WorldWideScience

Sample records for thermal rocket materials

  1. Arc-Heater Facility for Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    Science.gov (United States)

    Litchford, Ron J.; Foote, John P.; Wang,Ten-See; Hickman, Robert; Panda, Binayak; Dobson, Chris; Osborne, Robin; Clifton, Scooter

    2006-01-01

    A hyper-thermal environment simulator is described for hot hydrogen exposure of nuclear thermal rocket material specimens and component development. This newly established testing capability uses a high-power, multi-gas, segmented arc-heater to produce high-temperature pressurized hydrogen flows representative of practical reactor core environments and is intended to serve. as a low cost test facility for the purpose of investigating and characterizing candidate fueUstructura1 materials and improving associated processing/fabrication techniques. Design and development efforts are thoroughly summarized, including thermal hydraulics analysis and simulation results, and facility operating characteristics are reported, as determined from a series of baseline performance mapping tests.

  2. Unique nuclear thermal rocket engine

    International Nuclear Information System (INIS)

    Culver, D.W.; Rochow, R.

    1993-06-01

    In January, 1992, a new, advanced nuclear thermal rocket engine (NTRE) concept intended for manned missions to the moon and to Mars was introduced (Culver, 1992). This NTRE promises to be both shorter and lighter in weight than conventionally designed engines, because its forward flowing reactor is located within an expansion-deflection rocket nozzle. The concept has matured during the year, and this paper discusses a nearer term version that resolves four open issues identified in the initial concept: (1) the reactor design and cooling scheme simplification while retaining a high pressure power balance option; (2) elimination need for a new, uncooled nozzle throat material suitable for long life application; (3) a practical provision for reactor power control; and (4) use of near-term, long-life turbopumps

  3. Pressure And Thermal Modeling Of Rocket Launches

    Science.gov (United States)

    Smith, Sheldon D.; Myruski, Brian L.; Farmer, Richard C.; Freeman, Jon A.

    1995-01-01

    Report presents mathematical model for use in designing rocket-launching stand. Predicts pressure and thermal environment, as well as thermal responses of structures to impinging rocket-exhaust plumes. Enables relatively inexperienced analyst to determine time-varying distributions and absolute levels of pressure and heat loads on structures.

  4. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    Science.gov (United States)

    Emrich, William J.

    2008-01-01

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  5. Alternate Propellant Thermal Rocket, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Alternate Propellant Thermal Rocket (APTR) is a novel concept for propulsion of space exploration or orbit transfer vehicles. APTR propulsion is provided by...

  6. Thermal Barrier Coatings on Copper Substrates for Rocket Applications

    Science.gov (United States)

    Schloesser, Jana; Fedorova, Tatiana; Bäker, Martin; Rösler, Joachim

    Currently a new generation of relaunchable space transportation system using liquid hydrogen/ liquid oxygen rocket engines is under development. The inner combustion chamber is exposed to extreme thermal loads and environmental attack during starts. To prevent failure of the cooling channels, a thermal barrier coating to provide thermal and oxidation protection could be applied. Thermal barrier coatings are state of the art for gas turbines and this concept should be transferred to copper substrates in rocket engine applications. The thermomechanical loading conditions are quite different from the gas turbine applications as heat fluxes and temperature gradients are much higher while overall service time is much shorter. As a start for optimization of a suitable coating, a material system known for gas turbines is employed. In this work a thermal barrier coating system is applied by atmospheric plasma spraying to the copper-based high strength alloy Cu-1%Cr-0.3%Zr. The bond coat consists of a NiCrAlY alloy, while partially stabilized zirconia is used as a top coat. Spraying parameter optimization for the new substrate is described. The reached coating system is tested in thermal cycling experiments, where no failure of the coating could be detected. In oxidation experiments good environmental protection of the coating is shown.

  7. Nuclear Thermal Rocket Simulation in NPSS

    Science.gov (United States)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  8. Turbopump options for nuclear thermal rockets

    International Nuclear Information System (INIS)

    Bissell, W.R.; Gunn, S.V.

    1992-07-01

    Several turbopump options for delivering liquid nitrogen to nuclear thermal rocket (NTR) engines were evaluated and compared. Axial and centrifugal flow pumps were optimized, with and without boost pumps, utilizing current design criteria within the latest turbopump technology limits. Two possible NTR design points were used, a modest pump pressure rise of 1,743 psia and a relatively higher pump pressure rise of 4,480 psia. Both engines utilized the expander cycle to maximize engine performance for the long duration mission. Pump suction performance was evaluated. Turbopumps with conventional cavitating inducers were compared with zero NPSH (saturated liquid in the tanks) pumps over a range of tank saturation pressures, with and without boost pumps. Results indicate that zero NSPH pumps at high tank vapor pressures, 60 psia, are very similar to those with the finite NPSHs. At low vapor pressures efficiencies fall and turbine pressure ratios increase leading to decreased engine chamber pressures and or increased pump pressure discharges and attendant high-pressure component weights. It may be concluded that zero tank NSPH capabilities can be obtained with little penalty to the engine systems but boost pumps are needed if tank vapor pressure drops below 30 psia. Axial pumps have slight advantages in weight and chamber pressure capability while centrifugal pumps have a greater operating range. 10 refs

  9. Ablative Material Testing at Lewis Rocket Lab

    Science.gov (United States)

    1997-01-01

    The increasing demand for a low-cost, reliable way to launch commercial payloads to low- Earth orbit has led to the need for inexpensive, expendable propulsion systems for new launch vehicles. This, in turn, has renewed interest in less complex, uncooled rocket engines that have combustion chambers and exhaust nozzles fabricated from ablative materials. A number of aerospace propulsion system manufacturers have utilized NASA Lewis Research Center's test facilities with a high degree of success to evaluate candidate materials for application to new propulsion devices.

  10. Materials Characterization of Additively Manufactured Components for Rocket Propulsion

    Science.gov (United States)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRC's Additive Manufacturing roles and experimental findings will be presented.

  11. Material Characterization of Additively Manufactured Components for Rocket Propulsion

    Science.gov (United States)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRCs Additive Manufacturing roles and experimental findings will be presented.

  12. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  13. Nuclear Thermal Rocket (NTR) Development Risk Communication

    Science.gov (United States)

    Kim, Tony

    2014-01-01

    There are clear advantages of development of a Nuclear Thermal Rocket (NTR) for a crewed mission to Mars. NTR for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse (approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration. However, "NUCLEAR" is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. Communication of nuclear safety will be critical to the success of the development of the NTR. Why is there a fear of nuclear? A bomb that can level a city is a scary weapon. The first and only times the Nuclear Bomb was used in a war was on Hiroshima and Nagasaki during World War 2. The "Little Boy" atomic bomb was dropped on Hiroshima on August 6, 1945 and the "Fat Man" on Nagasaki 3 days later on August 9th. Within the first 4 months of bombings, 90- 166 thousand people died in Hiroshima and 60-80 thousand died in Nagasaki. It is important to note for comparison that over 500 thousand people died and 5 million made homeless due to strategic bombing (approximately 150 thousand tons) of Japanese cities and war assets with conventional non-nuclear weapons between 1942- 1945. A major bombing campaign of "firebombing" of Tokyo called "Operation Meetinghouse" on March 9 and 10 consisting of 334 B-29's dropped approximately1,700 tons of bombs around 16 square mile area and over 100 thousand people have been estimated to have died. The declaration of death is very

  14. Nuclear thermal rocket nozzle testing and evaluation program

    Science.gov (United States)

    Davidian, Kenneth O.; Kacynski, Kenneth J.

    1993-01-01

    Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. The Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within + or - 1.17 pct.

  15. Initial Operation of the Nuclear Thermal Rocket Element Environmental Simulator

    Science.gov (United States)

    Emrich, William J., Jr.; Pearson, J. Boise; Schoenfeld, Michael P.

    2015-01-01

    The Nuclear Thermal Rocket Element Environmental Simulator (NTREES) facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The NTREES facility has recently been upgraded such that the power capabilities of the facility have been increased significantly. At its present 1.2 MW power level, more prototypical fuel element temperatures nay now be reached. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during testing In this new higher power configuration, NTREES will be capable of testing fuel elements and fuel materials at near-prototypic power densities. As checkout testing progressed and as higher power levels were achieved, several design deficiencies were discovered and fixed. Most of these design deficiencies were related to stray RF energy causing various components to encounter unexpected heating. Copper shielding around these components largely eliminated these problems. Other problems encountered involved unexpected movement in the coil due to electromagnetic forces and electrical arcing between the coil and a dummy test article. The coil movement and arcing which were encountered during the checkout testing effectively destroyed the induction coil in use at

  16. Grooved Fuel Rings for Nuclear Thermal Rocket Engines

    Science.gov (United States)

    Emrich, William

    2009-01-01

    An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.

  17. Bimodal Nuclear Thermal Rocket Analysis Developments

    Science.gov (United States)

    Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark

    2014-01-01

    Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.

  18. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    Science.gov (United States)

    Emrich, William J., Jr.

    2014-01-01

    Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit

  19. Moving Material into Space Without Rockets.

    Science.gov (United States)

    Cheng, R. S.; Trefil, J. S.

    1985-01-01

    In response to conventional rocket demands on fuel supplies, electromagnetic launches were developed to give payloads high velocity using a stationary energy source. Several orbital mechanics problems are solved including a simple problem (radial launch with no rotation) and a complex problem involving air resistance and gravity. (DH)

  20. Thermohydraulic modeling of nuclear thermal rockets: The KLAXON code

    International Nuclear Information System (INIS)

    Hall, M.L.; Rider, W.J.; Cappiello, M.W.

    1992-01-01

    The hydrogen flow from the storage tanks, through the reactor core, and out the nozzle of a Nuclear Thermal Rocket is an integral design consideration. To provide an analysis and design tool for this phenomenon, the KLAXON code is being developed. A shock-capturing numerical methodology is used to model the gas flow (the Harten, Lax, and van Leer method, as implemented by Einfeldt). Preliminary results of modeling the flow through the reactor core and nozzle are given in this paper

  1. Development of Thermal Barriers For Solid Rocket Motor Nozzle Joints

    Science.gov (United States)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.

    2000-01-01

    Joints in the Space Shuttle solid rocket motors are sealed by O-rings to contain combustion gases inside the rocket that reach pressures of up to 900 psi and temperatures of up to 5500 F. To provide protection for the O-rings, the motors are insulated with either phenolic or rubber insulation. Gaps in the joints leading up to the O-rings are filled with polysulfide joint-fill compounds as an additional level of protection. The current RSRM nozzle-to-case joint design incorporating primary, secondary, and wiper O-rings experiences gas paths through the joint-fill compound to the innermost wiper O-ring in about one out of every seven motors. Although this does not pose a safety hazard to the motor, it is an undesirable condition that NASA and rocket manufacturer Thiokol want to eliminate. Each nozzle-to-case joint gas path results in extensive reviews and evaluation before flights can be resumed. Thiokol and NASA Marshall are currently working to improve the nozzle-to-case joint design by implementing a more reliable J-leg design that has been used successfully in the field and igniter joint. They are also planning to incorporate the NASA Glenn braided carbon fiber thermal barrier into the joint. The thermal barrier would act as an additional level of protection for the O-rings and allow the elimination of the joint-fill compound from the joint.

