WorldWideScience

Sample records for thermal shields operating

  1. Upgrade of the LHC magnet interconnections thermal shielding

    Energy Technology Data Exchange (ETDEWEB)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Craen, Arnaud Vande; Villiger, Gilles [CERN European Organization for Nuclear Research, Meyrin 1211, Geneva 23, CH (Switzerland); Chrul, Anna [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul.Radzikowskiego 152, 31-324 Krakow (Poland); Damianoglou, Dimitrios [NTUA National Technical University of Athens, Heeron Polytechniou 9, 15780 Zografou (Greece); Strychalski, Michał [Wroclaw University of Technology, Faculty of Mechanical and Power Engineering, Wyb. Wyspianskiego 27, Wroclaw, 50-370 (Poland); Wright, Loren [Lancaster University, Bailrigg, Lancaster, LA1 4YW (United Kingdom)

    2014-01-29

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  2. Upgrade of the LHC magnet interconnections thermal shielding

    Science.gov (United States)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  3. Thermal design of top shield for PFBR

    International Nuclear Information System (INIS)

    Gajapathy, R.; Jalaludeen, S.; Selvaraj, A.; Bhoje, S.B.

    1988-01-01

    India's Liquid Metal Cooled Fast Breeder Reactor programme started with the construction of loop type 13MW(e) Fast Breeder Test Reactor (FBTR) which attained criticality in October 1985. With the experience of FBTR, the design work on pool type 500 MW(e) Prototype Fast Breeder Reactor (PFBR) which will be a forerunner for future commercial fast breeder reactors, has been started. The Top Shield forms the cover for the main vessel which contains the primary circuit. Argon cover gas separates the Top Shield from the free level of hot sodium pool (803K). The Top Shield which is of box type construction consists of control plug, two rotatable plugs and roof slab, assembled together, which provide biological shielding, thermal shielding and leak tight containment at the top of the main vessel. Heat is transferred from the sodium pool to the Top Shield through argon cover gas and through components supported by it and dipped in the sodium pool. The Top Shield should be maintained at the desired operating temperature by incorporating a cooling system inside it. Insulation may be provided below the bottom plate to reduce the heat load to the cooling system, if required. The thermal design of Top Shield consists of estimation of heat transfer to the Top Shield, selection of operating temperature, assessment of insulation requirement, design of cooling system and evaluation of transient temperature changes

  4. Thermal shield support degradation in pressurized water reactors

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Fry, D.N.

    1986-01-01

    Damage to the thermal shield support structures of three pressurized water reactors (PWRs) due to flow-induced vibrations was recently discovered during refueling. In two of the reactors, severe damage occurred to the thermal shield, and in one reactor the core support barrel (CSB) was damaged, necessitating extended outages for repairs. In all three reactors, several of the thermal shield supports were either loose, damaged, or missing. The three plants had been in operation for approximately 10 years before the damage was apparent by visual inspection. Because each of the three US PWR manufacturers have experienced thermal shield support degradation, the Nuclear Regulatory Commission requested that Oak Ridge National Laboratory analyze ex-core neutron detector noise data to determine the feasibility of detecting incipient thermal shield support degradation. Results of the noise data analysis indicate that thermal shield support degradation probably began early in the life of both severely damaged plants. The degradation was characterized by shifts in the resonant frequencies of core internal structures and the appearance of new resonances in the ex-core neutron detector noise. Both the data analyses and the finite element calculations indicate that these changes in resonant frequencies are less than 3 Hz. 11 refs., 16 figs

  5. Method for limiting movement of a thermal shield for a nuclear reactor, and thermal shield displacement limiter therefor

    International Nuclear Information System (INIS)

    Meuschke, R.E.; Boyd, C.H.

    1989-01-01

    This patent describes a method of limiting the movement of a thermal shield of a nuclear reactor. It comprises: machining at least four (4) pockets in upper portions of a thermal shield circumferentially about a core barrel of a nuclear reactor to receive key-wave inserts; tapping bolt holes in the pockets of the thermal shield to receive bolts; positioning key-wave inserts into the pockets of the thermal shield to be bolted in place with the bolt holes; machining dowel holes at least partially through the positioned key-way inserts and the thermal shield to receive dowel pins; positioning dowel pins in the dowel holes in the key-way insert and thermal shield to tangentially restrain movement of the thermal shield relative to the core barrel; sliding limiter keys into the key-way inserts and bolting the limiter keys to the core barrel to tangentially restrain movement of the thermal shield relative and the core barrel while allowing radial and axial movement of the thermal shield relative to the core barrel; machining dowel holes through the limiter key and at least partially through the core barrel to receive dowel pins; positioning dowel pins in the dowel holes in the limiter key and core barrel to restrain tangential movement of the thermal shield relative to the core barrel of the nuclear reactor

  6. Dismantling system of concrete thermal shielding walls

    International Nuclear Information System (INIS)

    Machida, Nobuhiro; Saiki, Yoshikuni; Ono, Yorimasa; Tokioka, Masatake; Ogino, Nobuyuki.

    1985-01-01

    Purpose: To enable safety and efficient dismantling of concrete thermal shielding walls in nuclear reactors. Method: Concrete thermal shielding walls are cut and dismantled into dismantled blocks by a plasma cutting tool while sealing the top opening of bioshielding structures. The dismantled blocks are gripped and conveyed. The cutting tool is remote-handled while monitoring on a television receiver. Slugs and dusts produced by cutting are removed to recover. Since the dismantling work is carried out while sealing the working circumstance and by the remote control of the cutting tool, the operators' safety can be secured. Further, since the thermal sealing walls are cut and dismantled into blocks, dismantling work can be done efficiently. (Moriyama, K.)

  7. Removal, transportation and disposal of the Millstone 2 neutron thermal shield

    International Nuclear Information System (INIS)

    Snedeker, D.F.; Thomas, L.S.; Schmoker, D.S.; Cade, M.S.

    1985-01-01

    Some PWR reactors equipped with neutron thermal shields (NTS) have experienced severe neutron shield degradation to the extent that removal and disposal of these shields has become necessary. Due to the relative size and activation levels of the thermal shield, disposal techniques, remote material handling and transportation equipment must be carefully evaluated to minimize plant down time and maintain disposal costs at a minimum. This paper describes the techniques, equipment and methodology employed in the removal, transportation and disposal of the NTS at the Millstone 2 Nuclear Generating Station, a PWR facility owned and operated by Northeast Utilities of Hartford, CT. Specific areas addressed include: (1) remote underwater equipment and tooling for use in segmenting and loading the thermal shield in a disposal liner; (2) adaptation of the General Electric IF-300 Irradiated Fuel Cask for transportation of the NTS for disposal; (3) equipment and techniques used for cask handling and liner burial at the Low Level Radioactive Waste (LLRW) disposal facility

  8. Piping structural design for the ITER thermal shield manifold

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Chang Hyun, E-mail: chnoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Chung, Wooho, E-mail: whchung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Nam, Kwanwoo; Kang, Kyoung-O. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Bae, Jing Do; Cha, Jong Kook [Korea Marine Equipment Research Institute, Busan 606-806 (Korea, Republic of); Kim, Kyoung-Kyu [Mecha T& S, Jinju-si 660-843 (Korea, Republic of); Hamlyn-Harris, Craig; Hicks, Robby; Her, Namil; Jun, Chang-Hoon [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • We finalized piping design of ITER thermal shield manifold for procurement. • Support span is determined by stress and deflection limitation. • SQP, which is design optimization method, is used for the pipe design. • Benchmark analysis is performed to verify the analysis software. • Pipe design is verified by structural analyses. - Abstract: The thermal shield (TS) provides the thermal barrier in the ITER tokamak to minimize heat load transferred by thermal radiation from the hot components to the superconducting magnets operating at 4.2 K. The TS is actively cooled by 80 K pressurized helium gas which flows from the cold valve box to the cooling tubes on the TS panels via manifold piping. This paper describes the manifold piping design and analysis for the ITER thermal shield. First, maximum allowable span for the manifold support is calculated based on the simple beam theory. In order to accommodate the thermal contraction in the manifold feeder, a contraction loop is designed and applied. Sequential Quadratic Programming (SQP) method is used to determine the optimized dimensions of the contraction loop to ensure adequate flexibility of manifold pipe. Global structural behavior of the manifold is investigated when the thermal movement of the redundant (un-cooled) pipe is large.

  9. TORE-SUPRA: design of thermal radiation shield at 80 K

    International Nuclear Information System (INIS)

    Aymar, R.; Cordier, J.J.; Deschamps, P.; Gauthier, A.; Perin, J.P.

    1982-09-01

    The TORE-SUPRA superconducting toroidal magnet operating at liquid helium temperature, must be protected against thermal radiation from the vessels. For this purpose, stainless steel heat shields, cooled at 80 K, are positioned between coil casings at 4.5 K and the vessels, and constitute a double stiff toroid which completely surrounds the magnet. Mockups have been manufactured to study their design and operating problems. Calculations have also been made to analyse the mechanical behaviour of these shields

  10. Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets

    International Nuclear Information System (INIS)

    Green, Michael A.; Pan, Heng; Liu, X.K.; Wang, Li; Wu, Hong; Chen, A.B.; Guo, X.L.

    2009-01-01

    A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed between the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.

  11. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1992-09-01

    Two legal-weight truck casks the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71, the cask is subjected to an 800 degree C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents. In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-AL 9897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series, a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280 degree F. The neutron shield materials tested were boronated (0.8--4.5%) polymers (polypropylene, HDPE, NS-4). The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found

  12. Thermal-structural analysis for ITER in-wall shielding block

    International Nuclear Information System (INIS)

    Hao Junchuan; Song Yuntao; Wu Weiyue; Du Shuangsong; Wang, X.; Ioki, K.

    2012-01-01

    Highlights: ► IWS blocks shall withstand various types of mechanical loads including EM loads, inertial loads and thermal loads. ► Due to the complicated geometry, the finite element method is the suitable tool to solve the problem. ► Contact element has been selected to simulate the friction between the different components. ► At baking phase, secondary stresses due to preloading and temperature difference predominate in the total stress. ► At plasma operation phase, secondary stresses due to preloading and thermal loads were deducted from the total stresses. - Abstract: In order to verify the design strength of the in-wall shielding (IWS) blocks of the ITER, thermal-structural analyses of one IWS block under vacuum vessel (VV) baking and plasma operation conditions have been respectively performed with finite element (FE) method. Among the complicated operation scenarios of the ITER, two critical types of combined loads required by the load specification of IWS were applied on the shielding block. The stress of the block is judged by American Society of Mechanical Engineers (ASME) criterion. Results show that the structure of this block has enough safety margin, and it also supplies detailed information of the stress distribution in concerned region under certain loads.

  13. Under Water Thermal Cutting of the Moderator Vessel and Thermal Shield

    International Nuclear Information System (INIS)

    Loeb, A.; Sokcic-Kostic, M.; Eisenmann, B.; Prechtl, E.

    2007-01-01

    This paper presents the segmentation of the in 8 meter depth of water and for cutting through super alloyed moderator vessel and of the thermal shield of the MZFR stainless steel up to 130 mm wall thickness. Depending on the research reactor by means of under water plasma and contact arc metal cutting. The moderator vessel and the thermal shield are the most essential parts of the MZFR reactor vessel internals. These components have been segmented in 2005 by means of remotely controlled under water cutting utilizing a special manipulator system, a plasma torch and CAMC (Contact Arc Metal Cutting) as cutting tools. The engineered equipment used is a highly advanced design developed in a two years R and D program. It was qualified to cut through steel walls of more than 100 mm thickness in 8 meters water depth. Both the moderator vessel and the thermal shield had to be cut into such size that the segments could afterwards be packed into shielded waste containers each with a volume of roughly 1 m 3 . Segmentation of the moderator vessel and of the thermal shield was performed within 15 months. (author)

  14. Thermal neutron shield and method of manufacture

    Science.gov (United States)

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  15. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1990-03-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing, These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale of neutron shield from the cask. The test article was heated in an environmental prescribed by NRC regulations. Results of this second testing phase showed that all three materials are thermally acceptable

  16. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.N.

    1990-01-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing. These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale section of neutron shield from the cask. The test article was heated in an environment prescribed by NRC regulations. Results of this second testing phase show that all three materials are thermally acceptable

  17. Experimental validation of thermal design of top shield for a pool type SFR

    International Nuclear Information System (INIS)

    Aithal, Sriramachandra; Babu, V. Rajan; Balasubramaniyan, V.; Velusamy, K.; Chellapandi, P.

    2016-01-01

    Highlights: • Overall thermal design of top shield in a SFR is experimentally verified. • Air jet cooling is effective in ensuring the temperatures limits for top shield. • Convection patterns in narrow annulus are in line with published CFD results. • Wire mesh insulation ensures gradual thermal gradient at top portion of main vessel. • Under loss of cooling scenario, sufficient time is available for corrective action. - Abstract: An Integrated Top Shield Test Facility towards validation of thermal design of top shield for a pool type SFR has been conceived, constructed & commissioned. Detailed experiments were performed in this experimental facility having full-scale features. Steady state temperature distribution within the facility is measured for various heater plate temperatures in addition to simulating different operating states of the reactor. Following are the important observations (i) jet cooling system is effective in regulating the roof slab bottom plate temperature and thermal gradient across roof slab simulating normal operation of reactor, (ii) wire mesh insulation provided in roof slab-main vessel annulus is effective in obtaining gradual thermal gradient along main vessel top portion and inhibiting the setting up of cellular convection within annulus and (iii) cellular convection with four distinct convective cells sets in the annular gap between roof slab and small rotatable plug measuring ∼ϕ4 m in diameter & gap width varying from 16 mm to 30 mm. Repeatability of results is also ensured during all the above tests. The results presented in this paper is expected to provide reference data for validation of thermal hydraulic models in addition to serving as design validation of jet cooling system for pool type SFR.

  18. Using the shield for thermal energy storage in pulsar

    International Nuclear Information System (INIS)

    Sager, G.T.; Sze, D.K.; Wong, C.P.C.; Bathke, C.G.; Blanchard, J.P.; Brimer, C.; Cheng, E.T.; El-Guebaly, L.A.; Hasan, M.Z.; Najmabadi, F.; Sharafat, S.; Sviatoslavski, I.N.; Waganer, L.

    1995-01-01

    The PULSAR pulsed tokamak power plant design utilizes the outboard shield for thermal energy storage to maintain full 1000MW(e) output during the dwell period of 200s. Thermal energy resulting from direct nuclear heating is accumulated in the shield during the 7200s fusion power production phase. The maximum shield temperature may be much higher than that for the blanket because radiation damage is significantly reduced. During the dwell period, thermal power discharged from the shield and coolant temperature are simultaneously regulated by controlling the coolant mass flow rate at the shield inlet. This is facilitated by throttled coolant bypass. Design concepts using helium and lithium coolant have been developed. Two-dimensional time-dependent thermal hydraulic calculations were performed to confirm performance capabilities required of the design concepts. The results indicate that the system design and performance can accommodate uncertainties in material limits or the length of the dwell period. (orig.)

  19. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1993-01-01

    In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-A19897, R.H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280degF. Table 1 lists the neutron shield materials tested. The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found. The Bisco modified NS-4 and Reactor Experiments HMPP are both acceptable materials from a thermal accident standpoint for use in the shipping cask. Tests of the Kobe PP-R01 and Envirotech HDPE were stopped for safety reasons, due to inability to deal with the heavy smoke, before completion of the 30-minute heating phase. However these materials may prove satisfactory if they could undergo the complete heating. (J.P.N.)

  20. Use of fusion-welding techniques in fabrication of a superconducting-magnet thermal-shield system

    International Nuclear Information System (INIS)

    Dalder, E.N.C.; Berkey, J.H.; Chang, Y.; Johnson, G.L.; Lathrop, G.H.; Podesta, D.L.; Van Sant, J.H.

    1983-01-01

    Success of the thermal shield system was demonstrated by the results of acceptance tests performed with the magnet and all its ancillary equipment. During these tests the thermal shield system was: (1) thermally cycled several times from 300 0 K to 77 0 K; (2) pressure cycled several times from 0 to 5 atmospheres; (3) operated for more than 500 hours at 77 0 K and in a vacuum environment of less than 10 - 5 torr; (4) operated in a magnetic field up to 6.0 Telsa; (5) exposed to a rapidly collapsing magnetic field of more than 250 gauss per second; (6) drained of all LN 2 in a few minutes, without any weld failures. The successful (and relatively problem free) operation of the magnet system validates the choice of the welding processes used, as well as their execution in both shop and field environments

  1. Thermal design of top shield

    International Nuclear Information System (INIS)

    Raghupathy, S.; Velusamy, K.; Parthasarathy, U.; Ghosh, D.; Selvaraj, P.; Chellapandi, P.; Chetal, S.C.

    2005-01-01

    Full text of publication follows: Prototype Fast Breeder Reactor (PFBR) is a 500 MWe, sodium cooled, pool type fast reactor. The top shield forms the top cover for the main vessel (MV) and includes roof slab (RS), large rotatable plug (LRP), small rotatable plug (SRP) and control Plug (CP). RS, LRP and SRP are box type structures consisting of top and bottom plates stiffened by radial stiffeners and vertical penetration shells. TS is exposed to argon cover gas provided above sodium pool on the bottom side and reactor containment building air at the top. Heat transfer takes place through the argon cover gas to the bottom plate of TS. Annular gaps are formed between the components supported on TS and the component penetrations through which cellular convection takes place. A single thermal shield provided below TS reduces the heat flux to the bottom plate to 1.15 kW/m 2 . The MV (SS 316 LN) is welded to RS (carbon steel A48 P2) through a dissimilar metal weld. A step in RS and an anti convection barrier (ACB) outside RS are provided to limit the temperature at the MV-RS junction. The MV is surrounded by safety vessel (SV) and reactor vault made of concrete. Thermal insulation is provided outside SV to limit the heat transfer to the reactor vault. The design requirements of TS are to maintain the operating temperature at 383-393 K, limit the temperature difference (ΔT) across the height of TS to 20 / 100 K under normal operation/loss of cooling, provide minimum annular gap size at the component penetrations, provide a nearly linear temperature gradient in the CP portion within the height of TS, maintain the temperature of top plate of CP > 383 K, limit the ΔT across the top plate of CP to 2 K, limit the temperature near the inflatable / backup seal to 393 K, limit the temperature at the MV-RS junction and the heat flux to the reactor vault. The total heat transferred to TS is estimated to be 210 kW. A dedicated closed loop cooling system with a total flow rate of 10

  2. Combination thermal and radiation shield for well logging apparatus

    International Nuclear Information System (INIS)

    Wilson, B.F.

    1984-01-01

    A device for providing both thermal protection and radiation shielding for components such as radiation detectors within a well logging instrument comprises a thermally insulative flask containing a weldment filled with a mass of eutectic material which undergoes a change of state e.g. melting at a temperature which will provide an acceptable thermal environment for such components for extended time periods. The eutectic material which is preferably a bismuth (58%)/tin (42%) alloy has a specific gravity (> 8.5) facilitating its use as a radiation shield and is distributed around the radiation detectors so as to selectively impede the impinging of the detectors by radiation. The device is incorporated in a skid of a well logging instrument for measuring γ backscatter. A γ source is located either above or within the protective shielding. (author)

  3. The ITER thermal shields for the magnet system: Design evolution and analysis

    International Nuclear Information System (INIS)

    Bykov, V.; Krasikov, Yu.; Grigoriev, S.; Komarov, V.; Krylov, V.; Labusov, A.; Pyrjaev, V.; Chiocchio, S.; Smirnov, V.; Sorin, V.; Tanchuk, V.

    2005-01-01

    The thermal shield (TS) system provides the required reduction of thermal loads to the cold structures operating at 4.5 K. This paper presents the rationale for the TS design evolution, details of the recent modifications that affect the TS cooling panels, the central TS ports and support system, interface labyrinths and TS structural joints. The modern results of thermal-hydraulic, thermal, seismic, static and dynamic structural analyses, that involve sub-modeling and sub-structuring finite element analysis techniques, are also reported. The modifications result in considerable reduction of TS mass, surface area and heat loads to/from the TS, simplification of TS assembly procedure and in-cryostat maintenance

  4. Thermal shielding device in LMFBR type reactors

    International Nuclear Information System (INIS)

    Nakamura, Hiroshi.

    1985-01-01

    Purpose: To improve the soundness and earthquake proofness of mounting structures to a reactor vessel in a thermal shielding device comprising a plurality of tightly closed casings evacuated or shield with heat insulation gases, by reducing the wall thickness and weight of the casing. Constitution: the thermal shielding body comprises tightly closed casings and compressing core materials for preventing the deformation of the casings. The tightly closed casing is in the shape of a hollow vessel, completely sealed in gastight manner, and evacuated or sealed with heat insulation gases at a low pressure of about less than 0.5 kg/cm 2 G, such that the inner pressure is lower than the outer pressure. Compressing core materials made of porous metals or porous ceramics are contained to the inside of the casing. In this way, the wall thickness of the tightly closed casing can be reduced significantly as compared with the conventional case, whereby the mounting work on the site to the reactor container on the field can remarkably be improved and high reliability can be maintained at the mounting portion. (Kamimura, M.)

  5. Thermal, epithermal and thermalized neutron attenuation properties of ilmenite-serpentine heat resistant concrete shield

    International Nuclear Information System (INIS)

    Kany, A.M.I.; El-Gohary, M.I.; Kamal, S.M.

    1994-01-01

    Experimental measurements were carried out to study the attenuation properties of low-energy neutrons transmitted through unheated and preheated barriers of heavy-weight, highly hydrated and heat-resistant concrete shields. The concrete shields under investigation have been prepared from naturally occurring ilmenite and serpentine Egyptian ores. A collimated beam obtained from an Am-Be source was used as a source of neutrons, while the measurements of total thermal, epithermal, and thermalized neutron fluxes were performed using a BF-3 detector, multichannel analyzer and Cd filter. Results show that the ilmenite-serpentine concrete proved to be a better thermal, epithermal and thermalized neutron attenuator than the ordinary concrete especially at a high temperature of concrete exposure. (Author)

  6. Manufacture and testing of the CTB&SBB thermal shield for the ITER magnet feeder system

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Kun; Liu, Chen; Song, Yuntao; Feng, Hansheng; Ding, Kaizhong, E-mail: kzding@ipp.ac.cn; Wang, Tanbin; Ji, Hui

    2015-10-15

    The system of International Thermonuclear Experimental Reactor (ITER) feeders is responsible for the power, helium cooling, and instrumentation of the magnets of the coil terminal box and S-bend box (CTB&SBB) thermal shield outside the cryostat. An 80-K rectangular Al thermal shield is hung inside the CTB&SBB to reduce the thermal radiation heat loads of 4.5-K helium. The American Society of Interventional Pain Physicians (ASIPP) will supply all the 31 sets of feeders for ITER. A manufactured prototype of CTB&SBB thermal shield is first quality-tested before the commencement of the series production. First, a detailed configuration of the rectangular Al thermal shield is presented in this article. The paper also presents more information on the manufacturing process of the thermal shield, especially the welding process, the procedure for ensuring good weld quality, and the use of a specially designed tool to ensure <5-mm deformation on such a 7.3-m-long thermal shield during welding. In addition, the cold test and results, including the cooling process with 13-bar and 17.5-g/s 80-K He gas, and the temperature distribution on different panels of the thermal shield are presented. The whole process of manufacture and testing lays a good foundation for the series production of the thermal shield.

  7. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    International Nuclear Information System (INIS)

    Reid, Robert S.; Pearson, J. Bosie; Stewart, Eric T.

    2007-01-01

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  8. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    International Nuclear Information System (INIS)

    Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.

    2007-01-01

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 deg. C. The CFD model with 1/6-g predicts a maximum water temperature of 88 deg. C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield

  9. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    REID, ROBERT S. [Los Alamos National Laboratory; PEARSON, J. BOSIE [Los Alamos National Laboratory; STEWART, ERIC T. [Los Alamos National Laboratory

    2007-01-16

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  10. Optimization of thermal neutron shield concrete mixture using artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Yadollahi, A. [Engineering Department, Shahid Beheshti University, G.C., P.O. Box: 1983963113, Tehran (Iran, Islamic Republic of); Nazemi, E., E-mail: nazemi.ehsan@yahoo.com [Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Zolfaghari, A. [Engineering Department, Shahid Beheshti University, G.C., P.O. Box: 1983963113, Tehran (Iran, Islamic Republic of); Ajorloo, A.M. [Water and Environmental Engineering Department, Shahid Beheshti University, P.O. Box: 167651719, Tehran (Iran, Islamic Republic of)

    2016-08-15

    Highlights: • Colemanite was used in fabricating of thermal neutron shield concrete. • The Taguchi method was implemented to obtain the data set required for training the ANN. • Trained ANN predicted quality characteristics of thermal neutron shield. - Abstract: Colemanite is the most convenient boron mineral which has been widely used in construction of radiation shielding concrete in order to improve the capture of thermal neutrons. But utilization of Colemanite in radiation shielding concrete has a deleterious effect on both physical and mechanical properties. In the present work, Taguchi method and artificial neural network (ANN) were employed to find an optimal mixture of Colemanite based concrete in order to improve the boron content of concrete and increase thermal neutron absorption without violating the standards for physical and mechanical properties. Using Taguchi method for experimental design, 27 concrete samples with different mixtures were fabricated and tested. Water/cement ratio, cement quantity, volume fraction of Colemanite aggregate and silica fume quantity were selected as control factors, and compressive strength, ultrasonic pulse velocity and thermal neutron transmission ratio were considered as the quality responses. Obtained data from 27 experiments were used to train 3 ANNs. Four control factors were utilized as the inputs of 3 ANNs and 3 quality responses were used as the outputs, separately (each ANN for one quality response). After training the ANNs, 1024 different mixtures with different quality responses were predicted. At the final, optimum mixture was obtained among the predicted different mixtures. Results demonstrated that the optimal mixture of thermal neutron shielding concrete has a water–cement ratio of 0.38, cement content of 400 kg/m{sup 3}, a volume fraction Colemanite aggregate of 50% and silica fume–cement ratio of 0.15.

  11. Optimization of thermal neutron shield concrete mixture using artificial neural network

    International Nuclear Information System (INIS)

    Yadollahi, A.; Nazemi, E.; Zolfaghari, A.; Ajorloo, A.M.

    2016-01-01

    Highlights: • Colemanite was used in fabricating of thermal neutron shield concrete. • The Taguchi method was implemented to obtain the data set required for training the ANN. • Trained ANN predicted quality characteristics of thermal neutron shield. - Abstract: Colemanite is the most convenient boron mineral which has been widely used in construction of radiation shielding concrete in order to improve the capture of thermal neutrons. But utilization of Colemanite in radiation shielding concrete has a deleterious effect on both physical and mechanical properties. In the present work, Taguchi method and artificial neural network (ANN) were employed to find an optimal mixture of Colemanite based concrete in order to improve the boron content of concrete and increase thermal neutron absorption without violating the standards for physical and mechanical properties. Using Taguchi method for experimental design, 27 concrete samples with different mixtures were fabricated and tested. Water/cement ratio, cement quantity, volume fraction of Colemanite aggregate and silica fume quantity were selected as control factors, and compressive strength, ultrasonic pulse velocity and thermal neutron transmission ratio were considered as the quality responses. Obtained data from 27 experiments were used to train 3 ANNs. Four control factors were utilized as the inputs of 3 ANNs and 3 quality responses were used as the outputs, separately (each ANN for one quality response). After training the ANNs, 1024 different mixtures with different quality responses were predicted. At the final, optimum mixture was obtained among the predicted different mixtures. Results demonstrated that the optimal mixture of thermal neutron shielding concrete has a water–cement ratio of 0.38, cement content of 400 kg/m 3 , a volume fraction Colemanite aggregate of 50% and silica fume–cement ratio of 0.15.

  12. Thermal-hydraulic analysis and design improvement for coolant channel of ITER shield block

    International Nuclear Information System (INIS)

    Zhao Ling; Li Huaqi; Zheng Jiantao; Yi Jingwei; Kang Weishan; Chen Jiming

    2013-01-01

    As an important part for ITER, shield block is used to shield the neutron heat. The structure design of shield block, especially the inner coolant channel design will influence its cooling effect and safety significantly. In this study, the thermal-hydraulic analysis for shield block has been performed by the computational fluid dynamics software, some optimization suggestions have been proposed and thermal-hydraulic characteristics of the improved model has been analyzed again. The analysis results for improved model show that pressure drop through flow path near the inlet and outlet region of the shield block has been reduced, and the total pressure drop in cooling path has been reduced too; the uniformity of the mass flowrate distribution and the velocity distribution have been improved in main cooling branches; the local highest temperature of solid domain reduced considerably, which could avoid thermal stress becoming too large because of coolant effect unevenly. (authors)

  13. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    Science.gov (United States)

    Barbera, M.; Ayers, T.; Collura, A.; Nasillo, G.; Pareschi, G.; Tagliaferri, G.

    2009-05-01

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  14. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    International Nuclear Information System (INIS)

    Barbera, M.; Ayers, T.; Collura, A.; Nasillo, G.; Pareschi, G.; Tagliaferri, G.

    2009-01-01

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  15. Thes - Website for Thermal Shields Upgrade Management

    CERN Document Server

    Micula, Adina

    2013-01-01

    There are a total of 1695 thermal shields (TS) in the interconnections between the superconducting magnets. During LHC Long Shutdown 1 (LS1) all of these TS are being upgraded with a new fixation design. This procedure involves the transport of all the TS from LHC to a workshop on the surface where they are being modified and the subsequent transport of the upgraded TS back to the tunnel where they are laid on the cryostats and await the closure of the interconnection. These operations have to be carefully coordinated in order to ensure that there are always enough modified TS to satisfy the demand in the tunnel and respect the time constraint imposed by the schedule of LS1. As part of my summer project, I developed a database driven website whose aim is to enable the TS upgrade monitoring.

  16. Test of thermal shields for early warning station detectors

    DEFF Research Database (Denmark)

    Petersen, Jesper

    1997-01-01

    The properties of thermal shields around NaI crystal scintillators for early warning stations have been checked in order to assure that external temperature variations cannot influence the stability of the measurements....

  17. Shielding plugs

    International Nuclear Information System (INIS)

    Makishima, Kenji.

    1986-01-01

    Purpose: In shielding plugs of an LMFBR type reactor, to restrain natural convection of heat in an annular space between a thermal shield layer and a shield shell, to prevent the lowering of heat-insulation performance, and to alleviate a thermal stress in a reactor container and the shield shell. Constitution: A ring-like leaf spring split in the direction of height is disposed in an annular space between a thermal shield layer and a shield shell. In consequence, the space is partitioned in the direction of height and, therefore, if axial temperature conditions and space width are the same and the space is low, the natural convection is hard to occur. Thus the rise of upper surface temperature of the shielding plugs can prevent the lowering of the heat insulation performance which will result in the increment of shielding plug cooling capacity, thereby improving reliability. In the meantime, since there is mounted an earthquake-resisting support, the thermal shield layer will move for a slight gap in case of an earthquake, being supported by the earthquake-resisting support, and the movement of the thermal shield layer is restricted, thereby maintaining integrity without increasing the stroke of the ring-like spring. (Kawakami, Y.)

  18. LOFT shield tank steady state temperatures with addition of gamma and neutron shielding

    International Nuclear Information System (INIS)

    Kyllingstad, G.

    1977-01-01

    The effect of introducing a neutron and gamma shield into the annulus between the reactor vessel and the shield tank is analyzed. This addition has been proposed in order to intercept neutron streaming up the annulus during nuclear operations. Its installation will require removal of approximately 20- 1 / 2 inches of stainless steel foil insulation at the top of the annulus. The resulting conduction path is believed to result in increased water temperatures within the shield tank, possibly beyond the 150 0 F limit, and/or cooling of the reactor vessel nozzles such that adverse thermal stresses would be generated. A two dimensional thermal analysis using the finite element code COUPLE/MOD2 was done for the shield tank system illustrated in the figure (1). The reactor was assumed to be at full power, 55 MW (th), with a loop flow rate of 2.15 x 10 6 lbm/hr (268.4 kg/s) at 2250 psi (15.51 MPa). Calculations indicate a steady state shield tank water temperature of 140 0 F (60 0 C). This is below the 150 0 F (65.56 0 C) limit. Also, no significant changes in thermal gradients within the nozzle or reactor vessel wall are generated. A spacer between the gamma shield and the shield tank is recommended, however, in order to ensure free air circulation through the annulus

  19. Study of the behavior of thermal shield support system for the French CPO series plants

    International Nuclear Information System (INIS)

    Bellet, S.; Roux, P.; Bhandari, D.R.; Schwirian, R.E.; Yu, C.; Matarazzo, J.C.; Singleton, N.R.

    1996-01-01

    Degradation/failure of thermal shield support system in PWRs has been observed in the US as well as in foreign plants. In almost all the cases, remedial actions were put in place at very high economic costs to the utilities only after the failures had occurred. This paper presents the results of a comprehensive study to predict the long term behavior of a thermal shield support system due to flow-induced vibratory loads and thermal transients. Excellent agreement from the system finite model between the measured plant test data on the barrel/thermal shield beam and shell mode frequencies and the flexure strains confirms the basic structural behavior and physics of the flow induced vibrations. Loads and stresses on the support bolts and the flexures were determined to predict the fatigue life of the components

  20. Enhancement of thermal neutron shielding of cement mortar by using borosilicate glass powder.

    Science.gov (United States)

    Jang, Bo-Kil; Lee, Jun-Cheol; Kim, Ji-Hyun; Chung, Chul-Woo

    2017-05-01

    Concrete has been used as a traditional biological shielding material. High hydrogen content in concrete also effectively attenuates high-energy fast neutrons. However, concrete does not have strong protection against thermal neutrons because of the lack of boron compound. In this research, boron was added in the form of borosilicate glass powder to increase the neutron shielding property of cement mortar. Borosilicate glass powder was chosen in order to have beneficial pozzolanic activity and to avoid deleterious expansion caused by an alkali-silica reaction. According to the experimental results, borosilicate glass powder with an average particle size of 13µm showed pozzolanic activity. The replacement of borosilicate glass powder with cement caused a slight increase in the 28-day compressive strength. However, the incorporation of borosilicate glass powder resulted in higher thermal neutron shielding capability. Thus, borosilicate glass powder can be used as a good mineral additive for various radiation shielding purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Design of vessel baking system and thermal radiation shields for SST-1

    International Nuclear Information System (INIS)

    Kumar, E.R.; Nagabhushana, S.; Pathak, H.A.; Panigrahi, S.; Nath, T.R.; Babu, A.V.S; Gangradey, R.; Patel, R.J.; Saxena, Y.C.

    1998-01-01

    SST-1 is a Steady State Tokamak with a major radius of 1.1 m, minor radius of 0.2 m and toroidal field of 3.0 T. The toroidal and poloidal field coils of SST-1 are superconducting. One of the main objectives of SST-1 is to demonstrate steady state particle removal and active plasma density control which states the necessity of wall conditioning. The vacuum vessel will be baked up to 525 K by passing hot nitrogen gas through the U - channels welded on the inner surface of vacuum vessel. The required mass flow rate at 5 bar is 0.712 Kg/s to maintain 525 K wall temperature in steady state. Superconducting coils operating at 4.5 K will be protected against thermal radiation from hot surfaces using liquid nitrogen cooled panels operating at 87 K. Maximum 1200 litres/hour liquid nitrogen is required during vessel baking. The design of vacuum vessel baking system and thermal radiation shields and related flow analysis are presented here. (authors)

  2. Design of vessel baking system and thermal radiation shields for SST-1

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, E.R.; Nagabhushana, S.; Pathak, H.A.; Panigrahi, S.; Nath, T.R.; Babu, A.V.S; Gangradey, R.; Patel, R.J.; Saxena, Y.C. [Institute for Plasma Research, Gandhinagar (India)

    1998-07-01

    SST-1 is a Steady State Tokamak with a major radius of 1.1 m, minor radius of 0.2 m and toroidal field of 3.0 T. The toroidal and poloidal field coils of SST-1 are superconducting. One of the main objectives of SST-1 is to demonstrate steady state particle removal and active plasma density control which states the necessity of wall conditioning. The vacuum vessel will be baked up to 525 K by passing hot nitrogen gas through the U - channels welded on the inner surface of vacuum vessel. The required mass flow rate at 5 bar is 0.712 Kg/s to maintain 525 K wall temperature in steady state. Superconducting coils operating at 4.5 K will be protected against thermal radiation from hot surfaces using liquid nitrogen cooled panels operating at 87 K. Maximum 1200 litres/hour liquid nitrogen is required during vessel baking. The design of vacuum vessel baking system and thermal radiation shields and related flow analysis are presented here. (authors)

  3. Simbol-X Mirror Module Thermal Shields: I-Design and X-Ray Transmission

    Science.gov (United States)

    Collura, A.; Barbera, M.; Varisco, S.; Basso, S.; Pareschi, G.; Tagliaferri, G.; Ayers, T.

    2009-05-01

    The Simbol-X mission is designed to fly in formation flight configuration. As a consequence, the telescope has both ends open to space, and thermal shielding at telescope entrance and exit is required to maintain temperature uniformity throughout the mirrors. Both mesh and meshless solutions are presently under study for the shields. We discuss the design and the X-ray transmission.

  4. Simbol-X Mirror Module Thermal Shields: I - Design and X-Ray Transmission

    International Nuclear Information System (INIS)

    Collura, A.; Varisco, S.; Barbera, M.; Basso, S.; Pareschi, G.; Tagliaferri, G.; Ayers, T.

    2009-01-01

    The Simbol-X mission is designed to fly in formation flight configuration. As a consequence, the telescope has both ends open to space, and thermal shielding at telescope entrance and exit is required to maintain temperature uniformity throughout the mirrors. Both mesh and meshless solutions are presently under study for the shields. We discuss the design and the X-ray transmission.

  5. Needle-Bonded Electromagnetic Shielding Thermally Insulating Nonwoven Composite Boards: Property Evaluations

    Directory of Open Access Journals (Sweden)

    Jia-Horng Lin

    2016-10-01

    Full Text Available Complicated environmental problems inevitably arise when technology advances. One major environmental problem is the presence of electromagnetic radiation. Long-term exposure to electromagnetic radiation can damage people’s health in many ways. Therefore, this study proposes producing composite boards with electromagnetic shielding effectiveness and thermal insulation by utilizing the structures and properties of materials. Different combinations of flame-retardant polyester fiber (FR fiber, recycled far-infrared polyester fiber (FI fiber, and 4D low-melting-point fibers (LM fiber were made into flame-retardant and thermally insulating matrices. The matrices and carbon fiber (CF woven fabric in a sandwich-structure were needle-punched in order to be tightly compact, and then circularly heat dried in order to have a heat set and reinforced structure. The test results indicate that Polyester (PET/CF composite boards are mechanically strong and have thermal insulation and electromagnetic shielding effectiveness at a frequency between 0.6 MHz and 3 GHz.

  6. Thermal Degradation of Lead Monoxide Filled Polymer Composite Radiation Shields

    International Nuclear Information System (INIS)

    Harish, V.; Nagaiah, N.

    2011-01-01

    Lead monoxide filled Isophthalate resin particulate polymer composites were prepared with different filler concentrations and investigated for physical, thermal, mechanical and gamma radiation shielding characteristics. This paper discusses about the thermo gravimetric analysis of the composites done to understand their thermal properties especially the effect of filler concentration on the thermal stability and degradation rate of composites. Pristine polymer exhibits single stage degradation whereas filled composites exhibit two stage degradation processes. Further, the IDT values as well as degradation rates decrease with the increased filler content in the composite.

  7. Computer control of shielded cell operations

    International Nuclear Information System (INIS)

    Jeffords, W.R. III.

    1987-01-01

    This paper describes in detail a computer system to remotely control shielded cell operations. System hardware, software, and design criteria are discussed. We have designed a computer-controlled buret that provides a tenfold improvement over the buret currently in service. A computer also automatically controls cell analyses, calibrations, and maintenance. This system improves conditions for the operators by providing a safer, more efficient working environment and is expandable for future growth and development

  8. Experiment on thermal insulation and sodium deposition of shield plug

    International Nuclear Information System (INIS)

    Hashiguchi, K.; Honda, M.; Shiratori, H.; Ozaki, O.; Suzuki, M.

    1986-01-01

    A series of experiments on temperature distribution and thermal insulation characteristics was conducted using a reduced scale model of LMFBR shield plug. Observation and measurement of sodium deposition were also conducted on the model after the experiment. The effect of annulus natural convection was clarified for temperature and the thermal insulation characteristics from evaluating the result. Temperature distribution analysis was conducted successfully by combining the general purpose structural analysis program NASTRAN and vertical annulus natural convection analysis program VANAC. Moreover, significant effect was substantiated for the annulus convection barrier to increase the thermal insulation performance, narrow horizontal gap structure to prevent sodium deposition and thermal insulation plates. (author)

  9. Operating manual for the Tower Shielding Facility

    International Nuclear Information System (INIS)

    1985-12-01

    This manual provides information necessary to operate and perform maintenance on the reactor systems and all equipment or systems which can affect their operation or the safety of personnel at the Tower Shielding Facility. The first four chapters consist of introductory and descriptive material of benefit to personnel in training, the qualifications required for training, the responsibilities of the personnel in the organization, and the procedures for reviewing proposed experiments. Chapter 8, Emergency Procedures, is also a necessary part of the indoctrination of personnel. The procedures for operation of the Tower Shielding Reactor (TSR-II), its water cooling system, and the main tower hoists are outlined in Chapters 5, 6, and 7. The Technical Specification surveillance requirements for the TSR-II are summarized in Chapter 9. The maintenance and calibration schedule is spelled out in Chapter 10. The procedures for assembly and disassembly of the TSR-II are outlined in Chapter 11

  10. Thermal stress evaluation of the Viking RTG heat shield

    International Nuclear Information System (INIS)

    Stadter, J.T.; Weiss, R.O.

    1976-03-01

    Thermal stress analyses of the Viking RTG heat shield are presented. The primary purpose of the analyses was to determine the effects of the end cap and the finite length of the heat shield on the peak tensile stress in the barrel wall. The SAAS III computer code was used to calculate the thermal stresses; axisymmetric and plane section analyses were performed for a variety of temperature distributions. The study consisted of three parts. In the first phase, the influence of the end cap on the barrel wall stresses was examined by parametrically varying the modulus of elasticity of the contact zone between the end cap and the barrel. The second phase was concerned with stresses occurring as a result of an orbital decay reentry trajectory, and the effects of the magnitude and shape of the axial temperature gradient. The final part of the study was concerned with the circumferentially nonuniform temperature distribution which develops during a side-on stable reentry. The last part includes a comparison of stresses generated for a hexagonal cross section with those generated for a circular cross section

  11. Radiation shielding lead shield

    International Nuclear Information System (INIS)

    Dei, Shoichi.

    1991-01-01

    The present invention concerns lead shields for radiation shielding. Shield boxes are disposed so as to surround a pipeline through which radioactive liquids, mists or like other objects are passed. Flanges are formed to each of the end edges of the shield boxes and the shield boxes are connected to each other by the flanges. Upon installation, empty shield boxes not charged with lead particles and iron plate shields are secured at first at the periphery of the pipeline. Then, lead particles are charged into the shield boxes. This attains a state as if lead plate corresponding to the depth of the box is disposed. Accordingly, operations for installation, dismantling and restoration can be conducted in an empty state with reduced weight to facilitate the operations. (I.S.)

  12. Thermal and flow considerations for the 80 K shield of the SSC magnet cryostats

    International Nuclear Information System (INIS)

    Abramovich, S.; Yuecel, A.; Demko, J.; Thirumaleshwar, M.

    1994-01-01

    The nominal temperatures in the SSC magnets range between 4.2 K in the superconducting coils and 300 K on the cryostat outer wall. To minimize the 4 K heat load, one thermal shield cooled by liquid and vapor nitrogen flows at 84 K, and another cooled by helium flow at 20 K are incorporated in the cryostat. Tubes attached to the shields serve as conduits for the cryogens. The liquid nitrogen tube in the cryostat is used for shield refrigeration and also for liquid distribution around the SSC rings. The second nitrogen line is used to return the vapor to the helium refrigerators for helium precooling. The nominal LN2 flow from a 4.3 km long cryogenic string (4 sections) to the surface is 64 g/s. The total liquid nitrogen consumption of approximately 5000 g/s will be supplied at one, two or more locations on the surface. The total heat load of the 80 K shield is estimated as 3.2 W/m: about 50% is composed of infrared radiation; the remaining 50% is by heat conduction through supports, vacuum barriers and other thermal connections between the shield and the 300 K outer wall. The required LN2 flow rate depends on the distribution and circulation schemes. The LN2 temperature will in turn vary depending on the flow rate and on the recooling method used. For example, with a massflow of 400 g/s of LN2 the temperature rises from 82 K to 86 K between two compact recoolers 1 km apart. This temperature is higher than desired. The temperature can be reduced by increasing the flow rate of the liquid or by using the continuous recooling scheme. This paper discusses some thermal problems caused by certain mechanical designs of the 80 K shield and the possible improvement by using continuous recooling. The authors present results of the 80 K shield temperature distribution analysis, the 20 K shield heat load augmentation resulting from the increased 80 K shield temperatures, the continuous nitrogen recooling scheme and some flow timing related analysis

  13. Numerical simulation of a reinforced concrete shield around a nuclear reactor

    International Nuclear Information System (INIS)

    Mahama, Mumuni Salifu

    1996-02-01

    Ghana currently operates a Research Reactor and other nuclear facilities including a Gamma Irradiation Facility, a Radiographic Non-Destructive Testing laboratory and would be operating in the nearest future a Radiotherapy Centre. Each of these has a concrete radiation shield as a major safety device. In carrying out its functions, a concrete radiation shield may be subjected to thermal and mechanical stresses. A facility for analysing these stresses is desirable. Two computer codes have been developed under this programme for radiation shielding computation and stress analysis of cylindrical reactor shields. (au)

  14. Thermal Analysis of a SHIELD Electromigration Test Structure

    Energy Technology Data Exchange (ETDEWEB)

    Benson, David A.; Bowman, Duane J.; Mitchell, Robert T.

    1999-05-01

    The steady state and transient thermal behavior of an electromigration test structure was analyzed. The test structure was a Sandia SHIELD (Self-stressing HIgh fregquency rELiability Device) electromigration test device manufactured by an outside vendor. This device has a high frequency oscillator circuit, a buffer circuit to isolate and drive the metal line to the tested (DUT), the DUT to be electromigrated itself, a metal resistance thermometry monitor, and a heater elment to temperature accelerate the electromigration effect.

  15. Optimization of the outer support in the ITER lower cryostat thermal shield

    International Nuclear Information System (INIS)

    Noh, C.H.; Chung, W.; Lim, J.; Lee, B.C.

    2016-01-01

    Highlights: • Design methodology for the ITER lower cryostat thermal shield support is described. • Design optimization is performed using the kriging meta-model. • Single plate support design is proposed as an alternative design. • Proposed design has 24% reduced weight compared with the initial design. - Abstract: ITER Lower Cryostat Thermal Shield (LCTS) is fixed to the cryostat floor by a thin flexible plate support. Double plate made of titanium alloy is adopted as a reference design. Double plate is effective to get structural reliability for the high inertia load and buckling load. Thin plate with titanium alloy has good flexibility to the thermal movement and reduces conduction heat load from cryostat floor to the thermal shield. Double plate support has enough structural margin. In addition, titanium alloy requires high cost for fabrication. Design optimization is required to save manufacturing expenses. In addition to the mass minimization, design modification from double plate to single plate is proposed, because welding of double plate is difficult due to narrow gap between two plates. In this paper, design process to find optimal design of LCTS support is described. The sensitivities of the design variables such as thickness, height, width and gap between two plates are investigated. Optimal design solution is obtained by Sequential Quadratic Programming (SQP) algorithm based on the meta-model developed by randomly selected experimental samples. Through the design optimization process, optimal designs of the LCTS support are obtained. The weight of the support plates can be reduced to 24% compared with the initial design.

  16. Optimization of the outer support in the ITER lower cryostat thermal shield

    Energy Technology Data Exchange (ETDEWEB)

    Noh, C.H., E-mail: chnoh@nfri.re.kr [National Fusion Research Institute, Daejeon, 305-333 (Korea, Republic of); Korea Advanced Institute of Science and Technology, Daejeon, 305-338 (Korea, Republic of); Chung, W., E-mail: whchung@nfri.re.kr [National Fusion Research Institute, Daejeon, 305-333 (Korea, Republic of); Lim, J., E-mail: jongmin.lim@kaist.ac.kr [Korea Advanced Institute of Science and Technology, Daejeon, 305-338 (Korea, Republic of); Lee, B.C., E-mail: bclee@kaist.ac.kr [Korea Advanced Institute of Science and Technology, Daejeon, 305-338 (Korea, Republic of)

    2016-02-15

    Highlights: • Design methodology for the ITER lower cryostat thermal shield support is described. • Design optimization is performed using the kriging meta-model. • Single plate support design is proposed as an alternative design. • Proposed design has 24% reduced weight compared with the initial design. - Abstract: ITER Lower Cryostat Thermal Shield (LCTS) is fixed to the cryostat floor by a thin flexible plate support. Double plate made of titanium alloy is adopted as a reference design. Double plate is effective to get structural reliability for the high inertia load and buckling load. Thin plate with titanium alloy has good flexibility to the thermal movement and reduces conduction heat load from cryostat floor to the thermal shield. Double plate support has enough structural margin. In addition, titanium alloy requires high cost for fabrication. Design optimization is required to save manufacturing expenses. In addition to the mass minimization, design modification from double plate to single plate is proposed, because welding of double plate is difficult due to narrow gap between two plates. In this paper, design process to find optimal design of LCTS support is described. The sensitivities of the design variables such as thickness, height, width and gap between two plates are investigated. Optimal design solution is obtained by Sequential Quadratic Programming (SQP) algorithm based on the meta-model developed by randomly selected experimental samples. Through the design optimization process, optimal designs of the LCTS support are obtained. The weight of the support plates can be reduced to 24% compared with the initial design.

  17. Resonance shielding in thermal reactor lattices

    International Nuclear Information System (INIS)

    Rothenstein, W.; Taviv, E.; Aminpour, M.

    1982-01-01

    The theoretical foundations of a new methodology for the accurate treatment of resonance absorption in thermal reactor lattice analysis are presented. This methodology is based on the solution of the point-energy transport equation in its integral or integro-differential form for a heterogeneous lattice using detailed resonance cross-section profiles. The methodology is applied to LWR benchmark analysis, with emphasis on temperature dependence of resonance absorption during fuel depletion, spatial and mutual self-shielding, integral parameter analysis and treatment of cluster geometry. The capabilities of the OZMA code, which implements the new methodology are discussed. These capabilities provide a means against which simpler and more rapid resonance absorption algorithms can be checked. (author)

  18. Flow distribution analysis on the cooling tube network of ITER thermal shield

    International Nuclear Information System (INIS)

    Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Kyoung-O; Ahn, Hee Jae; Lee, Hyeon Gon

    2014-01-01

    Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube network for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly

  19. Rectification of leak from upper aluminium thermal shield cooling water inlet line of Cirus reactor

    International Nuclear Information System (INIS)

    Bhatnagar, Anil; Joshi, N.S.; Kharpate, A.V.; Marik, S.K.

    2006-01-01

    During 1994, a small water leak was observed from the upper aluminium thermal shield of Cirus reactor. Detailed investigations revealed that the leakage was from the weld joint of one of the 1 1/4 inch NB Sch. 80 coolant inlet pipes connected to the upper aluminium thermal shield. The location of the leak was identified by monitoring the stabilised water level in the vertical inlet pipe under stagnant condition. The exact location was identified by installing an inflatable seal arrangement inside the leaky pipe and inflating the seal at different elevations to isolate the leaky location and ensuring that the leak was completely stopped. This location was about 15 feet below the operating floor of the reactor. The pipe was visually inspected with the help of a fibre-scope to assess the condition of the inner surface. Eddy current testing was also carried out for volumetric examination. This revealed one more localised flaw on the outer surface little above the leaky joint. A hollow plug, with expandable rings, having C-shaped cross section at both the ends and a straight portion in the middle to cover the defective region, was developed and qualified in a mock-up station after extensive trials. In view of the site constraints, a flexible hollow link assembly was engineered, for installing the plug remotely. The inner surface of the pipe was cleaned using an emery brush and a deburring tool. The plug was then installed covering the leak area and the rings were expanded by remote tightening. The shield was hydro-tested satisfactorily. (author)

  20. Thermal neutron self-shielding correction factors for large sample instrumental neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Tzika, F.; Stamatelatos, I.E.

    2004-01-01

    Thermal neutron self-shielding within large samples was studied using the Monte Carlo neutron transport code MCNP. The code enabled a three-dimensional modeling of the actual source and geometry configuration including reactor core, graphite pile and sample. Neutron flux self-shielding correction factors derived for a set of materials of interest for large sample neutron activation analysis are presented and evaluated. Simulations were experimentally verified by measurements performed using activation foils. The results of this study can be applied in order to determine neutron self-shielding factors of unknown samples from the thermal neutron fluxes measured at the surface of the sample

  1. Design experience: CRBRP radiation shielding

    International Nuclear Information System (INIS)

    Disney, R.K.; Chan, T.C.; Gallo, F.G.; Hedgecock, L.R.; McGinnis, C.A.; Wrights, G.N.

    1978-11-01

    The Clinch River Breeder Reactor Plant (CRBRP) is being designed as a fast breeder demonstration project in the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program. Radiation shielding design of the facility consists of a comprehensive design approach to assure compliance with design and government regulatory requirements. Studies conducted during the CRBRP design process involved the aspects of radiation shielding dealing with protection of components, systems, and personnel from radiation exposure. Achievement of feasible designs, while considering the mechanical, structural, nuclear, and thermal performance of the component or system, has required judicious trade-offs in radiation shielding performance. Specific design problems which have been addressed are in-vessel radial shielding to protect permanent core support structures, flux monitor system shielding to isolate flux monitoring systems for extraneous background sources, reactor vessel support shielding to allow personnel access to the closure head during full power operation, and primary heat transport system pipe chaseway shielding to limit intermediate heat transport system sodium system coolant activation. The shielding design solutions to these problems defined a need for prototypic or benchmark experiments to provide assurance of the predicted shielding performance of selected design solutions and the verification of design methodology. Design activities of CRBRP plant components an systems, which have the potential for radiation exposure of plant personnel during operation or maintenance, are controlled by a design review process related to radiation shielding. The program implements design objectives, design requirements, and cost/benefit guidelines to assure that radiation exposures will be ''as low as reasonably achievable''

  2. Experimental Studies on Shadow Shields for Thermal Protection of Cryogenic Tanks in Space

    National Research Council Canada - National Science Library

    Knoll, Richard

    1968-01-01

    ... (high-emissivity coatings on annular rings of shields) on thermal performance. The experimental data, in general, agreed closely with an analytical model which assumed diffuse surfaces with nonuniform radiosity...

  3. Thermal, operational, and economic aspects of repository design alternatives

    International Nuclear Information System (INIS)

    Closs, K.D.; Papp, R.; Bechthold, W.; Engelmann, H.J.; Hartje, B.

    1989-01-01

    This paper discusses how a broad spectrum of heat-generating nuclear waste types like reprocessing waste (HLW, ILW), spent LWR, and spent HTR fuel will be disposed of in a future German repository located in a salt dome. Different package and emplacement concepts for the various waste forms are feasible, ranging from pure borehole emplacement of canisters and drums to pure drift emplacement of heavily shielded casks as well as combinations of both concepts. Optimization of the whole back-end system (waste treatment, interim storage, and disposal) is performed taking into account thermal, operational, and economic aspects. From a radiological viewpoint, the drift emplacement concept is superior to all concepts in as much as the occupational dose is lowest and zero release from the casks is attainable during normal and anomalous repository operation. As far as economics are concerned, the cost of the heavily shielded casks necessary for drift emplacement contributes markedly to the overall cost of the whole back-end system. Drift emplacement can compete economically with the other concepts only if the casks are used both for interim storage and disposal

  4. SP-100 GES/NAT radiation shielding systems design and development testing

    International Nuclear Information System (INIS)

    Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.; Reese, J.C.; Thomas, K.; Wiltshire, F.

    1991-01-01

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned

  5. Remote operation of a fully shielded electron probe microanalyser

    International Nuclear Information System (INIS)

    Rowe, J.; Sparry, R.P.

    1977-11-01

    A 'Microscan 5' Cambridge Instrument Company electron probe micro-analyser has been equipped with full shielding to enable high radioactive materials to be examined. The transfer of controls for remote operation are described. (author)

  6. Thermal and mechanical analysis of the Faraday shield for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Vesey, R.A.

    1988-02-01

    The antenna for the ion cyclotron resonance heating (ICRH) system of the Compact Ignition Tokamak (CIT) is protected from the plasma environment by a Faraday shield, an array of gas-cooled metallic tubes. The plasma side of the tubes is armored with graphite tiles, which can be either brazed or mechanically attached to the tube. The Faraday shield has been analyzed using finite element codes to model thermal and mechanical responses to typical CIT heating and disruption loads. Four representative materials (Inconel 718, tantalum-10 tungsten, copper alloy C17510, and molybdenum alloy TZM) and several combinations of tube and armor thicknesses were used in the thermal analysis, which revealed that maximum allowable temperatures were not exceeded for any of the four materials considered. The two-dimensional thermal stress analysis indicated Von Mises stresses greater than twice the yield stress for a tube constructed of Inconel 718 (the original design material) for the brazed-graphite design. Analysis of stresses caused by plasma disruption (/rvec J/ /times/ /rvec B/) loads eliminated the copper and molybdenum alloys as candidate tube materials. Of the four materials considered, tantalum-10 tungsten performed the best for a brazed graphite design, showing acceptable thermal stresses (69% of yield) and disruption stresses (42% of yield). A preliminary thermal analysis of the mechanically attached graphite scheme predicts minimal thermal stresses in the tube. The survivability of the graphite tubes in this scheme is yet to be analyzed. 8 refs., 19 figs., 2 tabs

  7. Shielding practice

    International Nuclear Information System (INIS)

    Sauermann, P.F.

    1985-08-01

    The basis of shielding practice against external irradiation is shown in a simple way. For most sources of radiation (point sources) occurring in shielding practice, the basic data are given, mainly in the form of tables, which are required to solve the shielding problems. The application of these data is explained and discussed using practical examples. Thickness of shielding panes of glove boxes for α and β radiation; shielding of sealed γ-radiography sources; shielding of a Co-60 radiation source, and of the manipulator panels for hot cells; damping factors for γ radiation and neutrons; shielding of fast and thermal neutrons, and of bremsstrahlung (X-ray tubes, Kr-85 pressure gas cylinders, 42 MeV betatrons, 20 MeV linacs); two-fold shielding (lead glass windows for hot cells, 14 MeV neutron generators); shielding against scattered radiation. (orig./HP) [de

  8. A Sensitivity Study on the Radiation Shield of KSPR Space Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cerba, S.; Lee, Hyun Chul; Lim, Hong Sik; Noh, Jae Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The idea of a space reactor was realised some decades ago and since that time several research activities have been performed into this field. The US National Aeronautics and Space Administration (NASA) has been developing a small fast reactor called as fission power system (FPS) for deep space mission, where highly enriched uranium (HEU) is used as fuel. On the other hand, other researchers have also surveyed a thermal reactor concept with low enriched uranium (LEU) for space applications. One of the main concerns in terms of a space reactor is the total size and the mass of the system including the reactor itself as well as the radiation shield. Since the reactor core is a source of neutrons and gamma photons of various energies, which may cause severe damage on the electronics of the space stations, the questions related to the development of a radiation shield should be address appropriately. The proposal of a radiation shield for a small space reactor is discussed in this paper. The requirements for the radiation shield have been addressed in terms of maximal absorbed doses and neutron flounces during 10 years of operation. In this study a radiation shield design for a small space reactor was investigated. All the presented calculations were performed using the multi-purpose stochastic MCNP code with temperature dependent continuous energy ENDF/B VII.0 neutron and photon cross section libraries. The aim of this study was to design a neutron and gamma shield that can meet the requirements of 250 Gy absorbed during 10 years of reactor operation. The comparison with a fast reactor design showed that high content of {sup 238}U strongly influences the shielding mass. This phenomenon is due to the higher photon production in case of the KSPR design and therefore the use of high {sup 235}U enrichments and the operation in fast neutron spectrum may be more desirable. In case if the KSPR space reactor the best shielding performance was achieved while utilizing a multi

  9. Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Nasrabadi, M.N.; Jalali, M.; Mohammadi, A.

