the version bi of the SCDAPSIM code developed by the company Innovative Software Systems to simulate the International Standard Problem 46. The obtained results showed that the code is able to predict the thermohydraulic part of the experiment, however the same thing doesn't happen to the parameters related with the one fused of the fuel. (Author)

  12. A second simulated criticality accident dosimetry experiment

    CERN Document Server

    Adams, N

    1973-01-01

    This experiment was undertaken to facilitate training in criticality dose assessment by UKAEA and BNFL establishments with potential criticality hazards. Personal dosemeters, coins, samples of hair, etc. supplied by the seven participating establishments were attached to a man-phantom filled with a solution of sodium nitrate (simulating 'body-sodium'), and exposed to a burst of radiation from the AWRE pulsed reactor VIPER. The neutron and photon doses were each several hundred rads. Participants made two sets of dose assessments. The first, made solely from the evidence of their routine dosemeters the activation of body-sodium and standard monitoring data, simulated the initial dose assessment that would be made before the circumstances of a real incident were established. The second was made when the position and orientation of the phantom relative to the reactor and the shielding (20 cm of copper) between the reactor core and the phantom were disclosed. Neutron and photon dose assessments for comparison wit...

  13. Simulation of electron thermal transport in H-mode discharges

    International Nuclear Information System (INIS)

    Rafiq, T.; Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Halpern, F. D.

    2009-01-01

    Electron thermal transport in DIII-D H-mode tokamak plasmas [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is investigated by comparing predictive simulation results for the evolution of electron temperature profiles with experimental data. The comparison includes the entire profile from the magnetic axis to the bottom of the pedestal. In the simulations, carried out using the automated system for transport analysis (ASTRA) integrated modeling code, different combinations of electron thermal transport models are considered. The combinations include models for electron temperature gradient (ETG) anomalous transport and trapped electron mode (TEM) anomalous transport, as well as a model for paleoclassical transport [J. D. Callen, Nucl. Fusion 45, 1120 (2005)]. It is found that the electromagnetic limit of the Horton ETG model [W. Horton et al., Phys. Fluids 31, 2971 (1988)] provides an important contribution near the magnetic axis, which is a region where the ETG mode in the GLF23 model [R. E. Waltz et al., Phys. Plasmas 4, 2482 (1997)] is below threshold. In simulations of DIII-D discharges, the observed shape of the H-mode edge pedestal is produced when transport associated with the TEM component of the GLF23 model is suppressed and transport given by the paleoclassical model is included. In a study involving 15 DIII-D H-mode discharges, it is found that with a particular combination of electron thermal transport models, the average rms deviation of the predicted electron temperature profile from the experimental profile is reduced to 9% and the offset to -4%.

  14. Simulation experiments and solar wind sputtering

    International Nuclear Information System (INIS)

    Griffith, J.E.; Papanastassiou, D.A.; Russell, W.A.; Tombrello, T.A.; Weller, R.A.

    1978-01-01

    In order to isolate the role played by solar wind sputtering from other lunar surface phenomena a number of simulation experiments were performed, including isotope abundance measurements of Ca sputtered from terrestrial fluorite and plagioclase by 50-keV and 130-keV 14 N beams, measurement of the energy distribution of U atoms sputtered with 80-keV 40 Ar, and measurement of the fraction of sputtered U atoms which stick on the surfaces used to collect these atoms. 10 references

  15. Learning in innovation networks: Some simulation experiments

    Science.gov (United States)

    Gilbert, Nigel; Ahrweiler, Petra; Pyka, Andreas

    2007-05-01

    According to the organizational learning literature, the greatest competitive advantage a firm has is its ability to learn. In this paper, a framework for modeling learning competence in firms is presented to improve the understanding of managing innovation. Firms with different knowledge stocks attempt to improve their economic performance by engaging in radical or incremental innovation activities and through partnerships and networking with other firms. In trying to vary and/or to stabilize their knowledge stocks by organizational learning, they attempt to adapt to environmental requirements while the market strongly selects on the results. The simulation experiments show the impact of different learning activities, underlining the importance of innovation and learning.

  16. Pressurized-thermal-shock experiments with thick vessels

    International Nuclear Information System (INIS)

    Bryan, R.H.; Nanstad, R.K.; Merkle, J.G.; Robinson, G.C.; Whitman, G.D.

    1986-01-01

    Information is provided on the series of pressurized-thermal-shock experiments at the Oak Ridge National Laboratory, motivated by a concern for the behavior of flaws in reactor pressure vessels having welds or shells exhibiting low upper-shelf Charpy impact energies, approx. 68J or less

  17. TMAP-7 simulation of D2 thermal release data from Be co-deposited layers

    International Nuclear Information System (INIS)

    Baldwin, M.J.; Schwarz-Selinger, T.; Yu, J.H.; Doerner, R.P.

    2013-01-01

    The efficacy of (1) bake-out at 513 K and 623 K, and (2) thermal transient (10 ms) loading to up to 1000 K, is explored for reducing D inventory in 1 μm thick Be–D (D/Be ∼0.1) co-deposited layers formed at 323 K for experiment (1) and ∼500 K for experiment (2). D release data from co-deposits are obtained by thermal desorption and used to validate a model input into the Tritium Migration and Analysis Program 7 (TMAP). In (1), good agreement with experiment is found for a TMAP model encorporating traps of activation energies, 0.80 eV and 0.98 eV, whereas an additional 2 eV trap was required to model experiment (2). Thermal release is found to be trap limited, but simulations are optimal when surface recombination is taken into account. Results suggest that thick built-up co-deposited layers will hinder ITER inventory control, and that bake periods (∼1 day) will be more effective in inventory reduction than transient thermal loading

  18. TMAP-7 simulation of D2 thermal release data from Be co-deposited layers

    Science.gov (United States)

    Baldwin, M. J.; Schwarz-Selinger, T.; Yu, J. H.; Doerner, R. P.

    2013-07-01

    The efficacy of (1) bake-out at 513 K and 623 K, and (2) thermal transient (10 ms) loading to up to 1000 K, is explored for reducing D inventory in 1 μm thick Be-D (D/Be ˜0.1) co-deposited layers formed at 323 K for experiment (1) and ˜500 K for experiment (2). D release data from co-deposits are obtained by thermal desorption and used to validate a model input into the Tritium Migration & Analysis Program 7 (TMAP). In (1), good agreement with experiment is found for a TMAP model encorporating traps of activation energies, 0.80 eV and 0.98 eV, whereas an additional 2 eV trap was required to model experiment (2). Thermal release is found to be trap limited, but simulations are optimal when surface recombination is taken into account. Results suggest that thick built-up co-deposited layers will hinder ITER inventory control, and that bake periods (˜1 day) will be more effective in inventory reduction than transient thermal loading.

  19. A non-equilibrium simulation of thermal constriction in a cascaded arc hydrogen plasma

    International Nuclear Information System (INIS)

    Peerenboom, K S C; Goedheer, W J; Van Dijk, J; Kroesen, G M W

    2014-01-01

    The cascaded arc hydrogen plasma of Pilot-PSI is studied in a non-LTE model. We demonstrate that the effect of vibrationally excited molecules on the heavy-particle-assisted dissociation is crucial for obtaining thermal constriction. To the best of our knowledge, thermal constriction has not been obtained before in a non-LTE simulation. Probably, realistic numerical studies of this type of plasma were hindered by numerical problems, preventing the non-LTE simulations to show characteristic physical mechanisms such as thermal constriction. In this paper we show that with the help of appropriate numerical strategies thermal constriction can be obtained in a non-LTE simulation. To this end, a new source term linearization technique is developed, which ensures physical solutions even near chemical equilibrium where the composition is dominated by chemical source terms. Results of the model are compared with experiments on Pilot-PSI and show good agreement with pressure and voltage measurements in the source. (paper)

  20. HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES

    Energy Technology Data Exchange (ETDEWEB)

    Felipe, T. [Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife (Spain); Braun, D. C.; Crouch, A. D. [NorthWest Research Associates, Colorado Research Associates, Boulder, CO 80301 (United States); Birch, A. C., E-mail: tobias@iac.es [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-10-01

    Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure.

  1. HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES

    International Nuclear Information System (INIS)

    Felipe, T.; Braun, D. C.; Crouch, A. D.; Birch, A. C.

    2016-01-01

    Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure.

  2. Modelling of thermal shock experiments of carbon based materials in JUDITH

    International Nuclear Information System (INIS)

    Ogorodnikova, O.V.; Pestchanyi, S.; Koza, Y.; Linke, J.

    2005-01-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments

  3. Modelling of thermal shock experiments of carbon based materials in JUDITH

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikova, O.V. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany)]. E-mail: o.ogorodnikova@fz-juelich.de; Pestchanyi, S. [Forschungszentrum Karlsruhe, EURATOM-Associaton, IHM, 76021 Karlsruhe (Germany); Koza, Y. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany); Linke, J. [Forschungszentrum Juelich, EURATOM-Association, IWV-2, 52425 Juelich (Germany)

    2005-03-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments.

  4. Modelling of thermal shock experiments of carbon based materials in JUDITH

    Science.gov (United States)

    Ogorodnikova, O. V.; Pestchanyi, S.; Koza, Y.; Linke, J.

    2005-03-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments.

  5. Thermal lattice Boltzmann simulation for multispecies fluid equilibration

    International Nuclear Information System (INIS)

    Vahala, Linda; Wah, Darren; Vahala, George; Carter, Jonathan; Pavlo, Pavol

    2000-01-01

    The equilibration rate for multispecies fluids is examined using thermal lattice Boltzmann simulations. Two-dimensional free-decay simulations are performed for effects of velocity shear layer turbulence on sharp temperature profiles. In particular, parameters are so chosen that the lighter species is turbulent while the heavier species is laminar--and so its vorticity layers would simply decay and diffuse in time. With species coupling, however, there is velocity equilibration followed by the final relaxation to one large co- and one large counter-rotating vortex. The temperature equilibration proceeds on a slower time scale and is in good agreement with the theoretical order of magnitude estimate of Morse [Phys. Fluids 6, 1420 (1963)]. (c) 2000 The American Physical Society

  6. Thermal lattice Boltzmann simulation for multispecies fluid equilibration

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, Linda [Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States); Wah, Darren [Department of Physics, William and Mary College, Williamsburg, Virginia 23187 (United States); Vahala, George [Department of Physics, William and Mary College, Williamsburg, Virginia 23187 (United States); Carter, Jonathan [NERSC, Lawrence Berkeley Laboratory, Berkeley, California 97320 (United States); Pavlo, Pavol [Institute of Plasma Physics, Czech Academy of Science, Praha 8, (Czech Republic)

    2000-07-01

    The equilibration rate for multispecies fluids is examined using thermal lattice Boltzmann simulations. Two-dimensional free-decay simulations are performed for effects of velocity shear layer turbulence on sharp temperature profiles. In particular, parameters are so chosen that the lighter species is turbulent while the heavier species is laminar--and so its vorticity layers would simply decay and diffuse in time. With species coupling, however, there is velocity equilibration followed by the final relaxation to one large co- and one large counter-rotating vortex. The temperature equilibration proceeds on a slower time scale and is in good agreement with the theoretical order of magnitude estimate of Morse [Phys. Fluids 6, 1420 (1963)]. (c) 2000 The American Physical Society.

  7. Chaos in plasma simulation and experiment

    International Nuclear Information System (INIS)

    Watts, C.; Sprott, J.C.

    1993-09-01

    We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system

  8. Chaos in plasma simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Watts, C. [Texas Univ., Austin, TX (United States). Fusion Research Center; Newman, D.E. [Oak Ridge National Lab., TN (United States); Sprott, J.C. [Wisconsin Univ., Madison, WI (United States). Plasma Physics Research

    1993-09-01

    We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.

  9. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, Leen; D' haeseleer, William [Division of Applied Mechanics and Energy Conversion, University of Leuven (K.U.Leuven), Celestijnenlaan 300 A, B-3001 Leuven (Belgium); Dear, Richard de [Division of Environmental and Life Sciences, Macquarie University, Sydney (Australia); Hensen, Jan [Faculty of Architecture, Building and Planning, Technische Universiteit Eindhoven, Vertigo 6.18, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2009-05-15

    Building Energy Simulation (BES) programmes often use conventional thermal comfort theories to make decisions, whilst recent research in the field of thermal comfort clearly shows that important effects are not incorporated. The conventional theories of thermal comfort were set up based on steady state laboratory experiments. This, however, is not representing the real situation in buildings, especially not when focusing on residential buildings. Therefore, in present analysis, recent reviews and adaptations are considered to extract acceptable temperature ranges and comfort scales. They will be defined in an algorithm, easily implementable in any BES code. The focus is on comfortable temperature levels in the room, more than on the detailed temperature distribution within that room. (author)

  10. Numerical Simulation of the Thermal Performance of a Dry Storage Cask for Spent Nuclear Fuel

    Directory of Open Access Journals (Sweden)

    Heui-Yung Chang

    2018-01-01

    Full Text Available In this study, the heat flow characteristics and thermal performance of a dry storage cask were investigated via thermal flow experiments and a computational fluid dynamics (CFD simulation. The results indicate that there are many inner circulations in the flow channel of the cask (the channel width is 10 cm. These circulations affect the channel airflow efficiency, which in turn affects the heat dissipation of the dry storage cask. The daily operating temperatures at the top concrete lid and the upper locations of the concrete cask are higher than those permitted by the design specification. The installation of the salt particle collection device has a limited negative effect on the thermal dissipation performance of the dry storage cask.

  11. Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators.

    Science.gov (United States)

    Kim, Hyosub; Park, YeJe; Kim, Kyungtae; Sim, H-S; Ahn, Jaewook

    2018-05-04

    Dynamics of large complex systems, such as relaxation towards equilibrium in classical statistical mechanics, often obeys a master equation that captures essential information from the complexities. Here, we find that thermalization of an isolated many-body quantum state can be described by a master equation. We observe sudden quench dynamics of quantum Ising-like models implemented in our quantum simulator, defect-free single-atom tweezers in conjunction with Rydberg-atom interaction. Saturation of their local observables, a thermalization signature, obeys a master equation experimentally constructed by monitoring the occupation probabilities of prequench states and imposing the principle of the detailed balance. Our experiment agrees with theories and demonstrates the detailed balance in a thermalization dynamics that does not require coupling to baths or postulated randomness.

  12. Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators

    Science.gov (United States)

    Kim, Hyosub; Park, YeJe; Kim, Kyungtae; Sim, H.-S.; Ahn, Jaewook

    2018-05-01

    Dynamics of large complex systems, such as relaxation towards equilibrium in classical statistical mechanics, often obeys a master equation that captures essential information from the complexities. Here, we find that thermalization of an isolated many-body quantum state can be described by a master equation. We observe sudden quench dynamics of quantum Ising-like models implemented in our quantum simulator, defect-free single-atom tweezers in conjunction with Rydberg-atom interaction. Saturation of their local observables, a thermalization signature, obeys a master equation experimentally constructed by monitoring the occupation probabilities of prequench states and imposing the principle of the detailed balance. Our experiment agrees with theories and demonstrates the detailed balance in a thermalization dynamics that does not require coupling to baths or postulated randomness.

  13. TMX-U [Tandem Mirror Experiment-Upgrade] tandem-mirror thermal-barrier experiments

    International Nuclear Information System (INIS)

    Simonen, T.C.; Allen, S.L.; Baldwin, D.E.

    1986-01-01

    Thermal-barrier experiments have been carried out in the Tandem Mirror Experiment-Upgrade (TMX-U). Measurements of nonambipolar and ambipolar radial transport show that these transport processes, as well as end losses, can be controlled at modest densities and durations. Central-cell heating methods using ion-cyclotron heating (ICH) and neutral-beam injection have been demonstrated. Potential mesurements with recently developed methods indicate that deep thermal barriers can be established

  14. Thermal shock experiment analysis, the use of crack arrest toughness measurements

    International Nuclear Information System (INIS)

    Miannay, D.; Pellissier-Tanon, A.; Chavaillard, J.P.

    1984-06-01

    The main purpose of thermal shock experiment is to assess the procedure codified in the ASME XI appendix 1 or RCC-M-B appendix ZG, and allow comparisons with numerical simulations. The analysis of the integrity of the PWR vessel belt line under accidental transients is based on reference curves. The test-piece is a cylinder of SA 508 cl.3 steel. Arrest toughness measured agrees with reference curve

  15. CFD simulation of a cabin thermal environment with and without human body - thermal comfort evaluation

    Science.gov (United States)

    Danca, Paul; Bode, Florin; Nastase, Ilinca; Meslem, Amina

    2018-02-01

    Nowadays, thermal comfort became one of the criteria in choosing a vehicle. In last decades time spent by people in vehicles had risen substantially. During each trip, thermal comfort must to be ensured for a good psychological and physical state of the passengers. Also, a comfortable environment leads to a higher power concentration of the driver thereby to a safe trip for vehicle occupants and for all traffic participants. The present study numerically investigated the effect of human body sited in the driver's place, over the air velocity distribution and over the thermal comfort in a passenger compartment. CFD simulations were made with different angles of the left inlet grill, in both cases, with and without driver presence. In majority of the actual vehicles environment studies, are made without consideration of human body geometry, in this case, the results precision can be affected. The results show that the presence of human body, lead to global changing of the whole flow pattern inside the vehicular cabin. Also, the locations of the maximum velocities are changing with the angle of the guiding vanes. The thermal comfort PMV/PPD indexes were calculated for each case. The presence of human body leads to a more comfortable environment.

  16. IPROP simulations of the GAMBLE II proton transport experiment

    International Nuclear Information System (INIS)

    Welch, D.R.

    1993-01-01

    The author has simulated the proton transport of the 6-kA, 1-MV GAMBLE II experiment using a modified version of the IPROP particle-in-cell code. IPROP now uses a hybrid model in which plasma electrons are divided into high-energy macro particle and thermal-fluid components. This model includes open-quotes knock-onclose quotes bound-electron collision and runaway sources for high-energy electrons. Using IPROP, the authors has calculated net currents in reasonable agreement with the experiment ranging from 5-11% of the total current in pressures from 0.25-4 torr helium. In the simulations, the pinch current sample by the 1.5-cm beam was 2-3 times larger than the net current at 4 cm radius. The attenuation of net current at larger radii was the result of a highly-conductive energetic component of plasma electrons surrounding the beam. Having benchmarked IPROP against experiment, the author has examined higher-current ion beams with respect to possible transport for inertial confinement fusion

  17. Thermal control surfaces on the MSFC LDEF experiments

    International Nuclear Information System (INIS)

    Wilkes, D.R.; Whitaker, A.F.; Zwiener, J.M.; Linton, R.C.; Shular, D.; Peters, P.N.; Gregory, J.C.

    1992-01-01

    There were five Marshall Space Flight Center (MSFC) experiments on the LDEF. Each of those experiments carried thermal control surfaces either as test samples or as operational surfaces. These materials experienced varying degrees of mechanical and optical damage. Some materials were virtually unchanged by the extended exposure while others suffered extensive degradation. The synergistic effects due to the constituents of the space environment are evident in the diversity of these material changes. The sample complement for the MSFC experiments is described along with results of the continuing analyses efforts

  18. Simulation of a complete inelastic neutron scattering experiment

    DEFF Research Database (Denmark)

    Edwards, H.; Lefmann, K.; Lake, B.

    2002-01-01

    A simulation of an inelastic neutron scattering experiment on the high-temperature superconductor La2-xSrxCuO4 is presented. The complete experiment, including sample, is simulated using an interface between the experiment control program and the simulation software package (McStas) and is compared...... with the experimental data. Simulating the entire experiment is an attractive alternative to the usual method of convoluting the model cross section with the resolution function, especially if the resolution function is nontrivial....

  19. Numerical Simulation of Non-Thermal Food Preservation

    Science.gov (United States)

    Rauh, C.; Krauss, J.; Ertunc, Ö.; Delgado, a.

    2010-09-01

    Food preservation is an important process step in food technology regarding product safety and product quality. Novel preservation techniques are currently developed, that aim at improved sensory and nutritional value but comparable safety than in conventional thermal preservation techniques. These novel non-thermal food preservation techniques are based for example on high pressures up to one GPa or pulsed electric fields. in literature studies the high potential of high pressures (HP) and of pulsed electric fields (PEF) is shown due to their high retention of valuable food components as vitamins and flavour and selective inactivation of spoiling enzymes and microorganisms. for the design of preservation processes based on the non-thermal techniques it is crucial to predict the effect of high pressure and pulsed electric fields on the food components and on the spoiling enzymes and microorganisms locally and time-dependent in the treated product. Homogenous process conditions (especially of temperature fields in HP and PEF processing and of electric fields in PEF) are aimed at to avoid the need of over-processing and the connected quality loss and to minimize safety risks due to under-processing. the present contribution presents numerical simulations of thermofluiddynamical phenomena inside of high pressure autoclaves and pulsed electric field treatment chambers. in PEF processing additionally the electric fields are considered. Implementing kinetics of occurring (bio-) chemical reactions in the numerical simulations of the temperature, flow and electric fields enables the evaluation of the process homogeneity and efficiency connected to different process parameters of the preservation techniques. Suggestions to achieve safe and high quality products are concluded out of the numerical results.

  20. Experiment on thermohydraulics of simulated control rod

    International Nuclear Information System (INIS)

    Ogawa, Masuro; Ouchi, Mitsuo; Akino, Norio; Fujimura, Kaoru; Shiina, Yasuaki; Kawamura, Hiroshi

    1984-10-01

    A thermohydraulic study of a control rod channel is required for the core design of the Very High Temperature Gas Cooled Reactor (VHTR). A non-heating experiment with air flow was performed prior to heating experiment with helium flow. Experimental results on stability of flow, flow rate distribution and pressure drop of the control rod channel are reported. In a test section of the experimental apparatus, five simulated control subrods were suspended vertically in a circular duct. Their dimension was in coincide with those of the Detailed Disign (I) of the VHTR. Air of atomospheric pressure was used as a coolant gas, which flowed in inner and outer paths of the subrods. Total flow rate ranged from 0.0011 to 0.0062 kg/s. Flow rate distribution and pressure drop were obtained for various flow rates. Velocity fluctuation in the channel was also observed using a hot wire anemometer. From these experiments, it was found that the flow rate distribution was nearly the same as a disigned value and that turbulent and laminar flows were simultaneously realized in outer and inner paths respectively. These observations supported a feasibility of the present design. (author)

  1. Heat experiment design to estimate temperature dependent thermal properties

    International Nuclear Information System (INIS)

    Romanovski, M

    2008-01-01

    Experimental conditions are studied to optimize transient experiments for estimating temperature dependent thermal conductivity and volumetric heat capacity. A mathematical model of a specimen is the one-dimensional heat equation with boundary conditions of the second kind. Thermal properties are assumed to vary nonlinearly with temperature. Experimental conditions refer to the thermal loading scheme, sampling times and sensor location. A numerical model of experimental configurations is studied to elicit the optimal conditions. The numerical solution of the design problem is formulated on a regularization scheme with a stabilizer minimization without a regularization parameter. An explicit design criterion is used to reveal the optimal sensor location, heating duration and flux magnitude. Results obtained indicate that even the strongly nonlinear experimental design problem admits the aggregation of its solution and has a strictly defined optimal measurement scheme. Additional region of temperature measurements with allowable identification error is revealed.

  2. Methodical Specifics of Thermal Experiments with Thin Carbon Reinforced Plates

    Directory of Open Access Journals (Sweden)

    O. V. Denisov

    2015-01-01

    Full Text Available Polymer composite materials (CM are widely used in creation of large space constructions, especially reflectors of space antennas. Composite materials should provide high level of specific stiffness and strength for space structures. Thermal conductivity in reinforcement plane is a significant factor in case of irregular heating space antennas. Nowadays, data on CM reinforcement plane thermal conductivity are limited and existing methods of its defining are imperfect. Basically, traditional methods allow us to define thermal conductivity in perpendicular direction towards the reinforcement plane on the samples of round or rectangular plate. In addition, the thickness of standard samples is larger than space antenna thickness. Consequently, new methods are required. Method of contact heating, which was developed by BMSTU specialists with long hollow carbon beam, could be a perspective way. This article is devoted to the experimental method of contact heating on the thin carbon plates.Thermal tests were supposed to provide a non-stationary temperature field with a gradient being co-directional with the plane reinforcement in the material sample. Experiments were conducted in vacuum chamber to prevent unstructured convection. Experimental thermo-grams processing were calculated by 1-d thermal model for a thin plate. Influence of uncertainty of experimental parameters, such as (radiation emission coefficients of sample surface, glue, temperature sensors and uncertainty of sensors placement on the result of defined thermal conductivity has been estimated. New data on the thermal conductivity in reinforcement plane were obtained within 295 - 375 K temperature range, which can be used to design and develop reflectors of precision space antennas. In the future it is expedient to conduct tests of thin-wall plates from carbon fiber-reinforced plastic in wide temperature range, especially in the low-range temperatures.

  3. Amorphous nanoparticles — Experiments and computer simulations

    International Nuclear Information System (INIS)

    Hoang, Vo Van; Ganguli, Dibyendu

    2012-01-01

    The data obtained by both experiments and computer simulations concerning the amorphous nanoparticles for decades including methods of synthesis, characterization, structural properties, atomic mechanism of a glass formation in nanoparticles, crystallization of the amorphous nanoparticles, physico-chemical properties (i.e. catalytic, optical, thermodynamic, magnetic, bioactivity and other properties) and various applications in science and technology have been reviewed. Amorphous nanoparticles coated with different surfactants are also reviewed as an extension in this direction. Much attention is paid to the pressure-induced polyamorphism of the amorphous nanoparticles or amorphization of the nanocrystalline counterparts. We also introduce here nanocomposites and nanofluids containing amorphous nanoparticles. Overall, amorphous nanoparticles exhibit a disordered structure different from that of corresponding bulks or from that of the nanocrystalline counterparts. Therefore, amorphous nanoparticles can have unique physico-chemical properties differed from those of the crystalline counterparts leading to their potential applications in science and technology.

  4. Background simulation for the COBRA-experiment

    Energy Technology Data Exchange (ETDEWEB)

    Quante, Thomas [TU Dortmund, Institut fuer Physik (Germany); Collaboration: COBRA-Collaboration

    2015-07-01

    COBRA is a next-generation experiment searching for neutrinoless double beta (0νββ) decay using CdZnTe semiconductor detectors. The main focus is on {sup 116}Cd, with a Q-value of 2813.5 keV well above the highest dominant naturally occurring gamma lines. By measuring the half-life of the 0νββ decay, it is possible to clarify the nature of the neutrino as either Dirac or Majorana particle and furthermore to determine the effective Majorana mass. COBRA is currently in the demonstrator phase to study possible background contributions and gain information about the longterm stability of the used detectors. For this purpose a demonstrator array made up of 64 Cadmium-Zinc-Telluride (CdZnTe) semiconductor detectors in coplanar grid configuration was designed and realised at the Gran Sasso Underground laboratory (LNGS) in Italy. Simulations of the whole demonstrator setup are ongoing to reproduce the measured spectra for each detector. This is done in two steps. The first uses the Geant4 based framework VENOM for tracking and energy deposition inside each detector. Detector effects like the energy resolution and electron trapping have to be applied in the second step. The used detector geometry has to be verified against calibration measurements. This talk gives an overview of the current simulation status.

  5. A new approach to designing reduced scale thermal-hydraulic experiments

    International Nuclear Information System (INIS)

    Lapa, Celso M.F.; Sampaio, Paulo A.B. de; Pereira, Claudio M.N.A.

    2004-01-01

    Reduced scale experiments are often employed in engineering because they are much cheaper than real scale testing. Unfortunately, though, it is difficult to design a thermal-hydraulic circuit or equipment in reduced scale capable of reproducing, both accurately and simultaneously, all the physical phenomena that occur in real scale and operating conditions. This paper presents a methodology to designing thermal-hydraulic experiments in reduced scale based on setting up a constrained optimization problem that is solved using genetic algorithms (GAs). In order to demonstrate the application of the methodology proposed, we performed some investigations in the design of a heater aimed to simulate the transport of heat and momentum in the core of a pressurized water reactor (PWR) at 100% of nominal power and non-accident operating conditions. The results obtained show that the proposed methodology is a promising approach for designing reduced scale experiments

  6. Multiscale simulation of thermal disruption in resistance switching process in amorphous carbon

    International Nuclear Information System (INIS)

    Popov, A M; Nikishin, N G; Shumkin, G N

    2015-01-01

    The switching of material atomic structure and electric conductivity is used in novel technologies of making memory on the base of phase change. The possibility of making memory on the base of amorphous carbon is shown in experiment [1]. Present work is directed to simulation of experimentally observed effects. Ab initio quantum calculations were used for simulation of atomic structure changes in amorphous carbon [2]. These simulations showed that the resistance change is connected with thermally induced effects. The temperature was supposed to be the function of time. In present paper we propose a new multiscale, self-consistent model which combines three levels of simulation scales and takes into account the space and time dependencies of the temperature. On the first level of quantum molecular dynamic we provide the calculations of phase change in atomic structure with space and time dependence of the temperature. Nose-Hover thermostats are used for MD simulations to reproduce space dependency of the temperature. It is shown that atomic structure is localized near graphitic layers in conducting dot. Structure parameter is used then on the next levels of the modeling. Modified Ehrenfest Molecular Dynamics is used on the second level. Switching evolution of electronic subsystem is obtained. In macroscopic scale level the heat conductivity equation for continuous media is used for calculation space-time dependence of the temperature. Joule heat source depends on structure parameter and electric conductivity profiles obtained on previous levels of modeling. Iterative procedure is self-consistently repeated combining three levels of simulation. Space localization of Joule heat source leads to the thermal disruption. Obtained results allow us to explain S-form of the Volt-Ampere characteristic observed in experiment. Simulations were performed on IBM Blue Gene/P supercomputer at Moscow State University. (paper)

  7. Simulation and parametric optimisation of thermal power plant cycles

    Directory of Open Access Journals (Sweden)

    P. Ravindra Kumar

    2016-09-01

    Full Text Available The objective of the paper is to analyse parametric studies and optimum steam extraction pressures of three different (subcritical, supercritical and ultra-supercritical coal fired power plant cycles at a particular main steam temperature of 600 °C by keeping the reheat temperature at 537 °C and condenser pressure at 0.09 bar as constant. In order to maximize the heat rate gain possible with supercritical and ultra-supercritical steam conditions, eight stages of feed water heater arrangement with single reheater is considered. The system is optimized in such a way that the percentage exergetic losses are reduced for the increase of the exergetic efficiency and higher fuel utilization. The plant cycles are simulated and optimized by using Cycle Tempo 5.0 simulation software tool. From the simulation study, it is observed that the thermal efficiency of the three different power plant cycles obtained as 41.40, 42.48 and 43.03%, respectively. The specific coal consumption for three different power plant cycles are 0.56, 0.55 and 0.54 Tonnes/MWh. The improvement in feed water temperatures at the inlet of steam generator of respective cycles are 291, 305 and 316 °C.

  8. Proceedings of the specialists meeting on experience with thermal fatigue in LWR piping caused by mixing and stratification

    International Nuclear Information System (INIS)

    1998-01-01

    This specialists meeting on experience with thermal fatigue in LWR piping caused by mixing and stratification, was held in June 1998 in Paris. It included five sessions. Session 1: operating experience (7 papers): Historical perspective; EDF experience with local thermohydraulic phenomena in PWRs: impacts and strategies; Thermal fatigue in safety injection lines of French PWRs: technical problems, regulatory requirements, concerns about other areas; US NRC Regulatory perspective on unanticipated thermal fatigue in LWR piping; Failure to the Residual Heat Removal system suction line pipe in Genkai unit 1 caused by thermal stratification cycling; Emergency Core Cooling System pipe crack incident at Tihange unit 1; Two leakages induced by thermal stratification at the Loviisa power plant). Session 2: thermal hydraulic phenomena (5 papers): Thermal stratification in small pipes with respect to fatigue effects and so called 'Banana effect'; Thermal stratification in the surge line of the Korean next generation reactor; Thermal stratification in horizontal pipes investigated in UPTF-TRAM and HDR facilities; Research on thermal stratification in un-isolable piping of reactor pressure boundary; Thermal mixing phenomena in piping systems: 3D numerical simulation and design considerations. Session 3: response of material and structure (5 papers): Fatigue induced by thermal stratification, Results of tests and calculations of the COUFAST model; Laboratory simulation of thermal fatigue cracking as a basis for verifying life models; Thermo-mechanical analysis methods for the conception and the follow up of components submitted to thermal stratification transients; Piping analysis methods of a PWR surge line for stratified flow; The thermal stratification effect on surge lines, The VVER estimation. Session 4: monitoring aspects (4 papers): Determination of the thermal loadings affecting the auxiliary lines of the reactor coolant system in French PWR plants; Expected and

  9. Empirical Validation of Heat Transfer Performance Simulation of Graphite/PCM Concrete Materials for Thermally Activated Building System

    Directory of Open Access Journals (Sweden)

    Jin-Hee Song

    2017-01-01

    Full Text Available To increase the heat capacity in lightweight construction materials, a phase change material (PCM can be introduced to building elements. A thermally activated building system (TABS with graphite/PCM concrete hollow core slab is suggested as an energy-efficient technology to shift and reduce the peak thermal load in buildings. An evaluation of heat storage and dissipation characteristics of TABS in graphite/PCM concrete has been conducted using dynamic simulations, but empirical validation is necessary to acceptably predict the thermal behavior of graphite/PCM concrete. This study aimed to validate the thermal behavior of graphite/PCM concrete through a three-dimensional transient heat transfer simulation. The simulation results were compared to experimental results from previous studies of concrete and graphite/PCM concrete. The overall thermal behavior for both materials was found to be similar to experiment results. Limitations in the simulation modeling, which included determination of the indoor heat transfer coefficient, assumption of constant thermal conductivity with temperature, and assumption of specimen homogeneity, led to slight differences between the measured and simulated results.

  10. A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations

    DEFF Research Database (Denmark)

    Wu, Rui; Wang, Huai; Pedersen, Kristian Bonderup

    2016-01-01

    A basic challenge in the IGBT transient simulation study is to obtain the realistic junction temperature, which demands not only accurate electrical simulations but also precise thermal impedance. This paper proposed a transient thermal model for IGBT junction temperature simulations during short...

  11. Activation experiment for concrete blocks using thermal neutrons

    Science.gov (United States)

    Okuno, Koichi; Tanaka, Seiichiro

    2017-09-01

    Activation experiments for ordinary concrete, colemanite-peridotite concrete, B4C-loaded concrete, and limestone concrete are carried out using thermal neutrons. The results reveal that the effective dose for gamma rays from activated nuclides of colemanite-peridotite concrete is lower than that for the other types of concrete. Therefore, colemanite-peridotite concrete is useful for reducing radiation exposure for workers.

  12. Initial Operation of the Nuclear Thermal Rocket Element Environmental Simulator

    Science.gov (United States)

    Emrich, William J., Jr.; Pearson, J. Boise; Schoenfeld, Michael P.