  2. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  3. Negative thermal expansion materials

    International Nuclear Information System (INIS)

    Evans, J.S.O.

    1997-01-01

    The recent discovery of negative thermal expansion over an unprecedented temperature range in ZrW 2 O 8 (which contracts continuously on warming from below 2 K to above 1000 K) has stimulated considerable interest in this unusual phenomenon. Negative and low thermal expansion materials have a number of important potential uses in ceramic, optical and electronic applications. We have now found negative thermal expansion in a large new family of materials with the general formula A 2 (MO 4 ) 3 . Chemical substitution dramatically influences the thermal expansion properties of these materials allowing the production of ceramics with negative, positive or zero coefficients of thermal expansion, with the potential to control other important materials properties such as refractive index and dielectric constant. The mechanism of negative thermal expansion and the phase transitions exhibited by this important new class of low-expansion materials will be discussed. (orig.)

  4. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  5. Design and analysis of a single stage to orbit nuclear thermal rocket reactor engine

    Energy Technology Data Exchange (ETDEWEB)

    Labib, Satira, E-mail: Satira.Labib@duke-energy.com; King, Jeffrey, E-mail: kingjc@mines.edu

    2015-06-15

    Graphical abstract: - Highlights: • Three NTR reactors are optimized for the single stage launch of 1–15 MT payloads. • The proposed rocket engines have specific impulses in excess of 700 s. • Reactivity and submersion criticality requirements are satisfied for each reactor. - Abstract: Recent advances in the development of high power density fuel materials have renewed interest in nuclear thermal rockets (NTRs) as a viable propulsion technology for future space exploration. This paper describes the design of three NTR reactor engines designed for the single stage to orbit launch of payloads from 1 to 15 metric tons. Thermal hydraulic and rocket engine analyses indicate that the proposed rocket engines are able to reach specific impulses in excess of 800 s. Neutronics analyses performed using MCNP5 demonstrate that the hot excess reactivity, shutdown margin, and submersion criticality requirements are satisfied for each NTR reactor. The reactors each consist of a 40 cm diameter core packed with hexagonal tungsten cermet fuel elements. The core is surrounded by radial and axial beryllium reflectors and eight boron carbide control drums. The 40 cm long reactor meets the submersion criticality requirements (a shutdown margin of at least $1 subcritical in all submersion scenarios) with no further modifications. The 80 and 120 cm long reactors include small amounts of gadolinium nitride as a spectral shift absorber to keep them subcritical upon submersion in seawater or wet sand following a launch abort.

  6. High Thrust & High ISP Nuclear Thermal Rocket (NTR) Grooved Ring Fuel Element (GRFE)

    Data.gov (United States)

    National Aeronautics and Space Administration — Missions to Mars will benefit from propulsion systems with performance levels exceeding that of today's best chemical engines. Nuclear Thermal Rocket (NTR)...

  7. Chemical rocket propulsion a comprehensive survey of energetic materials

    CERN Document Server

    Shimada, Toru; Sinditskii, Valery; Calabro, Max

    2017-01-01

    Developed and expanded from the work presented at the New Energetic Materials and Propulsion Techniques for Space Exploration workshop in June 2014, this book contains new scientific results, up-to-date reviews, and inspiring perspectives in a number of areas related to the energetic aspects of chemical rocket propulsion. This collection covers the entire life of energetic materials from their conceptual formulation to practical manufacturing; it includes coverage of theoretical and experimental ballistics, performance properties, as well as laboratory-scale and full system-scale, handling, hazards, environment, ageing, and disposal. Chemical Rocket Propulsion is a unique work, where a selection of accomplished experts from the pioneering era of space propulsion and current technologists from the most advanced international laboratories discuss the future of chemical rocket propulsion for access to, and exploration of, space. It will be of interest to both postgraduate and final-year undergraduate students in...

  8. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  9. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L

    2006-01-01

    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  10. Analytical study of nozzle performance for nuclear thermal rockets

    International Nuclear Information System (INIS)

    Davidian, K.O.; Kacynski, K.J.

    1991-01-01

    Nuclear propulsion has been identified as one of the key technologies needed for human exploration of the Moon and Mars. The Nuclear Thermal Rocket (NTR) uses a nuclear reactor to heat hydrogen to a high temperature followed by expansion through a conventional convergent-divergent nozzle. A parametric study of NTR nozzles was performed using the Rocket Engine Design Expert System (REDES) at the NASA Lewis Research Center. The REDES used the JANNAF standard rigorous methodology to determine nozzle performance over a range of chamber temperatures, chamber pressures, thrust levels, and different nozzle configurations. A design condition was set by fixing the propulsion system exit radius at five meters and throat radius was varied to achieve a target thrust level. An adiabatic wall was assumed for the nozzle, and its length was assumed to be 80 percent of a 15 degree cone. The results conclude that although the performance of the NTR, based on infinite reaction rates, looks promising at low chamber pressures, finite rate chemical reactions will cause the actual performance to be considerably lower. Parameters which have a major influence on the delivered specific impulse value include the chamber temperature and the chamber pressures in the high thrust domain. Other parameters, such as 2-D and boundary layer effects, kinetic rates, and number of nozzles, affect the deliverable performance of an NTR nozzle to a lesser degree. For a single nozzle, maximum performance of 930 seconds and 1030 seconds occur at chamber temperatures of 2700 and 3100 K, respectively

  11. Investigation of low cost material processes for liquid rocket engines

    Science.gov (United States)

    Nguyentat, Thinh; Kawashige, Chester M.; Scala, James G.; Horn, Ronald M.

    1993-01-01

    The development of low cost material processes is essential to the achievement of economical liquid rocket propulsion systems in the next century. This paper will present the results of the evaluation of some promising material processes including powder metallurgy, vacuum plasma spray, metal spray forming, and bulge forming. The physical and mechanical test results from the samples and subscale hardware fabricated from high strength copper alloys and superalloys will be discussed.

  12. Palynological Investigation of Post-Flight Solid Rocket Booster Foreign Material

    Science.gov (United States)

    Nelson, Linda; Jarzen, David

    2008-01-01

    Investigations of foreign material in a drain tube, from the Solid Rocket Booster (SRB) of a recent Space Shuttle mission, was identified as pollen. The source of the pollen is from deposits made by bees, collecting pollen from plants found at the Kennedy Space Center, Cape Canaveral, Florida. The pollen is determined to have been present in the frustum drain tubes before the shuttle flight. During the flight the pollen did not undergo thermal maturation.

  13. Nuclear thermal rockets - Key to moon-Mars exploration

    International Nuclear Information System (INIS)

    Borowski, S.K.; Clark, J.S.; Mcilwain, M.C.; Pelaccio, D.G.

    1992-01-01

    The Space Exploration Initiative (SEI) calls for lunar and Martian exploration missions for which solid-core nuclear thermal rockets (NTRs), in virtue of their single-stage, fully-reusable nature, are ideally suited. NTRs promise double the specific impulse of chemical propulsion. A lunar mission employing a reusable NTR is currently being conducted by NASA. The NTR would be assembled in LEO in such a way that it remained 'radioactively cold' during earth-to-orbit deployment by a heavy-lift chemical booster, and therefore presented no radioactive hazard. Also under consideration is a particle-bed reactor in which the hydrogen propulsive fluid directly cools coated-particle fuel spheres

  14. Thermal energy storage material

    Science.gov (United States)

    Leifer, Leslie

    1976-01-01

    A thermal energy storage material which is stable at atmospheric temperature and pressure and has a melting point higher than 32.degree.F. is prepared by dissolving a specific class of clathrate forming compounds, such as tetra n-propyl or tetra n-butyl ammonium fluoride, in water to form a substantially solid clathrate. The resultant thermal energy storage material is capable of absorbing heat from or releasing heat to a given region as it transforms between solid and liquid states in response to temperature changes in the region above and below its melting point.

  15. Nuclear Cryogenic Propulsion Stage (NCPS) Fuel Element Testing in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    Science.gov (United States)

    Emrich, William J., Jr.

    2017-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). Last year NTREES was successfully used to satisfy a testing milestone for the Nuclear Cryogenic Propulsion Stage (NCPS) project and met or exceeded all required objectives.

  16. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    Science.gov (United States)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  17. Nuclear thermal rocket propulsion application to Mars missions

    International Nuclear Information System (INIS)

    Emrich, W.J. Jr.; Young, A.C.; Mulqueen, J.A.

    1991-01-01

    Options for vehicle configurations are reviewed in which nuclear thermal rocket (NTR) propulsion is used for a reference mission to Mars. The scenario assumes an opposition-class Mars transfer trajectory, a 435-day mission, and the use of a single nuclear engine with 75,000 lbs of thrust. Engine parameters are examined by calculating mission variables for a range of specific impulses and thrust/weight ratios. The reference mission is found to have optimal values of 925 s for the specific impulse and thrust/weight ratios of 4.0 and 0.06 for the engine and total stage ratios respectively. When the engine thrust/weight ratio is at least 4/1 the most critical engine parameter is engine specific impulse for reducing overall stage weight. In the context of this trans-Mars three-burn maneuver the NTR engine with an expander engine cycle is considered a more effective alternative than chemical/aerobrake and other propulsion options

  18. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Phase II Upgrade Activities

    Science.gov (United States)

    Emrich, William J.; Moran, Robert P.; Pearson, J. Bose

    2013-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities. Keywords: Nuclear Thermal Propulsion, Simulator

  19. Ablative material testing for low-pressure, low-cost rocket engines

    Science.gov (United States)

    Richter, G. Paul; Smith, Timothy D.

    1995-01-01

    The results of an experimental evaluation of ablative materials suitable for the production of light weight, low cost rocket engine combustion chambers and nozzles are presented. Ten individual specimens of four different compositions of silica cloth-reinforced phenolic resin materials were evaluated for comparative erosion in a subscale rocket engine combustion chamber. Gaseous hydrogen and gaseous oxygen were used as propellants, operating at a nominal chamber pressure of 1138 kPa (165 psi) and a nominal mixture ratio (O/F) of 3.3. These conditions were used to thermally simulate operation with RP-1 and liquid oxygen, and achieved a specimen throat gas temperature of approximately 2456 K (4420 R). Two high-density composition materials exhibited high erosion resistance, while two low-density compositions exhibited approximately 6-75 times lower average erosion resistance. The results compare favorably with previous testing by NASA and provide adequate data for selection of ablatives for low pressure, low cost rocket engines.

  20. High Thermal Conductivity NARloy-Z-Diamond Composite Liner for Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar; Greene, Sandra

    2015-01-01

    NARloy-Z (Cu-3Ag-0.5Zr) alloy is state-of-the-art combustion chamber liner material used in liquid propulsion engines such as the RS-68 and RS-25. The performance of future liquid propulsion systems can be improved significantly by increasing the heat transfer through the combustion chamber liner. Prior work1 done at NASA Marshall Space Flight Center (MSFC) has shown that the thermal conductivity of NARloy-Z alloy can be improved significantly by embedding high thermal conductivity diamond particles in the alloy matrix to form NARloy-Z-diamond composite (fig. 1). NARloy-Z-diamond composite containing 40vol% diamond showed 69% higher thermal conductivity than NARloy-Z. It is 24% lighter than NARloy-Z and hence the density normalized thermal conductivity is 120% better. These attributes will improve the performance and life of the advanced rocket engines significantly. The research work consists of (a) developing design properties (thermal and mechanical) of NARloy-Z-D composite, (b) fabrication of net shape subscale combustion chamber liner, and (c) hot-fire testing of the liner to test performance. Initially, NARloy-Z-D composite slabs were made using the Field Assisted Sintering Technology (FAST) for the purpose of determining design properties. In the next step, a cylindrical shape was fabricated to demonstrate feasibility (fig. 3). The liner consists of six cylinders which are sintered separately and then stacked and diffusion bonded to make the liner (fig. 4). The liner will be heat treated, finish-machined, and assembled into a combustion chamber and hot-fire tested in the MSFC test facility (TF 115) to determine perform.