    2007-01-01

    In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF 3 detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required

  10. Self-shielding coefficient and thermal flux depression factor of voluminous sample in neutron activation analysis

    International Nuclear Information System (INIS)

    Noorddin Ibrahim; Rosnie Akang

    2009-01-01

    Full text: One of the major problems encountered during the irradiation of large inhomogeneous samples in performing activation analysis using neutron is the perturbation of the neutron field due to absorption and scattering of neutron within the sample as well as along the neutron guide in the case of prompt gamma activation analysis. The magnitude of this perturbation shown by self-shielding coefficient and flux depression depend on several factors including the average neutron energy, the size and shape of the sample, as well as the macroscopic absorption cross section of the sample. In this study, we use Monte Carlo N-Particle codes to simulate the variation of neutron self-shielding coefficient and thermal flux depression factor as a function of the macroscopic thermal absorption cross section. The simulation works was carried out using the high performance computing facility available at UTM while the experimental work was performed at the tangential beam port of Reactor TRIGA PUSPATI, Malaysia Nuclear Agency. The neutron flux measured along the beam port is found to be in good agreement with the simulated data. Our simulation results also reveal that total flux perturbation factor decreases as the value of absorption increases. This factor is close to unity for low absorbing sample and tends towards zero for strong absorber. In addition, sample with long mean chord length produces smaller flux perturbation than the shorter mean chord length. When comparing both the graphs of self-shielding factor and total disturbance, we can conclude that the total disturbance of the thermal neutron flux on the large samples is dominated by the self-shielding effect. (Author)

  11. Development of paraffin and paraffin/bitumen composites with additions of B2O3 for thermal neutron shielding applications

    International Nuclear Information System (INIS)

    Toyen, Donruedee; Saenboonruang, Kiadtisak

    2017-01-01

    In this work, paraffin and paraffin/bitumen composites with additions of boron oxide (B 2 O 3 ) were prepared to evaluate the viscosity, flexural, and thermal neutron shielding properties for uses as thermal neutron shielding materials. The results showed that the addition of 3 wt% or 9 wt% bitumen to paraffin increased the overall flexural properties with the content of 9 wt% bitumen having the highest values. The improvement in flexural properties made the composites less brittle, stiffer, and longer-lasting. Furthermore, different contents of B 2 O 3 (0, 7, 14, 21, 28, and 35 wt%) were added to paraffin and paraffin/bitumen composites to investigate the effects of the B 2 O 3 contents. The results indicated that an increase in B 2 O 3 contents improved the shielding properties but slightly reduced the flexural properties. Specifically for 5-mm paraffin and 5-mm paraffin/bitumen samples with 35 wt% of B 2 O 3 , both samples could reduce neutron flux by more than 70%. The overall results suggested that the paraffin and paraffin/bitumen composites with additions of B 2 O 3 showed improved properties for utilization as effective thermal neutron shielding materials. (author)

  12. Tests of a thermal acoustic shield with a supersonic jet

    Science.gov (United States)

    Pickup, N.; Mangiarotty, R. A.; Okeefe, J. V.

    1981-10-01

    Fuel economy is a key element in the design of a future supersonic transport (SST). Variable cycle engines are being developed to provide the most economic combination of characteristics for a range of cruise speeds extending from subsonic speeds for overland flights to the supersonic cruise speeds. For one of these engines, the VCE-702, some form of noise suppression is needed for takeoff/sideline thrusts. The considered investigation is primarily concerned with scale model static tests of one particular concept for achieving that reduction, the thermal acoustic shield (TAS), which could also benefit other candidate SST engines. Other noise suppression devices being considered for SST application are the coannular nozzle, an internally ventilated nozzle, and mechanical suppressors. A test description is provided, taking into account the model configurations, the instrumentation, the test jet conditions, and aspects of screech noise control. Attention is given to shield thickness effects, a spectrum analysis, suppression and performance loss, and installed performance.

  13. Evaluation of Neutron shielding efficiency of Metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hwan; Chae, San; Kim, Yong Soo [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    Neutron shielding is achieved of interaction with material by moderation and absorption. Material that contains large amounts hydrogen atoms which are almost same neutron atomic weight is suited for fast neutron shielding material. Therefore, polymers containing high density hydrogen atom are being used for fast neutron shielding. On the other hand, composite materials containing high thermal neutron absorption cross section atom (Li, B, etc) are being used for thermal neutron shielding. However, these materials have low fast neutron absorption cross section. Therefore, these materials are not suited for fast neutron shielding. Hydrogen which has outstanding neutron energy reduction ability has very low thermal neutron absorption cross section, almost cannot be used for thermal neutron shielding. In this case, a large atomic number material (Pb, U, etc.) has been used. Thus, metal hydrides are considered as complement to concrete shielding material. Because metal hydrides contain high hydrogen density and elements with high atomic number. In this research neutron shielding performance and characteristic of nuclear about metal hydrides ((TiH{sub 2}, ZrH{sub 2}, HfH{sub 2}) is evaluated by experiment and MCNPX using {sup 252}Cf neutron source as purpose development shielding material to developed shielding material

  14. Proposal for the award of a contract for the supply of LHC dipole thermal shield bottom tray assemblies

    CERN Document Server

    2000-01-01

    This document concerns the award of a contract for the supply of 1 250 LHC dipole thermal shield bottom tray assemblies. Following a market survey carried out among 95 firms in sixteen Member States, a call for tenders (IT-2650/LHC/LHC) was sent on 8 November 1999 to eight firms in six Member States. By the closing date, CERN had received four tenders. The Finance Committee is invited to agree to the negotiation of a contract with the firm EISENWERKE KAISERSLAUTERN (DE), the lowest bidder, for the supply of 1 250 LHC dipole thermal shield bottom tray assemblies for a total amount of 6 150 808 euros (9 858 518 Swiss francs), subject to revision for contractual deliveries after 31 December 2001, with an option for the supply of up to 150 additional thermal shield bottom tray assemblies, for a total amount of 696 979 euros (1 117 118 Swiss francs), subject to revision for contractual deliveries after 31 December 2001, bringing the total amount to a maximum of 6 847 787 euros (10 975 636 Swiss francs), subject to...

  15. Thermal performance of various multilayer insulation systems below 80K

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1992-04-01

    The SSC collider dipole cryostat consists of a vacuum shell operating at room temperature, two thermal shields operating near 80K and 20K respectively, and the superconducting magnet assembly operating near 4K. The cryostat design incorporates multilayer insulation (MLI) blankets to limit radiant heat transfer into the 80K and 20K thermal shields. Also, an MLI blanket is used to impede heat transfer through residual gas conduction into the 4K superconducting magnet assembly. A measurement facility at Fermilab has been used to experimentally optimize the thermal insulation system for the dipole cryostat. Previous thermal measurements have been used to define the 80K MLI system configuration and verify system performance. With the 80K MLI system defined, the current effort has focused on experimentally defining the optimum insulation scheme for the 20K thermal shield. The SSC design specification requires that radiant heat transfer be limited to 0.093 W/m 2 at an insulating vacuum of 10 -6 torr

  16. 75 FR 65525 - Anthem Blue Cross Blue Shield, Claim Management Services, Inc. Operations, a Division of...

    Science.gov (United States)

    2010-10-25

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,327] Anthem Blue Cross Blue Shield, Claim Management Services, Inc. Operations, a Division of Wellpoint, Inc., Green Bay, WI; Notice... former workers of Anthem Blue Cross Blue Shield, Claim Management Services, Inc. Operations, a Division...

  17. Design of ITER shielding blanket

    International Nuclear Information System (INIS)

    Furuya, Kazuyuki; Sato, Satoshi; Hatano, Toshihisa; Tokami, Ikuhide; Kitamura, Kazunori; Miura, Hidenori; Ito, Yutaka; Kuroda, Toshimasa; Takatsu, Hideyuki

    1997-05-01

    A mechanical configuration of ITER integrated primary first wall/shield blanket module were developed focusing on the welded attachment of its support leg to the back plate. A 100 mm x 150 mm space between the legs of adjacent modules was incorporated for the working space of welding/cutting tools. A concept of coolant branch pipe connection to accommodate deformation due to the leg welding and differential displacement of the module and the manifold/back plate during operation was introduced. Two-dimensional FEM analyses showed that thermal stresses in Cu-alloy (first wall) and stainless steel (first wall coolant tube and shield block) satisfied the stress criteria following ASME code for ITER BPP operation. On the other hand, three-dimensional FEM analyses for overall in-vessel structures exhibited excessive primary stresses in the back plate and its support structure to the vacuum vessel under VDE disruption load and marginal stresses in the support leg of module No.4. Fabrication procedure of the integrated primary first wall/shield blanket module was developed based on single step solid HIP for the joining of Cu-alloy/Cu-alloy, Cu-alloy/stainless steel, and stainless steel/stainless steel. (author)

  18. Measurement of the thermal neutron self shielding coefficient in the Syrian miniature neutron source reactor inner irradiation site using the dy soils

    International Nuclear Information System (INIS)

    Khattab, K.; Khamis, I.

    2007-01-01

    Measurement of the thermal self shielding coefficient ( Gth ) in the Syrian Miniature Neutron Source Reactor (MNSR) inner irradiation site using Dy foils is presented in this paper. The thermal self shielding coefficient is measured as a function of the foil thickness or numbers. The mathematical equation which calculates the average relative radioactivity (Bq/g) versus the foil number is found as well.

  19. Helium leak testing of superconducting magnets, thermal shields and cryogenic lines of SST -1

    International Nuclear Information System (INIS)

    Thankey, P.L.; Joshi, K.S.; Semwal, P.; Pathan, F.S.; Raval, D.C.; Khan, Z.; Patel, R.J.; Pathak, H.A.

    2005-01-01

    Tokamak SST - 1 is under commissioning at Institute for Plasma Research. It comprises of a toroidal doughnut shaped plasma chamber, surrounded by liquid helium cooled superconducting magnets, housed in a cryostat chamber. The cryostat has two cooling circuits, (1) liquid nitrogen cooling circuit operating at 80 K to minimize the radiation heat load on the magnets, and (2) liquid helium cooling circuit to cool magnets and cold mass support structure to 4.5 K. In this paper we describe (a) the leak testing of copper - SS joints, brazing joints, interconnecting joints of the superconducting magnets, and (b) the leak testing of the liquid nitrogen cooling circuit, comprising of the main supply header, the thermal shields, interconnecting pipes, main return header and electrical isolators. All these tests were carried out using both vacuum and sniffer methods. (author)

  20. Application of a calculational model for thermal neutrons through biological shields

    Energy Technology Data Exchange (ETDEWEB)

    Hathout, A M [Nuclear engineering safety department, national center for nuclear safety and radiation, Nasr City Cairo, (Egypt)

    1995-10-01

    In this work a computational program, based on the Boltzmann transport integrodifferential equation, is applied. The scattering kernel is represented by the synthetic scattering model. The behaviour of thermal neutron in hydrogenous materials, which can be used as biological shields, are studied. These materials are water, polyethylene, Oak-Ridge concrete, ordinary concrete and manganese concrete. The data obtained are presented in tables. The results are analysed and compared with similar experimental values. Safety evaluation and environmental impact are discussed. 2 tabs.

  1. TFTR radiation contour and shielding efficiency measurements during D-D operations

    International Nuclear Information System (INIS)

    Kugel, H.W.; Ascione, G.; Elwood, S.; Gilbert, J.; Hwang, D.; Lewis, M.; Levine, J.; Ku, L.P.; Rule, K.; Hajnal, F.

    1994-11-01

    Extensive neutron and gamma radiation contour, shielding efficiency, and spectral measurements were performed during high power TFTR D-D operations at the tokamak Test Cell inner walls, ceiling, roof, and outer walls, in nearby control rooms, work areas, and personnel pathways, outdoors along the site fence at 125 m, and out to the nearest property lines at 180 m. The results confirmed that the efficiency of the basic radiation shielding was sufficient to allow the TFTR D-T experimental plan, and provide empirical guidance for simulating the radiation fields of future fusion reactors

  2. Research of the cold shield in cryogenic liquid storage

    Science.gov (United States)

    Chen, L. B.; Zheng, J. P.; Wu, X. L.; Cui, C.; Zhou, Y.; Wang, J. J.

    2017-12-01

    To realize zero boil-off storage of cryogenic liquids, a cryocooler that can achieve a temperature below the boiling point temperature of the cryogenic liquid is generally needed. Taking into account that the efficiency of the cryocooler will be higher at a higher operating temperature, a novel thermal insulation system using a sandwich container filled with cryogenic liquid with a higher boiling point as a cold radiation shield between the cryogenic tank and the vacuum shield in room temperature is proposed to reduce the electricity power consumption. A two-stage cryocooler or two separate cryocoolers are adopted to condense the evaporated gas from the cold shield and the cryogenic tank. The calculation result of a 55 liter liquid hydrogen tank with a liquid nitrogen shield shows that only 14.4 W of electrical power is needed to make all the evaporated gas condensation while 121.7 W will be needed without the liquid nitrogen shield.

  3. Primary shield displacement and bowing

    International Nuclear Information System (INIS)

    Scott, K.V.

    1978-01-01

    The reactor primary shield is constructed of high density concrete and surrounds the reactor core. The inlet, outlet and side primary shields were constructed in-place using 2.54 cm (1 in) thick steel plates as the forms. The plates remained as an integral part of the shields. The elongation of the pressure tubes due to thermal expansion and pressurization is not moving through the inlet nozzle hardware as designed but is accommodated by outward displacement and bowing of the inlet and outlet shields. Excessive distortion of the shields may result in gas seal failures, intolerable helium gas leaks, increased argon-41 emissions, and shield cooling tube failures. The shield surveillance and testing results are presented

  4. The TRIUMF thermal neutron facility as planned for operation by 1978

    International Nuclear Information System (INIS)

    Arrott, A.S.; Templeton, T.L.; Thorson, I.M.; Blaby, R.E.; Burgerjon, J.J.

    1977-08-01

    The concepts of the thermal neutron facility have been considerably modified since they were first put forth in 1971. The move has been toward simplification. This report describes the basic vacuum tank structure, its surrounding steel shielding and the concrete structure. The vacuum tank contains a target, moderator and reflector and has ports for the extraction of thermal neutron beams. It also has capabilities for producing mesons and for irradiation of targets in the primary proton beam. The system has been designed with flexibility for modification to meet possible future demands for irradiation facilities, radiography, or pulsed operation. The targets can be easily changed, and it is planned to do this to meet the heat transfer problems as they arise on going to higher beam currents. Feasibility studies for Pb-Bi and Pb targets have been carried out. The Pb target was chosen because of safety considerations and simpler design. (author)

  5. Experimental assessment on the thermal effects of the neutron shielding and heat-transfer fin of dual purpose casks on open pool fire

    International Nuclear Information System (INIS)

    Bang, Kyoung-Sik; Yu, Seung-Hwan; Lee, Ju-Chan; Seo, Ki-Seog; Choi, Woo-Seok

    2016-01-01

    Highlights: • An open pool fire test was performed to estimate not only the combustion effect of the neutron shielding but also the effect of the heat transfer fin of the dual purpose cask. • The heat transfer to the inside of the dual purpose cask was reduced, when the neutron shielding burns. • The surface temperatures are lower in the present of the heat transfer fins. • If inflammable material is used as the components of the cask, evaluating thermal integrity using the thermal test would be desirable. - Abstract: Dual purpose casks are used for storage and transport of spent nuclear fuel assemblies. They must therefore satisfy the requirements prescribed in the Korea Nuclear Safety Security Commission Act 2014-50, the IAEA Safety Standard Series No. SSR-6, and US 10 CFR Part 71. These regulatory guidelines classify the dual purpose cask as a Type B package and state that a Type B package must be able to withstand a temperature of 800 °C for a period of 30 min. NS-4-FR is used as neutron shielding of the dual purpose cask. Heat transfer fins are embedded to enhance heat transfer from the cask body to the outer-shell because the thermal conductivity of NS-4-FR is not good. However, accurately simulating not only the combustion effect of the neutron shielding but also the effect of the heat transfer fin in the thermal analysis is not easy. Therefore, an open pool fire test was conducted using a one-sixth slice of a real cask to estimate these effects at a temperature of 800 °C for a period of 30 min. The temperature at the central portion of the neutron shielding was lower when the neutron shielding in contact with the outer cask burned because the neutron shielding absorbed the surrounding latent heat as the neutron shielding burned. Therefore, the heat transfer to the inside of the dual purpose cask was reduced. The surface temperature was lower when a heat transfer fin was installed because the high heat generated by the flame was transferred to the

  6. Experimental assessment on the thermal effects of the neutron shielding and heat-transfer fin of dual purpose casks on open pool fire

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kyoung-Sik, E-mail: nksbang@kaeri.re.kr; Yu, Seung-Hwan; Lee, Ju-Chan; Seo, Ki-Seog; Choi, Woo-Seok

    2016-08-01

    Highlights: • An open pool fire test was performed to estimate not only the combustion effect of the neutron shielding but also the effect of the heat transfer fin of the dual purpose cask. • The heat transfer to the inside of the dual purpose cask was reduced, when the neutron shielding burns. • The surface temperatures are lower in the present of the heat transfer fins. • If inflammable material is used as the components of the cask, evaluating thermal integrity using the thermal test would be desirable. - Abstract: Dual purpose casks are used for storage and transport of spent nuclear fuel assemblies. They must therefore satisfy the requirements prescribed in the Korea Nuclear Safety Security Commission Act 2014-50, the IAEA Safety Standard Series No. SSR-6, and US 10 CFR Part 71. These regulatory guidelines classify the dual purpose cask as a Type B package and state that a Type B package must be able to withstand a temperature of 800 °C for a period of 30 min. NS-4-FR is used as neutron shielding of the dual purpose cask. Heat transfer fins are embedded to enhance heat transfer from the cask body to the outer-shell because the thermal conductivity of NS-4-FR is not good. However, accurately simulating not only the combustion effect of the neutron shielding but also the effect of the heat transfer fin in the thermal analysis is not easy. Therefore, an open pool fire test was conducted using a one-sixth slice of a real cask to estimate these effects at a temperature of 800 °C for a period of 30 min. The temperature at the central portion of the neutron shielding was lower when the neutron shielding in contact with the outer cask burned because the neutron shielding absorbed the surrounding latent heat as the neutron shielding burned. Therefore, the heat transfer to the inside of the dual purpose cask was reduced. The surface temperature was lower when a heat transfer fin was installed because the high heat generated by the flame was transferred to the

  7. Flow and pressure profiles for the primary heat transport system of Rajasthan Atomic Power Station for the operation with few isolated reactor channels near the end shield cracks

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, A J; Chaki, S K; Sehgal, R L; Venkat Raj, V [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    The RAPS (Rajasthan Atomic Power Station) unit-1 is now operating at reduced power due to the removal of fifteen fuel channels for repair of south end shield cracks. The power level is restricted to 50% of the full power capacity as a precautionary measure. The relative difference that operation at 50% power and higher power would make to the end shield structure is being currently analysed with a view to operate this reactor at higher power levels. As a prerequisite, a detailed thermal hydraulic analysis is essential to assess the effect of reactor operation with isolated channels on the primary heat transport (PHT) system pressure, flow, temperature. The adequacy of the existing trip set points for the plant operation under this mode is also required to be assessed. In the present study, analysis of the PHT system has been carried out to determine the flow and pressure profiles for the RAPS heat transport system for operation of the reactor with isolated channels. (author). 5 refs., 1 fig., 1 tab.

  8. Radiation shielding device

    International Nuclear Information System (INIS)

    Nakagawa, Takahiro; Yamagami, Makoto.

    1996-01-01

    A fixed shielding member made of a radiation shielding material is constituted in perpendicular to an opening formed on radiation shielding walls. The fixed shielding member has one side opened and has other side, the upper portion and the lower portion disposed in close contact with the radiation shielding walls. Movable shielding members made of a radiation shielding material are each disposed openably on both side of the fixed shielding member. The movable shielding member has a shaft as a fulcrum on one side thereof for connecting it to the radiation shielding walls. The other side has a handle attached for opening/closing the movable shielding member. Upon access of an operator, when each one of the movable shielding members is opened/closed on every time, leakage of linear or scattered radiation can be prevented. Even when both of the movable shielding members are opened simultaneously, the fixed shielding member and the movable shielding members form labyrinth to prevent leakage of linear radioactivity. (I.N.)

  9. An investigation of safety aspects of operating the end-shields in a brittle condition

    International Nuclear Information System (INIS)

    Seth, V.K.; Patwardhan, V.M.

    1975-01-01

    Published data on radiation embrittlement of 3.5% Ni steels (material for RAPP-1, RAPP-2 and MAPP-1 end shields - with charpy V notch value of 2.074 gm at -101 0 C) indicates that the nil ductility transition temperature rise would be of the order of 205 0 C to 260 0 C at the end of 30 year reactor life, against earlier figure of around 120 0 C. Surveillance programme on radiation embrittlement of the end-shields is being conducted to get an idea of the actual condition of the material at any required time. A study has been made to investigate safety aspects of operating the end shields in 'Brittle condition' of the material under the presently designed operating conditions. This study is based on the concept of crack arrest approach (employing fracture analysis diagram; FAD and linear elastic fracture mechanics (using possible correlation between Ksub(Ic) and CVN values). (author)

  10. Thermophysical Properties of Heat Resistant Shielding Material

    International Nuclear Information System (INIS)

    Porter, W.D.

    2004-01-01

    This project was aimed at determining thermal conductivity, specific heat and thermal expansion of a heat resistant shielding material for neutron absorption applications. These data are critical in predicting the structural integrity of the shielding under thermal cycling and mechanical load. The measurements of thermal conductivity and specific heat were conducted in air at five different temperatures (-31 F, 73.4 F, 140 F, 212 F and 302 F). The transient plane source (TPS) method was used in the tests. Thermal expansion tests were conducted using push rod dilatometry over the continuous range from -40 F (-40 C) to 302 F (150 C)

  11. Transient shielded liquid hydrogen containers

    International Nuclear Information System (INIS)

    Varghese, A.P.; Herring, R.H.

    1990-01-01

    The storage of hydrogen in the liquid phase has been limited in duration due to the thermal performance constraints of conventional Liquid Hydrogen containers available. Conventional Liquid Hydrogen containers lose hydrogen because of their relatively high heat leak and variations in usage pattern of hydrogen due to shutdowns. Local regulations also discourage venting of hydrogen. Long term storage of Liquid Hydrogen without product loss was usually accomplished using Liquid Nitrogen sacrificial shields. This paper reports on a new low heat leak container developed and patented that will extend the storage time of liquid hydrogen by five hundred percent. The principle of operation of the Transient Shields which makes the extraordinary performance of this container feasible is described in this paper. Also covered are the impact of this new container on present applications of hydrogen and the new opportunities afforded to Liquid hydrogen in the world hydrogen market

  12. Shielding wall for thermonuclear device

    International Nuclear Information System (INIS)

    Uchida, Takaho.

    1989-01-01

    This invention concerns shielding walls opposing to plasmas of a thermonuclear device and it is an object thereof to conduct reactor operation with no troubles even if a portion of shielding wall tiles should be damaged. That is, the shielding wall tiles are constituted as a dual layer structure in which the lower base tiles are connected by means of bolts to first walls. Further, the upper surface tiles are bolt-connected to the layer base tiles. In this structure, the plasma thermal loads are directly received by the surface layer tiles and heat is conducted by means of conduction and radiation to the underlying base tiles and the first walls. Even upon occurrence of destruction accidents to the surface layer tiles caused by incident heat or electromagnetic force upon elimination of plasmas, since the underlying base tiles remain as they are, the first walls constituted with stainless steels, etc. are not directly exposed to the plasmas. Accordingly, the integrity of the first walls having cooling channels can be maintained and sputtering intrusion of atoms of high atom number into the plasmas can be prevented. (I.S.)

  13. Thermal, Mechanical and UV-Shielding Properties of Poly(Methyl Methacrylate/Cerium Dioxide Hybrid Systems Obtained by Melt Compounding

    Directory of Open Access Journals (Sweden)

    María A. Reyes-Acosta

    2015-09-01

    Full Text Available Thick and homogeneous hybrid film systems based on poly(methyl methacrylate (PMMA and CeO2 nanoparticles were synthesized using the melt compounding method to improve thermal stability, mechanical and UV-shielding properties, as well as to propose them for use in the multifunctional materials industry. The effect of the inorganic phase on these properties was assessed by using two different weight percentages of synthesized CeO2 nanoparticles (0.5 and 1.0 wt % with the sol–gel method and thermal treatment at different temperatures (120, 235, 400, 600 and 800 °C. Thereafter, the nanoceria powders were added to the polymer matrix by single screw extrusion. The absorption in the UV region was increased with the crystallite size of the CeO2 nanoparticles and the PMMA/CeO2 weight ratio. Due to the crystallinity of CeO2 nanoparticles, the thermal, mechanical and UV-shielding properties of the PMMA matrix were improved. The presence of CeO2 nanostructures exerts an influence on the mobility of PMMA chain segments, leading to a different glass transition temperature.

  14. Shielding container for radioactive isotopes

    International Nuclear Information System (INIS)

    Sumi, Tetsuo; Tosa, Masayoshi; Hatogai, Tatsuaki.

    1975-01-01

    Object: To effect opening and closing bidirectional radiation used particularly for a gamma densimeter or the like by one operation. Structure: This device comprises a rotatable shielding body for receiving radioactive isotope in the central portion thereof and having at least two radiation openings through which radiation is taken out of the isotope, and a shielding container having openings corresponding to the first mentioned radiation openings, respectively. The radioactive isotope is secured to a rotational shaft of the shielding body, and the shielding body is rotated to register the openings of the shielding container with the openings of the shielding body or to shield the openings, thereby effecting radiation and cut off of gamma ray in the bidirection by one operation. (Kamimura, M.)

  15. Neutron shielding material

    International Nuclear Information System (INIS)

    Nodaka, M.; Iida, T.; Taniuchi, H.; Yosimura, K.; Nagahama, H.

    1993-01-01

    From among the neutron shielding materials of the 'kobesh' series developed by Kobe Steel, Ltd. for transport and storage packagings, silicon rubber base type material has been tested for several items with a view to practical application and official authorization, and in order to determine its adaptability to actual vessels. Silicon rubber base type 'kobesh SR-T01' is a material in which, from among the silicone rubber based neutron shielding materials, the hydrogen content is highest and the boron content is most optimized. Its neutron shielding capability has been already described in the previous report (Taniuchi, 1986). The following tests were carried out to determine suitability for practical application; 1) Long-term thermal stability test 2) Pouring test on an actual-scale model 3) Fire test The experimental results showed that the silicone rubber based neutron shielding material has good neutron shielding capability and high long-term fire resistance, and that it can be applied to the advanced transport packaging. (author)

  16. Electrodynamic Dust Shield for Space Applications

    Science.gov (United States)

    Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Pollard, Jacob R. S.; Calle, Carlos I.

    2016-01-01

    Dust mitigation technology has been highlighted by NASA and the International Space Exploration Coordination Group (ISECG) as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has developed an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. Further development is underway to improve the operation and reliability of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment (MISSE). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the Moon.

  17. Method for dismantling shields

    International Nuclear Information System (INIS)

    Fukuzawa, Rokuro; Kondo, Nobuhiro; Kamiyama, Yoshinori; Kawasato, Ken; Hiraga, Tomoaki.

    1990-01-01

    The object of the present invention is to enable operators to dismantle shieldings contaminated by radioactivity easily and in a short period of time without danger of radiation exposure. A plurality of introduction pipes are embedded previously to the shielding walls of shielding members which contain a reactor core in a state where both ends of the introduction pipes are in communication with the outside. A wire saw is inserted into the introduction pipes to cut the shieldings upon dismantling. Then, shieldings can be dismantled easily in a short period of time with no radiation exposure to operator's. Further, according to the present invention, since the wire saw can be set easily and a large area can be cut at once, operation efficiency is improved. Further, since remote control is possible, cutting can be conducted in water and complicated places of the reactor. Biting upon starting the wire saw in the introduction pipe is reduced to facilitate startup for the rotation. (I.S.)

  18. Thermal Wigner Operator in Coherent Thermal State Representation and Its Application

    Institute of Scientific and Technical Information of China (English)

    FAN HongYi

    2002-01-01

    In the coherent thermal state representation we introduce thermal Wigner operator and find that it is"squeezed" under the thermal transformation. The thermal Wigner operator provides us with a new direct and neatapproach for deriving Wigner functions of thermal states.

  19. Thermal Wigner Operator in Coherent Thermal State Representation and Its Application

    Institute of Scientific and Technical Information of China (English)

    FANHong-Yi

    2002-01-01

    In the coherent thermal state representation we introduce thermal Wigner operator and find that it is “squeezed” under the thermal transformation.The thermal Wigner operator provides us with a new direct and neat approach for deriving Wigner functions of thermal states.

  20. Wake Shield Target Protection

    International Nuclear Information System (INIS)

    Valmianski, Emanuil I.; Petzoldt, Ronald W.; Alexander, Neil B.

    2003-01-01

    The heat flux from both gas convection and chamber radiation on a direct drive target must be limited to avoid target damage from excessive D-T temperature increase. One of the possibilities of protecting the target is a wake shield flying in front of the target. A shield will also reduce drag force on the target, thereby facilitating target tracking and position prediction. A Direct Simulation Monte Carlo (DSMC) code was used to calculate convection heat loads as boundary conditions input into ANSYS thermal calculations. These were used for studying the quality of target protection depending on various shapes of shields, target-shield distance, and protective properties of the shield moving relative to the target. The results show that the shield can reduce the convective heat flux by a factor of 2 to 5 depending on pressure, temperature, and velocity. The protective effect of a shield moving relative to the target is greater than the protective properties of a fixed shield. However, the protective effect of a shield moving under the drag force is not sufficient for bringing the heat load on the target down to the necessary limit. Some other ways of diminishing heat flux using a protective shield are discussed

  1. Thermal power plant design and operation

    CERN Document Server

    Sarkar, Dipak

    2015-01-01

    Thermal Power Plant: Design and Operation deals with various aspects of a thermal power plant, providing a new dimension to the subject, with focus on operating practices and troubleshooting, as well as technology and design. Its author has a 40-long association with thermal power plants in design as well as field engineering, sharing his experience with professional engineers under various training capacities, such as training programs for graduate engineers and operating personnel. Thermal Power Plant presents practical content on coal-, gas-, oil-, peat- and biomass-fueled thermal power

  2. Neutronic reactor thermal shield

    International Nuclear Information System (INIS)

    Lowe, P.E.

    1976-01-01

    A shield for a nuclear reactor includes at least two layers of alternating wide and narrow rectangular blocks so arranged that the spaces between blocks in adjacent layers are out of registry, each block having an opening therein equally spaced from the sides of the blocks and nearer the top of the block than the bottom, the distance from the top of the block to the opening in one layer being different from this distance in adjacent layers, openings in blocks in adjacent layers being in registry. 1 claim, 7 drawing figures

  3. Integrated thermal analysis of top-shield and reactor vault of Indian FBR-600

    International Nuclear Information System (INIS)

    Rajendrakumar, M.; Velusamy, K.; Selvaraj, P.

    2015-01-01

    The design for next generation fast breeder reactors (FBR-600) has been commenced with enhanced safety and improved economy as the main targets. The Top Shield (TS) of Prototype Fast Breeder Reactor (PFBR) is a box type structure consisting of Roof Slab (RS), Small Rotatable Plug (SRP), and Large Rotatable Plug (LRP). The large box type structure with many penetrations posed difficulties during manufacturing. Because of the required high load carrying capabilities, a dome shaped thick plate roof slab is conceived for FBR-600. Main Vessel (MV) which holds the primary sodium and associated components is welded to the RS through a triple joint. Reactor vault (RV) is a thick concrete structure which supports MV and Safety Vessel (SV). The temperature of RV concrete has to be less than 338 K (65°C) under normal operating heat loads (full and part load conditions) and less than 363 K (90°C) under Safety Grade Decay Heat Removal (SGDHR) conditions with one cooling loop in service. The temperature in the component penetrations of the RS should be greater than 120°C to avoid sodium aerosol deposition. Similarly, the temperature of the LRP and SRP has to be ∼120°C to protect the elastomeric seals provided to these structures. Further, the heat load to RV transferred by direct conduction by roof slab support has to be minimum. To meet these conflicting thermal requirements, detailed multi-physics CFD calculations have been performed to finalize, (i) the insulation requirements on the top of roof slab, (ii) number and position of reflective insulation plates below the bottom plate of roof slab/rotating plugs, (iii) air flow rate for various zones of the top shield and (iv) water flow rate and pitch of water cooling pipes for the reactor vault. (author)

  4. Development of silver coating process and facilities for ITER thermal shield

    Energy Technology Data Exchange (ETDEWEB)

    Kang, D.K. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kim, R.G. [COTEC Corp., Changwon 641-846 (Korea, Republic of); Nam, K., E-mail: kwnam@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Noh, C.H.; Chung, W. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Yoon, D.C. [COTEC Corp., Changwon 641-846 (Korea, Republic of); Lim, K.; Baek, J.P. [SFA Engineering Corp., Asan 336-873 (Korea, Republic of)

    2016-11-01

    This paper describes both the test results of the bath type silver coating and the design of the bath to construct the silver coating plant for ITER thermal shield. The tests of small specimens made of SS304L and SS304LN were carried out to investigate the effect of the nitrogen content in SS304LN on the silver coating quality. The effect of different degreasing agents was also investigated to improve silver coating process. Small mock-up was tested to find a proper dipping direction during the electroplating process. Finally, noble bath design was conceived and structurally validated. Overall layout of silver coating plant is also shown in this paper.

  5. Including the Effect of Shielding in Prediction of Weather Window for Offshore Lifting Operations

    OpenAIRE

    Olsen, Camilla Waldum

    2015-01-01

    The offshore industry is constantly seeking to operate in more extreme conditions. DeepOcean is a subsea service company, where offshore lifts is a part of every day operations. To remain competitive, it is important to reduce operational downtime, where time spent waiting on weather is one of the main contributors. The main goal of this thesis is to investigate how shielding effects influence the operational limit for offshore lifting operations at different heading angles. Common practice i...

  6. Radiation shield for PWR reactors

    International Nuclear Information System (INIS)

    Esenov, Amra; Pustovgar, Andrey

    2013-01-01

    One of the chief structures of a reactor pit is a 'dry' shield. Setting up a 'dry' shield includes the technologically complex process of thermal processing of serpentinite concrete. Modern advances in the area of materials technology permit avoiding this complex and demanding procedure, and this significantly decreases the duration, labor intensity, and cost of setting it up. (orig.)

  7. Theoretical analysis and experimental investigation on performance of the thermal shield of accelerator cryomodules by thermo-siphon cooling of liquid nitrogen

    Science.gov (United States)

    Datta, T. S.; Kar, S.; Kumar, M.; Choudhury, A.; Chacko, J.; Antony, J.; Babu, S.; Sahu, S. K.

    2015-12-01

    Five beam line cryomodules with total 27 superconducting Radio Frequency (RF) cavities are installed and commissioned at IUAC to enhance the energy of heavy ion from 15 UD Pelletron. To reduce the heat load at 4.2 K, liquid nitrogen (LN2) cooled intermediate thermal shield is used for all these cryomodules. For three linac cryomodules, concept of forced flow LN2 cooling is used and for superbuncher and rebuncher, thermo-siphon cooling is incorporated. It is noticed that the shield temperature of superbuncher varies from 90 K to 110 K with respect to liquid nitrogen level. The temperature difference can't be explained by using the basic concept of thermo-siphon with the heat load on up flow line. A simple thermo-siphon experimental set up is developed to simulate the thermal shield temperature profile. Mass flow rate of liquid nitrogen is measured with different heat load on up flow line for different liquid levels. It is noticed that small amount of heat load on down flow line have a significant effect on mass flow rate. The present paper will be investigating the data generated from the thermosiphon experimental set up and a theoretical analysis will be presented here to validate the measured temperature profile of the cryomodule shield.

  8. Model-based analysis of nonstationary thermal mode in premises with an insolation passive heating system with a three-layer translucent shield

    International Nuclear Information System (INIS)

    Avezova, N.R.; Avezov, R.R.; Rashidov, Y.K. et al.

    2014-01-01

    The results of the model-based study of nonstationary thermal mode in premises with an insolation passive heating system with a three-layer translucent shield are presented. The article is aimed at determining daily variations in the air temperature of the heated premise on typical heating season days and analyzing the optimization of the thermal capacity of the short-term (daily) thermal battery of the heating system on this basis. (author)

  9. ANALISIS KESELAMATAN TERMOHIDROLIK BULK SHIELDING REAKTOR KARTINI

    Directory of Open Access Journals (Sweden)

    Azizul Khakim

    2015-10-01

    Full Text Available ABSTRAK ANALISIS KESELAMATAN TERMOHIDROLIK BULK SHIELDING REAKTOR KARTINI. Bulk shielding merupakan fasilitas yang terintegrasi dengan reaktor Kartini yang berfungsi sebagai penyimpanan sementara bahan bakar bekas. Fasilitas ini merupakan fasilitas yang termasuk dalam struktur, sistem dan komponen (SSK yang penting bagi keselamatan. Salah satu fungsi keselamatan dari sistem penanganan dan penyimpanan bahan bakar adalah mencegah kecelakaan kekritisan yang tak terkendali dan membatasi naiknya temperatur bahan bakar. Analisis keselamatan paling kurang harus mencakup analisis keselamatan dari sisi neutronik dan termo hidrolik Bulk shielding. Analisis termo hidrolik ditujukan untuk memastikan perpindahan panas dan proses pendinginan bahan bakar bekas berjalan baik dan tidak terjadi akumulasi panas yang mengancam integritas bahan bakar. Code tervalidasi PARET/ANL digunakan untuk analisis pendinginan dengan mode konveksi alam. Hasil perhitungan menunjukkan bahwa mode pendinginan konvekasi alam cukup memadai dalam mendinginkan panas sisa tanpa mengakibatkan kenaikan temperatur bahan bakar yang signifikan. Kata kunci: Bulk shielding, bahan bakar bekas, konveksi alam, PARET.   ABSTRACT THERMAL HYDRAULIC SAFETY ANALYSIS OF BULK SHIELDING KARTINI REACTOR. Bulk shielding is an integrated facility to Kartini reactor which is used for temporary spent fuels storage. The facility is one of the structures, systems and components (SSCs important to safety. Among the safety functions of fuel handling and storage are to prevent any uncontrolable criticality accidents and to limit the fuel temperature increase. Safety analyses should, at least, cover neutronic and thermal hydraulic calculations of the bulk shielding. Thermal hydraulic analyses were intended to ensure that heat removal and the process of the spent fuels cooling takes place adequately and no heat accumulation that challenges the fuel integrity. Validated code, PARET/ANL was used for analysing the

  10. Neutron shielding properties of boron-containing ore and epoxy composites

    International Nuclear Information System (INIS)

    Li Zhifu; Xue Xiangxin

    2011-01-01

    Using the boron-containing iron ore concentrate and boron-rich slag as studying object, the starting materials were got after the specific green ore containing boron dressing in China and blast furnace separation respectively. Monte-Carlo method was used to study the effect of the boron-containing iron ore concentrate and boron-rich slag and their composites with epoxy on the neutron shielding abilities. The reasons that affecting the shielding materials properties was discussed and the suitable proportioning of boron-containing ore to epoxy composites was confirmed; the 14.1 MeV fast neutron removal cross section and the total thermal neutron attenuation coefficient were obtained and compared with that of the common used concrete. The results show that the shielding property of 14.1 MeV fast neutron is mainly concerned with the low-Z elements in the shielding materials, the thermal neutron shielding ability is mainly concerned with boron concentrate in the composite, the attenuation of the accompany γ-ray photon is mainly concerned with the high atom number elements content in the ore and the density of the shielding material. The optimum Janume fractions of composites are in the range of 0.4-0.6 and the fast neutron shielding properties are similar to concrete while the thermal neutron shielding properties are higher than concrete. The composites are expected to be used as biological concrete shields crack injection and filling of the anomalous holes through the concrete shields around the radiation fields or directly to be prepared as shielding materials.(authors)

  11. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    Energy Technology Data Exchange (ETDEWEB)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  12. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    International Nuclear Information System (INIS)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available

  13. Shielded cells transfer automation

    International Nuclear Information System (INIS)

    Fisher, J.J.

    1984-01-01

    Nuclear waste from shielded cells is removed, packaged, and transferred manually in many nuclear facilities. Radiation exposure is absorbed by operators during these operations and limited only through procedural controls. Technological advances in automation using robotics have allowed a production waste removal operation to be automated to reduce radiation exposure. The robotic system bags waste containers out of glove box and transfers them to a shielded container. Operators control the system outside the system work area via television cameras. 9 figures

  14. Radiation Shielding Materials and Containers Incorporating Same

    Energy Technology Data Exchange (ETDEWEB)

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  15. Thermal Operating Modes

    International Nuclear Information System (INIS)

    Bechtel SAIC Company

    2002-01-01

    Higher and lower temperature operating modes (e.g., above and below the boiling point of water) are alternative approaches to managing the heat produced by the radioactive decay of spent nuclear fuel. Current analyses indicate that a repository at the Yucca Mountain site is likely to comply with applicable safety standards regardless of the particular thermal operating mode. Both modes have potential advantages and disadvantages. With a higher temperature operating mode (HTOM), waste packages (WPs) can be placed closer together. This reduces the number of drifts, the required emplacement area, construction costs, and occupational risks to construction workers. In addition, the HTOM would minimize the amount of water that might contact the waste for hundreds of years after closure. On the other hand, higher temperatures introduce uncertainties in the understanding of the long-term performance of the repository because of uncertainties in the thermal effects on WP lifetime and the near-field environment around the drifts. A lower temperature operating mode (LTOM) has the potential to reduce uncertainties in long-term performance of the repository by limiting the effects of temperature on WP lifetime and on the near-field environment around the drifts. Depending on the combination of operating parameters, a LTOM could require construction of additional drifts, a larger emplacement area, increased construction costs, increased occupational risks to construction works, and a longer period of ventilation than a HTOM. The repository design for the potential Yucca Mountain site is flexible and can be constructed and operated in various operating modes to achieve specific technical objectives, accommodate future policy decisions, and use of new information. For example, the flexible design can be operated across a range of temperatures and can be tailored to achieve specific thermal requirements in the future. To accommodate future policy decisions, the repository can be

  16. Electromagnetic interference shielding effectiveness of microcellular polyimide/in situ thermally reduced graphene oxide/carbon nanotubes nanocomposites

    Science.gov (United States)

    Yang, Hongli; Yu, Zhi; Wu, Peng; Zou, Huawei; Liu, Pengbo

    2018-03-01

    A simple and effective method was adopted to fabricate microcellular polyimide (PI)/reduced graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) nanocomposites. Firstly, microcellular poly (amic acid) (PAA)/GO/MWCNTs nanocomposites were prepared through solvent evaporation induced phase separation. In this process, PAA and dibutyl phthalate (DBP) co-dissolved in N,N-dimethylacetamide (DMAc) underwent phase separation with DMAc evaporating, and DBP microdomains were formed in continuous PAA phase. Subsequently, PAA was thermally imidized and simultaneously GO was in situ reduced. After DBP was removed, the microcellular PI/reduced GO (RGO)/MWCNTs nanocomposites were finally obtained. When the initial filler loading was 8 wt%, the electrical conductivity of microcellular PI/RGO, PI/MWCNTs and PI/RGO/MWCNTs nanocomposites were 0.05, 0.02 and 1.87 S·m-1, respectively, and the electromagnetic interference (EMI) shielding efficiency (SE) of microcellular PI/RGO, PI/MWCNTs and PI/RGO/MWCNTs nanocomposites were 13.7-15.1, 13.0-14.3 and 16.6-18.2 dB, respectively. The synergistic effect between RGO and MWCNTs enhanced both the electrical conductivity and EMI shielding performance of the microcellular PI/RGO/MWCNTs nanocomposites. The dominating EMI shielding mechanism for these materials was microwave absorption. While the initial loading of GO and MWCNT was 8 wt%, the microcellular PI/RGO/MWCNTs nanocomposite (500 μm thickness) had extremely high specific EMI SE value of 755-823 dB·cm2·g-1. Its thermal stability was also obviously improved, the 5% weight loss temperature in nitrogen was 548 °C. In addition, it also possessed a high Young's modulus of 789 MPa.

  17. Multilayer radiation shield

    Science.gov (United States)

    Urbahn, John Arthur; Laskaris, Evangelos Trifon

    2009-06-16

    A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.

  18. Gravity Scaling of a Power Reactor Water Shield

    International Nuclear Information System (INIS)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for potential use on initial lunar surface reactor power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxillary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2006). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa n . These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined

  19. 6Li-doped silicate glass for thermal neutron shielding

    International Nuclear Information System (INIS)

    Stone, C.A.; Blackburn, D.H.; Kauffman, D.A.; Cranmer, D.C.; Olmez, I.

    1994-01-01

    Glass formulations are described that contain high concentrations of 6 Li and are suitable for use as thermal neutron shielding. One formulation contained 31 mol% of 6 Li 2 O and 69 mol% of SiO 2 . Studies were performed on a second formulation that contained as much as 37 mol% of 6 Li 2 O and 59 mol% of SiO 2 , with 4 mol% Al 2 O 3 added to prevent crystallization at such high 6 Li 2 O concentrations. These lithium silicate glasses can be formed into a variety of shapes using conventional glass fabrication techniques. Examples include flat plates, disks, hollow cylinders, and other more complex geometries. Both in-beam and in-core experiments have been performed to study the use and durability of Li silicate glasses. In-core experiments show the glass can withstand the intense radiation fields near the core of a reactor. The neutron attenuation of the glasses used in these studies was 90%/mm. In-beam studies show that the glass is effective for reducing the gamma-ray and neutron fields near experiments. ((orig.))

  20. Shielding analysis in the design phase of the new Emergency Operation Facility for Tihange Nuclear Power Plant

    Science.gov (United States)

    Genard, Gilles; Portal, Romain; Bouchat, Virginie; Vanderperre, Serge

    2017-09-01

    In the framework of the design studies for a new Emergency Operation Facility (EOF) for Tihange NPP, radiation protection analyses are needed to comply with effective dose rate criteria. In this aim, the shielding performed by, at the one hand, external walls and roof of the building and, on the other hand, internal walls, has been sized by means of MicroShield calculations. This paper explains how the calculations for external walls, doors, roof, floor and internal walls are made. The assumptions on the source terms and on the source geometry as well as the way the shielding is determined and the results of the sizing are presented.

  1. Shielding analysis in the design phase of the new Emergency Operation Facility for Tihange Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Genard Gilles

    2017-01-01

    Full Text Available In the framework of the design studies for a new Emergency Operation Facility (EOF for Tihange NPP, radiation protection analyses are needed to comply with effective dose rate criteria. In this aim, the shielding performed by, at the one hand, external walls and roof of the building and, on the other hand, internal walls, has been sized by means of MicroShield calculations. This paper explains how the calculations for external walls, doors, roof, floor and internal walls are made. The assumptions on the source terms and on the source geometry as well as the way the shielding is determined and the results of the sizing are presented.

  2. Shielded scanning electron microscope for radioactive samples

    International Nuclear Information System (INIS)

    Crouse, R.S.; Parsley, W.B.

    1977-01-01

    A small commercial SEM had been successfully shielded for examining radioactive materials transferred directly from a remote handling facility. Relatively minor mechanical modifications were required to achieve excellent operation. Two inches of steel provide adequate shielding for most samples encountered. However, samples reading 75 rad/hr γ have been examined by adding extra shielding in the form of tungsten sample holders and external lead shadow shields. Some degradation of secondary electron imaging was seen but was adequately compensated for by changing operating conditions

  3. The shielding calculation for the CN guide shielding assembly in HANARO

    International Nuclear Information System (INIS)

    Kim, H. S.; Lee, B. C.; Lee, K. H.; Kim, H.

    2006-01-01

    The cold neutron research facility in HANARO is under construction. The area including neutron guides and rotary shutter in the reactor hall should be shielded by the guide shielding assembly which is constructed of heavy concrete blocks and structure. The guide shielding assembly is divided into 2 parts, A and B. Part A is about 6.4 meters apart from the reactor biological shield and it is constructed of heavy concrete blocks whose density is above 4.0g/cm 3 . And part B is a fixed heavy concrete structure whose density is above 3.5g/cm 3 . The rotary shutter is also made with heavy concrete whose density is above 4.0g/cm 3 and includes 5 neutron guides inside. It can block the neutron beam by rotating when CNS is not operating. The dose criterion outside the guide shielding assembly is established as 12.5 μSv/hr which is also applied to reactor shielding in HANARO

  4. Thermal Shielding Effects of a Damaged Shock Absorber and an Intact Shock Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, K. Y.; Seo, C. S.; Seo, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    In order to safely transport the radioactive waste arising from the hot test of an ACP(Advanced Spent Fuel Conditioning Process) a shipping package is required. Therefore, KAERI is developing a shipping package to transport the radioactive waste arising from the ACPF during a hot test. The regulatory requirements for a Type B package are specified in the Korea Most Act 2009-37, IAEA Safety Standard Series No. TS-R-1, and US 10 CFR Part. These regulatory guidelines classify the hot cell cask as a Type B package, and state that the Type B package for transporting radioactive materials should be able to withstand a test sequence consisting of a 9 m drop onto an unyielding surface, a 1 m drop onto a puncture bar, and a 30 minute fully engulfing fire. Greiner et al. investigated the thermal protection provided by shock absorbers by using the CAFE computer code. To evaluate the thermal shielding effect of the shock absorber, the thermal test was performed by using a 1/2 scale model with a shock absorber which was damaged by both a 9 m drop test and a 1 m puncture test. For the purpose of comparison, the thermal test was also carried out by using a 1/2 scale model with the intact shock absorber

  5. Comparative evaluation of structural integrity for ITER blanket shield block based on SDC-IC and ASME code

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hee-Jin [ITER Korea, National Fusion Research Institute, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon (Korea, Republic of); Ha, Min-Su, E-mail: msha12@nfri.re.kr [ITER Korea, National Fusion Research Institute, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon (Korea, Republic of); Kim, Sa-Woong; Jung, Hun-Chea [ITER Korea, National Fusion Research Institute, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon (Korea, Republic of); Kim, Duck-Hoi [ITER Organization, Route de Vinon sur Verdon - CS 90046, 13067 Sant Paul Lez Durance (France)

    2016-11-01

    Highlights: • The procedure of structural integrity and fatigue assessment was described. • Case studies were performed according to both SDC-IC and ASME Sec. • III codes The conservatism of the ASME code was demonstrated. • The study only covers the specifically comparable case about fatigue usage factor. - Abstract: The ITER blanket Shield Block is a bulk structure to absorb radiation and to provide thermal shielding to vacuum vessel and external vessel components, therefore the most significant load for Shield Block is the thermal load. In the previous study, the thermo-mechanical analysis has been performed under the inductive operation as representative loading condition. And the fatigue evaluations were conducted to assure structural integrity for Shield Block according to Structural Design Criteria for In-vessel Components (SDC-IC) which provided by ITER Organization (IO) based on the code of RCC-MR. Generally, ASME code (especially, B&PV Sec. III) is widely applied for design of nuclear components, and is usually well known as more conservative than other specific codes. For the view point of the fatigue assessment, ASME code is very conservative compared with SDC-IC in terms of the reflected K{sub e} factor, design fatigue curve and other factors. Therefore, an accurate fatigue assessment comparison is needed to measure of conservatism. The purpose of this study is to provide the fatigue usage comparison resulting from the specified operating conditions shall be evaluated for Shield Block based on both SDC-IC and ASME code, and to discuss the conservatism of the results.

  6. Comparative evaluation of structural integrity for ITER blanket shield block based on SDC-IC and ASME code

    International Nuclear Information System (INIS)

    Shim, Hee-Jin; Ha, Min-Su; Kim, Sa-Woong; Jung, Hun-Chea; Kim, Duck-Hoi

    2016-01-01

    Highlights: • The procedure of structural integrity and fatigue assessment was described. • Case studies were performed according to both SDC-IC and ASME Sec. • III codes The conservatism of the ASME code was demonstrated. • The study only covers the specifically comparable case about fatigue usage factor. - Abstract: The ITER blanket Shield Block is a bulk structure to absorb radiation and to provide thermal shielding to vacuum vessel and external vessel components, therefore the most significant load for Shield Block is the thermal load. In the previous study, the thermo-mechanical analysis has been performed under the inductive operation as representative loading condition. And the fatigue evaluations were conducted to assure structural integrity for Shield Block according to Structural Design Criteria for In-vessel Components (SDC-IC) which provided by ITER Organization (IO) based on the code of RCC-MR. Generally, ASME code (especially, B&PV Sec. III) is widely applied for design of nuclear components, and is usually well known as more conservative than other specific codes. For the view point of the fatigue assessment, ASME code is very conservative compared with SDC-IC in terms of the reflected K_e factor, design fatigue curve and other factors. Therefore, an accurate fatigue assessment comparison is needed to measure of conservatism. The purpose of this study is to provide the fatigue usage comparison resulting from the specified operating conditions shall be evaluated for Shield Block based on both SDC-IC and ASME code, and to discuss the conservatism of the results.

  7. Eddy current and mechanical support of the wendelstein 7-X thermal shield

    International Nuclear Information System (INIS)

    Shim, S. Y.; Nagel, M.; Schauer, F.

    2004-01-01

    The machine which equipped huge magnet such as fusion reactor must be in need of special care on the emergency process. Rapid drop down magnetic field generate noticeable induced current, eddy current, and it causes strong electromagnetic forces on mechanical structure. The Wendelstein 7-X consists with 5 pentagonal shaped modules, plasma vessel, and each module can be divided into two symmetric half modules. Each half-module is going to be covered by 20 pieces of plasma vessel thermal shield (PVTS). The subject of this calculation is to find appropriate support positions for PVTS which can withstand self-weight of PVTS and electromagnetic force during the emergency case within our design criterion. We report the calculation procedure and results with half-module of PVTS

  8. Cost estimates for Operation Desert Shield/Desert Storm: a budgetary analysis

    OpenAIRE

    Johnson, J. Andrew.

    1991-01-01

    Operation Desert Shield/Desert Storm (DS/DS) presented unique challenges for estimating the cost of that conflict. This analysis reviews the cost estimates and methodologies developed for that purpose by DoD, CBO and GAO. It considers the budget climate and the role of foreign cash and in-kind contributions. Finally, it reviews the budgeting innovations used to provide and monitor DS/DS defense spending. At the outset of the crisis, costs were estimated to determine the defense funding requir...

  9. Research on shielding neutron efficiency of some boron-bearing fabric and transparent resin materials

    International Nuclear Information System (INIS)

    Chen Changmao; Liu Jinhua; Su Jingling; Wang Zheng

    1995-01-01

    The shielding neutron efficiency of boron-bearing materials developed recently is introduced. The thermal neutron shield ratios for two kinds of non-woven cloth with thickness of 58 mg/cm 2 and 153 mg/cm 2 are 51% and 79% respectively. Their mass attenuation coefficient for 0.186, 24.4 and 144 keV neutron are 1.56, 1.29 and 0.9 cm 2 /g respectively. The thermal neutron shield ratio is 85% for the natural boron-bearing transparent resin plate with the thickness of 0.59 g/cm 2 , and 97% for enriched boron or gadolinium bearing resin plate. The shield ratios of all three materials for 24.4 keV neutrons are 38%. The transparence of natural light for enriched boron-bearing resin plates shows no considerable change after they were exposed to thermal neutrons up to 6 Sv. After they were exposed up to 20 Sv, the transparence decreases to 50% but thermal neutron shield ratio does not change. The gadolinium-bearing plate has a very strong thermal neutron-capture gamma radiation and its dose-equivalent is greater than that of incident thermal neutrons

  10. Core test reactor shield cooling system analysis

    International Nuclear Information System (INIS)

    Larson, E.M.; Elliott, R.D.

    1971-01-01

    System requirements for cooling the shield within the vacuum vessel for the core test reactor are analyzed. The total heat to be removed by the coolant system is less than 22,700 Btu/hr, with an additional 4600 Btu/hr to be removed by the 2-inch thick steel plate below the shield. The maximum temperature of the concrete in the shield can be kept below 200 0 F if the shield plug walls are kept below 160 0 F. The walls of the two ''donut'' shaped shield segments, which are cooled by the water from the shield and vessel cooling system, should operate below 95 0 F. The walls of the center plug, which are cooled with nitrogen, should operate below 100 0 F. (U.S.)

  11. Evaluation of Shielding Performance for Newly Developed Composite Materials

    Science.gov (United States)

    Evans, Beren Richard

    This work details an investigation into the contributing factors behind the success of newly developed composite neutron shield materials. Monte Carlo simulation methods were utilized to assess the neutron shielding capabilities and secondary radiation production characteristics of aluminum boron carbide, tungsten boron carbide, bismuth borosilicate glass, and Metathene within various neutron energy spectra. Shielding performance and secondary radiation data suggested that tungsten boron carbide was the most effective composite material. An analysis of the macroscopic cross-section contributions from constituent materials and interaction mechanisms was then performed in an attempt to determine the reasons for tungsten boron carbide's success over the other investigated materials. This analysis determined that there was a positive correlation between a non-elastic interaction contribution towards a material's total cross-section and shielding performance within the thermal and epi-thermal energy regimes. This finding was assumed to be a result of the boron-10 absorption reaction. The analysis also determined that within the faster energy regions, materials featuring higher non-elastic interaction contributions were comparable to those exhibiting primarily elastic scattering via low Z elements. This allowed for the conclusion that composite shield success within higher energy neutron spectra does not necessitate the use elastic scattering via low Z elements. These findings suggest that the inclusion of materials featuring high thermal absorption properties is more critical to composite neutron shield performance than the presence of constituent materials more inclined to maximize elastic scattering energy loss.