    2015-01-01

    The Nuclear Thermal Rocket Element Environmental Simulator (NTREES) facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The NTREES facility has recently been upgraded such that the power capabilities of the facility have been increased significantly. At its present 1.2 MW power level, more prototypical fuel element temperatures nay now be reached. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during testing In this new higher power configuration, NTREES will be capable of testing fuel elements and fuel materials at near-prototypic power densities. As checkout testing progressed and as higher power levels were achieved, several design deficiencies were discovered and fixed. Most of these design deficiencies were related to stray RF energy causing various components to encounter unexpected heating. Copper shielding around these components largely eliminated these problems. Other problems encountered involved unexpected movement in the coil due to electromagnetic forces and electrical arcing between the coil and a dummy test article. The coil movement and arcing which were encountered during the checkout testing effectively destroyed the induction coil in use at

  13. Herbicide Persistence in Seawater Simulation Experiments.

    Directory of Open Access Journals (Sweden)

    Philip Mercurio

    Full Text Available Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR. The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities. Very little degradation was recorded over the standard 60 d period (Experiment 1 so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated

  14. Herbicide Persistence in Seawater Simulation Experiments

    Science.gov (United States)

    Mercurio, Philip; Mueller, Jochen F.; Eaglesham, Geoff; Flores, Florita; Negri, Andrew P.

    2015-01-01

    Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes

  15. Atomistic simulation of the thermal conductivity in amorphous SiO2 matrix/Ge nanocrystal composites

    Science.gov (United States)

    Kuryliuk, Vasyl V.; Korotchenkov, Oleg A.

    2017-04-01

    We use nonequilibrium molecular dynamics computer simulations with the Tersoff potential aiming to provide a comprehensive picture of the thermal conductivity of amorphous SiO2 (a-SiO2) matrix with embedded Ge nanocrystals (nc-Ge). The modelling predicts the a-SiO2 matrix thermal conductivity in a temperature range of 50 fair agreement with experiment at around room temperature. It is worth noticing that the predicted room-temperature thermal conductivity in a-SiO2 is in very good agreement with the experimental result, which is in marked contrast with the thermal conductivity calculated employing the widely used van Beest-Kramer-van Santen (BKS) potential. We show that the thermal conductivity of composite nc-Ge/a-SiO2 systems decreases steadily with increasing the volume fraction of Ge inclusions, indicative of enhanced interface scattering of phonons imposed by embedded Ge nanocrystals. We also observe that increasing the volume fractions above a certain threshold value results in a progressively increased thermal conductivity of the nanocomposite, which can be explained by increasing volume fraction of a better thermally conducting Ge. Finally, non-equilibrium molecular dynamics simulations with the Tersoff potential are promising for computing the thermal conductivity of nanocomposites based on amorphous SiO2 and can be readily scaled to more complex composite structures with embedded nanoparticles, which thus help design nanocomposites with desired thermal properties.

  16. Mathematical modeling and simulation of a thermal system

    Science.gov (United States)

    Toropoc, Mirela; Gavrila, Camelia; Frunzulica, Rodica; Toma, Petrica D.

    2016-12-01

    The aim of the present paper is the conception of a mathematical model and simulation of a system formed by a heatexchanger for domestic hot water preparation, a storage tank for hot water and a radiator, starting from the mathematical equations describing this system and developed using Scilab-Xcos program. The model helps to determine the evolution in time for the hot water temperature, for the return temperature in the primary circuit of the heat exchanger, for the supply temperature in the secondary circuit, the thermal power for heating and for hot water preparation to the consumer respectively. In heating systems, heat-exchangers have an important role and their performances influence the energy efficiency of the systems. In the meantime, it is very important to follow the behavior of such systems in dynamic regimes. Scilab-Xcos program can be utilized to follow the important parameters of the systems in different functioning scenarios.

  17. Development of CFD software for the simulation of thermal hydraulics in advanced nuclear reactors. Final report

    International Nuclear Information System (INIS)

    Bachar, Abdelaziz; Haslinger, Wolfgang; Scheuerer, Georg; Theodoridis, Georgios

    2015-01-01

    The objectives of the project were: Improvement of the simulation accuracy for nuclear reactor thermo-hydraulics by coupling system codes with three-dimensional CFD software; Extension of CFD software to predict thermo-hydraulics in advanced reactor concepts; Validation of the CFD software by simulation different UPTF TRAM-C test cases and development of best practice guidelines. The CFD module was based on the ANSYS CFD software and the system code ATHLET of GRS. All three objectives were met: The coupled ATHLET-ANSYS CFD software is in use at GRS and TU Muenchen. Besides the test cases described in the report, it has been used for other applications, for instance the TALL-3D experiment of KTH Stockholm. The CFD software was extended with material properties for liquid metals, and validated using existing data. Several new concepts were tested when applying the CFD software to the UPTF test cases: Simulations with Conjugate Heat Transfer (CHT) were performed for the first time. This led to better agreement between predictions and data and reduced uncertainties when applying temperature boundary conditions. The meshes for the CHT simulation were also used for a coupled fluid-structure-thermal analysis which was another novelty. The results of the multi-physics analysis showed plausible results for the mechanical and thermal stresses. The workflow developed as part of the current project can be directly used for industrial nuclear reactor simulations. Finally, simulations for two-phase flows with and without interfacial mass transfer were performed. These showed good agreement with data. However, a persisting problem for the simulation of multi-phase flows are the long simulation times which make use for industrial applications difficult.

  18. Computer aided analysis, simulation and optimisation of thermal sterilisation processes.

    Science.gov (United States)

    Narayanan, C M; Banerjee, Arindam

    2013-04-01

    Although thermal sterilisation is a widely employed industrial process, little work is reported in the available literature including patents on the mathematical analysis and simulation of these processes. In the present work, software packages have been developed for computer aided optimum design of thermal sterilisation processes. Systems involving steam sparging, jacketed heating/cooling, helical coils submerged in agitated vessels and systems that employ external heat exchangers (double pipe, shell and tube and plate exchangers) have been considered. Both batch and continuous operations have been analysed and simulated. The dependence of del factor on system / operating parameters such as mass or volume of substrate to be sterilised per batch, speed of agitation, helix diameter, substrate to steam ratio, rate of substrate circulation through heat exchanger and that through holding tube have been analysed separately for each mode of sterilisation. Axial dispersion in the holding tube has also been adequately accounted for through an appropriately defined axial dispersion coefficient. The effect of exchanger characteristics/specifications on the system performance has also been analysed. The multiparameter computer aided design (CAD) software packages prepared are thus highly versatile in nature and they permit to make the most optimum choice of operating variables for the processes selected. The computed results have been compared with extensive data collected from a number of industries (distilleries, food processing and pharmaceutical industries) and pilot plants and satisfactory agreement has been observed between the two, thereby ascertaining the accuracy of the CAD softwares developed. No simplifying assumptions have been made during the analysis and the design of associated heating / cooling equipment has been performed utilising the most updated design correlations and computer softwares.

  19. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels

    KAUST Repository

    Wu, Congmin

    2013-04-04

    For a one-component fluid on a solid substrate, a thermal singularity may occur at the contact line where the liquid-vapor interface intersects the solid surface. Physically, the liquid-vapor interface is almost isothermal at the liquid-vapor coexistence temperature in one-component fluids while the solid surface is almost isothermal for solids of high thermal conductivity. Therefore, a temperature discontinuity is formed if the two isothermal interfaces are of different temperatures and intersect at the contact line. This leads to the so-called thermal singularity. The localized hydrodynamics involving evaporation/condensation near the contact line leads to a contact angle depending on the underlying substrate temperature. This dependence has been shown to lead to the motion of liquid droplets on solid substrates with thermal gradients (Xu and Qian 2012 Phys. Rev. E 85 061603). In the present work, we carry out molecular dynamics (MD) simulations as numerical experiments to further confirm the predictions made from our previous continuum hydrodynamic modeling and simulations, which are actually semi-quantitatively accurate down to the small length scales in the problem. Using MD simulations, we investigate the motion of evaporative droplets in one-component Lennard-Jones fluids confined in nanochannels with thermal gradients. The droplet is found to migrate in the direction of decreasing temperature of solid walls, with a migration velocity linearly proportional to the temperature gradient. This agrees with the prediction of our continuum model. We then measure the effect of droplet size on the droplet motion. It is found that the droplet mobility is inversely proportional to a dimensionless coefficient associated with the total rate of dissipation due to droplet movement. Our results show that this coefficient is of order unity and increases with the droplet size for the small droplets (∼10 nm) simulated in the present work. These findings are in semi

  20. Is the Experience of Thermal Pain Genetics Dependent?

    Directory of Open Access Journals (Sweden)

    Emilia Horjales-Araujo

    2015-01-01

    Full Text Available It is suggested that genetic variations explain a significant portion of the variability in pain perception; therefore, increased understanding of pain-related genetic influences may identify new targets for therapies and treatments. The relative contribution of the different genes to the variance in clinical and experimental pain responses remains unknown. It is suggested that the genetic contributions to pain perception vary across pain modalities. For example, it has been suggested that more than 60% of the variance in cold pressor responses can be explained by genetic factors; in comparison, only 26% of the variance in heat pain responses is explained by these variations. Thus, the selection of pain model might markedly influence the magnitude of the association between the pain phenotype and genetic variability. Thermal pain sensation is complex with multiple molecular and cellular mechanisms operating alone and in combination within the peripheral and central nervous system. It is thus highly probable that the thermal pain experience is affected by genetic variants in one or more of the pathways involved in the thermal pain signaling. This review aims to present and discuss some of the genetic variations that have previously been associated with different experimental thermal pain models.

  1. Simulation study of multi-step model algorithmic control of the nuclear reactor thermal power tracking system

    International Nuclear Information System (INIS)

    Shi Xiaoping; Xu Tianshu

    2001-01-01

    The classical control method is usually hard to ensure the thermal power tracking accuracy, because the nuclear reactor system is a complex nonlinear system with uncertain parameters and disturbances. A sort of non-parameter model is constructed with the open-loop impulse response of the system. Furthermore, a sort of thermal power tracking digital control law is presented using the multi-step model algorithmic control principle. The control method presented had good tracking performance and robustness. It can work despite the existence of unmeasurable disturbances. The simulation experiment testifies the correctness and effectiveness of the method. The high accuracy matching between the thermal power and the referenced load is achieved

  2. Small scale thermal-hydraulic experiment for stable operation of a pius-type reactor

    International Nuclear Information System (INIS)

    Tasaka, K.; Tamaki, M.; Imai, S.; Irianto, I.D.; Tsuji, Y.; Kukita, Y.

    1994-01-01

    Thermal-hydraulic experiments using a small-scale atmospheric pressure test loop have been performed for the Process Inherent Ultimate Safety (PIUS)-type reactor to develop the new pump speed feedback control system. Three feedback control systems based on the measurement of flow rate, differential pressure, and fluid temperature distribution in the lower density lock have been proposed and confirmed by a series of experiments. Each of the feedback control systems had been verified in the simulation experiment such as a start-up simulation test. The automatic pump speed control based on the fluid temperature at the lower density lock was quite effective to maintain the stratified interface between primary water and borated pool water for stable operation of the reactor. (author)

  3. Simulation of thermal-neutron-induced single-event upset using particle and heavy-ion transport code system

    International Nuclear Information System (INIS)

    Arita, Yutaka; Kihara, Yuji; Mitsuhasi, Junichi; Niita, Koji; Takai, Mikio; Ogawa, Izumi; Kishimoto, Tadafumi; Yoshihara, Tsutomu

    2007-01-01

    The simulation of a thermal-neutron-induced single-event upset (SEU) was performed on a 0.4-μm-design-rule 4 Mbit static random access memory (SRAM) using particle and heavy-ion transport code system (PHITS): The SEU rates obtained by the simulation were in very good agreement with the result of experiments. PHITS is a useful tool for simulating SEUs in semiconductor devices. To further improve the accuracy of the simulation, additional methods for tallying the energy deposition are required for PHITS. (author)

  4. Thermal hydraulic-Mechanic Integrated Simulation for Advanced Cladding Thermal Shock Fracture Analysis during Reflood Phase in LBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seong Min; Lee, You Ho; Cho, Jae Wan; Lee, Jeong Ik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This study suggested thermal hydraulic-mechanical integrated stress based methodology for analyzing the behavior of ATF type claddings by SiC-Duplex cladding LBLOCA simulation. Also, this paper showed that this methodology could predict real experimental result well. That concept for enhanced safety of LWR called Advanced Accident-Tolerance Fuel Cladding (ATF cladding, ATF) is researched actively. However, current nuclear fuel cladding design criteria for zircaloy cannot be apply to ATF directly because those criteria are mainly based on limiting their oxidation. So, the new methodology for ATF design criteria is necessary. In this study, stress based analysis methodology for ATF cladding design criteria is suggested. By simulating LBLOCA scenario of SiC cladding which is the one of the most promising candidate of ATF. Also we'll confirm our result briefly through comparing some facts from other experiments. This result is validating now. Some of results show good performance with 1-D failure analysis code for SiC fuel cladding that already developed and validated by Lee et al,. It will present in meeting. Furthermore, this simulation presented the possibility of understanding the behavior of cladding deeper. If designer can predict the dangerous region and the time precisely, it may be helpful for designing nuclear fuel cladding geometry and set safety criteria.

  5. High performance thermal stress analysis on the earth simulator

    International Nuclear Information System (INIS)

    Noriyuki, Kushida; Hiroshi, Okuda; Genki, Yagawa

    2003-01-01

    In this study, the thermal stress finite element analysis code optimized for the earth simulator was developed. A processor node of which of the earth simulator is the 8-way vector processor, and each processor can communicate using the message passing interface. Thus, there are two ways to parallelize the finite element method on the earth simulator. The first method is to assign one processor for one sub-domain, and the second method is to assign one node (=8 processors) for one sub-domain considering the shared memory type parallelization. Considering that the preconditioned conjugate gradient (PCG) method, which is one of the suitable linear equation solvers for the large-scale parallel finite element methods, shows the better convergence behavior if the number of domains is the smaller, we have determined to employ PCG and the hybrid parallelization, which is based on the shared and distributed memory type parallelization. It has been said that it is hard to obtain the good parallel or vector performance, since the finite element method is based on unstructured grids. In such situation, the reordering is inevitable to improve the computational performance [2]. In this study, we used three reordering methods, i.e. Reverse Cuthil-McKee (RCM), cyclic multicolor (CM) and diagonal jagged descending storage (DJDS)[3]. RCM provides the good convergence of the incomplete lower-upper (ILU) PCG, but causes the load imbalance. On the other hand, CM provides the good load balance, but worsens the convergence of ILU PCG if the vector length is so long. Therefore, we used the combined-method of RCM and CM. DJDS is the method to store the sparse matrices such that longer vector length can be obtained. For attaining the efficient inter-node parallelization, such partitioning methods as the recursive coordinate bisection (RCM) or MeTIS have been used. Computational performance of the practical large-scale engineering problems will be shown at the meeting. (author)

  6. Augmented Visual Experience of Simulated Solar Phenomena

    Science.gov (United States)

    Tucker, A. O., IV; Berardino, R. A.; Hahne, D.; Schreurs, B.; Fox, N. J.; Raouafi, N.

    2017-12-01

    The Parker Solar Probe (PSP) mission will explore the Sun's corona, studying solar wind, flares and coronal mass ejections. The effects of these phenomena can impact the technology that we use in ways that are not readily apparent, including affecting satellite communications and power grids. Determining the structure and dynamics of corona magnetic fields, tracing the flow of energy that heats the corona, and exploring dusty plasma near the Sun to understand its influence on solar wind and energetic particle formation requires a suite of sensors on board the PSP spacecraft that are engineered to observe specific phenomena. Using models of these sensors and simulated observational data, we can visualize what the PSP spacecraft will "see" during its multiple passes around the Sun. Augmented reality (AR) technologies enable convenient user access to massive data sets. We are developing an application that allows users to experience environmental data from the point of view of the PSP spacecraft in AR using the Microsoft HoloLens. Observational data, including imagery, magnetism, temperature, and density are visualized in 4D within the user's immediate environment. Our application provides an educational tool for comprehending the complex relationships of observational data, which aids in our understanding of the Sun.

  7. Liquid crystal interfaces: Experiments, simulations and biosensors

    Science.gov (United States)

    Popov, Piotr

    Interfacial phenomena are ubiquitous and extremely important in various aspects of biological and industrial processes. For example, many liquid crystal applications start by alignment with a surface. The underlying mechanisms of the molecular organization of liquid crystals at an interface are still under intensive study and continue to be important to the display industry in order to develop better and/or new display technology. My dissertation research has been devoted to studying how complex liquid crystals can be guided to organize at an interface, and to using my findings to develop practical applications. Specifically, I have been working on developing biosensors using liquid-crystal/surfactant/lipid/protein interactions as well as the alignment of low-symmetry liquid crystals for potential new display and optomechanical applications. The biotechnology industry needs better ways of sensing biomaterials and identifying various nanoscale events at biological interfaces and in aqueous solutions. Sensors in which the recognition material is a liquid crystal naturally connects the existing knowledge and experience of the display and biotechnology industries together with surface and soft matter sciences. This dissertation thus mainly focuses on the delicate phenomena that happen at liquid interfaces. In the introduction, I start by defining the interface and discuss its structure and the relevant interfacial forces. I then introduce the general characteristics of biosensors and, in particular, describe the design of biosensors that employ liquid crystal/aqueous solution interfaces. I further describe the basic properties of liquid crystal materials that are relevant for liquid crystal-based biosensing applications. In CHAPTER 2, I describe the simulation methods and experimental techniques used in this dissertation. In CHAPTER 3 and CHAPTER 4, I present my computer simulation work. CHAPTER 3 presents insight of how liquid crystal molecules are aligned by

  8. Simulation of Temperature Field in HDPE Pipe Thermal Welding

    Directory of Open Access Journals (Sweden)

    LIU Li-jun

    2017-04-01

    Full Text Available For high density polyethylene pipe connection,welding technology is the key of the high density engineering plastic pressure pipe safety. And the temperature distribution in the welding process has a very important influence on the welding quality. Polyethylene pipe weld joints of one dimensional unsteady overall heat transfer model is established by MARC software and simulates temperature field and stress field distribution of the welding process,and the thermocouple temperature automatic acquisition system of welding temperature field changes were detected,and compared by simulation and experiment .The results show that,at the end of the heating,the temperature of the pipe does not reach the maximum,but reached the maximum at 300 s,which indicates that the latent heat of phase change in the process of pressure welding. In the process of pressure welding, the axial stress of the pipe is gradually changed from tensile stress to compressive stress.

  9. Large-eddy simulations of mechanical and thermal processes within boundary layer of the Graciosa Island

    Science.gov (United States)

    Sever, G.; Collis, S. M.; Ghate, V. P.

    2017-12-01

    Three-dimensional numerical experiments are performed to explore the mechanical and thermal impacts of Graciosa Island on the sampling of oceanic airflow and cloud evolution. Ideal and real configurations of flow and terrain are planned using high-resolution, large-eddy resolving (e.g., Δ cold-pool formation upstream of an ideal two-kilometer island, with von Kármán like vortices propagation downstream. Although the peak height of Graciosa is less than half kilometer, the Azores island chain has a mountain over 2 km, which may be leading to more complex flow patterns when simulations are extended to a larger domain. Preliminary idealized low-resolution moist simulations indicate that the cloud field is impacted due to the presence of the island. Longer simulations that are performed to capture diurnal evolution of island boundary layer show distinct land/sea breeze formations under quiescent flow conditions. Further numerical experiments are planned to extend moist simulations to include realistic atmospheric profiles and observations of surface fluxes coupled with radiative effects. This work is intended to produce a useful simulation framework coupled with instruments to guide airborne and ground sampling strategies during the ACE-ENA field campaign which is aimed to better characterize marine boundary layer clouds.

  10. Effects of deformability and thermal motion of lipid membrane on electroporation: By molecular dynamics simulations

    KAUST Repository

    Sun, Sheng; Yin, Guangyao; Lee, Yi-Kuen; Wong, Joseph T.Y.; Zhang, Tong-Yi

    2011-01-01

    Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium

  11. Simulation and optimisation of a position sensitive scintillation detector with wavelength shifting fibers for thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Herzkamp, Matthias; Engels, Ralf; Kemmerling, Guenter [ZEA-2, Forschungszentrum Juelich (Germany); Brueckel, Thomas [JCNS, Forschungszentrum Juelich (Germany); Stahl, Achim [III. Physikalisches Institut B, RWTH Aachen (Germany); Waasen, Stefan van [ZEA-2, Forschungszentrum Juelich (Germany); Faculty of Engineering, University of Duisburg-Essen (Germany)

    2015-07-01

    In neutron scattering experiments it is important to have position sensitive large scale detectors for thermal neutrons. A detector based on a neutron scintillator with wave length shifting fibers is a new kind of such a detector. We present the simulation of the detector based on the microscopic structure of the scintillation material of the mentioned detector. It consists of a converter and a scintillation powder bound in a matrix. The converter in our case is lithium fluoride with enriched lithium 6, to convert thermal neutrons into high energetic alpha and triton particles. The scintillation material is silver doped zinc sulfide. We show that pulse height spectra obtained by these scintillators can be be explained by the simple model of randomly distributed spheres of zinc sulfide and lithium fluoride. With this model, it is possible to optimise the mass ratio of zinc sulfide to lithium fluoride with respect to detection efficiency and/or energy deposition in zinc sulfide.

  12. GOLLUM: a next-generation simulation tool for electron, thermal and spin transport

    International Nuclear Information System (INIS)

    Ferrer, J; García-Suárez, V M; Rodríguez-Ferradás, R; Lambert, C J; Manrique, D Zs; Visontai, D; Grace, I; Bailey, S W D; Gillemot, K; Sadeghi, Hatef; Algharagholy, L A; Oroszlany, L

    2014-01-01

    We have developed an efficient simulation tool ‘GOLLUM’ for the computation of electrical, spin and thermal transport characteristics of complex nanostructures. The new multi-scale, multi-terminal tool addresses a number of new challenges and functionalities that have emerged in nanoscale-scale transport over the past few years. To illustrate the flexibility and functionality of GOLLUM, we present a range of demonstrator calculations encompassing charge, spin and thermal transport, corrections to density functional theory such as local density approximation +U (LDA+U) and spectral adjustments, transport in the presence of non-collinear magnetism, the quantum Hall effect, Kondo and Coulomb blockade effects, finite-voltage transport, multi-terminal transport, quantum pumps, superconducting nanostructures, environmental effects, and pulling curves and conductance histograms for mechanically-controlled break-junction experiments. (paper)

  13. Simulation of the diffusion of implanted impurities in silicon structures at the rapid thermal annealing

    International Nuclear Information System (INIS)

    Komarov, F.F.; Komarov, A.F.; Mironov, A.M.; Makarevich, Yu.V.; Miskevich, S.A.; Zayats, G.M.

    2011-01-01

    Physical and mathematical models and numerical simulation of the diffusion of implanted impurities during rapid thermal treatment of silicon structures are discussed. The calculation results correspond to the experimental results with a sufficient accuracy. A simulation software system has been developed that is integrated into ATHENA simulation system developed by Silvaco Inc. This program can simulate processes of the low-energy implantation of B, BF 2 , P, As, Sb, C ions into the silicon structures and subsequent rapid thermal annealing. (authors)

  14. CFX-10 Analysis of the High Temperature Thermal- Chemical Experiment (CS28-2)

    International Nuclear Information System (INIS)

    Kim, Hyoung Tae; Park, Joo Hwan; Rhee, Bo Wook

    2008-02-01

    A Computational Fluid Dynamics (CFD) model of a post-blowdown fuel channel analysis for aged CANDU reactors with crept pressure tube has been developed, and validated against a high temperature thermal-chemical experiment: CS28-2. The CS28-2 experiment is one of three series of experiments to simulate the thermal-chemical behavior of a 28-element fuel channel at a high temperature and a low steam flow rate which may occur in severe accident conditions such as a LBLOCA (Large Break Loss of Coolant Accident) of CANDU reactors. Pursuant to the objective of this study, the current study has focused on understanding the involved phenomena such as the thermal radiation and convection heat transfer, and the high temperature zirconium-steam reaction in a multi-ring geometry. Therefore, a zirconium-steam oxidation model based on a parabolic rate law was implemented into the CFX-10 code, which is a commercial CFD code offered from ANSYS Inc., and other heat transfer mechanisms in the 28-element fuel channel were modeled by the original CFX-10 heat transfer packages. To assess the capability of the CFX-10 code to model the thermal-chemical behavior of the 28-element fuel channel, the measured temperatures of the Fuel Element Simulators (FES) of three fuel rings in the test bundle and the pressure tube, and the hydrogen production in the CS28-2 experiment were compared with the CFX-10 predictions. In spite of some discrepancy between the measurement data and CFX results, it was found that the CFX-10 prediction based on the Urbanic-Heidrick correlation of the zirconium-steam reaction as well as the Discrete Transfer Model for a radiation heat transfer among the FES of three rings and the pressure tube are quite accurate and sound even for the offset a cluster fuel bundle of an aged fuel channel

  15. CFX-10 Analysis of the High Temperature Thermal- Chemical Experiment (CS28-2)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Tae; Park, Joo Hwan; Rhee, Bo Wook

    2008-02-15

    A Computational Fluid Dynamics (CFD) model of a post-blowdown fuel channel analysis for aged CANDU reactors with crept pressure tube has been developed, and validated against a high temperature thermal-chemical experiment: CS28-2. The CS28-2 experiment is one of three series of experiments to simulate the thermal-chemical behavior of a 28-element fuel channel at a high temperature and a low steam flow rate which may occur in severe accident conditions such as a LBLOCA (Large Break Loss of Coolant Accident) of CANDU reactors. Pursuant to the objective of this study, the current study has focused on understanding the involved phenomena such as the thermal radiation and convection heat transfer, and the high temperature zirconium-steam reaction in a multi-ring geometry. Therefore, a zirconium-steam oxidation model based on a parabolic rate law was implemented into the CFX-10 code, which is a commercial CFD code offered from ANSYS Inc., and other heat transfer mechanisms in the 28-element fuel channel were modeled by the original CFX-10 heat transfer packages. To assess the capability of the CFX-10 code to model the thermal-chemical behavior of the 28-element fuel channel, the measured temperatures of the Fuel Element Simulators (FES) of three fuel rings in the test bundle and the pressure tube, and the hydrogen production in the CS28-2 experiment were compared with the CFX-10 predictions. In spite of some discrepancy between the measurement data and CFX results, it was found that the CFX-10 prediction based on the Urbanic-Heidrick correlation of the zirconium-steam reaction as well as the Discrete Transfer Model for a radiation heat transfer among the FES of three rings and the pressure tube are quite accurate and sound even for the offset a cluster fuel bundle of an aged fuel channel.

  16. Laser treatment of female stress urinary incontinence: optical, thermal, and tissue damage simulations

    Science.gov (United States)

    Hardy, Luke A.; Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.

    2016-02-01

    Treatment of female stress urinary incontinence (SUI) by laser thermal remodeling of subsurface tissues is studied. Light transport, heat transfer, and thermal damage simulations were performed for transvaginal and transurethral methods. Monte Carlo (MC) provided absorbed photon distributions in tissue layers (vaginal wall, endopelvic fascia, urethral wall). Optical properties (n,μa,μs,g) were assigned to each tissue at λ=1064 nm. A 5-mm-diameter laser beam and power of 5 W for 15 s was used, based on previous experiments. MC output was converted into absorbed energy, serving as input for ANSYS finite element heat transfer simulations of tissue temperatures over time. Convective heat transfer was simulated with contact cooling probe set at 0 °C. Thermal properties (κ,c,ρ) were assigned to each tissue layer. MATLAB code was used for Arrhenius integral thermal damage calculations. A temperature matrix was constructed from ANSYS output, and finite sum was incorporated to approximate Arrhenius integral calculations. Tissue damage properties (Ea,A) were used to compute Arrhenius sums. For the transvaginal approach, 37% of energy was absorbed in endopelvic fascia layer with 0.8% deposited beyond it. Peak temperature was 71°C, treatment zone was 0.8-mm-diameter, and almost all of 2.7-mm-thick vaginal wall was preserved. For transurethral approach, 18% energy was absorbed in endopelvic fascia with 0.3% deposited beyond it. Peak temperature was 80°C, treatment zone was 2.0-mm-diameter, and only 0.6 mm of 2.4-mm-thick urethral wall was preserved. A transvaginal approach is more feasible than transurethral approach for laser treatment of SUI.

  17. Molecular Dynamic Simulation of High Thermal Conductivity Synthetic Spider Silk for Thermal Management in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal management is crucial to space technology. Because electronic and other thermally sensitive materials will be located in an essentially airless environment,...

  18. Effective assimilation of global precipitation: simulation experiments

    Directory of Open Access Journals (Sweden)

    Guo-Yuan Lien

    2013-07-01

    Full Text Available Past attempts to assimilate precipitation by nudging or variational methods have succeeded in forcing the model precipitation to be close to the observed values. However, the model forecasts tend to lose their additional skill after a few forecast hours. In this study, a local ensemble transform Kalman filter (LETKF is used to effectively assimilate precipitation by allowing ensemble members with better precipitation to receive higher weights in the analysis. In addition, two other changes in the precipitation assimilation process are found to alleviate the problems related to the non-Gaussianity of the precipitation variable: (a transform the precipitation variable into a Gaussian distribution based on its climatological distribution (an approach that could also be used in the assimilation of other non-Gaussian observations and (b only assimilate precipitation at the location where at least some ensemble members have precipitation. Unlike many current approaches, both positive and zero rain observations are assimilated effectively. Observing system simulation experiments (OSSEs are conducted using the Simplified Parametrisations, primitivE-Equation DYnamics (SPEEDY model, a simplified but realistic general circulation model. When uniformly and globally distributed observations of precipitation are assimilated in addition to rawinsonde observations, both the analyses and the medium-range forecasts of all model variables, including precipitation, are significantly improved as compared to only assimilating rawinsonde observations. The effect of precipitation assimilation on the analyses is retained on the medium-range forecasts and is larger in the Southern Hemisphere (SH than that in the Northern Hemisphere (NH because the NH analyses are already made more accurate by the denser rawinsonde stations. These improvements are much reduced when only the moisture field is modified by the precipitation observations. Both the Gaussian transformation and

  19. Disruption simulation experiment using high-frequency rastering electron beam as the heat source

    International Nuclear Information System (INIS)

    Yamazaki, S.; Seki, M.

    1987-01-01

    The disruption is a serious event which possibly reduces the lifetime of plasm interactive components, so the effects of the resulting high heat flux on the wall materials must be clearly identified. The authors performed disruption simulation experiments to investigate melting, evaporation, and crack initiation behaviors using an electron beam facility as the heat source. The facility was improved with a high-frequency beam rastering system which provided spatially and temporally uniform heat flux on wider test surfaces. Along with the experiments, thermal and mechanical analyses were also performed. A two-dimensional disruption thermal analysis code (DREAM) was developed for the analyses

  20. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation

    NARCIS (Netherlands)

    Peeters, L.F.R.; Dear, de R.; Hensen, J.L.M.; D'Haeseleer, W.

    2009-01-01

    Building Energy Simulation (BES) programmes often use conventional thermal comfort theories to make decisions, whilst recent research in the field of thermal comfort clearly shows that important effects are not incorporated. The conventional theories of thermal comfort were set up based on steady

  1. Weldability prediction of high strength steel S960QL after weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2014-10-01

    Full Text Available This paper presents weld thermal cycle simulation of high strength steel S960QL, and describes influence of cooling time t8/5 on hardness and impact toughness of weld thermal cycle simulated specimens. Furthermore, it presents analysis of characteristic fractions done by electron scanning microscope which can contribute to determination of welding parameters for S960QL steel.

  2. Simulation for (sustainable) building design: Czech experiences

    NARCIS (Netherlands)

    Bartak, M.; Drkal, F.; Hensen, J.L.M.; Lain, M.; Schwarzer, J.; Sourek, B.

    2001-01-01

    This paper attempts to outline the current state-of-the-art in the Czech Republic regarding the use of integrated building performance simulation as a design tool. Integrated performance simulation for reducing the environmental impact of buildings is illustrated by means of three recent HVAC

  3. Thermal-hydraulic Experiments for Advanced Physical Model Development

    International Nuclear Information System (INIS)

    Song, Chulhwa

    2012-04-01

    The improvement of prediction models is needed to enhance the safety analysis capability through experimental database of local phenomena. To improve the two-phase interfacial area transport model, the various experiments were carried out with local two-phase interfacial structure test facilities. 2 Χ 2 and 6 Χ 6 rod bundle test facilities were used for the experiment on the droplet behavior. The experiments on the droplet behavior inside a heated rod bundle geometry. The experiments used GIRLS and JICO and CFD analysis were carried out to comprehend the local condensation of steam jet, turbulent jet induced by condensation and the thermal mixing in a pool. In order to develop a model for key phenomena of newly adapted safety system, experiments for boiling inside a pool and condensation in horizontal channel have been performed. An experimental database of the CHF (Critical Heat Flux) and PDO (Post-dryout) was constructed. The mechanism of the heat transfer enhancement by surface modifications in nano-fluid was investigated in boiling mode and rapid quenching mode. The special measurement techniques were developed. They are Double-sensor optical void probe, Optic Rod, PIV technique and UBIM system

  4. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    Science.gov (United States)

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.

  5. Numerical Simulation of Thermal Performance of Glass-Fibre-Reinforced Polymer

    Science.gov (United States)

    Zhao, Yuchao; Jiang, Xu; Zhang, Qilin; Wang, Qi

    2017-10-01

    Glass-Fibre-Reinforced Polymer (GFRP), as a developing construction material, has a rapidly increasing application in civil engineering especially bridge engineering area these years, mainly used as decorating materials and reinforcing bars for now. Compared with traditional construction material, these kinds of composite material have obvious advantages such as high strength, low density, resistance to corrosion and ease of processing. There are different processing methods to form members, such as pultrusion and resin transfer moulding (RTM) methods, which process into desired shape directly through raw material; meanwhile, GFRP, as a polymer composite, possesses several particular physical and mechanical properties, and the thermal property is one of them. The matrix material, polymer, performs special after heated and endue these composite material a potential hot processing property, but also a poor fire resistance. This paper focuses on thermal performance of GFRP as panels and corresponding researches are conducted. First, dynamic thermomechanical analysis (DMA) experiment is conducted to obtain the glass transition temperature (Tg) of the object GFRP, and the curve of bending elastic modulus with temperature is calculated according to the experimental data. Then compute and estimate the values of other various thermal parameters through DMA experiment and other literatures, and conduct numerical simulation under two condition respectively: (1) the heat transfer process of GFRP panel in which the panel would be heated directly on the surface above Tg, and the hot processing under this temperature field; (2) physical and mechanical performance of GFRP panel under fire condition. Condition (1) is mainly used to guide the development of high temperature processing equipment, and condition (2) indicates that GFRP’s performance under fire is unsatisfactory, measures must be taken when being adopted. Since composite materials’ properties differ from each other

  6. Application of large-eddy simulation to pressurized thermal shock: Assessment of the accuracy

    International Nuclear Information System (INIS)

    Loginov, M.S.; Komen, E.M.J.; Hoehne, T.