  1. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.

  2. Boiler and Pressure Balls Monopropellant Thermal Rocket Engine

    Science.gov (United States)

    Greene, William D. (Inventor)

    2009-01-01

    The proposed technology is a rocket engine cycle utilizing as the propulsive fluid a low molecular weight, cryogenic fluid, typically liquid hydrogen, pressure driven, heated, and expelled through a nozzle to generate high velocity and high specific impulse discharge gas. The proposed technology feeds the propellant through the engine cycle without the use of a separate pressurization fluid and without the use of turbomachinery. Advantages of the proposed technology are found in those elements of state-of-the-art systems that it avoids. It does not require a separate pressurization fluid or a thick-walled primary propellant tank as is typically required for a classical pressure-fed system. Further, it does not require the acceptance of intrinsic reliability risks associated with the use of turbomachinery

  3. RECENT ACTIVITIES AT THE CENTER FOR SPACE NUCLEAR RESEARCH FOR DEVELOPING NUCLEAR THERMAL ROCKETS

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. O' Brien

    2001-09-01

    Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.

  4. Microwavable thermal energy storage material

    Science.gov (United States)

    Salyer, Ival O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  5. Solar Thermal Reactor Materials Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

    2008-03-01

    Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

  6. Nuclear thermal rocket clustering: 1, A summary of previous work and relevant issues

    International Nuclear Information System (INIS)

    Buksa, J.J.; Houts, M.G.

    1991-01-01

    A general review of the technical merits of nuclear thermal rocket clustering is presented. A summary of previous analyses performed during the Rover program is presented and used to assess clustering in the context of projected Space Exploration Initiative missions. A number of technical issues are discussed including cluster reliability, engine-out operation, neutronic coupling, shutdown core power generation, shutdown reactivity requirements, reactor kinetics, and radiation shielding. 7 refs., 3 figs., 2 tabs

  7. Development of improved ablative materials for ASRM. [Advanced Solid Rocket Motor

    Science.gov (United States)

    Canfield, A.; Armour, W.; Clinton, R.

    1991-01-01

    A program to improve ablative materials for the Advanced Solid Rocket Motor (ASRM) is briefly discussed. The main concerns with the baseline material are summarized along with the measures being undertaken to obtain improvements. The materials involved in the program, all of which have been manufactured and are now being evaluated, are mentioned.

  8. Development and Short-Range Testing of a 100 kW Side-Illuminated Millimeter-Wave Thermal Rocket

    Science.gov (United States)

    Bruccoleri, Alexander; Eilers, James A.; Lambot, Thomas; Parkin, Kevin

    2015-01-01

    The objective of the phase described here of the Millimeter-Wave Thermal Launch System (MTLS) Project was to launch a small thermal rocket into the air using millimeter waves. The preliminary results of the first MTLS flight vehicle launches are presented in this work. The design and construction of a small thermal rocket with a planar ceramic heat exchanger mounted along the axis of the rocket is described. The heat exchanger was illuminated from the side by a millimeter-wave beam and fed propellant from above via a small tank containing high pressure argon or nitrogen. Short-range tests where the rocket was launched, tracked, and heated with the beam are described. The rockets were approximately 1.5 meters in length and 65 millimeters in diameter, with a liftoff mass of 1.8 kilograms. The rocket airframes were coated in aluminum and had a parachute recovery system activated via a timer and Pyrodex. At the rocket heat exchanger, the beam distance was 40 meters with a peak power intensity of 77 watts per square centimeter. and a total power of 32 kilowatts in a 30 centimeter diameter circle. An altitude of approximately 10 meters was achieved. Recommendations for improvements are discussed.

  9. Thermohydraulic Design Analysis Modeling for Korea Advanced NUclear Thermal Engine Rocket for Space Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Space exploration is a realistic and profitable goal for long-term humanity survival, although the harsh space environment imposes lots of severe challenges to space pioneers. To date, almost all space programs have relied upon Chemical Rockets (CRs) rating superior thrust level to transit from the Earth's surface to its orbit. However, CRs inherently have insurmountable barrier to carry out deep space missions beyond Earth's orbit due to its low propellant efficiency, and ensuing enormous propellant requirement and launch costs. Meanwhile, nuclear rockets typically offer at least two times the propellant efficiency of a CR and thus notably reduce the propellant demand. Particularly, a Nuclear Thermal Rocket (NTR) is a leading candidate for near-term manned missions to Mars and beyond because it satisfies a relatively high thrust as well as a high efficiency. The superior efficiency of NTRs is due to both high energy density of nuclear fuel and the low molecular weight propellant of Hydrogen (H{sub 2}) over the chemical reaction by-products. A NTR uses thermal energy released from a nuclear fission reactor to heat the H{sub 2} propellant and then exhausted the highly heated propellant through a propelling nozzle to produce thrust. A propellant efficiency parameter of rocket engines is specific impulse (I{sub s}p) which represents the ratio of the thrust over the propellant consumption rate. If the average exhaust H{sub 2} temperature of a NTR is around 3,000 K, the I{sub s}p can be achieved as high as 1,000 s as compared with only 450 - 500 s of the best CRs. For this reason, NTRs are favored for various space applications such as orbital tugs, lunar transports, and manned missions to Mars and beyond. The best known NTR development effort was conducted from 1955 to1974 under the ROVER and NERVA programs in the USA. These programs had successfully designed and tested many different reactors and engines. After these projects, the researches on NERVA derived

  10. Local Thermal Insulating Materials For Thermal Energy Storage ...

    African Journals Online (AJOL)

    Thermal insulation is one of the most important components of a thermal energy storage system. In this paper the thermal properties of selected potential local materials which can be used for high temperature insulation are presented. Thermal properties of seven different samples were measured. Samples consisted of: ...

  11. Consort and Joust sounding rocket missions. [dedicated to investigations of materials processing in microgravity for commercial applications

    Science.gov (United States)

    Wessling, Francis C.; Maybee, George W.

    1991-01-01

    The two suborbital rocket programs are described in terms of their common objective of examining commercial applications of materials processing under microgravitational conditions. The sounding rocket programs have unique launch-service capabilities but provide essentially interchangeable payload accommodations. Major differences include longer low gravity times and larger payload volume for the Joust rocket, spin stabilization and land recovery for the Consort rocket, and faster ascent and reentry accelerations for the Joust rocket. A summary of previous and planned experiments for the rocket programs is given which includes studies of the morphology and strength of elastomer-modified epoxy resins, electrodeposition studies, the demixing of immiscible polymers, foam formation, and polymer experiments. These and other experiments can be facilitated by the microgravity time available on flights of the two sounding rockets.

  12. To MARS and Beyond with Nuclear Power - Design Concept of Korea Advanced Nuclear Thermal Engine Rocket

    International Nuclear Information System (INIS)

    Nam, Seung Hyun; Chang, Soon Heung

    2013-01-01

    The President Park of ROK has also expressed support for space program promotion, praising the success of NARO as evidence of a positive outlook. These events hint a strong signal that ROK's space program will be accelerated by the national eager desire. In this national eager desire for space program, the policymakers and the aerospace engineers need to pay attention to the advanced nuclear technology of ROK that is set to a major world nuclear energy country, even exporting the technology. The space nuclear application is a very much attractive option because its energy density is the most enormous among available energy sources in space. This paper presents the design concept of Korea Advanced Nuclear Thermal Engine Rocket (KANuTER) that is one of the advanced nuclear thermal rocket engine developing in Korea Advanced Institute of Science and Technology (KAIST) for space application. Solar system exploration relying on CRs suffers from long trip time and high cost. In this regard, nuclear propulsion is a very attractive option for that because of higher performance and already demonstrated technology. Although ROK was a late entrant into elite global space club, its prospect as a space racer is very bright because of the national eager desire and its advanced technology. Especially it is greatly meaningful that ROK has potential capability to launch its nuclear technology into space as a global nuclear energy leader and a soaring space adventurer. In this regard, KANuTER will be a kind of bridgehead for Korean space nuclear application

  13. Thermal properties of two-dimensional materials

    International Nuclear Information System (INIS)

    Zhang Gang; Zhang Yong-Wei

    2017-01-01

    Two-dimensional (2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides (e.g., MoS 2 and WS 2 ), have attracted a great deal of attention recently due to their extraordinary structural, mechanical, and physical properties. In particular, 2D materials have shown great potential for thermal management and thermoelectric energy generation. In this article, we review the recent advances in the study of thermal properties of 2D materials. We first review some important aspects in thermal conductivity of graphene and discuss the possibility to enhance the ultra-high thermal conductivity of graphene. Next, we discuss thermal conductivity of MoS 2 and the new strategy for thermal management of MoS 2 device. Subsequently, we discuss the anisotropic thermal properties of phosphorene. Finally, we review the application of 2D materials in thermal devices, including thermal rectifier and thermal modulator. (topical reviews)

  14. The rationale/benefits of nuclear thermal rocket propulsion for NASA's lunar space transportation system

    Science.gov (United States)

    Borowski, Stanley K.

    1994-09-01

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  15. A unique nuclear thermal rocket engine using a particle bed reactor

    Science.gov (United States)

    Culver, Donald W.; Dahl, Wayne B.; McIlwain, Melvin C.

    1992-01-01

    Aerojet Propulsion Division (APD) studied 75-klb thrust Nuclear Thermal Rocket Engines (NTRE) with particle bed reactors (PBR) for application to NASA's manned Mars mission and prepared a conceptual design description of a unique engine that best satisfied mission-defined propulsion requirements and customer criteria. This paper describes the selection of a sprint-type Mars transfer mission and its impact on propulsion system design and operation. It shows how our NTRE concept was developed from this information. The resulting, unusual engine design is short, lightweight, and capable of high specific impulse operation, all factors that decrease Earth to orbit launch costs. Many unusual features of the NTRE are discussed, including nozzle area ratio variation and nozzle closure for closed loop after cooling. Mission performance calculations reveal that other well known engine options do not support this mission.

  16. Kinetic—a system code for analyzing nuclear thermal propulsion rocket engine transients

    Science.gov (United States)

    Schmidt, Eldon; Lazareth, Otto; Ludewig, Hans

    1993-01-01

    A system code suitable for analyzing Nuclear Thermal Propulsion (NTP) rocket engines is described in this paper. The code consists of a point reactor model and nodes to describe the fluid dynamics and heat transfer mechanism. Feedback from the fuel, coolant, moderator and reflector are allowed for, and the control of the reactor is by motion of controls element (drums or rods). The worth of the control element and feedback coefficients are predetermined. Separate models for the turbo-pump assembly (TPA) and nozzle are also included. The model to be described in this paper is specific for the Particle Bed Reactor (PBR). An illustrative problem is solved. This problem consists of a PBR operating in a blowdown mode.