  12. New applications and developments in the neutron shielding

    Directory of Open Access Journals (Sweden)

    Uğur Fatma Aysun

    2017-01-01

    Full Text Available Shielding neutrons involve three steps that are slowing neutrons, absorption of neutrons, and impregnation of gamma rays. Neutrons slow down with thermal energy by hydrogen, water, paraffin, plastic. Hydrogenated materials are also very effective for the absorption of neutrons. Gamma rays are produced by neutron (radiation retention on the neutron shield, inelastic scattering, and degradation of activation products. If a source emits gamma rays at various energies, high-energy gamma rays sometimes specify shielding requirements. Multipurpose Materials for Neutron Shields; Concrete, especially with barium mixed in, can slow and absorb the neutrons, and shield the gamma rays. Plastic with boron is also a good multipurpose shielding material. In this study; new applications and developments in the area of neutron shielding will be discussed in terms of different materials.

  13. New applications and developments in the neutron shielding

    Science.gov (United States)

    Uğur, Fatma Aysun

    2017-09-01

    Shielding neutrons involve three steps that are slowing neutrons, absorption of neutrons, and impregnation of gamma rays. Neutrons slow down with thermal energy by hydrogen, water, paraffin, plastic. Hydrogenated materials are also very effective for the absorption of neutrons. Gamma rays are produced by neutron (radiation) retention on the neutron shield, inelastic scattering, and degradation of activation products. If a source emits gamma rays at various energies, high-energy gamma rays sometimes specify shielding requirements. Multipurpose Materials for Neutron Shields; Concrete, especially with barium mixed in, can slow and absorb the neutrons, and shield the gamma rays. Plastic with boron is also a good multipurpose shielding material. In this study; new applications and developments in the area of neutron shielding will be discussed in terms of different materials.

  14. Effect of adjustable molecular chain structure and pure silica zeolite nanoparticles on thermal, mechanical, dielectric, UV-shielding and hydrophobic properties of fluorinated copolyimide composites

    Science.gov (United States)

    Li, Qing; Liao, Guangfu; Zhang, Shulai; Pang, Long; Tong, Hao; Zhao, Wenzhe; Xu, Zushun

    2018-01-01

    A series of polyimide (PI) films, polyimide/pure silica zeolite nanoparticles (PSZN) blend films and polyimide/amine-functionalized pure silica zeolite nanoparticles (APSZN) composite films were successfully prepared by random copolycondensation. Thereinto, PSZN were synthesized by hydrothermal method. The polyimides were derived from 4,4‧-diaminodiphenyl ether (ODA), and three adjustable molar ratios (3:1, 1:1, 1:3) of 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl] propane dianhydride (BPADA) and 4,4‧-(hexafluoroisopropylidene) diphthalic anhydride (6FDA). The effects of PSZN, APSZN and different chain structure on PI films were specifically evaluated in terms of morphology, thermal, mechanical, dielectric and UV-shielding properties, etc. Comparison was given among pure PI flims, PI/PSZN blend films and PI/APSZN composite flims. The results showed that the thermal and mechanical properties of PI films were drastically impaired after adding PSZN. On the contrary, the strength, toughness and thermal stability were improved after adding APSZN. Moreover, the dielectric constants of the PI/APSZN composite flims were lowered but UV-shielding properties were enhanced. Interestingly, we found that the greatest effects were obtained through introducing APSZN in PI derived by the 1:1 ratio of BPADA:6FDA. The corresponding PI/APSZN composite flim exhibited the most reinforced and toughened properties, the largest decrement of dielectric constant and the best UV-shielding efficiency, which made the composite flim be used as ultraviolet shielding material in outer space filled with high temperature and intensive ultraviolet light. Meanwhile, this work also provided a facile way to synthesize composite materials with adjustable performance.

  15. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2005-01-01

    Full text: Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions. (authors)

  16. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2006-01-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions

  17. Fabrication of a full-size mock-up for inboard 10o section of ITER vacuum vessel thermal shield

    International Nuclear Information System (INIS)

    Chung, W.; Nam, K.; Noh, C.H.; Kang, D.K.; Kang, S.M.; Oh, Y.G.; Choi, S.W.; Kang, S.H.; Utin, Y.; Ioki, K.; Her, N.; Yu, J.

    2011-01-01

    A full-scale mock-up of VVTS inboard section was made in order to validate its manufacturing processes before manufacturing the vacuum vessel thermal shield (VVTS) for ITER tokamak. VVTS inboard 10 o section consists of 20 mm shells on which cooling tubes are welded and flange joints that connect adjacent thermal shield sectors. The whole VVTS inboard is divided into two by bisectional flange joint located at the center. All the manufacturing processes except silver coating were tested and verified in the fabrication of mock-up. For the forming and the welding, pre-qualification tests were conducted to find proper process conditions. Shell thickness change was measured after bending, forming and buffing processes. Shell distortion was adjusted after the welding. Welding was validated by non-destructive examination. Bisectional flange joint was successfully assembled by inserting pins and tightening with bolt/nut. Bolt hole margin of 2 mm for sector flange was revealed to be sufficient by successful sector assembly of upper and lower parts of mock-up. Handling jig was found to be essential because the inboard section was flexible. Dimensional inspection of the fabricated mock-up was performed with a 3D laser scanner.

  18. Shielding measurements and augmentation for high power operations of FBTR

    International Nuclear Information System (INIS)

    Jose, M.T.; Baskar, S.; Viswanathan, S.; Balasundar, S.; Subramanian, V.; Ravi, T.; Sundaram, V.M.; Raghunath, V.M.; Varadarajan, S.; Jena, A.K.

    1996-01-01

    Fast breeder test reactor (FBTR) at Kalpakkam is a 40 MWt loop type fast reactor with sodium coolant. Since criticality in 1985, radiation surveys were carried out at all accessible locations at different power levels to find out the hot spots and evaluate the shielding adequacy. This paper gives the details of findings of these measurements, consequent changes in shielding, and the present status of dose profile after the augmentation of shielding. (author). 1 ref., 1 fig., 1 tab

  19. F2-3 using the shield for thermal energy storage in PULSAR

    International Nuclear Information System (INIS)

    Sager, G.T.; Sze, D.K.; Wong, C.P.C.

    1994-01-01

    The PULSAR design study is evaluating the pulsed, inductively driven tokamak power plant to assess whether economies can be attained which-are more favorable than those of the steady-state, non-inductively driven tokamak. Considerations of market acceptance and component fatigue lead to the requirement of thermal energy storage (TES) to maintain steady-state power during the cyclic interruptions of fusion power production (open-quotes dwell phaseclose quotes). A major focus of the Study has been to identify and design technically viable TES systems for helium-cooled and liquid lithium self-cooled plants which are economically attractive, safe and environmentally benign. Several basic constraints impact the selection of the TES system. The system must be capable of discharging 2.5 GW during a dwell phase of approximately two minutes (determined by systems code analysis), thus have a capacity of at least 300 GJ. Coolant must be discharged from the TES at the static, burn phase temperature to minimize thermal stress in the steam generator. Several TES options were evaluated: Storage of heat transport working fluid, phase change media and sensible heat storage. Sensible heat storage in the outer shield was selected for PULSAR

  20. Ammunition Peculiar Equipment (APE) 1995, NIR Propellant Analyzer, to MIL-STD-398, Military Standard Shields, Operational for Ammunition Operations, Criteria for Design of and Tests for Acceptance

    National Research Council Canada - National Science Library

    2003-01-01

    ... (SJMAC-DEM) to test the Ammunition Peculiar Equipment (APE) 1995 NIR Propellant Analyzer, to MIL-STD-398, "Military Standard Shields, Operational for Ammunition Operations, Criteria for Design of and Tests for Acceptance...

  1. Final report of Shield System Trade Study. Volume II. WANL support activities for shielding trade study

    International Nuclear Information System (INIS)

    1970-07-01

    Based on the trades made within this study BATH (mixture of B 4 C, aluminum and TiH 1 . 8 ) was selected as the internal shield material. Borated titanium hydride can also meet the criteria with a competitive weight but was rejected because of schedular constraints. A baseline internal shield design was accomplished. This design resulted in a single internal shield weighing about 3300 lb for both manned and unmanned missions. WANL checks on ANSC calculations are generally in agreement, but with some difference in the prediction of the effectiveness of the Boral liner. All of the alternate NSS concepts in the system weight reduction program were rejected. While some did save shield weight, they complicated the NSS design to an unacceptable degree. Studies were made of the feasibility of manual maintenance of NSS components outside of the pressure vessel. The requirements of the NSS components located forward of the internal shield were considered from a thermal and radiation damage standpoint. (auth)

  2. Graphite-ceramic rf Faraday-thermal shield and plasma limiter

    Science.gov (United States)

    Hwang, D.L.Q.; Hosea, J.C.

    1983-05-05

    The present invention is directed to a brazing procedure for joining a ceramic or glass material (e.g., Al/sub 2/O/sub 3/ or Macor) to graphite. In particular, the present invention is directed to a novel brazing procedure for the production of a brazed ceramic graphite product useful as a Faraday shield. The brazed ceramic graphite Faraday shield of the present invention may be used in Magnetic Fusion Devices (e.g., Princeton Large Torus Tokamak) or other high temperature resistant apparatus.

  3. Shielding analysis in the design phase of the new Emergency Operation Facility for Tihange Nuclear Power Plant

    OpenAIRE

    Genard Gilles; Portal Romain; Bouchat Virginie; Vanderperre Serge

    2017-01-01

    In the framework of the design studies for a new Emergency Operation Facility (EOF) for Tihange NPP, radiation protection analyses are needed to comply with effective dose rate criteria. In this aim, the shielding performed by, at the one hand, external walls and roof of the building and, on the other hand, internal walls, has been sized by means of MicroShield calculations. This paper explains how the calculations for external walls, doors, roof, floor and internal walls are made. The assump...

  4. Ring thermal shield piping modification at Pickering Nuclear Generating Station 'A' Unit 1

    International Nuclear Information System (INIS)

    Brown, R.; Cobanoglu, M.M.

    1995-01-01

    Each of the four Pickering Nuclear Generating Station A (PNGSA) CANDU units was constructed with its reactor and dump tank surrounded by a concrete Calandria Vault (CV). The Ring Thermal Shield (RTS) system at PNGSA units is a water cooled structure with internal cooling channels with the purpose of attenuating excessive heat flux from the calandria shell to the end shield rings and adjoining concrete (Figure 1). In newer CANDU units the reactor calandria vessel is surrounded by a large water filled shield tank which eliminates the requirement for the RTS system. The RTS structures are situated in the space between the calandria and the vault walls. Each RTS is assembled from eight flat sided carbon steel segments, tilted towards the calandria and supported from the end shield rings. Cooling water to the RTS is supplied by carbon steel cooling pipes with a portion of the pipe run embedded in the vault walls. Flow through each RTS is divided into two independent circuits, having an inlet and an outlet cooling line. There are four locations of RTS inlet and outlet cooling lines. The inlet lines are located at the bottom and the outlet lines at the top of the RTS. The 'L' shaped section of RTS inlet and outlet cooling lines, from the RTS waterbox to the start of embedded portion at the concrete wall, had become defective due to corrosion induced by excessive Moisture levels in the calandria vaults. An on-line leak sealing capability was developed and placed in service in all four PNGSA units. However, a leak found during the 1994 Unit 1 outage was too large,to seal with the current capability, forcing Ontario Hydro (OH) to develop a method to replace the corroded pipes. The repair project was subject to some lofty performance targets. All tools had to be able to withstand dose rates of up to 3000 Rem/hour. These tools, along with procedures and personnel had to successfully repair the RTS system within 6 months otherwise a costly outage extension would result. This

  5. Slow neutrons and secondary gamma ray distributions in concrete shields followed by reflecting layers

    International Nuclear Information System (INIS)

    Makarious, A.S.; Swilem, Y.I.; Awwad, Z.; Bayomy, T.

    1993-01-01

    Slow neutrons and secondary gamma ray distributions in concrete shields with and without a reflecting layer behind layer behind the concrete shield have been investigated first in case of using a bare reactor beam and then on using a B-4 C filtered beam. The total and capture secondary gamma ray coefficient (B gamma and B gamma C ), the ratio of the reflected thermal neutron (gamma) the ratio of the secondary gamma rays caused by reflected neutrons to those caused transmitted neutrons (Th I gamma/F I gamma) and the effect of inserting a blocking layer (a B-4 C layer) between the concrete shield and the reflector on the suppression of the produced secondary gamma rays have been investigated. It was found that the presence of the reflector layer behind the concrete shield reflects some thermal neutrons back to the concrete shields and so it increases the number of thermal neutrons at the interface between the concrete shield and the reflector. Also the capture secondary gamma rays was increased at the interface between the two medii due to the capture of the reflected thermal neutrons in the concrete shields. It was shown that B-gamma is higher than and that B g amma B gamma C and I gamma T h/ I gamma i f for the different concrete types is higher in case of using the graphite reflector than that in using either water or paraffin reflectors. Putting a blocking layer (B 4 C layer) between the concrete shield and the reflector decreases the produced secondary gamma rays due to the absorption of the reflected thermal neutrons. 17 figs

  6. Radiation shield for nuclear reactors

    International Nuclear Information System (INIS)

    Weissenfluh, J.A.

    1978-01-01

    A shield for use with nuclear reactor systems to attenuate radiation resulting from reactor operation is described. The shield comprises a container preferably of a thin, flexible or elastic material, which may be in the form of a bag, a mattress, a toroidal segment or toroid or the like filled with radiation attenuating liuid. Means are provided in the container for filling and draining the container in place. Due to its flexibility, the shield readily conforms to irregularities in surfaces with which it may be in contact in a shielding position

  7. Study on box shield tunneling method in trial field operation; Box shield koho jissho seko ni kansuru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tada, K.; Taniguchi, T. [Toda Corp., Tokyo, (Japan); Furukawa, K.; Nakagawa, K. [Yamaguchi University, Yamaguchi (Japan). Faculty of Engineering

    1997-03-20

    This paper describes a rectangular section shield tunneling method as a part of developments of non-circular section shield tunneling methods. The non-circular shield is drawing attention because of need of excavation in small land available in urban areas and between congested existing structures, as well as reduction in the excavated soil amount. A full-scale machine was fabricated to perform a natural ground excavation experiment. The cutter units comprising two each of drum cutters and ring cutters were arranged above and below, by which two tunnels of 40 m long with a cross section of 2.85 m {times} 2.85 m were excavated. The natural ground was supported safely by holding mud water pressures at cutting points constant, thus stability of the cutting points was ensured. Back-filling has made complete filling of tail void (clearance between a segment and the ground) possible, resulting in suppression in conditional change of the surrounding ground. Attitude control has been performed properly as a result of correct selection of shield jacks and use of deflection jacks. Broken-type over-cutters were used to have constructed tunnels with curve radius of 80 and 100 m with high accuracy. Thrust and propulsion speed of the shield do not differ from those of circular shields. Possibilities of this construction method were verified. 8 refs., 26 figs., 2 tabs.

  8. Proceedings of the 10. Meeting on Reactor Physics and Thermal Hydraulics

    International Nuclear Information System (INIS)

    Santos Bastos, W. dos

    1995-01-01

    These proceedings presents all the Meeting papers emphasizing specific aspects on reactor physics method, criticality, fuel management, nuclear data, safety analysis, simulation and shielding, neutronics, thermal hydraulics, reactor operation and computational methods

  9. COMPUTATIONAL FLUID DYNAMICS INVESTIGATION ON THE USE OF HEAT SHIELDS FOR THERMAL MANAGEMENT IN A CAR UNDERHOOD

    Directory of Open Access Journals (Sweden)

    S.Y. Lam

    2012-12-01

    Full Text Available Temperature variations inside a car underhood are largely controlled by the heat originating from the engine block and the exhaust manifold. Excessive temperatures in the underhood can lead to the faster deterioration of engine components and may affect the thermal comfort level inside the passenger cabin. This paper presents computational fluid dynamics investigations to assess the performance of a heat shield in lowering the peak temperature of the engine components and firewall in the underhood region of a typical passenger car. The simulation used the finite volume method with the standard k-ε turbulence model and an isothermal model for the heat transfer calculations. The results show that the heat shield managed to reduce the peak temperature of the engine components and firewall by insulating the intense heat from the engine block and exhaust and regulating the airflow inside the underhood region.

  10. Calculation of self-shielding coefficients, flux depression and cadmium factor for thermal neutron flux measurement of the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Marques, Andre Luis Ferreira; Ting, Daniel Kao Sun; Mendonca, Arlindo Gilson

    1996-01-01

    A calculation methodology of Flux Depression, Self-Shielding and Cadmium Factors is presented, using the ANISN code, for experiments conducted at the IPEN/MB-01 Research Reactor. The correction factors were determined considering thermal neutron flux and 0.125 e 0.250 mm diameter of 197 Au wires. (author)

  11. 30 CFR 56.14213 - Ventilation and shielding for welding.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation and shielding for welding. 56.14213... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to...

  12. Improving the shielding effectiveness of a board-level shield by bonding it with the waveguide-below-cutoff principle

    OpenAIRE

    Degraeve, Andy; Pissoort, Davy; Armstrong, Keith

    2015-01-01

    This paper discusses the shielding performance or shielding effectiveness of a board-level shield in function of its bonding method. Improved shielding performance at board-level in order to harden integrated circuits against unintentional and intentional electromagnetic interference, and this under harsh environmental conditions, is getting more and more important to achieve the desired levels of functional performance and operational reliability despite an ever more aggressive electromagnet...

  13. Risk of Peripheral Nerve Disease in Military Working Dogs Deployed in Operations Desert Shield/Storm

    Science.gov (United States)

    2003-01-01

    two cohorts where not discussed except for deaths caused by hostile action, gastric dilation volvulus , heat stroke, and death due to other reasons......4. TITLE AND SUBTITLE Risk of Peripheral Nerve Disease in Military Working Dogs Deployed in Operations Desert Shield/Storm 5a. CONTRACT NUMBER 5b

  14. SNF shipping cask shielding analysis

    International Nuclear Information System (INIS)

    Johnson, J.O.; Pace, J.V. III.

    1996-01-01

    The Waste Management and Remedial Action Division has planned a modification sequence for storage facility 7827 in the Solid Waste Storage Area (SWSA). The modification cycle is: (1) modify an empty caisson, (2) transfer the spent nuclear fuel (SNF) of an occupied caisson to a hot cell in building 3525 for inspection and possible repackaging, and (3) return the package to the modified caisson in the SWSA. Although the SNF to be moved is in the solid form, it has different levels of activity. Thus, the following 5 shipping casks will be available for the task: the Loop Transport Carrier, the In- Pile Loop LITR HB-2 Carrier, the 6.5-inch HRLEL Carrier, the HFIR Hot Scrap Carrier, and the 10-inch ORR Experiment Removal Shield Cask. This report describes the shielding tasks for the 5 casks: determination of shielding characteristics, any streaming avenues, estimation of thermal limits, and shielding calculational uncertainty for use in the transportation plan

  15. First Wall, Blanket, Shield Engineering Technology Program

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1982-01-01

    The First Wall/Blanket/Shield Engineering Technology Program sponsored by the Office of Fusion Energy of DOE has the overall objective of providing engineering data that will define performance parameters for nuclear systems in advanced fusion reactors. The program comprises testing and the development of computational tools in four areas: (1) thermomechanical and thermal-hydraulic performance of first-wall component facsimiles with emphasis on surface heat loads; (2) thermomechanical and thermal-hydraulic performance of blanket and shield component facsimiles with emphasis on bulk heating; (3) electromagnetic effects in first wall, blanket, and shield component facsimiles with emphasis on transient field penetration and eddy-current effects; (4) assembly, maintenance and repair with emphasis on remote-handling techniques. This paper will focus on elements 2 and 4 above and, in keeping with the conference participation from both fusion and fission programs, will emphasize potential interfaces between fusion technology and experience in the fission industry

  16. Shielding modification design of the N.S. Mutsu

    International Nuclear Information System (INIS)

    Yamaji, A.; Miyakoshi, J.; Kageyama, T.; Futamura, Y.

    1983-01-01

    Shielding modification design of the N.S. Mutsu was performed for reducing the radiation doses outside the primary and the secondary shields by providing shields for neutrons streaming through the air gap between the pressure vessel and the primary shield. This was accomplished by replacing parts of the shields and adding new shields in the upper and lower sections of both primary and secondary shields, and also replacing the thermal insulator in the gap. The shielding design calculations were made using one- and two-dimensional discrete ordinates codes and also a point kernel code. Special attention was paid to the calculations of, (1) the neutrons streaming through the gap between the pressure vessel and the primary shield, (2) the radiations transmitted through the radial shield of the core in the primary shield, (3) the radiations transmitted through the upper and lower sections of the secondary shield, and (4) the dose rate equivalent in the accommodation area. Their calculational accuracies were estimated by analyzing various experiments. To support the modification, a variety of experiments and tests were carried out, which were material tests, cooling test of the primary shield, mechanical strength test of the double bottom, trial fabrication tests of new shields, performance degradation test of heavy concrete and duct streaming experiment in the secondary shield. (author)

  17. Photon spectrum behind biological shielding of the LVR-15 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Klupak, V.; Viererbl, L.; Lahodova, Z.; Marek, M.; Vins, M. [Research Centre Rez Ltd., Husinec-Rez 130 (Czech Republic)

    2011-07-01

    The LVR-15 reactor is a light water research reactor situated at the Research Centre Rez, near Prague. It operates as a multipurpose facility with a maximum thermal power of 10 MW. The reactor core usually contains from 28 to 32 fuel assemblies with a total mass of {sup 235}U of about 5 kg. Emitted radiation from the fuel caused by fission is shielded by moderating water, a steel reactor vessel, and heavy concrete. This paper deals with measurement and analysis of the gamma spectrum near the outer surface of the concrete wall, behind biological shielding, mainly in the 3- to 10-MeV energy range. A portable HPGe detector with a portable multichannel analyzer was used to measure gamma spectra. The origin of energy lines in gamma detector spectra was identified. (authors)

  18. Cross-section fluctuations and self-shielding effects in the unresolved resonance region - International Evaluation Co-operation volume 15

    International Nuclear Information System (INIS)

    Froehner, F.H.; Larson, Duane C.; Tagesen, Siegfried; Petrizzi, Luigi; Hasegawa, Akira; Nakagawa, Tsuneo; Hogenbirk, Alfred; Weigmann, H.

    1995-01-01

    A Working Party on International Evaluation Co-operation was established under the sponsorship of the OECD/NEA Nuclear Science Committee (NSC) to promote the exchange of information on nuclear data evaluations, validation, and related topics. Its aim is also to provide a framework for co-operative activities between members of the major nuclear data evaluation projects. This includes the possible exchange of scientists in order to encourage co-operation. Requirements for experimental data resulting from this activity are compiled. The Working Party determines common criteria for evaluated nuclear data files with a view to assessing and improving the quality and completeness of evaluated data. The Parties to the project are: ENDF (United States), JEFF/EFF (NEA Data Bank Member countries), and JENDL (Japan). Co-operation with evaluation projects of non-OECD countries are organised through the Nuclear Data Section of the International Atomic Energy Agency (IAEA). NEA/NSC Subgroup 15 has had the task to assess self-shielding effects in the unresolved resonance range of structural materials, in particular their importance at various energies, and possible ways to deal with them in shielding and activation work. The principal results achieved are summarised briefly, in particular: - New data base consisting of high-resolution transmission data measured at Oak Ridge and Geel; - Improved theoretical understanding of cross-section fluctuations, including their prediction, that has been derived from the Hauser-Feshbach theory; - Benchmark results on the importance of self-shielding in iron at various energies; - Consequences for information storage in evaluated nuclear data files; - Practical utilisation of self-shielding information from evaluated files. Benchmark results as well as the Hauser-Feshbach theory show that self-shielding effects are important up to a 4-or 5-MeV neutron energy. Fluctuation factors extracted from high-resolution total cross-section data can be

  19. Self shielding in cylindrical fissile sources in the APNea system

    International Nuclear Information System (INIS)

    Hensley, D.

    1997-01-01

    In order for a source of fissile material to be useful as a calibration instrument, it is necessary to know not only how much fissile material is in the source but also what the effective fissile content is. Because uranium and plutonium absorb thermal neutrons so Efficiently, material in the center of a sample is shielded from the external thermal flux by the surface layers of the material. Differential dieaway measurements in the APNea System of five different sets of cylindrical fissile sources show the various self shielding effects that are routinely encountered. A method for calculating the self shielding effect is presented and its predictions are compared with the experimental results

  20. Alternative methodology for irradiation reactor experimental shielding calculation

    International Nuclear Information System (INIS)

    Vellozo, Sergio de Oliveira; Vital, Helio de Carvalho

    1996-01-01

    Due to a change in the project of the Experimental Irradiation Reactor, its shielding design had to be recalculated according to an alternative simplified analytical approach, since the standard transport calculations were temporarily unavailable. In the calculation of the new width for the shielding made up of steel and high-density concrete layers, the following radiation components were considered: fast neutrons and primary gammas (produced by fission and beta decay), from the core; and secondary gammas, produced by thermal neutron capture in the shielding. (author)

  1. Enhancement of thermal neutron self-shielding in materials surrounded by reflectors

    International Nuclear Information System (INIS)

    Cornelia Chilian; Gregory Kennedy

    2012-01-01

    Materials containing from 41 to 1124 mg chlorine and surrounded by polyethylene containers of various thicknesses, from 0.01 to 5.6 mm, were irradiated in a research reactor neutron spectrum and the 38 Cl activity produced was measured as a function of polyethylene reflector thickness. For the material containing the higher amount of chlorine, the 38 Cl specific activity decreased with increasing reflector thickness, indicating increased neutron self-shielding. It was found that the amount of neutron self-shielding increased by as much as 52% with increasing reflector thickness. This is explained by neutrons which have exited the material subsequently reflecting back into it and thus increasing the total mean path length in the material. All physical and empirical models currently used to predict neutron self-shielding have ignored this effect and need to be modified. A method is given for measuring the adjustable parameter of a self-shielding model for a particular sample size and combination of neutron reflectors. (author)

  2. Optimization of thermal design for nitrogen shield of JET cryopump

    International Nuclear Information System (INIS)

    Baxi, C.B.; Obert, W.

    1991-11-01

    The reference design of JET cryopump nitrogen shield consists of an outer section made of copper chevrons fastened to two cooling tubes and an inner stainless steel section and backing plate with two cooling tubes. These tubes are fed in a parallel flow arrangement. The inlet flow is divided into two parallel paths so that both tubes on either section are always at the same temperature. This arrangement was selected due to concern about conduction between warm and cold parts of the shield during cooldown transients. If the heat loads are unequal, such a parallel flow arrangement can result in flow starvation in the path with higher heat load. This will cause large temperature differences and, ultimately, structural failure. Hence, an analysis was undertaken to investigate the conduction effects in the shield for other flow arrangements. 4 refs., 8 figs

  3. Development of silicone rubber-type neutron shielding material

    International Nuclear Information System (INIS)

    Do, Jae Bum; Cho, Soo Hang; Kim, Ik Soo; Oh, Seung Chul; Hong, Soon Seok; Noh, Sung Ki; Jeong, Duk Yeon.

    1997-06-01

    Because the exposure to radiation in the nuclear facilities can be fatal to human, it is important to reduce the radiation dose level to a tolerable level. The purpose of this study is to develop highly effective neutron shielding materials for the shipping and storage cask of radioactive materials or in the nuclear/radiation facilities. On this study, we developed silicone rubber based neutron shielding materials and their various material properties, including neutron shielding ability, fire resistance, combustion characteristics, radiation resistance, thermal and mechanical properties were evaluated experimentally. (author). 16 tabs., 17 figs., 25 refs

  4. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L. [Design and Accelerator Operations Consulting, 568 Wintergreen Ct Ridge, NY 11961 (United States); Ghosh, V.J.; Breitfeller, M. [NSLS-II, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-08-11

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  5. Material characterisation and preliminary mechanical design for the HL-LHC shielded beam screens operating at cryogenic temperatures

    CERN Document Server

    Garion, C; Koettig, T; Machiocha, W; Morrone, M

    2015-01-01

    The High Luminosity LHC project (HL-LHC) aims at increasing the luminosity (rate of collisions) in the Large Hadron Collider (LHC) experiments by a factor of 10 beyond the original design value (from 300 to 3000 fb-1). It relies on new superconducting magnets, installed close to the interaction points, equipped with new beam screen. This component has to ensure the vacuum performance together with shielding the cold mass from physics debris and screening the cold bore cryogenic system from beam induced heating. The beam screen operates in the range 40-60 K whereas the magnet cold bore temperature is 1.9 K. A tungsten-based material is used to absorb the energy of particles. In this paper, measurements of the mechanical and physical properties of such tungsten material are shown at room and cryogenic temperature. In addition, the design and the thermal mechanical behaviour of the beam screen assembly are presented also. They include the heat transfer from the tungsten absorbers to the cooling pipes and the sup...

  6. Shielding requirements for particle bed propulsion systems

    Science.gov (United States)

    Gruneisen, S. J.

    1991-06-01

    Nuclear Thermal Propulsion systems present unique challenges in reliability and safety. Due to the radiation incident upon all components of the propulsion system, shielding must be used to keep nuclear heating in the materials within limits; in addition, electronic control systems must be protected. This report analyzes the nuclear heating due to the radiation and the shielding required to meet the established criteria while also minimizing the shield mass. Heating rates were determined in a 2000 MWt Particle Bed Reactor (PBR) system for all materials in the interstage region, between the reactor vessel and the propellant tank, with special emphasis on meeting the silicon dose criteria. Using a Lithium Hydride/Tungsten shield, the optimum shield design was found to be: 50 cm LiH/2 cm W on the axial reflector in the reactor vessel and 50 cm LiH/2 cm W in a collar extension of the inside shield outside of the pressure vessel. Within these parameters, the radiation doses in all of the components in the interstage and lower tank regions would be within acceptable limits for mission requirements.

  7. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L. Riemer, B.W.; Ryan, D.M.; Williamson, D.E.

    1992-01-01

    Poor definition of the heating profiles that occur during normal operation of Faraday shields for ion cyclotron resonant frequency (ICRF) antennas has complicated the mechanical design of ICRF system components. This paper reports that at Oak Ridge National Laboratory (ORNL), Faraday shield analysis is being used in defining rf heating profiles. In recent numerical analyses of proposed hardware for the Burning Plasma Experiment (BPX) and DIII-D, rf magnetic fields at Faraday shield surfaces were calculated, providing realistic predictions of the induced skin currents flowing on the shield elements and the resulting dissipated power profile. Detailed measurements on mock-ups of the Faraday shields for DIII-D and the Tokamak Fusion Test Reactor (TFTR) confirmed the predicted magnetic field distributions. A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the DIII-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed

  8. Design report for shielded glove box

    International Nuclear Information System (INIS)

    Ku, J. H.; Lee, J. C.; Seo, K. S.; Bang, K. S.; Lee, D. W.; Kim, J. H.; Min, D. K.; Park, S. W.

    1999-05-01

    For the examination of spent fuels and high radioactive specimens using a specially equipped scanning electron microscope, a shielded glove box was designed and constructed at PIE facility of KAERI. This glove box consisted of shielding walls, containment box, lead glasses, manipulators, gloves, ventilation systems, doors, hot-cell specimen cask adapter, etc. It was emphasized that both the easy operation and radiation safety are important factors in the shielded glove box were installed also considered as a important factor to build the basic concept of the assembling. Two sliding doors and one hinge-type door were installed for the easy installation, operation and maintenance of scanning electron microscope. Containment box which confines the radioactive material into the box consisted of reinforced transparent glasses, aluminum frames and stainless steel plate liner. Therefore everything beyond the containment box can be seen through the lead glass which installed at the front shielding wall. All shielding walls and doors were introduced separately into the room and assembled by bolting. (author). 3 refs., 5 tabs., 18 figs

  9. Potential of Nanocellulose Composite for Electromagnetic Shielding

    Directory of Open Access Journals (Sweden)

    Nabila Yah Nurul Fatihah

    2017-01-01

    Full Text Available Nowadays, most people rely on the electronic devices for work, communicating with friends and family, school and personal enjoyment. As a result, more new equipment or devices operates in higher frequency were rapidly developed to accommodate the consumers need. However, the demand of using wireless technology and higher frequency in new devices also brings the need to shield the unwanted electromagnetic signals from those devices for both proper operation and human health concerns. This paper highlights the potential of nanocellulose for electromagnetic shielding using the organic environmental nanocellulose composite materials. In addition, the theory of electromagnetic shielding and recent development of green and organic material in electromagnetic shielding application has also been reviewed in this paper. The use of the natural fibers which is nanocelllose instead of traditional reinforcement materials provides several advantages including the natural fibers are renewable, abundant and low cost. Furthermore, added with other advantages such as lightweight and high electromagnetic shielding ability, nanocellulose has a great potential as an alternative material for electromagnetic shielding application.

  10. Evaluation of the shielding integrity of end-shields in PHWR type NPPs

    International Nuclear Information System (INIS)

    Sah, B.M.L.; Ramamirtham, B.; Kutty, B.S.

    1996-01-01

    In the new plants (Narora Atomic Power Plants (NAPP) onwards) relatively higher radiation fields exist on the north and south fuelling machine (FM) vault walls of the E1 100m accessible area passages. These fields were first noticed at NAPS-1 and subsequently at NAPS-2 and KAPS-1. Such surveys done at RAPS have indicated that the fields on these walls would come out to be quite low (only 1-2 mR/h) from sources other than that arising from 41 Ar contamination. RAPS/MAPS experience pointed to adequacy of shielding of the FM vault walls and sufficient overall shielding thickness of the end-shields. Further, radiometry tests of end-shields carried out at Kaiga and RAPP 3 and 4 indicated fairly satisfactory and uniform filling of balls. Hence, incomplete filling of water column of the end-shields due to any venting problem was suspected to be one possible reason for the observed high fields in NAPS and Kakrapar Atomic Power Station (KAPS). Since the presence of high radiation fields, both neutron and gamma, is of long-term concern, a special study/measurement of radiation levels on reactor face during high power operation was undertaken. In order to compare the shielding integrity of the older (RAPS/MAPS solid plate type shielding) and newer (NAPS/KAPS steel ball-filled type) end shields, these experiments were done at MAPS-2 and NAPS-2. (author). 2 refs., 2 tabs

  11. Analysis of shield for the nuclear ship MUTSU

    International Nuclear Information System (INIS)

    Fuse, Takayoshi; Takeuchi, Kiyoshi; Yamaji, Akio

    1975-01-01

    On the nuclear ship MUTSU, a higher-than-expected level of radiation was found, with output raised to 1.4 per cent. To investigate the radiation leakage, the analysis of the shielding problem utilized a four-step sequence of PALLAS-2DCY cylindrical r-z calculations with fixed sources distributions in the core. The neutron dose contours show the importance of streaming in the gap between the reactor vessel and the primary shield. Dominant consideration of thermal insulation exclude shielding from this area resulting in an imbalance in the shielding effectiveness. The neutron dose rate at the upper part of the reactor vessel is increased by neutrons incident on the head from cavity scattering. The calculation indicates that the neutron dose rate at the top of the primary shield is 5 rem/hr at 100 per cent output. (auth.)

  12. Development and application of high performance liquid shielding materials

    International Nuclear Information System (INIS)

    Miura, Toshimasa; Omata, Sadao; Otano, Naoteru; Hirao, Yoshihiro; Kanai, Yasuji

    1998-01-01

    Development of liquid shielding material with good performance for neutron and γ-ray was investigated. Lead, hydrogen and boron were selected as the elements of shielding materials which were made by the ultraviolet curing method. Good performance shielding materials with about 1 mm width to neutron and gamma ray were produced by mixing lead, boron compound and ultraviolet curing monomer with many hydrogens. The shielding performance was the same as a concrete with two times width. The activation was very small such as 1/10 6 -1/10 8 of the standard concrete. The weight and the external appearance did not charged from room temperature to 100degC. Polyfunctional monomer had good thermal resistance. This shielding material was applied to double bending cylindrical duct and annulus ring duct. The results proved the shielding materials developed had good performance. (S.Y.)

  13. Light and Strong Hierarchical Porous SiC Foam for Efficient Electromagnetic Interference Shielding and Thermal Insulation at Elevated Temperatures.

    Science.gov (United States)

    Liang, Caiyun; Wang, Zhenfeng; Wu, Lina; Zhang, Xiaochen; Wang, Huan; Wang, Zhijiang

    2017-09-06

    A novel light but strong SiC foam with hierarchical porous architecture was fabricated by using dough as raw material via carbonization followed by carbothermal reduction with silicon source. A significant synergistic effect is achieved by embedding meso- and nanopores in a microsized porous skeleton, which endows the SiC foam with high-performance electromagnetic interference (EMI) shielding, thermal insulation, and mechanical properties. The microsized skeleton withstands high stress. The meso- and nanosized pores enhance multiple reflection of the incident electromagnetic waves and elongate the path of heat transfer. For the hierarchical porous SiC foam with 72.8% porosity, EMI shielding can be higher than 20 dB, and specific EMI effectiveness exceeds 24.8 dB·cm 3 ·g -1 at a frequency of 11 GHz at 25-600 °C, which is 3 times higher than that of dense SiC ceramic. The thermal conductivity reaches as low as 0.02 W·m -1 ·K -1 , which is comparable to that of aerogel. The compressive strength is as high as 9.8 MPa. Given the chemical and high-temperature stability of SiC, the fabricated SiC foam is a promising candidate for modern aircraft and automobile applications.

  14. Elrotherm shielding systems. New pioneering material composites; Elrotherm-Abschirmsysteme. Neue Zukunftsweisende Materialkompositionen

    Energy Technology Data Exchange (ETDEWEB)

    Zika-Beyerlein, B [ElringKlinger (Germany). Geschaeftsbereich Abschirmtechnik

    2004-09-01

    Tightly packed engine compartments put special demands on thermal and acoustic shielding systems. With new material composites allowing for particularly thin-walled and light shielding parts, ElringKlinger is well equipped for the future. (orig.)

  15. Elementary Thermal Operations

    DEFF Research Database (Denmark)

    Lostaglio, Matteo; Alhambra, Álvaro M.; Perry, Christopher

    2018-01-01

    To what extent do thermodynamic resource theories capture physically relevant constraints? Inspired by quantum computation, we define a set of elementary thermodynamic gates that only act on 2 energy levels of a system at a time. We show that this theory is well reproduced by a Jaynes-Cummings in......To what extent do thermodynamic resource theories capture physically relevant constraints? Inspired by quantum computation, we define a set of elementary thermodynamic gates that only act on 2 energy levels of a system at a time. We show that this theory is well reproduced by a Jaynes......-Cummings interaction in rotating wave approximation and draw a connection to standard descriptions of thermalisation. We then prove that elementary thermal operations present tighter constraints on the allowed transformations than thermal operations. Mathematically, this illustrates the failure at finite temperature...... to do so, including necessary and sufficient conditions for a given change of the population to be possible. As an example, we describe the resource theory of the Jaynes-Cummings model. Finally, we initiate an investigation into how our resource theories can be applied to Heat Bath Algorithmic Cooling...

  16. Neutral and plasma shielding model for pellet ablation

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Milora, S.L.; Attenberger, S.E.

    1987-10-01

    The neutral gas shielding model for ablation of frozen hydrogenic pellets is extended to include the effects of an initial Maxwelliam distribution of incident electron energies; a cold plasma shield outside the neutral shield and extended along the magnetic field; energetic neutral beam ions and alpha particles; and self-limiting electron ablation in the collisionless plasma limit. Including the full electron distribution increases ablation, but adding the cold ionized shield reduces ablation; the net effect is a modest reduction in pellet penetration compared with the monoenergetic electron neutral shielding model with no plasma shield. Unlike electrons, fast ions can enter the neutral shield directly without passing through the cold ionized shield because their gyro-orbits are typically larger than the diameter of the cold plasma tube. Fast alpha particles should not enhance the ablation rate unless their population exceeds that expected from local classical thermalization. Fast beam ions, however, may enhance ablation in the plasma periphery if their population is high enough. Self-limiting ablation in the collisionless limit leads to a temporary distortion of the original plasma electron Maxwellian distribution function through preferential depopulation of the higher-energy electrons. 23 refs., 9 figs

  17. Is lead shielding of patients necessary during fluoroscopic procedures? A study based on kyphoplasty

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Joshua R.; Marsh, Rebecca M.; Silosky, Michael S. [University of Colorado School of Medicine, Department of Radiology, Aurora, CO (United States)

    2018-01-15

    To determine the benefits, risks, and limitations associated with wrapping a patient with lead shielding during fluoroscopy-guided kyphoplasty procedures as a way to reduce operator radiation exposure. An anthropomorphic phantom was used to mimic a patient undergoing a kyphoplasty procedure under fluoroscopic guidance. Radiation measurements of the air kerma rate (AKR) were made at several locations and under various experimental conditions. First, AKR was measured at various angles along the horizontal plane of the phantom and at varying distances from the phantom, both with and without a lead apron wrapped around the lower portion of the phantom (referred to here as phantom shielding). Second, the effect of an operator's apron was simulated by suspending a lead apron between the phantom and the measurement device. AKR was measured for the four shielding conditions - phantom shielding only, operator apron only, both phantom shielding and operator apron, and no shielding. Third, AKR measurements were made at various heights and with varying C-arm angle. At all locations, the phantom shielding provided no substantial protection beyond that provided by an operator's own lead apron. Phantom shielding did not reduce AKR at a height comparable to that of an operator's head. Previous reports of using patient shielding to reduce operator exposure fail to consider the role of an operator's own lead apron in radiation protection. For an operator wearing appropriate personal lead apparel, patient shielding provides no substantial reduction in operator dose. (orig.)

  18. Is lead shielding of patients necessary during fluoroscopic procedures? A study based on kyphoplasty

    International Nuclear Information System (INIS)

    Smith, Joshua R.; Marsh, Rebecca M.; Silosky, Michael S.

    2018-01-01

    To determine the benefits, risks, and limitations associated with wrapping a patient with lead shielding during fluoroscopy-guided kyphoplasty procedures as a way to reduce operator radiation exposure. An anthropomorphic phantom was used to mimic a patient undergoing a kyphoplasty procedure under fluoroscopic guidance. Radiation measurements of the air kerma rate (AKR) were made at several locations and under various experimental conditions. First, AKR was measured at various angles along the horizontal plane of the phantom and at varying distances from the phantom, both with and without a lead apron wrapped around the lower portion of the phantom (referred to here as phantom shielding). Second, the effect of an operator's apron was simulated by suspending a lead apron between the phantom and the measurement device. AKR was measured for the four shielding conditions - phantom shielding only, operator apron only, both phantom shielding and operator apron, and no shielding. Third, AKR measurements were made at various heights and with varying C-arm angle. At all locations, the phantom shielding provided no substantial protection beyond that provided by an operator's own lead apron. Phantom shielding did not reduce AKR at a height comparable to that of an operator's head. Previous reports of using patient shielding to reduce operator exposure fail to consider the role of an operator's own lead apron in radiation protection. For an operator wearing appropriate personal lead apparel, patient shielding provides no substantial reduction in operator dose. (orig.)

  19. Shielding device for control rod in nuclear reactor

    International Nuclear Information System (INIS)

    Sakamaki, Kazuo; Tomatsu, Tsutomu.

    1995-01-01

    The device of the present invention shields radiation emitted from control rods to greatly reduce an operator's radiation exposure even if reactor water level is lowered and the upper portion of the control rod is exposed upon inspection of a BWR type reactor. Namely, a shield assembly has a structure comprising a set of four columnar shields in a two-row and two-column arrangement, which can be inserted into a control rod guide tube. Upon conducting inspection, the control rod is lowered into the control rod guide tube, and in this state, the columnar shields of the shield assembly are inserted to the control rod in the control rod guide tube. With such procedures, the upper portion of the control rod protruded from the control rod guide tube is covered with the shield assembly. As a result, radiation leaked from the control rod is shielded. Accordingly, irradiation in the reactor due to leaked radiation can be prevented thereby enabling to reduce an operator's radiation exposure. (I.S.)

  20. Induced radioactivity in Bevatron concrete radiation shielding blocks

    International Nuclear Information System (INIS)

    Moeller, G.C.; Donahue, R.J.

    1994-07-01

    The Bevatron accelerated protons up to 6.2 GeV and heavy ions up to 2.1 GeV/amu. It operated from 1954 to 1993. Radioactivity was induced in some concrete radiation shielding blocks by prompt radiation. Prompt radiation is primarily neutrons and protons that were generated by the Bevatron's primary beam interactions with targets and other materials. The goal was to identify the gamma-ray emitting nuclides (t 1/2 > 0.5 yr) that could be present in the concrete blocks and estimate the depth at which the maximum radioactivity presently occurs. It is shown that the majority of radioactivity was produced via thermal neutron capture by trace elements present in concrete. The depth of maximum thermal neutron flux, in theory, corresponds with the depth of maximum induced activity. To estimate the depth at which maximum activity occurs in the concrete blocks, the LAHET Code System was used to calculate the depth of maximum thermal neutron flux. The primary beam interactions that generate the neutrons are also modeled by the LAHET Code System

  1. Space nuclear reactor shields for manned and unmanned applications

    International Nuclear Information System (INIS)

    McKissock, B.I.; Bloomfield, H.S.

    1990-01-01

    Missions which use nuclear reactor power systems require radiation shielding of payload and/or crew areas to predetermined dose rates. Since shielding can become a significant fraction of the total mass of the system, it is of interest to show the effect of various parameters on shield thickness and mass for manned and unmanned applications. Algorithms were developed to give the thicknesses needed if reactor thermal power, separation distances and dose rates are given as input. The thickness algorithms were combined with models for four different shield geometries to allow tradeoff studies of shield volume and mass for a variety of manned and unmanned missions. The shield design tradeoffs presented in this study include the effects of: higher allowable dose rates; radiation hardened electronics; shorter crew exposure times; shield geometry; distance of the payload and/or crew from the reactor; and changes in the size of the shielded area. Specific NASA missions that were considered in this study include unmanned outer planetary exploration, manned advanced/evolutionary space station and advanced manned lunar base. (author)

  2. Space nuclear reactor shields for manned and unmanned applications

    International Nuclear Information System (INIS)

    Mckissock, B.I.; Bloomfield, H.S.

    1989-01-01

    Missions which use nuclear reactor power systems require radiation shielding of payload and/or crew areas to predetermined dose rates. Since shielding can become a significant fraction of the total mass of the system, it is of interest to show the effect of various parameters on shield thickness and mass for manned and unmanned applications. Algorithms were developed to give the thicknesses needed if reactor thermal power, separation distances, and dose rates are given as input. The thickness algorithms were combined with models for four different shield geometries to allow tradeoff studies of shield volume and mass for a variety of manned and unmanned missions. Shield design tradeoffs presented in this study include the effects of: higher allowable dose rates; radiation hardened electronics; shorter crew exposure times; shield geometry; distance of the payload and/or crew from the reactor; and changes in the size of the shielded area. Specific NASA missions that were considered in this study include unmanned outer planetary exploration, manned advanced/evolutionary space station, and advanced manned lunar base

  3. Radiation dose reduction by water shield

    International Nuclear Information System (INIS)

    Zeb, J.; Arshed, W.; Ahmad, S.S.

    2007-06-01

    This report is an operational manual of shielding software W-Shielder, developed at Health Physics Division (HPD), Pakistan Institute of Nuclear Science and Technology (PINSTECH), Pakistan Atomic Energy Commission. The software estimates shielding thickness for photons having their energy in the range 0.5 to 10 MeV. To compute the shield thickness, self absorption in the source has been neglected and the source has been assumed as a point source. Water is used as a shielding material in this software. The software is helpful in estimating the water thickness for safe handling, storage of gamma emitting radionuclide. (author)

  4. Evaluation using Monte Carlo simulations, of the effect of a shielding, called external shielding, for fotoneutrons generated in linear accelerators, using the computational model of Varian accelerator 2300 C/D operating in eight rotation angles of the GA

    International Nuclear Information System (INIS)

    Silva, Hugo R.; Silva, Ademir X.; Rebello, Wilson F.; Silva, Maria G.

    2011-01-01

    This paper aims to present the results obtained by Monte Carlo simulation of the effect of shielding against neutrons, called External Shielding, to be placed on the heads of linear accelerators used in radiotherapy. For this, it was used the radiation transport code Monte Carlo N-Particle - MCNPX, in which were developed computational model of the head of the linear accelerator Varian 2300 C/D. The equipment was simulated within a bunker, operating at energies of 10, 15 and 18 MV, considering the rotation of the gantry at eight different angles ( 0 deg, 45 deg, 90 deg, 135 deg, 180 deg, 225 deg, 270 deg and 315 deg), in all cases, the equipment was modeled without and with the shielding positioned attached to the head of the accelerator on its bottom. In each of these settings, it was calculated the Ambient Dose Equivalent due to neutron H * (10)n on points situated in the region of the patient (region of interest for evaluation of undesirable neutron doses on the patient) and in the maze of radiotherapy room (region of interest for shielding the access door to the bunker). It was observed for all energies of equipment operation as well as for all angles of inclination of the gantry, a significant reduction in the values of H * (10) n when the equipment operated with the external shielding, both in the region of the patient as in the region of the maze. (author)

  5. Demonstration test on manufacturing 200 l drum inner shielding material for recycling of reactor operating metal scrap

    International Nuclear Information System (INIS)

    Umemura, A.; Kimura, K.; Ueno, H.

    1993-01-01

    Low-level reactor wastes should be safely recycled considering those resource values, the reduction of waste disposal volume and environmental effects. The reasonable recycling system of reactor operating metal scrap has been studied and it was concluded that the 200 liter drum inner shielding material is a very promising product for recycling within the nuclear industry. The drum inner shielding material does not require high quality and so it is expected to be easily manufactured by melting and casting from roughly sorted scrap metals. This means that the economical scrap metal recycling system can be achieved by introducing it. Furthermore its use will ensure safety because of being contained in a drum. In order to realize this recycling system with the drum inner shielding material, the demonstration test program is being conducted. The construction of the test facility, which consists of a melting and refining furnace, a casting apparatus, a machining apparatus etc., was finishing in September, 1992

  6. Development of epoxy resin-type neutron shielding materials (I)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Soo Haeng; Kim, Ik Soo; Shin, Young Joon; Do, Jae Bum; Ro, Seung Gy

    1997-12-01

    Because the exposure to radiation in the nuclear facilities can be fatal to human, it is important to reduce the radiation dose level to a tolerable level. The purpose of this study is to develop highly effective neutron shielding materials for the shipping and storage cask of radioactive materials or in the nuclear /radiation facilities. On this study, we developed epoxy resin based neutron shielding materials and their various materials properties, including neutron shielding ability, fire resistance, combustion characteristics, radiation resistance, thermal and mechanical properties were evaluated experimentally. (author). 31 refs., 22 tabs., 17 figs.

  7. Electromagnetic interference shielding and thermal properties of non-covalently functionalized reduced graphene oxide/epoxy composites

    Directory of Open Access Journals (Sweden)

    Suman Chhetri

    2016-12-01

    Full Text Available Graphene oxide (GO was non-covalently functionalized using sulfanilic acid azocromotrop (SAC followed by hydrazine reduction to achieve SAC functionalized reduced GO (SAC-rGO. Fourier transform infrared spectra analysis and electrical conductivity measurements confirmed the successful functionlization and reduction of GO. The electrical conductivity of ~515 S•m−1 for SAC-rGO was recorded. The non-covalently functionalized reduced GO was subsequently dispersed in epoxy matrix at the loading level of 0.3 to 0.5 wt% to investigate its electromagnetic interference (EMI shielding properties. The morphological and structural characterization of the SAC-rGO/epoxy composites was carried out using X-ray diffraction and Transmission electron microscopy analysis, which revealed the good dispersion of SAC-rGO in the epoxy. The SAC-rGO/epoxy composites showed the EMI shielding of −22.6 dB at the loading of 0.5 wt% SAC-rGO. Dynamical mechanical properties of the composites were studied to establish the reinforcing competency of the SAC-rGO. The storage modulus of the composites was found to increase within the studied temperature. Thermal stability of pure epoxy and its composites were compared by selecting the temperatures at 10 and 50% weight loss, respectively.

  8. Nuclear steam generator tubesheet shield

    International Nuclear Information System (INIS)

    Nickerson, J.H.D.; Ruhe, A.

    1982-01-01

    The invention involves improvements to a nuclear steam generator of the type in which a plurality of U-shaped tubes are connected at opposite ends to a tubesheet and extend between inlet and outlet chambers, with the steam generator including an integral preheater zone adjacent to the downflow legs of the U-shaped tubes. The improvement is a thermal shield disposed adjacent to an upper face of the tubesheet within the preheater zone, the shield including ductile cladding material applied directly to the upper face of the tubesheet, with the downflow legs of the U-shaped tubes extending through the cladding into the tubesheet

  9. Verification of radiation exposure using lead shields

    International Nuclear Information System (INIS)

    Hayashida, Keiichi; Yamamoto, Kenyu; Azuma, Masami

    2016-01-01

    A long time use of radiation during IVR (intervention radiology) treatment leads up to an increased exposure on IVR operator. In order to prepare good environment for the operator to work without worry about exposure, the authors examined exposure reduction with the shields attached to the angiography instrument, i. e. lead curtain and lead glass. In this study, the lumber spine phantom was radiated using the instrument and the radiation leaked outside with and without shields was measured by the ionization chamber type survey meter. The meter was placed at the position which was considered to be that for IVR operator, and changed vertically 20-100 cm above X-ray focus by 10 cm interval. The radiation at the position of 80 cm above X-ray focus was maximum without shield and was hardly reduced with lead curtain. However, it was reduced with lead curtain plus lead glass. Similar reduction effects were observed at the position of 90-100 cm above X-ray focus. On the other hand, the radiation at the position of 70 cm above X-ray focus was not reduced with either shield, because that position corresponded to the gap between lead curtain and lead glass. The radiation at the position of 20-60 cm above X-ray focus was reduced with lead curtain, even if without lead glass. These results show that lead curtain and lead glass attached to the instrument can reduce the radiation exposure on IVR operator. Using these shields is considered to be one of good means for IVR operator to work safely. (author)

  10. Micrometeoroid and Orbital Debris (MMOD) Shield Ballistic Limit Analysis Program

    Science.gov (United States)

    Ryan, Shannon

    2013-01-01

    This software implements penetration limit equations for common micrometeoroid and orbital debris (MMOD) shield configurations, windows, and thermal protection systems. Allowable MMOD risk is formulated in terms of the probability of penetration (PNP) of the spacecraft pressure hull. For calculating the risk, spacecraft geometry models, mission profiles, debris environment models, and penetration limit equations for installed shielding configurations are required. Risk assessment software such as NASA's BUMPERII is used to calculate mission PNP; however, they are unsuitable for use in shield design and preliminary analysis studies. The software defines a single equation for the design and performance evaluation of common MMOD shielding configurations, windows, and thermal protection systems, along with a description of their validity range and guidelines for their application. Recommendations are based on preliminary reviews of fundamental assumptions, and accuracy in predicting experimental impact test results. The software is programmed in Visual Basic for Applications for installation as a simple add-in for Microsoft Excel. The user is directed to a graphical user interface (GUI) that requires user inputs and provides solutions directly in Microsoft Excel workbooks.

  11. X-ray shielding behaviour of kaolin derived mullite-barites ceramic

    Science.gov (United States)

    Ripin, A.; Mohamed, F.; Choo, T. F.; Yusof, M. R.; Hashim, S.; Ghoshal, S. K.

    2018-03-01

    Mullite-barite ceramic (MBC) is an emergent material for effective shielding of redundant ionizing radiation exposure. The composition dependent mechanical, thermal, and microstructure properties of MBC that makes MBC a high performing novel radiation shielding candidate remained unexplored. This paper examines the possibility of exploiting Malaysian kaolin (AKIM-35) and barite (BaSO4) derived ceramic (MBC) system for X-ray shielding operation. Using conventional pressing and sintering method six ceramic samples are prepared by mixing AKIM-35 with barite at varying contents (0, 10, 20, 30, 40 and 50 wt%). Synthesized pressed mixtures are calcined at 400 °C for 30 min and then sintered to 1300 °C for 120 min at a heating rate of 10 °C/min. Sintered samples are characterized via X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), lead equivalent (LE), uniformity and dose reduction analyses. XRD pattern of prepared ceramics revealed the presence of monoclinic barium alumino-silicate (BAS) and orthorhombic mullite as major shielding phases together with other minor phase of barite and hexagonal quartz (SiO2) structures. Furthermore, FESEM images of ceramics (between 0 and 30 wt%) displayed the existence of compacted monoclinic plate of BAS and acicular mullite morphology (ceramics at 40 and 50 wt%). Radiation tests displayed the capacity of ceramics (at 0 and 10 wt%) to shield the X-ray radiation emanated at tube potential range of 50-120 kV. The highest radiation attenuation is ascertained at 70 kV where the dose is reduced remarkably between 99.11% and 97.42%. Ceramics at 0 and 10 wt% demonstrated the highest lead (Pb) equivalent thickness (LE) of 0.44 mm and 0.34 mm, respectively. It is established that such MBC may contribute towards the development of shielding material against ionizing radiation in diagnostic radiology (X-ray) dose range.

  12. Ford motor company NDE facility shielding design

    International Nuclear Information System (INIS)

    Metzger, R. L.; Van Riper, K. A.; Jones, M. H.

    2005-01-01

    Ford Motor Company proposed the construction of a large non-destructive evaluation laboratory for radiography of automotive power train components. The authors were commissioned to design the shielding and to survey the completed facility for compliance with radiation doses for occupationally and non-occupationally exposed personnel. The two X-ray sources are Varian Linatron 3000 accelerators operating at 9-11 MV. One performs computed tomography of automotive transmissions, while the other does real-time radiography of operating engines and transmissions. The shield thickness for the primary barrier and all secondary barriers were determined by point-kernel techniques. Point-kernel techniques did not work well for skyshine calculations and locations where multiple sources (e.g. tube head leakage and various scatter fields) impacted doses. Shielding for these areas was determined using transport calculations. A number of MCNP [Briesmeister, J. F. MCNPCA general Monte Carlo N-particle transport code version 4B. Los Alamos National Laboratory Manual (1997)] calculations focused on skyshine estimates and the office areas. Measurements on the operational facility confirmed the shielding calculations. (authors)

  13. Ford Motor Company NDE facility shielding design.

    Science.gov (United States)

    Metzger, Robert L; Van Riper, Kenneth A; Jones, Martin H

    2005-01-01

    Ford Motor Company proposed the construction of a large non-destructive evaluation laboratory for radiography of automotive power train components. The authors were commissioned to design the shielding and to survey the completed facility for compliance with radiation doses for occupationally and non-occupationally exposed personnel. The two X-ray sources are Varian Linatron 3000 accelerators operating at 9-11 MV. One performs computed tomography of automotive transmissions, while the other does real-time radiography of operating engines and transmissions. The shield thickness for the primary barrier and all secondary barriers were determined by point-kernel techniques. Point-kernel techniques did not work well for skyshine calculations and locations where multiple sources (e.g. tube head leakage and various scatter fields) impacted doses. Shielding for these areas was determined using transport calculations. A number of MCNP [Briesmeister, J. F. MCNPCA general Monte Carlo N-particle transport code version 4B. Los Alamos National Laboratory Manual (1997)] calculations focused on skyshine estimates and the office areas. Measurements on the operational facility confirmed the shielding calculations.

  14. 30 CFR 57.14213 - Ventilation and shielding for welding.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation and shielding for welding. 57.14213... welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to persons. (b) All welding operations shall be well-ventilated. ...

  15. Design and characterization of a novel neutron shield for BNCT in an experimental model of oral cancer in the hamster cheek pouch at RA-3

    International Nuclear Information System (INIS)

    Pozzi, E.C.C.; Curotto, P.; Monti Hughes, A.; Nigg, D.W.; Schwint, A.E.; Trivillin, V.A.; Thorp, S.I.