    2011-01-01

    Highlights: → We compare large-eddy simulation with experiment on the single-phase pressurized thermal shock problem. → Three test cases are considered, they cover entire range of mixing patterns. → The accuracy of the flow mixing in the reactor pressure vessel is assessed qualitatively and quantitatively. - Abstract: Pressurized Thermal Shock (PTS) is identified as one of the safety issues where Computational Fluid Dynamics (CFD) can bring real benefits. The turbulence modeling may impact overall accuracy of the calculated thermal loads on the vessel walls, therefore advanced methods for turbulent flows are required. The feasibility and mesh resolution of LES for single-phase PTS are assessed earlier in a companion paper. The current investigation deals with the accuracy of LES approach with respect to the experiment. Experimental data from the Rossendorf Coolant Mixing (ROCOM) facility is used as a basis for validation. Three test cases with different flow rates are considered. They correspond to a buoyancy-driven, a momentum-driven, and a transitional coolant mixing pattern in the downcomer. Time- and frequency-domain analysis are employed for comparison of the numerical and experimental data. The investigation shows a good qualitative prediction of the bulk flow patterns. The fluctuations are modeled correctly. A conservative estimate of the temperature drop near the wall can be obtained from the numerical results with safety factor of 1.1-1.3. In general, the current LES gives a realistic and reliable description of the considered coolant mixing experiments. The accuracy of the prediction is definitely improved with respect to earlier CFD simulations.

  7. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    Science.gov (United States)

    Emrich, William J., Jr.

    2014-01-01

    Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit

  8. Simulation of Stochastic Loads for Fatigue Experiments

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Brincker, Rune

    1989-01-01

    process by a Markov process. Two different spectra from two tubular joints in an offshore structure (one narrow banded and one wide banded) are considered in an example. The results show that the simple direct method is quite efficient and results in a simulation speed of about 3000 load cycles per second......A simple direct simulation method for stochastic fatigue-load generation is described in this paper. The simulation method is based on the assumption that only the peaks of the load process significantly affect the fatigue life. The method requires the conditional distribution functions of load...... ranges given the last peak values. Analytical estimates of these distribution functions are presented in the paper and compared with estimates based on a more accurate simulation method. In the more accurate simulation method samples at equidistant times are generated by approximating the stochastic load...

  9. Simulation of Stochastic Loads for Fatigue Experiments

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Brincker, Rune

    process by a Markov process. Two different spectra from two tubular joints in an offshore structure (one narrow banded and one wide banded) are considered in an example. The results show that the simple direct method is quite efficient and is results in a simulation speed at about 3000 load cycles per......A simple direct simulation method for stochastic fatigue load generation is described in this paper. The simulation method is based on the assumption that only the peaks of the load process significantly affect the fatigue life. The method requires the conditional distribution functions of load...... ranges given the last peak values. Analytical estimates of these distribution functions are presented in the paper and compared with estimates based on a more accurate simulation method. In the more accurate simulation method samples at equidistant times are generated by approximating the stochastic load...

  10. Numerical analysis of two experiments related to thermal fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Bieder, Ulrich; Errante, Paolo [DEN-STMF, Commissariat a l' Energie Atomique et aux Energies Alternatives, Universite Paris-Saclay, Gif-sur-Yvette (France)

    2017-06-15

    Jets in cross flow are of fundamental industrial importance and play an important role in validating turbulence models. Two jet configurations related to thermal fatigue phenomena are investigated: • T-junction of circular tubes where a heated jet discharges into a cold main flow and • Rectangular jet marked by a scalar discharging into a main flow in a rectangular channel. The T-junction configuration is a classical test case for thermal fatigue phenomena. The Vattenfall T-junction experiment was already subject of an OECD/NEA benchmark. A LES modelling and calculation strategy is developed and validated on this data. The rectangular-jet configuration is important for basic physical understanding and modelling and has been analyzed experimentally at CEA. The experimental work was focused on turbulent mixing between a slightly heated rectangular jet which is injected perpendicularly into the cold main flow of a rectangular channel. These experiments are analyzed for the first time with LES. The overall results show a good agreement between the experimental data and the CFD calculation. Mean values of velocity and temperature are well captured by both RANS calculation and LES. The range of critical frequencies and their amplitudes, however, are only captured by LES.

  11. The relevance of thermal hydraulics pipeline simulation as a regulatory support tool

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Patricia Mannarino; Santos, Almir Beserra dos [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The capacity definition of a pipeline, along with its allocation, is very relevant to assure market transparency, nondiscriminatory access, security of supply, and also to give consistent signs for expansion needs. Nevertheless, the capacity definition is a controversial issue, and may widely vary depending on the technical and commercial assumptions made. To calculate a pipeline's nominal capacity, there are a variety of simulation tools, which include steady state, transient and on-line computer programs. It is desirable that the simulation tool is robust enough to predict the pipeline's capacity under different conditions. There are many variables that impact the flow through a pipeline, like gas characteristics, pipe and environmental variables. Designing a thermal model is a time-consuming task that requests understanding the level of detail need, in order to achieve success in its application. This article discusses the capacity definition, its role and calculation guidelines, describes ANP's experience with capacity calculation and further challenges according to the new regulation, and debates the role of thermal hydraulic simulation as a regulatory tool. (author)

  12. Calibration of mathematical models for simulation of thermal, seepage and mechanical behaviour of boom clay

    International Nuclear Information System (INIS)

    Baldi, G.; Borsetto, M.; Hueckel, T.

    1987-01-01

    This report presents results of research on the verification of the validity of a generalized thermo-elastoplastic-hydraulic mathematical model elaborated at Ismes for description of the behaviour of boom clay. The model is described in Section 2. Experimental results performed at Ismes for the identification of the material constants in athermal and thermal drained conditions are then presented. Procedures for the identification are described in Section 4. The undrained consolidated constant total stress heating test is then discussed. The undrained test shows the possibility of clay yielding due to effective pressure decrease during heating, caused by water pressure growth. The test has been simulated numerically, confirming the interpretation of the experiment. Further simulation of plane strain and plane stress central heating axisymmetric problem shows again a formation of a yielded clay zone around the heater. Interpretation of the results and recommendations for further research are given

  13. Design and simulation of a low concentrating photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Rosell, J.I.; Vallverdu, X.; Lechon, M.A.; Ibanez, M.

    2005-01-01

    The advantages of photovoltaic/thermal (PV/T) collectors and low solar concentration technologies are combined into a photovoltaic/thermal system to increase the solar energy conversion efficiency. This paper presents a prototype 11X concentration rate and two axis tracking system. The main novelty is the coupling of a linear Fresnel concentrator with a channel photovoltaic/thermal collector. An analytical model to simulate the thermal behaviour of the prototype is proposed and validated. Measured thermal performance of the solar system gives values above 60%. Theoretical analysis confirms that thermal conduction between the PV cells and the absorber plate is a critical parameter

  14. Numerical simulation of CTE mismatch and thermal-structural stresses in the design of interconnects

    Science.gov (United States)

    Peter, Geoffrey John M.

    With the ever-increasing chip complexity, interconnects have to be designed to meet the new challenges. Advances in optical lithography have made chip feature sizes available today at 70 nm dimensions. With advances in Extreme Ultraviolet Lithography, X-ray Lithography, and Ion Projection Lithography it is expected that the line width will further decrease to 20 nm or less. With the decrease in feature size, the number of active devices on the chip increases. With higher levels of circuit integration, the challenge is to dissipate the increased heat flux from the chip surface area. Thermal management considerations include coefficient of thermal expansion (CTE) matching to prevent failure between the chip and the board. This in turn calls for improved system performance and reliability of the electronic structural systems. Experience has shown that in most electronic systems, failures are mostly due to CTE mismatch between the chip, board, and the solder joint (solder interconnect). The resulting high thermal-structural stress and strain due to CTE mismatch produces cracks in the solder joints with eventual failure of the electronic component. In order to reduce the thermal stress between the chip, board, and the solder joint, this dissertation examines the effect of inserting wire bundle (wire interconnect) between the chip and the board. The flexibility of the wires or fibers would reduce the stress at the rigid joints. Numerical simulations of two, and three-dimensional models of the solder and wire interconnects are examined. The numerical simulation is linear in nature and is based on linear isotropic material properties. The effect of different wire material properties is examined. The effect of varying the wire diameter is studied by changing the wire diameter. A major cause of electronic equipment failure is due to fatigue failure caused by thermal cycling, and vibrations. A two-dimensional modal and harmonic analysis was simulated for the wire interconnect

  15. Analytical tools for thermal infrared engineerig: a thermal sensor simulation package

    Science.gov (United States)

    Jaggi, Sandeep

    1992-09-01

    The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration. To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering'--ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as SNR, NER, NETD etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters. In addition, ATTIRE can be used as a tutorial for understanding the distribution of thermal flux or solar irradiance over selected bandwidths of the spectrum. This spectrally distributed incident flux can then be analyzed as it propagates through the subsystems that constitute the entire sensor. ATTIRE provides a variety of functions ranging from plotting black-body curves for varying bandwidths and computing the integral flux, to performing transfer function analysis of the sensor system. The package runs from a menu- driven interface in a PC-DOS environment. Each sub-system of the sensor is represented by windows and icons. A user-friendly mouse-controlled point-and-click interface allows the user to simulate various aspects of a sensor. The package can simulate a theoretical sensor system. Trade-off studies can be easily done by changing the appropriate parameters and monitoring the effect of the system performance. The package can provide plots of system performance versus any system parameter. A parameter (such as the entrance aperture of the optics) could be varied and its effect on another parameter (e.g., NETD) can be plotted. A third parameter (e.g., the

  16. Experience with simulators of Kaiga generating station

    International Nuclear Information System (INIS)

    Krishnamoorthy, M.; Sukumar, T.S.; Sanathkumar, V.V.; Nageshwararao, G.

    2006-01-01

    The main responsibility of the nuclear power plant operator is to ensure the safe and reliable operation of the nuclear power plant. A safety culture is attained and maintained, when the essential requirements for technical skills and knowledge of procedures are supplemented by broader training which ensures that the individuals understand the significance of their duties and the consequences of mistakes arising from misconceptions or lack of knowledge or diligence. Simulator training is the one most effective and important means for providing this broader training. The simulator training can identify weaknesses in the operator's performance and help in eliminating the weaknesses. Also the simulator aids in verifying the certain process behaviour during a hypothetical simulated scenario for study and verify the procedures as well as process behaviour. (author)

  17. Experiment Simulation Configurations Used in DUNE CDR

    Energy Technology Data Exchange (ETDEWEB)

    Alion, T. [Univ. of South Carolina, Columbia, SC (United States); Black, J. J. [Univ. of Warwick, Coventry (United Kingdom); Bashyal, A. [Oregon State Univ., Corvallis, OR (United States); Bass, M. [Univ. of Oxford (United Kingdom); Bishai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cherdack, D. [Colorado State Univ., Fort Collins, CO (United States); Diwan, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Djurcic, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Evans, J. [Univ. of Manchester (United Kingdom); Fernandez-Martinez, E. [Madrid Autonama Univ. (Spain); Fields, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Gran, R. [Univ. of Minnesota, Duluth, MN (United States); Guenette, R. [Univ. of Oxford (United Kingdom); Hewes, J. [Univ. of Manchester (United Kingdom); Hogan, M. [Colorado State Univ., Fort Collins, CO (United States); Hylen, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Junk, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kohn, S. [Univ. of California, Berkeley, CA (United States); LeBrun, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lundberg, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Marchionni, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Morris, C. [Univ. of California, Berkeley, CA (United States); Papadimitriou, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Rameika, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Rucinski, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Soldner-Rembold, S. [Univ. of Manchester (United Kingdom); Sorel, M. [Spanish National Research Council (CSIC), Valencia (Spain). Univ. of Valencia (UV), Inst. de Fisica Corpuscular; Urheim, J. [Indiana Univ., Bloomington, IN (United States); Viren, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Whitehead, L. [Univ. of Houston, TX (United States); Wilson, R. [Colorado State Univ., Fort Collins, CO (United States); Worcester, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zeller, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-06-30

    The LBNF/DUNE CDR describes the proposed physics program and experimental design at the conceptual design phase. Volume 2, entitled The Physics Program for DUNE at LBNF, outlines the scientific objectives and describes the physics studies that the DUNE collaboration will perform to address these objectives. The long-baseline physics sensitivity calculations presented in the DUNE CDR rely upon simulation of the neutrino beam line, simulation of neutrino interactions in the far detector, and a parameterized analysis of detector performance and systematic uncertainty. The purpose of this posting is to provide the results of these simulations to the community to facilitate phenomenological studies of long-baseline oscillation at LBNF/DUNE. Additionally, this posting includes GDML of the DUNE single-phase far detector for use in simulations. DUNE welcomes those interested in performing this work as members of the collaboration, but also recognizes the benefit of making these configurations readily available to the wider community.

  18. Reproducible computational biology experiments with SED-ML--the Simulation Experiment Description Markup Language.

    Science.gov (United States)

    Waltemath, Dagmar; Adams, Richard; Bergmann, Frank T; Hucka, Michael; Kolpakov, Fedor; Miller, Andrew K; Moraru, Ion I; Nickerson, David; Sahle, Sven; Snoep, Jacky L; Le Novère, Nicolas

    2011-12-15

    The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from different fields of research

  19. Reproducible computational biology experiments with SED-ML - The Simulation Experiment Description Markup Language

    Science.gov (United States)

    2011-01-01

    Background The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. Results In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. Conclusions With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from

  20. A two-compartment thermal-hydraulic experiment (LACE-LA4) analyzed by ESCADRE code

    International Nuclear Information System (INIS)

    Passalacqua, R.

    1994-01-01

    Large scale experiments show that whenever a Loss of Coolant Accident (LOCA) occurs, water pools are generated. Stratifications of steam saturated gas develop above water pools causing a two-compartment thermal-hydraulics. The LACE (LWR Advanced Containment Experiment) LA4 experiment, performed at the Hanford Engineering Development Laboratory (HEDL), exhibited a strong stratification, at all times, above a growing water pool. JERICHO and AEROSOLS-B2 are part of the ESCADRE code system (Ensemble de Systemes de Codes d'Analyse d'accident Des Reacteurs A Eau), a tool for evaluating the response of a nuclear plant to severe accidents. These two codes are here used to simulate respectively the thermal-hydraulics and the associated aerosol behavior. Code results have shown that modelling large containment thermal-hydraulics without taking account of the stratification phenomenon leads to large overpredictions of containment pressure and temperature. If the stratification is modelled as a zone with a higher steam condensation rate and a higher thermal resistance, ESCADRE predictions match quite well experimental data. The stratification thermal-hydraulics is controlled by power (heat fluxes) repartition in the lower compartment between the water pool and the nearby walls. Therefore the total, direct heat exchange between the two compartment is reduced. Stratification modelling is believed to be important for its influence on aerosol behavior: aerosol deposition through the inter-face of the two subcompartments is improved by diffusiophoresis and thermophoresis. In addition the aerosol concentration gradient, through the stratification, will cause a driving force for motion of smaller particles towards the pool. (author)

  1. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    Song, C. H.; Baek, W. P.; Chung, M. K.

    2007-06-01

    The objectives of the project are to study thermal hydraulic characteristics of advanced nuclear reactor system for evaluating key thermal-hydraulic phenomena relevant to new safety concepts. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. The Followings are main research topics: - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation-induced Thermal Mixing in a Pool - Development of Thermal-Hydraulic Models for Two-Phase Flow - Construction of T-H Data Base

  2. Thermal-hydraulic Experiments for Advanced Physical Model Development

    International Nuclear Information System (INIS)

    Song, Chul Hwa; Baek, W. P.; Yoon, B. J.

    2010-04-01

    The improvement of prediction models is needed to enhance the safety analysis capability through the fine measurements of local phenomena. To improve the two-phase interfacial area transport model, the various experiments were carried out used SUBO and DOBO. 2x2 and 6x6 rod bundle test facilities were used for the experiment on the droplet behavior. The experiments on the droplet behavior inside a heated rod bundle were focused on the break-up of droplets induced by a spacer grid in a rod bundle geometry. The experiments used GIRLS and JICO and CFD analysis were carried out to comprehend the local condensation of steam jet, turbulent jet induced by condensation and the thermal mixing in a pool. An experimental database of the CHF (Critical Heat Flux) and PDO (Post-dryout) had been constructed. The mechanism of the heat transfer enhancement by surface modifications in nano-fluid was investigated in boiling mode and rapid quenching mode. The special measurement techniques were developed. They are Double -sensor optical void probe, Optic Rod, PIV technique and UBIM system

  3. Simulation of containment atmosphere stratification experiment using local instantaneous description

    International Nuclear Information System (INIS)

    Babic, M.; Kljenak, I.

    2004-01-01

    An experiment on mixing and stratification in the atmosphere of a nuclear power plant containment at accident conditions was simulated with the CFD code CFX4.4. The original experiment was performed in the TOSQAN experimental facility. Simulated nonhomogeneous temperature, species concentration and velocity fields are compared to experimental results. (author)

  4. Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module

    Science.gov (United States)

    2015-02-01

    executed with SolidWorks Flow Simulation , a computational fluid-dynamics code. The graph in Fig. 2 shows the timing and amplitudes of power pulses...defined a convective flow of air perpendicular to the bottom surface of the mounting plate, with a velocity of 10 ft/s. The thermal simulations were...Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module by Gregory K Ovrebo ARL-TR-7210

  5. Edge on Impact Simulations and Experiments

    OpenAIRE

    Leavy, R. Brian; Clayton, John D.; Strack, O. Erik; Brannon, Rebecca M.; Strassburger, Elmar

    2013-01-01

    In the quest to understand damage and failure of ceramics in ballistic events, simplified experiments have been developed to benchmark behavior. One such experiment is known as edge on impact (EOI). In this experiment, an impactor strikes the edge of a thin square plate, and damage and cracking that occur on the free surface are captured in real time with high speed photography. If the material of interest is transparent, additional information regarding damage and wave mechanics within the s...

  6. Thermal phase stability of some simulated Defense waste glasses

    International Nuclear Information System (INIS)

    May, R.P.

    1981-04-01

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450 0 C to 1100 0 C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7 0 C/hour from an 1100 0 C melt down to 500 0 C where it was removed from the furnace. The following were observed. The slow cooling rate of 7 0 C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO 2 and (Ni, Mn, Fe) 2 O 4 form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500 0 C there is but little devitrification occurring implying that glass canisters stored at 300 0 C may be kinetically stable despite not being thermodynamically so

  7. Thermal phase stability of some simulated Defense waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    May, R.P.

    1981-04-01

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450/sup 0/C to 1100/sup 0/C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7/sup 0/C/hour from an 1100/sup 0/C melt down to 500/sup 0/C where it was removed from the furnace. The following were observed. The slow cooling rate of 7/sup 0/C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO/sub 2/ and (Ni, Mn, Fe)/sub 2/O/sub 4/ form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500/sup 0/C there is but little devitrification occurring implying that glass canisters stored at 300/sup 0/C may be kinetically stable despite not being thermodynamically so.

  8. 3D thermal modeling of TRISO fuel coupled with neutronic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Los Alamos National Laboratory; Uddin, Rizwan [UNIV OF ILLINIOS

    2010-01-01

    The Very High Temperature Gas Reactor (VHTR) is widely considered as one of the top candidates identified in the Next Generation Nuclear Power-plant (NGNP) Technology Roadmap under the U.S . Depanment of Energy's Generation IV program. TRlSO particle is a common element among different VHTR designs and its performance is critical to the safety and reliability of the whole reactor. A TRISO particle experiences complex thermo-mechanical changes during reactor operation in high temperature and high burnup conditions. TRISO fuel performance analysis requires evaluation of these changes on micro scale. Since most of these changes are temperature dependent, 3D thermal modeling of TRISO fuel is a crucial step of the whole analysis package. In this paper, a 3D numerical thermal model was developed to calculate temperature distribution inside TRISO and pebble under different scenarios. 3D simulation is required because pebbles or TRISOs are always subjected to asymmetric thermal conditions since they are randomly packed together. The numerical model was developed using finite difference method and it was benchmarked against ID analytical results and also results reported from literature. Monte-Carlo models were set up to calculate radial power density profile. Complex convective boundary condition was applied on the pebble outer surface. Three reactors were simulated using this model to calculate temperature distribution under different power levels. Two asymmetric boundary conditions were applied to the pebble to test the 3D capabilities. A gas bubble was hypothesized inside the TRISO kernel and 3D simulation was also carried out under this scenario. Intuition-coherent results were obtained and reported in this paper.

  9. Thermal dynamic simulation of wall for building energy efficiency under varied climate environment

    Science.gov (United States)

    Wang, Xuejin; Zhang, Yujin; Hong, Jing

    2017-08-01

    Aiming at different kind of walls in five cities of different zoning for thermal design, using thermal instantaneous response factors method, the author develops software to calculation air conditioning cooling load temperature, thermal response factors, and periodic response factors. On the basis of the data, the author gives the net work analysis about the influence of dynamic thermal of wall on air-conditioning load and thermal environment in building of different zoning for thermal design regional, and put forward the strategy how to design thermal insulation and heat preservation wall base on dynamic thermal characteristic of wall under different zoning for thermal design regional. And then provide the theory basis and the technical references for the further study on the heat preservation with the insulation are in the service of energy saving wall design. All-year thermal dynamic load simulating and energy consumption analysis for new energy-saving building is very important in building environment. This software will provide the referable scientific foundation for all-year new thermal dynamic load simulation, energy consumption analysis, building environment systems control, carrying through farther research on thermal particularity and general particularity evaluation for new energy -saving walls building. Based on which, we will not only expediently design system of building energy, but also analyze building energy consumption and carry through scientific energy management. The study will provide the referable scientific foundation for carrying through farther research on thermal particularity and general particularity evaluation for new energy saving walls building.

  10. EBW simulation for MAST and NSTX experiments

    International Nuclear Information System (INIS)

    Preinhaelter, J.; Urban, J.; Pavlo, P.; Taylor, G.; Shevchenko, V.; Valovic, M.; Vahala, L.; Vahala, G.

    2005-01-01

    The interpretation of EBW emission from spherical tokamaks is nontrivial. We report on a 3D simulation model of this process that incorporates Gaussian beams for the antenna, a full wave solution of EBW-X and EBW-X-O conversions using adaptive finite elements, and EBW ray tracing to determine the radiative temperature. This model is then used to interpret the experimental results from MAST and NSTX. EBW for ELM free H-modes in MAST suggests that the magnetic equilibrium determined by the EFIT code does not adequately represent the B-field within the transport barrier. Using the EBW signal for the reconstruction of the radial profile of the magnetic field, we determine a new equilibrium and see that the EBW simulation now yields better agreement with experimental results. EBW simulations yield excellent results for the time development of the plasma temperature as measured by the EBW radiometer on NSTX

  11. Simulation studies on high-gradient experiments

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1992-12-01

    Computer simulation of the characteristics of the dark current emitted from a 0.6 m long S-band accelerating structure has been made. The energy spectra and the dependence of the dark current on the structure length were simulated. By adjusting the secondary electron emission (SEE) coefficients, the simulated energy spectra qualitatively reproduced the observed ones. It was shown that the dark current increases exponentially with the structure length. The measured value of the multiplication factor of the dark current per unit cell can be explained if the SEE coefficient is set to 1.2. The critical gradient for dark current capture E cri has been calculated for two structures of 180 cells. They are E cri [MV/m] = 13.1 f and 8.75 f for a/λ = 0.089 and 0.16, respectively, where f is the frequency in GHz, a the iris diameter and λ the wave length

  12. Experiments and simulations on heat exchangers in thermoelectric generator for automotive application

    International Nuclear Information System (INIS)

    Liu, X.; Deng, Y.D.; Zhang, K.; Xu, M.; Xu, Y.; Su, C.Q.

    2014-01-01

    In this work, an energy-harvesting system which extracts heat from an automotive exhaust pipe and turns the heat into electricity by using thermoelectric power generators (TEGs) was built. Experiments show that the temperature difference in automotive system is not constant, especially the heat exchanger, which cannot provide the thermoelectric modules (TMs) large amount of heat. The thermal performance of different heat exchangers in exhaust-based TEGs is studied in this work, and the thermal characteristics of heat exchangers with different internal structures and thickness are discussed, to obtain higher interface temperature and thermal uniformity. Following computational fluid dynamics simulations, infrared experiments and output power testing system are carried out on a high-performance production engine with a dynamometer. Results show that a plate-shaped heat exchanger with chaos-shaped internal structure and thickness of 5 mm achieves a relatively ideal thermal performance, which is practically useful to enhance the thermal performance of the TEG, and larger total output power can be thus obtained. - Graphical abstract: The thermal and electrical characteristics of different heat exchangers of automotive exhaust-based thermoelectric generator are discussed, to obtain higher interface temperature and thermal uniformity. - Highlights: • Different internal structures and thickness of heat exchangers were proposed. • Power output testing system of the two heat exchangers was characterized. • Chaos-shaped heat exchanger (5 mm thickness) shows better performance

  13. Thermal performance of a Stirling engine powered by a solar simulator

    International Nuclear Information System (INIS)

    Aksoy, Fatih; Karabulut, Halit; Çınar, Can; Solmaz, Hamit; Özgören, Yasar Önder; Uyumaz, Ahmet

    2015-01-01

    In this study, the performance of a beta type Stirling engine which works at relatively lower temperatures was investigated using 400 W and 1000 W halogen lamps as a heat source and helium as the working fluid. The working fluid was charged into the engine block and the pressure of the working fluid was ranged from 1 to 5 bars with 1 bar increments. The halogen lamps were placed into a cavity adjacent to the hot end of the displacer cylinder, which is made of aluminum alloy. In the experiments conducted with 400 W halogen lamp, the temperature of the cavity was 623 ± 10 K. The power, torque and thermal efficiency of the engine were determined to be 37.08 W, 1.68 Nm and 9.27%, at 5 bar charge pressure. For the 1000 W halogen lamp, the temperature of the cavity was determined to be 873 ± 10 K. The power, torque and thermal efficiency of the engine were determined to be 127.17 W, 3.4 Nm and 12.85%, at the same charge pressure. The experimental thermal efficiencies of the engine were also compared with thermodynamic nodal analysis. - Highlights: • The performance of a beta type Stirling engine was investigated. • 400 and 1000 W halogen lamps were used as a solar simulator in the experiments. • Cavity temperature was measured 623 and 873 K for 400 and 1000 W lamps. • 1000 W halogen lamp provided better engine performance and thermal efficiency. • Experimental results of efficiency were compared with nodal analysis results

  14. Thermal experiments in the model of ADS target

    International Nuclear Information System (INIS)

    Alexander, Efanov; Yuri, Orlov; Alexander, Sorokin; Eugeni, Ivanov; Galina, Bogoslovskaia; Ning, Li

    2002-01-01

    The paper presents thermal experiments performed in the SSC RF IPPE on the ADS window target model. Brief description of the model, specific features of structure, measurement system and some methodological approaches are presented. Eutectic lead-bismuth alloy is modeled here by eutectic sodium-potassium alloy. The following characteristics of the target model were measured directly and estimated by processing: coolant flow rate, model power, absolute temperature of the coolant with a distance from the membrane of the target, absolute temperature of the membrane surface, mean square value and pulsating component of coolant temperature, as well as membrane temperature. Measurements have shown a great pulsations of temperature existing at the membrane surface that must be taken into account in analysis of strength of real target system. Experimental temperature fields (present work) and velocity fields measured earlier make up a complete database for verification of 2D and 3D thermohydraulic codes. (author)

  15. COMMIX analysis of four constant flow thermal upramp experiments performed in a thermal hydraulic model of an advanced LMR

    International Nuclear Information System (INIS)

    Yarlagadda, B.S.

    1989-04-01

    The three-dimensional thermal hydraulics computer code COMMIX-1AR was used to analyze four constant flow thermal upramp experiments performed in the thermal hydraulic model of an advanced LMR. An objective of these analyses was the validation of COMMIX-1AR for buoyancy affected flows. The COMMIX calculated temperature histories of some thermocouples in the model were compared with the corresponding measured data. The conclusions of this work are presented. 3 refs., 5 figs

  16. 3D Coulomb balls: experiment and simulation

    International Nuclear Information System (INIS)

    Arp, O; Block, D; Bonitz, M; Fehske, H; Golubnychiy, V; Kosse, S; Ludwig, P; Melzer, A; Piel, A

    2005-01-01

    Spherically symmetric three-dimensional charged particle clusters are analyzed experimentally and theoretically. Based on accurate molecular dynamics simulations ground state configurations and energies with clusters for N ≤ 160 are presented which correct previous results of Hasse and Avilov [Phys. Rev. A 44, 4506 (1991)]. A complete table is given in the appendix. Further, the lowest metastable states are analyzed

  17. Simulation of thermo-Elastics Properties of Thermal Barrier Coatings ...

    African Journals Online (AJOL)

    Thermal barrier coatings are used to protect different parts in compressors and turbines from heat. They are generally composed of two layers, one metallic layer providing resistance to heat corrosion and oxidation, and one thermally insulating ceramic layer. Two different techniques are industrially used. Plasma spray ...

  18. Fundamental experiment on simulated molten core/concrete interaction

    International Nuclear Information System (INIS)

    Toda, S.; Katsumura, Y.

    1994-01-01

    If a complete and prolonged failure of coolant flow were to occur in a LWR or FBR, fission product decay heat would cause the fuel to overheat. If no available action to cool the fuel were taken, it would eventually melt. Ibis could lead to slumping of the molten core material and to the failure of the reactor pressure vessel and deposition of these materials into the concrete reactor cavity. Consequently, the molten core could melt and decompose the concrete. Vigorous agitation of the molten core pool by concrete decomposition gases is expected to enhance the convective heat transfer process. Besides the decomposition gases, melting concrete (slag) generated under the molten core pool will be buoyed up, and will also affect the downward heat transfer. Though, in this way, the heat transfer process across the interface is complicated by the slag and the gases evolved from the decomposed concrete, it is very important to make its process clear for the safety evaluation of nuclear reactors. Therefore, in this study, fundamental experiments were performed using simulated materials to observe the behaviors of the hot pool, slag and gases at the interface. Moreover, from the experimental observation, a correlation without empirical constants was proposed to calculate the interface heat transfer. The heat transfer across the interface would depend on thermo-physical interactions between the pool, slag and concrete which are changed by their thermal properties and interface temperature and so on. For example, the molten concrete is miscible in molten oxidic core debris, but is immiscible in metallic core debris. If a contact temperature between the molten core pool and the concrete falls below the solidus of the pool, solidification of the pool will occur. In this study, the case of immiscible slag in the pool is treated and solidification of the pool does not occur. Thus, water, paraffin and air were selected as the simulated molten core pool, concrete, and decomposition

  19. ADVANCED COMPUTATIONALMETHODS FOR COMPLEX SIMULATION OF THERMAL PROCESSES IN POWER ENGINEERING

    Directory of Open Access Journals (Sweden)

    Risto V. Filkoski

    2007-04-01

    Full Text Available The overall frame and principal steps of complex numerical modelling of thermal processes in power boiler furnaces on pulverised coal with tangential disposition of the burners are presented in the paper. Computational fluid dynamics (CFD technique is used as a tool to perform comprehensive thermal analysis in two test cases. The methodology for creation of three-dimensional models of boiler furnaces is briefly described. Standard steady k- model is employed for description of the turbulent flow. The coupling of continuity and momentum is achieved by the SIMPLEC method. Coal combustion is modelled by the mixture fraction/probability density function approach for the reaction chemistry, with equilibrium assumption applied for description of the system chemistry. Thermal radiation is computed by means of the simplified P-N model, based on expansion of the radiation intensity into an orthogonal series of spherical harmonics.Comparison between the simulation predictions and available site measurements leads to a conclusion that the model produces realistic insight into the furnace processes. Qualitative agreement of the results indicates reasonability of the calculations and validates the employed sub-models. The described test cases and other experiences with CFD modelling stress the advantages over a purely field data study, such as the ability to quickly and cheaply analyse a variety of design options without actually modifying the object and the availability of significantly more data to interpret the results.

  20. Note: Local thermal conductivities from boundary driven non-equilibrium molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bresme, F.; Armstrong, J.

    2014-01-01

    We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the “local” thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation

  1. Planar radiative shock experiments and their comparison to simulations

    International Nuclear Information System (INIS)

    Reighard, A. B.; Drake, R. P.; Mucino, J. E.; Knauer, J. P.; Busquet, M.

    2007-01-01

    Recent experiments have obtained radiographic data from shock waves driven at >100 km/s in xenon gas, and Thomson scattering data from similar experiments using argon gas. Presented here is a review of these experiments, followed by an outline of the discrepancies between the data and the results of one-dimensional simulations. Simulations using procedures that work well for similar but nonradiative experiments show inconsistencies between the measured position of the interface of the beryllium and xenon and the calculated position for these experiments. Sources of the discrepancy are explored

  2. Nuclear power plant accident simulations of gasket materials under simultaneous radiation plus thermal plus mechanical stress conditions

    International Nuclear Information System (INIS)

    Gillen, K.T.; Malone, G.M.

    1997-07-01

    In order to probe the response of silicone door gasket materials to a postulated severe accident in an Italian nuclear power plant, compression stress relaxation (CSR) and compression set (CS) measurements were conducted under combined radiation (approximately 6 kGy/h) and temperature (up to 230 degrees C) conditions. By making some reasonable initial assumptions, simplified constant temperature and dose rates were derived that should do a reasonable job of simulating the complex environments for worst-case severe events that combine overall aging plus accidents. Further simplification coupled with thermal-only experiments allowed us to derive thermal-only conditions that can be used to achieve CSR and CS responses similar to those expected from the combined environments that are more difficult to simulate. Although the thermal-only simulations should lead to sealing forces similar to those expected during a severe accident, modulus and density results indicate that significant differences in underlying chemistry are expected for the thermal-only and the combined environment simulations. 15 refs., 31 figs., 15 tabs

  3. Decay of the pulsed thermal neutron flux in two-zone hydrogenous systems - Monte Carlo simulations using MCNP standard data libraries

    International Nuclear Information System (INIS)

    Wiacek, Urszula; Krynicka, Ewa

    2006-01-01

    Pulsed neutron experiments in two-zone spherical and cylindrical geometry has been simulated using the MCNP code. The systems are built of hydrogenous materials. The inner zone is filled with aqueous solutions of absorbers (H 3 BO 3 or KCl). It is surrounded by the outer zone built of Plexiglas. The system is irradiated with the pulsed thermal neutron flux and the thermal neutron decay in time is observed. Standard data libraries of the thermal neutron scattering cross-sections of hydrogen in hydrogenous substances have been used to simulate the neutron transport. The time decay constant of the fundamental mode of the thermal neutron flux determined in each simulation has been compared with the corresponding result of the real pulsed neutron experiment

  4. Further experience in simulation of rod drop experiments in the Loviisa and Mochovce reactors

    International Nuclear Information System (INIS)

    Siltanen, P.; Kaloinen, E.; Tanskanen, A.; Mattila, R.

    2001-01-01

    Simulations of reactor scram experiments using the 3-dimensional kinetics code HEXTRAN have been updated for the initial cores of Loviisa-1 and 2 Mochovce-1 and have been extended to burned cores of Loviisa-1. In these simulations, the entire experiment is simulated dynamically, including the behaviour of the core, the signal of the ionization chamber, and the inverse point kinetics of the reactivity meter. The predicted output of the reactivity meter is compared with the output observed during the experiment (Authors)

  5. Simulation of water hammer experiments using RELAP5 code

    International Nuclear Information System (INIS)

    Kaliatka, A.; Vaisnoras, M.