  17. KINETIC: A system code for analyzing Nuclear thermal propulsion rocket engine transients

    Science.gov (United States)

    Schmidt, E.; Lazareth, O.; Ludewig, H.

    1993-07-01

    A system code suitable for analyzing Nuclear Thermal Propulsion (NTP) rocket engines is described in this paper. The code consists of a point reactor model and nodes to describe the fluid dynamics and heat transfer mechanism. Feedback from the fuel coolant, moderator and reflector are allowed for, and the control of the reactor is by motion of control elements (drums or rods). The worth of the control clement and feedback coefficients are predetermined. Separate models for the turbo-pump assembly (TPA) and nozzle are also included. The model to be described in this paper is specific for the Particle Bed Reactor (PBR). An illustrative problem is solved. This problem consists of a PBR operating in a blowdown mode.

  18. Thermal insulation materials for inside applications: Hygric and thermal properties

    Science.gov (United States)

    Jerman, Miloš; Černý, Robert

    2017-11-01

    Two thermal insulation materials suitable for the application on the interior side of historical building envelopes, namely calcium silicate and polyurethane-based foam are studied. Moisture diffusivity and thermal conductivity of both materials, as fundamental moisture and heat transport parameters, are measured in a dependence on moisture content. The measured data will be used as input parameters in computer simulation studies which will provide moisture and temperature fields necessary for an appropriate design of interior thermal insulation systems.

  19. Thermal Systems and Materials Testing

    Science.gov (United States)

    Aguirre, Nathan

    2010-01-01

    During my internship, I was involved in Boeing Thermal System/M&P, which handles maintenance and repairs of shuttle tiles, blankets, gap fillers, etc. One project I took part in was the revision of TPS-227, a repair process to tiles that entailed drilling out tile damage and using a cylindrical insert to fill the hole. The previous specification used minimal adhesive for application and when the adhesive cured, there would be several voids in the adhered material, causing an unsatisfactory bond. The testing compared several new methods and I analyzed the number of voids produced by each method to determine which one was most effective at eliminating void space. We revised the original process to apply a light adhesive coat to the top 25% of the borehole and a heavy coat to 100% of the insert. I was also responsible for maintaining the subnominal bond database, which records all unsatisfactory SIP (Strain Isolator Pad) bonds. I then archived each SIP physically for future referral data and statistics. In addition, I performed post-flight tile inspections for damages and wrote dispositions to have these tiles repaired. This also included writing a post-flight damage report for a section of Atlantis and creating summarized repair process guidelines for orbiter technicians.

  20. Overview of thermal conductivity models of anisotropic thermal insulation materials

    Science.gov (United States)

    Skurikhin, A. V.; Kostanovsky, A. V.

    2017-11-01

    Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.

  1. Gas core nuclear thermal rocket engine research and development in the former USSR

    International Nuclear Information System (INIS)

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.

    1992-09-01

    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept

  2. On Experimental Thermal Analysis of Solid Materials

    OpenAIRE

    Koštial Pavel; Špička Ivo; Jančikova Zora; Valiček Jan; Harničarova Marta; Hlinka Josef

    2014-01-01

    The paper is devoted to the presentation of a method for measurement of thermal conductivity k, specific heat capacity cp, and thermal diffusivity applying the lumped capacitance model (LCM) as a special case of Newton’s model of cooling. At the specific experimental conditions resulting from the theoretical analysis of the used model, we present a method for experimental determination of all three above mentioned thermal parameters for materials with different thermal transport properties. T...

  3. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    Science.gov (United States)

    Walton, James T.

    1992-01-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code.

  4. Phase change material thermal capacitor clothing

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2005-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  5. Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.

  6. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Venneri, Paolo; Kim, Yong Hee; Lee, Jeong Ik; Chang, Soon Heung; Jeong, Yong Hoon [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MW{sub th} and an electricity generation mode of 100 kW{sub th}, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and

  7. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    Directory of Open Access Journals (Sweden)

    Seung Hyun Nam

    2015-10-01

    Full Text Available Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER, for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MWth and an electricity generation mode of 100 kWth, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and

  8. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    International Nuclear Information System (INIS)

    Nam, Seung Hyun; Venneri, Paolo; Kim, Yong Hee; Lee, Jeong Ik; Chang, Soon Heung; Jeong, Yong Hoon

    2015-01-01

    Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MW th and an electricity generation mode of 100 kW th , equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and thermohydraulics

  9. Mars mission opportunity and transit time sensitivity for a nuclear thermal rocket propulsion application

    International Nuclear Information System (INIS)

    Young, A.C.; Mulqueen, J.A.; Nishimuta, E.L.; Emrich, W.J.

    1993-01-01

    President George Bush's 1989 challenge to America to support the Space Exploration Initiative (SEI) of ''Back to the Moon and Human Mission to Mars'' gives the space industry an opportunity to develop effective and efficient space transportation systems. This paper presents stage performance and requirements for a nuclear thermal rocket (NTR) Mars transportation system to support the human Mars mission of the SEI. Two classes of Mars mission profiles are considered in developing the NTR propulsion vehicle performance and requirements. The two Mars mission classes include the opposition class and conjunction class. The opposition class mission is associated with relatively short Mars stay times ranging from 30 to 90 days and total mission duration of 350 to 600 days. The conjunction class mission is associated with much longer Mars stay times ranging from 500 to 600 days and total mission durations of 875 to 1,000 days. Vehicle mass scaling equations are used to determine the NTR stage mass, size, and performance range required for different Mars mission opportunities and for different Mars mission durations. Mission opportunities considered include launch years 2010 to 2018. The 2010 opportunity is the most demanding launch opportunity and the 2018 opportunity is the least demanding opportunity. NTR vehicle mass and size sensitivity to NTR engine thrust level, engine specific impulse, NTR engine thrust-to-weight ratio, and Mars surface payload are presented. NTR propulsion parameter ranges include those associated with NERVA, particle bed reactor (PBR), low-pressure, and ceramic-metal-type engine design

  10. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    Energy Technology Data Exchange (ETDEWEB)

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  11. Mars mission opportunity and transit time sensitivity for a nuclear thermal rocket propulsion application

    Science.gov (United States)

    Young, Archie C.; Mulqueen, John A.; Nishimuta, Ena L.; Emrich, William J.

    1993-01-01

    President George Bush's 1989 challenge to America to support the Space Exploration Initiative (SEI) of ``Back to the Moon and Human Mission to Mars'' gives the space industry an opportunity to develop effective and efficient space transportation systems. This paper presents stage performance and requirements for a nuclear thermal rocket (NTR) Mars transportation system to support the human Mars mission of the SEI. Two classes of Mars mission profiles are considered in developing the NTR propulsion vehicle performance and requirements. The two Mars mission classes include the opposition class and conjunction class. The opposition class mission is associated with relatively short Mars stay times ranging from 30 to 90 days and total mission duration of 350 to 600 days. The conjunction class mission is associated with much longer Mars stay times ranging from 500 to 600 days and total mission durations of 875 to 1,000 days. Vehicle mass scaling equations are used to determine the NTR stage mass, size, and performance range required for different Mars mission opportunities and for different Mars mission durations. Mission opportunities considered include launch years 2010 to 2018. The 2010 opportunity is the most demanding launch opportunity and the 2018 opportunity is the least demanding opportunity. NTR vehicle mass and size sensitivity to NTR engine thrust level, engine specific impulse, NTR engine thrust-to-weight ratio, and Mars surface payload are presented. NTR propulsion parameter ranges include those associated with NERVA, particle bed reactor (PBR), low-pressure, and ceramic-metal-type engine design.

  12. Modeling and Testing of Non-Nuclear, Highpower Simulated Nuclear Thermal Rocket Reactor Elements

    Science.gov (United States)

    Kirk, Daniel R.

    2005-01-01

    When the President offered his new vision for space exploration in January of 2004, he said, "Our third goal is to return to the moon by 2020, as the launching point for missions beyond," and, "With the experience and knowledge gained on the moon, we will then be ready to take the next steps of space exploration: human missions to Mars and to worlds beyond." A human mission to Mars implies the need to move large payloads as rapidly as possible, in an efficient and cost-effective manner. Furthermore, with the scientific advancements possible with Project Prometheus and its Jupiter Icy Moons Orbiter (JIMO), (these use electric propulsion), there is a renewed interest in deep space exploration propulsion systems. According to many mission analyses, nuclear thermal propulsion (NTP), with its relatively high thrust and high specific impulse, is a serious candidate for such missions. Nuclear rockets utilize fission energy to heat a reactor core to very high temperatures. Hydrogen gas flowing through the core then becomes superheated and exits the engine at very high exhaust velocities. The combination of temperature and low molecular weight results in an engine with specific impulses above 900 seconds. This is almost twice the performance of the LOX/LH2 space shuttle engines, and the impact of this performance would be to reduce the trip time of a manned Mars mission from the 2.5 years, possible with chemical engines, to about 12-14 months.

  13. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1992-09-01

    Two legal-weight truck casks the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71, the cask is subjected to an 800 degree C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents. In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-AL 9897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series, a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280 degree F. The neutron shield materials tested were boronated (0.8--4.5%) polymers (polypropylene, HDPE, NS-4). The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found

  14. Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars

    Science.gov (United States)

    Borowski, Stanley K.; Corban, Robert R.; Mcguire, Melissa L.; Beke, Erik G.

    1995-01-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a

  15. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1990-03-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing, These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale of neutron shield from the cask. The test article was heated in an environmental prescribed by NRC regulations. Results of this second testing phase showed that all three materials are thermally acceptable

  16. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.N.

    1990-01-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing. These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale section of neutron shield from the cask. The test article was heated in an environment prescribed by NRC regulations. Results of this second testing phase show that all three materials are thermally acceptable

  17. Nonreciprocal Thermal Material by Spatiotemporal Modulation

    Science.gov (United States)

    Torrent, Daniel; Poncelet, Olivier; Batsale, Jean-Chirstophe

    2018-03-01

    The thermal properties of a material with a spatiotemporal modulation, in the form of a traveling wave, in both the thermal conductivity and the specific heat capacity are studied. It is found that these materials behave as materials with an internal convectionlike term that provides them with nonreciprocal properties, in the sense that the heat flux has different properties when it propagates in the same direction or in the opposite one to the modulation of the parameters. An effective medium description is presented which accurately describes the modulated material, and numerical simulations support this description and verify the nonreciprocal properties of the material. It is found that these materials are promising candidates for the design of thermal diodes and other advanced devices for the control of the heat flow at all scales.

  18. Modeling Thermal Ignition of Energetic Materials

    National Research Council Canada - National Science Library

    Gerri, Norman J; Berning, Ellen

    2004-01-01

    This report documents an attempt to computationally simulate the mechanics and thermal regimes created when a threat perforates an armor envelope and comes in contact with stowed energetic material...