    2013-01-01

    Our research group at the Radiation Pathology Division of the Department of Radiobiology (National Atomic Energy Commission) has previously demonstrated the therapeutic efficacy of different BNCT protocols to treat oral cancer in an experimental hamster cheek pouch model. In particular, to perform studies in this experimental model at the thermal facility constructed at RA-3, we designed and constructed a shielding device for thermal neutrons, to be able to expose the cheek pouch while minimizing the dose to the rest of the body. This device allowed for the irradiation of one animal at a time. Given the usage rate of the device, the aim of the present study was to design and construct an optimized version of the existing shielding device that would allow for the simultaneous irradiation of 2 animals at the thermal facility of RA-3. Taking into account the characteristics of the neutron source and preliminary biological assays, we designed the shielding device for the body of the animal, i.e. a rectangular shaped box with double acrylic walls. The space between the walls contains a continuous filling of 6Li 2 CO 3 (95% enriched in 6Li), approximately 6 mm thick. Two small windows interrupt the shield at one end of the box through which the right pouch of each hamster is everted out onto an external acrylic shelf for exposure to the neutron flux. The characterization of the shielding device showed that the neutron flux was equivalent at both irradiation positions confirming that we were able to design and construct a new shielding device that allows for the irradiation of 2 animals at the same time at the thermal facility of RA-3. This new version of the shielding device will reduce the number of interventions of the reactor operators, reducing occupational exposure to radiation and will make the procedure more efficient for researchers. In addition, we addressed the generation of tritium as a product of the capture reaction in lithium. It was considered as a

  16. Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron

    Energy Technology Data Exchange (ETDEWEB)

    Zorla, Eyüp; Ipbüker, Cagatay [University of Tartu, Institute of Physics (Estonia); Biland, Alex [US Basalt Corp., Houston (United States); Kiisk, Madis [University of Tartu, Institute of Physics (Estonia); Kovaljov, Sergei [OÜ Basaltest, Tartu (Estonia); Tkaczyk, Alan H. [University of Tartu, Institute of Physics (Estonia); Gulik, Volodymyr, E-mail: volodymyr.gulik@gmail.com [Institute for Safety Problems of Nuclear Power Plants, Lysogirska 12, of. 201, 03028 Kyiv (Ukraine)

    2017-03-15

    Highlights: • Basalt fiber infused with natural and enriched boron in varying proportions. • Gamma-ray attenuation remains stable with addition of basalt-boron fiber. • Improvement in neutron shielding for nuclear facilities producing fast fission spectrum. • Basalt-boron fiber could decrease the shielding thickness in thermal spectrum reactors. - Abstract: The importance of radiation shielding is increasing in parallel with the expansion of the application areas of nuclear technologies. This study investigates the radiation shielding properties of two types of high strength concrete reinforced with basalt fibers infused with 12–20% boron oxide, containing varying fractions of natural and enriched boron. The gamma-ray shielding characteristics are analyzed with the help of the WinXCom, whereas the neutron shielding characteristics are modeled and computed by Monte Carlo Serpent code. For gamma-ray shielding, the attenuation coefficients of the studied samples do not display any significant variation due to the addition of basalt-boron fibers at any mixing proportion. For neutron shielding, the addition of basalt-boron fiber has negligible effects in the case of very fast neutrons (14 MeV), but it could considerably improve the neutron shielding of concrete for nuclear facilities producing a fast fission spectrum (e.g. with reactors as BN-800, FBTR) and thermal neutron spectrum (Light Water Reactors (LWR)). It was also found that basalt-boron fiber could decrease the thickness of radiation shielding material in thermal spectrum reactors.

  17. Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron

    International Nuclear Information System (INIS)

    Zorla, Eyüp; Ipbüker, Cagatay; Biland, Alex; Kiisk, Madis; Kovaljov, Sergei; Tkaczyk, Alan H.; Gulik, Volodymyr

    2017-01-01

    Highlights: • Basalt fiber infused with natural and enriched boron in varying proportions. • Gamma-ray attenuation remains stable with addition of basalt-boron fiber. • Improvement in neutron shielding for nuclear facilities producing fast fission spectrum. • Basalt-boron fiber could decrease the shielding thickness in thermal spectrum reactors. - Abstract: The importance of radiation shielding is increasing in parallel with the expansion of the application areas of nuclear technologies. This study investigates the radiation shielding properties of two types of high strength concrete reinforced with basalt fibers infused with 12–20% boron oxide, containing varying fractions of natural and enriched boron. The gamma-ray shielding characteristics are analyzed with the help of the WinXCom, whereas the neutron shielding characteristics are modeled and computed by Monte Carlo Serpent code. For gamma-ray shielding, the attenuation coefficients of the studied samples do not display any significant variation due to the addition of basalt-boron fibers at any mixing proportion. For neutron shielding, the addition of basalt-boron fiber has negligible effects in the case of very fast neutrons (14 MeV), but it could considerably improve the neutron shielding of concrete for nuclear facilities producing a fast fission spectrum (e.g. with reactors as BN-800, FBTR) and thermal neutron spectrum (Light Water Reactors (LWR)). It was also found that basalt-boron fiber could decrease the thickness of radiation shielding material in thermal spectrum reactors.

  18. Material characterisation and preliminary mechanical design for the HL-LHC shielded beam screens operating at cryogenic temperatures.

    Science.gov (United States)

    Garion, C.; Dufay-Chanat, L.; Koettig, T.; Machiocha, W.; Morrone, M.

    2015-12-01

    The High Luminosity LHC project (HL-LHC) aims at increasing the luminosity (rate of collisions) in the Large Hadron Collider (LHC) experiments by a factor of 10 beyond the original design value (from 300 to 3000 fb-1). It relies on new superconducting magnets, installed close to the interaction points, equipped with new beam screen. This component has to ensure the vacuum performance together with shielding the cold mass from physics debris and screening the cold bore cryogenic system from beam induced heating. The beam screen operates in the range 40-60 K whereas the magnet cold bore temperature is 1.9 K. A tungsten-based material is used to absorb the energy of particles. In this paper, measurements of the mechanical and physical properties of such tungsten material are shown at room and cryogenic temperature. In addition, the design and the thermal mechanical behaviour of the beam screen assembly are presented also. They include the heat transfer from the tungsten absorbers to the cooling pipes and the supporting system that has to minimise the heat inleak into the cold mass. The behaviour during a magnet quench is also presented.

  19. Material characterisation and preliminary mechanical design for the HL-LHC shielded beam screens operating at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garion, C; Dufay-Chanat, L; Koettig, T; Machiocha, W; Morrone, M

    2015-01-01

    The High Luminosity LHC project (HL-LHC) aims at increasing the luminosity (rate of collisions) in the Large Hadron Collider (LHC) experiments by a factor of 10 beyond the original design value (from 300 to 3000 fb -1 ). It relies on new superconducting magnets, installed close to the interaction points, equipped with new beam screen. This component has to ensure the vacuum performance together with shielding the cold mass from physics debris and screening the cold bore cryogenic system from beam induced heating. The beam screen operates in the range 40-60 K whereas the magnet cold bore temperature is 1.9 K. A tungsten-based material is used to absorb the energy of particles. In this paper, measurements of the mechanical and physical properties of such tungsten material are shown at room and cryogenic temperature. In addition, the design and the thermal mechanical behaviour of the beam screen assembly are presented also. They include the heat transfer from the tungsten absorbers to the cooling pipes and the supporting system that has to minimise the heat inleak into the cold mass. The behaviour during a magnet quench is also presented. (paper)

  20. A robust helium-cooled shield/blanket design for ITER

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Bourque, R.F.; Baxi, C.B.

    1993-11-01

    General Atomics Fusion and Reactor Groups have completed a helium-cooled, conceptual shield/blanket design for ITER. The configuration selected is a pressurized tubes design embedded in radially oriented plates. This plate can be made from ferritic steel or from V-alloy. Helium leakage to the plasma chamber is eliminated by conservative, redundant design and proper quality control and inspection programs. High helium pressure at 18 MPa is used to reduce pressure drop and enhance heat transfer. This high gas pressure is believed practical when confined in small diameter tubes. Ample industrial experience exists for safe high gas pressure operations. Inboard shield design is highlighted in this study since the allowable void fraction is more limited. Lithium is used as the thermal contacting medium and for tritium breeding, its safety concerns are minimized by a modular, low inventory design that requires no circulation of the liquid metal for the purpose of heat removal. This design is robust, conservative, reliable, and meets all design goals and requirements. It can also be built with present-day technology

  1. The Spallation Neutron Source (SNS) conceptual design shielding analysis

    International Nuclear Information System (INIS)

    Johnson, J.O.; Odano, N.; Lillie, R.A.

    1998-03-01

    The shielding design is important for the construction of an intense high-energy accelerator facility like the proposed Spallation Neutron Source (SNS) due to its impact on conventional facility design, maintenance operations, and since the cost for the radiation shielding shares a considerable part of the total facility costs. A calculational strategy utilizing coupled high energy Monte Carlo calculations and multi-dimensional discrete ordinates calculations, along with semi-empirical calculations, was implemented to perform the conceptual design shielding assessment of the proposed SNS. Biological shields have been designed and assessed for the proton beam transport system and associated beam dumps, the target station, and the target service cell and general remote maintenance cell. Shielding requirements have been assessed with respect to weight, space, and dose-rate constraints for operating, shutdown, and accident conditions. A discussion of the proposed facility design, conceptual design shielding requirements calculational strategy, source terms, preliminary results and conclusions, and recommendations for additional analyses are presented

  2. A remotely operated, automated system for the infusion of shielded therapeutic radiopharmaceuticals

    International Nuclear Information System (INIS)

    Macfarlane, D.J.; Bartlett, M.; Bellen, J.; Peters, J.; Domagala, M.; Allison, R.

    1999-01-01

    Full text: A number of radiopharmaceuticals may soon emerge into mainstream clinical oncology for palliative and therapeutic treatment for a variety of malignancies. These agents are characterized by high linear energy transfer particulate emissions. Dispensing and administration of these therapies on a regular basis pose a substantial radiation burden to staff, from direct g-emissions and from Bremsstrahlung (braking) radiations. In an effort to implement the ALARA principle, a multidisciplinary team was given the brief to design a system which permitted: (1) safe, sterile transfer of a nominated quantity of radiopharmaceutical into a shielded reservoir compatible with the infusion pump; (2) remote variation of volume and administration rate upon command; (3) purging of delivery system following administration of dose; (4) monitoring of and communication with patient during infusion; (5) use of TGA-approved delivery system. The final design centred around an Abbott 'Lifecare 5000' volumetric dual-channel intravenous infusion pump and featured: microprocessor control with mutiline LCD prompting display; remote operation of keypad by pneumatic actuator; CCTV monitoring of patient, pump and physiological data; delivery of therapy dose from a shielded vial; flushing of therapy vial by 'back-priming'; and full array of safety alarms (air in line, occlusion, empty vial, etc). Further developments include audio communication with patient and remote physiological monitoring

  3. Thermal operator representation of finite temperature graphs

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.; Das, Ashok; Espinosa, Olivier; Perez, Silvana

    2005-01-01

    Using the mixed space representation (t,p→) in the context of scalar field theories, we prove in a simple manner that the Feynman graphs at finite temperature are related to the corresponding zero temperature diagrams through a simple thermal operator, both in the imaginary time as well as in the real time formalisms. This result is generalized to the case when there is a nontrivial chemical potential present. Several interesting properties of the thermal operator are also discussed

  4. The generalized heavy free gas thermalization operator

    International Nuclear Information System (INIS)

    Pitcher, H.H.W.

    1963-05-01

    This paper gives an introduction to the generalized heavy free gas (Horowitz) thermalization operator, which is a device for simplifying thermalization calculations. Analytical, experimental,and numerical methods for determining the energy-dependent function f in the operator are discussed. The dependence of f on the nature of the moderator, its temperature, and the absorption of the system are investigated, using a program FOCS which derives f's from DSN (multigroup) thermal spectra; it is found that for most purposes the dependence on absorption is negligible except when Pu240 is present. The sensitivity of calculated spectra and reaction rate to changes in f is considered. f is given for graphite at 300 and 600 deg. K. (author)

  5. Radiation shielding cloth

    International Nuclear Information System (INIS)

    Ijiri, Yasuo; Fujinuma, Tadashi; Tamura, Shoji.

    1989-01-01

    Radiation shielding cloth having radiation shielding layers comprising a composition of inorganic powder of high specific gravity and rubber are excellentin flexibility and comfortable to put on. However, since they are heavy in the weight, operators are tired upon putting them for a long time. In view of the above, the radiation ray shielding layers are prepared by calendering sheets obtained by preliminary molding of the composition to set the variation of the thickness within a range of +15% to -0% of prescribed thickness. Since the composition of inorganic powder at high specific gravity and rubber used for radiation ray shielding comprises a great amount of inorganic powder at high specific gravity blended therein, it is generally poor in fabricability. Therefor, it is difficult to attain fine control for the sheet thickness by merely molding a composition block at once. Then, the composition is at first preliminarily molded into a sheet-like shape which is somewhat thickener than the final thickness and then finished by calendering, by which the thickness can be reduced in average as compared with conventional products while keeping the prescribed thickness and reducing the weight reduce by so much. (N.H.)

  6. Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers.

    Science.gov (United States)

    Fu, Yuqiao; Huang, Yan; Meng, Wenjun; Wang, Zifeng; Bando, Yoshio; Golberg, Dmitri; Tang, Chengchun; Zhi, Chunyi

    2015-03-20

    Polymer composites with enhanced mechanical, thermal or optical performance usually suffer from poor ductility induced by confined mobility of polymer chains. Herein, highly ductile UV-shielding polymer composites are successfully fabricated. Boron nitride (BN) materials, with a wide band gap of around ∼6.0 eV, are used as fillers to achieve the remarkably improved UV-shielding performance of a polymer matrix. In addition, it is found that spherical morphology BN as a filler can keep the excellent ductility of the composites. For a comparison, it is demonstrated that traditional fillers, including conventional BN powders can achieve the similar UV-shielding performance but dramatically decrease the composite ductility. The mechanism behind this phenomenon is believed to be lubricant effects of BN nanospheres for sliding of polymer chains, which is in consistent with the thermal analyses. This study provides a new design to fabricate UV-shielding composite films with well-preserved ductility.

  7. MFTF-α + T shield design

    International Nuclear Information System (INIS)

    Gohar, Y.

    1985-01-01

    MFTF-α+T is a DT upgrade option of the Tandem Mirror Fusion Test Facility (MFTF-B) to study better plasma performance, and test tritium breeding blankets in an actual fusion reactor environment. The central cell insert, designated DT axicell, has a 2-MW/m 2 neutron wall loading at the first wall for blanket testing. This upgrade is completely shielded to protect the reactor components, the workers, and the general public from the radiation environment during operation and after shutdown. The shield design for this upgrade is the subject of this paper including the design criteria and the tradeoff studies to reduce the shield cost

  8. Regolith Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

    Science.gov (United States)

    Hogue, Michael D.; Meuller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2012-01-01

    This NIAC project investigated an innovative approach to provide heat shield protection to spacecraft after launch and prior to each EDL thus potentially realizing significant launch mass savings. Heat shields fabricated in situ can provide a thermal-protection system for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Regolith has extremely good insulating properties and the silicates it contains can be used in the fabrication and molding of thermal-protection materials. Such in situ developed heat shields have been suggested before by Lewis. Prior research efforts have shown that regolith properties can be compatible with very-high temperature resistance. Our project team is highly experienced in regolith processing and thermal protection systems (TPS). Routine access to space and return from any planetary surface requires dealing with heat loads experienced by the spacecraft during reentry. Our team addresses some of the key issues with the EDL of human-scale missions through a highly innovative investigation of heat shields that can be fabricated in space by using local resources on asteroids and moons. Most space missions are one-way trips, dedicated to placing an asset in space for economical or scientific gain. However, for human missions, a very-reliable heat-shield system is necessary to protect the crew from the intense heat experienced at very high entry velocities of approximately 11 km/s at approximately Mach 33 (Apollo). For a human mission to Mars, the return problem is even more difficult, with predicted velocities of up to 14 km/s, at approximately Mach 42 at the Earth-atmosphere entry. In addition to human return, it is very likely that future space-travel architecture will include returning cargo to the Earth, either for scientific purposes or for commercial reasons

  9. Radiation shielding for TFTR DT diagnostics

    International Nuclear Information System (INIS)

    Ku, L.P.; Johnson, D.W.; Liew, S.L.

    1994-01-01

    The authors illustrate the designs of radiation shielding for the TFTR DT diagnostics using the ACX and TVTS systems as specific examples. The main emphasis here is on the radiation transport analyses carried out in support of the designs. Initial results from the DT operation indicate that the diagnostics have been functioning as anticipated and the shielding designs are satisfactory. The experience accumulated in the shielding design for the TFTR DT diagnostics should be useful and applicable to future devices, such as TPX and ITER, where many similar diagnostic systems are expected to be used

  10. Cooling Performance of TBM-shield Designed for Manufacturability

    International Nuclear Information System (INIS)

    Park, Seong Dae; Lee, Dong Won; Kim, Dong Jun; Yoon, Jae Sung; Ahn, Mu Young

    2016-01-01

    Helium cooled ceramic reflector (HCCR) test blanket module (TBM) is composed of four sub-modules and a common back manifold (BM). The associated shield is a water-cooled 316L(N)-IG block with internal cooling channels. The purpose of the TBM-shield is to make the condition with the allowable neutron flux and dose rate level. The radially continuous layers of water and structure were configured. The main purpose of the shield is to reduce the neutron flux by absorbing the neutron in the structure. The water could act as the moderator and cool down the structure which is heated due to the reaction with the neutrons. The moderated neutrons are easily absorbed by the structure. It could meet the criteria for the minimum neutron flux by increasing the thickness of structure. The formation of inside cooling channel in the TBM-shield should be considered while maintaining the allowable temperature range. In this work, a manufacturing process including the formation of inside cooling channel was presented. Current design and thermal analysis results for the TBM-shield were presented. The geometry of the shield blocks was considerably changed. The coolant channel was exposed to the outer surface of the TBM-shield. The overall manufacturing process is simplified compared with the previous process of CD model

  11. Cooling Performance of TBM-shield Designed for Manufacturability

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Dae; Lee, Dong Won; Kim, Dong Jun; Yoon, Jae Sung [KAERI, Daejeon (Korea, Republic of); Ahn, Mu Young [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    Helium cooled ceramic reflector (HCCR) test blanket module (TBM) is composed of four sub-modules and a common back manifold (BM). The associated shield is a water-cooled 316L(N)-IG block with internal cooling channels. The purpose of the TBM-shield is to make the condition with the allowable neutron flux and dose rate level. The radially continuous layers of water and structure were configured. The main purpose of the shield is to reduce the neutron flux by absorbing the neutron in the structure. The water could act as the moderator and cool down the structure which is heated due to the reaction with the neutrons. The moderated neutrons are easily absorbed by the structure. It could meet the criteria for the minimum neutron flux by increasing the thickness of structure. The formation of inside cooling channel in the TBM-shield should be considered while maintaining the allowable temperature range. In this work, a manufacturing process including the formation of inside cooling channel was presented. Current design and thermal analysis results for the TBM-shield were presented. The geometry of the shield blocks was considerably changed. The coolant channel was exposed to the outer surface of the TBM-shield. The overall manufacturing process is simplified compared with the previous process of CD model.

  12. Analysis of crack-formation in the shielding concrete of a TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Linsbauer, H.; Maydl, P.

    1978-01-01

    Within a short time after the start-up of the reactor several cracks appeared at the concrete surface and the number and width of the cracks had grown till now. Experimental and theoretical analysis were made in order to investigate the origin of the cracks and to prevent further crack increase. Crack movement was measured by inductive gages and simultaneously the temperature of the cooling water in the reactor tank at the top and at the bottom as well as the air and the concrete temperature were recorded. The calculations of the thermal stresses were made in two independent ways: 1. Analytically, simulating the shielding concrete as an infinite hollow cylinder of constant thickness and 2. Using the Finite Element method, for a better description of the geometry. It was concluded that the cracks of the shielding concrete are exclusively caused by the thermal stresses. The thermal insulation at the lower part of the shielding is not effective. The structural system of the shielding concrete as a monolithic block without joints produces automatically tensile stresses

  13. Uranium-lead shielding for nuclear material transportation systems

    International Nuclear Information System (INIS)

    Lusk, E.C.; Miller, N.E.; Basham, S.J. Jr.

    1978-01-01

    The basis for the selection of shielding materials for spent fuel shipping containers is described with comments concerning the favorable and unfavorable aspects of steel, lead, and depleted uranium. A concept for a new type of material made of depleted uranium and lead is described which capitalizes on the best cask shielding characteristics of both materials. This cask shielding is made by filling the shielding cavity with pieces of depleted uranium and then backfilling the interstitial voids with lead. The lead would be bonded to the uranium and also to the cask shells if desired. Shielding density approaching 80 percent of that of solid uranium could be achieved, while a density of 65 percent is readily obtainable. This material should overcome the problems of the effect of lead melting in the fire accident, high thermal gradients at uranium-stainless steel interfaces and at a major reduction in cost over that of a solid uranium shielded cask. A development program is described to obtain information on the properties of the composite material to aid in design analysis and licensing and to define the fabrication techniques

  14. Mechanical design of the TIBER breeding shield

    Energy Technology Data Exchange (ETDEWEB)

    Rathke, J.; Deutsch, L. (Grumman Corp., Bethpage, NY (USA). Space Systems Div.)

    1989-04-01

    TIBER features a segmented shield assembly that provides the nuclear shielding for the superconducting toroidal field coils. In addition to its primary function, the shield also provides tritium breeding through the use of water coolant that contains 16 wt% dissolved lithium nitrate. Because the TIBER reactor need not provide electrical power, the coolant is maintained at low pressure (0.2 MPa) and low temperature (75/sup 0/C). The shield is made in several segments to facilitate assembly and allow for replacement of high heat flux components (divertor blades). The segments are designated as inboard, outboard, upper, lower, and divertor modules. In total, there are 96 separate modules in the machine, consisting of six different types. The design features of the different modules vary primarily depending on the thickness of the shield in a given location. The very thick outboard shield has a breeding zone in the inboard portion of the module, with a shielding zone behind it. The breeding zone consists of a stainless steel casing filled with beryllium spheres. The shielding zone consists of the same casing filled with steel spheres. Both of these zones have lithiated water circulated throughout to provide cooling and breeding. In zones with minimal thickness, tungsten alloys are used to achieve the required shielding. These alloys are incoprorated in subassemblies utilizing stainless steel casings surrounding blocks of tungsten heavy metal alloy. These are infiltrated with lead on final assembly to form a thermally continuous panel. Several of these panels are then assembled into an outer stainless steel case to form an inboard module. These modules also use the lithiated coolant. The details of the design are presented and discussed. (orig.).

  15. Magnetic shield effect simulation of superconducting film shield covering directly coupled HTS dc-SQUID magnetometer

    International Nuclear Information System (INIS)

    Terauchi, N.; Noguchi, S.; Igarashi, H.

    2011-01-01

    A superconducting film shield over a SQUID ring improves the robustness of the SQUID with respect to magnetic noise. Supercurrent in the SQUID magnetometer and the superconducting film shield were simulated. The superconducting film shield reduces the influence of the external magnetic field on the SQUID ring. An HTS SQUID is a high sensitive magnetic sensor. In recent years, the HTS SQUID is widely used in various applications. In some applications, high robustness with respect to magnetic noise is required to realize stable operation at outside of a magnetic shielding room. The target of this paper is a directly coupled HTS dc-SQUID magnetometer. To enhance the robustness of the SQUID magnetometer, use of a superconducting thin film shield has been proposed. The magnetic field directly penetrating the SQUID ring causes the change of the critical current of Josephson junction, and then the SQUID magnetometer transitions into inoperative state. In order to confirm the magnetic shield effect of the superconducting film shield, electromagnetic field simulation with 3D edge finite element method was performed. To simulate the high temperature superconductor, E-J characteristics and c-axis anisotropy are considered. To evaluate the effect of the superconducting film shield, an external magnetic field which is supposed to be a magnetic noise is applied. From the simulation results, the time transition of the magnetic flux penetrating the SQUID ring is investigated and the effect of the superconducting film shield is confirmed. The amplitude of the magnetic flux penetrating the SQUID ring can be reduced to about one-sixth since the superconducting film shield prevents the magnetic noise from directly penetrating the SQUID ring.

  16. Remote sampling and analysis of highly radioactive samples in shielded boxes

    International Nuclear Information System (INIS)

    Kirpikov, D.A.; Miroshnichenko, I.V.; Pykhteev, O.Yu.

    2010-01-01

    The sampling procedure used for highly radioactive coolant water is associated with high risk of personnel irradiation and uncontrolled radioactive contamination. Remote sample manipulation with provision for proper radiation shielding is intended for safety enhancement of the sampling procedure. The sampling lines are located in an isolated compartment, a shielded box. Various equipment which enables remote or automatic sample manipulation is used for this purpose. The main issues of development of the shielded box equipment intended for a wider ranger of remote chemical analyses and manipulation techniques for highly radioactive water samples are considered in the paper. There were three principal directions of work: Transfer of chemical analysis performed in the laboratory inside the shielded box; Prevalence of computer-aided and remote techniques of highly radioactive sample manipulation inside the shielded box; and, Increase in control over sampling and determination of thermal-hydraulic parameters of the coolant water in the sampling lines. The developed equipment and solutions enable remote chemical analysis in the restricted volume of the shielded box by using ion-chromatographic, amperometrical, fluorimetric, flow injection, phototurbidimetric, conductometric and potentiometric methods. Extent of control performed in the shielded box is determined taking into account the requirements of the regulatory documents as well as feasibility and cost of the technical adaptation of various methods to the shielded box conditions. The work resulted in highly precise determination of more than 15 indexes of the coolant water quality performed in on-line mode in the shielded box. It averages to 80% of the total extent of control performed at the prototype reactor plants. The novel solutions for highly radioactive sample handling are implemented in the shielded box (for example, packaging, sample transportation to the laboratory, volume measurement). The shielded box is

  17. Development of neutron shielding material for cask

    International Nuclear Information System (INIS)

    Najima, K.; Ohta, H.; Ishihara, N.; Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    Since 1980's Mitsubishi Heavy Industries, Ltd (MHI) has established transport and storage cask design 'MSF series' which makes higher payload and reliability for long term storage. MSF series transport and storage cask uses new-developed neutron shielding material. This neutron shielding material has been developed for improving durability under high condition for long term. Since epoxy resin contains a lot of hydrogen and is comparatively resistant to heat, many casks employ epoxy base neutron shielding material. However, if the epoxy base neutron shielding material is used under high temperature condition for a long time, the material deteriorates and the moisture contained in it is released. The loss of moisture is in the range of several percents under more than 150 C. For this reason, our purpose was to develop a high durability epoxy base neutron shielding material which has the same self-fire-extinction property, high hydrogen content and so on as conventional. According to the long-time heating test, the weight loss of this new neutron shielding material after 5000 hours heating has been lower than 0.04% at 150 C and 0.35% at 170 C. A thermal test was also performed: a specimen of neutron shielding material covered with stainless steel was inserted in a furnace under condition of 800 C temperature for 30 minutes then was left to cool down in ambient conditions. The external view of the test piece shows that only a thin layer was carbonized

  18. The Monbusho/US shielded HFIR irradiation experiment: HFIR-MFE-RB-11J and 12J (P3-3)

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; Lenox, K.E.; Janney, M.A. [Oak Ridge National Lab., TN (United States)] [and others

    1997-08-01

    This experiment is a joint project between the Japanese Monbushu, the Japan Atomic Energy Research Institute, and the U.S. Fusion Energy Sciences Program. It is the first of a series of experiments using europium oxide as a thermal neutron shield to minimize transmutations in vanadium alloys and ferritic/martensitic steels. The europium oxide shields were developed using ceramic processing techniques culminating in cold pressing and sintering. This experiment, which is a prototype for future fast neutron experiments in the HFIR, contains approximately 3200 specimens of 18 different types. The experiment began operating at 300 and 500{degrees}C in February 1997 and is projected to attain its goal fluence of {approximately} 5 dpa in February 1998.

  19. Initial Operation of the Nuclear Thermal Rocket Element Environmental Simulator

    Science.gov (United States)

    Emrich, William J., Jr.; Pearson, J. Boise; Schoenfeld, Michael P.

    2015-01-01

    The Nuclear Thermal Rocket Element Environmental Simulator (NTREES) facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The NTREES facility has recently been upgraded such that the power capabilities of the facility have been increased significantly. At its present 1.2 MW power level, more prototypical fuel element temperatures nay now be reached. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during testing In this new higher power configuration, NTREES will be capable of testing fuel elements and fuel materials at near-prototypic power densities. As checkout testing progressed and as higher power levels were achieved, several design deficiencies were discovered and fixed. Most of these design deficiencies were related to stray RF energy causing various components to encounter unexpected heating. Copper shielding around these components largely eliminated these problems. Other problems encountered involved unexpected movement in the coil due to electromagnetic forces and electrical arcing between the coil and a dummy test article. The coil movement and arcing which were encountered during the checkout testing effectively destroyed the induction coil in use at

  20. Penetration portion shielding structure

    International Nuclear Information System (INIS)

    Hayashi, Katsumi; Narita, Hitoshi; Handa, Hiroyuki; Takeuchi, Jun; Tozuka, Fumio.

    1994-01-01

    Openings of a plurality of shieldings for penetration members are aligned to each other, and penetration members are inserted from the openings. Then, the openings of the plurality of shielding members are slightly displaced with each other to make the penetration portions into a helical configuration, so that leakage of radiation is reduced. Upon removal of the members, reverse operation is conducted. When a flowable shielding material is used, the penetration portions are constituted with two plates having previously formed openings and pipes for connecting the openings with each other and a vessel covering the entire of them. After passing the penetration members such as a cable, the relative position of the two plates is changed by twisting, to form a helical configuration which reduces radiation leakage. Since they are bent into the helical configuration, shielding performance is extremely improved compared with a case that radiation leakage is caused from an opening of a straight pipe. In addition, since they can be returned to straight pipes, attachment, detachment and maintenance can be conducted easily. (N.H.)

  1. RSMASS: A simple model for estimating reactor and shield masses

    International Nuclear Information System (INIS)

    Marshall, A.C.; Aragon, J.; Gallup, D.

    1987-01-01

    A simple mathematical model (RSMASS) has been developed to provide rapid estimates of reactor and shield masses for space-based reactor power systems. Approximations are used rather than correlations or detailed calculations to estimate the reactor fuel mass and the masses of the moderator, structure, reflector, pressure vessel, miscellaneous components, and the reactor shield. The fuel mass is determined either by neutronics limits, thermal/hydraulic limits, or fuel damage limits, whichever yields the largest mass. RSMASS requires the reactor power and energy, 24 reactor parameters, and 20 shield parameters to be specified. This parametric approach should be applicable to a very broad range of reactor types. Reactor and shield masses calculated by RSMASS were found to be in good agreement with the masses obtained from detailed calculations

  2. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    Science.gov (United States)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  3. Neutron guide shielding for the BIFROST spectrometer at ESS

    OpenAIRE

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, Carsten P.; Lefmann, K.; Klinkby, E. B.

    2016-01-01

    We report on the study of fast-neutron background for the BIFROST spectrometerat ESS. We investigate the effect of background radiation induced by the interaction of fast neutrons from the source with the material of the neutron guide and devise a reasonable fast, thermal/cold neutron shielding solution for the current guide geometry using McStas and MCNPX. We investigate the effectiveness of the steel shielding around the guide by running simulations with three different steel thicknesses. T...

  4. First wall thermal hydraulic models for fusion blankets

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1980-01-01

    Subject to normal and off-normal reactor conditions, thermal hydraulic models of first walls, e.g., a thermal mass barrier, a tubular shield, and a radiating liner are reviewed. Under normal operation the plasma behaves as expected in a predicted way for transient and steady-state conditions. The most severe thermal loading on the first wall occurs when the plasma becomes unstable and dumps its energy on the wall in a very short period of time (milliseconds). Depending on the plasma dump time and area over which the energy is deposited may result in melting of the first wall surface, and if the temperature is high enough, vaporization

  5. MEANS FOR SHIELDING AND COOLING REACTORS

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1959-02-10

    Reactors of the water-cooled type and a means for shielding such a rcactor to protect operating personnel from harmful radiation are discussed. In this reactor coolant tubes which contain the fissionable material extend vertically through a mass of moderator. Liquid coolant enters through the bottom of the coolant tubes and passes upwardly over the fissionable material. A shield tank is disposed over the top of the reactor and communicates through its bottom with the upper end of the coolant tubes. A hydrocarbon shielding fluid floats on the coolant within the shield tank. With this arrangements the upper face of the reactor can be opened to the atmosphere through the two superimposed liquid layers. A principal feature of the invention is that in the event radioactive fission products enter thc coolant stream. imposed layer of hydrocarbon reduces the intense radioactivity introduced into the layer over the reactors and permits removal of the offending fuel material by personnel shielded by the uncontaminated hydrocarbon layer.

  6. Integrating Army Aviation into the Combined Arms Team: Operational Art in Desert Shield and Desert Storm

    Science.gov (United States)

    2017-05-25

    King of Saudi Arabia. The conversation took place prior to an Organization of the Petroleum Exporting Countries (OPEC) meeting of Arab Gulf members...Blumberg and Christopher C. French, eds., The Persian Gulf War: Views from the Social and Behavioral Sciences (Lanham, MD: University Press of America...1994), 17. 72 Blumberg and French, The Persian Gulf War, 29. 20 building up forces in northeast Saudi Arabia during Operation Desert Shield, in

  7. Topical safety analysis report for the transportation of the NUHOMS reg-sign dry shielded canister

    International Nuclear Information System (INIS)

    1993-08-01

    This Topical Safety Analysis Report (SAR) describes the design and the generic transportation licensing basis for utilizing the NUTECH HORIZONTAL MODULAR STORAGE (NUHOMS reg-sign) system dry shielded canister (DSC) containing twenty-four pressurized water reactor (PWR) spent fuel assemblies (SFA) in conjunction with a conceptually designed Transportation Cask. This SAR documents the design qualification of the NUHOMS reg-sign DSC as an integral part of a 10CFR71 Fissile Material Class III, Type B(M) Transportation Package. The package consists of the canister and a conceptual transportation cask (NUHOMS reg-sign Transportation Cask) with impact limiters. Engineering analysis is performed for the canister to confirm that the existing canister design complies with 10CFR71 transportation requirements. Evaluations and/or analyses is performed for criticality safety, shielding, structural, and thermal performance. Detailed engineering analysis for the transportation cask will be submitted in a future SAR requesting 10CFR71 certification of the complete waste package. Transportation operational considerations describe various operational aspects of the canister/transportation cask system. operational sequences are developed for canister transfer from storage to the transportation cask and interfaces with the cask auxiliary equipment for on- and off-site transport

  8. Double-layer neutron shield design as neutron shielding application

    Science.gov (United States)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    The shield design in particle accelerators and other high energy facilities are mainly connected to the high-energy neutrons. The deep penetration of neutrons through massive shield has become a very serious problem. For shielding to be efficient, most of these neutrons should be confined to the shielding volume. If the interior space will become limited, the sufficient thickness of multilayer shield must be used. Concrete and iron are widely used as a multilayer shield material. Two layers shield material was selected to guarantee radiation safety outside of the shield against neutrons generated in the interaction of the different proton energies. One of them was one meter of concrete, the other was iron-contained material (FeB, Fe2B and stainless-steel) to be determined shield thicknesses. FLUKA Monte Carlo code was used for shield design geometry and required neutron dose distributions. The resulting two layered shields are shown better performance than single used concrete, thus the shield design could leave more space in the interior shielded areas.

  9. Normalization of shielding structure quality and the method of its studying

    International Nuclear Information System (INIS)

    Bychkov, Ya.A.; Lavdanskij, P.A.

    1987-01-01

    Method for evaluation of nuclear facility radiation shield quality is suggested. Indexes of shielding structure radiation efficiency and face efficiency are used as the shielding structure quality indexes. The first index is connected with radiation dose rate during personnel irradiation behind the shield, and the second one - with the stresses in shielding structure introduction of the indexes presented allows to evaluate objectively the quality of nuclear facility shielding structure quality design construction and operation and to economize labour and material resources

  10. Self-shielding factors for TLD-600 and TLD-100 in an isotropic flux of thermal neutrons

    International Nuclear Information System (INIS)

    Horowitz, Y.S.; Dubi, A.; Ben Shahar, B.

    1976-01-01

    The applications of lithium fluoride thermoluminescent dosemeters in mixed n-γ environments, and the dependence of LiF-TL on linear energy transfer are both topics of current interest. Monte Carlo calculations have therefore been carried out to determine the thermal neutron absorption probability (and consequently the self-shielding factor) for an isotropic flux of neutrons impinging on different sized cylindrical samples of LiF TLD-100 and TLD-600. The calculations were performed for cylinders of radius up to 10 cm and heights of 0.1 to 1.5 cm. The Monte Carlo results were found to be significantly different from the analytic calculations for infinitely long cylinders, but, as expected, converged to the same value for (r/h) << 1. (U.K.)

  11. Computational models for electromagnetic transients in ITER vacuum vessel, cryostat and thermal shield

    International Nuclear Information System (INIS)

    Alekseev, A.; Arslanova, D.; Belov, A.; Belyakov, V.; Gapionok, E.; Gornikel, I.; Gribov, Y.; Ioki, K.; Kukhtin, V.; Lamzin, E.; Sugihara, M.; Sychevsky, S.; Terasawa, A.; Utin, Y.

    2013-01-01

    A set of detailed computational models are reviewed that covers integrally the system “vacuum vessel (VV), cryostat, and thermal shields (TS)” to study transient electromagnetics (EMs) in the ITER machine. The models have been developed in the course of activities requested and supervised by the ITER Organization. EM analysis is enabled for all ITER operational scenarios. The input data are derived from results of DINA code simulations. The external EM fields are modeled accurate to the input data description. The known magnetic shell approach can be effectively applied to simulate thin-walled structures of the ITER machine. Using an integral–differential formulation, a single unknown is determined within the shells in terms of the vector electric potential taken only at the nodes of a finite-element (FE) mesh of the conducting structures. As a result, the FE mesh encompasses only the system “VV + Cryostat + TS”. The 3D model requires much higher computational resources as compared to a shell model based on the equivalent approximation. The shell models have been developed for all principal conducting structures in the system “VV + Cryostat + TS” including regular ports and neutral beam ports. The structures are described in details in accordance with the latest design. The models have also been applied for simulations of EM transients in components of diagnostic systems and cryopumps and estimation of the 3D effects of the ITER structures on the plasma performance. The developed models have been elaborated and applied for the last 15 years to support the ITER design activities. The finalization of the ITER VV design enables this set of models to be considered ready to use in plasma-physics computations and the development of ITER simulators

  12. Problems of the power plant shield optimization

    International Nuclear Information System (INIS)

    Abagyan, A.A.; Dubinin, A.A.; Zhuravlev, V.I.; Kurachenko, Yu.A.; Petrov, Eh.E.

    1981-01-01

    General approaches to the solution of problems on the nuclear power plant radiation shield optimization are considered. The requirements to the shield parameters are formulated in a form of restrictions on a number of functionals, determined by the solution of γ quantum and neutron transport equations or dimensional and weight characteristics of shield components. Functional determined by weight-dimensional parameters (shield cost, mass and thickness) and functionals, determined by radiation fields (equivalent dose rate, produced by neutrons and γ quanta, activation functional, radiation functional, heat flux, integral heat flux in a particular part of the shield volume, total energy flux through a particular shield surface are considered. The following methods of numerical solution of simplified optimization problems are discussed: semiempirical methods using radiation transport physical leaks, numerical solution of approximate transport equations, numerical solution of transport equations for the simplest configurations making possible to decrease essentially a number of variables in the problem. The conclusion is drawn that the attained level of investigations on the problem of nuclear power plant shield optimization gives the possibility to pass on at present to the solution of problems with a more detailed account of the real shield operating conditions (shield temperature field account, its strength and other characteristics) [ru

  13. Radiation protection and shielding design - Strengthening the link

    International Nuclear Information System (INIS)

    Hobson, J.; Cooper, A.

    2005-01-01

    The improvement in quality and flexibility of shielding methods and data has been progressive and beneficial in opening up new opportunities for optimising radiation protection in design. The paper describes how these opportunities can best be seized by taking a holistic view of radiation protection, with shielding design being an important component part. This view is best achieved by enhancing the role of 'shielding assessors' so that they truly become 'radiation protection designers'. The increase in speed and efficiency of shielding calculations has been enormous over the past decades. This has raised the issue of how the assessor's time now can be best utilised; pursuing ever greater precision and accuracy in shielding/dose assessments, or improving the contribution that shielding assessment makes to radiological protection and cost-effective design. It is argued in this paper that the latter option is of great importance and will give considerable benefits. Shielding design needs to form part of a larger radiation protection perspective based on a deep understanding/appreciation of the opportunities and constraints of operators and designers, enabling minimal design iterations, cost optimisation of alternative designs (with a 'lifetime' perspective) and improved realisation of design intent in operations. The future of shielding design development is argued to be not in improving the 'tool-kit', but in enhanced understanding of the 'product' and the 'process' for achieving it. The holistic processes being developed in BNFL to realise these benefits are described in the paper and will be illustrated by case studies. (authors)

  14. Radiation shielding activities at the OECD/Nuclear Energy Agency

    International Nuclear Information System (INIS)

    Sartori, Enrico; Vaz, Pedro

    2000-01-01

    The OECD Nuclear Energy Agency (NEA) has devoted considerable effort over the years to radiation shielding issues. The issues are addressed through international working groups. These activities are carried out in close co-ordination and co-operation with the Radiation Safety Information Computational Center (RSICC). The areas of work include: basic nuclear data activities in support of radiation shielding, computer codes, shipping cask shielding applications, reactor pressure vessel dosimetry, shielding experiments database. The method of work includes organising international code comparison exercises and benchmark studies. Training courses on radiation shielding computer codes are organised regularly including hands-on experience in modelling skills. The scope of the activity covers mainly reactor shields and spent fuel transportation packages, but also fusion neutronics and in particular shielding of accelerators and irradiation facilities. (author)

  15. In-beam background suppression shield

    DEFF Research Database (Denmark)

    Santoro, V.; Cai, Xiao Xiao; DiJulio, D. D.

    2015-01-01

    The long (3 ms) proton pulse of the European Spallation Source (ESS) gives rise to unique and potentially high backgrounds for the instrument suite. In such a source an instrument's capabilities will be limited by its Signal to Noise (S/N) ratio. The instruments with a direct view of the moderator......, which do not use a bender to help mitigate the fast neutron background, are the most challenging. For these beam lines we propose the innovative shielding of placing blocks of material directly into the guide system, which allow a minimum attenuation of the cold and thermal fluxes relative...... to the background suppression. This shielding configuration has been worked into a beam line model using Geant4. We study particularly the advantages of single crystal sapphire and silicon blocks....

  16. Method for assembling dynamoelectric machine end shield parts

    International Nuclear Information System (INIS)

    Thomson, J.M.

    1984-01-01

    Methods, apparatus, and systems are provided for automatically assembling end shield assemblies of subassemblies for electric motors. In a preferred form, a system and methods are provided that utilize a non-palletized, non-synchronous concept to convey end shields through a number of assembly stations. At process stations situated along a conveyor, operations are performed on components. One method includes controlling traffic of sub-assemblies by toggle type escapements. A stop or latch of unique design stops end shield components in midstream, and ''lifts'' of unique design disengage parts from the conveyor and also support such parts during various operations. Photo-optic devices and proximity and reed switch mechanisms are utilized for control purposes. The work stations involved in one system include a unique assembly and pressing station involving oil well covers; a unique feed wick seating system; a unique lubricant adding operation; and unique ''building block'' mechanisms and methods

  17. Light-refractory radiation shielding materials using diatomites and zeolites

    International Nuclear Information System (INIS)

    Murakami, Hideki

    2005-01-01

    It has been recently shown that diatomites and zeolites have some useful characteristics for radiation shielding materials. In this study, the availability of these materials for unexpected accidents in the nuclear sites is examined. The diatomites and zeolites, compared to existing shielding materials, have superior characteristics; low density and light weight, low in radiation-induced problem, high-heat resistance, remain unaltered by the addition of an acid except hydrofluoric acid, porous and large specific surface area, and also excellent water-absorbing property. These porous materials could also expand the shielding energy range applied and be used for fast- and thermal-neutrons, and γ ray. In addition, these materials are easy to store for long periods of time against emergency because of their natural rocks. From the examinations, it is cleared that diatomites and zeolites have excellent properties as radiation shielding materials for emergency use. (author)

  18. A survey of Alberta physicians' use of and attitudes toward face masks and face shields in the operating room setting.

    Science.gov (United States)

    Davis, Philip J; Spady, Donald; Forgie, Sarah E D

    2007-09-01

    There is little evidence that surgical mask use by physicians in the operating room (OR) reduces surgical site infections (SSIs), but masks do protect the wearer from potentially infectious splashes. Face shields offer even more protection because they cover the eyes, but they may be perceived as offering less protection to the patient than do masks. The objectives of this study were to ascertain if there were predictors to determine which OR physicians are continuing to use masks and what their reasons are for doing so, and which OR physicians would accept face shields and their reasons for doing so. We surveyed the province of Alberta's surgeons, general practice (GP) surgeons, anesthesiologists, and GP anesthetists to determine how many physicians in the OR wear surgical masks, their reasons for wearing surgical masks (ethical, legal, protection of the patient, protection of the wearer), and if they believe that face shields offer more protection to the patient or to the wearer. We also sought to examine which demographic factors affected their responses. The data were examined with chi(2) analysis to assess the relationships of age and practitioner type, and for various outcome variables. A significance level of P masks; masks are worn to prevent the spread of disease, not because it is tradition to do so; masks protect the wearer more than do face shields; and wearing face shields alone will subject the patient to higher rates of SSIs. Surgeons are more likely than are anesthesiologists to wear surgical masks in the OR and wear a surgical mask and a face shield if the patient has risk factors for a blood borne infection. According to our survey, age and profession were the most important variables that affected the potential use of surgical masks and face shields. Younger OR physicians likely would be amenable to using face shields in addition to masks in the OR to protect themselves from exposure to blood or bodily fluids.

  19. Evaluation of thermal overload in boiler operators.

    Science.gov (United States)

    Braga, Camila Soares; Rodrigues, Valéria Antônia Justino; Campos, Julio César Costa; de Souza, Amaury Paulo; Minette, Luciano José; de Moraes, Angêlo Casali; Sensato, Guilherme Luciano

    2012-01-01

    The Brazilians educational institutions need a large energy demand for the operation of laundries, restaurants and accommodation of students. Much of that energy comes from steam generated in boilers with wood fuel. The laboral activity in boiler may present problems for the operator's health due to exposure to excessive heat, and its operation has a high degree of risk. This paper describes an analysis made the conditions of thermal environment in the operation of a B category boiler, located at a Higher Education Institution, located in the Zona da Mata Mineira The equipments used to collect data were Meter WBGT of the Heat Index; Meter of Wet Bulb Index and Globe Thermometer (WBGT); Politeste Instruments, an anemometer and an Infrared Thermometer. By the application of questionnaires, the second phase consisted of collecting data on environmental factors (temperature natural environment, globe temperature, relative humidity and air velocity). The study concluded that during the period evaluated, the activity had thermal overload.

  20. Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development

    International Nuclear Information System (INIS)

    Berg, Thomas A.; Disney, Richard K.

    2004-01-01

    Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs

  1. Design considerations for Mars transfer vehicles using nuclear thermal propulsion

    Science.gov (United States)

    Emrich, William J.

    1995-01-01

    The design of a Mars Transfer Vehicle (MTV) utilizing nuclear propulsion will require that careful consideration be given to the nuclear radiation environment in which it will operate. The extremely high neutron and gamma fluxes characteristic of nuclear thermal propulsion systems will cause significant heating of the fluid systems in close proximity to the reactor, especially in the lower propellant tanks. Crew radiation doses are also a concern particularly late in a mission when there is less shielding from the propellant tanks. In this study, various vehicle configuration and shielding strategies were examined and the resulting time dependent radiation fields evaluated. A common cluster of three particle bed reactor (PBR) engines were used in all configurations examined. In general, it appears that long, relatively narrow vehicles perform the best from a radiation standpoint, however, good shield optimization will be critical in maintaining a low radiation environment while minimizing the shield weight penalty.

  2. Improving electrical equipment and control systems for shield integrated mining systems

    Energy Technology Data Exchange (ETDEWEB)

    Rabinovich, Z.M.; Starikov, B.Ya.; Kibrik, I.S.

    1984-06-01

    The design and operation are discussed for electrical equipment and control systems for the 1AShchM, the ANShch and the 2ANShch shield integrated face systems consisting of shield supports, coal plow and chain conveyor. The shield system is used for mining inclined and steep coal seams endangered by coal dust explosions, methane or rock bursts. Control and electrical system for 3 types of shield face mining systems is similar. It cuts energy supply when methane content at working faces exceeds the maximum permissible level, controls haulage rate and cutting rate of a coal plow, controls operation of shield supports (using the Sirena system), controls dust suppression system and its water consumption. The system is also equipped with communications equipment. Tests of the control and electrical system for the integrated shield system carried out in the im. Gagarin mine in the Ukraine are described. The VAUS III control system developed by Dongiprouglemash was tested.

  3. Design and calibration of a test facility for MLI thermal performance measurements below 80K

    International Nuclear Information System (INIS)

    Boroski, W.; Kunzelman, R.; Ruschman, M.; Schoo, C.

    1992-04-01

    The design geometry of the SSC dipole cryostat includes active thermal radiation shields operating at 80K and 20K respectively. Extensive measurements conducted in a Heat Leak Test Facility (HLTF) have been used to evaluate the thermal performance of candidate multilayer insulation (MLI) systems for the 80K thermal shield, with the present system design based upon those measurement results. With the 80K MLI geometry established, efforts have focused on measuring the performance of MLI systems near 20K. A redesign of the HLTF has produced a measurement facility capable of conducting measurements with the warm boundary fixed at 80K and the cold boundary variable from 10K to 50K. Removing the 80K shield permits measurements with a warm boundary at 300K. The 80K boundary consists of a copper shield thermally anchored to a liquid nitrogen reservoir. The cold boundary consists of a copper anchor plate whose temperature is varied through boil-off gas from a 500 liter helium supply dewar. A transfer line heat exchanger supplies the boil-off gas to the anchor plate at a constant and controlled rate. The gas, which serves as cooling gas, is routed through a copper cooling tube soldered into the anchor plate. Varying the cooling gas flow rate varies the amount of refrigeration supplied to the anchor plate, thereby determining the plate temperature. A resistance heater installed on the anchor plate is regulated by a cryogenic temperature controller to provide final temperature control. Heat leak values are measured using a heatmeter which senses heat flow as a temperature gradient across a fixed thermal impedance. Since the thermal conductivity of the thermal impedance changes with temperature, the heatmeter is calibrated at key cold boundary temperatures. Thus, the system is capable of obtaining measurement data under a variety of system conditions. 7 refs

  4. Methods and procedures for shielding analyses for the SNS

    International Nuclear Information System (INIS)

    Popova, I.; Ferguson, F.; Gallmeier, F.X.; Iverson, E.; Lu, Wei

    2011-01-01

    In order to provide radiologically safe Spallation Neutron Source operation, shielding analyses are performed according to Oak Ridge National Laboratory internal regulations and to comply with the Code of Federal Regulations. An overview of on-going shielding work for the accelerator facility and neutrons beam lines, methods used for the analyses, and associated procedures and regulations are presented. Methods used to perform shielding analyses are described as well. (author)

  5. Fabrication of full-size mock-up for 10° section of ITER vacuum vessel thermal shield

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dong Kwon [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Nam, Kwanwoo, E-mail: kwnam@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kang, Kyoung-O; Noh, Chang Hyun; Chung, Wooho [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Lim, Kisuk; Kang, Youngkil [SFA Engineering Corp., Asan-si, Chungcheongnam-do 336-873 (Korea, Republic of); Hamlyn-Harris, Craig; Her, Namil; Robby, Hicks [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    In this paper, a full-scale prototype fabrication for vacuum vessel thermal shield (VVTS) of ITER tokamak is described and test results are reported. All the manufacturing processes except for silver coating were performed in the fabrication of 10° section of VVTS. Pre-qualification test was conducted to compare the vertical and the horizontal welding positions. After shell welding, shell distortion was measured and adjusted. Shell thickness change was also measured after buffing process. Specially, VVTS ports need large bending and complex welding of shell and flange. Bending method for the complex and long cooling tube layout especially for the VVTS ports was developed in detail. Dimensional inspection of the fabricated mock-up was performed with a 3D laser scanner and the scanning data was analyzed.

  6. Analysis of piping response to thermal and operational transients

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1987-01-01

    The reactor piping system is an extremely complex three-dimensional structure. Maintaining its structural integrity is essential to the safe operation of the reactor and the steam-supply system. In the safety analysis, various transient loads can be imposed on the piping which may cause plastic deformation and possible damage to the system, including those generated from hydrodynamic wave propagations, thermal and operational transients, as well as the seismic events. At Argonne National Laboratory (ANL), a three-dimensional (3-D) piping code, SHAPS, aimed for short-duration transients due to wave propagation, has been developed. Since 1984, the development work has been shifted to the long-duration accidents originating from the thermal and operational transient. As a result, a new version of the code, SHAPS-2, is being established. This paper describes many features related to this later development. To analyze piping response generated from thermal and operational transients, a 3-D implicit finite element algorithm has been developed for calculating the hoop, flexural, axial, and torsional deformations induced by the thermomechanical loads. The analysis appropriately accounts for stresses arising from the temperature dependence of the elastic material properties, the thermal expansion of the materials, and the changes in the temperature-dependent yield surface. Thermal softening, failure, strain rate, creep, and stress ratching can also be considered

  7. Electromagnetic behaviour of the shield in turbogenerators with superconducting solenoids

    International Nuclear Information System (INIS)

    Del Vecchio, P.; Veca, G.M.; Sacerdoti, G.

    1975-11-01

    The structure of turbogenerators with superconducting solenoids is analyzed and the investigation of electromagnetic behaviour of the rotating shield is presented. The cases considered are: (a) An hypothetical operation with a single phase with nominal current; (b) Steady-state operation in inverse sequence with 10% of the nominal current; (c) A step variation of the magnetic field intensity in the shield

  8. Thermal Performance of the LHC Short Straight Section Cryostat

    CERN Document Server

    Bergot, J B; Nielsen, L; Parma, Vittorio; Rohmig, P; Roy, E

    2002-01-01

    The LHC Short Straight Section (SSS) cryostat houses and thermally protects in vacuum the cold mass which contains a twin-aperture superconducting quadrupole magnet and superconducting corrector magnets operating at 1.9 K in superfluid helium. In addition to mechanical requirements, the cryostat is designed to minimize the heat in-leak from the ambient temperature to the cold mass. Mechanical components linking the cold mass to the vacuum vessel such as support posts and an insulation vacuum barrier are designed to have minimum heat conductivity with efficient thermalisations for heat interception. Heat in-leak by radiation is reduced by employing multilayer insulation wrapped around the cold mass and an actively cooled aluminium thermal shield. The recent commissioning and operation of two SSS prototypes in the LHC Test String 2 have given a first experimental validation of the thermal performance of the SSS cryostat in nominal operating conditions. Temperature sensors mounted in critical locations provide a...

  9. Shielding design for positron emission tomography facility

    International Nuclear Information System (INIS)

    Abdallah, I.I.

    2007-01-01

    With the recent advent of readily available tracer isotopes, there has been marked increase in the number of hospital-based and free-standing positron emission tomography (PET) clinics. PET facilities employ relatively large activities of high-energy photon emitting isotopes, which can be dangerous to the health of humans and animals. This coupled with the current dose limits for radiation worker and members of the public can result in shielding requirements. This research contributes to the calculation of the appropriate shielding to keep the level of radiation within an acceptable recommended limit. Two different methods were used including measurements made at selected points of an operating PET facility and computer simulations by using Monte Carlo Transport Code. The measurements mainly concerned the radiation exposure at different points around facility using the survey meter detectors and Thermoluminescent Dosimeters (TLD). Then the set of manual calculation procedures were used to estimate the shielding requirements for a newly built PEF facility. The results from the measurement and the computer simulation were compared to the results obtained from the set manual calculation procedure. In general, the estimated weekly dose at the points of interest is lower than the regulatory limits for the little company of Mary Hospital. Furthermore, the density and the HVL for normal strength concrete and clay bricks are almost similar. In conclusion, PET facilities present somewhat different design requirements and are more likely to require additional radiation shielding. Therefore, existing shields at the little Company of Mary Hospital are in general found to be adequate and satisfactory and additional shielding was found necessary at the new PET facility in the department of Nuclear Medicine of the Dr. George Mukhari Hospital. By use of appropriate design, by implying specific shielding requirements and by maintaining good operating practices, radiation doses to

  10. Performance and Facility Background Pressure Characterization Tests of NASAs 12.5-kW Hall Effect Rocket with Magnetic Shielding Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Thomas, Robert; Yim, John; Herman, Daniel; Williams, George; Myers, James; Hofer, Richard; hide

    2015-01-01

    NASA's Space Technology Mission Directorate (STMD) Solar Electric Propulsion Technology Demonstration Mission (SEP/TDM) project is funding the development of a 12.5-kW Hall thruster system to support future NASA missions. The thruster designated Hall Effect Rocket with Magnetic Shielding (HERMeS) is a 12.5-kW Hall thruster with magnetic shielding incorporating a centrally mounted cathode. HERMeS was designed and modeled by a NASA GRC and JPL team and was fabricated and tested in vacuum facility 5 (VF5) at NASA GRC. Tests at NASA GRC were performed with the Technology Development Unit 1 (TDU1) thruster. TDU1's magnetic shielding topology was confirmed by measurement of anode potential and low electron temperature along the discharge chamber walls. Thermal characterization tests indicated that during full power thruster operation at peak magnetic field strength, the various thruster component temperatures were below prescribed maximum allowable limits. Performance characterization tests demonstrated the thruster's wide throttling range and found that the thruster can achieve a peak thruster efficiency of 63% at 12.5 kW 500 V and can attain a specific impulse of 3,000 s at 12.5 kW and a discharge voltage of 800 V. Facility background pressure variation tests revealed that the performance, operational characteristics, and magnetic shielding effectiveness of the TDU1 design were mostly insensitive to increases in background pressure.

  11. Neutron guide shielding for the BIFROST spectrometer at ESS

    DEFF Research Database (Denmark)

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, C.P.

    2016-01-01

    We report on the study of fast-neutron background for the BIFROST spectrometer at ESS. We investigate the effect of background radiation induced by the interaction of fast neutrons from the source with the material of the neutron guide and devise a reasonable fast, thermal/cold neutron shielding...... solution for the current guide geometry using McStas and MCNPX. We investigate the effectiveness of the steel shielding around the guide by running simulations with three different steel thicknesses. The same approach is used to study the efficiencies of the steel wall a flat cylinder pierced by the guide...... in the middle and the polyethylene layer. The final model presented here has a 3 cm thick steel shielding around the guide, 30 cm of polyethylene around the shielding, two 5 mm thick B4C layers and a steel wall at position Z = 38 m, being 1 m thick and 10 m in radius. The final model finally proves...