    2005-01-01

    The rapid closing or opening of a valve causes pressure transients in pipelines. The fast deceleration of the liquid results in high pressure surges upstream the valve, thus the kinetic energy is transformed into the potential energy, which leads to the temporary pressure increases. This phenomenon is called water hammer. The intensity of water hammer effects will depend upon the rate of change in the velocity or momentum. Generally water hammer can occur in any thermal-hydraulic systems and it is extremely dangerous for the thermal-hydraulic system since, if the pressure induced exceeds the pressure range of a pipe given by the manufacturer, it can lead to the failure of the pipeline integrity. Due to its potential for damage of pipes, water hammer has been a subject of study since the middle of the nineteenth century. Many theoretical and experimental investigations were performed. The experimental investigation of the water hammer tests performed at Fraunhofer Institute for Environmental, Safety and Energy Technology (UMSICHT) [1] and Cold Water Hammer experiment performed by Forschungszentrum Rossendorf (CWHTF) [2] should be mentioned. The UMSICHT facility in Oberhausen was modified in order to simulate a piping system and associated supports that are typical for a nuclear power plant [3]. The Cold water hammer experiment is interesting and instructive because it covers a wide spectrum of particularities. One of them is sub-cooled water interaction with condensing steam at the closed end of the vertical pipe at room temperature and corresponding saturation pressure [4]. In the paper, the capabilities of RELAP5 code to correctly represent the water hammer phenomenon are presented. Paper presents the comparison of RELAP5 calculated and measured at UMSICHT and CWHTF test facilities pressure transient values after the fast closure (opening) of valves. The analyses of rarefaction wave travels inside the pipe and condensation of vapour bubbles in the liquid column

  6. Event simulation for the WA80 experiment

    International Nuclear Information System (INIS)

    Sorensen, S.P.

    1986-01-01

    The HIJET and LUND event generators are compared. It is concluded that for detector construction and design of experimental setups, the differences between the two models are marginal. The coverage of the WA80 setup in pseudorapidity and energy is demonstrated. The performance of some of the WA80 detectors (zero-degree calorimeter, wall calorimeter, multiplicity array, and SAPHIR lead-glass detector) is evaluated based on calculations with the LUND or the HIJET codes combined with codes simulating the detector responses. 9 refs., 3 figs

  7. Thermal-hydraulic experiments and analyses on cold moderator

    International Nuclear Information System (INIS)

    Aso, Tomokazu; Kaminaga, Masanori; Terada, Atsushi; Hino, Ryutaro

    2001-01-01

    A cold moderator using supercritical hydrogen is one of the key components in a MW-scale spallation target system, which directly affects the neutronic performance both in intensity and resolution. Since a hydrogen temperature rise in the moderator vessel affects the neutronic performance, it is necessary to suppress the local temperature rise within 3 K. In order to develop the conceptual design of the moderator structure in progress, the flow patterns were measured using a PIV (Particle Image Velocimeter) system under water flow conditions using a flat model that simulated a moderator vessel. From these results, the flow patterns (such as recirculation flows, stagnant flows etc.) were clarified. The hydraulic analytical results obtained using the STAR-CD code agreed well with experimental results. Thermal-hydraulic analyses in the moderator vessel were carried out using the STAR-CD code. Based on these results, we clarified the possibility of suppressing the local temperature rise to within 3 K under 2 MW operating conditions. In order to achieve the cost decreasing of the hydrogen loop, it is necessary to operate it reducing the hydrogen flow rate and the whole hydrogen mass. Then improved moderator concept using blowholes and a twisted tape was proposed, and we have tried to examine the effect of the blowing flow from the inlet pipe. From the experimental and analytical results, the blowing flow could be feasible for the suppression of the stagnant region. (author)

  8. Simulation and experimental study of thermal performance of a ...

    Indian Academy of Sciences (India)

    of a building roof with a phase change material (PCM) .... ware model of concrete roof without cylindrical holes and PRO-E software model concrete roof .... John Kosnya, Kaushik Biswas, William Miller and Scott Kriner 2012 Field thermal ...

  9. Coupled Aeroheating and Ablative Thermal Response Simulation Tool

    Data.gov (United States)

    National Aeronautics and Space Administration — The thermal protection system (TPS) performance requirements for atmospheric entry vehicles on current and future NASA missions preclude the use of heritage reusable...

  10. Communication: Minimum in the thermal conductivity of supercooled water: A computer simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Bresme, F., E-mail: f.bresme@imperial.ac.uk [Chemical Physics Section, Department of Chemistry, Imperial College, London SW7 2AZ, United Kingdom and Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491 (Norway); Biddle, J. W.; Sengers, J. V.; Anisimov, M. A. [Institute for Physical Science and Technology, and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2014-04-28

    We report the results of a computer simulation study of the thermodynamic properties and the thermal conductivity of supercooled water as a function of pressure and temperature using the TIP4P-2005 water model. The thermodynamic properties can be represented by a two-structure equation of state consistent with the presence of a liquid-liquid critical point in the supercooled region. Our simulations confirm the presence of a minimum in the thermal conductivity, not only at atmospheric pressure, as previously found for the TIP5P water model, but also at elevated pressures. This anomalous behavior of the thermal conductivity of supercooled water appears to be related to the maximum of the isothermal compressibility or the minimum of the speed of sound. However, the magnitudes of the simulated thermal conductivities are sensitive to the water model adopted and appear to be significantly larger than the experimental thermal conductivities of real water at low temperatures.

  11. Communication: Minimum in the thermal conductivity of supercooled water: A computer simulation study

    International Nuclear Information System (INIS)

    Bresme, F.; Biddle, J. W.; Sengers, J. V.; Anisimov, M. A.

    2014-01-01

    We report the results of a computer simulation study of the thermodynamic properties and the thermal conductivity of supercooled water as a function of pressure and temperature using the TIP4P-2005 water model. The thermodynamic properties can be represented by a two-structure equation of state consistent with the presence of a liquid-liquid critical point in the supercooled region. Our simulations confirm the presence of a minimum in the thermal conductivity, not only at atmospheric pressure, as previously found for the TIP5P water model, but also at elevated pressures. This anomalous behavior of the thermal conductivity of supercooled water appears to be related to the maximum of the isothermal compressibility or the minimum of the speed of sound. However, the magnitudes of the simulated thermal conductivities are sensitive to the water model adopted and appear to be significantly larger than the experimental thermal conductivities of real water at low temperatures

  12. PCB-level Electro thermal Coupling Simulation Analysis

    Science.gov (United States)

    Zhou, Runjing; Shao, Xuchen

    2017-10-01

    Power transmission network needs to transmit more current with the increase of the power density. The problem of temperature rise and the reliability is becoming more and more serious. In order to accurately design the power supply system, we must consider the influence of the power supply system including Joule heat, air convection and other factors. Therefore, this paper analyzes the relationship between the electric circuit and the thermal circuit on the basis of the theory of electric circuit and thermal circuit.

  13. Phonocatalysis. An ab initio simulation experiment

    Directory of Open Access Journals (Sweden)

    Kwangnam Kim

    2016-06-01

    Full Text Available Using simulations, we postulate and show that heterocatalysis on large-bandgap semiconductors can be controlled by substrate phonons, i.e., phonocatalysis. With ab initio calculations, including molecular dynamic simulations, the chemisorbed dissociation of XeF6 on h-BN surface leads to formation of XeF4 and two surface F/h-BN bonds. The reaction pathway and energies are evaluated, and the sorption and reaction emitted/absorbed phonons are identified through spectral analysis of the surface atomic motion. Due to large bandgap, the atomic vibration (phonon energy transfer channels dominate and among them is the match between the F/h-BN covalent bond stretching and the optical phonons. We show that the chemisorbed dissociation (the pathway activation ascent requires absorption of large-energy optical phonons. Then using progressively heavier isotopes of B and N atoms, we show that limiting these high-energy optical phonons inhibits the chemisorbed dissociation, i.e., controllable phonocatalysis.

  14. A Thermal Runaway Simulation on a Lithium Titanate Battery and the Battery Module

    Directory of Open Access Journals (Sweden)

    Man Chen

    2015-01-01

    Full Text Available Based on the electrochemical and thermal model, a coupled electro-thermal runaway model was developed and implemented using finite element methods. The thermal decomposition reactions when the battery temperature exceeds the material decomposition temperature were embedded into the model. The temperature variations of a lithium titanate battery during a series of charge-discharge cycles under different current rates were simulated. The results of temperature and heat generation rate demonstrate that the greater the current, the faster the battery temperature is rising. Furthermore, the thermal influence of the overheated cell on surrounding batteries in the module was simulated, and the variation of temperature and heat generation during thermal runaway was obtained. It was found that the overheated cell can induce thermal runaway in other adjacent cells within 3 mm distance in the battery module if the accumulated heat is not dissipated rapidly.

  15. A review of human thermal comfort experiments in controlled and semi-controlled environments

    NARCIS (Netherlands)

    Craenendonck, Van Stijn; Lauriks, Leen; Vuye, Cedric; Kampen, Jarl

    2018-01-01

    There are three main methods to improve thermal comfort in existing buildings: modeling, experiments and measurements. Regarding experiments, no standardized procedure exists. This article provides an answer to the question: “What is the most common practice for human thermal comfort experiments in

  16. Evolutionary design of a satellite thermal control system: Real experiments for a CubeSat mission

    International Nuclear Information System (INIS)

    Escobar, Emanuel; Diaz, Marcos; Zagal, Juan Cristóbal

    2016-01-01

    Highlights: • GAs applied to automate design of CubeSat passive thermal control system (coating). • Simulation adapted with real physical data (mockup experiment in vacuum chamber). • Obtained coating patterns consistently outperform engineered solutions (by 5 K). • Evolved coating patterns are far superior (by 8 K) than unpainted aluminum. - Abstract: This paper studies the use of artificial evolution to automate the design of a satellite passive thermal control system. This type of adaptation often requires the use of computer simulations to evaluate fitness of a large number of candidate solutions. Simulations are required to be expedient and accurate so that solutions can be successfully transferred to reality. We explore a design process that involves three steps. On a first step candidate solutions (implemented as surface paint tiling patterns) are tested using a FEM model and ranked according to their quality to meet mission temperature requirements. On a second step the best individual is implemented as a real physical satellite mockup and tested inside a vacuum chamber, having light sources imitating the effect of solar light. On a third step the simulation model is adapted with data obtained during the real evaluation. These updated models can be further employed for continuing genetic search. Current differences between our simulation and our real physical setup are in the order of 1.45 K mean squared error for faces pointing toward the light source and 2.4 K mean squared errors for shadowed faces. We found that evolved tiling patterns can be 5 K below engineered patterns and 8 K below using unpainted aluminum satellite surfaces.

  17. Simulations of enhanced ion stopping power experiments

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Maenchen, J.E.; Olsen, J.N.; Johnson, D.J.

    1984-01-01

    As the material in an ICF target is heated and ionized by an intense ion beam, the ion stopping power changes from that of neutral atoms. This changes the energy deposition characteristics of the ion beam and thereby can profoundly influence the target dynamics. An accurate ion energy deposition model is important for designing ICF targets that perform in an optimal fashion. An experiment to measure a time-resolved ion stopping power history in a partially ionized target is being fielded on the PROTO I accelerator at Sandia Labs. This experiment utilizes a voltage ramped Thomson parabola to provide a time-history of the ion energy incident upon and exiting from a cylindrical target foil

  18. Finite element simulation of exfoliation experiments

    International Nuclear Information System (INIS)

    Nutt, G.L.

    1992-01-01

    We previously reported bond strength measurements of metal/ceramic interfaces using shock waves to separate the bond by spallation. The technique relies on interpretation of the free surface velocity of a metal film as it is spalled from its substrate. A number of questions have been raised concerning the details of the interaction of the shock and interface. We provide answers by numerically modeling the experiments. We rederive the relationship between the maximum stress at the bond interface and the free surface velocity of the metal overlayer. We compare the analytical result with numerical calculations based on less restrictive assumptions, thereby supporting the analysis. We illustrate important design considerations of the experiment with numerical calculation and in the process, evaluate the effect of the artificial damping on the numerical results

  19. The Modeling and Simulation of Thermal Analysis at Hydro Generator Stator Winding Insulation

    Directory of Open Access Journals (Sweden)

    Mihaela Raduca

    2006-10-01

    Full Text Available This paper presents the modelling and simulation of thermal analysis at hydro generator stator winding. The winding stator is supplied at high voltage of 11 kV for high power hydro generator. To present the thermal analysis for stator winding is presented at supply of coil by 11 kV, when coil is heat and thermal transfer in insulation at ambient temperature.

  20. The simulation for the ATLAS experiment Present status and outlook

    CERN Document Server

    Rimoldi, A; Gallas, M; Nairz, A; Boudreau, J; Tsulaia, V; Costanzo, D

    2004-01-01

    The simulation program for the ATLAS experiment is presently operational in a full OO environment. This important physics application has been successfully integrated into ATLAS's common analysis framework, ATHENA. In the last year, following a well stated strategy of transition from a GEANT3 to a GEANT4-based simulation, a careful validation programme confirmed the reliability, performance and robustness of this new tool, as well as its consistency with the results of previous simulation. Generation, simulation and digitization steps on different sets of full physics events we retested for performance. The same software used to simulate the full the ATLAS detector is also used with testbeam configurations. Comparisons to real data in the testbeam validate both the detector description and the physics processes within each subcomponent. In this paper we present the current status of ATLAS GEANT4 simulation, describe the functionality tests performed during its validation phase, and the experience with distrib...

  1. Multiscale development of a fission gas thermal conductivity model: Coupling atomic, meso and continuum level simulations

    International Nuclear Information System (INIS)

    Tonks, Michael R.; Millett, Paul C.; Nerikar, Pankaj; Du, Shiyu; Andersson, David; Stanek, Christopher R.; Gaston, Derek; Andrs, David; Williamson, Richard

    2013-01-01

    Fission gas production and evolution significantly impact the fuel performance, causing swelling, a reduction in the thermal conductivity and fission gas release. However, typical empirical models of fuel properties treat each of these effects separately and uncoupled. Here, we couple a fission gas release model to a model of the impact of fission gas on the fuel thermal conductivity. To quantify the specific impact of grain boundary (GB) bubbles on the thermal conductivity, we use atomistic and mesoscale simulations. Atomistic molecular dynamic simulations were employed to determine the GB thermal resistance. These values were then used in mesoscale heat conduction simulations to develop a mechanistic expression for the effective GB thermal resistance of a GB containing gas bubbles, as a function of the percentage of the GB covered by fission gas. The coupled fission gas release and thermal conductivity model was implemented in Idaho National Laboratory’s BISON fuel performance code to model the behavior of a 10-pellet LWR fuel rodlet, showing how the fission gas impacts the UO 2 thermal conductivity. Furthermore, additional BISON simulations were conducted to demonstrate the impact of average grain size on both the fuel thermal conductivity and the fission gas release

  2. Transient Simulation of the Multi-SERTTA Experiment with MAMMOTH

    International Nuclear Information System (INIS)

    Ortensi, Javier; Baker, Benjamin; Wang, Yaqi; Schunert, Sebastian; DeHart, Mark

    2017-01-01

    This work details the MAMMOTH reactor physics simulations of the Static Environment Rodlet Transient Test Apparatus (SERTTA) conducted at Idaho National Laboratory in FY-2017. TREAT static-environment experiment vehicles are being developed to enable transient testing of Pressurized Water Reactor (PWR) type fuel specimens, including fuel concepts with enhanced accident tolerance (Accident Tolerant Fuels, ATF). The MAMMOTH simulations include point reactor kinetics as well as spatial dynamics for a temperature-limited transient. The strongly coupled multi-physics solutions of the neutron flux and temperature fields are second order accurate both in the spatial and temporal domains. MAMMOTH produces pellet stack powers that are within 1.5% of the Monte Carlo reference solutions. Some discrepancies between the MCNP model used in the design of the flux collars and the Serpent/MAMMOTH models lead to higher power and energy deposition values in Multi-SERTTA unit 1. The TREAT core results compare well with the safety case computed with point reactor kinetics in RELAP5-3D. The reactor period is 44 msec, which corresponds to a reactivity insertion of 2.685% delta k/k$. The peak core power in the spatial dynamics simulation is 431 MW, which the point kinetics model over-predicts by 12%. The pulse width at half the maximum power is 0.177 sec. Subtle transient effects are apparent at the beginning insertion in the experimental samples due to the control rod removal. Additional difference due to transient effects are observed in the sample powers and enthalpy. The time dependence of the power coupling factor (PCF) is calculated for the various fuel stacks of the Multi-SERTTA vehicle. Sample temperatures in excess of 3100 K, the melting point UO$ 2 $, are computed with the adiabatic heat transfer model. The planned shaped-transient might introduce additional effects that cannot be predicted with PRK models. Future modeling will be focused on the shaped-transient by improving the

  3. Transient Simulation of the Multi-SERTTA Experiment with MAMMOTH

    Energy Technology Data Exchange (ETDEWEB)

    Ortensi, Javier [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baker, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schunert, Sebastian [Idaho National Lab. (INL), Idaho Falls, ID (United States); deHart, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-11

    This work details the MAMMOTH reactor physics simulations of the Static Environment Rodlet Transient Test Apparatus (SERTTA) conducted at Idaho National Laboratory in FY-2017. TREAT static-environment experiment vehicles are being developed to enable transient testing of Pressurized Water Reactor (PWR) type fuel specimens, including fuel concepts with enhanced accident tolerance (Accident Tolerant Fuels, ATF). The MAMMOTH simulations include point reactor kinetics as well as spatial dynamics for a temperature-limited transient. The strongly coupled multi-physics solutions of the neutron flux and temperature fields are second order accurate both in the spatial and temporal domains. MAMMOTH produces pellet stack powers that are within 1.5% of the Monte Carlo reference solutions. Some discrepancies between the MCNP model used in the design of the flux collars and the Serpent/MAMMOTH models lead to higher power and energy deposition values in Multi-SERTTA unit 1. The TREAT core results compare well with the safety case computed with point reactor kinetics in RELAP5-3D. The reactor period is 44 msec, which corresponds to a reactivity insertion of 2.685% delta k/k$. The peak core power in the spatial dynamics simulation is 431 MW, which the point kinetics model over-predicts by 12%. The pulse width at half the maximum power is 0.177 sec. Subtle transient effects are apparent at the beginning insertion in the experimental samples due to the control rod removal. Additional difference due to transient effects are observed in the sample powers and enthalpy. The time dependence of the power coupling factor (PCF) is calculated for the various fuel stacks of the Multi-SERTTA vehicle. Sample temperatures in excess of 3100 K, the melting point UO$_2$, are computed with the adiabatic heat transfer model. The planned shaped-transient might introduce additional effects that cannot be predicted with PRK models. Future modeling will be focused on the shaped-transient by improving the

  4. Coupling Chemical Kinetics and Flashes in Reactive, Thermal and Compositional Reservoir Simulation

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, Margot G.; Thomsen, Per Grove

    2007-01-01

    of convergence and error test failures by more than 50% compared to direct integration without the new algorithm. To facilitate the algorithmic development we construct a virtual kinetic cell model. We use implicit one-step ESDIRK (Explicit Singly Diagonal Implicit Runge-Kutta) methods for integration......Phase changes are known to cause convergence problems for integration of stiff kinetics in thermal and compositional reservoir simulations. We propose an algorithm for detection and location of phase changes based on discrete event system theory. The algorithm provides a robust way for handling...... the switching of variables and equations required when the number of phases changes. We extend the method to handle full phase equilibrium described by an equation of state. Experiments show that the new algorithm improves the robustness of the integration process near phase boundaries by lowering the number...

  5. Radioactive source simulation for half-life experiment

    International Nuclear Information System (INIS)

    Wanitsuksombut, Warapon; Decthyothin, Chanti

    1999-01-01

    A simulation of radioactivity decay by using programmable light source with a few minutes half-life is suggested. A photodiode with digital meter label in cps is use instead of radiation detector. Both light source and photodiode are installed in a black box to avoid surrounding room light. The simulation set can also demonstrate Inverse Square Law experiment of radiation penetration. (author)

  6. Optimizing Chromatographic Separation: An Experiment Using an HPLC Simulator

    Science.gov (United States)

    Shalliker, R. A.; Kayillo, S.; Dennis, G. R.

    2008-01-01

    Optimization of a chromatographic separation within the time constraints of a laboratory session is practically impossible. However, by employing a HPLC simulator, experiments can be designed that allow students to develop an appreciation of the complexities involved in optimization procedures. In the present exercise, a HPLC simulator from "JCE…

  7. Magnetic processes in astrophysics theory, simulations, experiments

    CERN Document Server

    Rüdiger, Günther; Hollerbach, Rainer

    2013-01-01

    In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore the motion of electrically conducting fluids, the so-called dynamo effect, and describe the similarities and differences between different magnetized objects. They also explain why magnetic fields are crucial to the formation of the stars, and discuss promising experiments currently being designed to investigate some of the relevant physics in the laboratory. This interdisciplinary approach will appeal to a wide audience in physics, astrophysics and geophysics. This second edition covers such add

  8. Simulation of power maneuvering experiment of MASLWR test facility by MARS-KS code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Yeop [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In the present study, KINS simulation result by the MARS-KS code (KS-002 version) for the SP-3 experiment is presented in detail and conclusion on MARS-KS code performance drawn through this simulation is described. Performance of the MARS-KS code is evaluated through the simulation of the power maneuvering experiment of the MASLWR test facility. Steady run shows the helical coil specific heat transfer model of the code is reasonable. However, identified discrepancy of the primary mass flowrate at transient run shows code performance for pressure drop needs to be improved considering sensitivity of the flowrate to the pressure drop at natural circulation. Since 2009, IAEA has conducted a research program entitled as ICSP (International Collaborative Standard Problem) on integral PWR design to evaluate current the state of the art of thermal-hydraulic code in simulating natural circulation flow within integral type reactor. In this ICSP, experimental data obtained from MASLWR (Multi-Application Small Light Water Reactor) test facility located at Oregon state university in the US have been simulated by various thermal-hydraulic codes of each participant of the ICSP and compared among others. MASLWR test facility is a mock-up of a passive integral type reactor equipped with helical coil steam generator. Since SMART reactor which is currently being developed in Korea also adopts a helical coil steam generator, Korea Institute of Nuclear Safety (KINS) has joined this ICSP to assess the applicability of a domestic regulatory audit thermal-hydraulic code (i. e. MARS-KS code) for the SMART reactor including wall-to-fluid heat transfer model modification based on independent international experiment data. In the ICSP, two types of transient experiments have been focused and they are loss of feedwater transient with subsequent ADS operation and long term cooling (SP-2) and normal operating conditions at different power levels (SP-3)

  9. Micromagnetic simulations with thermal noise: Physical and numerical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E. [Dept. de Ingenieria Electromecanica, Universidad de Burgos, Plaza Misael Banuelos, s/n, E-09001, Burgos (Spain)]. E-mail: emvecino@ubu.es; Lopez-Diaz, L. [Dept. de Fisica Aplicada, Universidad Salamanca, Plaza de la Merced s/n, Salamanca E-37008 (Spain); Torres, L. [Dept. de Fisica Aplicada, Universidad Salamanca, Plaza de la Merced s/n, Salamanca E-37008 (Spain); Garcia-Cervera, C.J. [Department of Mathematics, University of California, Santa Barbara, CA 93106 (United States)

    2007-09-15

    Langevin dynamics treats finite temperature effects in micromagnetics framework by adding a thermal fluctuation field to the local effective field. Several works have addressed that the numerical results depend on the cell size used to split the ferromagnetic samples on the nanoscale regime. In this short paper, we analyze a thermally perturbed micromagnetic problem by using an implicit unconditionally stable numerical scheme to integrate the Langevin equation at room temperature. The obtained micromagnetic results for several cell sizes inside the validity range of the micromagnetic formalism, indicate that the addressed cell size dependence could be associated to numerical limitations of the commonly used numerical schemes.

  10. Micromagnetic simulations with thermal noise: Physical and numerical aspects

    International Nuclear Information System (INIS)

    Martinez, E.; Lopez-Diaz, L.; Torres, L.; Garcia-Cervera, C.J.

    2007-01-01

    Langevin dynamics treats finite temperature effects in micromagnetics framework by adding a thermal fluctuation field to the local effective field. Several works have addressed that the numerical results depend on the cell size used to split the ferromagnetic samples on the nanoscale regime. In this short paper, we analyze a thermally perturbed micromagnetic problem by using an implicit unconditionally stable numerical scheme to integrate the Langevin equation at room temperature. The obtained micromagnetic results for several cell sizes inside the validity range of the micromagnetic formalism, indicate that the addressed cell size dependence could be associated to numerical limitations of the commonly used numerical schemes

  11. Combined simulation of energy and thermal management for an electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mohrmann, Bjoern; Jeck, Peter [Institut fuer Kraftfahrzeuge Aachen (Germany); Simon, Carsten [fortiss GmbH, Muenchen (Germany); Ungermann, Jochen [Audi AG, Ingolstadt (Germany)

    2012-11-01

    The project eperformance, which is funded by the BMBF, is conducted by project partners from RWTH Aachen, Audi, Bosch Engineering and fortiss GmbH, in order to demonstrate the concept of an electric vehicle on the basis of a holistic development approach. To support this, several simulation platforms come into use, i.e. CFD Simulation for cooling concepts, electromagnetic simulations for electric machine design, physical simulation of cooling circuits as well as vehicle mechanics and controller design. To develop an energy efficient vehicle management, some of these simulation domains have to be combined, to simulate interdependencies between for example usage of high-voltage batteries, their thermal response and the impact for controller strategies. Within the project it was decided to use the Tool TISC (TLK Inter Software Connector) to combine as well a physical model, based on Modelica/Dymola to simulate thermal behaviours of components with a longitudinal vehicle model and a controller model, both based in MATLAB/Simulink. Advantages of such a coupled simulation are the re-usability of existing models in both tools with their tool-specific benefits as well as the possibility to cluster the models on different computers. The article will explain how the combined simulation is set up and parameterized, and will show two use cases: the thermal management of the two independent battery systems of the demonstrator vehicle and the torque distribution on the three electric machines in the vehicle, depending on the drive situation and the thermal state of the machines. (orig)

  12. Mixed reality ventriculostomy simulation: experience in neurosurgical residency.

    Science.gov (United States)

    Hooten, Kristopher G; Lister, J Richard; Lombard, Gwen; Lizdas, David E; Lampotang, Samsun; Rajon, Didier A; Bova, Frank; Murad, Gregory J A

    2014-12-01

    Medicine and surgery are turning toward simulation to improve on limited patient interaction during residency training. Many simulators today use virtual reality with augmented haptic feedback with little to no physical elements. In a collaborative effort, the University of Florida Department of Neurosurgery and the Center for Safety, Simulation & Advanced Learning Technologies created a novel "mixed" physical and virtual simulator to mimic the ventriculostomy procedure. The simulator contains all the physical components encountered for the procedure with superimposed 3-D virtual elements for the neuroanatomical structures. To introduce the ventriculostomy simulator and its validation as a necessary training tool in neurosurgical residency. We tested the simulator in more than 260 residents. An algorithm combining time and accuracy was used to grade performance. Voluntary postperformance surveys were used to evaluate the experience. Results demonstrate that more experienced residents have statistically significant better scores and completed the procedure in less time than inexperienced residents. Survey results revealed that most residents agreed that practice on the simulator would help with future ventriculostomies. This mixed reality simulator provides a real-life experience, and will be an instrumental tool in training the next generation of neurosurgeons. We have now implemented a standard where incoming residents must prove efficiency and skill on the simulator before their first interaction with a patient.

  13. Simulation of severe accidents in COTELS experiments

    International Nuclear Information System (INIS)

    Vasilev, Yu.S.; Zhdanov, V.S.; Kolodeshnikov, A.A.; Kadyrov, Kh. G.; Turkebaev, T.E.; Tsaj, K.V.; Suslov, E.E.

    1999-01-01

    At present, the issue of atomic reactor operation safety is of a great attention. It is evident that the accident accompanied with a core materials melting is an improbable event. To fully assess a hazard of a reactor use and enhance its safety, it is necessary to predict a possible accident progress and specify possible consequences of severe accidents and eliminating measures. In COTELS experiments, aimed at investigation of interaction of corium with concrete and water, the corium s imulator m elt is discharged on the concrete. The concrete erosion parameters, composition and rate of aerosol and gas escaping are recorded. The solidified melt and concrete fragments structure is studied after the testing, using the X-ray diffractometer DRON-3. This paper gives consideration to possible mechanisms of formation of uranium-containing and other phases of products of interaction of the corium melt with concrete and water

  14. Thermal-Hydraulic Experiment To Test The Stable Operation Of A PIUS Type Reactor

    International Nuclear Information System (INIS)

    Irianto, Djoko; Kanji, T.; Kukita, Y.

    1996-01-01

    An advanced type of reaktor concept as the Process Inherent Ultimate Safety (PIUS) reactor was based on intrinsically passive safety considerations. The stable operation of a PIUS type reactor is based on the automation of circulation pump speed. An automatic circulation pump speed control system by using a measurement of the temperature distribution in the lower density lock is proposed the PIUS-type reactor. In principle this control system maintains the fluid temperature at the axial center of the lower density lock at average of the fluid temperatures below and above the lower density lock. This control system will prevent the poison water from penetrating into the core during normal operation. The effectiveness of this control system was successfully confirmed by a series of experiments using atmospheric pressure thermal-hydraulic test loop which simulated the PIUS principle. The experiments such as: start-up and power ramping tests for normal operation simulation and loss of feedwater test for an accident condition simulation, carried out in JAERI

  15. TMAP-7 simulation of D{sub 2} thermal release data from Be co-deposited layers

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.J., E-mail: mbaldwin@ferp.ucsd.edu [Center for Energy Research, University of California at San Diego, La Jolla, CA 92093-0417 (United States); Schwarz-Selinger, T. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Yu, J.H. [Center for Energy Research, University of California at San Diego, La Jolla, CA 92093-0417 (United States); Doerner, R.P., E-mail: rdoerner@ucsd.edu [Center for Energy Research, University of California at San Diego, La Jolla, CA 92093-0417 (United States)

    2013-07-15

    The efficacy of (1) bake-out at 513 K and 623 K, and (2) thermal transient (10 ms) loading to up to 1000 K, is explored for reducing D inventory in 1 μm thick Be–D (D/Be ∼0.1) co-deposited layers formed at 323 K for experiment (1) and ∼500 K for experiment (2). D release data from co-deposits are obtained by thermal desorption and used to validate a model input into the Tritium Migration and Analysis Program 7 (TMAP). In (1), good agreement with experiment is found for a TMAP model encorporating traps of activation energies, 0.80 eV and 0.98 eV, whereas an additional 2 eV trap was required to model experiment (2). Thermal release is found to be trap limited, but simulations are optimal when surface recombination is taken into account. Results suggest that thick built-up co-deposited layers will hinder ITER inventory control, and that bake periods (∼1 day) will be more effective in inventory reduction than transient thermal loading.

  16. Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators

    Directory of Open Access Journals (Sweden)

    C.Q. Su

    2014-11-01

    Full Text Available Thermoelectric technology has revealed the potential for automotive exhaust-based thermoelectric generator (TEG, which contributes to the improvement of the fuel economy of the engine-powered vehicle. As a major factor, thermal capacity and heat transfer of the heat exchanger affect the performance of TEG effectively. With the thermal energy of exhaust gas harvested by thermoelectric modules, a temperature gradient appears on the heat exchanger surface, so as the interior flow distribution of the heat exchanger. In order to achieve uniform temperature distribution and higher interface temperature, the thermal characteristics of heat exchangers with various heat transfer enhancement features are studied, such as internal structure, material and surface area. Combining the computational fluid dynamics simulations and infrared test on a high-performance engine with a dynamometer, the thermal performance of the heat exchanger is evaluated. Simulation and experiment results show that a plate-shaped heat exchanger made of brass with accordion-shaped internal structure achieves a relatively ideal performance, which can practically improve overall thermal performance of the TEG.

  17. Experimental Study of Turbine Fuel Thermal Stability in an Aircraft Fuel System Simulator

    Science.gov (United States)

    Vranos, A.; Marteney, P. J.

    1980-01-01

    The thermal stability of aircraft gas turbines fuels was investigated. The objectives were: (1) to design and build an aircraft fuel system simulator; (2) to establish criteria for quantitative assessment of fuel thermal degradation; and (3) to measure the thermal degradation of Jet A and an alternative fuel. Accordingly, an aircraft fuel system simulator was built and the coking tendencies of Jet A and a model alternative fuel (No. 2 heating oil) were measured over a range of temperatures, pressures, flows, and fuel inlet conditions.

  18. Multi-pass TIG welding process: simulating thermal SS304

    International Nuclear Information System (INIS)

    Harinadh, Vemanaboina; Akella, S.; Buddu, Ramesh Kumar; Edision, G.

    2015-01-01

    Welding is basic requirement in the construction of nuclear reactors, power plants and structural components development. A basic studies on various aspects of the welding is essential to ensure the stability and structural requirement conditions. The present study explored the thermo-mechanical analysis of the multipass welds of austenitic stainless steels which are widely used in fusion and fission reactor components development. A three-dimensional (3D) finite element model is developed to investigate thermally induced stress field during TIG welding process for SS304 material. The transient thermal analysis is performed to obtain the temperature history, which then is applied to the mechanical (stress) analysis. The present thermal analysis is conducted using element type DC3D8. This element type has a three dimensional thermal conduction capability and eight nodes. The 6 mm thick plated is welded with six numbers of passes. The geometry and meshed model with tetrahedral shape with volume sweep. The analysis is on TIG welding process using 3D-weld interface plug-in on ABAQUS-6.14. The results are reported in the present paper

  19. Simulation of global warming effect on outdoor thermal comfort conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, G.R.; Ranjbar, F. [Univ. of Tehran (IR). Dept. of Physical Geography; Orosa, J.A. [Univ. of A Coruna (Spain). Dept. of Energy

    2010-07-01

    In the coming decades, global warming and increase in temperature, in different regions of the world, may change indoor and outdoor thermal comfort conditions and human health. The aim of this research was to study the effects of global warming on thermal comfort conditions in indoor ambiences in Iran. To study the increase in temperature, model for assessment of greenhouse-gas induced climate change scenario generator compound model has been used together with four scenarios and to estimate thermal comfort conditions, adaptive model of the American Society of Heating, Refrigerating and Air-Conditioning Engineers has been used. In this study, Iran was divided into 30 zones, outdoor conditions were obtained using meteorological data of 80 climatological stations and changes in neutral comfort conditions in 2025, 2050, 2075 and 2100 were predicted. In accordance with each scenario, findings from this study showed that temperature in the 30 zones will increase by 2100 to between 3.4 C and 5.6 C. In the coming decades and in the 30 studied zones, neutral comfort temperature will increase and be higher and more intense in the central and desert zones of Iran. The low increase in this temperature will be connected to the coastal areas of the Caspian and Oman Sea in southeast Iran. This increase in temperature will be followed by a change in thermal comfort and indoor energy consumption from 8.6 % to 13.1 % in air conditioning systems. As a result, passive methods as thermal inertia are proposed as a possible solution.

  20. Computer simulation of Wheeler's delayed-choice experiment with photons

    NARCIS (Netherlands)

    Zhao, S.; Yuan, S.; De Raedt, H.; Michielsen, K.