  19. Conventional and Bimodal Nuclear Thermal Rocket (NTR) Artificial Gravity Mars Transfer Vehicle Concepts

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2016-01-01

    A variety of countermeasures have been developed to address the debilitating physiological effects of zero-gravity (0-g) experienced by cosmonauts and astronauts during their approximately 0.5 to 1.2 year long stays in low Earth orbit (LEO). Longer interplanetary flights, combined with possible prolonged stays in Mars orbit, could subject crewmembers to up to approximately 2.5 years of weightlessness. In view of known and recently diagnosed problems associated with 0-g, an artificial gravity (AG) spacecraft offers many advantages and may indeed be an enabling technology for human flights to Mars. A number of important human factors must be taken into account in selecting the rotation radius, rotation rate, and orientation of the habitation module or modules. These factors include the gravity gradient effect, radial and tangential Coriolis forces, along with cross-coupled acceleration effects. Artificial gravity Mars transfer vehicle (MTV) concepts are presented that utilize both conventional NTR, as well as, enhanced bimodal nuclear thermal rocket (BNTR) propulsion. The NTR is a proven technology that generates high thrust and has a specific impulse (Isp) capability of approximately 900 s-twice that of today's best chemical rockets. The AG/MTV concepts using conventional Nuclear Thermal Propulsion (NTP) carry twin cylindrical International Space Station (ISS)- type habitation modules with their long axes oriented either perpendicular or parallel to the longitudinal spin axis of the MTV and utilize photovoltaic arrays (PVAs) for spacecraft power. The twin habitat modules are connected to a central operations hub located at the front of the MTV via two pressurized tunnels that provide the rotation radius for the habitat modules. For the BNTR AG/MTV option, each engine has its own closed secondary helium(He)-xenon (Xe) gas loop and Brayton Rotating Unit (BRU) that can generate 10s of kilowatts (kWe) of spacecraft electrical power during the mission coast phase

  20. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1993-01-01

    In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-A19897, R.H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280degF. Table 1 lists the neutron shield materials tested. The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found. The Bisco modified NS-4 and Reactor Experiments HMPP are both acceptable materials from a thermal accident standpoint for use in the shipping cask. Tests of the Kobe PP-R01 and Envirotech HDPE were stopped for safety reasons, due to inability to deal with the heavy smoke, before completion of the 30-minute heating phase. However these materials may prove satisfactory if they could undergo the complete heating. (J.P.N.)

  1. Polymeric materials for solar thermal applications

    CERN Document Server

    Köhl, Michael; Papillon, Philippe; Wallner, Gernot M; Saile, Sandrin

    2012-01-01

    Bridging the gap between basic science and technological applications, this is the first book devoted to polymers for solar thermal applications.Clearly divided into three major parts, the contributions are written by experts on solar thermal applications and polymer scientists alike. The first part explains the fundamentals of solar thermal energy especially for representatives of the plastics industry and researchers. Part two then goes on to provide introductory information on polymeric materials and processing for solar thermal experts. The third part combines both of these fields, dis

  2. Evaluation of thermal insulation materials

    Science.gov (United States)

    Wilbers, O. J.; Conti, J. C.; Mcgee, J. V.; Mcpherson, J. I.

    1973-01-01

    Data was obtained on silicone-bonded fiberglass, isocyanurate foam, and two dozen other insulators. Materials were selected to withstand heat sterilization, outer space, and the Martian atmosphere. Significant environmental parameters were vibration, landing shock, and launch venting.

  3. Modeling the Thermal Rocket Fuel Preparation Processes in the Launch Complex Fueling System

    Directory of Open Access Journals (Sweden)

    A. V. Zolin

    2015-01-01

    Full Text Available It is necessary to carry out fuel temperature preparation for space launch vehicles using hydrocarbon propellant components. A required temperature is reached with cooling or heating hydrocarbon fuel in ground facilities fuel storages. Fuel temperature preparing processes are among the most energy-intensive and lengthy processes that require the optimal technologies and regimes of cooling (heating fuel, which can be defined using the simulation of heat exchange processes for preparing the rocket fuel.The issues of research of different technologies and simulation of cooling processes of rocket fuel with liquid nitrogen are given in [1-10]. Diagrams of temperature preparation of hydrocarbon fuel, mathematical models and characteristics of cooling fuel with its direct contact with liquid nitrogen dispersed are considered, using the numerical solution of a system of heat transfer equations, in publications [3,9].Analytical models, allowing to determine the necessary flow rate and the mass of liquid nitrogen and the cooling (heating time fuel in specific conditions and requirements, are preferred for determining design and operational characteristics of the hydrocarbon fuel cooling system.A mathematical model of the temperature preparation processes is developed. Considered characteristics of these processes are based on the analytical solutions of the equations of heat transfer and allow to define operating parameters of temperature preparation of hydrocarbon fuel in the design and operation of the filling system of launch vehicles.The paper considers a technological system to fill the launch vehicles providing the temperature preparation of hydrocarbon gases at the launch site. In this system cooling the fuel in the storage tank before filling the launch vehicle is provided by hydrocarbon fuel bubbling with liquid nitrogen. Hydrocarbon fuel is heated with a pumping station, which provides fuel circulation through the heat exchanger-heater, with

  4. Structure and thermal stability of nanocrystalline materials

    Indian Academy of Sciences (India)

    In addition, study of the thermal stability of nanocrystalline materials against significant grain growth is both scientific and technological interest. A sharp increase in grain size (to micron levels) during consolidation of nanocrystalline powders to obtain fully dense materials may consequently result in the loss of some unique ...

  5. Conceptual Engine System Design for NERVA derived 66.7KN and 111.2KN Thrust Nuclear Thermal Rockets

    International Nuclear Information System (INIS)

    Fittje, James E.; Buehrle, Robert J.

    2006-01-01

    The Nuclear Thermal Rocket concept is being evaluated as an advanced propulsion concept for missions to the moon and Mars. A tremendous effort was undertaken during the 1960's and 1970's to develop and test NERVA derived Nuclear Thermal Rockets in the 111.2 KN to 1112 KN pound thrust class. NASA GRC is leveraging this past NTR investment in their vehicle concepts and mission analysis studies, and has been evaluating NERVA derived engines in the 66.7 KN to the 111.2 KN thrust range. The liquid hydrogen propellant feed system, including the turbopumps, is an essential component of the overall operation of this system. The NASA GRC team is evaluating numerous propellant feed system designs with both single and twin turbopumps. The Nuclear Engine System Simulation code is being exercised to analyze thermodynamic cycle points for these selected concepts. This paper will present propellant feed system concepts and the corresponding thermodynamic cycle points for 66.7 KN and 111.2 KN thrust NTR engine systems. A pump out condition for a twin turbopump concept will also be evaluated, and the NESS code will be assessed against the Small Nuclear Rocket Engine preliminary thermodynamic data

  6. Investigation of a Tricarbide Grooved Ring Fuel Element for a Nuclear Thermal Rocket

    Science.gov (United States)

    Taylor, Brian D.; Emrich, Bill; Tucker, Dennis; Barnes, Marvin; Donders, Nicolas; Benensky, Kelsa

    2017-01-01

    Deep space exploration, especially that of Mars, is on the horizon as the next big challenge for space exploration. Nuclear propulsion, through which high thrust and efficiency can be achieved, is a promising option for decreasing the cost and logistics of such a mission. Work on nuclear thermal engines goes back to the days of the NERVA program. Currently, nuclear thermal propulsion is under development again in various forms to provide a superior propulsion system for deep space exploration. The authors have been working to develop a concept nuclear thermal engine that uses a grooved ring fuel element as an alternative to the traditional hexagonal rod design. The authors are also studying the use of carbide fuels. The concept was developed in order to increase surface area and heat transfer to the propellant. The use of carbides would also raise the temperature limitations of the reactor. It is hoped that this could lead to a higher thrust to weight nuclear thermal engine. This paper describes the modeling of neutronics, heat transfer, and fluid dynamics of this alternative nuclear fuel element geometry. Fabrication experiments of grooved rings from carbide refractory metals are also presented along with material characterization and interactions with a hot hydrogen environment.

  7. Sprayable Phase Change Coating Thermal Protection Material

    Science.gov (United States)

    Richardson, Rod W.; Hayes, Paul W.; Kaul, Raj

    2005-01-01

    NASA has expressed a need for reusable, environmentally friendly, phase change coating that is capable of withstanding the heat loads that have historically required an ablative thermal insulation. The Space Shuttle Program currently relies on ablative materials for thermal protection. The problem with an ablative insulation is that, by design, the material ablates away, in fulfilling its function of cooling the underlying substrate, thus preventing the insulation from being reused from flight to flight. The present generation of environmentally friendly, sprayable, ablative thermal insulation (MCC-l); currently use on the Space Shuttle SRBs, is very close to being a reusable insulation system. In actual flight conditions, as confirmed by the post-flight inspections of the SRBs, very little of the material ablates. Multi-flight thermal insulation use has not been qualified for the Space Shuttle. The gap that would have to be overcome in order to implement a reusable Phase Change Coating (PCC) is not unmanageable. PCC could be applied robotically with a spray process utilizing phase change material as filler to yield material of even higher strength and reliability as compared to MCC-1. The PCC filled coatings have also demonstrated potential as cryogenic thermal coatings. In experimental thermal tests, a thin application of PCC has provided the same thermal protection as a much thicker and heavier application of a traditional ablative thermal insulation. In addition, tests have shown that the structural integrity of the coating has been maintained and phase change performance after several aero-thermal cycles was not affected. Experimental tests have also shown that, unlike traditional ablative thermal insulations, PCC would not require an environmental seal coat, which has historically been required to prevent moisture absorption by the thermal insulation, prevent environmental degradation, and to improve the optical and aerodynamic properties. In order to reduce

  8. On Experimental Thermal Analysis of Solid Materials

    Directory of Open Access Journals (Sweden)

    Koštial Pavel

    2014-12-01

    Full Text Available The paper is devoted to the presentation of a method for measurement of thermal conductivity k, specific heat capacity cp, and thermal diffusivity applying the lumped capacitance model (LCM as a special case of Newton’s model of cooling. At the specific experimental conditions resulting from the theoretical analysis of the used model, we present a method for experimental determination of all three above mentioned thermal parameters for materials with different thermal transport properties. The input experimental data provide a cooling curve of the tested material. The evaluation of experimental data is realized by software, the fundamental features of which are presented here. The statistical analysis of experimental data was performed.

  9. Passive thermal management using phase change materials

    Science.gov (United States)

    Ganatra, Yash Yogesh

    The trend of enhanced functionality and reducing thickness of mobile devices has. led to a rapid increase in power density and a potential thermal bottleneck since. thermal limits of components remain unchanged. Active cooling mechanisms are not. feasible due to size, weight and cost constraints. This work explores the feasibility. of a passive cooling system based on Phase Change Materials (PCMs) for thermal. management of mobile devices. PCMs stabilize temperatures due to the latent heat. of phase change thus increasing the operating time of the device before threshold. temperatures are exceeded. The primary contribution of this work is the identification. of key parameters which influence the design of a PCM based thermal management. system from both the experiments and the numerical models. This work first identifies strategies for integrating PCMs in an electronic device. A. detailed review of past research, including experimental techniques and computational. models, yields key material properties and metrics to evaluate the performance of. PCMs. Subsequently, a miniaturized version of a conventional thermal conductivity. measurement technique is developed to characterize thermal resistance of PCMs. Further, latent heat and transition temperatures are also characterized for a wide. range of PCMs. In-situ measurements with PCMs placed on the processor indicate that some. PCMs can extend the operating time of the device by as much as a factor of 2.48. relative to baseline tests (with no PCMs). This increase in operating time is investigated. by computational thermal models that explore various integration locations, both at the package and device level.