  12. Method of constructing shielding wall

    International Nuclear Information System (INIS)

    Nagao, Tetsuya.

    1990-01-01

    For instance, surfaces of lead particles each formed into a sphere of about 0.5 to 0.3 mm grain size are coated with a coating material of a synthetic resin comprising a polymeric material such as teflon. Subsequently, the floated lead particle are kneaded with concrete materials and then poured into a molding die by way of a hose. After coagulation, the molding die is removed to complete shielding walls in which lead particles are scattered substantially at an equal distance. In this way, since the lead particles are mixed into the shielding walls, shielding effects can be improved by so much as the lead particles are mixed, thereby enabling to reduce the thickness of the shielding walls. Further, since the lead particles are coated with the coating material, the lead particles are insulated from the concrete materials, thereby enabling to prevent the corrosion of the lead particles. Furthermore, since the lead particles and the concrete materials can be transported with ease, operation labors can be reduced. (T.M.)

  13. The assembly of the disk shielding is finished.

    CERN Multimedia

    Vincent Hedberg

    At the end of March, the shielding project engineer, Jan Palla, could draw a sigh of relief when the fourth and final rotation of the disk shielding was carried out without incident. The two 80-ton heavy shielding assemblies were built in a horizontal position and they had to be first turned upside-down and then rotated to a vertical position during the assembly. The relatively thin disk plate with a diameter of 9 meters, made this operation quite delicate and a lot of calculation work and strengthening of the shielding was carried out before the rotations could take place. The disk shielding is being turned upside-down. The stainless steel cylinder in the centre supports the shielding as well as the small muon wheel. The two disk shielding assemblies consist of different materials such as bronze, gray steel, cast iron, stainless steel, boron doped polyethylene and lead. The project is multinational with the major pieces having been made by companies in Armenia, Serbia, Spain, Bulgaria, Italy, Slovaki...

  14. Repository Waste Package Transporter Shielding Weight Optimization

    International Nuclear Information System (INIS)

    C.E. Sanders; Shiaw-Der Su

    2005-01-01

    The Yucca Mountain repository requires the use of a waste package (WP) transporter to transport a WP from a process facility on the surface to the subsurface for underground emplacement. The transporter is a part of the waste emplacement transport systems, which includes a primary locomotive at the front end and a secondary locomotive at the rear end. The overall system with a WP on board weights over 350 metric tons (MT). With the shielding mass constituting approximately one-third of the total system weight, shielding optimization for minimal weight will benefit the overall transport system with reduced axle requirements and improved maneuverability. With a high contact dose rate on the WP external surface and minimal personnel shielding afforded by the WP, the transporter provides radiation shielding to workers during waste emplacement and retrieval operations. This paper presents the design approach and optimization method used in achieving a shielding configuration with minimal weight

  15. Development of the safety control framework for shield tunneling in close proximity to the operational subway tunnels: case studies in mainland China.

    Science.gov (United States)

    Li, Xinggao; Yuan, Dajun

    2016-01-01

    China's largest cities like Beijing and Shanghai have seen a sharp increase in subway network development as a result of the rapid urbanization in the last decade. The cities are still expanding their subway networks now, and many shield tunnels are being or will be constructed in close proximity to the existing operational subway tunnels. The execution plans for the new nearby shield tunnel construction calls for the development of a safety control framework-a set of control standards and best practices to help organizations manage the risks involved. Typical case studies and relevant key technical parameters are presented with a view to presenting the resulting safety control framework. The framework, created through collaboration among the relevant parties, addresses and manages the risks in a systematic way based on actual conditions of each tunnel crossing construction. The framework consists of six parts: (1) inspecting the operational subway tunnels; (2) deciding allowed movements of the existing tunnels and tracks; (3) simulating effects of the shield tunneling on the existing tunnels; (4) doing preparation work; (5) monitoring design and information management; and (6) measures and activation mechanism of the countermeasures. The six components are explained and demonstrated in detail. In the end, discussions made involve construction and post-construction settlement of the operational tunnel, application of the remedial grouting to rectify excessive settlements of the operational tunnel, and use of the innovative tool of the optical fiber measurement for tunnel movement monitoring. It is concluded that the construction movement of the tunnel can be controlled within 15 mm when the shield machine is <7 m in excavation diameter. The post-construction settlement of the tunnel buried in the very soft ground is much greater than its construction settlement, and last several years until reaching a final stable state. Two cases are outlined to demonstrate the

  16. Proceedings of the 10. Meeting on Reactor Physics and Thermal Hydraulics; Anais do 10. Encontro de Fisica de Reatores e Termo-Hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Santos Bastos, W. dos

    1995-12-31

    These proceedings presents all the Meeting papers emphasizing specific aspects on reactor physics method, criticality, fuel management, nuclear data, safety analysis, simulation and shielding, neutronics, thermal hydraulics, reactor operation and computational methods.

  17. Measurement of TFTR D-T radiation shielding efficiency

    International Nuclear Information System (INIS)

    Kugel, H.W.; Ascione G.; Elwood, S.

    1994-01-01

    High power D-T fusion reactor designs presently exhibit complex geometric and material density configurations. Simulations of the radiation shielding required for safe operation and full compliance with all regulatory requirements must include sufficient margin to accommodate uncertainties in material properties and distributions, uncertainties in the final configurations, and uncertainties in approximations employing the homogenization of complex geometries. Measurements of radiation shielding efficiency performed in a realistic D-T tokamak environment can provide empirical guidance for simulating safe, efficient, and cost effective shielding systems for future high power fusion reactors. In this work, the authors present the results of initial measurements of the TFTR radiation shielding efficiency during high power D-T operations with record neutron yields. The TFTR design objective is to limit the total dose-equivalent at the nearest PPPL property lines from all radiation pathways to 10 mrem per calendar year. Compliance with this design objective over a calendar year requires measurements in the presence of typical site backgrounds of about 80 mrem per year

  18. Hot Cell Window Shielding Analysis Using MCNP

    International Nuclear Information System (INIS)

    Pope, Chad L.; Scates, Wade W.; Taylor, J. Todd

    2009-01-01

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  19. Conceptual design for the thermal shield bridges and multilayer insulation in the interconnect region for the SSC

    International Nuclear Information System (INIS)

    Baritchi, D.; Nicol, T.; Boroski, W.

    1991-01-01

    The interconnect region serves as the connection area between magnets. In order to minimize radiant heat transfer in the interconnect area, the authors used shield bridges which span the 80K and 20K shield gap between adjacent magnets. A sliding joint between bridge sections on adjacent magnets accommodates contraction during cool-down. An investigation was done to determine which attachment schemes (riveted or bolted versus welded) are better for heat transfer. Each shield bridge is covered with the same multilayer insulation scheme used throughout the body of the magnet. These shield bridges also contain pressure reliefs for each shield in the event of an internal piping failure. The reliefs are located in the upper half of the shield section in order to prevent liquid spills from impinging directly onto the vacuum vessel wall

  20. Application of plasma shield technology to the reduction, treatment, and disposal of hazardous organic and/or mixed wastes with actinide recovery

    International Nuclear Information System (INIS)

    Adams, B.T.; Vaughan, L.L.; Joyce, E.L. Jr.; Bieniewski, T.M.

    1990-01-01

    Los Alamos research activities are currently directed at the application of the shielded hydrogen plasma torch to the direct production of actinide metals from a UF 6 feedstock. Two broad classes of thermal plasma reactors are currently in widespread use: the direct current (dc) arc jet system and the radio frequency (rf) inductively coupled system. Los Alamos has improved upon the basic rf plasma tube design using the concept of a transformer. The unique feature of the Los Alamos tube is a segmented, cooled, internal radiation shield. The Los Alamos shielded plasma torch routinely achieves temperatures exceeding 10,000 K and electron densities of 10 16 /cm 3 when operated continuously at one atmosphere of argon. These highly energetic conditions are sufficient to dissociate most chemical compounds into their constituent atoms. Based upon these characteristics, Los Alamos is currently investigating the application of the shielded plasma torch technology to the destruction of organic and mixed hazardous wastes, as well as the direct production of actinide metals from the halides and oxides, without the cogeneration of contaminated wastes. 5 refs., 4 figs

  1. Operational Experience from Solar Thermal Energy Projects

    Science.gov (United States)

    Cameron, C. P.

    1984-01-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  2. Topical safety analysis report for the transportation of the NUHOMS{reg_sign} dry shielded canister. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-08-01

    This Topical Safety Analysis Report (SAR) describes the design and the generic transportation licensing basis for utilizing the NUTECH HORIZONTAL MODULAR STORAGE (NUHOMS{reg_sign}) system dry shielded canister (DSC) containing twenty-four pressurized water reactor (PWR) spent fuel assemblies (SFA) in conjunction with a conceptually designed Transportation Cask. This SAR documents the design qualification of the NUHOMS{reg_sign} DSC as an integral part of a 10CFR71 Fissile Material Class III, Type B(M) Transportation Package. The package consists of the canister and a conceptual transportation cask (NUHOMS{reg_sign} Transportation Cask) with impact limiters. Engineering analysis is performed for the canister to confirm that the existing canister design complies with 10CFR71 transportation requirements. Evaluations and/or analyses is performed for criticality safety, shielding, structural, and thermal performance. Detailed engineering analysis for the transportation cask will be submitted in a future SAR requesting 10CFR71 certification of the complete waste package. Transportation operational considerations describe various operational aspects of the canister/transportation cask system. operational sequences are developed for canister transfer from storage to the transportation cask and interfaces with the cask auxiliary equipment for on- and off-site transport.

  3. Neutron shielding characteristics of nano-B2O3 dispersed Poly Vinyl Alcohol

    International Nuclear Information System (INIS)

    Kim, Jae Woo; Uhm, Young Rang; Lee, Min Ku; Lee, Hee Min; Rhee, Chang Kyu

    2008-01-01

    Neutron is sometimes beneficiary to human beings while they are unwanted for most cases same as the other radiations such as gamma, beta, and alpha, etc. do. Shielding for neutrons therefore is extremely important to keep the radiation environment safe. Especially, it is critical to absorb (or shield) neutrons generated from the spent fuel in a container/storage, nuclear reactor, and cyclotron, etc. In this regard, light materials containing neutron absorbers such as borated-polymers are very useful to shield neutrons in those radiation environments. This investigation is focused on the development of borated polymer-based materials whose neutron shielding efficiency is greatly enhanced by using nano sized boron compounds. Boron is well known as a thermal neutron absorber due to its large thermal neutron absorption cross-section (σ th = 760 b, b = 10 -2 - 4 cm 2 ). Although absorption of neutrons in the medium is mainly dependent on the boron atomic weight concentration, we firstly observed the size of boron particles also has an important role in neutron shielding. Mean free path of neutrons colliding with the smaller particles dispersed in the medium might be decreased when it is compared to the larger particles at the same atomic weight concentration. This means that the neutron shielding efficiency of a polymer mixed with the smaller boron compounds is higher than that of a polymer mixed with the larger boron compounds at the same atomic weight boron concentration

  4. Evaluation of radiation-shielding properties of the composite material

    International Nuclear Information System (INIS)

    Pavlenko, V.I.; Chekashina, N.I.; Yastrebinskij, R.N.; Sokolenko, I.V.; Noskov, A.V.

    2016-01-01

    The paper presents the evaluation of radiation-shielding properties of composite materials with respect to gamma-radiation. As a binder for the synthesis of radiation-shielding composites we used lead boronsilicate glass matrix. As filler we used nanotubular chrysotile filled with lead tungstate PbWO4. It is shown that all the developed composites have good physical-mechanical characteristics, such as compressive strength, thermal stability and can be used as structural materials. On the basis of theoretical calculation we described the graphs of the gamma-quanta linear attenuation coefficient depending on the emitted energy for all investigated composites. We founded high radiation-shielding properties of all the composites on the basis of theoretical and experimental data compared to materials conventionally used in the nuclear industry - iron, concrete, etc

  5. Nuclear thermal rocket engine operation and control

    International Nuclear Information System (INIS)

    Gunn, S.V.; Savoie, M.T.; Hundal, R.

    1993-06-01

    The operation of a typical Rover/Nerva-derived nuclear thermal rocket (NTR) engine is characterized and the control requirements of the NTR are defined. A rationale for the selection of a candidate diverse redundant NTR engine control system is presented and the projected component operating requirements are related to the state of the art of candidate components and subsystems. The projected operational capabilities of the candidate system are delineated for the startup, full-thrust, shutdown, and decay heat removal phases of the engine operation. 9 refs

  6. Tower Shielding Reactor II design and operation report. Vol. 3. Assembling and testing of the control mechanism assembly

    International Nuclear Information System (INIS)

    Ward, D.R.; Holland, L.B.

    1979-09-01

    The mechanisms that are operated to control the reactivity of the Tower Shielding Reactor II(TSR-II) are mounted on a Control Mechanism Housing (CMH) that is centered inside the reactor core. The information required to procure, fabricate, inspect, and assemble a CMH is contained in the ORNL engineering drawings listed in the appropriate sections. The components are fabricated and inspected from these drawings in accordance with a Quality Assurance Plan and a Manufacturing Plan. The material in this report describes the acceptance and performance tests of CMH subassemblies used ty the Tower Shielding Facility (TSF) staff but it can also be used by personnel fabricating the components. This information which was developed and used before the advent of the formalized QA Program and Manufacturing Plans evolved during the fabrication and testing of the first five CMHs

  7. Shielding considerations for advanced space nuclear reactor systems

    International Nuclear Information System (INIS)

    Angelo, J.P. Jr.; Buden, D.

    1982-01-01

    To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO 2 ) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The paper reviews the status of this advanced heat pipe reactor and explores the radiation environments and shielding requirements for representative manned and unmanned applications

  8. Graphene shield enhanced photocathodes and methods for making the same

    Science.gov (United States)

    Moody, Nathan Andrew

    2014-09-02

    Disclosed are graphene shield enhanced photocathodes, such as high QE photocathodes. In certain embodiments, a monolayer graphene shield membrane ruggedizes a high quantum efficiency photoemission electron source by protecting a photosensitive film of the photocathode, extending operational lifetime and simplifying its integration in practical electron sources. In certain embodiments of the disclosed graphene shield enhanced photocathodes, the graphene serves as a transparent shield that does not inhibit photon or electron transmission but isolates the photosensitive film of the photocathode from reactive gas species, preventing contamination and yielding longer lifetime.

  9. Some problems raised by the operation of large nuclear turbo-generator sets. Cooling of shielded conductors. Precautionary steps for their thermal dimensioning

    International Nuclear Information System (INIS)

    Nisol, R.

    1976-01-01

    The role of the shielded conductors as power dissipation feeder from the generator towards the network is recalled. Their natural cooling limits and the possibilities of forced cooling are examined. The known incidence of short-circuit currents upon the components of the generator-network connection is reported [fr

  10. Neutron self-shielding with k0-NAA irradiations

    International Nuclear Information System (INIS)

    Chilian, C.; Chambon, R.; Kennedy, G.

    2010-01-01

    A sample of SMELS Type II reference material was mixed with powdered Cd-nitrate neutron absorber and analysed by k 0 NAA for 10 elements. The thermal neutron self-shielding effect was found to be 34.8%. When flux monitors were irradiated sufficiently far from the absorbing sample, it was found that the self-shielding could be corrected accurately using an analytical formula and an iterative calculation. When the flux monitors were irradiated 2 mm from the absorbing sample, the calculations over-corrected the concentrations by as much as 30%. It is recommended to irradiate flux monitors at least 14 mm from a 10 mm diameter absorbing sample.

  11. Electromagnetic shielding effectiveness of 3D printed polymer composites

    Science.gov (United States)

    Viskadourakis, Z.; Vasilopoulos, K. C.; Economou, E. N.; Soukoulis, C. M.; Kenanakis, G.

    2017-12-01

    We report on preliminary results regarding the electromagnetic shielding effectiveness of various 3D printed polymeric composite structures. All studied samples were fabricated using 3D printing technology, following the fused deposition modeling approach, using commercially available filaments as starting materials. The electromagnetic shielding performance of the fabricated 3D samples was investigated in the so called C-band of the electromagnetic spectrum (3.5-7.0 GHz), which is typically used for long-distance radio telecommunications. We provide evidence that 3D printing technology can be effectively utilized to prepare operational shields, making them promising candidates for electromagnetic shielding applications for electronic devices.

  12. Thermal impact assessment of multi power plant operations on estuaries

    International Nuclear Information System (INIS)

    Eraslan, A.H.; Kim, K.H.; Harris, J.L.

    1977-01-01

    The assessment of the thermal impact of multi power plant operations on large estuaries requires careful consideration of the problems associated with: re-entrainment, re-circulation, thermal interaction, delay in the attainment of thermal equilibrium state, and uncertainty in specifying open boundaries and open boundary conditions of the regions, which are critically important in the analysis of the thermal conditions in receiving water bodies with tidal dominated, periodically reversing flow conditions. The results of an extensive study in the Hudson River at Indian Point, 42 miles upstream of the ocean end at the Battery, concluded that the tidal-transient, multi-dimensional discrete-element (UTA) thermal transport models (ESTONE, FLOTWO, TMPTWO computer codes) and the near-field far-field zone-matching methodology can be employed with a high degree of reliability in the assessment of the thermal impact of multi power plant operations on tidal dominated estuaries

  13. Nuclear shielding of openings in ITER Tokamak building

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, A., E-mail: alexis.dammann@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Arumugam, A.P.; Beaudoin, V.; Beltran, D.; Benchikhoune, M.; Berruyer, F.; Cortes, P.; Gandini, F. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ghirelli, N. [ASSYSTEM E.O.S, ZAC Saint Martin, 23, rue Benjamin Franklin, 84120 Pertuis (France); Gray, A.; Hurzlmeier, H.; Le Page, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Lemée, A. [SOGETI High Tech, 180 Rue René Descartes, 13851 Aix en Provence (France); Lentini, G.; Loughlin, M.; Mita, Y.; Patisson, L.; Rigoni, G.; Rathi, D.; Song, I. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► Establishment of a methodology to design shielded opening in external wall of the Tokamak building. ► Analysis of the shielding requirement, case by case, depending on the localization and the context. ► Implementation of an integrated solution for shielded opening. -- Abstract: The external walls of the Tokamak building, made of thick concrete, provide the nuclear shielding for operators working in adjacent buildings and for the environment. There are a series of openings to these external walls, devoted to ducts or pipes for ventilation, waveguides and transmission lines for heating systems and diagnostics, cooling pipes, cable trays or busbars. The shielding properties of the wall shall be preserved by adequate design of the openings in order not to affect the radiological zoning in adjacent areas. For some of them, shielding properties of the wall are not affected because the size of the network is quite small or the source is far from the opening. But for most of the openings, specific features shall be considered. Even if the approach is the same and the ways to shield can be standardized, specific analysis is requested in any case because the constraints are different.

  14. Onboard radiation shielding estimates for interplanetary manned missions

    International Nuclear Information System (INIS)

    Totemeier, A.; Jevremovic, T.; Hounshel, D.

    2004-01-01

    The main focus of space related shielding design is to protect operating systems, personnel and key structural components from outer space and onboard radiation. This paper summarizes the feasibility of a lightweight neutron radiation shield design for a nuclear powered, manned space vehicle. The Monte Carlo code MCNP5 is used to determine radiation transport characteristics of the different materials and find the optimized shield configuration. A phantom torso encased in air is used to determine a dose rate for a crew member on the ship. Calculation results indicate that onboard shield against neutron radiation coming from nuclear engine can be achieved with very little addition of weight to the space vehicle. The selection of materials and neutron transport analysis as presented in this paper are useful starting data to design shield against neutrons generated when high-energy particles from outer space interact with matter on the space vehicle. (authors)

  15. Evaluation of gamma ray durability and its application of shielded RF tags

    International Nuclear Information System (INIS)

    Teraura, Nobuyuki; Ito, Kunio; Kobayashi, Daisuke; Sakurai, Kouichi

    2015-01-01

    In this study, the RF (Radio Frequency) tag with radiation shield is developed and its gamma ray durability is evaluated. RFID (RF Identification) is a radio-wave-based identification technology that can be used for various items. RF tags find use in many applications, including item tracing, access control, etc. RF tags can be classified as active RF tags, which have inbuilt voltaic cells, and passive RF tags without these cells. Passive RF tags, known for their low price and durability, are used in various fields. For instance, they are used for equipment maintenance in factories and thermal power plants. Several frequencies are used for RF tags. Further, RF tagging on the UHF (Ultra High Frequency) frequencies allows a communication range of approximately 10 m, and thus, remote reading is possible. When used in radiation environments such as in nuclear power plants, remote reading can contribute to the reduction of radiation exposure. However, because semiconductors are the primary elements used in the manufacture of RF tags, they can be damaged by radiation, and operational errors can occur. Therefore, this technology has not been used in environments affected by relatively high radiation levels. Therefore, in nuclear power plants, the use of RF tags is limited in areas of low radiation levels. In our study, we develop and manufacture a new RF tag with a radiation shield cover that provides error correction functionality. It is expected that radiation shielded RF tags will improve the radiation-proof feature, and its application range will be expanded. Using the radiation-proof RF tag, we have conducted radiation durability tests. These tests are of two types: one using low energy gamma ray, and the other using high-energy gamma ray. Experimental results are then analyzed. The number of applications for radiation shielded RF tags is considerably increasing, because it can be used in various radiation environments other than nuclear power plants as well, such as

  16. Thermal neutron albedo measurements for multilithic reflectors

    International Nuclear Information System (INIS)

    Mehboob, Khurram; Ahmed, Raheel; Ali, Majid; Tabassam, Uzma

    2013-01-01

    Highlights: • Measurement of thermal neuron albedo for multilithic reflectors. • Modeling of experiments in MATLAB. • Comparison of numerical calculated and experimental values. • Study of thermal neutron albedo in different multilayered shielding. - Abstract: An experimental measurement of the thermal neutron (0.025 eV) albedo (αth) has been carried out for multilithic shielding by using Am–Be neutron source and BF 3 detector. The measured saturation value for the thermal albedo of paraffin wax has been found to be 0.734 ± 0.020, which is in close agreement to the corresponding value 0.83 quoted in the literature. The thermal neutron albedo has been measured for the multilayered shielding in copper–wood, copper–aluminum, wood–paraffin and paraffin–iron combinations in horizontal geometric configurations. Modeling and numerical simulation have been carried out by developing a MATLAB code which solves the diffusion equation in order to calculate the experimental results. Good agreement has been found between the numerical calculated and experimental results. The uncertainties in the measurements have also been calculated based on error propagation of the underlying Poisson distribution

  17. Neutron and gamma-ray spectra measurement on the model of the KS-150 reactor radial shielding

    International Nuclear Information System (INIS)

    Holman, M.; Hogel, J.; Marik, J.; Kovarik, K.; Franc, L.; Vespalec, R.

    1977-01-01

    A shortened model of the peripheral region of the KS-150 reactor core consisting of two rows of fuel elements and a reflector was constructed from the peripheral fuel elements of the KS-150 reactor core in an experiment on the TR-0 reactor. The mockup of the thermal shield (10 cm of steel), the pressure vessel (15 cm of steel) and the inner wall of the water biological shielding (2 cm of steel) of the KS-150 reactor were erected outside the TR-0 vessel. Fast neutron and gamma spectra were measured with a stilbene crystal scintillation spectrometer. The resonance neutron spectra were measured with 197 Au, 63 Cu and 23 Na resonance activation detectors. Fast neutron spectra inside the reactor were measured with a 10 mm diameter by 10 mm thick stilbene crystal spectrometer, outside the reactor with a 10 mm diameter by 10 mm thick and a 20 mm diameter by 20 mm thick stilbene crystal spectrometer. Neutron spectra in the energy regions of 1 eV to 3 keV and 0.6 MeV to 0.8 MeV were obtained on the core periphery, on the reflector half-thickness and in front of and behind the reactor thermal shield. Gamma spectra were obtained in front of and behind the thermal shield. It was found that the attenuation of neutron fluxes by the reflector and the thermal shield increased with increasing energy while gamma radiation attenuation decreased with increasing energy. It was not possible to obtain the neutron spectrum in the 10 to 600 keV energy range because suitable detection instrumentation was not available. (J.P.)

  18. Tire inspection system with shielded x-ray source

    International Nuclear Information System (INIS)

    Heisner, D.N.; Palermo, A. Jr.; Loyer, P.K.

    1976-01-01

    An automated tire inspection system is described which employs a penetrative radiation, such as x-radiation, to inspect the integrity of portions of tires fed sequentially along a feed path through a centering station and into a shielded enclosure where an inspection station is defined. Features of the system include a continuously operating x-ray source movable between inspection and retracted positions, and an x-ray shield for covering the source when it is retracted to permit the doors of the shielded enclosure to be opened without danger from escaping radiation. 19 Claims, 38 Drawing Figures

  19. Heat transfer pipe shielding device for heat exchanger

    International Nuclear Information System (INIS)

    Hanawa, Jun.

    1991-01-01

    The front face and the rear face of a frame that surrounds the circumference of the water chamber body of a multi-tube heat exchanger are covered by a rotational shielding plate. A slit is radially formed to the shielding plate for the insertion of a probe or cleaner to the heat transfer pipe and a deflector is disposed on the side opposite to the slit. The end of the heat transfer pipe to be inspected is exposed to the outer side by way of the slit by the rotation of the shielding plate, and the probe or cleaner is inserted in the heat transfer pipe to conduct an eddy current injury monitoring test or cleaning. The inside of the water chamber and the heat transfer pipe is exhausted by a ventilation nozzle disposed to the frame. Accordingly, a shielding effect upon inspection and cleaning can be obtained and, in addition, inspection and exhaustion at the cleaning position can be conducted easily. Since the operation for attachment and detachment is easy, the effect of reducing radiation dose per unit can be obtained by the shortening of the operation time. (N.H.)

  20. Practical aspects of shielding high-energy particle accelerators

    International Nuclear Information System (INIS)

    Thomas, R.H.; Univ. of California, Berkeley, CA

    1993-09-01

    The experimental basis of shielding design for high-energy accelerators that has been established over the past thirty years is described. Particular emphasis is given to the design of large accelerators constructed underground. The first data obtained from cosmic-ray physics were supplemented by basic nuclear physics. When these data proved insufficient, experiments were carried out and interpreted by several empirical formulae -- the most successful of which has been the Moyer Model. This empirical model has been used successfully to design the shields of most synchrotrons currently in operation, and is still being used in preliminary design and to check the results of neutron transport calculations. Accurate shield designs are needed to reduce external radiation levels during accelerator operations and to minimize environmental impacts such as open-quotes skyshineclose quotes and the production of radioactivity in groundwater. Examples of the cost of minimizing such environmental impacts are given

  1. An experimental study on a superconducting generator with dual machine shield system

    International Nuclear Information System (INIS)

    Ishigohka, T.; Ninomiya, A.; Okada, T.; Nitta, T.; Shintani, T.; Mukai, E.

    1988-01-01

    The authors have studied the optimal machine shield system through experiments on a 20kVa superconducting generator. The first experiment is carried out on a fully iron-less aluminum-shield machine which has only an aluminum eddy current machine shield in the stator. The second experiment is carried out on a generator with a dual-shield system which has both an aluminum eddy current shield and an iron magnetic shield. From the first one, the authors have got an experimental result that the aluminum-shield machine exhibits so large eddy current loss in the shield that it would be difficult to operate the machine continuously. On the other hand, the second experiment shows that the dual-shield machine exhibits much smaller loss in the shielding system, and that it has higher output power than the aluminum-shield machine. From these experiments, it becomes clear that insertion of a very thin iron shield between the armature winding and the eddy current shield can improve the machine performance eminently without large weight increase even if the iron shield were saturated

  2. Computer simulation of thermal plant operations

    CERN Document Server

    O'Kelly, Peter

    2012-01-01

    This book describes thermal plant simulation, that is, dynamic simulation of plants which produce, exchange and otherwise utilize heat as their working medium. Directed at chemical, mechanical and control engineers involved with operations, control and optimization and operator training, the book gives the mathematical formulation and use of simulation models of the equipment and systems typically found in these industries. The author has adopted a fundamental approach to the subject. The initial chapters provide an overview of simulation concepts and describe a suitable computer environment.

  3. Structural shielding of medical X-ray rooms for diagnostic installations

    International Nuclear Information System (INIS)

    Rabitsch, H.

    1979-06-01

    In Part I (RIG 8), the various design procedures for shielding against X-rays are discussed and compared. In particular, this comparison is carried out between the shielding obtained conforming to the Austrian Regulations for Radiation Protection and that obtained from the DIN-standard DIN 6812; this latter includes the various operating conditions of diagnostic installations up to 150 kV. Several examples for particular structural shielding components in medical radiation rooms are given. (author)

  4. Characteristic Determination Of Self Shielding Factor And Cadmium Ratio Of Cylindrical Probe

    International Nuclear Information System (INIS)

    Hamzah, Amir; Budi R, Ita; Pinem, Suriam

    1996-01-01

    Determination of thermal, epithermal and total self shielding factor and cadmium ratio of cylindrical probe has been done by measurement and calculation. Self shielding factor can be determined by dividing probe activity to Al-alloy probe activity. Due to the lack of cylindrical probe made of Al-alloy, self shielding factor can be determined by parabolic extrapolation of measured activities to 0 cm radius to divide those activities. Theoretically, self shielding factor can be determined by making numerical solution of two dimensional integral equations using Romberg method. To simplify, the calculation is based on single collision theory with the assumption of monoenergetic neutron and isotropic distribution. For gold cylindrical probe, the calculation results are quite close to the measurement one with the relative discrepancy for activities, cadmium ratio and self shielding factor of bare probe are less then 11.5%, 3,5% and 1.5% respectively. The program can be used for the calculation of other kinds of cylindrical probes. Due to dependency to radius, cylindrical probe made of copper has the best characteristic of self shielding factor and cadmium ratio

  5. Investigation of factors influencing the efficacy of electromagnetic shielding in X band frequency range

    Directory of Open Access Journals (Sweden)

    Vida Zaroushani

    2016-12-01

    Full Text Available Introduction: Due to the importance of engineering controls for prevention of microwave exposure, this study was conducted to design and constract a novel electromagnetic shielding and also to examine the factors influencing shielding efficacy in X band frequency range. Material and Method: This study used Resin Epoxy as matrix and nano-Nickel Oxide as filler to prepare the composite plates with three different thicknesses (2,4, and 6 mm and four different weight percentages (5,7,9 and 11. The fabricated composites characterized using X-ray diffraction and Field Emission Scanning Electron microscopy. Shielding effectiveness, percolation depth, and percolation threshold were measured using Vector Network Analyzers. Thermal Gravimetric Analysis was conducted to study the temperature influence on weight loss for fabricated composites. Result: A maximum shielding effectiveness value of 84.18% was obtained for the 11%-6mm composite at 8.01 GHz and the 7%-4mm composite exhibits a higher average of shielding effectiveness of 66.72% at X- band frequency range. The 4mm thickness was optimum and critical diameter for composite plates; and percolation depth was obtained greater than thickness of composites. However, increasing the nickel oxide content did not show noticeable effect on the shielding effectiveness. Thermal Gravimetric Analysis showed that the study shields were resistant to temperature up to 150 °C without experiencing weight loss. What is more, the results indicated that Nickel oxide Nano particles had desirable distribution and dispersion in epoxy matrix and percolation threshold was appeared in low content of nickel oxide nanoparticles. Conclusion: A novel electromagnetic shield using low thickness and few content of nanoparticle with noticeable efficacy was properly designed and constructed in the field of occupational health. In addition, this shield has low cost, easy to manufacture, resistance to wet/corrosion, and low weight. Epoxy

  6. Magnetic field shielding effect for CFETR TF coil-case

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weiwei; Liu, Xufeng, E-mail: Lxf@ipp.ac.cn; Du, Shuangsong; Zheng, Jinxing

    2017-05-15

    Highlights: • The eddy current of CFETR vacuum vessel can be calculated by using a series of ideal current loops. • The shielding effect with different eddy current is studied by decomposing the exciting magnetic field as two orthogonal components. • The shielding effect can be determined from the rate of eddy current magnetic field to the external magnetic field. - Abstract: The operation of superconducting magnet for fusion device is under the complex magnetic field condition, which affect the stabilization of superconductor. The coil-case of TF coil can shield the magnetic field to some extent. The shielding effect is related to the eddy current of coil-case. The shielding effect with different eddy current is studied by decomposing the exciting magnetic field as two orthogonal components, respectively. The results indicate that the shielding effect of CFETR TF coil-case has obvious different with the different directional magnetic field, and it’s larger for tangential magnetic compared with that for normal field.

  7. Design and assembly technology for the thermal insulation of the W7-X cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Risse, K., E-mail: konrad.risse@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik (IPP), Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Nagel, M.; Pietsch, M.; Braatz, A. [Max-Planck-Institut fuer Plasmaphysik (IPP), Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Binni, A. [MAN Diesel and Turbo SE, Dpt. OSA, Werftstrasse 17, D-94469 Deggendorf (Germany); Posselt, H. [Linde AG Engineering Div., Dr.-Carl-von-Linde-Strasse 6-14, D-82049 Hoellriegelskreuth (Germany)

    2011-10-15

    The Max-Planck-Institut fuer Plasmaphysik in Greifswald is building up the stellarator fusion experiment Wendelstein 7-X (W7-X). To operate the superconducting magnet system the vacuum and the cold structures are protected by a thermal insulated cryostat. The plasma vessel forms the inner cryostat wall, the outer wall is realised by a thermal insulated outer vessel. In addition 254 thermal insulated ports are fed through the cryogenic vacuum to allow the access to the plasma vessel for heating systems, supply lines or plasma diagnostics. The thermal insulation is being manufactured and assembled by MAN Diesel and Turbo SE (Germany). It consists of a multi-layer insulation (MLI) made of aluminized Kapton with a silk like fibreglass spacer and a thermal shield covering the inner cryostat surfaces. The shield on the plasma vessel is made of fibreglass reinforced epoxy resin with integrated copper meshes. The outer vessel insulation is made of brass panels with an average size of 3.3 x 2.0 m{sup 2}. Cooling loops made of stainless steel are connected via copper strips to the brass panels. Especially the complex 3 D shape of the plasma vessel, the restricted space inside the cryostat and the consideration of the operational component movements influenced the design work heavily. The manufacturing and the assembly has to fulfil stringent geometrical tolerances e.g. for the outer vessel panels +3/-2 mm.

  8. Design and assembly technology for the thermal insulation of the W7-X cryostat

    International Nuclear Information System (INIS)

    Risse, K.; Nagel, M.; Pietsch, M.; Braatz, A.; Binni, A.; Posselt, H.

    2011-01-01

    The Max-Planck-Institut fuer Plasmaphysik in Greifswald is building up the stellarator fusion experiment Wendelstein 7-X (W7-X). To operate the superconducting magnet system the vacuum and the cold structures are protected by a thermal insulated cryostat. The plasma vessel forms the inner cryostat wall, the outer wall is realised by a thermal insulated outer vessel. In addition 254 thermal insulated ports are fed through the cryogenic vacuum to allow the access to the plasma vessel for heating systems, supply lines or plasma diagnostics. The thermal insulation is being manufactured and assembled by MAN Diesel and Turbo SE (Germany). It consists of a multi-layer insulation (MLI) made of aluminized Kapton with a silk like fibreglass spacer and a thermal shield covering the inner cryostat surfaces. The shield on the plasma vessel is made of fibreglass reinforced epoxy resin with integrated copper meshes. The outer vessel insulation is made of brass panels with an average size of 3.3 x 2.0 m 2 . Cooling loops made of stainless steel are connected via copper strips to the brass panels. Especially the complex 3 D shape of the plasma vessel, the restricted space inside the cryostat and the consideration of the operational component movements influenced the design work heavily. The manufacturing and the assembly has to fulfil stringent geometrical tolerances e.g. for the outer vessel panels +3/-2 mm.

  9. Resonance Self-Shielding Methodologies in SCALE 6

    International Nuclear Information System (INIS)

    Williams, Mark L.

    2011-01-01

    SCALE 6 includes several problem-independent multigroup (MG) libraries that were processed from the evaluated nuclear data file ENDF/B using a generic flux spectrum. The library data must be self-shielded and corrected for problem-specific spectral effects for use in MG neutron transport calculations. SCALE 6 computes problem-dependent MG cross sections through a combination of the conventional Bondarenko shielding-factor method and a deterministic continuous-energy (CE) calculation of the fine-structure spectra in the resolved resonance and thermal energy ranges. The CE calculation can be performed using an infinite medium approximation, a simplified two-region method for lattices, or a one-dimensional discrete ordinates transport calculation with pointwise (PW) cross-section data. This paper describes the SCALE-resonance self-shielding methodologies, including the deterministic calculation of the CE flux spectra using PW nuclear data and the method for using CE spectra to produce problem-specific MG cross sections for various configurations (including doubly heterogeneous lattices). It also presents results of verification and validation studies.

  10. ISAC target operation with high proton currents

    CERN Document Server

    Dombsky, M; Schmor, P; Lane, M

    2003-01-01

    The TRIUMF-ISAC facility target stations were designed for ISOL target irradiations with up to 100 mu A proton beam currents. Since beginning operation in 1998, ISAC irradiation currents have progressively increased from initial values of approx 1 mu A to present levels of up to 40 mu A on refractory metal foil targets. In addition, refractory carbide targets have operated at currents of up to 15 mu A for extended periods. The 1-40 mu A operational regime is achieved by tailoring each target to the thermal requirements dictated by material properties such as beam power deposition, thermal conductivity and maximum operating temperature of the target material. The number of heat shields on each target can be varied in order to match the effective emissivity of the target surface for the required radiative power dissipation. Targets of different thickness, surface area and volume have been investigated to study the effect of diffusion and effusion delays on the yield of radioisotopes. For yields of short-lived p...

  11. Safety analysis report for packaging: the ORNL lithium hydroxide fire and impact shield

    International Nuclear Information System (INIS)

    Evans, J.H.; Eversole, R.E.; Just, R.A.

    1977-11-01

    The ORNL lithium hydroxide fire and impact shield was designed and fabricated at Oak Ridge National Laboratory to permit the transport of Type B and large quantities of radioactive material and limited quantities of fissionable material. The shield was evaluated analytically and experimentally to determine its compliance with the applicable regulations governing containers in which radioactive and fissile materials are transported, and that evaluation is the subject of this report. Computational and test procedures were used to determine the structural integrity and thermal behavior of the shield relative to the general standards for normal conditions of transport and the standards for the hypothetical accident conditions. The results of the evaluation demonstrate that the shield is in compliance with the applicable regulations

  12. Experimental and numerical study of the pressure drop for ITER blanket shield block

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Min-Su; Kim, Sawoong; Jung, Hun-Chea; Shim, Hee-Jin; Ahn, Hee-Jae

    2016-11-01

    Highlights: • The results of the experiment and the numerical analysis are compared. • The numerical analysis results are lower than the experimental results. • The margin of the pressure drop is suggested. - Abstract: The blanket shield block (SB) is located inside the ITER vacuum chamber, and the main function is to provide the thermal and nuclear shielding to the vacuum vessel and external components. The SB is foreseen to undergo a significant heat load which is a body load throughout the whole thickness of the SB under normal operation conditions. Therefore, the cooling configuration in SB should be designed very carefully based on the various experiences. The pressure drop in the cooling design is one of the most important factors to balance a water distribution of overall blanket cooling system. In order to verify the pressure drop characteristic and validate the design methodology of SB, experiment and numerical analysis are performed and compared their results. These results would be a benchmarking of the numerical results with experimental results to assess the gap between calculations and experiments.

  13. Technical specifications: Tower Shielding Reactor II

    International Nuclear Information System (INIS)

    1979-02-01

    The technical specifications define the key limitations that must be observed for safe operation of the Tower Shielding Reactor II (TSR-II) and an envelope of operation within which there is reasonable assurance that these limits cannot be exceeded. The specifications were written to satisfy the requirements of the Department of Energy (DOE) Manual Chapter 0540, September 1, 1972

  14. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    Science.gov (United States)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  15. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Marques, J-L; Forster, G; Schein, J

    2013-01-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned

  16. Experimental results of thermally controlled superconducting switches for high frequency operation

    International Nuclear Information System (INIS)

    Mulder, G.B.J.; IerAvest, D.; Tenkate, H.H.J.; Krooshoop, H.J.G.; Van de Klundert, L.

    1988-01-01

    The aim of this study is to develop thermally controlled switches which are to be used in superconducting rectifiers operating at a few hertz and 1 kA. Usually, the operating frequency of thermally controlled rectifiers is limited to about 0.1 Hz due to the thermal recovery times of the switches. The thermal switches have to satisfy two conditions which are specific for the application in a superconducting rectifier: a) they have to operate in the repetitive mode so beside short activation times, fast recovery times of the switches are equally important, b) the power required to effect and maintain the normal state of the switches should be low since it will determine the rectifier efficiency. To what extent these obviously conflicting demands can be satisfied depends on the material and geometry of the switch. This paper presents a theoretical model of the thermal behaviour of a switch. The calculations are compared with experimental results of several switches having recovery times between 40 and 200 ms. Also, the feasibility of such switches for application in superconducting rectifiers operating at a few hertz with an acceptable efficiency is demonstrated

  17. MARS14 deep-penetration calculation for the ISIS target station shielding

    International Nuclear Information System (INIS)

    Nakao, Noriaki; Nunomiya, Tomoya; Iwase, Hiroshi; Nakamura, Takashi

    2004-01-01

    The calculation of neutron penetration through a thick shield was performed with a three-dimensional multi-layer technique using the MARS14(02) Monte Carlo code to compare with the experimental shielding data in 1998 at the ISIS spallation neutron source facility of Rutherford Appleton Laboratory. In this calculation, secondary particles from a tantalum target bombarded by 800-MeV protons were transmitted through a bulk shield of approximately 3-m-thick iron and 1-m-thick concrete. To accomplish this deep-penetration calculation, a three-dimensional multi-layer technique and energy cut-off method were used considering a spatial statistical balance. Finally, the energy spectra of neutrons behind the very thick shield could be calculated down to the thermal energy with good statistics, and the calculated results typically agree well within a factor of two with the experimental data over a broad energy range. The 12 C(n,2n) 11 C reaction rates behind the bulk shield were also calculated, which agree with the experimental data typically within 60%. These results are quite impressive in calculation accuracy for deep-penetration problem

  18. Study of filtration of reactor beam of neutrons with cadmium in a multilayer shielding containing boron carbide

    International Nuclear Information System (INIS)

    Megahid, R.M.; El-Kall, E.H.

    1986-01-01

    Experimental measurements were carried out to study the effect of cadmium on the distribution and attenuation of reactor thermal neutrons emitted from a reactor core and the new thermal neutrons produced in a heterogeneous shield of water, iron, iron + B 4 C and ordinary concrete. The measurements were made using a reactor beam of neutrons filtered with cadmium emitted from one of the horizontal channels of ET-RR-1. It is found that the presence of cadmium sheet at channel exit causes a marked decrease in the thickness of the shield required to attenuate the thermal neutron flux by a certain factor. 12 refs., 5 figures. (author)

  19. Development of highly effective neutron shielding material made of phenol-novolac type epoxy resin

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Soo Haeng; Jeong, Myeong Soo; Hong, Sun Seok; Lee, Won Kyoung; Kim, Ik Soo; Shin, Young Joon; Do, Jae Bum; Ro, Seung Gy; Oh, Seok Jin

    1998-06-01

    Because the exposure to radiation in the nuclear facilities can be fatal to human, it is important to reduce the radiation dose level to a tolerable level. The purpose of this study is to develop highly effective neutron shielding materials for the shipping and storage cask of radioactive materials or in the nuclear/radiation facilities. On this study, we developed epoxy resin based neutron shielding materials and their various material properties, including neutron shielding ability, fire resistance, combustion characteristics, radiation resistance, thermal and mechanical properties were evaluated experimentally. Especially we developed phenol-novolac type epoxy resin based neutron shielding materials and their characteristics were also evaluated. (author). 22 refs., 11 tabs., 21 figs

  20. Effects of golf course construction and operation on water chemistry of headwater streams on the Precambrian Shield

    International Nuclear Information System (INIS)

    Winter, Jennifer G.; Dillon, Peter J.

    2005-01-01

    To investigate the effects of golf course construction and operation on the water chemistry of Shield streams, we compared the water chemistry in streams draining golf courses under construction (2) and in operation (5) to streams in forested reference locations and to upstream sites where available. Streams were more alkaline and higher in base cation and nitrate concentrations downstream of operational golf courses. Levels of these parameters and total phosphorus increased over time in several streams during golf course construction through to operation. There was evidence of inputs of mercury to streams on two of the operational courses. Nutrient (phosphorus and nitrogen) concentrations were significantly related to the area of unmanaged vegetation in a 30 x 30 m area on either side of the sampling sites, and to River Bank Quality Index scores, suggesting that maintaining vegetated buffers along the stream on golf courses will reduce in-stream nutrient concentrations. - Golf course construction and operation had a significant impact on alkalinity, nitrogen and base cation concentrations of streams

  1. Technical experience of the Belgian regulatory body regarding shielded cells

    International Nuclear Information System (INIS)

    Cortenbosch, G.; Degreef, G.; Noterman, N.; Mommaert, C.; Smidts, O.; Hasendonck, M. van; Drymael, H.; Schmitz, F.; Kennes, C.; Carlier, P.

    2010-01-01

    Radiation protection and nuclear safety are of paramount importance when operating shielded cells in hot labs and using remote handling tools. Therefore, various aspects should be ensured throughout the lifecycle of nuclear installations disposing of such type of equipment. The presented aspects are the results of the regulatory body experience with this kind of installations (licensing, operations, operating experience, events). This paper will deal with safety considerations such as filtration, fire protection, shielding, ventilation, waste management, separation of the product fluxes, leak tightness, introduction of equipment, interlocks, failsafe components, piloting software, monitoring and education/training. (orig.)

  2. Radiation shielding design for a hot repair facility

    International Nuclear Information System (INIS)

    Courtney, J.C.; Dwight, C.C.

    1991-01-01

    A new repair and decontamination area is being built to support operations at the demonstration fuel cycle facility for the Integral Fast Reactor program at Argonne National Laboratory's site at the Idaho National Engineering Laboratory. Provisions are made for remote, glove wall, and contact maintenance on equipment removed from hot cells where spent fuel will be electrochemically processed and recycled to the Experimental Breeder Reactor-II. The source for the shielding design is contamination from a mix of fission and activation products present on items removed from the hot cells. The repair facility also serves as a transfer path for radioactive waste produced by processing operations. Radiation shields are designed to limit dose rates to no more than 5 microSv h-1 (0.5 mrem h-1) in normally occupied areas. Point kernel calculations with buildup factors have been used to design the shielding and to position radiation monitors within the area

  3. Influence of the Radiation Shield on the Temperature of Rails Rolled in the Reversing Mill

    Directory of Open Access Journals (Sweden)

    Gołdasz A.

    2015-04-01

    Full Text Available The paper presents a mathematical model of heat transfer during cooling of hot-rolled rails in the reversing mill. The influence of the radiation shield on the temperature of rolled rails has been analyzed. The heat transfer model for cooling a strip covered by the thermal shield has been presented. The two types of shields build of steel and aluminum sheets separated with insulating layer have been studded. Calculations have been performed with self developed software which utilizes the finite element method.

  4. Design and demonstration of adiabatic quantum-flux-parametron logic circuits with superconductor magnetic shields

    International Nuclear Information System (INIS)

    Inoue, Kenta; Narama, Tatsuya; Yamanashi, Yuki; Yoshikawa, Nobuyuki; Takeuchi, Naoki

    2015-01-01

    Adiabatic quantum-flux-parametron (AQFP) logic is an energy-efficient superconductor logic with zero static power and very small dynamic power due to adiabatic switching operations. In order to build large-scale digital circuits, we built AQFP logic cells using superconductor magnetic shields, which are necessary in order to avoid unwanted magnetic couplings between the cells and excitation currents. In preliminary experimental tests, we confirmed that the unwanted coupling became negligibly small thanks to the superconductor shields. As a demonstration, we designed a four-to-one multiplexor and a 16-junction full adder using the shielded logic cells. In both circuits, we confirmed correct logic operations with wide operation margins of excitation currents. These results indicate that large-scale AQFP digital circuits can be realized using the shielded logic cells. (paper)

  5. Shielding research in France

    Energy Technology Data Exchange (ETDEWEB)

    Lafore, P

    1964-10-01

    Shielding research as an independent subject in France dates from 1956. The importance of these studies has been reflected in the contribution which they have made to power reactor design and in the resultant savings in expenditure for civil engineering and machinery for the removal of mobile shields. The Reactor Shielding Research Division numbers approximately 60 persons and uses several experimental facilities. These include: NAIADE I, installed near the ZOE reactor and operating with a natural uranium slab 2 cm thick (an effective diameter of 60 cm is the one most commonly used); the TRITON pool-type reactor, mainly used in shielding studies, includes an active-water loop, by means of which the secondary shields required for light-water reactors can be studied; core, NEREIDE, which is situated near a 2 m x 2 m aluminium window enables a large neutron source to be placed in a compartment without water in which large-scale mock-ups can be mounted for the study, in particular, of neutron diffusion in large cavities, and of reactor shielding of greater thickness than that in NAIADE I; SAMES 600 keV accelerator is used for monoenergetic neutron studies. Instrumentation studies are an important part of the work, mainly in the measurement of fast neutrons and their spectra by activation detectors. Of late, attention has been directed towards the use of (n, n') (rhodium) reactions and of heavy detectors for low-flux measurements. The simultaneous use of a large number of detectors poses automation problems. With our installation we can count 16 detectors simultaneously. Neutron spectrum studies are conducted with nuclear emulsions and a lithium-6 semiconductor spectrometer. As to the materials used, the research carried out in France involves chiefly graphite, iron and concrete at various temperatures up to 800 deg C. Different compounds, borated and non-borated and of densities up to between 1 and 9 are under consideration. Problems connected with applications are

  6. Electromagnetic shielding

    International Nuclear Information System (INIS)

    Tzeng, Wen-Shian V.

    1991-01-01

    Electromagnetic interference (EMI) shielding materials are well known in the art in forms such as gaskets, caulking compounds, adhesives, coatings and the like for a variety of EMI shielding purposes. In the past, where high shielding performance is necessary, EMI shielding has tended to use silver particles or silver coated copper particles dispersed in a resin binder. More recently, aluminum core silver coated particles have been used to reduce costs while maintaining good electrical and physical properties. (author). 8 figs

  7. Treatment vault shielding for a flattening filter-free medical linear accelerator

    Science.gov (United States)

    Kry, Stephen F.; Howell, Rebecca M.; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N.

    2009-03-01

    The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m3 less concrete to shield the single-energy linac and 36 m3 less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.

  8. Treatment vault shielding for a flattening filter-free medical linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kry, Stephen F; Howell, Rebecca M; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)], E-mail: sfkry@mdanderson.org

    2009-03-07

    The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m{sup 3} less concrete to shield the single-energy linac and 36 m{sup 3} less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.

  9. Treatment vault shielding for a flattening filter-free medical linear accelerator

    International Nuclear Information System (INIS)

    Kry, Stephen F; Howell, Rebecca M; Polf, Jerimy; Mohan, Radhe; Vassiliev, Oleg N

    2009-01-01

    The requirements for shielding a treatment vault with a Varian Clinac 2100 medical linear accelerator operated both with and without the flattening filter were assessed. Basic shielding parameters, such as primary beam tenth-value layers (TVLs), patient scatter fractions, and wall scatter fractions, were calculated using Monte Carlo simulations of 6, 10 and 18 MV beams. Relative integral target current requirements were determined from treatment planning studies of several disease sites with, and without, the flattening filter. The flattened beam shielding data were compared to data published in NCRP Report No. 151, and the unflattened beam shielding data were presented relative to the NCRP data. Finally, the shielding requirements for a typical treatment vault were determined for a single-energy (6 MV) linac and a dual-energy (6 MV/18 MV) linac. With the exception of large-angle patient scatter fractions and wall scatter fractions, the vault shielding parameters were reduced when the flattening filter was removed. Much of this reduction was consistent with the reduced average energy of the FFF beams. Primary beam TVLs were reduced by 12%, on average, and small-angle scatter fractions were reduced by up to 30%. Head leakage was markedly reduced because less integral target current was required to deliver the target dose. For the treatment vault examined in the current study, removal of the flattening filter reduced the required thickness of the primary and secondary barriers by 10-20%, corresponding to 18 m 3 less concrete to shield the single-energy linac and 36 m 3 less concrete to shield the dual-energy linac. Thus, a shielding advantage was found when the linac was operated without the flattening filter. This translates into a reduction in occupational exposure and/or the cost and space of shielding.

  10. Detector Background Reduction by Passive and Active Shielding

    International Nuclear Information System (INIS)

    Bikit, I.; Bikit, K.; Forkapic, S.; Mrda, D.; Nikolov, J.; Slivka, J.; Todorovic, N.

    2013-01-01

    The operational problems of the gamma ray spectrometer shielded passively with 12 cm of lead and actively by five 0.5 m × 0.5 m × 0.05 m plastic veto shields are described. The active shielding effect from both environmental gamma ray, cosmic muons and neutrons was investigated. For anticoincidence gating wide range of scintillator pulses, corresponding to the energy range of 150 keV-75 MeV, were used. With the optimal set up the integral background, for the energy region of 50 - 3000 keV, of 0.31 c/s was achieved. The detector mass related background was 0.345 c/(kg s). The 511 keV annihilation line was reduced by the factor of 7 by the anticoincidence gate. It is shown that the plastic shields increase the neutron capture gamma line intensities due to neutron termalization.(author)

  11. Heavy density concrete for nuclear radiation shielding and power stations: [Part]2

    International Nuclear Information System (INIS)

    Singha Roy, P.K.

    1987-01-01

    This article is the second part of the paper entitled 'Heavy density concrete for nuclear radiation shielding and power stations'. In this part, some of the important properties of heavy density concrete are discussed. They include density, water retentivity, air content, permeability with special reference to concrete mixes used in India's nuclear power reactors. All these properties are affected to various extents by heating. Indian shield concrete is rarely subjected to temperatures above 60degC during its life, because of thermal shield protection. During placement, the maximum anticipated rise in temperature due to heat of hydration is restricted to around 45degC by chilling, if necessary to reduce shrinkage stresses and cracks. (M.G.B.)

  12. Self-shielding models of MICROX-2 code: Review and updates

    International Nuclear Information System (INIS)

    Hou, J.; Choi, H.; Ivanov, K.N.

    2014-01-01

    Highlights: • The MICROX-2 code has been improved to expand its application to advanced reactors. • New fine-group cross section libraries based on ENDF/B-VII have been generated. • Resonance self-shielding and spatial self-shielding models have been improved. • The improvements were assessed by a series of benchmark calculations against MCNPX. - Abstract: The MICROX-2 is a transport theory code that solves for the neutron slowing-down and thermalization equations of a two-region lattice cell. The MICROX-2 code has been updated to expand its application to advanced reactor concepts and fuel cycle simulations, including generation of new fine-group cross section libraries based on ENDF/B-VII. In continuation of previous work, the MICROX-2 methods are reviewed and updated in this study, focusing on its resonance self-shielding and spatial self-shielding models for neutron spectrum calculations. The improvement of self-shielding method was assessed by a series of benchmark calculations against the Monte Carlo code, using homogeneous and heterogeneous pin cell models. The results have shown that the implementation of the updated self-shielding models is correct and the accuracy of physics calculation is improved. Compared to the existing models, the updates reduced the prediction error of the infinite multiplication factor by ∼0.1% and ∼0.2% for the homogeneous and heterogeneous pin cell models, respectively, considered in this study

  13. Safety analysis report for packaging: the ORNL lithium hydroxide fire and impact shield

    International Nuclear Information System (INIS)

    Evans, J.H.; Eversole, R.E.; Just, R.A.; Schaich, R.W.

    1984-07-01

    The ORNL Lithium Hydroxide Fire and Impact Shield and its packaging were designed and fabricated at Oak Ridge National Laboratory to permit the transport of Type B quantities of radioactive material and limited quantities of fissionable material. The shield and its packaging were evaluated analytically and experimentally to determine its compliance with the applicable regulations governing containers in which radioactive and fissile materials are transported, and that evaluation is the subject of this report. Computational and test procedures were used to determine the structural integrity and thermal behavior of the shield relative to the general standards for normal conditions of transport and the standards for the hypothetical accident conditions. The results of the evaluation demonstrate that the shield and its packaging are in compliance with the applicable regulations. 16 references, 8 figures, 5 tables

  14. About the Scythian Shields

    Directory of Open Access Journals (Sweden)

    About the Scythian Shields

    2017-10-01

    Full Text Available Shields played major role in the armament system of the Scythians. Made from organic materials, they are poorly traced on the materials of archaeological excavations. Besides, scaly surface of shields was often perceived in practice as the remnants of the scaly armor. E. V. Chernenko was able to discern the difference between shields’ scaly plates and armor scales. The top edge of the scales was bent inwards, and shield plates had a wire fixation. These observations let significantly increase the number of shields, found in the burial complexes of the Scythians. The comparison of archaeological materials and the images of Scythian warriors allow distinguishing the main forms of Scythian shields. All shields are divided into fencing shields and cover shields. The fencing shields include round wooden shields, reinforced with bronze sheet, and round moon-shaped shields with a notch at the top, with a metal scaly surface. They came to the Scythians under the Greek influence and are known in the monuments of the 4th century BC. Oval shields with scaly surface (back cover shields were used by the Scythian cavalry. They protected the rider in case of frontal attack, and moved back in case of maneuver or closein fighting. Scythian battle tactics were based on rapid approaching the enemy and throwing spears and further rapid withdrawal. Spears stuck in the shields of enemies, forcing them to drop the shields, uncover, and in this stage of the battle the archers attacked the disorganized ranks of the enemy. That was followed by the stage of close fight. Oval form of a wooden shield with leather covering was used by the Scythian infantry and spearmen. Rectangular shields, including wooden shields and the shields pleached from rods, represented a special category. The top of such shield was made of wood, and a pleached pad on leather basis was attached to it. This shield could be a reliable protection from arrows, but it could not protect against javelins

  15. Measured neutron beam line shielding effectiveness of several iron/polyethylene configurations

    International Nuclear Information System (INIS)

    Legate, G.L.; Howe, M.L.; Mundis, R.L.

    1988-01-01

    Neutron and gamma-ray leakage measurements were taken at various stages of shield construction of neutron flight path 5 (the Lash-up flight path) at LANSCE, to compare the relative effectiveness of several configurations. Dose equivalent rates were determined for three categories: ''low-energy neutrons'', below 20 MeV; ''high- energy neutrons'', above 20 MeV; and gamma rays, as measured by hand-held survey instruments. The low energy neutrons were measured by activation of an indium foil in a paraffin-filled cadmium canister, sized to be generally insensitive above 20 MeV. High-energy neutrons were measured by (n,2n) production of Carbon 11 in a plastic scintillator with a 20-MeV threshold. Thermal neutrons were not measured at the shield-leakage test points. Room-scattered neutrons were observed by Albatross IV detector readings, which were taken beside the shield as a measure of variation of room background as the shield configuration changed. 1 fig., 1 tab

  16. Survivor shielding. Part C. Improvements in terrain shielding

    International Nuclear Information System (INIS)

    Egbert, Stephen D.; Kaul, Dean C.; Roberts, James A.; Kerr, George D.