    We present a computer simulation model of Wheeler's delayed-choice experiment that is a one-to-one copy of an experiment reported recently (Jacques V. et al., Science, 315 (2007) 966). The model is solely based on experimental facts, satisfies Einstein's criterion of local causality and does not

  1. Computer Simulation of Einstein-Podolsky-Rosen-Bohm Experiments

    NARCIS (Netherlands)

    De Raedt, H.; Michielsen, K.

    We review an event-based simulation approach which reproduces the statistical distributions of quantum physics experiments by generating detection events one-by-one according to an unknown distribution and without solving a wave equation. Einstein-Podolsky-Rosen-Bohm laboratory experiments are used

  2. Design of wave breaking experiments and A-Posteriori Simulations

    NARCIS (Netherlands)

    Kurnia, R.; Kurnia, Ruddy; van Groesen, Embrecht W.C.

    2014-01-01

    This report presents results of 30 wave breaking experiments conducted in the long wave tank of TU Delft, Department of Maritime and Transport Technology (6,7 and 10-12 March 2014), together with simulations performed before the experiment to determine the required wave maker motion and a-posteriori

  3. Design of wave breaking experiments and A-Posteriori Simulations

    NARCIS (Netherlands)

    Kurnia, Ruddy; van Groesen, Embrecht W.C.

    This report presents results of 30 wave breaking experiments conducted in the long wave tank of TU Delft, Department of Maritime and Transport Technology (6,7 and 10-12 March 2014), together with simulations performed before the experiment to determine the required wave maker motion and a-posteriori

  4. "FluSpec": A Simulated Experiment in Fluorescence Spectroscopy

    Science.gov (United States)

    Bigger, Stephen W.; Bigger, Andrew S.; Ghiggino, Kenneth P.

    2014-01-01

    The "FluSpec" educational software package is a fully contained tutorial on the technique of fluorescence spectroscopy as well as a simulator on which experiments can be performed. The procedure for each of the experiments is also contained within the package along with example analyses of results that are obtained using the software.

  5. Experiences with linear solvers for oil reservoir simulation problems

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, W.; Janardhan, R. [Los Alamos National Lab., NM (United States); Biswas, D.; Carey, G.

    1996-12-31

    This talk will focus on practical experiences with iterative linear solver algorithms used in conjunction with Amoco Production Company`s Falcon oil reservoir simulation code. The goal of this study is to determine the best linear solver algorithms for these types of problems. The results of numerical experiments will be presented.

  6. Thermal plume above a simulated sitting person with different complexity of body geometry

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew J.

    2007-01-01

    Occupants are one of the main heat sources in rooms. They generate thermal plumes with characteristics, which depend on geometry, surface temperature and area of the human body in contact with the surrounding air as well as temperature, velocity and turbulence intensity distribution in the room....... The characteristics of the thermal plume generated by a sitting person were studied using four human body simulators with different complexity of geometry but equal surface area: a vertical cylinder, a rectangular box, a dummy, and a thermal manikin. The results show that the dummy and the thermal manikin generate...

  7. Numerical simulation of thermal behaviors of a clothed human body with evaluation of indoor solar radiation

    International Nuclear Information System (INIS)

    Mao, Aihua; Luo, Jie; Li, Yi

    2017-01-01

    Highlights: • Solar radiation evaluation is integrated with the thermal transfer in clothed humans. • Thermal models are developed for clothed humans exposed in indoor solar radiation. • The effect of indoor solar radiation on humans can be predicted in different situations in living. • The green solar energy can be efficiently utilized in the building development. - Abstract: Solar radiation is a valuable green energy, which is important in achieving a successful building design for thermal comfort in indoor environment. This paper considers solar radiation indoors into the transient thermal transfer models of a clothed human body and offers a new numerical method to analyze the dynamic thermal status of a clothed human body under different solar radiation incidences. The evaluation model of solar radiation indoors and a group of coupled thermal models of the clothed human body are developed and integrated. The simulation capacities of these integrated models are validated through a comparison between the predicted results and the experimental data in reference. After that, simulation cases are also conducted to show the influence of solar radiation on the thermal status of individual clothed body segments when the human body is staying indoors in different seasons. This numerical simulation method provides a useful tool to analyze the thermal status of clothed human body under different solar radiation incidences indoors and thus enables the architect to efficiently utilize the green solar energy in building development.

  8. Experimental and numerical simulation of the behaviour of building components under alternating thermal stresses

    International Nuclear Information System (INIS)

    Stegmeyer, R.

    1985-01-01

    This publication is intended to clear up to what extent the results from laboratory experiments on components thermally stressed on several axes can be transferred. The turbine shaft was used for this purpose and was geometrically simulated on a reduced scale by means of a test body (model). The deviations of shape due to the design, such as shaft shoulders, grooves etc. were simulated by notches and the position of the expected crack was defined in this way. A 1% Cr steel was selected as the material, for which many results of experiments on laboratory samples were available. The turbine shaft steel 28 CrMoNiV 4 9 was used. With a specially designed experimental rig, it was possible to expose the model to a changing temperature stress, as it occurs during starting and shutdown of turbines. Different notch radii made it possible to vary the strains at the bottom of the notches due to temperature gradients. After developing special travel transducers, the strain behaviour of the sample could be determined relative to the temperature. The crack characteristics obtained were compared with the characteristics of single axis experiments at constant temperature. Fractographic examination of fatigue cracks made it possible to determine the growth of cracks per load change from the existing vibration strip (da/dN). The stress intensity factor was derived from a modified theoretical expression and the characteristic designed from it was compared with crack growth measurements on CT samples. Accompanying numerical and empirical processes (according to Neuber) were examined by direct comparison of the measured strains with the calculated or estimated strains. Finally, regulations such as the ASME code and TRD 301 were applied to the model experiments and evaluated. (orig.) [de

  9. Finite-difference time-domain simulation of thermal noise in open cavities

    International Nuclear Information System (INIS)

    Andreasen, Jonathan; Cao Hui; Taflove, Allen; Kumar, Prem; Cao Changqi

    2008-01-01

    A numerical model based on the finite-difference time-domain (FDTD) method is developed to simulate thermal noise in open cavities owing to output coupling. The absorbing boundary of the FDTD grid is treated as a blackbody, whose thermal radiation penetrates the cavity in the grid. The calculated amount of thermal noise in a one-dimensional dielectric cavity recovers the standard result of the quantum Langevin equation in the Markovian regime. Our FDTD simulation also demonstrates that in the non-Markovian regime the buildup of the intracavity noise field depends on the ratio of the cavity photon lifetime to the coherence time of thermal radiation. The advantage of our numerical method is that the thermal noise is introduced in the time domain without prior knowledge of cavity modes

  10. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    Science.gov (United States)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  11. Energy improvement of a conventional dwelling in Argentina through thermal simulation

    Energy Technology Data Exchange (ETDEWEB)

    Filippin, C. [CONICET-CC302, Santa Rosa 6300, La Pampa (Argentina); Flores Larsen, S. [INENCO-Instituto de Investigaciones en Energias No Convencionales, Universidad Nacional de Salta, CONICET, Avda. Bolivia 5150, CP 4400 Salta Capital (Argentina); Lopez Gay, E.

    2008-10-15

    This paper analyses the design, technology, thermal behaviour, and energy consumption of both a conventional and a refurbished dwelling located in a region with a temperate-cold climate in central Argentina. The thermal behaviour and the energy consumption of the conventional building were monitored during winter. The experimental data were analysed and included in a simulation of the transient thermal behaviour of the house. Measurements and simulation were in agreement, showing a mean deviation below 0.5{sup o}C. To reduce the heating and cooling loads, the dwelling was refurbished and its thermal behaviour was studied through a computer simulation, for the critical seasons (winter and summer) and for two occupancy schedules (with and without inhabitants). The refurbishment included passive solar heating, shading, and an insulated envelope. These successful changes allowed energy savings of 66% and 52% for winter and summer, respectively. (author)

  12. Simulation of adiabatic thermal beams in a periodic solenoidal magnetic focusing field

    Directory of Open Access Journals (Sweden)

    T. J. Barton

    2012-12-01

    Full Text Available Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K. R. Samokhvalova, J. Zhou, and C. Chen, Phys. Plasmas 14, 103102 (2007PHPAEN1070-664X10.1063/1.2779281; J. Zhou, K. R. Samokhvalova, and C. Chen, Phys. Plasmas 15, 023102 (2008PHPAEN1070-664X10.1063/1.2837891]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam is found be stable in the parameter regime where the simulations are performed.

  13. Synthetic vision systems: operational considerations simulation experiment

    Science.gov (United States)

    Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Glaab, Louis J.

    2007-04-01

    Synthetic vision is a computer-generated image of the external scene topography that is generated from aircraft attitude, high-precision navigation information, and data of the terrain, obstacles, cultural features, and other required flight information. A synthetic vision system (SVS) enhances this basic functionality with real-time integrity to ensure the validity of the databases, perform obstacle detection and independent navigation accuracy verification, and provide traffic surveillance. Over the last five years, NASA and its industry partners have developed and deployed SVS technologies for commercial, business, and general aviation aircraft which have been shown to provide significant improvements in terrain awareness and reductions in the potential for Controlled-Flight-Into-Terrain incidents / accidents compared to current generation cockpit technologies. It has been hypothesized that SVS displays can greatly improve the safety and operational flexibility of flight in Instrument Meteorological Conditions (IMC) to a level comparable to clear-day Visual Meteorological Conditions (VMC), regardless of actual weather conditions or time of day. An experiment was conducted to evaluate SVS and SVS-related technologies as well as the influence of where the information is provided to the pilot (e.g., on a Head-Up or Head-Down Display) for consideration in defining landing minima based upon aircraft and airport equipage. The "operational considerations" evaluated under this effort included reduced visibility, decision altitudes, and airport equipage requirements, such as approach lighting systems, for SVS-equipped aircraft. Subjective results from the present study suggest that synthetic vision imagery on both head-up and head-down displays may offer benefits in situation awareness; workload; and approach and landing performance in the visibility levels, approach lighting systems, and decision altitudes tested.

  14. Synthetic Vision Systems - Operational Considerations Simulation Experiment

    Science.gov (United States)

    Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Glaab, Louis J.

    2007-01-01

    Synthetic vision is a computer-generated image of the external scene topography that is generated from aircraft attitude, high-precision navigation information, and data of the terrain, obstacles, cultural features, and other required flight information. A synthetic vision system (SVS) enhances this basic functionality with real-time integrity to ensure the validity of the databases, perform obstacle detection and independent navigation accuracy verification, and provide traffic surveillance. Over the last five years, NASA and its industry partners have developed and deployed SVS technologies for commercial, business, and general aviation aircraft which have been shown to provide significant improvements in terrain awareness and reductions in the potential for Controlled-Flight-Into-Terrain incidents/accidents compared to current generation cockpit technologies. It has been hypothesized that SVS displays can greatly improve the safety and operational flexibility of flight in Instrument Meteorological Conditions (IMC) to a level comparable to clear-day Visual Meteorological Conditions (VMC), regardless of actual weather conditions or time of day. An experiment was conducted to evaluate SVS and SVS-related technologies as well as the influence of where the information is provided to the pilot (e.g., on a Head-Up or Head-Down Display) for consideration in defining landing minima based upon aircraft and airport equipage. The "operational considerations" evaluated under this effort included reduced visibility, decision altitudes, and airport equipage requirements, such as approach lighting systems, for SVS-equipped aircraft. Subjective results from the present study suggest that synthetic vision imagery on both head-up and head-down displays may offer benefits in situation awareness; workload; and approach and landing performance in the visibility levels, approach lighting systems, and decision altitudes tested.

  15. Simulation of experiment on aerosol behaviour at severe accident conditions in the LACE experimental facility with the ASTEC CPA code

    International Nuclear Information System (INIS)

    Kljenak, I.; Mavko, B.

    2007-01-01

    The experiment LACE LA4 on thermal-hydraulics and aerosol behavior in a nuclear power plant containment, which was performed in the LACE experimental facility, was simulated with the ASTEC CPA module of the severe accident computer code ASTEC V1.2. The specific purpose of the work was to assess the capability of the module (code) to simulate thermal-hydraulic conditions and aerosol behavior in the containment of a light-water-reactor nuclear power plant at severe accident conditions. The test was simulated with boundary conditions, described in the experiment report. Results of thermal-hydraulic conditions in the test vessel, as well as dry aerosol concentrations in the test vessel atmosphere, are compared to experimental results and analyzed. (author)

  16. Monte Carlo simulations to advance characterisation of landmines by pulsed fast/thermal neutron analysis

    NARCIS (Netherlands)

    Maucec, M.; Rigollet, C.

    The performance of a detection system based on the pulsed fast/thermal neutron analysis technique was assessed using Monte Carlo simulations. The aim was to develop and implement simulation methods, to support and advance the data analysis techniques of the characteristic gamma-ray spectra,

  17. Simulation of the Quench-06 experiment with Scdapsim

    International Nuclear Information System (INIS)

    Angel M, E. del; Nunez C, A.; Amador G, R.

    2003-01-01

    The present work describes the pattern of the called Quench installation developed and used by the National Commission of Nuclear Security and Safeguards (CNSNS) for their participation in the International Standard Problem 45 (ISP), organized by the Nuclear Energy Agency (NEA). The exercise consisted on the simulation of the denominated experiment Quench-06 carried out in the experimental installation Quench located in the Forschungszentrum laboratory in Karlsruhe, Germany. The experiment Quench-06 consisted on simulating the sudden and late injection of water in a fuel assemble for a pressurized reactor (PWR). The CNSNS uses the version bd of the SCDAPSIM code developed by the company Innovative Software Systems (ISS) to simulate this experiment. The obtained results showed that the code is able to predict the experiment partially when overestimating the hydrogen production and of the partial fused of some fuel pellets, but predicting correctly the damage in the shroud. (Author)

  18. Simulation of thermal effectiveness under coal dust burning

    International Nuclear Information System (INIS)

    Korabejnikova, V.K.

    2001-01-01

    The simulation equation of polydisperse fuel (coal dust) torch combustion in the definite zones of burning cameras of stream generator and taking into account reactions in kinetic and diffusion areas at distinguishing temperatures of particles and gas are considered. (author)

  19. Simulation of thermal phenomena expected in fuel coolant interactions in LMFBRs

    International Nuclear Information System (INIS)

    Yasin, J.

    1976-12-01

    High pressures and mechanical work may result when thermal energy is transferred from molten fuel to the coolant in a Liquid Metal Fast Breeder Reactor core meltdown accident. Two aspects of the interaction are examined in the thesis. First, the formation of high pressure pulses termed ''Vapor Explosions,'' and second, the distribution of the molten material into smaller particles, termed ''Fragmentation'', are studied. To understand the nature of the interaction simulant materials were used. Molten bismuth, molten tin and molten glass were dropped into water under various conditions. The interactions were recorded using multiflash and high speed photographing techniques. The pressure pulses were measured using transducers and the debris was examined by photographing them with an electron microscope. It was observed that vapor explosions have thresholds which depend on the material being dropped, its temperature and the bath conditions. The vapor explosions were enhanced by stratifying the bath. It was also noticed that the intensity of the vapor explosion depends on the way the molten drop fragmented in the initial stages of the interaction. The experiments with glass showed that the mode of fragmentation is important in determining when and if a vapor explosion is to be expected. The glass fragmented extensively but without any accompanying vapor explosion. The electron microscope photographs of the glass debris showed that thermal stress and surface tension phenomenon are apparently the cause of the fragmentation

  20. Review of the Thermal-Chemical Experiments for CANDU Fuel Channel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Tae; Min, Byung Joo; Park, Joo Hwan; Yoon, Churl; Rhee, Bo Wook

    2005-08-15

    In the present study, thermal-chemical experiments for CANDU channel analysis are reviewed. First, 11 experiments are identified from the present references and classified according to the number of heater rods, channel orientation, and degree of FES (Fuel Element Simulator) temperature rise during transient. The main configuration of the test rigs and the position of the measurement systems are identified. The experiments were generally conducted in three stages, a low-power, a high-power and a no-power stage. These test procedures are classified and described in this document. The experimental conditions for steam, coolant, and heat power are identified. The thermal properties of solid materials and fluids in the test apparatus are listed in the tables. From the review of the main test results, the following conclusions are to be obtained. Some of the reviewed experiments were not in the quasy-steady state conditions at a low-power stage and followed by a high-power stage. Zircaloy/steam reaction started when FES temperature were 800 .deg. C and escalated when temperature exceeded 1150 .deg. C. Uncontrolled temperature escalations due to Zircaloy/steam reaction were not observed when the FES temperature reached peak point (just below the melting point) and electric power to the test section shut off (self-sustaining Zircaloy/steam reaction). There were negligible circumferential temperature gradients in the FES bundle and pressure tube for the experiments performed in a vertical channel orientation. There were, however, noticeable circumferential gradients when the pressure tube was horizontal. These gradients were attributed to slumping of the FES bundle (sagging). Sagging of the bundle may have masked any buoyancy induced temperature gradients. Furthermore, the hot FES sagged towards the pressure tube transferring more heat to the pressure tube and increasing the temperature of the pressure tube.

  1. Review of the Thermal-Chemical Experiments for CANDU Fuel Channel

    International Nuclear Information System (INIS)

    Kim, Hyoung Tae; Min, Byung Joo; Park, Joo Hwan; Yoon, Churl; Rhee, Bo Wook

    2005-08-01

    In the present study, thermal-chemical experiments for CANDU channel analysis are reviewed. First, 11 experiments are identified from the present references and classified according to the number of heater rods, channel orientation, and degree of FES (Fuel Element Simulator) temperature rise during transient. The main configuration of the test rigs and the position of the measurement systems are identified. The experiments were generally conducted in three stages, a low-power, a high-power and a no-power stage. These test procedures are classified and described in this document. The experimental conditions for steam, coolant, and heat power are identified. The thermal properties of solid materials and fluids in the test apparatus are listed in the tables. From the review of the main test results, the following conclusions are to be obtained. Some of the reviewed experiments were not in the quasy-steady state conditions at a low-power stage and followed by a high-power stage. Zircaloy/steam reaction started when FES temperature were 800 .deg. C and escalated when temperature exceeded 1150 .deg. C. Uncontrolled temperature escalations due to Zircaloy/steam reaction were not observed when the FES temperature reached peak point (just below the melting point) and electric power to the test section shut off (self-sustaining Zircaloy/steam reaction). There were negligible circumferential temperature gradients in the FES bundle and pressure tube for the experiments performed in a vertical channel orientation. There were, however, noticeable circumferential gradients when the pressure tube was horizontal. These gradients were attributed to slumping of the FES bundle (sagging). Sagging of the bundle may have masked any buoyancy induced temperature gradients. Furthermore, the hot FES sagged towards the pressure tube transferring more heat to the pressure tube and increasing the temperature of the pressure tube

  2. Thermal hydraulic simulation of the CANDU nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Athos M.S.S. de; Ramos, Mario C.; Costa, Antonella L.; Fernandes, Gustavo H.N., E-mail: athos1495@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq), Rio de janeiro, RJ (Brazil)

    2017-07-01

    The CANDU (Canada Deuterium Uranium) is a Canadian-designed power reactor of PHWR type (Pressurized Heavy Water Reactor) that uses heavy water (deuterium oxide) for moderator and coolant, and natural uranium for fuel. There are about 47 reactors of this type in operation around the world generating more than 23 GWe, highlighting the importance of this kind of device. In this way, the main purpose of this study is to develop a thermal hydraulic model for a CANDU reactor to aggregate knowledge in this line of research. In this way, a core modeling was performed using RELAP5-3D code. Results were compared with reference data to verify the model behavior in steady state operation. Thermal hydraulic parameters as temperature, pressure and mass flow rate were verified and the results are in good agreement with reference data, as it is being presented in this work. (author)

  3. Simulation of Thermal-hydraulic Process in Reactor of HTR-PM

    International Nuclear Information System (INIS)

    Zhou Kefeng; Zhou Yangping; Sui Zhe; Ma Yuanle

    2014-01-01

    This paper provides the physical process in the reactor of High Temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM) and introduces the standard operation conditions. The FORTRAN code developed for the thermal hydraulic module of Full-Scale Simulator (FSS) of HTR-PM is used to simulate two typical operation transients including cold startup process and cold shutdown process. And the results were compared to the safety analysis code, namely TINTE. The good agreement indicates that the code is applicable for simulating the thermal-hydraulic process in reactor of HTR-PM. And for long time transient process, the code shows good stability and convergence. (author)

  4. Cellular and Porous Materials Thermal Properties Simulation and Prediction

    CERN Document Server

    Öchsner, Andreas; de Lemos, Marcelo J S

    2008-01-01

    Providing the reader with a solid understanding of the fundamentals as well as an awareness of recent advances in properties and applications of cellular and porous materials, this handbook and ready reference covers all important analytical and numerical methods for characterizing and predicting thermal properties. In so doing it directly addresses the special characteristics of foam-like and hole-riddled materials, combining theoretical and experimental aspects for characterization purposes.

  5. Simulation of Thermal Signature of Tires and Tracks

    Science.gov (United States)

    2012-08-01

    the body-ply is a linear elastic material. To facilitate the analysis, the tire was divided into Tread and Sidewall by the dash line as shown in...only one element is assigned through the thickness of the tire . Therefore, the thickness of the element is the same as the thickness of the tire ...to the whole part of the 3D full tire in the thermal analysis. The average strain energy density for each part ( tread or sidewall) in the cross

  6. Nuclear waste repository simulation experiments, Asse Salt Mine, Federal Republic of Germany. Annual report, 1983

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Luebker, D.; Coyle, A.; Kalia, H.

    1984-10-01

    This is the First Annual report (1983) which describes experiments simulating a nuclear waste respository at the 800-meter level of the Asse Salt Mine in the Federal Republic of Germany. The report describes the test equipment, the Asse Salt Mine, the pretest properties of the salt in the test gallery, and the mine proper. Also included are test data for the first six months of operations on brine migration rates, room closure rates, extensometer readings, stress measurements, and thermal mechanical behavior of the salt. The duration of the experiments will be two years, ending in December 1985. 3 references, 34 figures, 13 tables

  7. Test results of the new NSSS thermal-hydraulics program of the KNPEC-2 simulator

    International Nuclear Information System (INIS)

    Jeong, J. Z.; Kim, K. D.; Lee, M. S.; Hong, J. H.; Lee, Y. K.; Seo, J. S.; Kweon, K. J.; Lee, S. W.

    2001-01-01

    As a part of the KNPEC-2 Simulator Upgrade Project, KEPRI and KAERI have developed a new NSSS thermal-hydraulics program, which is based on the best-estimate system code, RETRAN. The RETRAN code was originally developed for realistic simulation of thermal-hydraulic transient in power plant systems. The capability of 'real-time simulation' and robustness' should be first developed before being implemented in full-scope simulators. For this purpose, we have modified the RETRAN code by (i) eliminating the correlations' discontinuities between flow regime maps, (ii) simplifying physical correlations, (iii) correcting errors in the original program, and (iv) others. This paper briefly presents the test results fo the new NSSS thermal-hydraulics program

  8. The Development of Dispatcher Training Simulator in a Thermal Energy Generation System

    Science.gov (United States)

    Hakim, D. L.; Abdullah, A. G.; Mulyadi, Y.; Hasan, B.

    2018-01-01

    A dispatcher training simulator (DTS) is a real-time Human Machine Interface (HMI)-based control tool that is able to visualize industrial control system processes. The present study was aimed at developing a simulator tool for boilers in a thermal power station. The DTS prototype was designed using technical data of thermal power station boilers in Indonesia. It was then designed and implemented in Wonderware Intouch 10. The resulting simulator came with component drawing, animation, control display, alarm system, real-time trend, historical trend. This application used 26 tagnames and was equipped with a security system. The test showed that the principles of real-time control worked well. It is expected that this research could significantly contribute to the development of thermal power station, particularly in terms of its application as a training simulator for beginning dispatchers.

  9. A Fast Electro-Thermal Co-Simulation Modeling Approach for SiC Power MOSFETs

    DEFF Research Database (Denmark)

    Ceccarelli, Lorenzo; Bahman, Amir Sajjad; Iannuzzo, Francesco

    2017-01-01

    The purpose of this work is to propose a novel electro-thermal co-simulation approach for the new generation of SiC MOSFETs, by development of a PSpice-based compact and physical SiC MOSFET model including temperature dependency of several parameters and a Simulink-based thermal network. The PSpice...... the FEM simulation of the DUT’s structure, performed in ANSYS Icepack. A MATLAB script is used to process the simulation data and feed the needed settings and parameters back into the simulation. The parameters for a CREE 1.2 kV/30 A SiC MOSFET have been identified and the electro-thermal model has been...

  10. Thermal hydrodynamic modeling and simulation of hot-gas duct for next-generation nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Injun [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Hong, Sungdeok; Kim, Chansoo [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Bai, Cheolho; Hong, Sungyull [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Shim, Jaesool, E-mail: jshim@ynu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2016-12-15

    Highlights: • Thermal hydrodynamic nonlinear model is presented to examine a hot gas duct (HGD) used in a fourth-generation nuclear power reactor. • Experiments and simulation were compared to validate the nonlinear porous model. • Natural convection and radiation are considered to study the effect on the surface temperature of the HGD. • Local Nusselt number is obtained for the optimum design of a possible next-generation HGD. - Abstract: A very high-temperature gas-cooled reactor (VHTR) is a fourth-generation nuclear power reactor that requires an intermediate loop that consists of a hot-gas duct (HGD), an intermediate heat exchanger (IHX), and a process heat exchanger for massive hydrogen production. In this study, a mathematical model and simulation were developed for the HGD in a small-scale nitrogen gas loop that was designed and manufactured by the Korea Atomic Energy Research Institute. These were used to investigate the effect of various important factors on the surface of the HGD. In the modeling, a porous model was considered for a Kaowool insulator inside the HGD. The natural convection and radiation are included in the model. For validation, the modeled external surface temperatures are compared with experimental results obtained while changing the inlet temperatures of the nitrogen working fluid. The simulation results show very good agreement with the experiments. The external surface temperatures of the HGD are obtained with respect to the porosity of insulator, emissivity of radiation, and pressure of the working fluid. The local Nusselt number is also obtained for the optimum design of a possible next-generation HGD.

  11. Impact of detector simulation in particle physics collider experiments

    Science.gov (United States)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  12. Computational simulation of natural circulation and rewetting experiments using the TRAC/PF1 code

    International Nuclear Information System (INIS)

    Silva, J.D. da.

    1994-05-01

    In this work the TRAC code was used to simulate experiments of natural circulation performed in the first Brazilian integral test facility at (COPESP), Sao Paulo and a rewetting experiment in a single tube test section carried out at CDTN, Belo Horizonte, Brazil. In the first simulation the loop behavior in two transient conditions with different thermal power, namely 20 k W and 120 k W, was verified in the second one the quench front propagation, the liquid mass collected in the carry over measuring tube and the wall temperature at different elevations during the flooding experiment was measured. A comparative analysis, for code consistency, shows a good agreement between the code results and experimental data, except for the quench from velocity. (author). 15 refs, 19 figs, 12 tabs

  13. An efficient modeling method for thermal stratification simulation in a BWR suppression pool

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Ling Zou; Hongbin Zhang; Hua Li; Walter Villanueva; Pavel Kudinov

    2012-09-01

    The suppression pool in a BWR plant not only is the major heat sink within the containment system, but also provides major emergency cooling water for the reactor core. In several accident scenarios, such as LOCA and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; and the pool temperature distribution also affects the NPSHa (Available Net Positive Suction Head) and therefore the performance of the pump which draws cooling water back to the core. Current safety analysis codes use 0-D lumped parameter methods to calculate the energy and mass balance in the pool and therefore have large uncertainty in prediction of scenarios in which stratification and mixing are important. While 3-D CFD methods can be used to analyze realistic 3D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, therefore long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. The POOLEX experiments at Finland, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, are used for validation. GOTHIC lumped parameter models are used to obtain boundary conditions for BMIX++ code and CFD simulations. Comparison between the BMIX++, GOTHIC, and CFD calculations against the POOLEX experimental data is discussed in detail.

  14. Solar photovoltaic/thermal residential experiment. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Darkazalli, G.

    1980-07-01

    Month-by-month energy transfer data between an occupied residence and its energy supply systems are presented. The data were obtained during the first phase of photovoltaic/thermal residential research conducted at the University of Texas at Arlington/Solar Energy Research Facility. This research was part of the US Department of Energy Photovoltaic/Thermal Project managed by the M.I.T. Lincoln Laboratory. Energy transfer data are divided into different categories depending on how the energy is consumed. Energy transfers between some system components are also categorized. These components include a flat-plate thermal collector array, a flat-plate photovoltaic array, a dc-to-ac inverter, thermal storage tanks, and a series heat pump. System operations included directing surplus electrical energy (generated by the photovoltaic array) into the local utility grid. The heat pump used off-peak utility power to chill water during the cooling season.

  15. Experiment and Simulation Study of Single Cylinder Diesel Engine Performance, Using Soybean Oil Biodiesel

    Directory of Open Access Journals (Sweden)

    Muhammad Rizqi Ariefianto

    2017-01-01

    Full Text Available Abstract— The most common fuel uses in the world is made from fossil. Fossil fuel is categorized as a non-renewable energy source. For that reason, there should be an alternative fuel to replace fossil fuel by using biodiesel and one of the stock comes from soybean bean. Before using the biodiesel made from soybean bean oil, there should be a research to find out the properties and the effect of biodiesel from soybean bean oil regarding the performance of the engine. The research can be conducted in experiment and simulation. The properties result of soybean oil biodiesel should be tested to confirm whether this biodiesel have meet the standard requirement of biodieselor not. This biodiesel sproperties are Flash Point value is 182 o C , Pour Point value is -7 o C, Density at 15 o C is 890 Kg/m3, Kinematic Viscosity at 40 o C is 5.58 (cSt, and Lower Heating Value is 42.27686 MJ/kg. The result from this research is the highest power from simulation is 9% higher than the experiment. The highest torque from the experiment is 37% lower than the simulation’s torque. Lowest SFOC from experiment is  28% lower than the simulation’s SFOC. Highest BMEP from simulation is 20% higher than the highest BMEP from experiment. The  highest thermal efficiency from experiment is 6% higher than the highest thermal efficiency from simulation. The engine performance result using soybean oil biodiesel is not better than the Pertamina Dex. For that reason, the use of this biodiesel is not suggested to substitute Pertamina Dex.

  16. Rationalization of foundry processes on the basis of simulation experiment

    Directory of Open Access Journals (Sweden)

    S. Kukla

    2008-10-01

    Full Text Available The paper presents results of research obtained on the basis of simulation experiment, whose aim was to analyze the performance of cast iron foundry. A simulation model of automobile industry foundry was made. The course of the following processes was analyzedin a computer model: preparation of liquid cast iron, forming and filling the moulds, cooling and stamping the castings, cleaning andfinishing treatment. The sheets of multi-criterion evaluation were prepared, where criteria and variants were assessed by meansof subjective point evaluation and fuzzy character evaluation. The paper presents an analysis example of finishing activities of castings realized in foundry on traditional machines and efficient presses and in cooperation. On the basis of reports from a simulation experiment information was achieved related to activities’ duration, load of accessible resources, the problems of storage and transport, bottle necks in the system and appearing queues in from of workplaces. The research used a universal modelling and simulation packet for productionsystems - ARENA.

  17. Review of simulation techniques for Aquifer Thermal Energy Storage (ATES)

    Science.gov (United States)

    Mercer, J. W.; Faust, C. R.; Miller, W. J.; Pearson, F. J., Jr.

    1981-03-01

    The analysis of aquifer thermal energy storage (ATES) systems rely on the results from mathematical and geochemical models. Therefore, the state-of-the-art models relevant to ATES were reviewed and evaluated. These models describe important processes active in ATES including ground-water flow, heat transport (heat flow), solute transport (movement of contaminants), and geochemical reactions. In general, available models of the saturated ground-water environment are adequate to address most concerns associated with ATES; that is, design, operation, and environmental assessment. In those cases where models are not adequate, development should be preceded by efforts to identify significant physical phenomena and relate model parameters to measurable quantities.

  18. Effects of simulated nuclear thermal pulses on fiber optic cables

    International Nuclear Information System (INIS)

    Baba, A.J.; Share, S.; Wasilik, J.H.

    1979-01-01

    The effects of pulsed thermal radiation on fiber optic cables with a variety of jackets (polyurethane, PVC, fluorocarbon) are presented. Exposure between 27 and 85 cal/cm 2 did not sever the optical fibers, but the radiation did cause disintegration of the jackets and the Kevlar strength members, which resulted in a significant reduction of the cable's ability to survive mechanical stress. Hardening techniques are discussed. The addition of low absorptance materials (white Teflon tape and aluminum foil) under clear or white Teflon jackets prevented some types of cables from being affected at fluences up to 110 cal/cm 2

  19. ECO steam explosion experiments on the conversion of thermal into mechanical energy

    International Nuclear Information System (INIS)

    Cherdron, W.; Kaiser, A.; Schuetz, W.; Will, H.

    2001-01-01

    In case of a steam explosion, e.g. as a consequence of a severe reactor accident, part of the thermal energy of the melt is transferred into mechanical energy. At Forschungszentrum Karlsruhe, so-called ECO experiments, are being directed to measure the conversion factor under well-defined conditions. In ECO, alumina from a thermite reaction is used as a simulating material instead of corium. Dimensions of the test facility as well as major test conditions, e.g. temperature and release mode of the melt, water inventory and test procedure, are based on the former PREMIX experimental series. In the paper, results of the first test, ECO 01, are given. (orig.)

  20. Rainfall simulation experiments in the Southwestern USA using the Walnut Gulch rainfall simulator

    Science.gov (United States)

    The dataset contains hydrological, erosion, vegetation, ground cover, and other supplementary information from 272 rainfall simulation experiments conducted on 23 semi-arid rangeland locations in Arizona and Nevada between 2002 and 2013. On 30% of the plots simulations were conducted up to five time...

  1. Full scope simulator commissioning and training experience at Cernavoda NPP

    International Nuclear Information System (INIS)

    Balan, M.

    2000-01-01

    The paper presents the experience gained during commissioning and the initial use of the CANDU training full-scope simulator for operation personnel at Cernavoda NPP. The full-scope simulator as an integral part of the training programs that take place in Cernavoda Nuclear Training Department (CNTD), is mainly used for the development of operational skills, knowledge and attitudes required to operate the plant in a safe and efficient manner. (author)

  2. Simulation Experiments in Practice: Statistical Design and Regression Analysis

    OpenAIRE

    Kleijnen, J.P.C.

    2007-01-01

    In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. The goal of this article is to change these traditional, naïve methods of design and analysis, because statistical theory proves that more information is obtained when applying Design Of Experiments (DOE) and linear regression analysis. Unfortunately, classic DOE and regression analysis assume a single simulation response that is normally and independen...

  3. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    International Nuclear Information System (INIS)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-01-01

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester

  4. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Duc; Moses, Gregory [University of Wisconsin—Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Delettrez, Jacques [Laboratory for Laser Energetics of the University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-08-15

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  5. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Science.gov (United States)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-08-01

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  6. Nuclear waste repository simulation experiments. Asse salt mine: Annual report 1984

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Feddersen, H.K.; Schwarzianeck, P.; Staupendahl, G.; Coyle, A.J.; Kalia, H.; Eckert, J.