  10. Tribological Studies of Dynamic Thermal Seal Materials

    Science.gov (United States)

    DeMange, Jeffrey J.; Taylor, Shawn C.

    2016-01-01

    Thermal seals are required on high-speed vehicles in many dynamic applications such as variable inlets in propulsion systems and control surfaces. These seals, often referred to as dynamic thermal seals, must not only mitigate inboard heat transfer, but must also exhibit sufficient durability when scrubbed against mating surfaces. For high-temperature high-speed vehicle applications, the mating surfaces are often made from thermal protection system (TPS) materials, which are typically rougher and more abrasive than TPS materials used at lower temperatures. The high-temperature TPS materials used can include non-ablative (e.g., lightweight porous oxides, ceramic matrix composites) andor ablative systems (e.g., phenolic systems). Due to the increased need for durable high-temperature dynamic seals, researchers working with the NASA Glenn Research Center embarked on an effort to (a) characterize the tribological performance of state-of-the-art thermal seal materials against a variety of TPS materials and (b) develop approaches for improved wear resistance. Tests were conducted using a recently upgraded high-temperature tribometer to assess wear resistance for a variety of tribopairs under multiple conditions. This data will begin to frame the challenges of using these materials and eventually permit an improved ability to design and implement these critical TPS components.

  11. New Frontiers AO: Advanced Materials Bi-propellant Rocket (AMBR) Engine Information Summary

    Science.gov (United States)

    Liou, Larry C.

    2008-01-01

    The Advanced Material Bi-propellant Rocket (AMBR) engine is a high performance (I(sub sp)), higher thrust, radiation cooled, storable bi-propellant space engine of the same physical envelope as the High Performance Apogee Thruster (HiPAT(TradeMark)). To provide further information about the AMBR engine, this document provides details on performance, development, mission implementation, key spacecraft integration considerations, project participants and approach, contact information, system specifications, and a list of references. The In-Space Propulsion Technology (ISPT) project team at NASA Glenn Research Center (GRC) leads the technology development of the AMBR engine. Their NASA partners were Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Aerojet leads the industrial partners selected competitively for the technology development via the NASA Research Announcement (NRA) process.

  12. The thermal conductivity of semitransparent materials

    International Nuclear Information System (INIS)

    Fine, H.A.; Jury, S.H.; McElroy, D.L.; Yarbrough, D.W.

    1983-01-01

    This chapter uses the three-region approximate solution for coupled conductive and radiative heat transfer an exact solution for uncoupled conductive and radiative heat transfer in a grey semitransparent medium bounded by infinite parallel isothermal plates to establish the dependence of the apparent thermal conductivity of semitransparent materials on other material properties and boundary conditions. Demonstrates an application of the analyses, which uses apparent thermal conductivity on temperature. Finds that the predictions for seven sets of R-11 fiberglass and rock wool insulations agree with published measured values to within the limits of experimental error (+ or - 3%). Points out that agreement for three sets of R-19 fiberglass insulations was not good

  13. Reliability of thermal interface materials: A review

    International Nuclear Information System (INIS)

    Due, Jens; Robinson, Anthony J.

    2013-01-01

    Thermal interface materials (TIMs) are used extensively to improve thermal conduction across two mating parts. They are particularly crucial in electronics thermal management since excessive junction-to-ambient thermal resistances can cause elevated temperatures which can negatively influence device performance and reliability. Of particular interest to electronic package designers is the thermal resistance of the TIM layer at the end of its design life. Estimations of this allow the package to be designed to perform adequately over its entire useful life. To this end, TIM reliability studies have been performed using accelerated stress tests. This paper reviews the body of work which has been performed on TIM reliability. It focuses on the various test methodologies with commentary on the results which have been obtained for the different TIM materials. Based on the information available in the open literature, a test procedure is proposed for TIM selection based on beginning and end of life performance. - Highlights: ► This paper reviews the body of work which has been performed on TIM reliability. ► Test methodologies for reliability testing are outlined. ► Reliability results for the different TIM materials are discussed. ► A test procedure is proposed for TIM selection BOLife and EOLife performance.

  14. Thermal Damage Characterization of Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P C; DeHaven, M R; Springer, H K; Maienschein, J L

    2009-08-14

    We conducted thermal damage experiments at 180?C on PBXN-9 and characterized its material properties. Volume expansion at high temperatures was very significant which led to a reduction in material density. 2.6% of weight loss was observed, which was higher than other HMX-based formulations. Porosity of PBXN-9 increased to 16% after thermal exposure. Small-scale safety tests (impact, friction, and spark) showed no significant sensitization when the damaged samples were tested at room temperature. Gas permeation measurements showed that gas permeability in damaged materials was several orders of magnitude higher than that in pristine materials. In-situ measurements of gas permeability and density were proved to be possible at higher temperatures.

  15. Modeling of Heat Transfer and Ablation of Refractory Material Due to Rocket Plume Impingement

    Science.gov (United States)

    Harris, Michael F.; Vu, Bruce T.

    2012-01-01

    CR Tech's Thermal Desktop-SINDA/FLUINT software was used in the thermal analysis of a flame deflector design for Launch Complex 39B at Kennedy Space Center, Florida. The analysis of the flame deflector takes into account heat transfer due to plume impingement from expected vehicles to be launched at KSC. The heat flux from the plume was computed using computational fluid dynamics provided by Ames Research Center in Moffet Field, California. The results from the CFD solutions were mapped onto a 3-D Thermal Desktop model of the flame deflector using the boundary condition mapping capabilities in Thermal Desktop. The ablation subroutine in SINDA/FLUINT was then used to model the ablation of the refractory material.

  16. Anisotropic thermal expansion in flexible materials

    Science.gov (United States)

    Romao, Carl P.

    2017-10-01

    A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αi i) to one element of the elastic compliance tensor, which corresponds to the Young's modulus in that direction (Yi i). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally complex systems. The direct dependence of αi i on Yi i suggests that materials which are flexible along their principal axes but rigid in other directions will generally display both positive and negative thermal expansion.

  17. Luminescence Materials as Nanoparticle Thermal Sensors

    Science.gov (United States)

    2016-06-01

    DESTRUCTION NOTICE: Destroy this report when it...theoretical investigations on thermal history extraction III. Materials Testing TL in te ns ity Temperature (K) te m pe ra tu re time • nanophosphors...18” 36” band heaters stainless steel cylindrical chamber 2”thick insulation samples thermocouple probes Top cone Bottom cone

  18. Thermal/acoustical aircraft insulation material

    Science.gov (United States)

    Struzik, E. A.; Kunz, R.; Lin, R.

    1975-01-01

    Attempts made to improve the acoustical properties of low density Fiberfrax foam, an aircraft insulation material, are reported. Characterizations were also made of the physical and thermal properties. Two methods, optimization of fiber blend composition and modification of the foam fabrication process, were examined as possible means of improving foam acoustics. Flame impingement tests were also made; results show performance was satisfactory.

  19. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  20. Thermal-structural analysis of regeneratively-cooled thrust chamber wall in reusable LOX/Methane rocket engines

    Directory of Open Access Journals (Sweden)

    Jiawen SONG

    2017-06-01

    Full Text Available To predict the thermal and structural responses of the thrust chamber wall under cyclic work, a 3-D fluid-structural coupling computational methodology is developed. The thermal and mechanical loads are determined by a validated 3-D finite volume fluid-thermal coupling computational method. With the specified loads, the nonlinear thermal-structural finite element analysis is applied to obtaining the 3-D thermal and structural responses. The Chaboche nonlinear kinematic hardening model calibrated by experimental data is adopted to predict the cyclic plastic behavior of the inner wall. The methodology is further applied to the thrust chamber of LOX/Methane rocket engines. The results show that both the maximum temperature at hot run phase and the maximum circumferential residual strain of the inner wall appear at the convergent part of the chamber. Structural analysis for multiple work cycles reveals that the failure of the inner wall may be controlled by the low-cycle fatigue when the Chaboche model parameter γ3 = 0, and the damage caused by the thermal-mechanical ratcheting of the inner wall cannot be ignored when γ3 > 0. The results of sensitivity analysis indicate that mechanical loads have a strong influence on the strains in the inner wall.

  1. 14 CFR 25.856 - Thermal/Acoustic insulation materials.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Thermal/Acoustic insulation materials. 25....856 Thermal/Acoustic insulation materials. (a) Thermal/acoustic insulation material installed in the.../acoustic insulation materials (including the means of fastening the materials to the fuselage) installed in...

  2. Phase Change Material Thermal Power Generator

    Science.gov (United States)

    Jones, Jack A.

    2013-01-01

    An innovative modification has been made to a previously patented design for the Phase Change Material (PCM) Thermal Generator, which works in water where ocean temperature alternatively melts wax in canisters, or allows the wax to re-solidify, causing high-pressure oil to flow through a hydraulic generator, thus creating electricity to charge a battery that powers the vehicle. In this modification, a similar thermal PCM device has been created that is heated and cooled by the air and solar radiation instead of using ocean temperature differences to change the PCM from solid to liquid. This innovation allows the device to use thermal energy to generate electricity on land, instead of just in the ocean.

  3. Nuclear Thermal Rocket (Ntr) Propulsion: A Proven Game-Changing Technology for Future Human Exploration Missions

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR represents the next evolutionary step in high performance rocket propulsion. It generates high thrust and has a specific impulse (Isp) of approx.900 seconds (s) or more V twice that of today s best chemical rockets. The technology is also proven. During the previous Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) nuclear rocket programs, 20 rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability V all the requirements needed for a human mission to Mars. Ceramic metal cermet fuel was also pursued, as a backup option. The NTR also has significant growth and evolution potential. Configured as a bimodal system, it can generate electrical power for the spacecraft. Adding an oxygen afterburner nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, simple assembly and mission operations. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program V the 25,000 lbf (25 klbf) Pewee engine is sufficient for human Mars missions when used in a clustered engine arrangement. The Copernicus crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth asteroid (NEA) and Mars orbital missions prior to a Mars landing mission. Initially, the basic Copernicus vehicle can enable reusable 1-year round trip human missions to candidate NEAs like 1991 JW and Apophis in the late 2020 s to check out vehicle systems. Afterwards, the

  4. Local behaviour of negative thermal expansion materials

    International Nuclear Information System (INIS)

    Fornasini, P.; Dalba, G.; Grisenti, R.; Purans, J.; Vaccari, M.; Rocca, F.; Sanson, A.

    2006-01-01

    EXAFS can represent a powerful probe of the local behaviour of negative thermal expansion (NTE) materials, thanks to the possibility of measuring the expansion of selected inter-atomic bonds and the perpendicular relative atomic displacements. The effectiveness of EXAFS for NTE studies is illustrated by a comparison of results recently obtained on germanium, CuCl and the cuprites Cu 2 O and Ag 2 O

  5. Thermal Energy Storage with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lavinia Gabriela SOCACIU

    2012-08-01

    Full Text Available Thermal energy storage (TES systems provide several alternatives for efficient energy use and conservation. Phase change materials (PCMs for TES are materials supplying thermal regulation at particular phase change temperatures by absorbing and emitting the heat of the medium. TES in general and PCMs in particular, have been a main topic in research for the last 30 years, but although the information is quantitatively enormous, it is also spread widely in the literature, and difficult to find. PCMs absorb energy during the heating process as phase change takes place and release energy to the environment in the phase change range during a reverse cooling process. PCMs possesses the ability of latent thermal energy change their state with a certain temperature. PCMs for TES are generally solid-liquid phase change materials and therefore they need encapsulation. TES systems using PCMs as a storage medium offers advantages such as high TES capacity, small unit size and isothermal behaviour during charging and discharging when compared to the sensible TES.