    2005-01-01

    A number of atomic-bomb survivors were affected by shielding provided by terrain features. These terrain features can be a small hill, affecting one or two houses, or a high mountain that shields large neighborhoods. In the survivor dosimetry system, terrain shielding can be described by a transmission factor (TF), which is the ratio between the dose with and without the terrain present. The terrain TF typically ranges between 0.1 and 1.0. After DS86 was implemented at RERF, the terrain shielding categories were examined and found to either have a bias or an excessive uncertainty that could readily be removed. In 1989, an improvement in the terrain model was implemented at RERF in the revised DS86 code, but the documentation was not published. It is now presented in this section. The solution to the terrain shielding in front of a house is described in this section. The problem of terrain shielding of survivors behind Hijiyama mountain at Hiroshima and Konpirasan mountain at Nagasaki has also been recognized, and a solution to this problem has been included in DS02. (author)

  17. Thermal aging effects of VVER-1000 weld metal under operation temperature

    International Nuclear Information System (INIS)

    Chernobaeva, A.A.; Kuleshova, E.A.; Gurovich, B.A.; Erak, D.Y.; Zabusov, O.O.; Maltsev, D.A.; Zhurko, D.A.; Papina, V.B.; Skundin, M.A.

    2015-01-01

    The VVER-1000 thermal aging surveillance specimen sets are located in the reactor pressure vessel (RPV) under real operation conditions. Thermal aging surveillance specimens data are the most reliable source of the information about changing of VVER-1000 RPV materials properties because of long-term (hundred thousand hours) exposure at operation temperature. A revision of database of VVER-1000 weld metal thermal aging surveillance specimens has been done. The reassessment of transition temperature (T t ) for all tested groups of specimens has been performed. The duration of thermal exposure and phosphorus contents have been defined more precisely. The analysis of thermal aging effects has been done. The yield strength data, study of carbides evolution show absence of hardening effects due to thermal aging under 310-320 C degrees. Measurements of phosphorus content in grain boundaries segregation in different states have been performed. The correlation between intergranular fracture mode in Charpy specimens and transition temperature shift under thermal aging at temperature 310-320 C degrees has been revealed. All these data allow developing the model of thermal aging. (authors)

  18. An assessment of the lifetime of Faraday shield elements

    International Nuclear Information System (INIS)

    Caughman, J.B.O. II; Ruzic, D.N.; Hoffman, D.J.; Langley, R.A.; Lewis, M.B.; Ryan, P.M.

    1990-01-01

    The interaction of plasma with rf fields from an ion cyclotron range of frequencies (ICRF) antenna has been studied to estimate the amount of Faraday shield erosion expected in normal ICRF heating operation. Plasma parameters and ion energies have been measured in the near field of an antenna and used in a model to estimate the erosion rate of the Faraday shield surface. Experiments were conducted on the RF Test Facility, a magnetic mirror device at Oak Ridge National Laboratory, using a single-strap resonant loop antenna with a two-tier Faraday shield. The outer tier, facing the plasma, was layered with graphite tiles. The antenna was operated at currents and voltages within 50% of those expected in tokamaks. The time-varying floating potential was measured with a capacitively coupled probe, and the time-averaged floating potential, electron temperature, and electron density were measured with a Langmuir probe. Ion energies were measured with a gridded energy analyser located below the antenna, and samples of silicon were placed on the Faraday shield surface to estimate the incident ion energy. The capacitive probe measurements show that the rf floating potential follows the magnetic field pattern of the antenna, indicating that the electromagnetic fields are responsible for the potential formation. Plasma parameters and ion energies have been correlated with the antenna current and used in a computational model of the plasma sheath to predict the amount of erosion expected from the Faraday shield elements exposed to plasma. Predictions of light ion sputtering of candidate Faraday shield materials are presented

  19. Radiation shield analysis for a manned Mars rover

    International Nuclear Information System (INIS)

    Morley, N.J.; ElGenk, M.S.

    1991-01-01

    Radiation shielding for unmanned space missions has been extensively studied; however, designs of man-rated shields are minimal. Engle et al.'s analysis of a man-rated, multilayered shield composed of two and three cycles (a cycle consists of a tungsten and a lithium hydride layer) is the basis for the work reported in this paper. The authors present the results of a recent study of shield designs for a manned Mars rover powered by a 500-kW(thermal) nuclear reactor. A train-type rover vehicle was developed, which consists of four cars and is powered by an SP-100-type nuclear reactor heat source. The maximum permissible dose rate (MPD) from all sources is given by the National Council on Radiation Protection and Measurements as 500 mSv/yr (50 rem/yr) A 3-yr Mars mission (2-yr round trip and 1-yr stay) will deliver a 1-Sv natural radiation dose without a solar particle event, 450 mSv/yr in flight, and an additional 100 mSv on the planet surface. An anomalously large solar particle event could increase the natural radiation dose for unshielded astronauts on the Martian surface to 200 mSv. This limits the MPD to crew members from the nuclear reactor to 300 mSv

  20. Feasibility of a superconducting FED with 50 cm of magnet shielding

    International Nuclear Information System (INIS)

    Schultz, J.H.; Montgomery, D.B.

    1981-01-01

    The feasibility of the suggestion that the cost of a Fusion Energy Device (FED) could be substantially reduced by operating with a reduced duty factor and only 50 cm of magnet shielding is evaluated here. This report examines the effect of light shielding on insulation life, matrix- and superconductor properties, refrigerator cost and steady-state heat removal. With very careful design, it appears feasible to build a device with only 50 cm of shielding

  1. Shielding Design and Radiation Shielding Evaluation for LSDS System Facility

    International Nuclear Information System (INIS)

    Kim, Younggook; Kim, Jeongdong; Lee, Yongdeok

    2015-01-01

    As the system characteristics, the target in the spectrometer emits approximately 1012 neutrons/s. To efficiently shield the neutron, the shielding door designs are proposed for the LSDS system through a comparison of the direct shield and maze designs. Hence, to guarantee the radiation safety for the facility, the door design is a compulsory course of the development of the LSDS system. To improve the shielding rates, 250x250 covering structure was added as a subsidiary around the spectrometer. In this study, the evaluations of the suggested shielding designs were conducted using MCNP code. The suggested door design and covering structures can shield the neutron efficiently, thus all evaluations of all conditions are satisfied within the public dose limits. From the Monte Carlo code simulation, Resin(Indoor type) and Tungsten(Outdoor type) were selected as the shielding door materials. From a comparative evaluation of the door thickness, In and Out door thickness was selected 50 cm

  2. The effect of cadmium shielding on the spatial neutron flux distribution inside one of the outer irradiation sites

    International Nuclear Information System (INIS)

    Shaaban, I.

    2009-06-01

    A permanent epithermal neutron irradiation facility was designed in the Syrian Miniature Neutron Source Reactor (MNSR) by using the cadmium (cylindrical vial 1.0 mm in thickness, 38.50 mm in diameter and 180 mm in length) as thermal neutron shielding material, for a permanent epithermal neutron activation analysis (ENAA). This site was designed by shielding the internal surface of the aluminum tube of the first outer irradiation site in the MNSR reactor. I was used the activation detectors 0.1143% Au-Al alloy foils with 0.1 mm thickness and 2.0 mm diameter for measurement the thermal neutron flux, epithermal and R c d=A b are/A c over ratio in the outer irradiation site. Distribution of the thermal neutron flux in the outer irradiation capsule has been found numerically using MCNP-4C code with and without cadmium shield, and experimentally by irradiating five copper wires using the outer irradiation capsule. Good agreements were obtained between the calculated and the measured results. (author)

  3. Operator product expansion and its thermal average

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Saha Inst. of Nuclear Physics, Calcutta (India)

    1998-05-01

    QCD sum rules at finite temperature, like the ones at zero temperature, require the coefficients of local operators, which arise in the short distance expansion of the thermal average of two-point functions of currents. We extend the configuration space method, applied earlier at zero temperature, to the case at finite temperature. We find that, upto dimension four, two new operators arise, in addition to the two appearing already in the vacuum correlation functions. It is argued that the new operators would contribute substantially to the sum rules, when the temperature is not too low. (orig.) 7 refs.

  4. Status of reactor shielding research in the United States

    International Nuclear Information System (INIS)

    Bartine, D.E.

    1983-01-01

    Shielding research in the United States continues to place emphasis on: (1) the development and refinement of shielding design calculational methods and nuclear data; and (2) the performance of confirmation experiments, both to evaluate specific design concepts and to verify specific calculational techniques and input data. The successful prediction of the radiation levels observed within the now-operating Fast Flux Test Facility (FFTF) has demonstrated the validity of this two-pronged approach, which has since been applied to US fast breeder reactor programs and is now being used to determine radiation levels and possible further shielding needs at operating light water reactors, especially under accident conditions. A similar approach is being applied to the back end of the fission fuel cycle to verify that radiation doses at fuel element storage and transportation facilities and within fuel reprocessing plants are kept at acceptable levels without undue economic penalties

  5. Burst shield for a pressurized nuclear-reactor core and method of operating same

    International Nuclear Information System (INIS)

    Beine, B.; Schilling, F.

    1976-01-01

    A pressurized nuclear-reactor core stands on a base up from which extends a cylindrical side wall formed of a plurality of hollow iron castings held together by circumferential and longitudinal prestressed elements. A cylindrical space between this shield and the core serves for inspection of the core and is normally filled with cast-iron segmental slabs so that if the core bursts pieces thrown out do not acquire any dangerous kinetic energy before engaging the burst shield. The top of the shield is removably secured to the side so that it can be moved out of the way periodically for removal of the filler slabs and inspection of the core. An anchor on the upper end of each longitudinal prestressing element bears against a sleeve pressing against the uppermost side element, and a nut engageable with this anchor is engageable down over the top to hold it in place, removal of this nut leaving the element prestressed in the side wall. 11 claims, 16 drawing figures

  6. Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation.

    Science.gov (United States)

    Lee, Seung Hwan; Yu, Seunggun; Shahzad, Faisal; Kim, Woo Nyon; Park, Cheolmin; Hong, Soon Man; Koo, Chong Min

    2017-09-21

    Lightweight dual-functional materials with high EMI shielding performance and thermal conductivity are of great importance in modern cutting-edge applications, such as mobile electronics, automotive, aerospace, and military. Unfortunately, a clear material solution has not emerged yet. Herein, we demonstrate a simple and effective way to fabricate lightweight metal-based polymer composites with dual-functional ability of excellent EMI shielding effectiveness and thermal conductivity using expandable polymer bead-templated Cu hollow beads. The low-density Cu hollow beads (ρ ∼ 0.44 g cm -3 ) were fabricated through electroless plating of Cu on the expanded polymer beads with ultralow density (ρ ∼ 0.02 g cm -3 ). The resulting composites that formed a continuous 3D Cu network with a very small Cu content (∼9.8 vol%) exhibited excellent EMI shielding (110.7 dB at 7 GHz) and thermal conductivity (7.0 W m -1 K -1 ) with isotropic features. Moreover, the densities of the composites are tunable from 1.28 to 0.59 g cm -3 in accordance with the purpose of their applications. To the best of our knowledge, the resulting composites are the best lightweight dual-functional materials with exceptionally high EMI SE and thermal conductivity performance among synthetic polymer composites.

  7. Shielding benchmark problems

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Sasamoto, Nobuo; Oka, Yoshiaki; Kawai, Masayoshi; Nakazawa, Masaharu.

    1978-09-01

    Shielding benchmark problems were prepared by the Working Group of Assessment of Shielding Experiments in the Research Comittee on Shielding Design of the Atomic Energy Society of Japan, and compiled by the Shielding Laboratory of Japan Atomic Energy Research Institute. Twenty-one kinds of shielding benchmark problems are presented for evaluating the calculational algorithm and the accuracy of computer codes based on the discrete ordinates method and the Monte Carlo method and for evaluating the nuclear data used in the codes. (author)

  8. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L.; Riemer, B.W.; Ryan, P.M.; Williamson, D.E.

    1991-01-01

    A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. A high-heat-flux, uncooled Faraday shield has also been designed for the fast-wave current drive (FWCD) antenna on D3-D. For both components, the improved understanding of the heating profiles made it possible to design for heat fluxes that would otherwise have been too close to mechanically established limits. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the D3-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed. 3 refs., 6 figs., 2 tabs

  9. Thermal modeling of nickel-hydrogen battery cells operating under transient orbital conditions

    Science.gov (United States)

    Schrage, Dean S.

    1991-01-01

    An analytical study of the thermal operating characteristics of nickel-hydrogen battery cells is presented. Combined finite-element and finite-difference techniques are employed to arrive at a computationally efficient composite thermal model representing a series-cell arrangement operating in conjunction with a radiately coupled baseplate and coldplate thermal bus. An aggressive, low-mass design approach indicates that thermal considerations can and should direct the design of the thermal bus arrangement. Special consideration is given to the potential for mixed conductive and convective processes across the hydrogen gap. Results of a compressible flow model are presented and indicate the transfer process is suitably represented by molecular conduction. A high-fidelity thermal model of the cell stack (and related components) indicates the presence of axial and radial temperature gradients. A detailed model of the thermal bus reveals the thermal interaction of individual cells and is imperative for assessing the intercell temperature gradients.

  10. Dismantling method for reactor shielding wall and device therefor

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko.

    1995-01-01

    A ring member having an outer diameter slightly smaller than an inner diameter of a reactor shielding wall to be dismantled is lowered in the inside of the reactor shielding wall while keeping a horizontal posture. A cutting device is disposed at the lower peripheral edge of the ring member. The cutting device can move along the peripheral edge of the circular shape of the ring member. The ring member is urged against the inner surface of the reactor shielding wall by using an urging member to immobilize the ring member. Then, the cutting device is operated to cut the reactor shielding wall into a plurality of ring-like blocks at a plurality of inner horizontal ribs or block connection ribs. Then, the blocks of the cut reactor shielding wall are supported by the ring member, and transported out of the reactor container by a lift. The cut blocks transported to the outside are finely dismantled for every block in a closed chamber. (I.N.)

  11. Reactor vessel head permanent shield

    International Nuclear Information System (INIS)

    Hankinson, M.F.; Leduc, R.J.; Richard, J.W.; Malandra, L.J.

    1989-01-01

    A nuclear reactor is described comprising: a nuclear reactor pressure vessel closure head; control rod drive mechanisms (CRDMs) disposed within the closure head so as to project vertically above the closure head; cooling air baffle means surrounding the control rod drive mechanisms for defining cooling air paths relative to the control rod drive mechanisms; means defined within the periphery of the closure head for accommodating fastening means for securing the closure head to its associated pressure vessel; lifting lugs fixedly secured to the closure head for facilitating lifting and lowering movements of the closure head relative to the pressure vessel; lift rods respectively operatively associated with the plurality of lifting lugs for transmitting load forces, developed during the lifting and lowering movements of the closure head, to the lifting lugs; upstanding radiation shield means interposed between the cooling air baffle means and the periphery of the enclosure head of shielding maintenance personnel operatively working upon the closure head fastening means from the effects of radiation which may emanate from the control rod drive mechanisms and the cooling air baffle means; and connecting systems respectively associated with each one of the lifting lugs and each one of the lifting rods for connecting each one of the lifting rods to a respective one of each one of the lifting lugs, and for simultaneously connecting a lower end portion of the upstanding radiation shield means to each one of the respective lifting lugs

  12. Infrared Thermography Approach for Effective Shielding Area of Field Smoke Based on Background Subtraction and Transmittance Interpolation.

    Science.gov (United States)

    Tang, Runze; Zhang, Tonglai; Chen, Yongpeng; Liang, Hao; Li, Bingyang; Zhou, Zunning

    2018-05-06

    Effective shielding area is a crucial indicator for the evaluation of the infrared smoke-obscuring effectiveness on the battlefield. The conventional methods for assessing the shielding area of the smoke screen are time-consuming and labor intensive, in addition to lacking precision. Therefore, an efficient and convincing technique for testing the effective shielding area of the smoke screen has great potential benefits in the smoke screen applications in the field trial. In this study, a thermal infrared sensor with a mid-wavelength infrared (MWIR) range of 3 to 5 μm was first used to capture the target scene images through clear as well as obscuring smoke, at regular intervals. The background subtraction in motion detection was then applied to obtain the contour of the smoke cloud at each frame. The smoke transmittance at each pixel within the smoke contour was interpolated based on the data that was collected from the image. Finally, the smoke effective shielding area was calculated, based on the accumulation of the effective shielding pixel points. One advantage of this approach is that it utilizes only one thermal infrared sensor without any other additional equipment in the field trial, which significantly contributes to the efficiency and its convenience. Experiments have been carried out to demonstrate that this approach can determine the effective shielding area of the field infrared smoke both practically and efficiently.

  13. Infrared Thermography Approach for Effective Shielding Area of Field Smoke Based on Background Subtraction and Transmittance Interpolation

    Directory of Open Access Journals (Sweden)

    Runze Tang

    2018-05-01

    Full Text Available Effective shielding area is a crucial indicator for the evaluation of the infrared smoke-obscuring effectiveness on the battlefield. The conventional methods for assessing the shielding area of the smoke screen are time-consuming and labor intensive, in addition to lacking precision. Therefore, an efficient and convincing technique for testing the effective shielding area of the smoke screen has great potential benefits in the smoke screen applications in the field trial. In this study, a thermal infrared sensor with a mid-wavelength infrared (MWIR range of 3 to 5 μm was first used to capture the target scene images through clear as well as obscuring smoke, at regular intervals. The background subtraction in motion detection was then applied to obtain the contour of the smoke cloud at each frame. The smoke transmittance at each pixel within the smoke contour was interpolated based on the data that was collected from the image. Finally, the smoke effective shielding area was calculated, based on the accumulation of the effective shielding pixel points. One advantage of this approach is that it utilizes only one thermal infrared sensor without any other additional equipment in the field trial, which significantly contributes to the efficiency and its convenience. Experiments have been carried out to demonstrate that this approach can determine the effective shielding area of the field infrared smoke both practically and efficiently.

  14. Evaluation of nuclear data for radiation shielding by model calculations and international co-operation aspects

    International Nuclear Information System (INIS)

    Canetta, E.; Maino, G.; Menapace, E.

    2001-01-01

    The matter is reviewed, also following previous discussions at ICRS-9, concerning evaluation and related theoretical activities on nuclear data for radiation shielding within the framework of international co-operation initiatives, according to recognised needs and priorities. Both cross-section data.- for reactions induced by neutrons and photons - and nuclear structure data have been considered. In this context, main contributions and typical results are presented from theoretical and evaluation activities at the ENEA Applied Physics Division, especially concerning neutron induced reaction data up to 20 MeV and photonuclear reaction data such as photon absorption and (gamma,n) cross-sections. Relevant aspects of algebraic nuclear models and of evaporation and pre-equilibrium models are discussed. (authors)

  15. Studsvik thermal neutron facility

    International Nuclear Information System (INIS)

    Pettersson, O.A.; Larsson, B.; Grusell, E.; Svensson, P.

    1992-01-01

    The Studsvik thermal neutron facility at the R2-0 reactor originally designed for neutron capture radiography has been modified to permit irradiation of living cells and animals. A hole was drilled in the concrete shielding to provide a cylindrical channel with diameter of 25.3 cm. A shielding water tank serves as an entry holder for cells and animals. The advantage of this modification is that cells and animals can be irradiated at a constant thermal neutron fluence rate of approximately 10 9 n cm -2 s -1 (at 100 kW) without stopping and restarting the reactor. Topographic analysis of boron done by neutron capture autoradiography (NCR) can be irradiated under the same conditions as previously

  16. Upper shielding body in LMFBR type reactors

    International Nuclear Information System (INIS)

    Shoji, Koichi.

    1986-01-01

    Purpose: Preference is given to the strength and thermal insulation of a roof slab thereby ensuring axial size and improving the operationability upon inserting the control rod in the upper shielding body of LMFBR type reactors. Constitution: In an upper shielding body in which a large rotational plug is rotatably mounted to a circular hole formed at an eccentric position of a roof slab, while a small rotational plug is rotatably mounted to a circular hole disposed at an eccentric position of the large rotational plug and the reactor core upper mechanisms are supported on the small rotational plug, heat insulation layers are attached to the inside of the inner circumferential wall of the roof slab and the outer circumferential wall of the large rotational plug. By attaching the heat insulation layers, the heat conduction between the roof slab and the large rotational plug can be suppressed remarkably, by which occurrence of specific heat pass or local generation of large thermal stresses can be avoided even if difference is resulted to the temperature distribution between them. In this way, functions taking advantage of respective features of the roof slab and the small rotational plug can be obtained to achieve the purpose. (Kamimura, M.)

  17. Method and apparatus for thermal management of vehicle exhaust systems

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1995-12-26

    A catalytic converter is surrounded by variable conductance insulation for maintaining the operating temperature of the catalytic converter at an optimum level, for inhibiting heat loss when raising catalytic converter temperature to light-off temperature, for storing excess heat to maintain or accelerate reaching light-off temperature, and for conducting excess heat away from the catalytic converter after reaching light-off temperature. The variable conductance insulation includes vacuum gas control and metal-to-metal thermal shunt mechanisms. Radial and axial shielding inhibits radiation and convection heat loss. Thermal storage media includes phase change material, and heat exchanger chambers and fluids carry heat to and from the catalytic converter. 7 figs.

  18. Plasma effects on the passive external thermal control coating of Space Station Freedom

    Science.gov (United States)

    Carruth, Ralph, Jr.; Vaughn, Jason A.; Holt, James M.; Werp, Richard; Sudduth, Richard D.

    1992-01-01

    The current baseline chromic acid anodized thermal control coating on 6061-T6 aluminum meteoroid debris (M/D) shields for SSF has been evaluated. The degradation of the solar absorptance, alpha, and the thermal emittance, epsilon, of chromic acid anodized aluminum due to dielectric breakdown in plasma was measured to predict the on-orbit lifetime of the SSF M/D shields. The lifetime of the thermal control coating was based on the surface temperatures achieved with degradation of the thermal control properties, alpha and epsilon. The temperatures of each M/D shield from first element launch (FEL) through FEL+15 years were analyzed. It is shown that the baseline thermal control coating cannot withstand the -140 V potential between the conductive structure of the SSF and the current plasma environment.

  19. Electromagnetic shielding formulae

    International Nuclear Information System (INIS)

    Dahlberg, E.

    1979-02-01

    This addendum to an earlier collection of electromagnetic shielding formulae (TRITA-EPP-75-27) contains simple transfer matrices suitable for calculating the quasistatic shielding efficiency for multiple transverse-field and axial-field cylindrical and spherical shields, as well as for estimating leakage fields from long coaxial cables and the normal-incidence transmission of a plane wave through a multiple plane shield. The differences and similarities between these cases are illustrated by means of equivalent circuits and transmission line analogies. The addendum also includes a discussion of a possible heuristic improvement of some shielding formulae. (author)

  20. Continuous electrodeionization through electrostatic shielding

    International Nuclear Information System (INIS)

    Dermentzis, Konstantinos

    2008-01-01

    We report a new continuous electrodeionization cell with electrostatically shielded concentrate compartments or electrochemical Faraday cages formed by porous electronically and ionically conductive media, instead of permselective ion exchange membranes. Due to local elimination of the applied electric field within the compartments, they electrostatically retain the incoming ions and act as 'electrostatic ion pumps' or 'ion traps' and therefore concentrate compartments. The porous media are chemically and thermally stable. Electrodeionization or electrodialysis cells containing such concentrate compartments in place of ion exchange membranes can be used to regenerate ion exchange resins and produce deionized water, to purify industrial effluents and desalinate brackish or seawater. The cells can work by polarity reversal without any negative impact to the deionization process. Because the electronically and ionically active media constituting the electrostatically shielded concentrate compartments are not permselective and coions are not repelled but can be swept by the migrating counterions, the cells are not affected by the known membrane associated limitations, such as concentration polarization or scaling and show an increased current efficiency

  1. Shielding analysis method applied to nuclear ship 'MUTSU' and its evaluation based on experimental analyses

    International Nuclear Information System (INIS)

    Yamaji, Akio; Miyakoshi, Jun-ichi; Iwao, Yoshiaki; Tsubosaka, Akira; Saito, Tetsuo; Fujii, Takayoshi; Okumura, Yoshihiro; Suzuoki, Zenro; Kawakita, Takashi.

    1984-01-01

    Procedures of shielding analysis are described which were used for the shielding modification design of the Nuclear Ship ''MUTSU''. The calculations of the radiation distribution on board were made using Sn codes ANISN and TWOTRAN, a point kernel code QAD and a Monte Carlo code MORSE. The accuracies of these calculations were investigated through the analysis of various shielding experiments: the shield tank experiment of the Nuclear Ship ''Otto Hahn'', the shielding mock-up experiment for ''MUTSU'' performed in JRR-4, the shielding benchmark experiment using the 16 N radiation facility of AERE Harwell and the shielding effect experiment of the ship structure performed in the training ship ''Shintoku-Maru''. The values calculated by the ANISN agree with the data measured at ''Otto Hahn'' within a factor of 2 for fast neutrons and within a factor of 3 for epithermal and thermal neutrons. The γ-ray dose rates calculated by the QAD agree with the measured values within 30% for the analysis of the experiment in JRR-4. The design values for ''MUTSU'' were determined in consequence of these experimental analyses. (author)

  2. Preliminary design of the thermal protection system for solar probe

    Science.gov (United States)

    Dirling, R. B., Jr.; Loomis, W. C.; Heightland, C. N.

    1982-01-01

    A preliminary design of the thermal protection system for the NASA Solar Probe spacecraft is presented. As presently conceived, the spacecraft will be launched by the Space Shuttle on a Jovian swing-by trajectory and at perihelion approach to three solar radii of the surface of the Earth's sun. The system design satisfies maximum envelope, structural integrity, equipotential, and mass loss/contamination requirements by employing lightweight carbon-carbon emissive shields. The primary shield is a thin shell, 15.5-deg half-angle cone which absorbs direct solar flux at up to 10-deg off-nadir spacecraft pointing angles. Secondary shields of sandwich construction and low thickness-direction thermal conductivity are used to reduce the primary shield infrared radiation to the spacecraft payload.

  3. Radiation shielding issues on the FMIT

    International Nuclear Information System (INIS)

    Burke, R.J.; Davis, A.A.; Huang, S.; Morford, R.J.

    1981-05-01

    The Fusion Materials Irradiation Test Facility (FMIT) is being built to study neutron radiation effects in candidate fusion reactor materials. The FMIT will yield high fluence data in a fusion-like neutron radiation environment produced by the interaction of a 0.1A, 35 MeV deuteron beam with a flowing lithium target. The design of the facility as a whole is driven by a high availability requirement. The variety of radiation environments in the facility requires the use of diverse and extensive shielding. Shielding design throughout the FMIT must accommodate the need for maintenance and operations access while providing adequate personnel and equipment protection

  4. Shield evaluation and validation for design and operation of facility for treatment of legacy Intermediate Level Radioactive Liquid Waste (ILW)

    International Nuclear Information System (INIS)

    Deepa, A.; Jakhete, A.P.; Rathish, K.R.; Saroj, S.K.; Patel, H.S.; Gopalakrishnan, R.K.; Gangadharan, Anand; Singh, Neelima

    2014-01-01

    An ion exchange treatment facility has been commissioned at PRIX facility, for the treatment of legacy ILW generated at reprocessing plant, Trombay. The treatment system is based on the deployment of selective sorbents for removal of cesium and strontium from ILW. Activity concentration due to beta emitters likely to be processed is of the order of 111-1850 MBq/l. Dose rates in different areas of the facility were evaluated using shielding code and design input. Present work give details of the comparison of dose rates estimated and dose rates measured at various stages of the processing of ILW. At PRIX, the ILW treatment system comprises of shielded IX columns (two cesium and one strontium) housed in a MS cubicle the process lines inlet and outlet of IX treatment system and effluent storage tanks. The MS cubicle, prefilter and piping are housed in a process cell of 500 mm concrete shielding. Effluent storage tanks are outside processing building. Theoretical assessment of expected dose rates were carried out prior to installation of various systems in different areas of PRIX. Dose rate on IX column and MS cubicle for a maximum inventory of 3.7x10 7 MBq of 137 Cs and its contribution in operating gallery was estimated

  5. Fabrication and replacement work of beryllium frame and gamma-ray shield

    International Nuclear Information System (INIS)

    Watahiki, Shunsuke; Hanawa, Yoshio; Asano, Norikazu; Hiyama, Kazuhisa; Ito, Sachito; Tsuboi, Kazuaki; Fukasaku, Akitomi

    2012-03-01

    This replacement work was carried out under refurbishment plan of JMTR for beryllium distortion draw to acceptable limit. And gamma-ray shield refurbishment was carried out the view point of prevention maintenance in consideration of operation plan. Fabrication of beryllium frame and gamma-ray shield was spent for two years it was finished in February, 2010. It took five months to replacement work from January 2010. In this report is presented fabrication and replacement work of beryllium frame and gamma-ray shield. (author)

  6. PMMA/MWCNT nanocomposite for proton radiation shielding applications

    Science.gov (United States)

    Li, Zhenhao; Chen, Siyuan; Nambiar, Shruti; Sun, Yonghai; Zhang, Mingyu; Zheng, Wanping; Yeow, John T. W.

    2016-06-01

    Radiation shielding in space missions is critical in order to protect astronauts, spacecraft and payloads from radiation damage. Low atomic-number materials are efficient in shielding particle-radiation, but they have relatively weak material properties compared to alloys that are widely used in space applications as structural materials. However, the issues related to weight and the secondary radiation generation make alloys not suitable for space radiation shielding. Polymers, on the other hand, can be filled with different filler materials for reinforcement of material properties, while at the same time provide sufficient radiation shielding function with lower weight and less secondary radiation generation. In this study, poly(methyl-methacrylate)/multi-walled carbon nanotube (PMMA/MWCNT) nanocomposite was fabricated. The role of MWCNTs embedded in PMMA matrix, in terms of radiation shielding effectiveness, was experimentally evaluated by comparing the proton transmission properties and secondary neutron generation of the PMMA/MWCNT nanocomposite with pure PMMA and aluminum. The results showed that the addition of MWCNTs in PMMA matrix can further reduce the secondary neutron generation of the pure polymer, while no obvious change was found in the proton transmission property. On the other hand, both the pure PMMA and the nanocomposite were 18%-19% lighter in weight than aluminum for stopping the protons with the same energy and generated up to 5% fewer secondary neutrons. Furthermore, the use of MWCNTs showed enhanced thermal stability over the pure polymer, and thus the overall reinforcement effects make MWCNT an effective filler material for applications in the space industry.

  7. Biological shield around the neutral beam injector ducts in the ITER conceptual design

    International Nuclear Information System (INIS)

    Maki, Koichi; Takatsu, Hideyuki; Satoh, Satoshi; Seki, Yasushi

    1994-01-01

    There are gaps between the toroidal field coils and neutral beam injector (NBI) duct wall for the thermal insulator in tokamak reactors such as ITER (International Thermonuclear Experimental Reactor). Neutrons stream through the duct, and some of them penetrate the wall and stream through the gaps. These neutrons activate the materials composing the duct wall, toroidal field coil (TFC) case and cryostat wall surfaces. The dose rate is enhanced just outside the cryostat around the ducts in the reactor room after reactor operation by activation. We investigated the gamma-ray dose rate just outside the cryostat after shutdown due to gamma-rays from activity induced by the neutrons streaming through the gaps. By evaluating the difference between the dose rate in models with and without gaps, we decided whether the thickness of the cryostat as biological shielding is sufficient or not. From these investigations, we recommend a cryostat design suitable for radiation shielding. Dose rates after shutdown at a point just outside the cryostat around the NBI ducts in the model with gaps are two orders larger than those without gaps. The value at this point is approximately 400 mrem h -1 (4 mSv h -1 ), which is two orders larger than the design value for workers to enter the reactor room. In order to reduce the dose rate after shutdown, a method of providing the shielding function of the cryostat is suggested. ((orig.))

  8. Thermal fatigue cracks in gas turbine heat shield plates; Thermoermuedungsrisse in Hitzeschildplatten von Gasturbinen

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, Andreas; Riesenbeck, Susanne [Siemens AG, Berlin (Germany). Gas Turbine Plant Berlin Labs.

    2012-07-01

    There are numerous possible designations for the damage mechanism described in this case study. As a consequence, the terminology is far from being consistent. In this context, the Anglo-Saxon language area has to be taken into consideration. On the one hand many failure analysis reports have to be written in English, on the other hand it is meanwhile expected to use English terms in reports written in German, the latter in an effort to standardize the internal nomenclature. Therefore, it is advisable for damage analysts to know technical terms in both languages, at least for the most important damage mechanisms occurring in their respective fields of activity. In the present case, individual ceramic coated metal heat shield plates have been replaced after several ten thousand operating hours and several hundred start-up and shut-down procedures, i.e. machine start-ups, due to cracks in the central locating hole.

  9. Shielding member for thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori

    1997-06-30

    In a thermonuclear device for shielding fast neutrons by shielding members disposed in a shielding vessel (vacuum vessel and structures such as a blanket disposed in the vacuum vessel), the shielding member comprises a large number of shielding wires formed fine and short so as to have elasticity. The shielding wires are sealed in a shielding vessel together with water, and when the width of the shielding vessel is changed, the shielding wires follow after the change of the width while elastically deforming in the shielding vessel, so that great stress and deformation are not formed thereby enabling to improve reliability. In addition, the length, the diameter and the shape of each of the shielding wires can be selected in accordance with the shielding space of the shielding vessel. Even if the shape of the shielding vessel is complicated, the shielding wires can be inserted easily. Accordingly, the filling rate of the shielding members can be changed easily. It can be produced more easily compared with a conventional spherical pebbles. It can be produced more easily than existent spherical shielding pebbles thereby enabling to reduce the production cost. (N.H.)

  10. Radiological shielding of low power compact reactor: calculation and design

    International Nuclear Information System (INIS)

    Marino, Raul

    2004-01-01

    The development of compact reactors becoming a technology that offers great projection and innumerable use possibilities, both in electricity generation and in propulsion.One of the requirements for the operation of this type of reactor is that it must include a radiological shield that will allow for different types of configurations and that, may be moved with the reactor if it needs to be transported.The nucleus of a reactor emits radiation, mainly neutrons and gamma rays in the heat of power, and gamma radiation during the radioactive decay of fission products.This radiation must be restrained in both conditions of operation to avoid it affecting workers or the public.The combination of different materials and properties in layers results in better performance in the form of a decrease in radiation, hence causing the dosage outside the reactor, whether in operation or shut down, to fall within the allowed limits.The calculations and design of radiological shields is therefore of paramount importance in reactor design.The choice of material and the design of the shield have a strong impact on the cost and the load capacity, the latter being one of the characteristics to optimize.The imposed condition of design is that the reactor can be transported together with the decay shield in a standard container of 40 foot [es

  11. Loss of coolant analysis for the tower shielding reactor 2

    International Nuclear Information System (INIS)

    Radcliff, T.D.; Williams, P.T.

    1990-06-01

    The operational limits of the Tower Shielding Reactor-2 (TSR-2) have been revised to account for placing the reactor in a beam shield, which reduces convection cooling during a loss-of-coolant accident (LOCA). A detailed heat transfer analysis was performed to set operating time limits which preclude fuel damage during a LOCA. Since a LOCA is survivable, the pressure boundary need not be safety related, minimizing seismic and inspection requirements. Measurements of reactor component emittance for this analysis revealed that aluminum oxidized in water may have emittance much higher than accepted values, allowing higher operating limits than were originally expected. These limits could be increased further with analytical or hardware improvements. 5 refs., 7 figs

  12. Shielding calculations for NET

    International Nuclear Information System (INIS)

    Verschuur, K.A.; Hogenbirk, A.

    1991-05-01

    In the European Fusion Technology Programme there is only a small activity on research and development for fusion neutronics. Never-the-less, looking further than blanket design now, as ECN is getting involved in design of radiation shields for the coils and biological shields, it becomes apparent that fusion neutronics as a whole still needs substantial development. Existing exact codes for calculation of complex geometries like MCNP and DORT/TORT are put over the limits of their numerical capabilities, whilst approximate codes for complex geometries like FURNACE and MERCURE4 are put over the limits of their modelling capabilities. The main objective of this study is just to find out how far we can get with existing codes in obtaining reliable values for the radiation levels inside and outside the cryostat/shield during operation and after shut-down. Starting with a 1D torus model for preliminary parametric studies, more dimensional approximation of the torus or parts of it including the main heterogeneities should follow. Regular contacts with the NET-Team are kept, to be aware of main changes in NET design that might affect our calculation models. Work on the contract started 1 July 1990. The technical description of the contract is given. (author). 14 refs.; 4 figs.; 1 tab

  13. High-precision thermal and electrical characterization of thermoelectric modules

    Science.gov (United States)

    Kolodner, Paul

    2014-05-01

    This paper describes an apparatus for performing high-precision electrical and thermal characterization of thermoelectric modules (TEMs). The apparatus is calibrated for operation between 20 °C and 80 °C and is normally used for measurements of heat currents in the range 0-10 W. Precision thermometry based on miniature thermistor probes enables an absolute temperature accuracy of better than 0.010 °C. The use of vacuum isolation, thermal guarding, and radiation shielding, augmented by a careful accounting of stray heat leaks and uncertainties, allows the heat current through the TEM under test to be determined with a precision of a few mW. The fractional precision of all measured parameters is approximately 0.1%.

  14. The Effect of Consolidation on TBM Shield Loading in Water-Bearing Squeezing Ground

    Science.gov (United States)

    Ramoni, M.; Anagnostou, G.

    2011-01-01

    Jamming or overstressing of the shield due to ground pressure are potential problems for tunnel boring machine (TBM) tunnelling in squeezing ground. The risk of shield jamming depends essentially on the deformation rate of the ground in the vicinity of the working face. The time-dependency of the ground response to the excavation is associated with its rheological properties as well as with the transient consolidation process that takes place around the opening in the case of a low-permeability saturated ground. The present paper focuses on the second mechanism and investigates the interaction between the advancing shield, tunnel lining and consolidating ground by means of transient numerical analyses. For a given set of geotechnical conditions and a given TBM configuration, the load exerted by the ground upon the shield during TBM operation decreases with increasing gross advance rate. During a long break in operations, the ground pressure may increase significantly, thereby necessitating a higher thrust force to overcome shield skin friction and restart the TBM. It is interesting to note that a high advance rate reduces the risk of shield jamming not only during TBM advance, but is also favourable with respect to any subsequent long standstills.

  15. Effect of particle size of mineral fillers on polymer-matrix composite shielding materials against ionizing electromagnetic radiation

    International Nuclear Information System (INIS)

    Belgin, E.E.; Aycik, G.A.

    2017-01-01

    Filler particle size is an important particle that effects radiation attenuation performance of a composite shielding material but the effects of it have not been exploited so far. In this study, two mineral (hematite-ilmenite) with different particle sizes were used as fillers in a polymer-matrix composite and effects of particle size on shielding performance was investigated within a widerange of radiation energy (0-2000 keV). The thermal and structural properties of the composites were also examined. The results showed that as the filler particle size decreased the shielding performance increased. The highest shielding performance reached was 23% with particle sizes being between <7 and <74 µm. (author)

  16. Thermal performance of a depleted uranium shielded storage, transportation, and disposal package

    International Nuclear Information System (INIS)

    Wix, S.D.; Yoshimura, H.R.

    1994-01-01

    The US Department of Energy (DOE) is responsible for management and disposal of large quantities of depleted uranium (DU) in the DOE complex. Viable economic options for the use and eventual disposal of the material are needed. One possible option is the use of DU as shielding material for vitrified Defense High-Level Waste (DHLW) storage, transportation, and disposal packages. Use of DU as a shielding material provides the potential benefit of disposing of significant quantities of DU during the DHLW storage and disposal process. Two DU package concepts have been developed by Sandia National Laboratories. The first concept is the Storage/Disposal plus Transportation (S/D+T) package. The S/D+T package consists of two major components: a storage/disposal (S/D) container and a transportation overpack. The second concept is the S/D/T package which is an integral storage, transportation, and disposal package. The package concept considered in this analysis is the S/D+T package with seven DHLW waste canisters. The S/D+T package provides shielding and containment for the DHLW waste canisters. The S/D container is intended to be used as an on-site storage and repository disposal container. In this analysis, the S/D container is constructed from a combination of stainless steel and DU. Other material combinations, such as mild steel and DU, are potential candidates. The transportation overpack is used to transport the S/D containers to a final geological repository and is not included in this analysis

  17. Design and Characterization of Low-noise Dewar for High-sensitivity SQUID Operation

    International Nuclear Information System (INIS)

    Yu, K. K.; Lee, Y. H.; Kim, K.; Kwon, H.; Kim, J. M.

    2010-01-01

    We have fabricated the low noise liquid helium(LHe) dewar with a different shape of thermal shield to apply the 64-channel SQUID(Superconducting Quantum Interference Device) gradiometer. The first shape of thermal shield was made of an aluminum plate with a wide width of 100 mm slit and the other shape was modified with a narrow width of 20 mm slit. The two types of dewars were estimated by comparing the thermal noise and the signal-to-noise ratio(SNR) of magnetocardiography(MCG) using the 1st order SQUID gradiometer system cooled each dewar. The white noise was different as a point of the dewar. The noise was increased as close as the edge of dewar, and also increased at the thermal shield with the more wide width slit. The white noise of the dewar with thermal shield of 100 mm slit was 6.5 fT/Hz 1/2 at the center of dewar and 25 fT/Hz 1/2 at the edge, and the white noise of the other one was 3.5 - 7 fT/Hz 1/2 . We measured the MCG using 64-channel SQUID gradiometer cooled at each LHe dewar and compared the SNR of MCG signal. The SNR was improved of 10 times at the LHe dewar with a modified thermal shield.

  18. Self-Shielding Of Transmission Lines

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Christos [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-03-01

    The use of shielding to contend with noise or harmful EMI/EMR energy is not a new concept. An inevitable trade that must be made for shielding is physical space and weight. Space was often not as much of a painful design trade in older larger systems as they are in today’s smaller systems. Today we are packing in an exponentially growing number of functionality within the same or smaller volumes. As systems become smaller and space within systems become more restricted, the implementation of shielding becomes more problematic. Often, space that was used to design a more mechanically robust component must be used for shielding. As the system gets smaller and space is at more of a premium, the trades starts to result in defects, designs with inadequate margin in other performance areas, and designs that are sensitive to manufacturing variability. With these challenges in mind, it would be ideal to maximize attenuation of harmful fields as they inevitably couple onto transmission lines without the use of traditional shielding. Dr. Tom Van Doren proposed a design concept for transmission lines to a class of engineers while visiting New Mexico. This design concept works by maximizing Electric field (E) and Magnetic Field (H) field containment between operating transmission lines to achieve what he called “Self-Shielding”. By making the geometric centroid of the outgoing current coincident with the return current, maximum field containment is achieved. The reciprocal should be true as well, resulting in greater attenuation of incident fields. Figure’s 1(a)-1(b) are examples of designs where the current centroids are coincident. Coax cables are good examples of transmission lines with co-located centroids but they demonstrate excellent field attenuation for other reasons and can’t be used to test this design concept. Figure 1(b) is a flex circuit design that demonstrate the implementation of self-shielding vs a standard conductor layout.

  19. A contribution to shielding effectiveness analysis of shielded tents

    Directory of Open Access Journals (Sweden)

    Vranić Zoran M.

    2004-01-01

    Full Text Available An analysis of shielding effectiveness (SE of the shielded tents made of the metallised fabrics is given. First, two electromagnetic characteristic fundamental for coupling through electrically thin shield, the skin depth break frequency and the surface resistance or transfer impedance, is defined and analyzed. Then, the transfer function and the SE are analyzed regarding to the frequency range of interest to the Electromagnetic Compatibility (EMC Community.

  20. Technical specifications for the bulk shielding reactor

    International Nuclear Information System (INIS)

    1986-05-01

    This report provides information concerning the technical specifications for the Bulk Shielding Reactor. Areas covered include: safety limits and limiting safety settings; limiting conditions for operation; surveillance requirements; design features; administrative controls; and monitoring of airborne effluents. 10 refs

  1. An assessment of the lifetime of Faraday shield elements

    International Nuclear Information System (INIS)

    Caughman, J.B.O. II; Ruzic, D.N.; Hoffman, D.J.; Langley, R.A.; Lewis, M.B.; Ryan, P.M.

    1989-01-01

    The interaction of plasma with rf fields from an ion cyclotron range of frequencies (ICRF) antenna has been studied to estimate the amount of Faraday shield erosion expected in normal ICRF heating (ICRH) operation. Plasma parameters and ion energies have been measured in the near field of an antenna and used in a model to estimate the erosion rate of the Faraday shield surface. Experiments were conducted on the RF Test Facility (RFTF), a magnetic mirror device at Oak Ridge National Laboratory (ORNL), using a single-strap resonant loop antenna with a two-tier Faraday shield. The outer tier, facing the plasma, was layered with graphite tiles. The antenna was operated at currents and voltages (∼500 A, ∼20 kV at 25 kW) within 50% of those expected in tokamaks. The time varying floating potential was measured with a capacitively coupled probe, and the time-averaged floating potential, electron temperature, and electron density were measured with a Langmuir probe. Both probes were scanned in front of the antenna. Ion energies were measured with a gridded energy analyzer located below the antenna, and samples of silicon were placed on the Faraday shield surface to estimate the incident ion energy. The capacitive probe measurements show that the rf floating potential follows the magnetic field pattern of the antenna, indicating that the electromagnetic fields are responsible for the potential formation. Plasma parameters and ion energies have been correlated with the antenna current and used in s computational model of the plasma sheath to predict the amount of erosion expected from the Faraday shield elements exposed to plasma. Predictions of light ion sputtering of candidate Faraday shield materials are presented. 19 refs., 6 figs., 1 tab

  2. Apparatus for sealing a rotatable shield plug in a liquid metal nuclear reactor

    International Nuclear Information System (INIS)

    Winkleblack, R.K.

    1980-01-01

    An apparatus for sealing a rotatable shield plug in a nuclear reactor having liquid metal coolant is described. The apparatus includes a dip -ring seal adapted to provide a fluid barrier between the liquid metal and the atmosphere and to permit rotation of the shield plug. The apparatus also includes a static seal for the rotatable shield plug located between the dip-ring seal and the liquid metal. The static seal isolates the dip-ring seal from the liquid metal vapor during operation at power and can be disengaged for rotation of the shield plug

  3. Transparent fast neutron shielding material and shielding method

    International Nuclear Information System (INIS)

    Nashimoto, Tetsuji; Katase, Haruhisa.

    1993-01-01

    Polyisobutylene having a viscosity average molecular weight of 20,000 to 80,000 and a hydrogen atom density of greater than 7.0 x 10 22 /cm 3 is used as a fast neutron shielding material. The shielding material is excellent in the shielding performance against fast neutrons, and there is no worry of leakage even when holes should be formed to a vessel. Further, it is excellent in fabricability, relatively safe even upon occurrence of fire and, in addition, it is transparent to enable to observe contents easily. (T.M.)

  4. Electromagnetically shielded building

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1992-04-21

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs.

  5. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  6. Radiation shielding concrete

    International Nuclear Information System (INIS)

    Kunishima, Shigeru.

    1990-01-01

    The radiation shielding concretes comprise water, cement, fine aggregates consisting of serpentines and blown mist slags, coarse aggregates consisting of serpentines and kneading materials. Since serpentines containing a relatively great amount of water of crystallization in rocks as coarse aggregates and fine aggregates, the hydrogen content in the radiation shielding concretes is increased and the neutron shielding effect is improved. In addition, since serpentines are added as the fine aggregates and blown mists slags of a great specific gravity are used, the specific gravity of the shielding concretes is increased to improve the γ-ray shielding effect. Further, by the use of the kneading material having a water reducing effect and fluidizing effect, and by the bearing effect of the spherical blown mist slags used as the fine aggregates, concrete fluidity can be increased. Accordingly, workability of the radiation shielding concretes can be improved. (T.M.)

  7. Thermal performance of a depleted uranium shielded storage, transportation, and disposal package

    International Nuclear Information System (INIS)

    Wix, S.D.; Yoshimura, H.R.

    1994-01-01

    The US Department of Energy (DOE) is responsible for management and disposal of large quantities of depleted uranium (DU) in the DOE complex. Viable economic options for the use and eventual disposal of the material are needed. One possible option is the use of DU as shielding material for vitrified Defense High-Level Waste (DHLW) storage, transportation, and disposal packages. Use of DU as a shielding material provides the potential benefit of disposing of significant quantities of DU during the DHLW storage and disposal process. Two DU package concepts have been developed by Sandia National Laboratories. The first concept is the Storage/Disposal plus Transportation (S/D+T) package. The S/D+T package consists of two major components: a storage/disposal (S/D) container and a transportation overpack. The second concept is the S/D/T package which is an integral storage, transportation, and disposal package. The package concept considered in this analysis is the S/D+T package with seven DHLW waste canisters

  8. Shielding augmentation of roll-on shield from NAPS to Kaiga-2

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Kumar, A.N.

    2000-01-01

    Extensive radiation field surveys were conducted in NAPS and KAPS reactor buildings as a part of commissioning checks on radiation shielding. During such surveys, dose rate higher than the expected values were noticed in fuelling machine service areas. A movable shield, separating high field area fuelling machine vault and low field area fuelling machine service area, known as roll-on shield was identified as one of the causes of high field in fuelling machine service area along with weaker end-shield. This paper discusses systematic approach adopted in bringing down the dose rates in fuelling machine service area by augmentation of roll-on shield. (author)

  9. Analysis and reduction of thermal magnetic noise in liquid-He dewar for sensitive low-field nuclear magnetic resonance measurements

    International Nuclear Information System (INIS)

    Hwang, S. M.; Yu, K. K.; Lee, Y. H.; Kang, C. S.; Kim, K.; Lee, S. J.

    2013-01-01

    For sensitive measurements of micro-Tesla nuclear magnetic resonance (μT-NMR) signal, a low-noise superconducting quantum interference device (SQUID) system is needed. We have fabricated a liquid He dewar for an SQUID having a large diameter for the pickup coil. The initial test of the SQUID system showed much higher low-frequency magnetic noise caused by the thermal magnetic noise of the aluminum plates used for the vapor-cooled thermal shield material. The frequency dependence of the noise spectrum showed that the noise increases with the decrease of frequency. This behavior could be explained from a two-layer model; one generating the thermal noise and the other one shielding the thermal noise by eddy-current shielding. And the eddy-current shielding effect is strongly dependent on the frequency through the skin-depth. To minimize the loop size for the fluctuating thermal noise current, we changed the thermal shield material into insulated thin Cu mesh. The magnetic noise of the SQUID system became flat down to 0.1 Hz with a white noise of 0.3 fT√ Hz, including the other noise contributions such as SQUID electronics and magnetically shielded room, etc, which is acceptable for low-noise μT-NMR experiments.

  10. INTOR first wall/blanket/shield activity

    International Nuclear Information System (INIS)

    Gohar, Y.; Billone, M.C.; Cha, Y.S.; Finn, P.A.; Hassanein, A.M.; Liu, Y.Y.; Majumdar, S.; Picologlou, B.F.; Smith, D.L.

    1986-01-01

    The main emphasis of the INTOR first wall/blanket/shield (FWBS) during this period has been upon the tritium breeding issues. The objective is to develop a FWBS concept which produces the tritium requirement for INTOR operation and uses a small fraction of the first wall surface area. The FWBS is constrained by the dimensions of the reference design and the protection criteria required for different reactor components. The blanket extrapolation to commercial power reactor conditions and the proper temperature for power extraction have been sacrificed to achieve the highest possible local tritium breeding ratio (TBR). In addition, several other factors that have been considered in the blanket survey study include safety, reliability, lifetime fluence, number of burn cycles, simplicity, cost, and development issues. The implications of different tritium supply scenarios were discussed from the cost and availability for INTOR conditions. A wide variety of blanket options was explored in a preliminary way to determine feasibility and to see if they can satisfy the INTOR conditions. This survey and related issues are summarized in this report. Also discussed are material design requirements, thermal hydraulic considerations, structure analyses, tritium permeation through the first wall into the coolant, and tritium inventory

  11. New facility shield design criteria

    International Nuclear Information System (INIS)

    Howell, W.P.

    1981-07-01

    The purpose of the criteria presented here is to provide standard guidance for the design of nuclear radiation shields thoughout new facilities. These criteria are required to assure a consistent and integrated design that can be operated safely and economically within the DOE standards. The scope of this report is confined to the consideration of radiation shielding for contained sources. The whole body dose limit established by the DOE applies to all doses which are generally distributed throughout the trunk of the body. Therefore, where the whole body is the critical organ for an internally deposited radionuclide, the whole body dose limit applies to the sum of doses received must assure control of the concentration of radionuclides in the building atmosphere and thereby limit the dose from internal sources

  12. Shielding assessment of the ETRR-1 Reactor Under power upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, E E [Reactor Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The assessment of existing shielding of the ETRR-1 reactor in case of power upgrading is presented and discussed. It was carried out using both the present EK-10 type fuel elements and some other types of fuel elements with different enrichments. The shielding requirements for the ETRR-1 when power is upgraded are also discussed. The optimization curves between the upgraded reactor power and the shield thickness are presented. The calculation have been made using the ANISN code with the DLC-75 data library. The results showed that the present shield necessitates an additional layer of steel with thickness of 10.20 and 25 cm. When its power is upgraded to 3, 6 and 10 MWt in order to cutoff all neutron energy groups to be adequately safe under normal operating conditions. 4 figs.

  13. Faraday-Shielded dc Stark-Shift-Free Optical Lattice Clock

    Science.gov (United States)

    Beloy, K.; Zhang, X.; McGrew, W. F.; Hinkley, N.; Yoon, T. H.; Nicolodi, D.; Fasano, R. J.; Schäffer, S. A.; Brown, R. C.; Ludlow, A. D.

    2018-05-01

    We demonstrate the absence of a dc Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the dc Stark shift at the 10-20 level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel nonzero dc Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of dc Stark shifts in optical lattice clocks.

  14. Characterization of a thermoelectric cooler based thermal management system under different operating conditions

    International Nuclear Information System (INIS)

    Russel, M.K.; Ewing, D.; Ching, C.Y.

    2013-01-01

    The performance of a thermoelectric cooler (TEC) based thermal management system for an electronic packaging design that operates under a range of ambient conditions and system loads is examined using a standard model for the TEC and a thermal resistance network for the other components. Experiments were performed and it was found that the model predictions were in good agreement with the experimental results. An operating envelope is developed to characterize the TEC based thermal management system for peak and off peak operating conditions. Parametric studies were performed to analyze the effect of the number of TEC module(s) in the system, geometric factor of the thermo-elements and the cold to hot side thermal resistances on the system performance. The results showed that there is a tradeoff between the extent of off peak heat fluxes and ambient temperatures when the system can be operated at a low power penalty region and the maximum capacity of the system. - Highlights: ► A model was developed for thermal management systems using thermoelectric coolers. ► Model predictions were in good agreement with experimental results. ► An operating envelope was developed for peak and off peak conditions. ► The effect of the number of thermoelectric coolers on the system was determined.

  15. Discussions for the shielding materials of synchrotron radiation beamline hutches

    International Nuclear Information System (INIS)

    Asano, Y.

    2006-01-01

    Many synchrotron radiation facilities are now under operation such as E.S.R.F., APS, and S.P.ring-8. New facilities with intermediated stored electron energy are also under construction and designing such as D.I.A.M.O.N.D., S.O.L.E.I.L., and S.S.R.F.. At these third generation synchrotron radiation facilities, the beamline shielding as well as the bulk shield is very important for designing radiation safety because of intense and high energy synchrotron radiation beam. Some reasons employ lead shield wall for the synchrotron radiation beamlines. One is narrow space for the construction of many beamlines at the experimental hall, and the other is the necessary of many movable mechanisms at the beamlines, for examples. Some cases are required to shield high energy neutrons due to stored electron beam loss and photoneutrons due to gas Bremsstrahlung. Ordinary concrete and heavy concrete are coming up to shield material of synchrotron radiation beamline hutches. However, few discussions have been performed so far for the shielding materials of the hutches. In this presentation, therefore, we will discuss the characteristics of the shielding conditions including build up effect for the beamline hutches by using the ordinary concrete, heavy concrete, and lead for shielding materials with 3 GeV and 8 GeV class synchrotron radiation source. (author)

  16. Concrete mix design for X-and gamma shielding

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Abdul Bakhri Muhammad; Mohd Kamal Shah Shamsuddin; Rahmad Abd Rashid

    2012-01-01

    The design of X-ray or gamma ray radiographic exposure room requires some calculations on shielding to provide safe operation of the facility and minimum exposure to radiation workers. Careful design can lead to economical installations with minimal barriers. The design depends on such factors as: maximum energy, maximum intensity, permitted full-body dosage, workload, use factor, occupancy factor, maximum dose output and shielding materials. Choice of material for a barrier depends on convenience and cost. The radiographic exposure room is usually made of normal concrete with density of about 2.3 - 2.4 g/ cc. Normal concrete is often used for construction of exposure room because of cheap and ease of construction. This paper explained and discussed the optimum mix design for normal concrete used for X-and gamma shielding. (author)

  17. A study on the characteristics of modified and novolac type epoxy resin based neutron shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Soo Haeng; Hong, Sun Seok; Oh, Seung Chul; Do, Jae Bum [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    Because the exposure to radiation in the nuclear facilities can be fatal to human, it is important to reduce the radiation dose level to a tolerable level. The purpose of this study is to develop highly effective neutron shielding materials for the shipping and storage cask of radioactive materials or in the nuclear/radiation facilities. In this study, we developed modified and novolac type epoxy resin based neutron shielding materials and their various material properties, including neutron shielding ability, prolonged time heat resistance, thermal and mechanical properties were evaluated experimently. (author). 31 refs., 27 figs., 16 tabs.

  18. Investigation of water content in primary upper shield of high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Sumita, Junya; Sawa, Kazuhiro; Mogi, Haruyoshi; Itahashi, Shuuji; Kitami, Toshiyuki; Akutu, Youichi; Fuchita, Yasuhiro; Kawaguchi, Toru; Moriya, Masahiro

    1999-09-01

    A primary upper shield of the High Temperature Engineering Test Reactor (HTTR) is composed of concrete (grout) which is packed into iron frames. The main function of the primary upper shield is to attenuate neutron and gamma ray from the core, that leads to satisfy dose equivalent rate limit of operating floor and stand-pipe room. Water content in the concrete is one of the most important things because it strongly affects neutron-shielding ability. Then, we carried out out-of-pile experiments to investigate relationship between temperature and water content in the concrete. Based on the experimental results, a hydrolysis-diffusion model was developed to investigate water release behavior from the concrete. The model showed that water content used for shielding design in the primary upper shield of the HTTR will be maintained if temperature during operating life is under 110degC. (author)

  19. SWIFT BAT Loop Heat Pipe Thermal System Characteristics and Ground/Flight Operation Procedure

    Science.gov (United States)

    Choi, Michael K.