    1985-01-01

    This is the Second Annual Report (1984) which describes experiments simulating a nuclear waste repository at the 800 meter-level of the Asse Salt Mine in the Federal Republic of Germany. The report describes the Asse Salt Mine, the test equipment, and the pretest properties of the salt in the mine and in the vicinity of the test area. Also included are test data for the first sixteen months of operation on the following: brine migration rates, thermal mechanical behavior of the salt (including room closure, stress readings and thermal profiles) and borehole gas pressures. In addition to field data laboratory analyses of results are also included in this report. The duration of the experiment will be two years, ending in December 1985. (orig.)

  7. Nuclear waste repository simulation experiments, Asse salt mine, Federal Republic of Germany. Annual report 1984

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Feddersen, H.K.; Schwarzianeck, P.; Staupendahl, G.; Coyle, A.J.; Eckert, J.; Kalia, H.

    1986-07-01

    This is the second joint annual report (1984) on experiments simulating a nuclear waste repository at the 800-m (2624-ft) level of the Asse salt mine in the Federal Republic of Germany. This report describes the Asse salt mine, the test equipment, and the pretest properties of the salt in the mine and in the vicinity of the test area. Also included are test data for the first 19 months of operation on the following: brine migration rates, thermal mechanical behavior of the salt (including room closure, stress reading, and thermal profiles), and borehole gas pressures. In addition to field data, laboratory analyses of results are included in this report. The duration of the experiment will be 2 years, ending in December 1985

  8. TRISO fuel thermal simulations in the LS-VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Mario C.; Scari, Maria E.; Costa, Antonella L.; Pereira, Claubia; Veloso, Maria A.F., E-mail: marc5663@gmail.com, E-mail: melizabethscari@yahoo.com, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores/CNPq (Brazil)

    2017-07-01

    The liquid-salt-cooled very high-temperature reactor (LS-VHTR) is a reactor that presents very good characteristics in terms of energy production and safety aspects. It uses as fuel the TRISO particles immersed in a graphite matrix with a cylindrical shape called fuel compact, as moderator graphite and as coolant liquid salt Li{sub 2}BeF{sub 4} called Flibe. This work evaluates the thermal hydraulic performance of the heat removal system and the reactor core by performing different simplifications to represent the reactor core and the fuel compact under steady-state conditions, starting the modeling from a single fuel element, until complete the studies with the entire core model developed in the RELAP5-3D code. Two models were considered for representation of the fuel compact, homogeneous and non-homogeneous models, as well as different geometries of the heat structures was considered. The aim to develop several models was to compare the thermal hydraulic characteristics resulting from the construction of a more economical and less discretized model with much more refined models that can lead to more complexes analyzes to representing TRISO effect particles in the fuel compact. The different results found, mainly, for the core temperature distributions are presented and discussed. (author)

  9. Behaviour of the Callovo-Oxfordian clay around a converging heated borehole: thermal free wall experiment

    International Nuclear Information System (INIS)

    Garitte, B.; Gens, A.; Vaunat, J.; Armand, G.; Conil, N.

    2012-01-01

    measured temperature and pore water pressure response compared with computations performed using Code-Bright, a Thermo-Hydro-Mechanical finite element code developed at UPC. The pore water pressure response triggered by application of heat was found to be mostly dependent on: The temperature evolution, dependent on its turn on the thermal conductivity; The thermal expansion coefficient of water, dependent on temperature; The thermal expansion of the skeleton; The thermal expansion of the solid grain; The water compressibility; The water permeability; The compressibility of the skeleton. A plane strain computation was run using a heat loss coefficient to account for the longitudinal heat flux that is zero in the plane strain computation. The measurements were reproduced in a satisfactory way adopting the same parameters used in previous heating experiments in which the heating borehole was not allowed to converge. This suggests that the influence of the drilling damage zone may be negligible. The pore water pressure state at the start of heating is influenced by drainage towards the heating borehole since its drilling. The simulation reproduces well the initial pore pressure in TER1907, although drainage has been slightly overestimated in TER 1906. For comparison purposes, simulation results during the heating phase have been reset to measured values at start of heating for sensor TER1906. The coupling between temperature and pore water pressure is evident and further discussed in the full paper. During the heating phase, a priori unexplained variations of the pore water pressure were observed. Those are reproduced by the simulation and associated with small power variations. In the full paper, we also present a sensitivity analysis of the parameters given above to investigate their influence. We also pay particular attention to anisotropic rock features and to the potential influence of the drilling damage zone and to the development of damage during heating. The results

  10. Truth Seeded Reconstruction for Fast Simulation in the ATLAS Experiment

    CERN Document Server

    Jansky, Roland; Salzburger, Andreas

    The huge success of the ATLAS experiment for particle physics during Run 1 of the LHC would not have been possible without the production of vast amounts of simulated Monte Carlo data. However, the very detailed detector simulation is a highly CPU intensive task and thus resource shortages occurred. Motivated by this, great effort has been put into speeding up the simulation. As a result, other timeconsuming parts became visible. One of which is the track reconstruction. This thesis describes one potential solution to the CPU intensive reconstruction of simulated data: a newly designed truth seeded reconstruction. At its basics is the idea to skip the pattern recognition altogether, instead utilizing the available (truth) information from simulation to directly fit particle trajectories without searching for them. At the same time tracking effects of the standard reconstruction need to be emulated. This approach is validated thoroughly and no critical deviations of the results compared to the standard reconst...

  11. HFSS Simulation on Cavity Coupling for Axion Detecting Experiment

    CERN Document Server

    Yeo, Beomki

    2015-01-01

    In the resonant cavity experiment, it is vital maximize signal power at detector with the minimized reflection from source. Return loss is minimized when the impedance of source and cavity are matched to each other and this is called impedance matching. Establishing tunable antenna on source is required to get a impedance matching. Geometry and position of antenna is varied depending on the electromagnetic eld of cavity. This research is dedicated to simulation to nd such a proper design of coupling antenna, especially for axion dark matter detecting experiment. HFSS solver was used for the simulation.

  12. Comparing CTH simulations and experiments on explosively loaded rings

    Science.gov (United States)

    Braithwaite, C. H.; Aydelotte, Brady; Collins, Adam; Thadhani, Naresh; Williamson, David Martin

    2012-03-01

    A series of experiments were conducted on explosively loaded metallic rings for the purpose of studying fragmentation. In addition to the collection of fragments for analysis, the radial velocity of the expanding ring was measured with photon Doppler velocimetry (PDV) and the arrangement was imaged using high speed photography. Both the ring material and the material used as the explosive container were altered and the results compared with simulations performed in CTH. Good agreement was found between the simulations and the experiments. The maximum radial velocity attained was approximately 380 m/s, which was achieved through loading with a 5g PETN based charge.

  13. Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations.

    Science.gov (United States)

    Khadem, Masoud H; Wemhoff, Aaron P

    2013-02-28

    Non-equilibrium molecular dynamics (NEMD) simulations are used to investigate the thermal conductivity of herringbone graphite nanofibers (GNFs) at room temperature by breaking down the axial and transverse conductivity values into intralayer and interlayer components. The optimized Tersoff potential is used to account for intralayer carbon-carbon interactions while the Lennard-Jones potential is used to model the interlayer carbon-carbon interactions. The intralayer thermal conductivity of the graphene layers near room temperature is calculated for different crease angles and number of layers using NEMD with a constant applied heat flux. The edge effect on a layer's thermal conductivity is investigated by computing the thermal conductivity values in both zigzag and armchair directions of the heat flow. The interlayer thermal conductivity is also predicted by imposing hot and cold Nosé-Hoover thermostats on two layers. The limiting case of a 90° crease angle is used to compare the results with those of single-layer graphene and few-layer graphene. The axial and transverse thermal conductivities are then calculated using standard trigonometric conversions of the calculated intralayer and interlayer thermal conductivities, along with calculations of few-layer graphene without a crease. The results show a large influence of the crease angle on the intralayer thermal conductivity, and the saturation of thermal conductivity occurs when number of layers is more than three. The axial thermal conductivity, transverse thermal conductivity in the crease direction, and transverse thermal conductivity normal to the crease for the case of a five-layer herringbone GNF with a 45° crease angle are calculated to be 27 W∕m K, 263 W∕m K, and 1500 W∕m K, respectively, where the axial thermal conductivity is in good agreement with experimental measurements.

  14. Computational Simulation of Thermal and Spattering Phenomena and Microstructure in Selective Laser Melting of Inconel 625

    Science.gov (United States)

    Özel, Tuğrul; Arısoy, Yiğit M.; Criales, Luis E.

    Computational modelling of Laser Powder Bed Fusion (L-PBF) processes such as Selective laser Melting (SLM) can reveal information that is hard to obtain or unobtainable by in-situ experimental measurements. A 3D thermal field that is not visible by the thermal camera can be obtained by solving the 3D heat transfer problem. Furthermore, microstructural modelling can be used to predict the quality and mechanical properties of the product. In this paper, a nonlinear 3D Finite Element Method based computational code is developed to simulate the SLM process with different process parameters such as laser power and scan velocity. The code is further improved by utilizing an in-situ thermal camera recording to predict spattering which is in turn included as a stochastic heat loss. Then, thermal gradients extracted from the simulations applied to predict growth directions in the resulting microstructure.

  15. Finite element simulation of stress evolution in thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Bednarz, P.

    2007-07-01

    Gas turbine materials exposed to extreme high temperature require protective coatings. To design reliable components, a better understanding of the coating failure mechanisms is required. Damage in Thermal Barrier Coating Systems (TBCs) is related to oxidation of the Bond Coat, sintering of the ceramic, thermal mismatch of the material constituents, complex shape of the BC/TGO/TBC interface, redistribution of stresses via creep and plastic deformation and crack resistance. In this work, experimental data of thermo-mechanical properties of CMSX-4, MCrAlY (Bond Coat) and APS-TBC (partially stabilized zirconia), were implemented into an FE-model in order to simulate the stress development at the metal/ceramic interface. The FE model reproduced the specimen geometry used in corresponding experiments. It comprises a periodic unit cell representing a slice of the cylindrical specimen, whereas the periodic length of the unit cell equals an idealized wavelength of the rough metal/ceramic interface. Experimental loading conditions in form of thermal cycling with a dwelltime at high temperature and consideration of continuous oxidation were simulated. By a stepwise consideration of various material properties and processes, a reference model was achieved which most realistically simulated the materials behavior. The influences of systematic parameter variations on the stress development and critical sites with respect to possible crack paths were shown. Additionally, crack initiation and propagation at the peak of asperity at BC/TGO interface was calculated. It can be concluded that a realistic modeling of stress development in TBCs requires at least reliable data of i) BC and TGO plasticity, ii) BC and TBC creep, iii) continuous oxidation including in particular lateral oxidation, and iv) critical energy release rate for interfaces (BC/TGO, TGO/TBC) and for each layer. The main results from the performed parametric studies of material property variations suggest that

  16. The SCAR project - accidental thermal-hydraulics: from the simulation to the simulators

    International Nuclear Information System (INIS)

    Farvacque, M.; Faydide, B.; Parent, M.; Iffenecker, F.; Pentori, B.; Dumas, J.M.

    2000-01-01

    The integration of the CATHARE code in the reactor simulators was completed in the beginning of the years 1990 with the design of the simulators SIPA1 and SIPA2. The SCAR project (Simulator CAthare Release), presented in this paper, is the following of this application. The objective is the adaptation of a reference CATHARE code version to the simulators environment, in order to realize the convergence between the safety analysis tool and the simulator. (A.L.B.)

  17. Minimizing cell size dependence in micromagnetics simulations with thermal noise

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, E [Departamento de Ingenieria Electromecanica, Universidad de Burgos, Plaza Misael Banuelos, s/n, E-09001, Burgos (Spain); Lopez-DIaz, L [Departamento de Fisica Aplicada. Universidad Salamanca. Plaza de la Merced s/n. Salamanca E-37008 (Spain); Torres, L [Departamento de Fisica Aplicada. Universidad Salamanca. Plaza de la Merced s/n. Salamanca E-37008 (Spain); GarcIa-Cervera, C J [Department of Mathematics. University of California, Santa Barbara, CA 93106 (United States)

    2007-02-21

    Langevin dynamics treats finite temperature effects in a micromagnetics framework by adding a thermal fluctuation field to the effective field. Several works have addressed the dependence of numerical results on the cell size used to split the ferromagnetic samples on the nanoscale regime. In this paper, some former problems dealing with the dependence on the spatial discretization at finite temperature have been revised. We have focused our attention on the stability of the numerical schemes used to integrate the Langevin equation. In particular, a detailed analysis of results was carried out as a function of the time step. It was confirmed that the mentioned dependence can be minimized if an unconditional stable integration method is used to numerically solve the Langevin equation.

  18. Minimizing cell size dependence in micromagnetics simulations with thermal noise

    International Nuclear Information System (INIS)

    MartInez, E; Lopez-DIaz, L; Torres, L; GarcIa-Cervera, C J

    2007-01-01

    Langevin dynamics treats finite temperature effects in a micromagnetics framework by adding a thermal fluctuation field to the effective field. Several works have addressed the dependence of numerical results on the cell size used to split the ferromagnetic samples on the nanoscale regime. In this paper, some former problems dealing with the dependence on the spatial discretization at finite temperature have been revised. We have focused our attention on the stability of the numerical schemes used to integrate the Langevin equation. In particular, a detailed analysis of results was carried out as a function of the time step. It was confirmed that the mentioned dependence can be minimized if an unconditional stable integration method is used to numerically solve the Langevin equation

  19. A Multi-Wavelength Thermal Infrared and Reflectance Scene Simulation Model

    Science.gov (United States)

    Ballard, J. R., Jr.; Smith, J. A.; Smith, David E. (Technical Monitor)

    2002-01-01

    Several theoretical calculations are presented and our approach discussed for simulating overall composite scene thermal infrared exitance and canopy bidirectional reflectance of a forest canopy. Calculations are performed for selected wavelength bands of the DOE Multispectral Thermal Imagery and comparisons with atmospherically corrected MTI imagery are underway. NASA EO-1 Hyperion observations also are available and the favorable comparison of our reflective model results with these data are reported elsewhere.

  20. The gyro-radius scaling of ion thermal transport from global numerical simulations of ITG turbulence

    International Nuclear Information System (INIS)

    Ottaviani, M.; Manfredi, G.

    1998-12-01

    A three-dimensional, fluid code is used to study the scaling of ion thermal transport caused by Ion-Temperature-Gradient-Driven (ITG) turbulence. The code includes toroidal effects and is capable of simulating the whole torus. It is found that both close to the ITG threshold and well above threshold, the thermal transport and the turbulence structures exhibit a gyro-Bohm scaling, at least for plasmas with moderate poloidal flow. (author)

  1. Review of simulation techniques for aquifer thermal energy storage (ATES)

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, J.W.; Faust, C.R.; Miller, W.J.; Pearson, F.J. Jr.

    1981-03-01

    The storage of thermal energy in aquifers has recently received considerable attention as a means to conserve and more efficiently use energy supplies. The analysis of aquifer thermal energy storage (ATES) systems will rely on the results from mathematical and geochemical models. Therefore, the state-of-the-art models relevant to ATES was reviewed and evaluated. These models describe important processes active in ATES including ground-water flow, heat transport (heat flow), solute transport (movement of contaminants), and geochemical reactions. In general, available models of the saturated ground-water environment are adequate to address most concerns associated with ATES; that is, design, operation, and environmental assessment. In those cases where models are not adequate, development should be preceded by efforts to identify significant physical phenomena and relate model parameters to measurable quantities. Model development can then proceed with the expectation of an adequate data base existing for the model's eventual use. Review of model applications to ATES shows that the major emphasis has been on generic sensitivity analysis and site characterization. Assuming that models are applied appropriately, the primary limitation on model calculations is the data base used to construct the model. Numerical transport models are limited by the uncertainty of subsurface data and the lack of long-term historical data for calibration. Geochemical models are limited by the lack of thermodynamic data for the temperature ranges applicable to ATES. Model applications undertaken with data collection activities on ATES sites should provide the most important contributions to the understanding and utilization of ATES. Therefore, the primary conclusion of this review is that model application to field sites in conjunction with data collection activities is essential to the development of this technology.

  2. Coupled large-eddy simulation of thermal mixing in a T-junction

    International Nuclear Information System (INIS)

    Kloeren, D.; Laurien, E.

    2011-01-01

    Analyzing thermal fatigue due to thermal mixing in T-junctions is part of the safety assessment of nuclear power plants. Results of two large-eddy simulations of mixing flow in a T-junction with coupled and adiabatic boundary condition are presented and compared. The temperature difference is set to 100 K, which leads to strong stratification of the flow. The main and the branch pipe intersect horizontally in this simulation. The flow is characterized by steady wavy pattern of stratification and temperature distribution. The coupled solution approach shows highly reduced temperature fluctuations in the near wall region due to thermal inertia of the wall. A conjugate heat transfer approach is necessary in order to simulate unsteady heat transfer accurately for large inlet temperature differences. (author)

  3. Theoretical modelling, experimental studies and clinical simulations of urethral cooling catheters for use during prostate thermal therapy

    International Nuclear Information System (INIS)

    Davidson, Sean R H; Sherar, Michael D

    2003-01-01

    Urethral cooling catheters are used to prevent thermal damage to the urethra during thermal therapy of the prostate. Quantification of a catheter's heat transfer characteristics is necessary for prediction of the catheter's influence on the temperature and thermal dose distribution in periurethral tissue. Two cooling catheters with different designs were examined: the Dornier Urowave catheter and a prototype device from BSD Medical Corp. A convection coefficient, h, was used to characterize the cooling ability of each catheter. The value of the convection coefficient (h = 330 W m -2 deg C -1 for the Dornier catheter, h = 160 W m -2 deg C -1 for the BSD device) was obtained by comparing temperatures measured in a tissue-equivalent phantom material to temperatures predicted by a finite element method simulation of the phantom experiments. The coefficient was found to be insensitive to the rate of coolant flow inside the catheter between 40 and 120 ml min -1 . The convection coefficient method for modelling urethral catheters was incorporated into simulations of microwave heating of the prostate. Results from these simulations indicate that the Dornier device is significantly more effective than the BSD catheter at cooling the tissue surrounding the urethra

  4. Thermal and stress analyses of meltdown cups for LMFBR safety experiments using SLSF in-reactor loops

    International Nuclear Information System (INIS)

    Blomquist, C.A.; Pierce, R.D.; Pedersen, D.R.; Ariman, T.

    1977-01-01

    The test trains for the Sodium Loop Safety Facility (SLSF) in-reactor experiments, which simulate hypothetical LMFBR accidents, have a meltdown cup to protect the primary containment from the effects of molten materials. Thermal and stress analyses were performed on the cup which is designed to contain 3.6 kg of molten fuel and 2.4 kg of molten steel. Thermal analyses were performed with the Argonne-modified version fo the general heat transfer code THTB, based on the instantaneous addition of 3200 0 K molten fuel with a decay heat of 9 W/gm and 1920 0 K molten steel. These analyses have shown that the cup will adequately cool the molten materials. The stress analysis showed that the Inconel vessel would not fail from the pressure loading, it was also shown that brittle fracture of the tungsten liner from thermal gradients is unlikely. Therefore, the melt-down cup meets the structural design requirements. (Auth.)

  5. Experimental Preparation and Numerical Simulation of High Thermal Conductive Cu/CNTs Nanocomposites

    Directory of Open Access Journals (Sweden)

    Muhsan Ali Samer

    2014-07-01

    Full Text Available Due to the rapid growth of high performance electronics devices accompanied by overheating problem, heat dissipater nanocomposites material having ultra-high thermal conductivity and low coefficient of thermal expansion was proposed. In this work, a nanocomposite material made of copper (Cu reinforced by multi-walled carbon nanotubes (CNTs up to 10 vol. % was prepared and their thermal behaviour was measured experimentally and evaluated using numerical simulation. In order to numerically predict the thermal behaviour of Cu/CNTs composites, three different prediction methods were performed. The results showed that rules of mixture method records the highest thermal conductivity for all predicted composites. In contrast, the prediction model which takes into account the influence of the interface thermal resistance between CNTs and copper particles, has shown the lowest thermal conductivity which considered as the closest results to the experimental measurement. The experimentally measured thermal conductivities showed remarkable increase after adding 5 vol.% CNTs and higher than the thermal conductivities predicted via Nan models, indicating that the improved fabrication technique of powder injection molding that has been used to produced Cu/CNTs nanocomposites has overcome the challenges assumed in the mathematical models.

  6. Thermal transport characterization of hexagonal boron nitride nanoribbons using molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Asir Intisar Khan

    2017-10-01

    Full Text Available Due to similar atomic bonding and electronic structure to graphene, hexagonal boron nitride (h-BN has broad application prospects such as the design of next generation energy efficient nano-electronic devices. Practical design and efficient performance of these devices based on h-BN nanostructures would require proper thermal characterization of h-BN nanostructures. Hence, in this study we have performed equilibrium molecular dynamics (EMD simulation using an optimized Tersoff-type interatomic potential to model the thermal transport of nanometer sized zigzag hexagonal boron nitride nanoribbons (h-BNNRs. We have investigated the thermal conductivity of h-BNNRs as a function of temperature, length and width. Thermal conductivity of h-BNNRs shows strong temperature dependence. With increasing width, thermal conductivity increases while an opposite pattern is observed with the increase in length. Our study on h-BNNRs shows considerably lower thermal conductivity compared to GNRs. To elucidate these aspects, we have calculated phonon density of states for both h-BNNRs and GNRs. Moreover, using EMD we have explored the impact of different vacancies, namely, point vacancy, edge vacancy and bi-vacancy on the thermal conductivity of h-BNNRs. With varying percentages of vacancies, significant reduction in thermal conductivity is observed and it is found that, edge and point vacancies are comparatively more destructive than bi-vacancies. Such study would contribute further into the growing interest for accurate thermal transport characterization of low dimensional nanostructures.

  7. Simulation experiment on total ionization dose effects of linear CCD

    International Nuclear Information System (INIS)

    Tang Benqi; Zhang Yong; Xiao Zhigang; Wang Zujun; Huang Shaoyan

    2004-01-01

    We carry out the ionization radiation experiment of linear CCDs operated in unbiased, biased, biased and driven mode respectively by Co-60 γ source with our self-designed test system, and offline test the Dark signal and Saturation voltage and SNR varied with total dose for TCD132D, and get some valuable results. On the basis of above work, we set forth a primary experiment approaches to simulate the total dose radiation effects of charge coupled devices. (authors)

  8. Numerical simulation of thermal loading produced by shaped high power laser onto engine parts

    International Nuclear Information System (INIS)

    Song Hongwei; Li Shaoxia; Zhang Ling; Yu Gang; Zhou Liang; Tan Jiansong

    2010-01-01

    Recently a new method for simulating the thermal loading on pistons of diesel engines was reported. The spatially shaped high power laser is employed as the heat source, and some preliminary experimental and numerical work was carried out. In this paper, a further effort was made to extend this simulation method to some other important engine parts such as cylinder heads. The incident Gaussian beam was transformed into concentric multi-circular patterns of specific intensity distributions, with the aid of diffractive optical elements (DOEs). By incorporating the appropriate repetitive laser pulses, the designed transient temperature fields and thermal loadings in the engine parts could be simulated. Thermal-structural numerical models for pistons and cylinder heads were built to predict the transient temperature and thermal stress. The models were also employed to find the optimal intensity distributions of the transformed laser beam that could produce the target transient temperature fields. Comparison of experimental and numerical results demonstrated that this systematic approach is effective in simulating the thermal loading on the engine parts.

  9. Germination of rye brome (Bromus secalinus L. seeds under simulated drought and different thermal conditions

    Directory of Open Access Journals (Sweden)

    Małgorzata Haliniarz

    2014-01-01

    Full Text Available The aim of the present study was to compare the germination of rye brome (Bromus secalinus L. seeds and the initial growth of seedlings under simulated drought and different thermal conditions. The study included two experiments carried out under laboratory conditions in the spring of 2012. The first experiment involved an evaluation of the speed of germination as well as of the biometric characters and weight of seedlings in polyethylene glycol solutions (PEG 8000 in which the water potential was: -0.2; -0.4; -0.65; -0.9 MPa, and in distilled water as the control treatment. The experiment was conducted at the following temperatures: 25/22oC and 18/14oC day/night, at a relative air humidity of 90%. The other experiment, in which lessive soil was used as a germination substrate, was carried out in a plant growth chamber at two levels of air humidity (55–65% and 85–95% and temperature (22/10oC and 16/5oC. The soil moisture content was determined by the gravimetric method and the water potential corresponding to it was as follows: -0.02, -0.07, -0.16, -0.49, -1.55 MPa. The germination capacity and emergence of Bromus secalinus as well as the weight of sprouts produced were significantly dependent on the water potential of the polyethylene glycol solution and on the soil water potential. The emergence of Bromus secalinus was completely inhibited by reducing the soil water potential below -0.16 MPa (the point of strong growth inhibition. The emergence and biometric characters of rye bro- me seedlings were significantly dependent on temperature and air humidity.

  10. Simulation study of negative thermal expansion in yttrium tungstate Y2W3O12.

    Science.gov (United States)

    Rimmer, Leila H N; Dove, Martin T

    2015-05-13

    A simulation study of negative thermal expansion in Y2W3O12 was carried out using calculations of phonon dispersion curves through the application of density functional perturbation theory. The mode eigenvectors were mapped onto flexibility models and results compared with calculations of the mode Grüneisen parameters. It was found that many lower-frequency phonons contribute to negative thermal expansion in Y2W3O12, all of which can be described in terms of rotations of effectively rigid WO4 tetrahedra and Y-O rods. The results are strikingly different from previous phonon studies of higher-symmetry materials that show negative thermal expansion.

  11. Particle-in-cell simulations on spontaneous thermal magnetic field fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Simões, F. J. R. Jr.; Pavan, J. [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil); Gaelzer, R.; Ziebell, L. F. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States)

    2013-10-15

    In this paper an electromagnetic particle code is used to investigate the spontaneous thermal emission. Specifically we perform particle-in-cell simulations employing a non-relativistic isotropic Maxwellian particle distribution to show that thermal fluctuations are related to the origin of spontaneous magnetic field fluctuation. These thermal fluctuations can become seed for further amplification mechanisms and thus be considered at the origin of the cosmological magnetic field, at microgauss levels. Our numerical results are in accordance with theoretical results presented in the literature.

  12. Optical roughness BRDF model for reverse Monte Carlo simulation of real material thermal radiation transfer.

    Science.gov (United States)

    Su, Peiran; Eri, Qitai; Wang, Qiang

    2014-04-10

    Optical roughness was introduced into the bidirectional reflectance distribution function (BRDF) model to simulate the reflectance characteristics of thermal radiation. The optical roughness BRDF model stemmed from the influence of surface roughness and wavelength on the ray reflectance calculation. This model was adopted to simulate real metal emissivity. The reverse Monte Carlo method was used to display the distribution of reflectance rays. The numerical simulations showed that the optical roughness BRDF model can calculate the wavelength effect on emissivity and simulate the real metal emissivity variance with incidence angles.

  13. Large Blast and Thermal Simulator Reflected Wave Eliminator Study

    Science.gov (United States)

    1990-03-01

    it delays the passage of this wave through the test section until after the test is complete. The required length of extra duct depends on the strength...tube axis, which acts like an additional contraction effect since Se = Sj/[Cqsin(aj)]. Tii extra area is illustrated best by plotting (Se-Ae)/Ac versus...34Simulation de Choc et de Soaffie. Comimpensateur d’Ondes de Detente de Bouche pour tube a Choc de 2400 mm de diametre de Veine. Description, Compte- Renda

  14. Importance of thermal nonequilibrium considerations for the simulation of nuclear reactor LOCA transients

    International Nuclear Information System (INIS)

    Fischer, S.R.; Nelson, R.A.; Sullivan, L.H.

    1980-01-01

    The purpose of this paper is to show the importance of considering thermal nonequilibrium effects in computer simulations of the refill and reflood portions of pressurized water reactor (PWR) loss-of-coolnat accident (LOCA) transients. Although RELAP4 assumes thermodynamic equilibrium between phases, models that account for the nonequilibrium phenomena associated with the mixing of subcooled emergency cooling water with steam and the superheating of vapor in the presence of liquid droplets have recently been incorporated into the code. Code calculated results, both with and without these new models, have been compared with experimental test data to assess the importance of including thermal nonequilibrium phenomena in computer code simulations

  15. Thermal Comfort in Simulated Office Environment with Four Convective and Radiant Cooling Systems

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Mustakallio, Panu; Kolencíková, Sona

    2013-01-01

    with overhead mixing ventilation (MVRC). Whole body thermal sensation (TS) and whole body TS acceptability under the four systems in a simulated office room for one hour exposure were collected. The simulated two-man office (4.12 x 4.20 x 2.89 m, L x W x H) was kept at 26 oC room air temperature. Moderate heat...... to “neutral” compared to male, whose votes were closer to the “slightly warm” thermal sensation. The whole body TS acceptability was rated close to ''clearly acceptable'' (EN 15251-2007) and was independent of subject's gender for all tested systems....

  16. Simulated learning environment experience in nursing students for paediatric practice.

    Science.gov (United States)

    Mendoza-Maldonado, Yessy; Barría-Pailaquilén, René Mauricio

    The training of health professionals requires the acquisition of clinical skills in a safe and efficient manner, which is facilitated by a simulated learning environment (SLE). It is also an efficient alternative when there are limitations for clinical practice in certain areas. This paper shows the work undertaken in a Chilean university in implementing paediatric practice using SLE. Over eight days, the care experience of a hospitalized infant was studied applying the nursing process. The participation of a paediatrician, resident physician, nursing technician, and simulated user was included in addition to the use of a simulation mannequin and equipment. Simulation of care was integral and covered interaction with the child and family and was developed in groups of six students by a teacher. The different phases of the simulation methodology were developed from a pedagogical point of view. The possibility of implementing paediatric clinical practice in an efficient and safe way was confirmed. The experience in SLE was highly valued by the students, allowing them to develop different skills and abilities required for paediatric nursing through simulation. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  17. Quantum chemistry simulation on quantum computers: theories and experiments.

    Science.gov (United States)

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  18. Simulation and Experimental Study on Thermal Conductivity of [EMIM][DEP] + H_2 O + SWCNTs Nanofluids as a New Working Pairs

    Science.gov (United States)

    Li, Chang; Zhao, Zongchang; Zhang, Xiaodong; Li, Tianyu

    2018-03-01

    In this paper, the single-wall carbon nanotubes (SWCNTs) were dispersed into ionic liquid, 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][DEP]), and its aqueous solution [EMIM][DEP](1) + H2O(2) to enhance the thermal conductivity of base liquids, which will be the promising working pairs for absorption heat pumps and refrigerators. The enhancement effects on thermal conductivity were studied by experiment and molecular dynamic simulation (MD) methods. The thermal conductivities of [EMIM][DEP] + SWCNTs (INF) and [EMIM][DEP](1) + H2O(2) + SWCNT(SNF) both with SWCNT mass fraction of 0.5, 1, and 2 (wt%) were measured by transient hot-wire method. The results indicate that the enhancement ratio of thermal conductivity of INF, and SNF can approach 1.30 when SWCNT is 2 (wt%). Moreover, SWCNTs has a higher enhancement ratio than multi-wall carbon nanotubes (MWCNTs). Density and thermal conductivity of [EMIM][DEP], [EMIM][DEP](1) + H2O(2), INF and SNF systems, together with self-diffusion coefficients of [EMIM]+, [DEP]-, [EMIM][DEP] and water in solution [EMIM][DEP](1) + H2O(2), were investigated by MD simulations. The results indicate that the maximum relative error between the simulated and experimental densities is about 2 %, and the simulated self-diffusion coefficient of [EMIM][DEP] is in the order of magnitude of 10^{-11} m2\\cdot s^{-1}. The average relative deviation for the simulated thermal conductivity of [EMIM][DEP](1) + H2O(2), INF and SNF from experimental ones are 23.57 %, 5 %, and 5 %, respectively. In addition, the contributions of kinetic energy, potential energy, and virial and partial enthalpy terms to thermal conductivity were also calculated. The results indicate that virial term's contribution to thermal conductivity is the maximum, which accounts for 75 % to 80 % of total thermal conductivity.

  19. Thermal-hydraulic experiment and analysis for interim dry storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Yoo, Seung Hun

    2011-02-01

    The experimental and numerical studies of interim storages for nuclear spent fuels have been performed to investigate thermal-hydraulic characteristics of the dry storage systems and to propose new methodologies for the analysis and the design. Three separate researches have been performed in the present study: (a) Development of a scaling methodology and thermal-hydraulic experiment of a single spent fuel assembly simulating a dry storage cask: (b) Full-scope simulation of a dry storage cask by the use of Computational Fluid Dynamics (CFD) code: (c) Thermal-hydraulic design of a tunnel-type interim storage facility. In the first study, a scaling methodology has been developed to design a scaled-down canister. The scaling was performed in two steps. For the first step, the height of a spent fuel assembly was reduced from full height to half height. In order to consider the effect of height reduction on the natural convection, the scaling law of Ishii and Kataoka (1984) was employed. For the second step, the quantity of spent fuel assemblies was reduced from multiple assemblies to a single assembly. The scaling methodology was validated through the comparison with the experiment of the TN24P cask. The Peak Cladding Temperature (PCT), temperature gradients, and the axial and radial temperature distribution in the nondimensional forms were in good agreement with the experimental data. Based on the developed methodology, we have performed a single assembly experiment which was designed to simulate the full scale of the TN24P cask. The experimental data was compared with the CFD calculations. It turns out that their PCTs were less than the maximum allowable temperature for the fuel cladding and that the differences of their PCTs were agreed within 3 .deg. C, which was less than measurement uncertainty. In the second study, the full-scope simulations of the TN24P cask were performed by FLUENT. In order to investigate the sensitivity of the numerical and physical

  20. Thermal imaging experiments on ANACONDA ion beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weihua; Yatsui, Kiyoshi [Nagaoka University of Technology (Japan). Lab. of Beam Technology; Olson, C J; Davis, H A [Los Alamos National Laboratory, Los Alamos, NM (United States)

    1997-12-31

    The thermal imaging technique was used in two experimental measurements. First, the ion intensity distribution on the anode surface was observed from different angles by using a multi-pinhole camera. Second, the plume from a target intercepting the beam was visualized by observing the distribution of temperature increase on a thin plate hit by the plume. (author). 6 figs., 4 refs.

  1. Simulation with GOTHIC of experiments Oxidation of fuel in Air

    International Nuclear Information System (INIS)

    Martinez-Murillo Mendez, J. C.

    2012-01-01

    In the present work has been addressed for the first time la simulation with the GOTHIC code, experiments oxidation and ignition of SFP in phase 1. This work represents a solid starting point for analysis of specific degradation of fuel in the pools of our facilities.

  2. Simulations of the magnetic properties experiment on Mars Exploration Rovers

    International Nuclear Information System (INIS)

    Gunnlaugsson, H. P.; Worm, E. S.; Bertelsen, P.; Goetz, W.; Kinch, K.; Madsen, M. B.; Merrison, J. P.; Nornberg, P.