  6. Negative thermal expansion materials: technological key for control of thermal expansion

    OpenAIRE

    Koshi Takenaka

    2012-01-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K−1. Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining pra...

  7. Affordable Development and Demonstration of a Small Nuclear Thermal Rocket (NTR) Engine and Stage: How Small Is Big Enough?

    Science.gov (United States)

    Borowski, Stanley K.; Sefcik, Robert J.; Fittje, James E.; McCurdy, David R.; Qualls, Arthur L.; Schnitzler, Bruce G.; Werner, James E.; Weitzberg, Abraham; Joyner, Claude R.

    2016-01-01

    The Nuclear Thermal Rocket (NTR) derives its energy from fission of uranium-235 atoms contained within fuel elements that comprise the engine's reactor core. It generates high thrust and has a specific impulse potential of approximately 900 specific impulse - a 100 percent increase over today's best chemical rockets. The Nuclear Thermal Propulsion (NTP) project, funded by NASA's Advanced Exploration Systems (AES) program, includes five key task activities: (1) Recapture, demonstration, and validation of heritage graphite composite (GC) fuel (selected as the Lead Fuel option); (2) Engine Conceptual Design; (3) Operating Requirements Definition; (4) Identification of Affordable Options for Ground Testing; and (5) Formulation of an Affordable Development Strategy. During fiscal year (FY) 2014, a preliminary Design Development Test and Evaluation (DDT&E) plan and schedule for NTP development was outlined by the NASA Glenn Research Center (GRC), Department of Energy (DOE) and industry that involved significant system-level demonstration projects that included Ground Technology Demonstration (GTD) tests at the Nevada National Security Site (NNSS), followed by a Flight Technology Demonstration (FTD) mission. To reduce cost for the GTD tests and FTD mission, small NTR engines, in either the 7.5 or 16.5 kilopound-force thrust class, were considered. Both engine options used GC fuel and a common fuel element (FE) design. The small approximately 7.5 kilopound-force criticality-limited engine produces approximately157 thermal megawatts and its core is configured with parallel rows of hexagonal-shaped FEs and tie tubes (TTs) with a FE to TT ratio of approximately 1:1. The larger approximately 16.5 kilopound-force Small Nuclear Rocket Engine (SNRE), developed by Los Alamos National Laboratory (LANL) at the end of the Rover program, produces approximately 367 thermal megawatts and has a FE to TT ratio of approximately 2:1. Although both engines use a common 35-inch (approximately

  8. Material Inspection Using THz and Thermal Wave

    Science.gov (United States)

    Zhang, Cunlin; Mu, Kaijun; Li, Yanhong; Zhang, X.-C.

    2007-03-01

    Terahertz (THz) and thermal wave imaging technologies are complementary inspection modalities for use in non-contact and non-destructive evaluation. Both of them are applied in order to evaluate damages on a variety of composite samples. We will also report the test of a large number of insulation foam panels used in NASA's External Fuel Tank through pulse and CW terahertz systems. The study of defects using the two techniques in selected materials, including metal plates, carbon fibers, glass fibers, carbon silicon composites, etc is also shown.

  9. Composite materials for thermal energy storage

    Science.gov (United States)

    Benson, D.K.; Burrows, R.W.; Shinton, Y.D.

    1985-01-04

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  10. Replacement of Ablators with Phase-Change Material for Thermal Protection of STS Elements

    Science.gov (United States)

    Kaul, Raj K.; Stuckey, Irvin; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    As part of the research and development program to develop new Thermal Protection System (TPS) materials for aerospace applications at NASA's Marshall Space Flight Center (MSFC), an experimental study was conducted on a new concept for a non-ablative TPS material. Potential loss of TPS material and ablation by-products from the External Tank (ET) or Solid Rocket Booster (SRB) during Shuttle flight with the related Orbiter tile damage necessitates development of a non-ablative thermal protection system. The new Thermal Management Coating (TMC) consists of phase-change material encapsulated in micro spheres and a two-part resin system to adhere the coating to the structure material. The TMC uses a phase-change material to dissipate the heat produced during supersonic flight rather than an ablative material. This new material absorbs energy as it goes through a phase change during the heating portion of the flight profile and then the energy is slowly released as the phase-change material cools and returns to its solid state inside the micro spheres. The coating was subjected to different test conditions simulating design flight environments at the NASA/MSFC Improved Hot Gas Facility (IHGF) to study its performance.

  11. The Thermal State Computational Research of the Low-Thrust Oxygen-Methane Gaseous-Propellant Rocket Engine in the Pulse Mode of Operation

    OpenAIRE

    O. A. Vorozheeva; D. A. Yagodnikov

    2014-01-01

    Currently promising development direction of space propulsion engineering is to use, as spacecraft controls, low-thrust rocket engines (RDTM) on clean fuels, such as oxygen-methane. Modern RDTM are characterized by a lack regenerative cooling and pulse mode of operation, during which there is accumulation of heat energy to lead to the high thermal stress of RDTM structural elements. To get an idea about the thermal state of its elements, which further will reduce the number of fire tests is t...

  12. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    OpenAIRE

    Fei-Ran Shen; Hao Kuang; Feng-Xia Hu; Hui Wu; Qing-Zhen Huang; Fei-Xiang Liang; Kai-Ming Qiao; Jia Li; Jing Wang; Yao Liu; Lei Zhang; Min He; Ying Zhang; Wen-Liang Zuo; Ji-Rong Sun

    2017-01-01

    Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn–Co–Ge–In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE o...

  13. Combustion Tests of Rocket Motor Washout Material: Focus on Air toxics Formation Potential and Asbestos Remediation

    Energy Technology Data Exchange (ETDEWEB)

    G. C. Sclippa; L. L. Baxter; S. G. Buckley

    1999-02-01

    The objective of this investigation is to determine the suitability of cofiring as a recycle / reuse option to landfill disposal for solid rocket motor washout residue. Solid rocket motor washout residue (roughly 55% aluminum powder, 40% polybutadiene rubber binder, 5% residual ammonium perchlorate, and 0.2-1% asbestos) has been fired in Sandia's MultiFuel Combustor (MFC). The MFC is a down-fired combustor with electrically heated walls, capable of simulating a wide range of fuel residence times and stoichiometries. This study reports on the fate of AP-based chlorine and asbestos from the residue following combustion.

  14. Kinetic and thermal analysis of polymeric materials

    Science.gov (United States)

    Peterson, Jeffery David

    2002-09-01

    Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques have been used to study the thermal degradation of polymeric materials. These polymers were subjected to a variety of heating programs as well as numerous types of atmospheric conditions. The results from these analyses were then used to determine activation energies as a function of an extent of reaction variable, alpha. This technique, known as the model-free isoconversional method, allows for changes in energies to occur as decomposition pathways change. This produces a more realistic means of observing complex kinetic schemes and is a better representation of kinetic analysis. Chapters 1 and 2 provide introductory backgrounds into both polymer chemistry and the isoconversional analysis technique, respectively. A brief description of the research goals and motivations is also discussed. Thermal analysis of pure polystyrene (PS), polyethylene (PE), and polypropylene (PP) samples are presented in Chapter 3. The obtained activation energy dependencies are interpreted in terms of degradation mechanisms. These mechanisms vary greatly according to the gaseous environment in which they were analyzed. The thermal degradation of poly(methyl methacrylate) (PMMA) in both pure nitrogen and in various oxygen-containing atmospheres is discussed in Chapter 4. It was observed that oxygen exhibits a stabilizing effect on PMMA decomposition. Activation energies for these processes, and their mechanistic interpretations, will also be presented. Chapter 5 builds off the understanding gained in Chapter 4 by investigating the char-forming effects of silica gel and potassium carbonate additives on PMMA. These additives are known for their fire-resistant properties when combined in a 3:1 silica gel to potassium carbonate ratio. The effects of these additives, and their respective ratio amounts, on PMMA char formation are reported. Chapters 6 and 7 conclude the dissertation by looking at the thermal

  15. Radiation and thermal degradation on polymer materials

    International Nuclear Information System (INIS)

    Baccaro, S.; D'Atanasio, P.

    1990-01-01

    In this work we have studied the degradation and damaging effects induced by radiation and by temperature on AFUMEX R , an insulation for electrical cables produced and marketed by Pirelli Cable Society and on a cable coming from a decommissioned Italian nuclear plant. As it regards AFUMEX R we obtained the following results. 1) Three thermal aging curves were obtained and an activation energy of 1.23 eV was found. Radiation damage was evaluated by measuring the decrease in the elastic properties and was found greater when thermal ageing followed radiation. 2) Mainly hydrogen and carbon dioxide were evolved by the samples subjected to radiation and their quantity increased with the absorbed dose. 3) Radiation seemed to produce no effect on the oxygen index values. 4) Thermogravimetric tests for samples either thermally aged and then irradiated or just irradiated showed that significant oxidation phenomena were produced. 5) The ESR technique has been used to investigate the behaviour of irradiation induced free-radicals in different environmental conditions; the signal was unaffected till a dose value of 10 KGy beyond which increased as a function of the absorbed dose. The signal increased 47% for samples irradiated in vacuum and 59% for those in air: time dependance of the signal showed a marked fading for the former and an increase for the latter. This suggests the presence of oxidative degradation processes in the material. 6) Two different materials based on EPR (30% and 50% propylene respectively) did not exhibit any difference as for their radiation resistance either in air or in argon. As it concerns the cables coming from a decommissioned Italian nuclear plant we have not found significant differences in tensile properties between cables stocked in the storehouse and those which had been in use. Insulation constant and partial discharges indicated a slight ageing of the latter. (author). 9 refs, 12 figs, 2 tabs

  16. Negative thermal expansion materials: technological key for control of thermal expansion.

    Science.gov (United States)

    Takenaka, Koshi

    2012-02-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over -30 ppm K -1 . Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade.

  17. Negative thermal expansion materials: technological key for control of thermal expansion

    Directory of Open Access Journals (Sweden)

    Koshi Takenaka

    2012-01-01

    Full Text Available Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K−1. Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade.

  18. Negative thermal expansion materials: technological key for control of thermal expansion

    International Nuclear Information System (INIS)

    Takenaka, Koshi

    2012-01-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K −1 . Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade. (topical review)

  19. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber

    Science.gov (United States)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi

    2013-01-01

    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein

  20. Thermal properties of hemp fibre non-woven materials

    Science.gov (United States)

    Freivalde, Liga; Kukle, Silvija; Russell, Stephen

    2013-12-01

    This review considers the thermal properties analysis of hemp fiber non-woven materials made by three different manufacturing technologies - thermal bonding, needle-punching and hydro-entanglement. For non-wovens development two hemp fibers cultivars grown in Latvia were used - Purini and Bialobrzeskie. Thermal resistance, conductivity and the effects of several parameters on thermal performance are revised.