    2003-01-01

    The SWIFT Burst Alert Telescope (BAT) Detector Array has a total power dissipation of 208 W. To meet the stringent temperature gradient and thermal stability requirements in the normal operational mode, and heater power budget in both the normal operational and safehold modes, the Detector Array is thermally well coupled to eight constant conductance heat pipes (CCHPs) embedded in the Detector Array Plate (DAP), and two loop heat pipes (LHPs) transport heat fiom the CCHPs to a radiator. The CCHPs have ammonia as the working fluid and the LHPs have propylene as the working fluid. Precision heater controllers, which have adjustable set points in flight, are used to control the LHP compensation chamber and Detector Array XA1 ASIC temperatures. The radiator has the AZ-Tek AZW-LA-II low-alpha white paint as the thermal coating and is located on the anti-sun side of the spacecraft. This paper presents the characteristics, ground operation and flight operation procedures of the LHP thermal system.

  20. Boron filled siloxane polymers for radiation shielding

    Science.gov (United States)

    Labouriau, Andrea; Robison, Tom; Shonrock, Clinton; Simmonds, Steve; Cox, Brad; Pacheco, Adam; Cady, Carl

    2018-03-01

    The purpose of the present work was to evaluate changes to structure-property relationships of 10B filled siloxane-based polymers when exposed to nuclear reactor radiation. Highly filled polysiloxanes were synthesized with the intent of fabricating materials that could shield high neutron fluences. The newly formulated materials consisted of cross-linked poly-diphenyl-methylsiloxane filled with natural boron and carbon nanofibers. This polymer was chosen because of its good thermal and chemical stabilities, as well as resistance to ionizing radiation thanks to the presence of aromatic groups in the siloxane backbone. Highly isotopically enriched 10B filler was used to provide an efficient neutron radiation shield, and carbon nanofibers were added to improve mechanical strength. This novel polymeric material was exposed in the Annular Core Research Reactor (ACRR) at Sandia National Labs to five different neutron/gamma fluxes consisting of very high neutron fluences within very short time periods. Thermocouples placed on the specimens recorded in-situ temperature changes during radiation exposure, which agreed well with those obtained from our MCNP simulations. Changes in the microstructural, thermal, chemical, and mechanical properties were evaluated by SEM, DSC, TGA, FT-IR NMR, solvent swelling, and uniaxial compressive load measurements. Our results demonstrate that these newly formulated materials are well-suitable to be used in applications that require exposure to different types of ionizing conditions that take place simultaneously.

  1. N Reactor thermal plume characterization during Pu-only mode of operation

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, R.M.; Thompson, F.L.; Whelan, G.

    1983-04-01

    Pacific Northwest Laboratories (PNL) performed field and modeling studies -from March 1982 through June 1983 to characterize the thermal plume from the N Reactor heated water outfall while the N Reactor operated in the Pu-only mode. Part 1 of this report deals with the field studies conducted to characterize the N Reactor thermal plume while in the Pu-only mode of operation. It includes a description of the study area, a description of field tasks and procedures, and data collection results and discussion. Part 2 describes the computer simulation of the thermal plume under different flow conditions and the calibration of the model used. It includes a description of the computer model and the assumptions on which it is based, a presentation of the input data used in this application, and a discussion of modeling results. Because the field studies were restricted by the NPOES permit variance to the spring months when high Columbia River flows prevail the mathematical modeling of the N Reactor thermal plume while the reactor operates in the Pu-only mode is instrumental in characterizing the plume during low Columbia River flows.

  2. Optimal beta-ray shielding thicknesses for different therapeutic radionuclides and shielding materials

    International Nuclear Information System (INIS)

    Cho, Yong In; Kim, Ja Mee; Kim, Jung Hoon

    2017-01-01

    To better understand the distribution of deposited energy of beta and gamma rays according to changes in shielding materials and thicknesses when radionuclides are used for therapeutic nuclear medicine, a simulation was conducted. The results showed that due to the physical characteristics of each therapeutic radionuclide, the thicknesses of shielding materials at which beta-ray shielding takes place varied. Additional analysis of the shielding of gamma ray was conducted for radionuclides that emit both beta and gamma rays simultaneously with results showing shielding effects proportional to the atomic number and density of the shielding materials. Also, analysis of bremsstrahlung emission after beta-ray interactions in the simulation revealed that the occurrence of bremsstrahlung was relatively lower than theoretically calculated and varied depending on different radionuclides. (authors)

  3. Open Rotor Noise Shielding by Blended-Wing-Body Aircraft

    Science.gov (United States)

    Guo, Yueping; Czech, Michael J.; Thomas, Russell H.

    2015-01-01

    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.

  4. Status of reactor-shielding research in the US

    International Nuclear Information System (INIS)

    Maienshein, F.C.

    1980-01-01

    While reactor programs change, shielding analysis methods are improved slowly. Version-V of ENDF/B provides improved data and Version-VI will be cost effective in advanced fission reactors are to be developed in the US. Benchmarks for data and methods validation are collected and distributed in the US in two series, one primarily for FBR-related experiments and one for LWR calculational methods. For LWR design, cavity streaming is now handled adequately, if with varying degrees of elegance. Investigations of improved detector response for LWRs rely upon transport methods. The great potential importance of pressure-vessel damage is dreflected in widespread studies to aid in the prediction of neutron fluences in vessels. For LMFBRS, the FFTF should give attenuation results on an operating reactor. For larger power reactors, the advantages of alternate shield materials appear compelling. A few other shielding studies appear to require experimental confirmation if LMFBRs are to be economically competitive. A coherent shielding program for the GCFR is nearing completion. For the fusion-reactor program, methods verification is under way, practical calculations are well advanced for test devices such as the TFTR and FMIT, and consideration is now given to shielding problems of large reactors, as in the ETF study

  5. Investigation of Heat Pump Operation Strategies with Thermal Storage in Heating Conditions

    Directory of Open Access Journals (Sweden)

    Wangsik Jung

    2017-12-01

    Full Text Available A heat pump with thermal storage system is a system that operates a heat pump during nighttime using inexpensive electricity; during this time, the generated thermal energy is stored in a thermal storage tank. The stored thermal energy is used by the heat pump during daytime. Based on a model of a dual latent thermal storage tank and a heat pump, this study conducts control simulations using both conventional and advanced methods for heating in a building. Conventional methods include the thermal storage priority method and the heat pump priority method, while advanced approaches include the region control method and the dynamic programming method. The heating load required for an office building is identified using TRNSYS (Transient system simulation, used for simulations of various control methods. The thermal storage priority method shows a low coefficient of performance (COP, while the heat pump priority method leads to high electricity costs due to the low use of thermal storage. In contrast, electricity costs are lower for the region control method, which operates using the optimal part load ratio of the heat pump, and for dynamic programming, which operates the system by following the minimum cost path. According to simulation results for the winter season, the electricity costs using the dynamic programming method are 17% and 9% lower than those of the heat pump priority and thermal storage priority methods, respectively. The region control method shows results similar to the dynamic programming method with respect to electricity costs. In conclusion, advanced control methods are proven to have advantages over conventional methods in terms of power consumption and electricity costs.

  6. Progress on establishing guidelines for National Ignition Facility (NIF) experiments to extend debris shield lifetime

    International Nuclear Information System (INIS)

    Tobin, M.; Eder, D.; Braun, D.; MacGowan, B.

    2002-01-01

    The survivability of the debris shields on the National Ignition Facility (NIF) are a key factor for the affordable operation of the facility. The improvements required over Nova debris shields are described. Estimates of debris shield lifetimes in the presence of target emissions with 4-8 J/cm 2 laser fluences indicate lifetimes that may contribute unacceptably to operations costs for NIF. We are developing detailed suggested guidance for target and experiment designers for NIF to assist in minimizing the damage to, and therefore the cost of, maintaining NIF debris shields. The guidance suggests a target mass quantity that as particulate on the debris shields (300 mg) may be within current operating budgets. It also suggests the amount of material that should become shrapnel on a shot (10 mg). Finally, it suggests the level of non-volatile residue (NVR) that would threaten the sol-gel coatings on the debris shields (1 μg/cm 2 ). We review the experimentation on the Nova chamber that included measuring quantities of particulate on debris shields by element and capturing shrapnel pieces in aerogel samples mounted in the chamber. We also describe computations of X-ray emissions from a likely NIF target and the associated ablation expected from this X-ray exposure on supporting target hardware. We describe progress in assessing the benefits of a pre-shield and the possible impact on the guidance for target experiments on NIF. Plans for possible experimentation on Omega and other facilities to improve our understanding of target emissions and their impacts are discussed. Our discussion of planned future work provides a forum to invite possible collaboration with the IFE community

  7. Cost-benefit analysis of shieldings for pipes inspections at JPDR

    International Nuclear Information System (INIS)

    Furuta, Toshishiro; Matsuno, Kenji; Katoh, Shoohei; Anazawa, Yutaka

    1979-01-01

    During the test operations of JPDR-II(BWR), cracks were detected at primary pipe nozzle, and the inspections were made over about 2.5 years. In this report, the procedures such as shielding and removal of fuels which were taken to reduce radiation exposure during the inspections are summarized and the cost-benefit analysis of the shieldings were attempted to determine whether the optimum shieldings were made or not. The radiation doses was measured to be about 62 man.rem for 420 workers and the maximum individual dose was 1.3 rem. The average cost to reduce exposures at various working areas was calculated approximately 1.4 x 10 5 yen/man-rem. Especially, the provisional shielding at under core area reduced 61 man-rem and its reduction cost was 8.9 x 10 6 yen. Assuming that the economic and social detriment cost is 1,000 dollar/man-rem, it seems that the optimum shielding were taken, although the optimum conditions shifted depending on the economic and social detriment cost which cannot be simply determined. It was found that the optimum conditions depended on the order of combination of the provisional shields. (author)

  8. INTOR radiation shielding for personnel access

    International Nuclear Information System (INIS)

    Gohar, Y.; Abdou, M.

    1981-01-01

    The INTOR reactor shield system consists of the blanket, bulk shield, penetration shield, component shield, and biological shield. The bulk shield consists of two parts: (a) the inboard shield; and (b) the outboard shield. The distinction between the different components of the shield system is essential to satisfy the different design constraints and achieve various objectives

  9. Operation management of thermal power plant. Karyoku plant no unten kanri

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-15

    Nowadays, thermal power plants are getting bigger and bigger in capacity. At the same time, high reliability to the frequent start and stop due to the demand change as well as effective economy. This paper describes the total operation management system. It included the start and stop, normal operation, specified operation, water quality, operation management involving the environmental problems, protection of machinery and equipment in case of emergency, measures against the failure, and the measures against the disaster. The outline of the normal operation is as follows: from the cost economical point of view, the kind of fuel is changed according to the load; i.e., coal for basic operation, LNG for basic to medium operation, and oil for medium to peak operation. The change in demand cannot be followed by the hydroelectric power. The adjustment of the power depending on the load change can be achieved by the thermal power generation. The automatic frequency control, economical load distribution control are also done. In the nighttime, the minimum load operation is required. The voltage change operation below the rated value or the phase-advancing operation is also done depending on the load conditions. 21 figs., 6 tabs.

  10. Investigation of Turkish marbles as shielding materials

    International Nuclear Information System (INIS)

    Atasoy, H.; Tarcan, G.; Doekmen, S.

    1992-01-01

    The natural Turkish marbles, especially Usak Green (UG), Aegean Purple (AP), and Marmara White (MW) were tested as shielding materials using standard gamma sources such as Co-60, Cs-137 and Eu-152. The experiment showed that UG, AP and MW are very effective shields against gamma-rays. The result for this experiment is that the gamma-ray attenuation coefficients of UG, AP and MW are almost equal for the energy range from 0.1 MeV to 1.4 MeV. Also, the elemental compositions of the natural UG, AP and MW marbles have been determined by fast and thermal neutron activation analysis and fourteen elements including Na, Mg, Al, Si, Cl, K, Ca, V, Ti, Mn, Fe, La, Ba and Sc have been found using the gamma spectroscopic method. The range of element contents of all Turkish marbles are remarkably different, but most of the elements are common such as Ca, Fe, Na, Cl, Mg, Si. (orig.)

  11. Polyethylene/boron-containing composites for radiation shielding

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ji Wook [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Jang-Woo; Yu, Seunggun; Baek, Bum Ki; Hong, Jun Pyo [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Seo, Yongsok [School of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kim, Woo Nyon [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Hong, Soon Man, E-mail: smhong@kist.re.kr [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 305-350 (Korea, Republic of); Koo, Chong Min, E-mail: koo@kist.re.kr [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

    2014-06-01

    Graphical abstract: - Highlights: • HDPE/silane-treated boron nitride (mBN) composites were fabricated. • The HDPE/mBN composites revealed a strong adhesion behavior at the interface of matrix/filler. • The HDPE/mBN composites show superior radiation shielding, thermoconductive and mechanical properties to the composites containing pristine BN and B{sub 4}C fillers. - Abstract: High-density polyethylene (HDPE) composites with modified boron nitride (mBN) fillers, functionalized with an organosilane, were fabricated through conventional melt-extrusion processing techniques. The properties and performances of these composites were compared with those of the composites containing pristine BN and boron carbide (B{sub 4}C) fillers. The silane functionalization of the BN fillers strongly improved the interfacial adhesion between the polymer matrix and the filler. As a result, the HDPE/mBN composites showed a better dispersion state of the filler particles, larger tensile modulus, greater effective thermal conductivity, and better neutron shielding property compared with the HDPE/BN and HDPE/B{sub 4}C composites.

  12. Polyethylene/boron-containing composites for radiation shielding

    International Nuclear Information System (INIS)

    Shin, Ji Wook; Lee, Jang-Woo; Yu, Seunggun; Baek, Bum Ki; Hong, Jun Pyo; Seo, Yongsok; Kim, Woo Nyon; Hong, Soon Man; Koo, Chong Min

    2014-01-01

    Graphical abstract: - Highlights: • HDPE/silane-treated boron nitride (mBN) composites were fabricated. • The HDPE/mBN composites revealed a strong adhesion behavior at the interface of matrix/filler. • The HDPE/mBN composites show superior radiation shielding, thermoconductive and mechanical properties to the composites containing pristine BN and B 4 C fillers. - Abstract: High-density polyethylene (HDPE) composites with modified boron nitride (mBN) fillers, functionalized with an organosilane, were fabricated through conventional melt-extrusion processing techniques. The properties and performances of these composites were compared with those of the composites containing pristine BN and boron carbide (B 4 C) fillers. The silane functionalization of the BN fillers strongly improved the interfacial adhesion between the polymer matrix and the filler. As a result, the HDPE/mBN composites showed a better dispersion state of the filler particles, larger tensile modulus, greater effective thermal conductivity, and better neutron shielding property compared with the HDPE/BN and HDPE/B 4 C composites

  13. The SNS target station preliminary Title I shielding analyses

    International Nuclear Information System (INIS)

    Johnson, J.O.; Santoro, R.T.; Lillie, R.A.; Barnes, J.M.; McNeilly, G.S.

    2000-01-01

    The Department of Energy (DOE) has given the Spallation Neutron Source (SNS) project approval to begin Title I design of the proposed facility to be built at Oak Ridge National Laboratory (ORNL). During the conceptual design phase of the SNS project, the target station bulk-biological shield was characterized and the activation of the major targets station components was calculated. Shielding requirements were assessed with respect to weight, space, and dose-rate constraints for operating, shut-down, and accident conditions utilizing the SNS shield design criteria, DOE Order 5480.25, and requirements specified in 10 CFR 835. Since completion of the conceptual design phase, there have been major design changes to the target station as a result of the initial shielding and activation analyses, modifications brought about due to engineering concerns, and feedback from numerous external review committees. These design changes have impacted the results of the conceptual design analyses, and consequently, have required a re-investigation of the new design. Furthermore, the conceptual design shielding analysis did not address many of the details associated with the engineering design of the target station. In this paper, some of the proposed SNS target station preliminary Title I shielding design analyses will be presented. The SNS facility (with emphasis on the target station), shielding design requirements, calculational strategy, and source terms used in the analyses will be described. Preliminary results and conclusions, along with recommendations for additional analyses, will also be presented. (author)

  14. Incorrectly placed gonad shields: Effect on CT automatic exposure correction from four different scanners

    International Nuclear Information System (INIS)

    Martin Weber Kusk, R.T.

    2014-01-01

    Purpose: To examine the influence of incorrectly placed gonad shields on radiation dose when performing abdominal CT with automatic exposure correction, using systems from different vendors. Methods and materials: An anthropomorphic phantom was scanned without gonad shields, and with gonad shields placed in two different positions relative to the scan range. Dose Length Product was recorded. mA distribution in the longitudinal direction was plotted. Mean dose was compared using the t-test. Results: Three scanners showed different increase in relative DLP according to shield position. Conclusion: Care must be taken when placing lead shielding at CT and characteristics of each scanner should be known to the operator

  15. Neutron shieldings

    International Nuclear Information System (INIS)

    Tarutani, Kohei

    1979-01-01

    Purpose: To decrease the stresses resulted by the core bendings to the base of an entrance nozzle. Constitution: Three types of round shielding rods of different diameter are arranged in a hexagonal tube. The hexagonal tube is provided with several spacer pads receiving the loads from the core constrain mechanism at its outer circumference, a handling head for a fuel exchanger at its top and an entrance nozzle for self-holding the neutron shieldings and flowing heat-removing coolants at its bottom. The diameters for R 1 , R 2 and R 3 for the round shielding rods are designed as: 0.1 R 1 2 1 and 0.2 R 1 2 1 . Since a plurality of shielding rods of small diameter are provided, soft structure are obtained and a plurality of coolant paths are formed. (Furukawa, Y.)

  16. Innovative analytical competence. Optimization of shielding components and lifetime activation calculations

    Energy Technology Data Exchange (ETDEWEB)

    Boehlke, Steffen; Wortmann, Birgit; Aguilar, Arturo Lizon [STEAG Energy Services GmbH, Essen (Germany)

    2014-08-15

    Shielding and activation calculations always require a high level of engineering competence and powerful hard- and software tools. With the application of current methods often certain limits were reached in the past. The engineering work for optimization efforts regarding complex components with high shielding requirements exceeded the savings in material. With regard to activation the challenges in size of the geometric model and considered operation time rises constantly and pushes computing time beyond reasonable time frames. These challenges require the application of new and faster methodologies. The application of new and innovative methods is presented for a shielding optimization project to decrease the radiation level, to keep the dose rate limits, and to reduce the amount of used shielding material. In a second case a prediction of the activated materials with it's dose distribution in the surrounding area and classification of waste quantities in the structural materials of a nuclear reactor is presented. For the shielding project the preliminary design CAD model was imported into the software tool, several iterations were run and a significantly reduced radiation exposure together with a significant reduction in shieling material were achieved. For the activation calculations it could be demonstrated that it is possible to determine the activation, waste quantities and dose distribution for the structural materials of a nuclear reactor based on lifetime operational data within reasonable time frames.

  17. Evaluation of alternative methods of simulating asymmetric bulk heating in fusion reactor blanket/shield components

    International Nuclear Information System (INIS)

    Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Wadkins, R.P.; Wessol, D.E.

    1981-10-01

    As a part of Phase O, Test Program Element-II of the Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program, a study was conducted by EG and G Idaho, Inc., to identify, characterize, and recommend alternative approaches for simulating fusion bulk heating in blanket/shield components. This is the report on that effort. Since the usefulness of any simulation approach depends upon the particular experiment considered, classes of problem types (thermal-hydraulic, thermomechanical, etc.) and material types (structure, solid breeder, etc.) are developed. The evaluation of the various simulation approaches is performed for the various significant combinations of problem class and material class. The simulation approaches considered are discrete-source heating, direct resistance, electromagnetic induction, microwave heating, and nuclear heating. From the evaluations performed for each experiment type, discrete - source heating emerges as a good approach for bulk heating simulation in thermal - hydraulics experiments, and nuclear heating appears to be a good approach in experiments addressing thermomechanics and combined thermal-hydraulic/thermomechanics

  18. Reconfigurable Patch Antenna Radiations Using Plasma Faraday Shield Effect

    OpenAIRE

    Barro , Oumar Alassane; Himdi , Mohamed; Lafond , Olivier

    2016-01-01

    International audience; This letter presents a new reconfigurable antenna associated with a plasma Faraday shield effect. The Faraday shield effect is realized by using a fluorescent lamp. A patch antenna operating at 2.45 GHz is placed inside the lamp. The performance of the reconfigurable system is observed in terms of S11, gain and radiation patterns by simulation and measurement. It is shown that by switching ON the fluorescent lamp, the gain of the antenna decreases and the antenna syste...

  19. A shielding chamber for the Rossendorf whole body counter

    International Nuclear Information System (INIS)

    Beutmann, A.; Ebert, S.; Kaden, M.; Loehnert, D.; Doerfel, H.R.; Schreiber, W.; Helbig, S.

    2016-01-01

    In connection with the relocation of the incorporation measurement point operated by the VKTA, a new shielding chamber was designed. The development of the new shielding chamber will be shown based on the design study by IDEA System and the inquiries for material availability, procurement of material and assembly technology up to fabrication, assembly and completion of the chamber. The accompanying background measurements through In-situ gamma spectrometry and first experiences with incorporation measurements at the new In-Vivo measurement facility are shown.

  20. Transient thermal analysis of semiconductor diode lasers under pulsed operation

    Science.gov (United States)

    Veerabathran, G. K.; Sprengel, S.; Karl, S.; Andrejew, A.; Schmeiduch, H.; Amann, M.-C.

    2017-02-01

    Self-heating in semiconductor lasers is often assumed negligible during pulsed operation, provided the pulses are `short'. However, there is no consensus on the upper limit of pulse width for a given device to avoid-self heating. In this paper, we present an experimental and theoretical analysis of the effect of pulse width on laser characteristics. First, a measurement method is introduced to study thermal transients of edge-emitting lasers during pulsed operation. This method can also be applied to lasers that do not operate in continuous-wave mode. Secondly, an analytical thermal model is presented which is used to fit the experimental data to extract important parameters for thermal analysis. Although commercial numerical tools are available for such transient analyses, this model is more suitable for parameter extraction due to its analytical nature. Thirdly, to validate this approach, it was used to study a GaSb-based inter-band laser and an InP-based quantum cascade laser (QCL). The maximum pulse-width for less than 5% error in the measured threshold currents was determined to be 200 and 25 ns for the GaSb-based laser and QCL, respectively.

  1. Analysis of radiation shields of BNPP spent fuel pool

    International Nuclear Information System (INIS)

    Ayoobian, N.; Hadad, K.; Nematollahi, M. R.

    2007-01-01

    Radioactive protection is one of the most important subjects in nuclear power plants safety. Analysis of BNPP spent fuel pool shielding , as a main source of energetic γ-rays was the main goal of this project. Firstly, we simulated the reactor core using WIMSD-4 neutronic code and the amount of fission product in the fuel assembly (FA) was calculated during the reactor operation. Then, by obtaining the results from the previous calculation and by using MCNP4C nuclear code , the intensity of γ-rays was obtained in layers of spent fuel pool shields. The results have shown that no significant γ-rays passed through these shields. Finally, an accident and resulting exposure dose above the pool was analyzed

  2. Material and electromagnetic properties of Faraday shields for ion cyclotron heating antennas

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Baity, F.W.; Becraft, W.R.; Caughman, J.B.O.; Tsai, C.C.

    1985-01-01

    The Faraday shields for ion cyclotron antennas must transmit magnetic waves and absorb little RF power. To investigate these properties, we have constructed 27 Faraday shields in many configurations, including chevrons, tubes, straps, concentric rings, various layered shields, conventionally leafed straps, and replicas of the Faraday shields for ASDEX, the Joint European Torus (JET), TEXTOR, and Alcator-C. We have measured the magnetic flux and observed loading at various operating resistances by using dielectric sheets or magnetic-coupled loads. Each Faraday shield effects a net change in the characteristic inductance of the antenna, resulting in a reduction of wave coupling. However, the load experienced by the antenna is not always reduced because the Faraday shield itself acts as a load. We differentiate between these effects experimentally. The net result of the study is that the Faraday shields now in use cost up to a factor of 50% of coupling. This, of course, reduces the power handling capability by 50% as well. However, configurations exist that are easily cooled and result in a reduction of less than 5% in loading

  3. Material and electromagnetic properties of Faraday shields for ion cyclotron heating antennas

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Becraft, W.R.; Baity, F.W.; Caughman, J.B.O.; Tsai, C.C.

    1985-01-01

    The Faraday shields for ion cyclotron antennas must transmit magnetic waves and adsorb little rf power. To investigate these properties, we have constructed 27 Faraday shields in many configurations, including chevrons, tubes, straps, concentric rings, various layered shields, conventionally leafed straps, and replicas of the Faraday shields for ASDEX, the Joint European Torus (JET), TEXTOR, and Alcator-C. We have measured the magnetic flux and observed loading at various operating resistances by using dielectric sheets or magnetic-coupled loads. Each Faraday shield effects a net change in the characteristic inductance of the antenna, resulting in a reduction of wave coupling. However, the load experienced by the antenna is not always reduced because the Faraday shield itself acts as a load. We differentiate between these effects experimentally. The net result of the study is that the Faraday shields now in use cost up to a factor of 50% of coupling. This, of course, reduces the power handling capability by 50% as well. However, configurations exist that are easily cooled and result in a reduction of less than 5% in loading

  4. Hot-cell shielding system for high power transmission in DUPIC fuel fabrication

    International Nuclear Information System (INIS)

    Kim, K.; Lee, J.; Park, J.; Yang, M.; Park, H.

    2000-01-01

    This paper presents a newly designed hot-cell shielding system for use in the development of DUPIC (Direct Use of spent PWR fuel In CANDU reactors) fuel at KAERI (Korea Atomic Energy Research Institute). This hot-cell shielding system that was designed to transmit high power to sintering furnace in-cell from the out-of-cell through a thick cell wall has three subsystems - a steel shield plug with embedded spiral cooling line, stepped copper bus bars, and a shielding lead block. The dose-equivalent rates of the hot-cell shielding system and of the apertures between this system and the hot-cell wall were calculated. Calculated results were compared with the allowable dose limit of the existing hot-cell. Experiments for examining the temperature changes of the shielding system developed during normal furnace operation were also carried out. Finally, gamma-ray radiation survey experiments were conducted by Co-60 source. It is demonstrated that, from both calculated and experimental results, the newly designed hot-cell shielding system meets all the shielding requirements of the existing hot-cell facility, enabling high power transmission to the in-cell sintering furnace. (author)

  5. The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement

    Science.gov (United States)

    2012-01-01

    This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909

  6. Thermal behavior of neutron shielding material, NS-4-FR, under long term storage conditions

    International Nuclear Information System (INIS)

    Yamada, N.; O-iwa, A.; Asano, R.; Horita, R.; Kusunoki, K.

    2004-01-01

    NS-4-FR, Epoxy-Resin, has been widely used as a neutron shielding material for casks. It is recognized that the resin will degrade during storage and loose weight under high temperature conditions. Most of the examinations for the resin degrading behavior were conducted with rather small bare resin specimens. However, the actual quantity of neutron shielding is quite large and is covered by the cask body. To confirm the degrading behavior of the resin under the long-term storage conditions, we performed the test on the specimen with the same cross-section as the actual design, Hitz B69. The resin test vessels were made out of stainless steel and equipped with flange

  7. Nuclear thermal rocket clustering: 1, A summary of previous work and relevant issues

    International Nuclear Information System (INIS)

    Buksa, J.J.; Houts, M.G.

    1991-01-01

    A general review of the technical merits of nuclear thermal rocket clustering is presented. A summary of previous analyses performed during the Rover program is presented and used to assess clustering in the context of projected Space Exploration Initiative missions. A number of technical issues are discussed including cluster reliability, engine-out operation, neutronic coupling, shutdown core power generation, shutdown reactivity requirements, reactor kinetics, and radiation shielding. 7 refs., 3 figs., 2 tabs

  8. An assessment of the lifetime of Faraday shield elements

    International Nuclear Information System (INIS)

    Caughman, J.B.O. II; Ruzic, D.N.; Hoffman, D.J.; Langley, R.A.; Lewis, M.B.; Ryan, P.M.

    1989-01-01

    The interaction of plasma with rf fields from an ion cyclotron range of frequencies (ICRF) antenna has been studied to estimate the amount of Faraday shield erosion expected in normal ICRF heating operation. Plasma parameters and ion energies have been measured in the near field of an antenna and used in a model to estimate the erosion rate of the Faraday shield surface. Experiments were conducted on the RF Test Facility, a magnetic mirror device at Oak Ridge National Laboratory, using a single-strap resonant loop antenna with a two-tier Faraday shield. The outer tier, facing the plasma, was layered with graphite tiles. The antenna was operated at currents and voltages within 50% of those expected in tokamaks. The time-varying floating potential was measured with a capacitively coupled probe, and the time-averaged floating potential, electron temperature, and electron density were measured with Langmuir probe. Both probes were scanned in front of the antenna. Ion energies were measured with a gridded energy analyzer located below the antenna, and samples of silicon were placed on the Faraday shield surface to estimate the incident ion energy. The capacitive probe measurement show that the rf floating potential follows the magnetic field pattern of the antenna, indicating that the electromagnetic fields are responsible for the potential formation. Electron temperatures increase with rf power and can reach values ≥60 eV for an rf power of ∼25 kW. Incident ion energies ≥300 eV have been measured for the same power level. Predictions of light ion sputtering of candidate Faraday shield materials are presented. 19 refs., 6 figs., 1 tab

  9. Radiation shielding and health physics instrumentation for PET medical cyclotrons

    International Nuclear Information System (INIS)

    Mukherjee, B.

    2002-01-01

    Full text: Modern Medical Cyclotrons produce a variety of short-lived positron emitting PET radioisotopes, and as a result are the source of intense neutron and gamma radiations. Since such cyclotrons are housed within hospitals or medical clinics, there is significant potential for un-intentional exposure to staff or patients in proximity to cyclotron facilities. Consequently, the radiological hazards associated with Cyclotrons provide the impetus for an effective radiological shielding and continuous monitoring of various radiation levels in the cyclotron environment. Management of radiological hazards is of paramount importance for the safe operation of a Medical Cyclotron facility. This work summarised the methods of shielding calculations for a compact hospital based Medical Cyclotron currently operating in Canada, USA and Australia. The design principle and operational history of a real-time health physics monitoring system (Watchdog) operating at a large multi-energy Medical Cyclotron is also highlighted

  10. Study on welding thermal cycle and residual stress of UNS S32304 duplex steel selected as external shield for a transport packaging of Mo-99

    International Nuclear Information System (INIS)

    Betini, Evandro G.; Gomes, Maurilio P.; Milagre, Mariana X.; Machado, Caruline S.C.; Reis, Luis A.M.; Mucsi, Cristiano S.; Rossi, Jesualdo L.; Orlando, Marcos T.D.; Luz, Temístocles S.

    2017-01-01

    Thin plates of duplex stainless steel UNS S32304 were welded using the pulsed gas tungsten arc GTAW process (butt joint) without filler addition. The used shielding gas was pure argon and 98% argon plus 2% of nitrogen. The thermal cycles were acquired during welding, in regions near the melting pool. This alloy is candidate for the external clad of a cask for the transport of high activity radiopharmaceuticals substances. For the residual stress measurements in austenite phase an X-ray diffractometer was used in a Bragg-Brentano geometry with CuKα radiation (γ= 0.154 and for ferrite phase was used a pseudo-parallel geometry with CrKα radiation (γ= 0.2291 nm). The results of residual stress using sin 2 Ψ methodology shown that the influence of the high welding temperature leads to compressive stresses in for both phase of the duplex steels mainly in heat-affected zone. It was observed a high temperature peak and an increase of the mean residual stress after addition of nitrogen to the argon shielding gas. (author)

  11. Study on welding thermal cycle and residual stress of UNS S32304 duplex steel selected as external shield for a transport packaging of Mo-99

    Energy Technology Data Exchange (ETDEWEB)

    Betini, Evandro G.; Gomes, Maurilio P.; Milagre, Mariana X.; Machado, Caruline S.C.; Reis, Luis A.M.; Mucsi, Cristiano S.; Rossi, Jesualdo L., E-mail: egbetini@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Orlando, Marcos T.D.; Luz, Temístocles S., E-mail: mtdorlando@gmail.com [Universidade Federal do Espirito Santo (DFIS/UFES), Vitória, ES (Brazil). Departamento de Física

    2017-07-01

    Thin plates of duplex stainless steel UNS S32304 were welded using the pulsed gas tungsten arc GTAW process (butt joint) without filler addition. The used shielding gas was pure argon and 98% argon plus 2% of nitrogen. The thermal cycles were acquired during welding, in regions near the melting pool. This alloy is candidate for the external clad of a cask for the transport of high activity radiopharmaceuticals substances. For the residual stress measurements in austenite phase an X-ray diffractometer was used in a Bragg-Brentano geometry with CuKα radiation (γ= 0.154 and for ferrite phase was used a pseudo-parallel geometry with CrKα radiation (γ= 0.2291 nm). The results of residual stress using sin{sup 2} Ψ methodology shown that the influence of the high welding temperature leads to compressive stresses in for both phase of the duplex steels mainly in heat-affected zone. It was observed a high temperature peak and an increase of the mean residual stress after addition of nitrogen to the argon shielding gas. (author)

  12. Radiation shielding plate

    International Nuclear Information System (INIS)

    Kobayashi, Torakichi; Sugawara, Takeo.

    1983-01-01

    Purpose: To reduce the weight and stabilize the configuration of a radiation shielding plate which is used in close contact with an object to be irradiated with radiation rays. Constitution: The radiation shielding plate comprises a substrate made of lead glass and a metallic lead coating on the surface of the substrate by means of plating, vapor deposition or the like. Apertures for permeating radiation rays are formed to the radiation shielding plate. Since the shielding plate is based on a lead glass plate, a sufficient mechanical strength can be obtained with a thinner structure as compared with the conventional plate made of metallic lead. Accordingly, if the shielding plate is disposed on a soft object to be irradiated with radiation rays, the object and the plate itself less deform to obtain a radiation irradiation pattern with distinct edges. (Moriyama, K.)

  13. HAZARDS OF THERMAL EXPANSION FOR RADIOLOGICAL CONTAINER ENGULFED IN FIRE

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2013-05-01

    Fire accidents pose a serious threat to nuclear facilities. It is imperative that transport casks or shielded containers designed to transport/contain radiological materials have the ability to withstand a hypothetical fire. A numerical simulation was performed for a shielded container constructed of stainless steel and lead engulfed in a hypothetical fire as outlined by 10 CFR §71.73. The purpose of this analysis was to determine the thermal response of the container during and after the fire. The thermal model shows that after 30 minutes of fire, the stainless steel will maintain its integrity and not melt. However, the lead shielding will melt since its temperature exceeds the melting point. Due to the method of construction of the container under consideration, ample void space must be provided to allow for thermal expansion of the lead upon heating and melting, so as to not overstress the weldment.

  14. Infinite slab-shield dose calculations

    International Nuclear Information System (INIS)

    Russell, G.J.

    1989-01-01

    I calculated neutron and gamma-ray equivalent doses leaking through a variety of infinite (laminate) slab-shields. In the shield computations, I used, as the incident neutron spectrum, the leakage spectrum (<20 MeV) calculated for the LANSCE tungsten production target at 90 degree to the target axis. The shield thickness was fixed at 60 cm. The results of the shield calculations show a minimum in the total leakage equivalent dose if the shield is 40-45 cm of iron followed by 20-15 cm of borated (5% B) polyethylene. High-performance shields can be attained by using multiple laminations. The calculated dose at the shield surface is very dependent on shield material. 4 refs., 4 figs., 1 tab

  15. Electromagnetic shield

    International Nuclear Information System (INIS)

    Miller, J.S.

    1987-01-01

    An electromagnetic shield is described comprising: closed, electrically-conductive rings, each having an open center; and binder means for arranging the rings in a predetermined, fixed relationship relative to each other, the so-arranged rings and binder means defining an outer surface; wherein electromagnetic energy received by the shield from a source adjacent its outer surface induces an electrical current to flow in a predetermined direction adjacent and parallel to the outer surface, through the rings; and wherein each ring is configured to cause source-induced alternating current flowing through the portion of the ring closest to the outer surface to electromagnetically induce an oppositely-directed current in the portion of the ring furthest from the surface, such oppositely-directed current bucking any source-induced current in the latter ring portion and thus reducing the magnitude of current flowing through it, whereby the electromagnetic shielding effected by the shield is enhanced

  16. Self-generated clouds of micron-sized particles as a promising way of a Solar Probe shielding from intense thermal radiation of the Sun

    Science.gov (United States)

    Dombrovsky, Leonid A.; Reviznikov, Dmitry L.; Kryukov, Alexei P.; Levashov, Vladimir Yu

    2017-10-01

    An effect of shielding of an intense solar radiation towards a solar probe with the use of micron-sized SiC particles generated during ablation of a composite thermal protection material is estimated on a basis of numerical solution to a combined radiative and heat transfer problem. The radiative properties of particles are calculated using the Mie theory, and the spectral two-flux model is employed in radiative transfer calculations for non-uniform particle clouds. A computational model for generation and evolution of the cloud is based on a conjugated heat transfer problem taking into account heating and thermal destruction of the matrix of thermal protection material and sublimation of SiC particles in the generated cloud. The effect of light pressure, which is especially important for small particles, is also taken into account. The computational data for mass loss due to the particle cloud sublimation showed the low value about 1 kg/m2 per hour at the distance between the vehicle and the Sun surface of about four radii of the Sun. This indicates that embedding of silicon carbide or other particles into a thermal protection layer and the resulting generation of a particle cloud can be considered as a promising way to improve the possibilities of space missions due to a significant decrease in the vehicle working distance from the solar photosphere.

  17. Monte-Carlo simulations of neutron shielding for the ATLAS forward region

    CERN Document Server

    Stekl, I; Kovalenko, V E; Vorobel, V; Leroy, C; Piquemal, F; Eschbach, R; Marquet, C

    2000-01-01

    The effectiveness of different types of neutron shielding for the ATLAS forward region has been studied by means of Monte-Carlo simulations and compared with the results of an experiment performed at the CERN PS. The simulation code is based on GEANT, FLUKA, MICAP and GAMLIB. GAMLIB is a new library including processes with gamma-rays produced in (n, gamma), (n, n'gamma) neutron reactions and is interfaced to the MICAP code. The effectiveness of different types of shielding against neutrons and gamma-rays, composed from different types of material, such as pure polyethylene, borated polyethylene, lithium-filled polyethylene, lead and iron, were compared. The results from Monte-Carlo simulations were compared to the results obtained from the experiment. The simulation results reproduce the experimental data well. This agreement supports the correctness of the simulation code used to describe the generation, spreading and absorption of neutrons (up to thermal energies) and gamma-rays in the shielding materials....

  18. ITER shielding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Strebkov, Yu [ENTEK, Moscow (Russian Federation); Avsjannikov, A [ENTEK, Moscow (Russian Federation); Baryshev, M [NIAT, Moscow (Russian Federation); Blinov, Yu [ENTEK, Moscow (Russian Federation); Shatalov, G [KIAE, Moscow (Russian Federation); Vasiliev, N [KIAE, Moscow (Russian Federation); Vinnikov, A [ENTEK, Moscow (Russian Federation); Chernjagin, A [DYNAMICA, Moscow (Russian Federation)

    1995-03-01

    A reference non-breeding blanket is under development now for the ITER Basic Performance Phase for the purpose of high reliability during the first stage of ITER operation. More severe operation modes are expected in this stage with first wall (FW) local heat loads up to 100-300Wcm{sup -2}. Integration of a blanket design with protective and start limiters requires new solutions to achieve high reliability, and possible use of beryllium as a protective material leads to technologies. The rigid shielding blanket concept was developed in Russia to satisfy the above-mentioned requirements. The concept is based on a copper alloy FW, austenitic stainless steel blanket structure, water cooling. Beryllium protection is integrated in the FW design. Fabrication technology and assembly procedure are described in parallel with the equipment used. (orig.).

  19. Study of radiation exposure rate on the measurement points in Kartini reactor hall as based to determine operation safety parameters (KBO)

    International Nuclear Information System (INIS)

    Mahrus Salam; Elisabeth Supriyatni; Fajar Panuntun

    2016-01-01

    In the operation of nuclear facility there are safety parameters, which is the value of the conservatively maximum limit to ensure that all of the uncertainty in the analysis of facility operations safety have been considered, such as uncertainty of measurement, response time and uncertainty calculation tool, and is get a long to others value of normal operating condition limits, in other words, there are still allowed or permitted. Calculation of the radiation exposure rate on five measurement points (50 cm above the water surface of reactor pool, above interim storage (bulk shielding), reactor deck, thermal column and sub critical facility) and to be compared to the operation safety parameters (KBO) of Kartini reactor. The exposure rate value is obtained by calculating the source term of radioactivity on the core, attenuation resulting from the radiation shielding and measurement distance. From the calculation obtained that the value of gamma exposure rate of 50 cm above the water surface of reactor pool is 96.91 mR/hr (KBO<100 mR/hr), on the deck of Bulk Shielding amounted to 1.70 mR/h (KBO<2.5 mR/hr), on the reactor deck amounted to 5.73 mR/hr (KBO<10 mR/hr), on the Thermal Column amounted to 2.73 mR/hr (KBO<10 mR/hr) and on the sub critical facility amounted to 1.148 mR/hr (KBO<2.5 mR/hr). The value of gamma exposure rate at 5 locations measurements are still less than the operation safety parameters (KBO), it means that the reactor is safe to be operated. (author)

  20. Shielding of the 9 TW pulse thermonuclear device equipment from electromagnetic noise

    International Nuclear Information System (INIS)

    Zajtsev, V.I.; Kopyrina, R.I.; Kostromin, A.P.; Olejnik, G.M.

    1990-01-01

    A complex of technical solutions providing for reliable noise-immunity of information-measuring systems, is realized at the ANGARA-5 device. The main method of noise elimination consists in the measurement system shielding and careful wiring of various conductors through the shield. The level of noises connected with the device operation does not exceed 30 mV

  1. Electron accelerator shielding design of KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhao Peng; Gohar, Yousry [Argonne National Laboratory, Argonne (United States)

    2016-06-15

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose

  2. Studying the shielding properties of lead glass composites using neutrons and gamma rays

    International Nuclear Information System (INIS)

    Osman, A.M.; El-Sarraf, M.A.; Abdel-Monem, A.M.; El-Sayed Abdo, A.

    2015-01-01

    Highlights: • Samples of sodalime silica glass loaded with different ratios of PbO were prepared. • Leaded glass composites were investigated for radiation shielding. • Experimental and theoretical attenuation parameters were studied. • Experimental and theoretical (MCNP5) results were in good agreement. - Abstract: The present work deals with the shielding properties of lead glass composites to find out its integrity for practical shielding applications and radiological safety. Composites of different lead oxide ratios (x = 0, 5, 10, 15 and 25 wt.%) have been prepared by the Nasser Glass and Crystal Company (Egypt). Attenuation measurements have been carried out using a collimated emitted beam from a fission 252 Cf (100 μg) neutron source, and the neutron–gamma spectrometer with stilbene scintillator. The pulse shape discriminating (P.S.D.) technique based on the zero cross-over method was used to discriminate between neutron and gamma-ray pulses. Thermal neutron fluxes were measured using the BF3 detector and thermal neutron detection system. The attenuation relations were used to evaluate fast neutron macroscopic effective removal cross-section Σ R-Meas (cm −1 ), gamma rays total attenuation coefficient μ (cm −1 ) and thermal neutron macroscopic cross-section Σ Meas (cm −1 ). Theoretical calculations have been achieved using MCNP5 code to calculate the same two parameters. Also, MERCSF-N program was used to calculate fast neutron macroscopic removal cross-section Σ R-MER (cm −1 ). Measured and MCNP5 calculated results have been compared and were found to be in reasonable agreement

  3. The optimum shielding for a power reactor using local components

    International Nuclear Information System (INIS)

    AlHajali, S.; Kharita, M. H.; Yousef, S.; Naoom, B.; Al-Nassar, M.

    2009-07-01

    Some local concrete mixtures have been picked out (selected) to be studied as shielding concrete for prospective nuclear power reactor in Syria. This research has interested in the attenuation of gamma radiation and neutron fluxes by these local concretes in the ordinary conditions. In addition to the heat effect on the shielding and physical properties of local concrete. Furthermore the neutron activation of the elements of the local concrete mixtures have been studied that for selection the low-activation materials (low dose rate and short half life radioisotopes). In this way biological shielding for nuclear reactor can be safe during operation of nuclear power reactor, in addition to be low radioactive waste after decommissioning the reactor. (author)

  4. Shielding Calculations for PUSPATI TRIGA Reactor (RTP) Fuel Transfer Cask with Micro shield

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Ahmad Nabil Abdul Rahim; Ariff Shah Ismail

    2011-01-01

    The shielding calculations for RTP fuel transfer cask was performed by using computer code Micro shield 7.02. Micro shield is a computer code designed to provide a model to be used for shielding calculations. The results of the calculations can be obtained fast but the code is not suitable for complex geometries with a shielding composed of more than one material. Nevertheless, the program is sufficient for As Low As Reasonable Achievable (ALARA) optimization calculations. In this calculation, a geometry based on the conceptual design of RTP fuel transfer cask was modeled. Shielding material used in the calculations were lead (Pb) and stainless steel 304 (SS304). The results obtained from these calculations are discussed in this paper. (author)

  5. The Active Muon Shield

    CERN Document Server

    Bezshyiko, Iaroslava

    2016-01-01

    In the SHiP beam-dump of the order of 1011 muons will be produced per second. An active muon-shield is used to magnetically deflect these muons out of the acceptance of the spectrom- eter. This note describes how this shield is modelled and optimized. The SHiP spectrometer is being re-optimized using a conical decay-vessel, and utilizing the possibility to magnetize part of the beam-dump shielding iron. A shield adapted to these new conditions is presented which is significantly shorter and lighter than the shield used in the Technical Proposal (TP), while showing a similar performance.

  6. TPX vacuum vessel transient thermal and stress conditions

    International Nuclear Information System (INIS)

    Feldshteyn, Y.; Dinkevich, S.; Feng, T.; Majumder, D.

    1995-01-01

    The TPX vacuum vessel provides the vacuum boundary for the plasma and the mechanical support for the internal components. Another function of the vacuum vessel is to contain neutron shielding water in the double wall space during normal operation. This double wall space serves as a heat reservoir for the entire vacuum vessel during bakeout. The vacuum vessel and the internal components are subjected to thermal stresses induced by a nonuniform temperature distribution within the structure during bakeout. A successful Conceptual Design Review in March 1993 has established superheated steam as the heating source of the vacuum vessel. A transient bakeout mode of the vacuum vessel and in-vessel components has been analyzed to evaluate transient period duration, proper temperature level, actual thermal stresses and performance of the steam equipment. Thermally, the vacuum vessel structure may be considered as an adiabatic system because it is perfectly insulated by the strong surrounding vacuum and multiple layers of superinsulation. Important aspects of the analysis are described herein

  7. Development of the cutting machine for the biological shield wall

    International Nuclear Information System (INIS)

    Yokota, Mitsuo; Hasegawa, Tetsuo; Kohyama, Kazunori.

    1987-01-01

    22 years have passed since the first commercial nuclear power plant operation in Japan. At present, there were 33 commercial nuclear power plants in operation, supplying about 25 percent of total electricity. Some of them are going to be terminated in the near future and enter into the decommissioning stage. Therefore, it is now necessary to developed decommissioning technologies, including dismantling techniques of these power plants. The development of a concrete cutting machine is one of the most important items applicable to dismantling biological shield walls of the plants. This paper describes the outline of the cutting machine developed for the biological shield wall demolition of the Japan Power Demonstration Reactor (JPDR) including actual decommissioning works tested. (author)

  8. REACTOR SHIELD

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  9. SHIELD 1.0: development of a shielding calculator program in diagnostic radiology

    International Nuclear Information System (INIS)

    Santos, Romulo R.; Real, Jessica V.; Luz, Renata M. da; Friedrich, Barbara Q.; Silva, Ana Maria Marques da

    2013-01-01

    In shielding calculation of radiological facilities, several parameters are required, such as occupancy, use factor, number of patients, source-barrier distance, area type (controlled and uncontrolled), radiation (primary or secondary) and material used in the barrier. The shielding design optimization requires a review of several options about the physical facility design and, mainly, the achievement of the best cost-benefit relationship for the shielding material. To facilitate the development of this kind of design, a program to calculate the shielding in diagnostic radiology was implemented, based on data and limits established by National Council on Radiation Protection and Measurements (NCRP) 147 and SVS-MS 453/98. The program was developed in C⌗ language, and presents a graphical interface for user data input and reporting capabilities. The module initially implemented, called SHIELD 1.0, refers to calculating barriers for conventional X-ray rooms. The program validation was performed by the comparison with the results of examples of shielding calculations presented in NCRP 147.

  10. Design of emergency shield

    International Nuclear Information System (INIS)

    Soliman, S.E.

    1993-01-01

    Manufacturing of an emergency movable shield in the hot laboratories center is urgently needed for the safety of personnel in case of accidents or spilling of radioactive materials. In this report, a full design for an emergency shield is presented and the corresponding dose rates behind the shield for different activities (from 1 mCi to 5 Ci) was calculated by using micro shield computer code. 4 figs., 1 tab

  11. Shielding Studies for Reducing the associated Radiological Risks Due To Irradiated Low Enriched Uranium Foil

    International Nuclear Information System (INIS)

    Margeanu, C.A.

    2011-01-01

    Present work estimates the radiation dose rates corresponding to irradiated Low Enriched Uranium (20 wt % 235 U) foil as part of shielding studies for radiological risks reduction after irradiation inside TRIGA 14 MW Research Reactor in an investigation on 99 Mo production possibility. Post-Irradiation Examination Laboratory's cell shielding calculations have been performed; radiation source was obtained by using ORIGEN-S code with specific cross-sections libraries. Different post-irradiation cooling times have been considered, gamma dose rates being estimated by using MAVRIC module from Scale 6 programs package, for following exposure situations (relative to Pie cell): i) front side, ii) lateral side and iii) back side. Three different calculations were performed: a) without any protection shield between operator and cell, except for the cell stainless steel wall; b) with a Lead protection shield between operator and cell and c) with a depleted Uranium shield, located inside the cell in between the radiation source and cell window. Radiation dose rates to cell external wall surface and for other eight fixed distances from cell wall were estimated. To obtain a consistent set of solutions, the study was done for various Uranium foil weights and different Lead and depleted Uranium shields thicknesses. Calculations were focused to assure that the dose rate to an operator positioned at 60 cm working distance from the cell will not exceed 0.02 mSv/h, maximum allowed dose rate for professionally exposed personnel according to Romanian regulations.

  12. Detailed mechanical design of the LIPAc beam dump radiological shielding

    Energy Technology Data Exchange (ETDEWEB)

    Nomen, Oriol, E-mail: onomen@irec.cat [IREC, Barcelona, Catalonia (Spain); CDEI-UPC, Barcelona, Catalonia (Spain); Martínez, José I.; Arranz, Fernando; Iglesias, Daniel; Barrera, Germán; Brañas, Beatriz [CIEMAT, Madrid (Spain); Ogando, Francisco [UNED, Madrid (Spain); Molla, Joaquín [CIEMAT, Madrid (Spain); Sanmartí, Manel [IREC, Barcelona, Catalonia (Spain)

    2013-10-15

    Highlights: ► Mechanical design of the IFMIF LIPAc beam dump shielding has been performed. ► Lead shutter design performed to shield radiation from beam dump when LIPAc is off. ► External loads, working and dismantling conditions, included as design constraints. -- Abstract: The LIPAc is a 9 MeV, D{sup +} linear prototype accelerator for the validation of the IFMIF accelerator design. The high intensity, 125 mA CW beam is stopped in a copper cone involving a high production of neutrons and gamma radiation and activation of its surface. The beam stopper is surrounded by a shielding to attenuate the resulting radiation so that dose rate values comply with the limits at the different zones of the installation. The shielding includes for that purpose polyethylene rings, water tanks and gray cast iron rings. A lead shutter has also been designed to shield the gamma radiation that comes through the beam tube when the linear accelerator is not in operation, in order to allow access inside the building for maintenance tasks. The present work summarizes the detailed mechanical design of the beam dump shielding and the lead shutter taking into account the design constraints, such as working conditions and other external loads, as well as including provisions for dismantling.

  13. Gamma dose from activation of internal shields in IRIS reactor.

    Science.gov (United States)

    Agosteo, Stefano; Cammi, Antonio; Garlati, Luisella; Lombardi, Carlo; Padovani, Enrico

    2005-01-01

    The International Reactor Innovative and Secure is a modular pressurised water reactor with an integral design. This means that all the primary system components, such as the steam generators, pumps, pressuriser and control rod drive mechanisms, are located inside the reactor vessel, which requires a large diameter. For the sake of better reliability and safety, it is desirable to achieve the reduction of vessel embrittlement as well as the lowering of the dose beyond the vessel. The former can be easily accomplished by the presence of a wide downcomer, filled with water, which surrounds the core region, while the latter needs the presence of additional internal shields. An optimal shielding configuration is under investigation, for reducing the ex-vessel dose due to activated internals and for limiting the amount of the biological shielding. MCNP 4C calculations were performed to evaluate the neutron and the gamma dose during operation and the 60Co activation of various shields configurations. The gamma dose beyond the vessel from activation of its structural components was estimated in a shutdown condition, with the Monte Carlo code FLUKA 2002 and the MicroShield software. The results of the two codes are in agreement and show that the dose is sufficiently low, even without an additional shield.

  14. Gamma dose from activation of internal shields in IRIS reactor

    International Nuclear Information System (INIS)

    Agosteo, S.; Cammi, A.; Garlati, L.; Lombardi, C.; Padovani, E.

    2005-01-01

    The International Reactor Innovative and Secure is a modular pressurised water reactor with an integral design. This means that all the primary system components, such as the steam generators, pumps, pressurizer and control rod drive mechanisms, are located inside the reactor vessel, which requires a large diameter. For the sake of better reliability and safety, it is desirable to achieve the reduction of vessel embrittlement as well as the lowering of the dose beyond the vessel. The former can be easily accomplished by the presence of a wide downcomer, filled with water, which surrounds the core region, while the latter needs the presence of additional internal shields. An optimal shielding configuration is under investigation, for reducing the ex-vessel dose due to activated internals and for limiting the amount of the biological shielding. MCNP 4C calculations were performed to evaluate the neutron and the gamma dose during operation and the 60 Co activation of various shields configurations. The gamma dose beyond the vessel from activation of its structural components was estimated in a shutdown condition, with the Monte Carlo code FLUKA 2002 and the MicroShield software. The results of the two codes are in agreement and show that the dose is sufficiently low, even without an additional shield. (authors)

  15. Shielding calculation for treatment rooms of high energy linear accelerator

    International Nuclear Information System (INIS)

    Elleithy, M.A.

    2006-01-01

    A review of German Institute of Standardization (DIN) scheme of the shielding calculation and the essential data required has been done for X-rays and electron beam in the energy range from 1 MeV to 50 MeV. Shielding calculation was done for primary and secondary radiations generated during X-ray operation of Linac. In addition, shielding was done against X-rays generated (Bremsstrahlung) by useful electron beams. The calculations also covered the neutrons generated from the interactions of useful X-rays (at energies above 8 MeV) with the surrounding. The present application involved the computation of shielding against the double scattered components of X-rays and neutrons in the maze area and the thickness of the paraffin wax of the room door. A new developed computer program was designed to assist shielding thickness calculations for a new Linac installation or in replacing an existing machine. The program used a combination of published tables and figures in computing the shielding thickness at different locations for all possible radiation situations. The DIN published data of 40 MeV accelerator room was compared with the program calculations. It was found that there is good agreement between both calculations. The developed program improved the accuracy and speed of calculation

  16. Thermal Management and Thermal Protection Systems

    Science.gov (United States)

    Hasnain, Aqib

    2016-01-01

    's rays directly impinging on the system. Heating rate of the lamps were calculated by knowing fraction of emitted energy in a wavelength interval and the filament temperature. This version of the model can be used to predict performance of the system under vacuum with extreme cold or hot conditions. Initial testing of the PTMS showed promise, and the thermal math model predicts even better performance in thermal vacuum testing. ii) Thermal Protection Systems (TPS) are required for vehicles which enter earth's atmosphere to protect from aerodynamic heating caused by the friction between the vehicle and atmospheric gases. Orion's heat shield design has two aspects which needed to be analyzed thermally: i) a small excess of adhesive used to bond the outer AVCOAT layer to the inner composite structure tends to seep from under the AVCOAT and form a small bead in between two bricks of AVCOAT, ii) a silicone rubber with different thermophysical properties than AVCOAT fills the gap between two bricks of AVCOAT. I created a thermal model using TD to determine temperature differences that are caused by these two features. To prevent false results, all TD models must be verified against something known. In this case, the TD model was correlated to CHAR, an ablation modelling software used to analyze TPS. Analyzing a node far from the concerning features, we saw that the TD model data match CHAR data, verifying the TD model. Next, the temperature of the silicone rubber as well as the bead of adhesive were analyzed to determine if they exceeded allowable temperatures. It was determined that these two features do not have a significant effect on the max temperature of the heat shield. This model can be modified to check temperatures at various locations of the heat shield where the composite thickness varies.

  17. The thermal triple-axis-spectrometer EIGER at the continuous spallation source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U., E-mail: uwe.stuhr@psi.ch [Laboratory of Neutron Scattering and Imaging, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Roessli, B.; Gvasaliya, S. [Laboratory of Neutron Scattering and Imaging, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Rønnow, H.M. [Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Féderale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Filges, U.; Graf, D.; Bollhalder, A.; Hohl, D.; Bürge, R.; Schild, M.; Holitzner, L.; Kaegi, C.; Keller, P.; Mühlebach, T. [Laboratory for Scientific Development and Novel Materials, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2017-05-01

    EIGER is the new thermal triple-axis-spectrometer at the continuous spallation SINQ at PSI. The shielding of the monochromator consists only of non- or low magnetizable materials, which allows the use of strong magnetic fields with the instrument. This shielding reduces the high energy neutron contamination to a comparable level of thermal spectrometers at reactor sources. The instrument design, the performance and first results of the spectrometer are presented.

  18. RadShield: semiautomated shielding design using a floor plan driven graphical user interface.

    Science.gov (United States)

    DeLorenzo, Matthew C; Wu, Dee H; Yang, Kai; Rutel, Isaac B

    2016-09-08

    The purpose of this study was to introduce and describe the development of RadShield, a Java-based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air-kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry-based approach and a manual approach. A series of geometry-based equations were derived giv-ing the maximum air-kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)-certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air-kerma rate was compared against the geometry-based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry-based approach and RadShield's approach in finding the magnitude and location of the maximum air-kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheteriza-tion labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air-kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X-ray exam distribution by a medical physicist may not

  19. Thin and Flexible Fe-Si-B/Ni-Cu-P Metallic Glass Multilayer Composites for Efficient Electromagnetic Interference Shielding.

    Science.gov (United States)

    Zhang, Jijun; Li, Jiawei; Tan, Guoguo; Hu, Renchao; Wang, Junqiang; Chang, Chuntao; Wang, Xinmin

    2017-12-06

    Thin and flexible materials that can provide efficient electromagnetic interference (EMI) shielding are urgently needed, especially if they can be easily processed and withstand harsh environments. Herein, layer-structured Fe-Si-B/Ni-Cu-P metallic glass composites have been developed by simple electroless plating Ni-Cu-P coating on commercial Fe-Si-B metallic glasses. The 0.1 mm-thick composite shows EMI shielding effectiveness of 40 dB over the X-band frequency range, which is higher than those of traditional metals, metal oxides, and their polymer composites of larger thickness. Most of the applied electromagnetic waves are proved to be absorbed rather than bounced back. This performance originates from the combination of a superior soft magnetic property, excellent electrical conductivity, and multiple internal reflections from multilayer composites. In addition, the flexible composites also exhibit good corrosion resistance, high thermal stability, and excellent tensile strength, making them suitable for EMI shielding in harsh chemical or thermal environments.