    2005-01-01

    We present some of the main findings from simulation studies of the Magnetic Properties Experiment on the Mars Exploration Rovers. The results suggest that the dust has formed via mechanical breakdown of surface rocks through the geological history of the planet, and that liquid water need not have played any significant role in the dust formation processes.

  3. Simulation Experiments in Practice : Statistical Design and Regression Analysis

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2007-01-01

    In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. Statistical theory proves that more information is obtained when applying Design Of Experiments (DOE) and linear regression analysis. Unfortunately, classic

  4. Comparison of GPU-Based Numerous Particles Simulation and Experiment

    International Nuclear Information System (INIS)

    Park, Sang Wook; Jun, Chul Woong; Sohn, Jeong Hyun; Lee, Jae Wook

    2014-01-01

    The dynamic behavior of numerous grains interacting with each other can be easily observed. In this study, this dynamic behavior was analyzed based on the contact between numerous grains. The discrete element method was used for analyzing the dynamic behavior of each particle and the neighboring-cell algorithm was employed for detecting their contact. The Hertzian and tangential sliding friction contact models were used for calculating the contact force acting between the particles. A GPU-based parallel program was developed for conducting the computer simulation and calculating the numerous contacts. The dam break experiment was performed to verify the simulation results. The reliability of the program was verified by comparing the results of the simulation with those of the experiment

  5. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-01

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved

  6. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-15

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.

  7. Thermal simulation of a cooling system of hybrid commercial vehicles; Thermalsimulation eine Hybrid-LKW-Kuehlsystems

    Energy Technology Data Exchange (ETDEWEB)

    Stroh, Christoph; Schnoerch, Stefan; Rathberger, Christian [Magna Powertrain Engineering Center Steyr GmbH und Co. KG, St. Valentin (Austria)

    2012-11-01

    In the past few years hybrid vehicles have been in the center of automotive engineering efforts, in particular in the field of passenger cars. But hybrid powertrains will also be important for commercial trucks. This focus on hybrid vehicles leads to high demands on thermal management since the additional components in a hybrid vehicle need appropriate cooling or even heating. In the given paper the simulation of a complete cooling system of a hybrid commercial vehicle will be explained. For this virtual examination the commercial 1D thermal management software KULI will be used, a co-simulation with several programs will not be done deliberately. Yet all aspects which are relevant for a global assessment of the thermal management are considered. The main focus is put on the investigation of appropriate concepts for the fluid circuits, including low and high temperature circuits, electric water pumps, etc. Moreover, also a refrigerant circuit with a chiller for active battery cooling will be used, the appropriate control strategy is implemented as well. For simulating transient profiles a simple driving simulation model is included, using road profile, ambient conditions, and various vehicle parameters as input. In addition an engine model is included which enables the investigation of fuel consumption potentials. This simulation model shows how the thermal management of a hybrid vehicle can be investigated with a single program and with reasonable effort. (orig.)

  8. The Importance of a Thermal Manikin as Source and Obstacle in Full-Scale Experiments

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The thermal manikin is normally introduced at indoor environmental measurements to obtain detailed information on thermal comfort and air quality around a person. This paper deals with the opposite situation where manikins are introduced as sources and obstacles in order to obtain reasonable...... boundary conditions in experiments with the indoor environment. In other words, how will people influence the surroundings instead of how will the surroundings influence people? The use of thermal manikins in an experiment will of course take both situations into account, however, in some experiments...

  9. Temperature-induced physiological stress and reproductive characteristics of the migratory seahorse Hippocampus erectus during a thermal stress simulation.

    Science.gov (United States)

    Qin, Geng; Johnson, Cara; Zhang, Yuan; Zhang, Huixian; Yin, Jianping; Miller, Glen; Turingan, Ralph G; Guisbert, Eric; Lin, Qiang

    2018-05-15

    Inshore-offshore migration occurs frequently in seahorse species either because of prey opportunities or because it is driven by reproduction, and variations in water temperature may dramatically change migratory seahorse behavior and physiology. The present study investigated the behavioral and physiological responses of the lined seahorse Hippocampus erectus under thermal stress and evaluated the potential effects of different temperatures on its reproduction. The results showed that the thermal tolerance of the seahorses was time dependent. Acute thermal stress (30°C, 2-10 hours) increased the basal metabolic rate (breathing rate) and the expression of stress response genes ( Hsp genes) significantly and further stimulated seahorse appetite. Chronic thermal treatment (30°C, 4 weeks) led to a persistently higher basal metabolic rate, higher stress response gene expression, and higher mortality, indicating that the seahorses could not acclimate to chronic thermal stress and might experience massive mortality due to excessive basal metabolic rates and stress damage. Additionally, no significant negative effects on gonad development or reproductive endocrine regulation genes were observed in response to chronic thermal stress, suggesting that seahorse reproductive behavior could adapt to higher-temperature conditions during migration and within seahorse breeding grounds. In conclusion, this simulation experiment indicated that temperature variations during inshore-offshore migration have no effect on reproduction but promote basal metabolic rates and stress responses significantly. Therefore, we suggest that the high observed tolerance of seahorse reproduction was in line with the inshore-offshore reproductive migration pattern of lined seahorse. © 2018. Published by The Company of Biologists Ltd.

  10. Three-dimensional simulations of Nova capsule implosion experiments

    International Nuclear Information System (INIS)

    Marinak, M.M.; Tipton, R.E.; Landen, O.L.

    1995-01-01

    Capsule implosion experiments carried out on the Nova laser are simulated with the three-dimensional HYDRA radiation hydrodynamics code. Simulations of ordered near single mode perturbations indicate that structures which evolve into round spikes can penetrate farthest into the hot spot. Bubble-shaped perturbations can burn through the capsule shell fastest, however, causing even more damage. Simulations of a capsule with multimode perturbations shows spike amplitudes evolving in good agreement with a saturation model during the deceleration phase. The presence of sizable low mode asymmetry, caused either by drive asymmetry or perturbations in the capsule shell, can dramatically affect the manner in which spikes approach the center of the hot spot. Three-dimensional coupling between the low mode shell perturbations intrinsic to Nova capsules and the drive asymmetry brings the simulated yields into closer agreement with the experimental values

  11. Epitaxial growth of Cu on Cu(001): Experiments and simulations

    International Nuclear Information System (INIS)

    Furman, Itay; Biham, Ofer; Zuo, Jiang-Kai; Swan, Anna K.; Wendelken, John

    2000-01-01

    A quantitative comparison between experimental and Monte Carlo simulation results for the epitaxial growth of Cu/Cu(001) in the submonolayer regime is presented. The simulations take into account a complete set of hopping processes whose activation energies are derived from semiempirical calculations using the embedded-atom method. The island separation is measured as a function of the incoming flux and the temperature. A good quantitative agreement between the experiment and simulation is found for the island separation, the activation energies for the dominant processes, and the exponents that characterize the growth. The simulation results are then analyzed at lower coverages, which are not accessible experimentally, providing good agreement with theoretical predictions as well

  12. A trigger simulation framework for the ALICE experiment

    International Nuclear Information System (INIS)

    Antinori, F; Carminati, F; Gheata, A; Gheata, M

    2011-01-01

    A realistic simulation of the trigger system in a complex HEP experiment is essential for performing detailed trigger efficiency studies. The ALICE trigger simulation is evolving towards a framework capable of replaying the full trigger chain starting from the input to the individual trigger processors and ending with the decision mechanisms of the ALICE central trigger processor. This paper describes the new ALICE trigger simulation framework that is being tested and deployed. The framework handles details like trigger levels, signal delays and busy signals, implementing the trigger logic via customizable trigger device objects managed by a robust scheduling mechanism. A big advantage is the high flexibility of the framework, which is able to mix together components described with very different levels of detail. The framework is being gradually integrated within the ALICE simulation and reconstruction frameworks.

  13. Apollo experience report: Guidance and control systems. Engineering simulation program

    Science.gov (United States)

    Gilbert, D. W.

    1973-01-01

    The Apollo Program experience from early 1962 to July 1969 with respect to the engineering-simulation support and the problems encountered is summarized in this report. Engineering simulation in support of the Apollo guidance and control system is discussed in terms of design analysis and verification, certification of hardware in closed-loop operation, verification of hardware/software compatibility, and verification of both software and procedures for each mission. The magnitude, time, and cost of the engineering simulations are described with respect to hardware availability, NASA and contractor facilities (for verification of the command module, the lunar module, and the primary guidance, navigation, and control system), and scheduling and planning considerations. Recommendations are made regarding implementation of similar, large-scale simulations for future programs.

  14. ELECTROMAGNETIC AND THERMAL SIMULATIONS FOR THE SWITCH REGION OF A COMPACT PROTON ACCELERATOR

    International Nuclear Information System (INIS)

    Wang, L; Caporaso, G J; Sullivan, J S

    2007-01-01

    A compact proton accelerator for medical applications is being developed at Lawrence Livermore National Laboratory. The accelerator architecture is based on the dielectric wall accelerator (DWA) concept. One critical area to consider is the switch region. Electric field simulations and thermal calculations of the switch area were performed to help determine the operating limits of rmed SiC switches. Different geometries were considered for the field simulation including the shape of the thin Indium solder meniscus between the electrodes and SiC. Electric field simulations were also utilized to demonstrate how the field stress could be reduced. Both transient and steady steady-state thermal simulations were analyzed to find the average power capability of the switches

  15. Adaptive Core Simulation Employing Discrete Inverse Theory - Part II: Numerical Experiments

    International Nuclear Information System (INIS)

    Abdel-Khalik, Hany S.; Turinsky, Paul J.

    2005-01-01

    Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. The companion paper, ''Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory,'' describes in detail the theoretical background of the proposed adaptive techniques. This paper, Part II, demonstrates several computational experiments conducted to assess the fidelity and robustness of the proposed techniques. The intent is to check the ability of the adapted core simulator model to predict future core observables that are not included in the adaption or core observables that are recorded at core conditions that differ from those at which adaption is completed. Also, this paper demonstrates successful utilization of an efficient sensitivity analysis approach to calculate the sensitivity information required to perform the adaption for millions of input core parameters. Finally, this paper illustrates a useful application for adaptive simulation - reducing the inconsistencies between two different core simulator code systems, where the multitudes of input data to one code are adjusted to enhance the agreement between both codes for important core attributes, i.e., core reactivity and power distribution. Also demonstrated is the robustness of such an application

  16. Thermal and thermo-mechanical simulation of laser assisted machining

    International Nuclear Information System (INIS)

    Germain, G.; Dal Santo, P.; Lebrun, J. L.; Bellett, D.; Robert, P.

    2007-01-01

    Laser Assisted Machining (LAM) improves the machinability of materials by locally heating the workpiece just prior to cutting. The heat input is provided by a high power laser focused several millimeters in front of the cutting tool. Experimental investigations have confirmed that the cutting force can be decreased, by as much as 40%, for various materials (tool steel, titanium alloys and nickel alloys). The laser heat input is essentially superficial and results in non-uniform temperature profiles within the depth of the workpiece. The temperature field in the cutting zone is therefore influenced by many parameters. In order to understand the effect of the laser on chip formation and on the temperature fields in the different deformation zones, thermo-mechanical simulation were undertaken. A thermo-mechanical model for chip formation with and without the laser was also undertaken for different cutting parameters. Experimental tests for the orthogonal cutting of 42CrMo4 steel were used to validate the simulation via the prediction of the cutting force with and without the laser. The thermo-mechanical model then allowed us to highlight the differences in the temperature fields in the cutting zone with and without the laser. In particular, it was shown that for LAM the auto-heating of the material in the primary shear zone is less important and that the friction between the tool and chip also generates less heat. The temperature fields allow us to explain the reduction in the cutting force and the resulting residual stress fields in the workpiece

  17. Simulation of power maneuvering experiment of MASLWR test facility by MARS-KS code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Yeop [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In this ICSP, experimental data obtained from MASLWR (Mulit-Application Small Light Water Reactor) test facility located at Oregon state university in the US have been simulated by various thermal-hydraulic codes of each participant of the ICSP and compared among others. MASLWR test facility is a mock-up of a passive integral type reactor equipped with helical coil steam generator. Since SMART reactor which is currently being developed in Korea also adopts a helical coil steam generator, Korea Institute of Nuclear Safety (KINS) has joined this ICSP to assess the applicability of a domestic regulatory audit thermal-hydraulic code (i. e. MARS-KS code) for the SMART reactor including wall-to-fluid heat transfer model modification based on independent international experiment data. In the ICSP, two types of transient experiments have been focused and they are 1) loss of feedwater transient with subsequent ADS operation and long term cooling (SP-2) and normal operating conditions at different power levels. In the present study, KINS simulation result by the MARS-KS code (KS-002 version) for the SP-3 experiment is presented in detail and conclusion on MARS-KS code performance drawn through this simulation is described. Performance of the MARS-KS code is evaluated through the simulation of the power maneuvering experiment of the MASLWR test facility. Steady run shows the helical coil specific heat transfer model of the code is reasonable. However, identified discrepancy of the primary mass flowrate at transient run shows code performance for pressure drop needs to be improved considering sensitivity of the flowrate to the pressure drop at natural circulation.

  18. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

    Science.gov (United States)

    Zhu, Dongming; Spuckler, Charles M.

    2010-01-01

    The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

  19. Experience with thermal recycle of plutonium and uranium

    International Nuclear Information System (INIS)

    Beer, O.; Schlosser, G.; Spielvogel, F.

    1985-01-01

    The Federal Republic of Germany (FRG) decided to close the fuel cycle by erecting the reprocessing plant WA350 at Wackersdorf. As long as the plutonium supply from reprocessing plants exceeds the plutonium demand of fast breeder reactors, recycling of plutonium in LWR's is a convenient solution by which a significant advanced uranium utilization is achieved. The demonstration of plutonium recycling performed to date in the FRG in BWR's and PWR's shows that thermal plutonium recycling on an industrial scale is feasible and that the usual levels of reliability and safety can be achieved in reactor operation. The recycling of reprocessed uranium is presently demonstrated in the FRG, too. As regards fuel cycle economy thermal recycling allows savings in natural uranium and separative work. Already under present cost conditions the fuel cycle costs for mixed oxide or enriched reprocessed uranium fuel assemblies are equal or even lower than for usual uranium fuel assemblies

  20. Utility experience using THERMAC for plant thermal performance analysis

    International Nuclear Information System (INIS)

    Jain, P.K.; Doran, K.J.

    1993-01-01

    THERMAC is a state-of-the-art software package designed to assist those responsible for monitoring and evaluating the thermal performance of fossil and nuclear power plants. It is an integrated program, available on PCs and selected workstations, that combines strong analytical capabilities with a graphical user interface and object-oriented database. The software accurately analyses all of the components of a power plant from first principles. The graphical user interface is employed to build plant specific models; it can also be used to create custom screen displays. THERMAC is able to read plant measurements and statistically account for any missing or erroneous plant data; it does not require any additional plant instrumentation. THERMAC can be used to archive historical data, generate customized trending plots and periodic performance reports. open-quotes What-if close-quote studies can be conducted to predict the impact of corrective actions on thermal performance

  1. What is the best clothing to prevent heat and cold stress? Experiences with thermal manikin.

    Science.gov (United States)

    Magyar, Z; Tamas, R

    2013-02-01

    The present study summarizes the current knowledge of the heat and cold stress which might significantly affect military activities and might also occur among travellers who are not well adapted to weather variations during their journey. The selection of the best clothing is a very important factor in preserving thermal comfort. Our experiences with thermal manikin are also represented in this paper.

  2. Processing of thermal scattering data with NJOY experience and comments

    International Nuclear Information System (INIS)

    Mattes, M.

    1989-01-01

    The THERMR module of NJOY-89 generates pointwise integrated cross sections and double differential neutron scattering cross sections in the thermal energy range where the binding of the scatterer in a material or the motion of atoms in a gas is important. The results are added to an existing PENDF tape using special MT numbers in the range 221 to 250. The cross sections can then be group-averaged with the GROUPR module or plotted and reformated in subsequent modules

  3. Simulation of Thermal Stratification in BWR Suppression Pools with One Dimensional Modeling Method

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Ling Zou; Hongbin Zhang

    2014-01-01

    The suppression pool in a boiling water reactor (BWR) plant not only is the major heat sink within the containment system, but also provides the major emergency cooling water for the reactor core. In several accident scenarios, such as a loss-of-coolant accident and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; the pool temperature distribution also affects the NPSHa (available net positive suction head) and therefore the performance of the Emergency Core Cooling System and Reactor Core Isolation Cooling System pumps that draw cooling water back to the core. Current safety analysis codes use zero dimensional (0-D) lumped parameter models to calculate the energy and mass balance in the pool; therefore, they have large uncertainties in the prediction of scenarios in which stratification and mixing are important. While three-dimensional (3-D) computational fluid dynamics (CFD) methods can be used to analyze realistic 3-D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, resulting in a long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code (Berkeley mechanistic MIXing code in C++) has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by one-dimensional (1-D) transient partial differential equations and substructures (such as free or wall jets) are modeled with 1-D integral models. This allows very large reductions in computational effort compared to multi-dimensional CFD modeling. One heat-up experiment performed at the Finland POOLEX facility, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, is used for

  4. Thermal-shock experiments with flawed clad cylinders

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Bryson, J.W.; Alexander, D.J.

    1989-01-01

    The life expectancy of LWR pressure vessels is influenced by a reduction in fracture toughness that is the result of radiation damage. As the fracture toughness decreases, the probability of propagation of preexisting flaws (sharp, crack-like defects) in the wall of the vessel increases. The probability of propagation is also influenced by the type of loading condition and the type of flaws that might exist. A loading condition of particular concern is referred to as pressurized thermal shock (PTS), and a flaw of particular concern for PTS loading conditions is a shallow surface flaw. A sudden cooling (thermal shock) of the inner surface of the vessel results in relatively high tensile stresses and relatively low fracture toughness at the inner surface. In addition, the attenuation of the fast-neutron fluence also results in relatively low fracture toughness at the inner surface. Under some circumstances, this combination of high stress and low toughness at the inner surface makes it possible for very shallow surface flaws to propagate. The PTS issue has been under investigation for quite some time, but thus far possible beneficial effects, other than thermal resistance, of the cladding on the inner surface of the vessel have not been included in the analysis of flaw behavior. This document discusses this effect of cladding on surface flaws and crack propagation

  5. Simulation platform for remote participants in fusion experiments

    International Nuclear Information System (INIS)

    Barrera, E.; Ruiz, M.; Lopez, S.; Vega, J.; Sanchez, E.

    2004-01-01

    One of the major challenges in remote participation in fusion experiments is the control from remote locations of the data acquisition and treatment process. In an optimum situation, the remote researcher should be able to control the data acquisition configuration parameters, and data processing, specifying the results that must be returned to him. The simulation platform presented here, allows the researcher to develop and test complex algorithms in a high level graphical language (LabVIEW), which includes powerful data processing libraries. These algorithms will be downloaded later into the data acquisition system. Furthermore, the platform allows the simulation of hardware data acquisition, which include the following points: (a) simulation of channel configuration from one or several data acquisition cards (channels used, sample frequencies, etc.), (b) generation of buffered simulated data (it is also possible the use of raw data, acquired in previous experiments, as simulated data), and (c) reproduction of hardware behavior (except, of course, in terms of real time behavior and real data). For this purpose, Virtual Instruments (VIs) libraries written in LabVIEW will be provided to the remote developers. These VIs will be replaced later, in the data acquisition system, by their homologous VIs that actually interface with the hardware. This facility will allow remote researchers to verify the correct behavior of their own data processing algorithms before downloading them into the data acquisition system

  6. Simulation of the BGO-OD experiment at ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Russell [University of Bonn, Physikalisches Institut, Bonn (Germany); Collaboration: BGO-OD-Collaboration

    2011-07-01

    The goal of the BGO Open-Dipole (BGO-OD) project is the systematic investigation of the photoproduction of mesons off the nucleon. These processes are related to the structure of both the mesons and the baryons involved in reactions typical of low-energy hadronic physics. In order to fully understand and accurately interpret the results of the BGO-OD experiment it will be necessary to have a full detector and reaction simulation so that effects from detector resolution and acceptance can be accounted for in the final results. The simulation of the BGO-OD will be be undertaken with the Explora Virtual Monte-Carlo (VMC) software framework. This allows for one common user code to be implemented under Geant4, Geant3 and Fluka. The simulation software is also an analysis tool and such flexibility will be key to an efficient final analysis of the data from the BGO-OD experiment. Presented here are current status of the simulation software for the BGO-OD project and the relevant geometry of the BGO-OD, including the central BGO rugby ball detector with the dual-layer Multiwire Proportional Chambers (MWPCs) and the forward spectrometer, consisting of a large dipole magnet, tracking detectors and the Time-of-Flight walls. Simulation of the magnetic field will also be covered.

  7. Processing biobased polymers using plasticizers: Numerical simulations versus experiments

    Science.gov (United States)

    Desplentere, Frederik; Cardon, Ludwig; Six, Wim; Erkoç, Mustafa

    2016-03-01

    In polymer processing, the use of biobased products shows lots of possibilities. Considering biobased materials, biodegradability is in most cases the most important issue. Next to this, bio based materials aimed at durable applications, are gaining interest. Within this research, the influence of plasticizers on the processing of the bio based material is investigated. This work is done for an extrusion grade of PLA, Natureworks PLA 2003D. Extrusion through a slit die equipped with pressure sensors is used to compare the experimental pressure values to numerical simulation results. Additional experimental data (temperature and pressure data along the extrusion screw and die are recorded) is generated on a dr. Collin Lab extruder producing a 25mm diameter tube. All these experimental data is used to indicate the appropriate functioning of the numerical simulation tool Virtual Extrusion Laboratory 6.7 for the simulation of both the industrial available extrusion grade PLA and the compound in which 15% of plasticizer is added. Adding the applied plasticizer, resulted in a 40% lower pressure drop over the extrusion die. The combination of different experiments allowed to fit the numerical simulation results closely to the experimental values. Based on this experience, it is shown that numerical simulations also can be used for modified bio based materials if appropriate material and process data are taken into account.

  8. A simplified tool for building layout design based on thermal comfort simulations

    Directory of Open Access Journals (Sweden)

    Prashant Anand

    2017-06-01

    Full Text Available Thermal comfort aspects of indoor spaces are crucial during the design stages of building layout planning. This study presents a simplified tool based on thermal comfort using predicted mean vote (PMV index. Thermal comfort simulations were performed for 14 different possible room layouts based on window configurations. ECOTECT 12 was used to determine the PMV of these rooms for one full year, leading to 17,808 simulations. Simulations were performed for three different climatic zones in India and were validated using in-situ measurements from one of these climatic zones. For moderate climates, rooms with window openings on the south façade exhibited the best thermal comfort conditions for nights, with comfort conditions prevailing for approximately 79.25% of the time annually. For operation during the day, windows on the north façade are favored, with thermal comfort conditions prevailing for approximately 77.74% of the time annually. Similar results for day and night time operation for other two climatic zones are presented. Such an output is essential in deciding the layout of buildings on the basis of functionality of the different rooms (living room, bedroom, kitchen corresponding to different operation times of the day.

  9. User's manual for computer code SOLTES-1 (simulator of large thermal energy systems)

    International Nuclear Information System (INIS)

    Fewell, M.E.; Grandjean, N.R.; Dunn, J.C.; Edenburn, M.W.

    1978-09-01

    SOLTES simulates the steady-state response of thermal energy systems to time-varying data such as weather and loads. Thermal energy system models of both simple and complex systems can easily be modularly constructed from a library of routines. These routines mathematically model solar collectors, pumps, switches, thermal energy storage, thermal boilers, auxiliary boilers, heat exchangers, extraction turbines, extraction turbine/generators, condensers, regenerative heaters, air conditioners, heating and cooling of buildings, process vapor, etc.; SOLTES also allows user-supplied routines. The analyst need only specify fluid names to obtain readout of property data for heat-transfer fluids and constants that characterize power-cycle working fluids from a fluid property data bank. A load management capability allows SOLTES to simulate total energy systems that simultaneously follow heat and power loads and demands. Generalized energy accounting is available, and values for system performance parameters may be automatically determined by SOLTES. Because of its modularity and flexibility, SOLTES can be used to simulate a wide variety of thermal energy systems such as solar power/total energy, fossil fuel power plants/total energy, nuclear power plants/total energy, solar energy heating and cooling, geothermal energy, and solar hot water heaters

  10. Thermal boundary resistance at Si/Ge interfaces by molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Tianzhuo Zhan

    2015-04-01

    Full Text Available In this study, we investigated the temperature dependence and size effect of the thermal boundary resistance at Si/Ge interfaces by non-equilibrium molecular dynamics (MD simulations using the direct method with the Stillinger-Weber potential. The simulations were performed at four temperatures for two simulation cells of different sizes. The resulting thermal boundary resistance decreased with increasing temperature. The thermal boundary resistance was smaller for the large cell than for the small cell. Furthermore, the MD-predicted values were lower than the diffusion mismatch model (DMM-predicted values. The phonon density of states (DOS was calculated for all the cases to examine the underlying nature of the temperature dependence and size effect of thermal boundary resistance. We found that the phonon DOS was modified in the interface regions. The phonon DOS better matched between Si and Ge in the interface region than in the bulk region. Furthermore, in interface Si, the population of low-frequency phonons was found to increase with increasing temperature and cell size. We suggest that the increasing population of low-frequency phonons increased the phonon transmission coefficient at the interface, leading to the temperature dependence and size effect on thermal boundary resistance.

  11. Parallel linear solvers for simulations of reactor thermal hydraulics

    International Nuclear Information System (INIS)

    Yan, Y.; Antal, S.P.; Edge, B.; Keyes, D.E.; Shaver, D.; Bolotnov, I.A.; Podowski, M.Z.

    2011-01-01

    The state-of-the-art multiphase fluid dynamics code, NPHASE-CMFD, performs multiphase flow simulations in complex domains using implicit nonlinear treatment of the governing equations and in parallel, which is a very challenging environment for the linear solver. The present work illustrates how the Portable, Extensible Toolkit for Scientific Computation (PETSc) and scalable Algebraic Multigrid (AMG) preconditioner from Hypre can be utilized to construct robust and scalable linear solvers for the Newton correction equation obtained from the discretized system of governing conservation equations in NPHASE-CMFD. The overall long-tem objective of this work is to extend the NPHASE-CMFD code into a fully-scalable solver of multiphase flow and heat transfer problems, applicable to both steady-state and stiff time-dependent phenomena in complete fuel assemblies of nuclear reactors and, eventually, the entire reactor core (such as the Virtual Reactor concept envisioned by CASL). This campaign appropriately begins with the linear algebraic equation solver, which is traditionally a bottleneck to scalability in PDE-based codes. The computational complexity of the solver is usually superlinear in problem size, whereas the rest of the code, the “physics” portion, usually has its complexity linear in the problem size. (author)

  12. CET exSim: mineral exploration experience via simulation

    Science.gov (United States)

    Wong, Jason C.; Holden, Eun-Jung; Kovesi, Peter; McCuaig, T. Campbell; Hronsky, Jon

    2013-08-01

    Undercover mineral exploration is a challenging task as it requires understanding of subsurface geology by relying heavily on remotely sensed (i.e. geophysical) data. Cost-effective exploration is essential in order to increase the chance of success using finite budgets. This requires effective decision-making in both the process of selecting the optimum data collection methods and in the process of achieving accuracy during subsequent interpretation. Traditionally, developing the skills, behaviour and practices of exploration decision-making requires many years of experience through working on exploration projects under various geological settings, commodities and levels of available resources. This implies long periods of sub-optimal exploration decision-making, before the necessary experience has been successfully obtained. To address this critical industry issue, our ongoing research focuses on the development of the unique and novel e-learning environment, exSim, which simulates exploration scenarios where users can test their strategies and learn the consequences of their choices. This simulator provides an engaging platform for self-learning and experimentation in exploration decision strategies, providing a means to build experience more effectively. The exSim environment also provides a unique platform on which numerous scenarios and situations (e.g. deposit styles) can be simulated, potentially allowing the user to become virtually familiarised with a broader scope of exploration practices. Harnessing the power of computer simulation, visualisation and an intuitive graphical user interface, the simulator provides a way to assess the user's exploration decisions and subsequent interpretations. In this paper, we present the prototype functionalities in exSim including: simulation of geophysical surveys, follow-up drill testing and interpretation assistive tools.

  13. Simulation of International Standard Problem No. 44 'KAEVER' experiments on aerosol behaviour with the CONTAIN code

    International Nuclear Information System (INIS)

    Kljenak, I.

    2001-01-01

    Experiments on aerosol behavior in a vapor-saturated atmosphere, which were performed in the KAEVER experimental facility and proposed for the OECD International Standard Problem No. 44, were simulated with the CONTAIN thermal-hydraulic computer code. The purpose of the work was to assess the capability of the CONTAIN code to model aerosol condensation and deposition in a containment of a light-water-reactor nuclear power plant at severe accident conditions. Results of dry and wet aerosol concentrations are presented and analyzed.(author)

  14. Performance experiments with alternative advanced teleoperator control modes for a simulated solar maximum satellite repair

    Science.gov (United States)

    Das, H.; Zak, H.; Kim, W. S.; Bejczy, A. K.; Schenker, P. S.

    1992-01-01

    Experiments are described which were conducted at the JPL Advanced Teleoperator Lab to demonstrate and evaluate the effectiveness of various teleoperator control modes in the performance of a simulated Solar Max Satellite Repair (SMSR) task. THe SMSR was selected as a test because it is very rich in performance capability requirements and it actually has been performed by two EVA astronauts in the Space Shuttle Bay in 1984. The main subtasks are: thermal blanket removal; installation of a hinge attachment for electrical panel opening; opening of electrical panel; removal of electrical connectors; relining of cable bundles; replacement of electrical panel; securing parts and cables; re-mate electrical connectors; closing of electrical panel; and reinstating thermal blanket. The current performance experiments are limited to thermal blanket cutting, electrical panel unbolting and handling electrical bundles and connectors. In one formal experiment even different control modes were applied to the unbolting and reinsertion of electrical panel screws subtasks. The seven control modes are alternative combinations of manual position and rate control with force feedback and remote compliance referenced to force-torque sensor information. Force-torque sensor and end effector position data and task completion times were recorded for analysis and quantification of operator performance.

  15. Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control

    Science.gov (United States)

    Jin, Tea-Hwan; Shin, Ki-Yeol; Yoon, Si-Won; Im, Yong-Hoon; Chang, Ki-Chang

    2017-11-01

    A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.

  16. Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control

    Directory of Open Access Journals (Sweden)

    Jin Tea-Hwan

    2017-01-01

    Full Text Available A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.

  17. Development of the NSSS thermal-hydraulic program for YGN unit 1 simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Doo; Jeong, Jae Jun; Lee, Won Jae; Chung, Bub Dong; Ha, Kwi Seok; Kang, Kyung Ho

    2000-09-01

    The NSSS thermal-hydraulic programs installed in the domestic full-scope power plant simulators were provided in early 1980s by foreign vendors. Because of limited computational capability at that time, they usually adopt very simplified physical models for a real-time simulation of NSSS thermal-hydraulic phenomena, which entails inaccurate results and the possibility of so-called 'negative training', especially for complicated two-phase flows in the reactor coolant system. To resolve the problem, we developed a realistic NSSS T/H program (named 'ARTS' code) for use in YongGwang Nuclear Unit 1 full-scope simulator. The best-estimate code RETRAN03, developed by EPRI and approved by USNRC, was selected as a reference code of ARTS. For the development of ARTS, the followings have been performed: -Improvement of the robustness of RETRAN - Improvement of the real-time simulation capability of RETRAN - Optimum input data generation for the NSSS simulation - New model development that cannot be efficiently modeled by RETRAN - Assessment of the ARTS code. The systematic assessment of ARTS has been conducted in both personal computers (Windows 98, Visual fortran) and the simulator development environment (Windows NT, GSE simulator development tool). The results were resonable in terms of accuracy, real-time simulation and robustness.

  18. Development of the NSSS thermal-hydraulic program for YGN unit 1 simulator

    International Nuclear Information System (INIS)

    Kim, Kyung Doo; Jeong, Jae Jun; Lee, Won Jae; Chung, Bub Dong; Ha, Kwi Seok; Kang, Kyung Ho

    2000-09-01

    The NSSS thermal-hydraulic programs installed in the domestic full-scope power plant simulators were provided in early 1980s by foreign vendors. Because of limited computational capability at that time, they usually adopt very simplified physical models for a real-time simulation of NSSS thermal-hydraulic phenomena, which entails inaccurate results and the possibility of so-called 'negative training', especially for complicated two-phase flows in the reactor coolant system. To resolve the problem, we developed a realistic NSSS T/H program (named 'ARTS' code) for use in YongGwang Nuclear Unit 1 full-scope simulator. The best-estimate code RETRAN03, developed by EPRI and approved by USNRC, was selected as a reference code of ARTS. For the development of ARTS, the followings have been performed: -Improvement of the robustness of RETRAN - Improvement of the real-time simulation capability of RETRAN - Optimum input data generation for the NSSS simulation - New model development that cannot be efficiently modeled by RETRAN - Assessment of the ARTS code. The systematic assessment of ARTS has been conducted in both personal computers (Windows 98, Visual fortran) and the simulator development environment (Windows NT, GSE simulator development tool). The results were resonable in terms of accuracy, real-time simulation and robustness

  19. Comparison of fabric skins for the simulation of sweating on thermal manikins

    Science.gov (United States)

    Koelblen, Barbara; Psikuta, Agnes; Bogdan, Anna; Annaheim, Simon; Rossi, René M.

    2017-09-01

    Sweating is an important thermoregulatory process helping to dissipate heat and, thus, to prevent overheating of the human body. Simulations of human thermo-physiological responses in hot conditions or during exercising are helpful for assessing heat stress; however, realistic sweating simulation and evaporative cooling is needed. To this end, thermal manikins dressed with a tight fabric skin can be used, and the properties of this skin should help human-like sweat evaporation simulation. Four fabrics, i.e., cotton with elastane, polyester, polyamide with elastane, and a skin provided by a manikin manufacturer (Thermetrics) were compared in this study. The moisture management properties of the fabrics have been investigated in basic tests with regard to all phases of sweating relevant for simulating human thermo-physiological responses, namely, onset of sweating, fully developed sweating, and drying. The suitability of the fabrics for standard tests, such as clothing evaporative resistance measurements, was evaluated based on tests corresponding to the middle phase of sweating. Simulations with a head manikin coupled to a thermo-physiological model were performed to evaluate the overall performance of the skins. The results of the study showed that three out of four evaluated fabrics have adequate moisture management properties with regard to the simulation of sweating, which was confirmed in the coupled simulation with the head manikin. The presented tests are helpful for comparing the efficiency of different fabrics to simulate sweat-induced evaporative cooling on thermal manikins.

  20. LSP Simulations of the Neutralized Drift Compression Experiment

    CERN Document Server

    Thoma, Carsten H; Gilson, Erik P; Henestroza, Enrique; Roy, Prabir K; Welch, Dale; Yu, Simon

    2005-01-01

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory involves the longitudinal compression of a singly-stripped K ion beam with a mean energy of 250 keV in a meter long plasma. We present simulation results of compression of the NDCX beam using the PIC code LSP. The NDCX beam encounters an acceleration gap with a time-dependent voltage that decelerates the front and accelerates the tail of a 500 ns pulse which is to be compressed 110 cm downstream. The simulations model both ideal and experimental voltage waveforms. Results show good longitudinal compression without significant emittance growth.

  1. Drift Chambers Simulations in BM@N Experiment

    Directory of Open Access Journals (Sweden)

    Fedorišin Ján

    2016-01-01

    Full Text Available Drift chambers constitute an important part of the tracking system of the BM@N experiment designed to study the production of baryonic matter at the Nuclotron energies. GEANT programming package is employed to investigate the drift chamber response to particles produced in relativistic nuclear collisions of C+C nuclei, which are simulated by the UrQMD and LAQGSM Monte Carlo generators. These simulations are combined with the first BM@N experimental data to estimate particle track coordinates and their errors.

  2. A simulation toolkit for electroluminescence assessment in rare event experiments

    CERN Document Server

    Oliveira, C A B; Veenhof, R; Biagi, S; Monteiro, C M B; Santos, J M F dos; Ferreira, A L; Veloso, J F C A

    2011-01-01

    A good understanding of electroluminescence is a prerequisite when optimising double-phase noble gas detectors for Dark Matter searches and high-pressure xenon TPCs for neutrinoless double beta decay detection. A simulation toolkit for calculating the emission of light through electron impact on neon, argon, krypton and xenon has been developed using the Magboltz and Garfield programs. Calculated excitation and electroluminescence efficiencies, electroluminescence yield and associated statistical fluctuations are presented as a function of electric field. Good agreement with experiment and with Monte Carlo simulations has been obtained.

  3. Applications of simulation experiments in LMFBR core materials technology

    International Nuclear Information System (INIS)

    Appleby, W.K.

    1976-01-01

    The development of charged particle bombardment experiments to simulate neutron irradiation induced swelling in austenitic alloys is briefly described. The applications of these techniques in LMFBR core materials technology are discussed. It is shown that use of the techniques to study the behavior of cold-worked Type-316 was instrumental in demonstrating at an early date the need for advanced materials. The simulation techniques then were used to identify alloying elements which can markedly decrease swelling and thus a focused reactor irradiation program is now in place to allow the future use of a lower swelling alloy for LMFBR core components

  4. Thermal inertia and energy efficiency – Parametric simulation assessment on a calibrated case study

    International Nuclear Information System (INIS)

    Aste, Niccolò; Leonforte, Fabrizio; Manfren, Massimiliano; Mazzon, Manlio

    2015-01-01

    Highlights: • We perform a parametric simulation study on a calibrated building energy model. • We introduce adaptive shadings and night free cooling in simulations. • We analyze the effect of thermal capacity on the parametric simulations results. • We recognize that cooling demand and savings scales linearly with thermal capacity. • We assess the advantage of medium-heavy over medium and light configurations. - Abstract: The reduction of energy consumption for heating and cooling services in the existing building stock is a key challenge for global sustainability today and buildings’ envelopes retrofit is one the main issues. Most of the existing buildings’ envelopes have low levels of insulation, high thermal losses due to thermal bridges and cracks, absence of appropriate solar control, etc. Further, in building refurbishment, the importance of a system level approach is often undervalued in favour of simplistic “off the shelf” efficient solutions, focused on the reduction of thermal transmittance and on the enhancement of solar control capabilities. In many cases, the importance of the dynamic thermal properties is often neglected or underestimated and the effective thermal capacity is not properly considered as one of the design parameters. The research presented aims to critically assess the influence of the dynamic thermal properties of the building fabric (roof, walls and floors) on sensible heating and cooling energy demand for a case study. The case study chosen is an existing office building which has been retrofitted in recent years and whose energy model has been calibrated according to the data collected in the monitoring process. The research illustrates the variations of the sensible thermal energy demand of the building in different retrofit scenarios, and relates them to the variations of the dynamic thermal properties of the construction components. A parametric simulation study has been performed, encompassing the use of

  5. Model of natural ventilation by using a coupled thermal-airflow simulation program

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg; Remmen, Arne

    2012-01-01

    This article presents a model of natural ventilation of buildings at the stage of design and a consequence of the behaviour of the occupants. An evaluation is made by coupling multizone air modelling and thermal building simulation using a deterministic set of input factors comprising among others...

  6. Application of thermal sterilization regimes simulation for improvement of canned foods quality factors

    Directory of Open Access Journals (Sweden)

    Stolyanov A.V.

    2015-03-01

    Full Text Available Results of comparison of optimization methods of thermal sterilization temperature-time regimes have been described. It has been shown that due to simulation the final canned foods’ quality factors are significantly improved, sterilization process time is decreased and energy consumption is reduced without sacrificing actual final lethality value

  7. Dynamic simulation of a biomass domestic boiler under thermally thick considerations

    NARCIS (Netherlands)

    Gómez, M. A.; Porteiro, J.; De la Cuesta de Cal, Daniel; Patiño, D.; Míguez, J. L.

    2017-01-01

    A biomass combustion model with a thermally thick approach is presented and applied to the simulation of a commercial biomass domestic boiler. A subgrid scale model is used to divide the particles into several grid points, each representing one of the different combustion stages. These grid points

  8. Molecular-dynamics simulation of crystalline 18-crown-6: thermal shortening of covalent bonds

    NARCIS (Netherlands)

    van Eerden, J.; Harkema, Sybolt; Feil, D.

    1990-01-01

    Molecular-dynamics simulations of crystalline 18-crown-6 have been performed in a study of the apparent thermal shortening of covalent bonds observed in crystal structures. At 100 K, a shortening of 0.006 _+ 0.001 A for C----C and C----O bonds was obtained. This result was found to be independent of

  9. Advances in thermal hydraulic and neutronic simulation for reactor analysis and safety

    International Nuclear Information System (INIS)

    Tentner, A.M.; Blomquist, R.N.; Canfield, T.R.; Ewing, T.F.; Garner, P.L.; Gelbard, E.M.; Gross, K.C.; Minkoff, M.; Valentin, R.A.

    1993-01-01

    This paper describes several large-scale computational models developed at Argonne National Laboratory for the simulation and analysis of thermal-hydraulic and neutronic events in nuclear reactors and nuclear power plants. The impact of advanced parallel computing technologies on these computational models is emphasized

  10. Numerical simulation of thermal stratification in cold legs by using OpenFOAM

    International Nuclear Information System (INIS)

    Cai, Jiejin; Watanabe, Tadashi

    2011-01-01

    During a small-break loss-of-coolant accident in pressurized water reactors (PWRs), emergency core cooling system (ECCS) is actuated and cold water is injected into cold legs. Insufficient mixing of injected cold water and hot primary coolant results in thermal stratification, which is a matter of concern for evaluation of pressurized thermal shock (PTS) in view of aging and life extension of nuclear power plants. In this study, an open source CFD software, OpenFOAM, is used to simulate mixing and thermal stratification in the cold leg of ROSA/LSTF, which is the largest thermal-hydraulic integral test facility simulating PWR. One of the cold-leg is numerically simulated from the outlet of primary coolant pump to the inlet of downcomer. ECCS water is injected from injection nozzle connected at the top of the cold leg into the steady-state natural circulation flow under high-pressure and high-temperature conditions. The temperature distribution in the cold leg is compared with experimental and FLUENT's results. Effects of turbulent flow models and secondary flow due to the elbow section of the cold leg are discussed for the case with the single-phase natural circulation. Injection into a two-phase stratified flow is also simulated and predictive and numerical capabilities of OpenFOAM are discussed. (author)

  11. Numerical simulation of thermal stratification in cold legs by using openFOAM

    International Nuclear Information System (INIS)

    Cai, Jiejin; Watanabe, Tadashi

    2010-01-01

    During a small-break loss-of-coolant accident in pressurized water reactors (PWRs), emergency core cooling system (ECCS) is actuated and cold water is injected into cold legs. Insufficient mixing of injected cold water and hot primary coolant results in thermal stratification, which is a matter of concern for evaluation of pressurized thermal shock (PTS) in view of aging and life extension of nuclear power plants. In this study, an open source CFD software, OpenFOAM, is used to simulate mixing and thermal stratification in the cold leg of ROSA/LSTF, which is the largest thermal-hydraulic integral test facility simulating PWR. One of the cold-leg is numerically simulated from the outlet of primary coolant pump to the inlet of downcomer. ECCS water is injected from injection nozzle connected at the top of the cold leg into the steady-state natural circulation flow under high-pressure and high-temperature conditions. The temperature distribution in the cold leg is compared with experimental and FLUENT's results. Effects of turbulent flow models and secondary flow due to the elbow section of the cold leg are discussed for the case with the single-phase natural circulation. Injection into a two-phase stratified flow is also simulated and predictive and numerical capabilities of OpenFOAM are discussed. (author)

  12. A system for designing and simulating particle physics experiments

    International Nuclear Information System (INIS)

    Zelazny, R.; Strzalkowski, P.

    1987-01-01

    In view of the rapid development of experimental facilities and their costs, the systematic design and preparation of particle physics experiments have become crucial. A software system is proposed as an aid for the experimental designer, mainly for experimental geometry analysis and experimental simulation. The following model is adopted: the description of an experiment is formulated in a language (here called XL) and put by its processor in a data base. The language is based on the entity-relationship-attribute approach. The information contained in the data base can be reported and analysed by an analyser (called XA) and modifications can be made at any time. In particular, the Monte Carlo methods can be used in experiment simulation for both physical phenomena in experimental set-up and detection analysis. The general idea of the system is based on the design concept of ISDOS project information systems. The characteristics of the simulation module are similar to those of the CERN Geant system, but some extensions are proposed. The system could be treated as a component of greater, integrated software environment for the design of particle physics experiments, their monitoring and data processing. (orig.)

  13. Thermal conductivity of nanofluids and size distribution of nanoparticles by Monte Carlo simulations

    International Nuclear Information System (INIS)

    Feng Yongjin; Yu Boming; Feng Kaiming; Xu Peng; Zou Mingqing

    2008-01-01

    Nanofluids, a class of solid-liquid suspensions, have received an increasing attention and studied intensively because of their anomalously high thermal conductivites at low nanoparticle concentration. Based on the fractal character of nanoparticles in nanofluids, the probability model for nanoparticle's sizes and the effective thermal conductivity model are derived, in which the effect of the microconvection due to the Brownian motion of nanoparticles in the fluids is taken into account. The proposed model is expressed as a function of the thermal conductivities of the base fluid and the nanoparticles, the volume fraction, fractal dimension for particles, the size of nanoparticles, and the temperature, as well as random number. This model has the characters of both analytical and numerical solutions. The Monte Carlo simulations combined with the fractal geometry theory are performed. The predictions by the present Monte Carlo simulations are shown in good accord with the existing experimental data.

  14. Comparison of electron cloud simulation and experiments in the high-current experiment

    International Nuclear Information System (INIS)

    Cohen, R.H.; Friedman, A.; Covo, M. Kireeff; Lund, S.M.; Molvik, A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J.-L.; Verboncoeur, J.; Stoltz, P.; Veitzer, S.

    2004-01-01

    A set of experiments has been performed on the High-Current Experiment (HCX) facility at LBNL, in which the ion beam is allowed to collide with an end plate and thereby induce a copious supply of desorbed electrons. Through the use of combinations of biased and grounded electrodes positioned in between and downstream of the quadrupole magnets, the flow of electrons upstream into the magnets can be turned on or off. Properties of the resultant ion beam are measured under each condition. The experiment is modeled via a full three-dimensional, two species (electron and ion) particle simulation, as well as via reduced simulations (ions with appropriately chosen model electron cloud distributions, and a high-resolution simulation of the region adjacent to the end plate). The three-dimensional simulations are the first of their kind and the first to make use of a timestep-acceleration scheme that allows the electrons to be advanced with a timestep that is not small compared to the highest electron cyclotron period. The simulations reproduce qualitative aspects of the experiments, illustrate some unanticipated physical effects, and serve as an important demonstration of a developing simulation capability

  15. Experience base for Radioactive Waste Thermal Processing Systems: A preliminary survey

    International Nuclear Information System (INIS)

    Mayberry, J.; Geimer, R.; Gillins, R.; Steverson, E.M.; Dalton, D.; Anderson, G.L.

    1992-04-01

    In the process of considering thermal technologies for potential treatment of the Idaho National Engineering Laboratory mixed transuranic contaminated wastes, a preliminary survey of the experience base available from Radioactive Waste Thermal Processing Systems is reported. A list of known commercial radioactive waste facilities in the United States and some international thermal treatment facilities are provided. Survey focus is upon the US Department of Energy thermal treatment facilities. A brief facility description and a preliminary summary of facility status, and problems experienced is provided for a selected subset of the DOE facilities

  16. Multi-physic simulations of irradiation experiments in a technological irradiation reactor

    International Nuclear Information System (INIS)

    Bonaccorsi, Th.

    2007-09-01

    A Material Testing Reactor (MTR) makes it possible to irradiate material samples under intense neutron and photonic fluxes. These experiments are carried out in experimental devices localised in the reactor core or in periphery (reflector). Available physics simulation tools only treat, most of the time, one physics field in a very precise way. Multi-physic simulations of irradiation experiments therefore require a sequential use of several calculation codes and data exchanges between these codes: this corresponds to problems coupling. In order to facilitate multi-physic simulations, this thesis sets up a data model based on data-processing objects, called Technological Entities. This data model is common to all of the physics fields. It permits defining the geometry of an irradiation device in a parametric way and to associate information about materials to it. Numerical simulations are encapsulated into interfaces providing the ability to call specific functionalities with the same command (to initialize data, to launch calculations, to post-treat, to get results,... ). Thus, once encapsulated, numerical simulations can be re-used for various studies. This data model is developed in a SALOME platform component. The first application case made it possible to perform neutronic simulations (OSIRIS reactor and RJH) coupled with fuel behavior simulations. In a next step, thermal hydraulics could also be taken into account. In addition to the improvement of the calculation accuracy due to the physical phenomena coupling, the time spent in the development phase of the simulation is largely reduced and the possibilities of uncertainty treatment are under consideration. (author)

  17. Simulation of the effects of grain boundary fission gas during thermal transients

    International Nuclear Information System (INIS)

    Fenske, G.R.; Emerson, J.E.; Beiersdorf, B.A.

    1984-11-01

    This report presents the results of an initial set of out-of-cell transient heating experiments performed on unirradiated UO 2 pellets fabricated to simulate the effect of grain boundary fission gas on fuel swelling and cladding failure. The fabrication involved trapping high-pressure argon on internal pores by sintering annular UO 2 pellets in a hot isostatic press (HIP). The pellet stack was subjected to two separate transients (DGF83-03A and -03B). Figures show photomicrographs of HIPped and non-HIPped UO 2 , respectively, and the adjacent cladding after DGF83-03B. Fuel melting occurred at the center of both the HIPped and non-HIPped pellets; however, a dark ring is present near the center in the HIPped fuel but not in the non-HIPped fuel. This dark band is a high-porosity region due to increased grain boundary/edge swelling in that pellet. In contrast, grain boundary/edge swelling did not occur in the non-HIPped pellets. Thus, the presence of the high-pressure argon trapped on internal pores during sintering in the HIP altered the microstructural behavior. Results of these preliminary tests indicate that the microstructural behavior of HIPped fuel during thermal transients is different from the behavior of conventionally fabricated fuel

  18. Promotion of solar thermal energy - guide and comparison of experience

    Energy Technology Data Exchange (ETDEWEB)

    Ballot, E [ALTER Alsace (France)

    2004-01-01

    One of the objectives of the guide is to analyse the methods of the various partners of the project (Germany, Cyprus, Town of Barcelona and France) and to make a list with the most important ones, which could eventually be reproduced and adapted in other regions. Also, try to find out the problems that the various partners encounter (lack of information, technical and financial tools...), look for the best ways for developing the solar thermal energy and try to find out some answers from the stake holders of this domain and from our partners. (author)

  19. Shuttle Orbiter Active Thermal Control Subsystem design and flight experience

    Science.gov (United States)

    Bond, Timothy A.; Metcalf, Jordan L.; Asuncion, Carmelo

    1991-01-01

    The paper examines the design of the Space Shuttle Orbiter Active Thermal Control Subsystem (ATCS) constructed for providing the vehicle and payload cooling during all phases of a mission and during ground turnaround operations. The operation of the Shuttle ATCS and some of the problems encountered during the first 39 flights of the Shuttle program are described, with special attention given to the major problems encountered with the degradation of the Freon flow rate on the Orbiter Columbia, the Flash Evaporator Subsystem mission anomalies which occurred on STS-26 and STS-34, and problems encountered with the Ammonia Boiler Subsystem. The causes and the resolutions of these problems are discussed.

  20. Thermal experiments with LMFBR subassembly models in sodium flow

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.

    1982-01-01

    Within the framework of the Fast Breeder Project research work has been undertaken at the Karlsruhe Nuclear Research Center on the thermal and fluid dynamics of nominal and distorted core subassemblies. In 19-rod bundle models (P/D=1.30, W/R=1.38) three-dimensional temperature distributions were measured in the cladding tubes exposed to sodium flow. Results of measurements of the azimuthal temperature profiles of rotated rods in the duct wall zone are indicated for different operating conditions 80 2 , evenly distributed load and oblique load; different axial positions of the spacer grids; and different positions of one bowed rod

  1. Initial Scaling Studies and Conceptual Thermal Fluids Experiments for the Prismatic NGNP Point Design

    Energy Technology Data Exchange (ETDEWEB)

    D. M. McEligot; G. E. McCreery

    2004-09-01

    The objective of this report is to document the initial high temperature gas reactor scaling studies and conceptual experiment design for gas flow and heat transfer. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/ATHENA/RELAP5-3D calculations for the same geometry. Two aspects of the complex flow in an NGNP are being addressed: (1) flow and thermal mixing in the lower plenum ("hot streaking" issue) and (2) turbulence and resulting temperature distributions in reactor cooling channels ("hot channel" issue). Current prismatic NGNP concepts are being examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses are being applied to determine key non-dimensional parameters and their magnitudes over this operating range. For normal operation, the flow in the coolant channels can be considered to be dominant forced convection with slight transverse property variation. The flow in the lower plenum can locally be considered to be a situation of multiple buoyant jets into a confined density-stratified crossflow -- with obstructions. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other. Two heat transfer experiments are being considered. One addresses the "hot channel" problem, if necessary. The second experiment will treat heated jets entering a model plenum. Unheated MIR (Matched-Index-of-Refraction) experiments are first steps when the geometry is complicated. One does not want to use a computational technique which will not even handle constant properties properly. The MIR experiment will simulate flow features of the paths of jets

  2. interThermalPhaseChangeFoam—A framework for two-phase flow simulations with thermally driven phase change

    Directory of Open Access Journals (Sweden)

    Mahdi Nabil

    2016-01-01

    Full Text Available The volume-of-fluid (VOF approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam, which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A. By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  3. interThermalPhaseChangeFoam-A framework for two-phase flow simulations with thermally driven phase change

    Science.gov (United States)

    Nabil, Mahdi; Rattner, Alexander S.

    The volume-of-fluid (VOF) approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam), which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A). By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  4. Mineralogical control on thermal damage and the presence of a thermal Kaiser effect during temperature-cycling experiments

    Science.gov (United States)

    Browning, J.; Daoud, A.; Meredith, P. G.; Mitchell, T. M.

    2017-12-01

    Volcanic and geothermal systems are in part controlled by the mechanical and thermal stresses acting on them and so it is important to understand the response of volcanic rocks to thermo-mechanical loading. One such response is the well-known `Kaiser stress-memory' effect observed under cyclic mechanical loading. By contrast, the presence of an analogous `Kaiser temperature-memory effect' during cyclic thermal loading has received little attention. We have therefore explored the possibility of a Kaiser temperature-memory effect using three igneous rocks of different composition, grain size and origin; Slaufrudalur Granophyre (SGP), Nea Kameni Andesite (NKA) and Seljadalur Basalt (SB). We present results from a series of thermal stressing experiments in which acoustic emissions (AE) were recorded contemporaneously with changing temperature. Samples of each rock were subjected to both a single heating and cooling cycle to a maximum temperature of 900 °C and multiple heating/cooling cycles to peak temperatures of 350°C, 500°C, 700°C and 900 °C (all at a constant rate of 1°C/min on heating and a natural cooling rate of memory effect in SGP, but not in either NKA and SB. We further find that the vast majority of thermal crack damage is generated upon cooling in the finer grained materials (NKA and SB), but that substantial thermal crack damage is generated during heating in the coarser grained SGP. The total amount of crack damage generated due to heating or cooling is dependent on the mineral composition and, most importantly, the grain size and arrangement, as well as the maximum temperature to which the rock is exposed. Knowledge of thermal stress history and the presence of a Kaiser temperature-memory effect is potentially important in understanding magma chamber dynamics, where the cyclic nature of mechanical and thermal inflation and deflation can lead to sequential accumulation of damage, potentially leading to critical rupture.

  5. Effect of point defects on the thermal conductivity of UO2: molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-21

    The thermal conductivity of uranium dioxide (UO2) fuel is an important materials property that affects fuel performance since it is a key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. [1] The thermal conductivity of UO2 nuclear fuel is also affected by fission gas, fission products, defects, and microstructural features such as grain boundaries. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of irradiation induced point defects on the thermal conductivity of UO2, as a function of defect concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel [2].

  6. Impact of vacancies on the thermal conductivity of graphene nanoribbons: A molecular dynamics simulation study

    Directory of Open Access Journals (Sweden)

    Maliha Noshin

    2017-01-01

    Full Text Available Equilibrium molecular dynamics simulation using 2nd generation Reactive Bond Order interatomic potential has been performed to model the thermal transport of nanometer sized zigzag defected graphene nanoribbons (GNRs containing several types of vacancies. We have investigated the thermal conductivity of defected GNRs as a function of vacancy concentration within a range of 0.5% to 5% and temperature ranging from 300K to 600K, along with a comparative analysis of those for pristine GNRs. We find that, a vacancy concentration of 0.5% leads to over 90% reduction in the thermal conductivity of GNRs. At low defect concentration, the decay rate is faster but ceases gradually at higher defect concentration. With the increasing temperature, thermal conductivity of defected GNRs decreases but shows less variation in comparison with that of pristine GNRs at higher temperatures. Such comprehensive study on several vacancy type defects in GNRs can provide further insight to tune up the thermal transport characteristics of low dimensional carbon nanostructures. This eventually would encourage the characterization of more stable thermal properties in thermal devices at an elevated temperature as well as the potential applicability of GNRs as thermoelectrics.

  7. Analysis of core physics and thermal-hydraulics results of control rod withdrawal experiments in the LOFT facility

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Chen, T.H.; Harvego, E.A.; Ollikkala, H.

    1983-01-01

    Two anticipated transient experiments simulating an uncontrolled control rod withdrawal event in a pressurized water reactor (PWR) were conducted in the Loss-of-Fluid Test (LOFT) Facility at the Idaho National Engineering Laboratory. The scaled LOFT 50-MW(t) PWR includes most of the principal features of larger commercial PWRs. The experiments tested the ability of reactor analysis codes to accurately calculate core reactor physics and thermal-hydraulic phenomena in an integral reactor system. The initial conditions and scaled operating parameters for the experiments were representative of those expected in a commercial PWR. In both experiments, all four LOFT control rod assemblies were withdrawn at a reactor power of 37.5 MW and a system pressure of 14.8 MPa

  8. Studies on defect evolution in steels: experiments and computer simulations

    International Nuclear Information System (INIS)

    Sundar, C.S.

    2011-01-01

    In this paper, we present the results of our on-going studies on steels that are being carried out with a view to develop radiation resistant steels. The focus is on the use of nano-dispersoids in alloys towards the suppression of void formation and eventual swelling under irradiation. Results on the nucleation and growth of TiC precipitates in Ti modified austenitic steels and investigations on nano Yttria particles in Fe - a model oxide dispersion ferritic steel will be presented. The experimental methods of ion beam irradiation and positron annihilation spectroscopy have been used to elucidate the role of minor alloying elements on swelling behaviour. Computer simulation of defect processes have been carried out using ab-initio methods, molecular dynamics and Monte Carlo simulations. Our perspectives on addressing the multi-scale phenomena of defect processes leading to radiation damage, through a judicious combination of experiments and simulations, would be presented. (author)

  9. TRSM-a thermal-hydraulic real-time simulation model for PWR

    International Nuclear Information System (INIS)

    Zhou Weichang

    1997-01-01

    TRSM (a Thermal-hydraulic Real-time Simulation Model) has been developed for PWR real-time simulation and best-estimate prediction of normal operating and abnormal accident conditions. It is a non-equilibrium two phase flow thermal-hydraulic model based on five basic conservation equations. A drift flux model is used to account for the unequal velocities of liquid and gaseous mixture, with or without the presence of the noncondensibles. Critical flow models are applied for break flow and valve flow calculations. A 5-regime two phase heat convection model is applied for clad-to-coolant as well as fluid-to-tubing heat transfer. A rigorous reactor coolant pump model is used to calculate the pressure drop and rise for the suction and discharge ends with complete pump characteristics curves included. The TRSM model has been adapted in the full-scale training simulator of Qinshan Nuclear Power Plant 300 MW unit to simulate the thermal-hydraulic performance of the NSSS. The simulation results of a cold leg LOCA and a steam generator tube rupture (SGTR) accident are presented

  10. Blowdown hydraulic influence on core thermal response in LOFT nuclear experiment L2-3

    International Nuclear Information System (INIS)

    Reeder, D.L.

    1979-01-01

    Experimental research into pressurized water reactor (PWR) loss-of-coolant phenomena conducted in the Loss-of-Fluid Test (LOFT) facility has given results indicating that for very large pipe breaks the core thermal response is tightly coupled to the fluid hydraulic phenomena during the blowdown phase of the loss-of-coolant transient. This summary presents and discusses data supporting this conclusion. LOFT Loss-of-Coolant Experiment (LOCE) L2-3 simulated a complete double-ended offset shear break of a primary coolant reactor vessel inlet pipe in a commercial PWR. The LOFT system conditions at experiment initiation were: fuel rod maximum linear heat generation rate (MLHGR) of 39.4 +- 3 kW/m, hot leg temperature of 593 +- 3 K, core ΔT of 32.2 +- 4 K, system pressure of 15.06 +- 0.03 MPa, and flow rate/system volume of 25.6 +- 0.8 kg/m 3 . These conditions are typical of those in commercial PWR systems at normal operating conditions

  11. Virtual Reality Simulation of the International Space Welding Experiment

    Science.gov (United States)

    Phillips, James A.

    1996-01-01

    Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) It involves 3-dimensional computer graphics; (2) It includes real-time feedback and response to user actions; and (3) It must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, and we have therefore implemented a VR trainer for the International Space Welding Experiment. My role in the development of the ISWE trainer consisted of the following: (1) created texture-mapped models of the ISWE's rotating sample drum, technology block, tool stowage assembly, sliding foot restraint, and control panel; (2) developed C code for control panel button selection and rotation of the sample drum; (3) In collaboration with Tim Clark (Antares Virtual Reality Systems), developed a serial interface box for the PC and the SGI Indigo so that external control devices, similar to ones actually used on the ISWE, could be used to control virtual objects in the ISWE simulation; (4) In collaboration with Peter Wang (SFFP) and Mark Blasingame (Boeing), established the interference characteristics of the VIM 1000 head-mounted-display and tested software filters to correct the problem; (5) In collaboration with Peter Wang and Mark Blasingame, established software and procedures for interfacing the VPL DataGlove and the Polhemus 6DOF position sensors to the SGI Indigo serial ports. The majority of the ISWE modeling effort was conducted on a PC-based VR Workstation, described below.

  12. Bringing history to life: simulating landmark experiments in psychology.

    Science.gov (United States)

    Boynton, David M; Smith, Laurence D

    2006-05-01

    The course in history of psychology can be challenging for students, many of whom enter it with little background in history and faced with unfamiliar names and concepts. The sheer volume of material can encourage passive memorization unless efforts are made to increase student involvement. As part of a trend toward experiential history, historians of science have begun to supplement their lectures with demonstrations of classic physics experiments as a way to bring the history of science to life. Here, the authors report on computer simulations of five landmark experiments from early experimental psychology in the areas of reaction time, span of attention, and apparent motion. The simulations are designed not only to permit hands-on replication of historically important results but also to reproduce the experimental procedures closely enough that students can gain a feel for the nature of early research and the psychological processes being studied.

  13. Agglomeration processes in carbonaceous dusty plasmas, experiments and numerical simulations

    International Nuclear Information System (INIS)

    Dap, S; Hugon, R; De Poucques, L; Bougdira, J; Lacroix, D; Patisson, F

    2010-01-01

    This paper deals with carbon dust agglomeration in radio frequency acetylene/argon plasma. Two studies, an experimental and a numerical one, were carried out to model dust formation mechanisms. Firstly, in situ transmission spectroscopy of dust clouds in the visible range was performed in order to observe the main features of the agglomeration process of the produced carbonaceous dust. Secondly, numerical simulation tools dedicated to understanding the achieved experiments were developed. A first model was used for the discretization of the continuous population balance equations that characterize the dust agglomeration process. The second model is based on a Monte Carlo ray-tracing code coupled to a Mie theory calculation of dust absorption and scattering parameters. These two simulation tools were used together in order to numerically predict the light transmissivity through a dusty plasma and make comparisons with experiments.

  14. Stream-simulation experiments for waste-repository investigations

    International Nuclear Information System (INIS)

    Seitz, M.G.

    1980-01-01

    The potential for radionuclide migration by groundwater flow from a breached-water repository depends on the leaching process and on chemical changes that might occur as the radionuclide moves away from the repository. Therefore, migration involves the interactions of leached species with (1) the waste and canister, (2) the engineered barrier, and (3) the geologic materials surrounding the repository. Rather than attempt to synthesize each species and study it individually, another approach is to integrate all species and interactions using stream-simulation experiments. Interactions identified in these studies can then be investigated in detail in simpler experiments

  15. Simulations of silicon vertex tracker for star experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Odyniec, G.; Cebra, D.; Christie, W.; Naudet, C.; Schroeder, L.; Wilson, W. [Lawrence Berkeley Lab., CA (United States); Liko, D. [Institut fur Hochenenergiephysik, Vienna, (Austria); Cramer, J.; Prindle, D.; Trainor, T. [Univ. of Washington, Seattle (United States); Braithwaite, W. [Univ. of Arkansas, Little Rock (United States)

    1991-12-31

    The first computer simulations to optimize the Silicon Vertex Tracker (SVT) designed for the STAR experiment at RHIC are presented. The physics goals and the expected complexity of the events at RHIC dictate the design of a tracking system for the STAR experiment. The proposed tracking system will consist of a silicon vertex tracker (SVT) to locate the primary interaction and secondary decay vertices and to improve the momentum resolution, and a time projection chamber (TPC), positioned inside a solenoidal magnet, for continuous tracking.

  16. Observing System Simulation Experiments for Fun and Profit

    Science.gov (United States)

    Prive, Nikki C.

    2015-01-01

    Observing System Simulation Experiments can be powerful tools for evaluating and exploring both the behavior of data assimilation systems and the potential impacts of future observing systems. With great power comes great responsibility - given a pure modeling framework, how can we be sure our results are meaningful? The challenges and pitfalls of OSSE calibration and validation will be addressed, as well as issues of incestuousness, selection of appropriate metrics, and experiment design. The use of idealized observational networks to investigate theoretical ideas in a fully complex modeling framework will also be discussed

  17. Numerical Simulations of Pillar Structured Solid State Thermal Neutron Detector Efficiency and Gamma Discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Conway, A; Wang, T; Deo, N; Cheung, C; Nikolic, R

    2008-06-24

    This work reports numerical simulations of a novel three-dimensionally integrated, {sup 10}boron ({sup 10}B) and silicon p+, intrinsic, n+ (PIN) diode micropillar array for thermal neutron detection. The inter-digitated device structure has a high probability of interaction between the Si PIN pillars and the charged particles (alpha and {sup 7}Li) created from the neutron - {sup 10}B reaction. In this work, the effect of both the 3-D geometry (including pillar diameter, separation and height) and energy loss mechanisms are investigated via simulations to predict the neutron detection efficiency and gamma discrimination of this structure. The simulation results are demonstrated to compare well with the measurement results. This indicates that upon scaling the pillar height, a high efficiency thermal neutron detector is possible.

  18. Simulation of attenuation of thermal fluctuations near a plate impinged by jets

    International Nuclear Information System (INIS)

    Simoneau, J.P.

    2001-01-01

    In nuclear reactors, and especially in liquid sodium cooled ones, the combination of temperature differences inside cooling fluid, turbulent flows and high heat transfer coefficients is a potential source of the thermal striping process. Such a phenomenon has been studied for several years by using Large Eddy Simulation models. The present paper focuses on the attenuation of the thermal fluctuations in the boundary layer. The knowledge of this amplitude reduction is of prime importance for subsequent mechanical analyses. A Large Eddy Simulation model is implemented in the Star-cd code, including discretization of the viscous sublayer. The numerical simulation of two parallel jets impinging a flat plate in water is then performed and positively compared to corresponding experimental results. (author)

  19. Optimising electron microscopy experiment through electron optics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Y. [CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse France (France); Hitachi High-Technologies Corporation, 882, Ichige, Hitachinaka, Ibaraki 312-8504 (Japan); Gatel, C.; Snoeck, E. [CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse France (France); Houdellier, F., E-mail: florent.houdellier@cemes.fr [CEMES-CNRS, 29 Rue Jeanne Marvig, 31055 Toulouse France (France)

    2017-04-15

    We developed a new type of electron trajectories simulation inside a complete model of a modern transmission electron microscope (TEM). Our model incorporates the precise and real design of each element constituting a TEM, i.e. the field emission (FE) cathode, the extraction optic and acceleration stages of a 300 kV cold field emission gun, the illumination lenses, the objective lens, the intermediate and projection lenses. Full trajectories can be computed using magnetically saturated or non-saturated round lenses, magnetic deflectors and even non-cylindrical symmetry elements like electrostatic biprism. This multi-scale model gathers nanometer size components (FE tip) with parts of meter length (illumination and projection systems). We demonstrate that non-trivial TEM experiments requiring specific and complex optical configurations can be simulated and optimized prior to any experiment using such model. We show that all the currents set in all optical elements of the simulated column can be implemented in the real column (I2TEM in CEMES) and used as starting alignment for the requested experiment. We argue that the combination of such complete electron trajectory simulations in the whole TEM column with automatic optimization of the microscope parameters for optimal experimental data (images, diffraction, spectra) allows drastically simplifying the implementation of complex experiments in TEM and will facilitate the development of advanced use of the electron microscope in the near future. - Highlights: • Using dedicated electron optics software, we calculate full electrons trajectories inside a modern transmission electron microscope. • We have determined how to deal with multi-scale electron optics elements like high voltage cold field emission source. • W • e have succeed to model both weak and strong magnetic lenses whether in saturated or unsaturated conditions as well as electrostatic biprism and magnetic deflectors. • We have applied this model

  20. Computer simulation of FT-NMR multiple pulse experiment

    Science.gov (United States)

    Allouche, A.; Pouzard, G.

    1989-04-01

    Using the product operator formalism in its real form, SIMULDENS expands the density matrix of a scalar coupled nuclear spin system and simulates analytically a large variety of FT-NMR multiple pulse experiments. The observable transverse magnetizations are stored and can be combined to represent signal accumulation. The programming language is VAX PASCAL, but a MacIntosh Turbo Pascal Version is also available.