  20. X-ray face mask and chest shield device

    International Nuclear Information System (INIS)

    Moti, S.

    1981-01-01

    A protective face mask is designed to shield an x-ray technician or machine operator primarily from random secondary or scatter x-rays deflected towards his face, head and neck by the table, walls, equipment and other reflecting elements in an x-ray room or chamber. The face mask and chest shield device can be mounted on a patient's shoulders in reverse attitude to protect the back of a patient's head and neck from the x-ray beam. The face mask is relatively or substantially transparent and contains lead in combination with a plastic ionomer or comonomer, which to a degree absorbs or resists penetration of the random deflected secondary or scatter x-rays or the x-ray beam through the mask. The face mask is removably attachable to the chest shield for easy application of the device to and support upon the shoulders of the technician or the patient. (author)

  1. Safety analysis report for packaging: the ORNL gas-cylinder fire and impact shield

    International Nuclear Information System (INIS)

    Evans, J.H.; Levine, D.L.; Eversole, R.E.

    1977-10-01

    The ORNL radioactive gas-cylinder fire and impact shield was designed and fabricated at the Oak Ridge Gaseous Diffusion Plant for the transport of cylinders filled with radioactive gases. The shield was evaluated analytically and experimentally to determine its compliance with the applicable regulations governing containers in which radioactive and fissile materials are transported. Computational and test procedures were used to determine the structural integrity and thermal behavior of the cask relative to the general standards for normal conditions of transport and the standards for hypothetical accident conditions. Results of the evaluation demonstrate that the container is in compliance with the applicable regulations

  2. Multi-shock Shield Performance at 16.5 MJ for Catalogued Debris

    Science.gov (United States)

    Miller, J. E.; Christiansen, E. L.; Davis, B. A.

    2014-01-01

    While orbital debris of ten centimeters or more are tracked and catalogued, the difficulty of finding and accurately accounting for forces acting on the objects near the ten centimeter threshold results in both uncertainty of their presence and location. These challenges result in difficult decisions for operators balancing potential costly operational approaches with system loss risk. In this paper, numerical simulations and an experiment using the multi-shock shield system is described for a cylindrical projectile composed of Nylon, aluminum and void that is approximately 8 cm in diameter and 10 cm in length weighing 670 g impacting the multi-shock shield normal to the surface with approximately 16.5 MJ of kinetic energy. The multi-shock shield system has been optimized to facilitate the fragmentation, spread and deceleration of the projectile remnants using hydrodynamic simulations of the impact event. The characteristics and function of each of the layers of the multi-shock system will be discussed along with considerations for deployment and improvement.

  3. Shielding benchmark problems, (2)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Sasamoto, Nobuo; Oka, Yoshiaki; Shin, Kazuo; Tada, Keiko.

    1980-02-01

    Shielding benchmark problems prepared by Working Group of Assessment of Shielding Experiments in the Research Committee on Shielding Design in the Atomic Energy Society of Japan were compiled by Shielding Laboratory in Japan Atomic Energy Research Institute. Fourteen shielding benchmark problems are presented newly in addition to twenty-one problems proposed already, for evaluating the calculational algorithm and accuracy of computer codes based on discrete ordinates method and Monte Carlo method and for evaluating the nuclear data used in codes. The present benchmark problems are principally for investigating the backscattering and the streaming of neutrons and gamma rays in two- and three-dimensional configurations. (author)

  4. Optimized Shielding and Fabrication Techniques for TiN and Al Microwave Resonators

    Science.gov (United States)

    Kreikebaum, John Mark; Kim, Eunseong; Livingston, William; Dove, Allison; Calusine, Gregory; Hover, David; Rosenberg, Danna; Oliver, William; Siddiqi, Irfan

    We present a systematic study of the effects of shielding and packaging on the internal quality factor (Qi) of Al and TiN microwave resonators designed for use in qubit readout. Surprisingly, Qi =1.3x106 TiN samples investigated at 100 mK exhibited no significant changes in linewidth when operated without magnetic shielding and in an open cryo-package. In contrast, Al resonators showed systematic improvement in Qi with each successive shield. Measurements were performed in an adiabatic demagnetization refrigerator, where typical ambient fields of 0.2 mT are present at the sample stage. We discuss the effect of 100 mK and 500 mK Cu radiation shields and cryoperm magnetic shielding on resonator Q as a function of temperature and input power in samples prepared with a variety of surface treatments, fabrication recipes, and embedding circuits. This research was supported by the ARO and IARPA.

  5. Three-dimensional analysis of AP600 standard plant shield building roof

    International Nuclear Information System (INIS)

    Greimann, L.; Fanous, F.; Safar, S.; Khalil, A.; Bluhm, D.

    1999-01-01

    The AP600 passive containment vessel is surrounded by a concrete cylindrical shell covered with a truncated conical roof. This roof supports the passive containment cooling system (PCS) annular tank, shield plate and other nonstructural attachments. When the shield building is subjected to different loading combinations as defined in the Standard Review Plan (SRP), some of the sections in the shield building could experience forces in excess of their design values. This report summarized the three-dimensional finite element analysis that was conducted to review the adequacy of the proposed Westinghouse shield building design. The ANSYS finite element software was utilized to analyze the Shield Building Roof (SBR) under dead, snow, wind, thermal and seismic loadings. A three-dimensional model that included a portion of the shield building cylindrical shell, the conical roof and its attachments, the eccentricities at the cone-cylinder connection and at the compression ring and the PCS tank was developed. Mesh sensitivity studies were conducted to select appropriate element size in the cylinder, cone, near air intakes and in the vicinity of the eccentricities. Also, a study was carried out to correctly idealize the water-structure interaction in the PCS tank. Response spectrum analysis was used to calculate the internal forces at different sections in the SBR under Safe Shutdown Earthquake (SSE). Forty-nine structural modes and twenty sloshing modes were used. Two horizontal components of the SSE together with a vertical component were used. Modal stress resultants were combined taking into account the effects of closely spaced modes. The three earthquake directions were combined by the Square Root of the Sum Squares method. Two load combinations were studied. The load combination that included dead, snow, fluid, thermal and seismic loads was selected to be the most critical. Interaction diagrams for critical sections were developed and used to check the design

  6. Magnetic shielding for superconducting RF cavities

    Science.gov (United States)

    Masuzawa, M.; Terashima, A.; Tsuchiya, K.; Ueki, R.

    2017-03-01

    Magnetic shielding is a key technology for superconducting radio frequency (RF) cavities. There are basically two approaches for shielding: (1) surround the cavity of interest with high permeability material and divert magnetic flux around it (passive shielding); and (2) create a magnetic field using coils that cancels the ambient magnetic field in the area of interest (active shielding). The choice of approach depends on the magnitude of the ambient magnetic field, residual magnetic field tolerance, shape of the magnetic shield, usage, cost, etc. However, passive shielding is more commonly used for superconducting RF cavities. The issue with passive shielding is that as the volume to be shielded increases, the size of the shielding material increases, thereby leading to cost increase. A recent trend is to place a magnetic shield in a cryogenic environment inside a cryostat, very close to the cavities, reducing the size and volume of the magnetic shield. In this case, the shielding effectiveness at cryogenic temperatures becomes important. We measured the permeabilities of various shielding materials at both room temperature and cryogenic temperature (4 K) and studied shielding degradation at that cryogenic temperature.

  7. Homogeneous versus heterogeneous shielding modeling of spent-fuel casks

    International Nuclear Information System (INIS)

    Carbajo, J.J.; Lindner, C.N.

    1992-01-01

    The design of spent-fuel casks for storage and transport requires modeling the cask for criticality, shielding, thermal, and structural analyses. While some parts of the cask are homogeneous, other regions are heterogeneous with different materials intermixed. For simplicity, some of the heterogeneous regions may be modeled as homogeneous. This paper evaluates the effect of homogenizing some regions of a cask on calculating radiation dose rates outside the cask. The dose rate calculations were performed with the one-dimensional discrete ordinates shielding XSDRNPM code coupled with the XSDOSE code and with the three-dimensional QAD-CGGP code. Dose rates were calculated radially at the midplane of the cask at two locations, cask surface and 2.3 m from the radial surface. The last location corresponds to a point 2 m from the lateral sides of a transport railroad car

  8. Space Shuttle Orbiter AFT heat shield seal

    Science.gov (United States)

    Walkover, L. J.

    1979-01-01

    The evolution of the orbiter aft heat shield seal (AHSS) design, which involved advancing mechanical seal technology in severe thermal environment is discussed. The baseline design, various improvements for engine access, and technical problem solution are presented. It is a structure and mechanism at the three main propulsion system (MPS) engine interfaces to the aft compartment structure. Access to each MPS engine requires disassembly and removal of the AHSS. Each AHSS accommodates the engine movement, is exposed to an extremely high temperature environment, and is part of the venting control of the aft compartment.

  9. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SUMMARY OF COMBINED THERMAL & OPERATING LOADS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TOLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs).

  10. Shielding and filtering techniques to protect sensitive instrumentation from electromagnetic interference caused by arc welding

    International Nuclear Information System (INIS)

    Kalechstein, W.

    1997-01-01

    Electromagnetic interference (EMI) caused by arc welding is a concern for sensitive CANDU instrumentation and control equipment, especially start-up instrumentation (SUI) and ion chamber instruments used to measure neutron flux at low power. Measurements of the effectiveness of simple shielding and filtering techniques that may be applied to limit arc welding electromagnetic emissions below the interference threshold are described. Shielding configurations investigated include an arrangement in which the welding power supply, torch (electrode holder), interconnecting cables and welder operator were housed in a single enclosure and a more practical configuration of separate shields for the power supply, cables and operator with torch. The two configuration were found to provide 30 dB and 26 dB attenuation, respectively, for arc welder electric-field emissions and were successful in preventing EMI in SUI set up just outside the shielding enclosures. Practical improvements that may be incorporated in the shielding arrangement to facilitate quick setup in the field in a variety of application environments, while maintaining adequate EMI protection, are discussed. (author)

  11. Shielding modification and safety review on the nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Osanai, Masao

    1978-01-01

    The Japan Atomic Energy Commission (JAEC) called on the Japan Nuclear Ship Development Agency (JNSDA) for shielding modification and safety review on the nuclear ship ''Mutsu'', and JNSDA has conducted the research and development (R and D) to meet the request of JAEC for the above two items. Concerning the shield modification, the following matters are described: the study on the cause of radiation leakage which was concluded to the fast neutron streaming, the conceptual design for this modification, the mock up experiment for shielding utilizing JRR-4, the basic design following on the conceptual design, including the detailed drawings of the modified construction and the shielding analysis using RADHEAT-V3 code, and the relating experiments such as the heat transfer test of the primary shielding structure and the test of strength in stranding. As for the safety review, the survey of the troubles and the technical problems having been experienced in the light water reactor plants of land use, for example, fuel integrity, stress corrosion cracking and the leakage of steam generator tubes, the revision of the design so as to adapt to current safety standards and regulations, for example, in-service inspection, the setting of additional leak detectors in the primary cooling system, the modification of emergeney filters, etc., and the review of the design and construction corresponding to recent R and D works, such as re-evaluation of the core design, cooling capability of natural circulation, thermal stress analysis of main pipings, and the evaluation of ECCS performance are presented . (Nakai, Y.)

  12. Microstability of TMX-U during initial thermal barrier operation

    International Nuclear Information System (INIS)

    Casper, T.A.; Berzins, L.V.; Ellis, R.F.; James, R.A.; Lasnier, C.

    1984-03-01

    During the initial thermal barrier experiments on the Tandem Mirror Experiment-Upgrade (TMX-U), we successfully demonstrated the principle of improved axial tandem mirror confinement achieved by establishment of both the thermal barrier and the ion confining potential peak. During this operation, we created both hot (100-keV) mirror-confined electron and hot (8-keV) mirror-confined ion populations in the end cells. In certain parameter ranges, we observed these species to be weakly unstable to various microinstabilities, but we did not observe clear evidence for an absolute limit to confinement

  13. Design criteria of the bolometer diagnostic for steady-state operation of the W7-X stellarator

    International Nuclear Information System (INIS)

    Zhang, D.; Burhenn, R.; Koenig, R.; Giannone, L.; Grodzki, P. A.; Klein, B.; Grosser, K.; Baldzuhn, J.; Ewert, K.; Erckmann, V.; Hirsch, M.; Laqua, H. P.; Oosterbeek, J. W.

    2010-01-01

    A bolometric diagnostic system with features necessary for steady-state operation in the superconducting stellarator W7-X was designed. During a pulse length of 1800 s with an ECRH (electron cyclotron resonance heating) power of 10 MW, the components suffer not only from a large thermal load but also from stray radiation of the nonabsorbed isotropic microwaves. This paper gives an overview of the technical problems encountered during the design work and the solutions to individual problems to meet the special requirements in W7-X, e.g., component thermal protection, detector offset thermal drift suppression, as well as a microwave shielding technique.

  14. Design criteria of the bolometer diagnostic for steady-state operation of the W7-X stellaratora)

    Science.gov (United States)

    Zhang, D.; Burhenn, R.; Koenig, R.; Giannone, L.; Grodzki, P. A.; Klein, B.; Grosser, K.; Baldzuhn, J.; Ewert, K.; Erckmann, V.; Hirsch, M.; Laqua, H. P.; Oosterbeek, J. W.

    2010-10-01

    A bolometric diagnostic system with features necessary for steady-state operation in the superconducting stellarator W7-X was designed. During a pulse length of 1800 s with an ECRH (electron cyclotron resonance heating) power of 10 MW, the components suffer not only from a large thermal load but also from stray radiation of the nonabsorbed isotropic microwaves. This paper gives an overview of the technical problems encountered during the design work and the solutions to individual problems to meet the special requirements in W7-X, e.g., component thermal protection, detector offset thermal drift suppression, as well as a microwave shielding technique.

  15. An innovative method for on-power radiometry of end-shields of nuclear power plants

    International Nuclear Information System (INIS)

    Kumar, Gaurav; Gupta, Pankaj; Nawal, Shriram; Gautam, Mahesh; Kakkar, Aman Deep; Yadav, Umed

    2012-01-01

    Every lndian PHWR reactor calandria is sandwiched within a pair of shield on either side. These shields are perpendicular to the coaxial axis of calandria and are called end-shields. These provide shielding from leakage radiation from reactor core in escaping out to Fuelling Machine vault, thereby significantly reducing the dose rates in the vaults. This has got a direct impact on radiation field in accessible areas. By maintaining low dose rates in accessible areas, the individual and collective doses of radiation workers can be effectively controlled well within the stipulated limits. Thus, it is of utmost importance to ensure adequacy of shielding provided by end-shields. In this context, a limited radiometry exercise is executed after filling of end-shields with steel balls and prior to their installation at designated place. This exercise provides limited inputs along the periphery of end-shield due to limited strength of radiation source, its handling provisions and dose constraints to the individual. In order to ascertain an in-depth analysis of shielding adequacy on-power, different methodologies have been adopted and have certain limitation in precisely pinpointing the affected area/location besides limitation on number of locations that can be monitored at a single stretch. To overcome these important anomalies, a computer based setup has been indigenously designed. The setup essentially comprises of a radiation monitor with wide energy, measuring, temperature and humidity range; a custom designed 25 m long compatible cable with suitable connectors; a laptop with additional cooling arrangement; a configurable interfacing software; thermal shielding for the detector and tying/fixing provisions. The radiation monitor after being properly shielded for thermal impacts is installed on the head of Fuelling Machine. It is connected through long cable to a laptop kept at Fuelling Machine service area with due cooling provisions (as temperature in the area will

  16. Experimental simulation and numerical modeling of vapor shield formation and divertor material erosion for ITER typical plasma disruptions

    International Nuclear Information System (INIS)

    Wuerz, H.; Arkhipov, N.I.; Bakhtin, V.P.; Konkashbaev, I.; Landman, I.; Safronov, V.M.; Toporkov, D.A.; Zhitlukhin, A.M.

    1995-01-01

    The high divertor heat load during a tokamak plasma disruption results in sudden evaporation of a thin layer of divertor plate material, which acts as vapor shield and protects the target from further excessive evaporation. Formation and effectiveness of the vapor shield are theoretically modeled and are experimentally analyzed at the 2MK-200 facility under conditions simulating the thermal quench phase of ITER tokamak plasma disruptions. ((orig.))

  17. License Application Design Selection Feature Report: Waste Package Self Shielding Design Feature 13

    International Nuclear Information System (INIS)

    Tang, J.S.

    2000-01-01

    In the Viability Assessment (VA) reference design, handling of waste packages (WPs) in the emplacement drifts is performed remotely, and human access to the drifts is precluded when WPs are present. This report will investigate the feasibility of using a self-shielded WP design to reduce the radiation levels in the emplacement drifts to a point that, when coupled with ventilation, will create an acceptable environment for human access. This provides the benefit of allowing human entry to emplacement drifts to perform maintenance on ground support and instrumentation, and carry out performance confirmation activities. More direct human control of WP handling and emplacement operations would also be possible. However, these potential benefits must be weighed against the cost of implementation, and potential impacts on pre- and post-closure performance of the repository and WPs. The first section of this report will provide background information on previous investigations of the self-shielded WP design feature, summarize the objective and scope of this document, and provide quality assurance and software information. A shielding performance and cost study that includes several candidate shield materials will then be performed in the subsequent section to allow selection of two self-shielded WP design options for further evaluation. Finally, the remaining sections will evaluate the impacts of the two WP self-shielding options on the repository design, operations, safety, cost, and long-term performance of the WPs with respect to the VA reference design

  18. Shielding in experimental areas

    International Nuclear Information System (INIS)

    Stevens, A.; Tarnopolsky, G.; Thorndike, A.; White, S.

    1979-01-01

    The amount of shielding necessary to protect experimental detectors from various sources of background radiation is discussed. As illustrated an experiment has line of sight to sources extending approx. 90 m upstream from the intersection point. Packing a significant fraction of this space with shielding blocks would in general be unacceptable because primary access to the ring tunnel is from the experimental halls. (1) From basic machine design considerations and the inherent necessity to protect superconducting magnets it is expected that experimental areas in general will be cleaner than at any existing accelerator. (2) Even so, it will likely be necessary to have some shielding blocks available to protect experimental apparatus, and it may well be necessary to have a large amount of shielding available in the WAH. (3) Scraping will likely have some influence on all halls, and retractable apparatus may sometimes be necessary. (4) If access to any tunnel is needed to replace a magnet, one has 96 h (4 days) available to move shielding away to permit access without additional downtime. This (the amount of shielding one can shuffle about in 96 h) is a reasonable upper limit to shielding necessary in a hall

  19. Power MOSFET Thermal Instability Operation Characterization Support

    Science.gov (United States)

    Shue, John L.; Leidecker, Henning

    2010-01-01

    Metal-oxide semiconductor field-effect transistors (MOSFETs) are used extensively in flight hardware and ground support equipment. In the quest for faster switching times and lower "on resistance," the MOSFETs designed from 1998 to the present have achieved most of their intended goals. In the quest for lower on resistance and higher switching speeds, the designs now being produced allow the charge-carrier dominated region (once small and outside of the area of concern) to become important and inside the safe operating area (SOA). The charge-carrier dominated region allows more current to flow as the temperature increases. The higher temperatures produce more current resulting in the beginning of thermal runaway. Thermal runaway is a problem affecting a wide range of modern MOSFETs from more than one manufacturer. This report contains information on MOSFET failures, their causes and test results and information dissemination.

  20. Significant reduction of radiation exposure to operator and staff during cardiac interventions by analysis of radiation leakage and improved lead shielding.

    Science.gov (United States)

    Kuon, Eberhard; Schmitt, Moritz; Dahm, Johannes B

    2002-01-01

    The objectives of this study were to disclose and to reduce occupational radiation leakage in invasive cardiology. Prospectively, we analyzed various dose parameters for 330 coronary procedures. We used a Rando phantom to measure scatter entrance skin air kerma to the operator (S-ESAK-O) during fluoroscopy for all standard tube angulations, and to plot isodose lines for 0 degrees /0 degrees -posterior anterior angulation. The patient's measured dose area product due to diagnostic catheterization and elective percutaneous transluminal coronary angioplasty was 6.2 and 10.4 Gycm(2), which represents 11% and 13% of currently typical values, respectively. With use of 0.5- and 1.0-mm overcouch and undercouch shielding, it was possible to reduce the mean of 4,686 nSv/Gycm(2) to 677 and 277 nSv/Gycm(2), respectively. Closure of radiation leakage up to 897 microSv/hour at the operator's gonadal height (80 to 105 cm), not heretofore described, was achieved by an additional 1.0-mm, lead-equivalent undercouch-top and overcouch-flap adjacent to the table, down to a S-ESAK-O/dose area product level of 47.5 nSv/Gycm(2). With use of a 0.5-mm lead apron, collar, glasses, foot-switch shield and 1.0-mm lead cover around the patient's thighs, the operator received a mean S-ESAK-O of 8.5, while his forehead, eyes, thyroid, chest, gonads, and hands were exposed to 68.2, 1.2, 1.2, 1.2, 0.8, and 58.2 nSv/Gycm(2), respectively. In conclusion, radiation-attenuating intervention techniques and improved lead protection can effectively contribute to a new state of the art in invasive cardiology, with reduction of operator radiation exposure to 0.8% of typical S-ESAK-O levels in advanced catheterization laboratories.

  1. Thermal response of an aeroassisted orbital-transfer vehicle with a conical drag brake

    Science.gov (United States)

    Pitts, W. C.; Murbach, M. S.

    1984-01-01

    As an aeroassisted orbital-transfer vehicle (AOTV) goes through an aerobraking maneuver, a significant amount of heat is generated. In this paper, the thermal response of a specific AOTV to this aerobrake heating is examined. The vehicle has a 70 deg, conical drag-brake heat shield attached to a cylindrical body which contains the payload. The heat shield is made of silica fabric. The heat-shield thickness is varied from that of a thin cloth to a 1.5-cm blanket. The fabric thickness, the radiation absorptivity of the vehicle surface materials, and radiation from the wake are all significant parameters in the thermal response to the heating produced by the braking maneuver. The maximum temperatures occur in the vicinity of the interface between the body and the conical heat shield.

  2. Heat generation and temperature-rise in ordinary concrete due to capture of thermal neutrons

    International Nuclear Information System (INIS)

    Abdo, E.A.; Amin, E.

    1997-01-01

    The aim of this work is the evaluation of the heat generation and temperature-rise in local ordinary concrete as a biological shield due to capture of total thermal and reactor thermal neutrons. The total thermal neutron fluxes were measured and calculated. The channel number 2 of the ETRR-1 reactor was used in the measurements as a neutron source. Computer code ANISN (VAX version) and neutron multigroup cross-section library EURLiB-4 was used in the calculations. The heat generation and temperature-rise in local ordinary concrete were evaluated and calculated. The results were displayed in curves to show the distribution of thermal neutron fluxes and heat generation as well as temperature-rise with the shield thickness. The results showed that, the heat generation as well as the temperature-rise have their maximum values in the first layers of the shield thickness. 4 figs., 12 refs

  3. Evaluation of thermal performance of all-GaN power module in parallel operation

    International Nuclear Information System (INIS)

    Chou, Po-Chien; Cheng, Stone; Chen, Szu-Hao

    2014-01-01

    This work presents an extensive thermal characterization of a single discrete GaN high-electron-mobility transistor (HEMT) device when operated in parallel at temperatures of 25 °C–175 °C. The maximum drain current (I D max ), on-resistance (R ON ), pinch-off voltage (V P ) and peak transconductance (g m ) at various chamber temperatures are measured and correlations among these parameters studied. Understanding the dependence of key transistor parameters on temperature is crucial to inhibiting the generation of hot spots and the equalization of currents in the parallel operation of HEMTs. A detailed analysis of the current imbalance between two parallel HEMT cells and its consequential effect on the junction temperature are also presented. The results from variations in the characteristics of the parallel-connected devices further verify that the thermal stability and switching behavior of these cells are balanced. Two parallel HEMT cells are operated at a safe working distance from thermal runaway to prevent destruction of the hottest cell. - Highlights: • This work reveals the sorting process of GaN devices for parallel operation. • The variations of I D max , R ON , V P , and g m with temperature are established. • The temperature-dependence parameters are crucial to prevent hot spots generation. • Safe working operation prevents thermal runaway and hottest cell destruction

  4. Dangers of bypassing thermal overload relays in nuclear power plant motor operated valve circuits

    International Nuclear Information System (INIS)

    Baxter, F.D.

    1980-01-01

    Operation of motor operated valves is analyzed under various abnormal conditions such as frozen bearing, tight packing, mid-travel obstruction, torque switch failure, limit switch failure, and post-accident operation. Each condition has been reviewed to show that an adverse situation results if the thermal overload relays in the circuit are bypassed. In conclusion, there appears to be no technical basis for bypassing or oversizing the thermal overload relay provided it is selected correctly

  5. Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm_2O_3/polyimide gamma ray/neutron shielding material

    International Nuclear Information System (INIS)

    Wang, Peng; Tang, Xiaobin; Chai, Hao; Chen, Da; Qiu, Yunlong

    2015-01-01

    Highlights: • Sm_2O_3 is used for neutron absorber instead of B_4C, and Sm_2O_3 has a good photon-shielding effect. • Carbon-fiber cloth and polyimide were used to enhance shielding materials’ mechanical behavior and thermal behavior. • Both Monte Carlo method and shielding test were used to evaluate shielding performance of the novel shielding material. - Abstract: The design and fabrication of shielding materials with good heat-resistance and mechanical properties is a major problem in the radiation shielding field. In this paper, based on gamma ray and neutron shielding theory, a continuous carbon-fiber reinforced Sm_2O_3/polyimide gamma ray/neutron shielding material was fabricated by hot-pressing method. The material's application behavior was subsequently evaluated using neutron shielding, photon shielding, mechanical tensile, and thermogravimetric analysis–differential scanning calorimetry tests. The results show that the tensile strength of the novel shielding material exceeds 200 MPa, which makes it of similar strength to aluminum alloy. The material does not undergo crosslinking and decomposition reactions at 300 °C and it can be used in such environments for long periods of time. The continuous carbon-fiber reinforced Sm_2O_3/polyimide material has a good shielding performance with respect to gamma rays and neutrons. The material thus has good prospects for use in fusion reactor system and nuclear waste disposal applications.

  6. Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats

    International Nuclear Information System (INIS)

    Bourcey, N.; Capatina, O.; Parma, V.; Poncet, A.; Rohmig, P.; Serio, L.; Skoczen, B.; Tock, J.-P.; Williams, L. R.

    2004-01-01

    The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K.Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) including two Short Straight Sections and six dipole cryomagnets. Temperature sensors installed at critical locations provide a temperature mapping which allows validation of the calculated and estimated thermal performance of the cryostat components, including efficiency of the heat interceptions

  7. Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats

    Science.gov (United States)

    Bourcey, N.; Capatina, O.; Parma, V.; Poncet, A.; Rohmig, P.; Serio, L.; Skoczen, B.; Tock, J.-P.; Williams, L. R.

    2004-06-01

    The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K. Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) including two Short Straight Sections and six dipole cryomagnets. Temperature sensors installed at critical locations provide a temperature mapping which allows validation of the calculated and estimated thermal performance of the cryostat components, including efficiency of the heat interceptions.

  8. Design of the shield door and transporter for the Culham Conceptual Tokamak Reactor Mark II

    International Nuclear Information System (INIS)

    Guthrie, J.A.S.

    1980-04-01

    In the Culham Conceptual Tokamak Reactor MK II access to the interior for blanket maintenance is through large openings in the fixed shield structure closed by removable shield doors when the reactor is operational. This report describes the design of the 200 tonne doors and the associated special-purpose remote operating transporter manipulator. The design, which has not been optimised, generally uses available commercial equipment and state-of-the-art techniques. (U.K.)

  9. Shielding repair and comprehensive safety inspection of the nuclear-powered ship Mutsu

    International Nuclear Information System (INIS)

    Takada, Etsuo

    1982-01-01

    Eight years after the radiation leakage accident, the nuclear-powered ship Mutsu returned again to its home port Ominato. During the period, for four years, the n.s. Mutsu was subjected to shielding repair and comprehensive inspection at Sasebo port. In the future, the ship will start on experimental navigation after its functional and power-up tests. The works of shielding repair and the comprehensive inspection with subsequent repair are described in technical aspects. The basic policy of the repair was two points, i.e. the usage of shielding materials excellent in shielding capacity, less in radioactivation and enduring operating temperature, and structural strength resisting ship-hull acceleration, shock and vibration, enabling easy maintenance and inspection. Comprehensive inspection was made on not only machinery integrity but also the design itself. (Mori, K.)

  10. Concrete shielding for nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagase, Tetsuo; Saito, Tetsuo

    1983-01-01

    The repair works of the shielding for the nuclear ship ''Mutsu'' were completed in August, 1982. For the primary shielding, serpentine concrete was adopted as it contains a large quantity of water required for neutron shielding, and in the secondary shielding at the upper part of the reactor containment vessel, the original shielding was abolished, and the heavy concrete (high water content, high density concrete) which is effective for neutron and gamma-ray shielding was newly adopted. In this report, the design and construction using these shielding concrete are outlined. In September, 1974, Mutsu caused radiation leak during the test, and the cause was found to be the fast neutrons streaming through a gap between the reactor pressure vessel and the primary shielding. The repair works were carried out in the Sasebo Shipyard. The outline of the repair works of the shielding is described. The design condition for the shielding, the design standard for the radiation dose outside and inside the ship, the method of shielding analysis and the performance required for shielding concrete are reported. The selection of materials, the method of construction and mixing ratio, the evaluation of the soundness and properties of concrete, and the works of placing the shielding concrete are outlined. (Kako, I.)

  11. Neutron shielding and activation of the MASTU device and surrounds

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, David, E-mail: david.taylor@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Lilley, Steven; Turner, Andrew [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Davis, Andrew [Now at College of Engineering, University of Wisconsin, Madison, WI 53706 (United States)

    2014-10-15

    Highlights: We model neutron shielding for the planned MASTU device; nadequacies in the existing shielding design are remedied; Levels of public exposure are considered; We model activated gamma emission for the device under a worst case scenario. Abstract: A significant functional upgrade is planned for the Mega Ampere Spherical Tokamak (MAST) device, located at Culham in the UK, including the implementation of a notably greater neutral beam injection power. This upgrade will cause the emission of a substantially increased intensity of neutron radiation for a substantially increased amount of time upon operation of the device. Existing shielding and activation precautions are shown to prove insufficient in some regards, and recommendations for improvements are made, including the following areas: shielding doors to MAST shielded facility enclosure (known as “the blockhouse”); north access tunnel; blockhouse roof; west cabling duct. In addition, some specific neutronic dose rate questions are addressed and answered; those discussed here relate to shielding penetrations and dose rate reflected from the air above the device (“skyshine”). It is shown that the alterations to shielding and area access reduce the dose rate in unrestricted areas from greater than 100 μSv/h to less than 2 μSv/h averaged over the working day. The tools used for this analysis are the MCNP (Monte Carlo N-particle) code, used to calculate the three-dimensional spatial distribution of neutron and photon dose rates in and around the device and its shields, and the nuclear inventory code FISPACT, run under the umbrella code MCR2S, used to calculate the time-dependent shutdown dose rate in the region of the device at several decay times.

  12. Guide to shielding calculations for the design of fluoroscopic laboratory at 503 workshop AVN base Rawalpindi

    International Nuclear Information System (INIS)

    Din, J.U.; Ahmad, M.; Ashraf, M.M.; Khan, A.R.; Khan, A.A.

    1986-11-01

    Non-destructive testing plays an important role in assessing the quality of materials. Various methods are used for this purpose. Radiography by X-rays and gamma-rays is one of the NDT methods used. There are number of mathematical formulae used to estimate the required shielding for an X-ray tube operating at maximum rated voltage or a gamma radiation source having fixed energies. This report covers the shielding requirements for a 150 KV constant potential X-ray unit operating at maximum rated voltage. In addition, the report is a guide for the design of shielded enclosure required for X-rays machines in general. (orig./A.B.)

  13. Calculation of the neutrons shielding in cyclotron accelerator

    International Nuclear Information System (INIS)

    Ribeiro, Martha S.; Sanches, Matias P.; Rodrigues, Demerval L.

    2000-01-01

    The objective of radioprotection in cyclotron facilities is to reduce the dose levels in the workplaces to classify them like supervised areas. In this way, the radiation dose rates in areas occupied by workers during cyclotron operations should not exceed 7,5 μSv/h. In controlled areas these levels are not observed and some rigorous controls must be exerted by administrative procedures or protection mechanisms. The Cyclotron Laboratory at IPEN-CNEN/SP has a cyclotron model Cyclone 30, 30 MeV, used for research and it is also used for radioisotopes production for medical diagnosis and therapeutical applications. Among them, 123 I, 67 Ga and 18 F can be pointed. When accelerator is operating, failures in perforations and paths that conduce to room accelerator can be occur and thus, the dose levels are higher than that established by law. For this reason, a review for shielding structure was necessary in order to optimize radiation dose. The purpose of this work was to determine the shielding thickness and adequate material to diminish the dose rates in workplaces to a value below 7,5 μSv/h. It was used a method to employ the equivalent dose value in the facility areas for neutrons fluency rate for the principal reactions in target irradiation processes. The purposed shielding for the vault doors ensures dose levels lower than established limits to supervised areas. (author)

  14. Neutronics and shielding issues of ADS

    International Nuclear Information System (INIS)

    Abderrahim, H. A.; Aoust, T.; Haeck, W.; Malambu, E.; Van den Eynde, G.; Gonzalez, E.; Vicente, C.; Martinez-Val, J. M.; Romanets, Y.; Vaz, P.

    2007-01-01

    implementation and deployment have in common the fact that they raise cutting edge scientific and technological problems, associated to the operation of the high-intensity proton accelerator, the high-power (in the multi-MegaWatt range) delivered to the target and the material damage in the target and surrounding structures. The thermal power in the core, the thermal-hydraulic aspects associated to the heat removal in steady state and also in transient mode, the subcriticality level of the system and the efficiency of the transmutation process, is particularly sensitive to the core design (geometry, number of subassemblies, fuel composition, among many other aspects). Neutronic and shielding issues and the computation and mapping of neutron fluxes and doses are important throughout all stages of design of these systems. In this paper, i) the main characteristics and parameters of the ADS systems previously alluded to will be reviewed ii) the neutronics and shielding calculations of relevance for the design of the ADS systems, for radiation damage and for radiation protection purposes will be extensively described

  15. Shielding container

    International Nuclear Information System (INIS)

    Darling, K.A.M.

    1981-01-01

    A shielding container incorporates a dense shield, for example of depleted uranium, cast around a tubular member of curvilinear configuration for accommodating a radiation source capsule. A lining for the tubular member, in the form of a close-coiled flexible guide, provides easy replaceability to counter wear while the container is in service. Container life is extended, and maintenance costs are reduced. (author)

  16. Safety analysis report for packaging: the ORNL gas-cylinder fire and impact shield

    International Nuclear Information System (INIS)

    Evans, J.H.; Levine, D.L.; Eversole, R.E.; Mouring, R.W.

    1983-04-01

    The ORNL gas-cylinder fire and impact shield was designed and fabricated at the Oak Ridge Gaseous Diffusion Plant for the transport of cylinders filled with radioactive gases. The shield was evaluated analytically and experimentally to determine its compliance with the applicable regulations governing containers in which radioactive and fissile materials are transported, and the results are reported herein. Computational and test procedures were used to determine the structural integrity and thermal behavior of the cask relative to the general standards for normal conditions of transport and the standards for hypothetical accident conditions. Results of the evaluation demonstrate that the container is in compliance with the applicable regulations

  17. ITER blanket module shield block design and analysis

    International Nuclear Information System (INIS)

    Mitin, D.; Khomyakov, S.; Razmerov, A.; Strebkov, Yu.

    2008-01-01

    This paper presents the alternative design of the shield block cooling path for a typical ITER blanket module with a predominantly sequential flow circuit. A number of serious disadvantages have been observed for the reference design, where the parallel flow circuit is used, which is inherent in the majority of blanket modules. The paper discusses these disadvantages and demonstrates the benefit of the alternative design based on the detailed design and the technological, hydraulic, thermal, structural and strength analyses, conducted for module no. 17

  18. Assessment of shielding integrity of Co-60 gamma irradiation-ray scanner at Aflao Border, Ghana

    International Nuclear Information System (INIS)

    Agbemafo, Edwin Capacity

    2016-07-01

    This study examines the current state of the shielding integrity of the 38.7 TBq Co-60 gamma ray scanner with an average energy of 1.25 MeV operated by NICK TC Scan Limited, which has been in use for destination inspection at Aflao Border of Ghana, for the past six years, (2010-2016). The facility uses a high energy ionizing radiation in its operation; therefore continuous adequacy of the installed biological shielding is critical to the protection and safety of the workers and the general public. The workload of the facility has increased since its commissioning, requiring the review of the status of the installed shielding. Theoretical calculations for dose rates and barrier thicknesses based on tenth – value layer (TVL) concept and NCRP 151, 2005 recommendations, were done around the scanning facility using the current operational data. The results were then compared with the measured dose rates and the shielding thickness constituted during the commissioning stage, and international standards. Calculated dose rate at commissioning state ranges from 0.6μSv/hr to 2.4μSv/hr with an average dose rate of 1.43μSv/hr and that of the current operational state ranges from 1.1μSv/hr to 2.6μSv/hr with an average dose rate of 1.54μSv/hr, indicating an increase of 7.9%. Even though the dose rates were all below the recommended dose limit of 20μSvh"-"1 by NCRP, there has been an increase in dose to the staff and the general public. It has been observed that, the workload has increased three-fold from the commissioning stage to current operational state over the past six years. The assessment done on the installed shielding using the current operational data indicates that the shielding is inadequate in providing protection for the general public and the workers against X-ray radiation source of energy of at least 6MeV, and therefore the facility in its current state cannot be used to house a linear accelerator of energy up to 10MeV. (au)

  19. Thermal-Hydraulic Analysis Tasks for ANAV NPPs in Support of Plant Operation and Control

    Directory of Open Access Journals (Sweden)

    L. Batet

    2007-11-01

    Full Text Available Thermal-hydraulic analysis tasks aimed at supporting plant operation and control of nuclear power plants are an important issue for the Asociación Nuclear Ascó-Vandellòs (ANAV. ANAV is the consortium that runs the Ascó power plants (2 units and the Vandellòs-II power plant. The reactors are Westinghouse-design, 3-loop PWRs with an approximate electrical power of 1000 MW. The Technical University of Catalonia (UPC thermal-hydraulic analysis team has jointly worked together with ANAV engineers at different levels in the analysis and improvement of these reactors. This article is an illustration of the usefulness of computational analysis for operational support. The contents presented were operational between 1985 and 2001 and subsequently changed slightly following various organizational adjustments. The paper has two different parts. In the first part, it describes the specific aspects of thermal-hydraulic analysis tasks related to operation and control and, in the second part, it briefly presents the results of three examples of analyses that were performed. All the presented examples are related to actual situations in which the scenarios were studied by analysts using thermal-hydraulic codes and prepared nodalizations. The paper also includes a qualitative evaluation of the benefits obtained by ANAV through thermal-hydraulic analyses aimed at supporting operation and plant control.

  20. Transient temperature response of in-vessel components due to pulsed operation in tokamak fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    Minato, Akio; Tone, Tatsuzo

    1985-12-01

    A transient temperature response of the in-vessel components (first wall, blanket, divertor/limiter and shielding) surrounding plasma in Tokamak Fusion Experimental Reactor (FER) has been analysed. Transient heat load during start up/shut down and pulsed operation cycles causes the transient temperature response in those components. The fatigue lifetime of those components significantly depends upon the resulting cyclic thermal stress. The burn time affects the temperature control in the solid breeder (Li 2 O) and also affects the thermo-mechanical design of the blanket and shielding which are constructed with thick structure. In this report, results of the transient temperature response obtained by the heat transfer and conduction analyses for various pulsed operation scenarios (start up, shut down, burn and dwell times) have been investigated in view of thermo-mechanical design of the in-vessel components. (author)

  1. Concrete radiation shielding

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1989-01-01

    The increased use of nuclear energy has given rise to a growth in the amount of artificially produced radiation and radioactive materials. The design and construction of shielding to protect people, equipment and structures from the effects of radiation has never been more important. Experience has shown that concrete is an effective, versatile and economical material for the construction of radiation shielding. This book provides information on the principles governing the interaction of radiation with matter and on relevant nuclear physics to give the engineer an understanding of the design and construction of concrete shielding. It covers the physical, mechanical and nuclear properties of concrete; the effects of elevated temperatures and possible damage to concrete due to radiation; basic procedures for the design of concrete radiation shields and finally the special problems associated with their construction and cost. Although written primarily for engineers concerned with the design and construction of concrete shielding, the book also reviews the widely scattered data and information available on this subject and should therefore be of interest to students and those wishing to research further in this field. (author)

  2. Preparation of a basic data base for shielding design. 4

    International Nuclear Information System (INIS)

    Nakao, Makoto; Takemura, Morio

    1999-03-01

    With use of a standard groupwise shielding design library JSSTDL produced from the latest evaluated nuclear data library JENDL-3.2, experimental analyses for the JASPER experiments were performed. In order to verify the new version of JSSTDL, whose cross sections of thermal energy region was updated, the polyethylene transmission experiments of the Special Materials Experiment was analysed again, and also zirconium transmission experiment of the Experiment was newly analysed. JSSTDL was applied to the analysis of neutron multiplicative region of the in-vessel fuel storage mockup configurations in the IVS Experiment. Also it was applied to the analyses of neutron streaming effect through the mockup of sodium window in B 4 C shield in the Flux Monitor Experiment and also the mockup of narrow gaps in thick concrete shield in the Gap streaming Experiment. The results were compared with those obtained by the same analysis method and input data using the JSDJ2 library that had been applied consistently to the JASPER experiment analyses. Although the analysis with the new version of JSSTDL resulted in a little reduction of overestimation in the polyethylene transmission configuration, the results obtained with JSSTDL are, in general, higher than those with JSDJ2 as had been found in analyses in preceding years for the Radial Shield Attenuation Experiment, the Axial Shield Experiment, the Intermediate Heat Exchanger Experiment and so on. Compilation of the input data necessary for future reanalyses of important configurations in JASPER experiments, that were selected at the first stage of this study, were continued and new data were added into the computer disk holding previously accumulated data. (author)

  3. Gonad shielding in diagnostic radiology

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The use of gonad shielding is an important radiation protection technique, intended to reduce unnecessary x-ray exposure of the gonads of patients from diagnostic x-ray procedures. The types of gonad shields in use are discussed as are the types of diagnostic examinations that should include gonad shielding. It was found that when properly used, most shields provided substantial gonad dose reductions

  4. Post Three Mile Island shielding review - a case history

    International Nuclear Information System (INIS)

    Isakari, H.H.; Shaw, H.C.

    1983-01-01

    The radiation shielding review of the Diablo Canyon Nuclear Power Plant was performed in accordance with the requirement of the Three Mile Island Action Plan. The review covered plant shielding and environmental qualification of equipment for spaces and systems which may be used in post-accident operations. Radiation doses during postulated loss-of-coolant accident and high-energy-line-break accident were calculated for equipment located both inside and outside the containment. Vital areas, those requiring post-accident access and occupancy, were identified and their associated dose rates and integrated doses were calculated. It was found that all four of the vital areas (Control Room, Technical Support Center, Switchgear Room, and Emergency Sampling Compartment) are shielded from external sources of radiation sufficiently to permit personnel access and occupancy that would not be unduly limited by the radiation environment caused by the postulated accidents. (author)

  5. Shielding structure analysis for LSDS facility

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hong Yeop; Kim, Jeong Dong; Lee, Yong Deok; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear material (Pyro, Spent nuclear fuel) itself and the target material to generate neutrons is the LSDS system for isotopic fissile assay release of high intensity neutron and gamma rays. This research was performed to shield from various strong radiation. A shielding evaluation was carried out with a facilities model of LSDS system. The MCNPX 2.5 code was used and a shielding evaluation was performed for the shielding structure and location. The radiation dose based on the hole structure and location of the wall was evaluated. The shielding evaluation was performed to satisfy the safety standard for a normal person (1 μSv/h) and to use enough interior space. The MCNPX2.5 code was used and a dose evaluation was performed for the location of the shielding material, shielding structure, and hole structure. The evaluation result differs according to the shielding material location. The dose rate was small when the shielding material was positioned at the center. The dose evaluation result regarding the location of the shielding material was applied to the facility and the shielding thickness was determined (In 50 cm + Borax 5 cm + Out 45cm). In the existing hole structure, the radiation leak is higher than the standard. A hole structure model to prevent leakage of radiation was proposed. The general public dose limit was satisfied when using the concrete reinforcement and a zigzag structure. The shielding result will be of help to the facility shielding optimization.

  6. Shielding structure analysis for LSDS facility

    International Nuclear Information System (INIS)

    Choi, Hong Yeop; Kim, Jeong Dong; Lee, Yong Deok; Kim, Ho Dong

    2014-01-01

    The nuclear material (Pyro, Spent nuclear fuel) itself and the target material to generate neutrons is the LSDS system for isotopic fissile assay release of high intensity neutron and gamma rays. This research was performed to shield from various strong radiation. A shielding evaluation was carried out with a facilities model of LSDS system. The MCNPX 2.5 code was used and a shielding evaluation was performed for the shielding structure and location. The radiation dose based on the hole structure and location of the wall was evaluated. The shielding evaluation was performed to satisfy the safety standard for a normal person (1 μSv/h) and to use enough interior space. The MCNPX2.5 code was used and a dose evaluation was performed for the location of the shielding material, shielding structure, and hole structure. The evaluation result differs according to the shielding material location. The dose rate was small when the shielding material was positioned at the center. The dose evaluation result regarding the location of the shielding material was applied to the facility and the shielding thickness was determined (In 50 cm + Borax 5 cm + Out 45cm). In the existing hole structure, the radiation leak is higher than the standard. A hole structure model to prevent leakage of radiation was proposed. The general public dose limit was satisfied when using the concrete reinforcement and a zigzag structure. The shielding result will be of help to the facility shielding optimization

  7. Accelerator shield design of KIPT neutron source facility

    International Nuclear Information System (INIS)

    Zhong, Z.; Gohar, Y.

    2013-01-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total

  8. Smart house-based optimal operation of thermal unit commitment for a smart grid considering transmission constraints

    Science.gov (United States)

    Howlader, Harun Or Rashid; Matayoshi, Hidehito; Noorzad, Ahmad Samim; Muarapaz, Cirio Celestino; Senjyu, Tomonobu

    2018-05-01

    This paper presents a smart house-based power system for thermal unit commitment programme. The proposed power system consists of smart houses, renewable energy plants and conventional thermal units. The transmission constraints are considered for the proposed system. The generated power of the large capacity renewable energy plant leads to the violated transmission constraints in the thermal unit commitment programme, therefore, the transmission constraint should be considered. This paper focuses on the optimal operation of the thermal units incorporated with controllable loads such as Electrical Vehicle and Heat Pump water heater of the smart houses. The proposed method is compared with the power flow in thermal units operation without controllable loads and the optimal operation without the transmission constraints. Simulation results show the validation of the proposed method.

  9. Induced radioactivity in the forward shielding and semiconductor tracker of the ATLAS detector.

    Science.gov (United States)

    Bĕdajánek, I; Linhart, V; Stekl, I; Pospísil, S; Kolros, A; Kovalenko, V

    2005-01-01

    The radioactivity induced in the forward shielding, copper collimator and semiconductor tracker modules of the ATLAS detector has been studied. The ATLAS detector is a long-term experiment which, during operation, will require to have service and access to all of its parts and components. The radioactivity induced in the forward shielding was calculated by Monte Carlo methods based on GEANT3 software tool. The results show that the equivalent dose rates on the outer surface of the forward shielding are very low (at most 0.038 microSv h(-1)). On the other hand, the equivalent dose rates are significantly higher on the inner surface of the forward shielding (up to 661 microSv h(-1)) and, especially, at the copper collimator close to the beampipe (up to 60 mSv h(-1)). The radioactivity induced in the semiconductor tracker modules was studied experimentally. The module was activated by neutrons in a training nuclear reactor and the delayed gamma ray spectra were measured. From these measurements, the equivalent dose rate on the surface of the semiconductor tracker module was estimated to be LHC) operation and 10 d of cooling.

  10. Optimisation of the radiation shielding of medical cyclotrons using a genetic algorithm

    International Nuclear Information System (INIS)

    Mukherjee, Bhaskar

    2000-01-01

    Effective radiation shielding is imperative for safe operation of modern Medical Cyclotrons producing large activities of short-lived radioisotopes on a commercial basis. The optimal cyclotron shielding design demands a careful balance between the radiological, economical and often the sociopolitical factors. One is required to optimize the cost of radiation protection and the cost of radiological-health detriment. The cost of radiation protection depends explicitly on a) the nature of the radiation field produced by the cyclotron, b) the cyclotron operation condition, c) the cost of shielding material, d) the level of dose reduction, e) the projected net revenue from the sale of the radioisotopes, and f) the depreciation rate of the cyclotron facility. The Genetic Algorithm (GA) is used for a cost -benefit analysis of this problem. The GA is a mathematical technique that emulates the Darwinian Evolution paradigm. It is ideally suited to search for a global optimum in a large multi-dimensional solution space, having demonstrated strength compared to the classical analytical methods. Furthermore the GA method runs on a PC in a Windows environment. This paper highlights an interactive spreadsheet macro program for the cost benefit analysis of the optimize Medical Cyclotron shielding using a GA search engine. (author)

  11. Radiation safety aspects during nondestructive testing of reactor shielding components by gamma radiometry

    International Nuclear Information System (INIS)

    Viswanathan, S.; Jose, M.T.; Venkatraman, B.

    2016-01-01

    In nuclear facilities, effective shielding of radioactive components and structures are essential to ensure radiation protection to operating personnel. The shield structures are made of lead, steel and concrete with varying thickness of up to 1200 mm. It needs to be verified for shielding integrity, presence of voids, blowholes and defects to avoid exposure to workers and to public at large. Radiometry using gamma source serves as excellent tool for non-destructive examination of such structures and components. Gamma sources of high activity up to 50 Curies (gamma camera type) depending on the thickness of component have to be used. During the testing exposure to the operating personnel needs to be minimized, this requires certain safety procedures to be followed. This paper focuses the methodology to be adapted by means of selection of source, effective training of personnel, compliance with safety requirements and maintenance of source devices

  12. Electromagnetic interference shielding effectiveness of MgO−Al2O3 ...

    Indian Academy of Sciences (India)

    2017-12-07

    Dec 7, 2017 ... Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), ... communications systems operating in the gigahertz (GHz) ... EMI shielding effectiveness of MAS glass–ceramic system.

  13. Evaluation of additional lead shielding in protecting the physician from radiation during cardiac interventional procedures

    International Nuclear Information System (INIS)

    Chida, Koichi; Zuguchi, Masayuki; Morishima, Yoshiaki; Katahira, Yoshiaki; Chiba, Hiroo

    2005-01-01

    Since cardiac interventional procedures deliver high doses of radiation to the physician, radiation protection for the physician in cardiac catheterization laboratories is very important. One of the most important means of protecting the physician from scatter radiation is to use additional lead shielding devices, such as tableside lead drapes and ceiling-mounted lead acrylic protection. During cardiac interventional procedures (cardiac IVR), however, it is not clear how much lead shielding reduces the physician dose. This study compared the physician dose [effective dose equivalent (EDE) and dose equivalent (DE)] with and without additional shielding during cardiac IVR. Fluoroscopy scatter radiation was measured using a human phantom, with an ionization chamber survey meter, with and without additional shielding. With the additional shielding, fluoroscopy scatter radiation measured with the human phantom was reduced by up to 98%, as compared with that without. The mean EDE (whole body, mean±SD) dose to the operator, determined using a Luxel badge, was 2.55±1.65 and 4.65±1.21 mSv/year with and without the additional shielding, respectively (p=0.086). Similarly, the mean DE (lens of the eye) to the operator was 15.0±9.3 and 25.73±5.28 mSv/year, respectively (p=0.092). In conclusion, although tableside drapes and lead acrylic shields suspended from the ceiling provided extra protection to the physician during cardiac IVR, the reduction in the estimated physician dose (EDE and DE) during cardiac catheterization with additional shielding was lower than we expected. Therefore, there is a need to develop more ergonomically useful protection devices for cardiac IVR. (author)

  14. Technical and economic aspects of operation of thermal and hydro power systems

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Bjoern Harald

    1997-12-31

    This thesis studies system operation and operational costs of primary and secondary control in hydro and thermal power systems. The cost of providing primary control reserves in thermal power systems is estimated to 1-3% of total production cost. Hydro power units, on the other hand, provide a very cheap primary reserve compared to thermal units. The HVDC (High Voltage Direct Current) connection can be used for primary control in either direction but the thesis only considers substitution of reserves in the thermal system with reserves from the hydro system. Since the HVDC connection is easy to control, the transient characteristics are considerably improved, and one can substitute an amount of thermal spinning reserve corresponding to the available HVDC capacity with little disturbance in any system. A more realistic alternative, at present, is to sell secondary control reserves across the HVDC connections. Keeping spinning reserve for automatic secondary control in a thermal power system is estimated to cost 3-5% of total production cost. Secondary control reserves probably cannot compete with the value of the peak load export, but one should seriously consider using part of the HVDC capacity as secondary control reserve for the thermal system during off-peak hours with. The author discusses the concept of automatic secondary control both theoretically and by simulations and finds that there are no special technical difficulties in introducing automatic secondary control in the Nordel (an organization for Nordic power cooperation) system. 78 refs., 4 figs., 23 tabs.

  15. Technical and economic aspects of operation of thermal and hydro power systems

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Bjoern Harald

    1998-12-31

    This thesis studies system operation and operational costs of primary and secondary control in hydro and thermal power systems. The cost of providing primary control reserves in thermal power systems is estimated to 1-3% of total production cost. Hydro power units, on the other hand, provide a very cheap primary reserve compared to thermal units. The HVDC (High Voltage Direct Current) connection can be used for primary control in either direction but the thesis only considers substitution of reserves in the thermal system with reserves from the hydro system. Since the HVDC connection is easy to control, the transient characteristics are considerably improved, and one can substitute an amount of thermal spinning reserve corresponding to the available HVDC capacity with little disturbance in any system. A more realistic alternative, at present, is to sell secondary control reserves across the HVDC connections. Keeping spinning reserve for automatic secondary control in a thermal power system is estimated to cost 3-5% of total production cost. Secondary control reserves probably cannot compete with the value of the peak load export, but one should seriously consider using part of the HVDC capacity as secondary control reserve for the thermal system during off-peak hours with. The author discusses the concept of automatic secondary control both theoretically and by simulations and finds that there are no special technical difficulties in introducing automatic secondary control in the Nordel (an organization for Nordic power cooperation) system. 78 refs., 4 figs., 23 tabs.

  16. Technical and economic aspects of operation of thermal and hydro power systems

    International Nuclear Information System (INIS)

    Bakken, Bjoern Harald.

    1997-01-01

    This thesis studies system operation and operational costs of primary and secondary control in hydro and thermal power systems. The cost of providing primary control reserves in thermal power systems is estimated to 1-3% of total production cost. Hydro power units, on the other hand, provide a very cheap primary reserve compared to thermal units. The HVDC (High Voltage Direct Current) connection can be used for primary control in either direction but the thesis only considers substitution of reserves in the thermal system with reserves from the hydro system. Since the HVDC connection is easy to control, the transient characteristics are considerably improved, and one can substitute an amount of thermal spinning reserve corresponding to the available HVDC capacity with little disturbance in any system. A more realistic alternative, at present, is to sell secondary control reserves across the HVDC connections. Keeping spinning reserve for automatic secondary control in a thermal power system is estimated to cost 3-5% of total production cost. Secondary control reserves probably cannot compete with the value of the peak load export, but one should seriously consider using part of the HVDC capacity as secondary control reserve for the thermal system during off-peak hours with. The author discusses the concept of automatic secondary control both theoretically and by simulations and finds that there are no special technical difficulties in introducing automatic secondary control in the Nordel (an organization for Nordic power cooperation) system. 78 refs., 4 figs., 23 tabs

  17. Biological shielding design and qualification of concreting process for construction of electron beam irradiation facility

    International Nuclear Information System (INIS)

    Petwal, V.C.; Kumar, P.; Suresh, N.; Parchani, G.; Dwivedi, J.; Thakurta, A.C.

    2011-01-01

    A technology demonstration facility for irradiation of food and agricultural products is being set-up by RRCAT at Indore. The facility design is based on linear electron accelerator with maximum beam power of 10 kW and can be operated either in electron mode at 10 MeV or photon modes at 5/7.5 MeV. Biological shielding has been designed in accordance with NCRP 51 to achieve dose rate at all accessible points outside the irradiation vault less than the permissible limit of 0.1 mR/hr. In addition to radiation attenuation property, concrete must have satisfactory mechanical properties to meet the structural requirements. There are number of site specific variables which affect the structural, thermal and radiological properties of concrete, leading to considerable difference in actual values and design values. Hence it is essential to establish a suitable site and environmental specific process to cast the concrete and qualify the process by experimental measurement. For process qualification we have cast concrete test blocks of different thicknesses up to 3.25 m and evaluated the radiological and mechanical properties by radiometry, ultrasonic and mechanical tests. In this paper we describe the biological shielding design of the facility and analyse the results of tests carried out for qualification of the process. (author)

  18. Radiation shielding calculation using MCNP

    International Nuclear Information System (INIS)

    Masukawa, Fumihiro

    2001-01-01

    To verify the Monte Carlo code MCNP4A as a tool to generate the reference data in the shielding designs and the safety evaluations, various shielding benchmark experiments were analyzed using this code. These experiments were categorized in three types of the shielding subjects; bulk shielding, streaming, and skyshine. For the variance reduction technique, which is indispensable to get meaningful results with the Monte Carlo shielding calculation, we mainly used the weight window, the energy dependent Russian roulette and spitting. As a whole, our analyses performed enough small statistical errors and showed good agreements with these experiments. (author)

  19. Shielding design for PWR in France

    International Nuclear Information System (INIS)

    Champion, G.; Charransol; Le Dieu de Ville, A.; Nimal, J.C.; Vergnaud, T.

    1983-05-01

    Shielding calculation scheme used in France for PWR is presented here for 900 MWe and 1300 MWe plants built by EDF the French utility giving electricity. Neutron dose rate at areas accessible by personnel during the reactor operation is calculated and compared with the measurements which were carried out in 900 MWe units up to now. Measurements on the first French 1300 MWe reactor are foreseen at the end of 1983

  20. Radiation and shielding around beam absorbers

    International Nuclear Information System (INIS)

    Hurkmans, A.; Maas, R.

    1978-12-01

    During operational conditions it is anticipated that a fair amount of the total available beam power is dumped in either the slit system on one of the beam dumps. Thses beam absorbers therefore become strong radioactive sources. The radiation level due to the absorption of a 100 kW electron beam is estimated and the problem of residual activity is treated. Proposed shielding materials are discussed. (C.F.)