  1. Thermal properties of hemp fibre non-woven materials

    International Nuclear Information System (INIS)

    Freivalde, Liga; Kukle, Silvija; Russell, Stephen

    2013-01-01

    This review considers the thermal properties analysis of hemp fiber non-woven materials made by three different manufacturing technologies – thermal bonding, needle-punching and hydro-entanglement. For non-wovens development two hemp fibers cultivars grown in Latvia were used – Purini and Bialobrzeskie. Thermal resistance, conductivity and the effects of several parameters on thermal performance are revised

  2. Coil-On-Plug Ignition for Oxygen/Methane Liquid Rocket Engines in Thermal-Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.

  3. Composite materials for thermal energy storage: enhancing performance through microstructures.

    Science.gov (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-05-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures

    Science.gov (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-01-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  5. Thermal inertia mapping. [for lithologic materials in earth surface

    Science.gov (United States)

    Kahle, A. B.; Gillespie, A. R.; Goetz, A. F. H.; Addington, J. D.

    1975-01-01

    A thermal model of the earth's surface has been developed and used to determine the thermal inertia of a test site in the Mojave Desert, California. The model, which includes meteorological heating terms as well as radiation and conduction heating terms, is used with remotely sensed surface temperature data to determine thermal inertia of materials. The thermal inertia is displayed in image form, and can aid in the differentiation of the various lithologic materials in the test site.

  6. Observed and modelled effects of auroral precipitation on the thermal ionospheric plasma: comparing the MICA and Cascades2 sounding rocket events

    Science.gov (United States)

    Lynch, K. A.; Gayetsky, L.; Fernandes, P. A.; Zettergren, M. D.; Lessard, M.; Cohen, I. J.; Hampton, D. L.; Ahrns, J.; Hysell, D. L.; Powell, S.; Miceli, R. J.; Moen, J. I.; Bekkeng, T.

    2012-12-01

    Auroral precipitation can modify the ionospheric thermal plasma through a variety of processes. We examine and compare the events seen by two recent auroral sounding rockets carrying in situ thermal plasma instrumentation. The Cascades2 sounding rocket (March 2009, Poker Flat Research Range) traversed a pre-midnight poleward boundary intensification (PBI) event distinguished by a stationary Alfvenic curtain of field-aligned precipitation. The MICA sounding rocket (February 2012, Poker Flat Research Range) traveled through irregular precipitation following the passage of a strong westward-travelling surge. Previous modelling of the ionospheric effects of auroral precipitation used a one-dimensional model, TRANSCAR, which had a simplified treatment of electric fields and did not have the benefit of in situ thermal plasma data. This new study uses a new two-dimensional model which self-consistently calculates electric fields to explore both spatial and temporal effects, and compares to thermal plasma observations. A rigorous understanding of the ambient thermal plasma parameters and their effects on the local spacecraft sheath and charging, is required for quantitative interpretation of in situ thermal plasma observations. To complement this TRANSCAR analysis we therefore require a reliable means of interpreting in situ thermal plasma observation. This interpretation depends upon a rigorous plasma sheath model since the ambient ion energy is on the order of the spacecraft's sheath energy. A self-consistent PIC model is used to model the spacecraft sheath, and a test-particle approach then predicts the detector response for a given plasma environment. The model parameters are then modified until agreement is found with the in situ data. We find that for some situations, the thermal plasma parameters are strongly driven by the precipitation at the observation time. For other situations, the previous history of the precipitation at that position can have a stronger

  7. Advances in photonics thermal management and packaging materials

    Science.gov (United States)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses, and cost are key packaging design issues for virtually all semiconductors, including photonic applications such as diode lasers, light-emitting diodes (LEDs), solid state lighting, photovoltaics, displays, projectors, detectors, sensors and laser weapons. Heat dissipation and thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20 th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other new low-CTE materials with lower thermal conductivities. An important benefit of low-CTE materials is that they allow use of hard solders. Some advanced materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required devices. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  8. Ultra-high thermal effusivity materials for resonant ambient thermal energy harvesting.

    Science.gov (United States)

    Cottrill, Anton L; Liu, Albert Tianxiang; Kunai, Yuichiro; Koman, Volodymyr B; Kaplan, Amir; Mahajan, Sayalee G; Liu, Pingwei; Toland, Aubrey R; Strano, Michael S

    2018-02-14

    Materials science has made progress in maximizing or minimizing the thermal conductivity of materials; however, the thermal effusivity-related to the product of conductivity and capacity-has received limited attention, despite its importance in the coupling of thermal energy to the environment. Herein, we design materials that maximize the thermal effusivity by impregnating copper and nickel foams with conformal, chemical-vapor-deposited graphene and octadecane as a phase change material. These materials are ideal for ambient energy harvesting in the form of what we call thermal resonators to generate persistent electrical power from thermal fluctuations over large ranges of frequencies. Theory and experiment demonstrate that the harvestable power for these devices is proportional to the thermal effusivity of the dominant thermal mass. To illustrate, we measure persistent energy harvesting from diurnal frequencies, extracting as high as 350 mV and 1.3 mW from approximately 10 °C diurnal temperature differences.

  9. Basic Thermal Parameters of Selected Foods and Food Raw Materials

    OpenAIRE

    Monika Božiková; Ľubomír Híreš; Michal Valach; Martin Malínek; Jan Mareček

    2017-01-01

    In general, processing and manipulation with foods and food raw materials have significant influence on their physical properties. The article is focused on thermophysical parameters measurement of selected foods and food raw materials. There were examined thermal conductivity and thermal diffusivity of selected materials. For detection of thermal parameters was used instrument Isomet 2104, which principle of measurement is based on transient methods. In text are presented summary results of ...

  10. ELM - A SIMPLE TOOL FOR THERMAL-HYDRAULIC ANALYSIS OF SOLID-CORE NUCLEAR ROCKET FUEL ELEMENTS

    Science.gov (United States)

    Walton, J. T.

    1994-01-01

    ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  11. Flexible composite material with phase change thermal storage

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  12. Basic Thermal Parameters of Selected Foods and Food Raw Materials

    Directory of Open Access Journals (Sweden)

    Monika Božiková

    2017-01-01

    Full Text Available In general, processing and manipulation with foods and food raw materials have significant influence on their physical properties. The article is focused on thermophysical parameters measurement of selected foods and food raw materials. There were examined thermal conductivity and thermal diffusivity of selected materials. For detection of thermal parameters was used instrument Isomet 2104, which principle of measurement is based on transient methods. In text are presented summary results of thermal parameters measurement for various foods and food raw materials as: granular materials – corn flour and wheat flour; fruits, vegetables and fruit products – grated apple, dried apple and apple juice; liquid materials – milk, beer etc. Measurements were performed in two temperature ranges according to the character of examined material. From graphical relations of thermophysical parameter is evident, that thermal conductivity and diffusivity increases with temperature and moisture content linearly, only for granular materials were obtained non‑linear dependencies. Results shows, that foods and food raw materials have different thermal properties, which are influenced by their type, structure, chemical and physical properties. From presented results is evident, that basic thermal parameters are important for material quality detection in food industry.

  13. Thermal Energy Storage in Phase Change Material.

    Science.gov (United States)

    1982-03-01

    Graphs of the exnerimental results follow: tney are groupea in the tree categories: tube cross flow, ricked bed, and tube parallel flow. A. Tube Cross... Riordan , Michael, "Thermal Storage: A Rtsic Guile to the Ptate of the Art", Solar Age, Aril, 1978, P. 10. 5. Telkes, Maria, "Thermal Lner y Storage in

  14. Thermal conductivity analysis and applications of nanocellulose materials

    Science.gov (United States)

    Uetani, Kojiro; Hatori, Kimihito

    2017-01-01

    Abstract In this review, we summarize the recent progress in thermal conductivity analysis of nanocellulose materials called cellulose nanopapers, and compare them with polymeric materials, including neat polymers, composites, and traditional paper. It is important to individually measure the in-plane and through-plane heat-conducting properties of two-dimensional planar materials, so steady-state and non-equilibrium methods, in particular the laser spot periodic heating radiation thermometry method, are reviewed. The structural dependency of cellulose nanopaper on thermal conduction is described in terms of the crystallite size effect, fibre orientation, and interfacial thermal resistance between fibres and small pores. The novel applications of cellulose as thermally conductive transparent materials and thermal-guiding materials are also discussed. PMID:29152020

  15. Experiments on thermal conductivity in buffer materials for geologic repository

    International Nuclear Information System (INIS)

    Kanno, T.; Yano, T.; Wakamatsu, H.; Matsushima, E.

    1989-01-01

    Engineered barriers for geologic disposal for HLW are planned to consist of canister, overpack and buffer elements. One of important physical characteristics of buffer materials is determining temperature profiles within the near field in a repository. Buffer materials require high thermal conductivity to disperse radiogenic heat away to the host rock. As the buffer materials, compacted blocks of the mixture of sodium bentonite and sand have been the most promising candidate in some countries, e.g. Sweden, Switzerland and Japan. The authors have been carrying out a series of thermal dispersion experiments to evaluate thermal conductivity of bentonite/quartz sand blocks. In this study, the following two factors considered to affect thermal properties of the near field were examined: effective thermal conductivities of buffer materials, and heat transfer characteristics of the gap between overpack and buffer materials

  16. Phase change thermal control materials, method and apparatus

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  17. Torpedo Rockets

    Science.gov (United States)

    2004-01-01

    All through the 13th to the 15th Centuries there were reports of many rocket experiments. For example, Joanes de Fontana of Italy designed a surface-rurning, rocket-powered torpedo for setting enemy ships on fire

  18. Rocket Flight.

    Science.gov (United States)

    Van Evera, Bill; Sterling, Donna R.

    2002-01-01

    Describes an activity for designing, building, and launching rockets that provides students with an intrinsically motivating and real-life application of what could have been classroom-only concepts. Includes rocket design guidelines and a sample grading rubric. (KHR)

  19. Rocket-borne thermal plasma instrument "MIPEX" for the ionosphere D, E layer in-situ measurements

    Science.gov (United States)

    Fang, H. K.; Chen, A. B. C.; Lin, C. C. H.; Wu, T. J.; Liu, K. S.; Chuang, C. W.

    2017-12-01

    In this presentation, the design concepts, performances and status of a thermal plasma particle instrument package "Mesosphere and Ionosphere Plasma Exploration complex (MIPEX)", which is going to be installed onboard a NSPO-funded hybrid rocket, to investigate the electrodynamic processes in ionosphere D, E layers above Taiwan are reported. MIPEX is capable of measuring plasma characteristics including ion temperature, ion composition, ion drift, electron temperature and plasma density at densities as low as 1-10 cm-1. This instrument package consists of an improved retarding potential analyzer with a channel electron multiplier (CEM), a simplified ion drift meter and a planar Langmuir probe. To achieve the working atmospheric pressure of CEM at the height of lower D layer ( 70km), a portable vacuum pump is also placed in the package. A prototype set of the MIPEX has been developed and tested in the Space Plasma Operation Chamber (SPOC) at NCKU, where in ionospheric plasma is generated by back-diffusion plasma sources. A plasma density of 10-106 cm-1, ion temperature of 300-1500 K and electron temperature of 1000-3000K is measured and verified. Limited by the flight platform and the performance of the instruments, the in-situ plasma measurements at the Mesosphere and lower Thermosphere is very challenging and rare. MIPEX is capable of extending the altitude of the effective plasma measurement down to 70 km height and this experiment can provide unique high-quality data of the plasma environment to explore the ion distribution and the electrodynamic processes in the Ionosphere D, E layers at dusk.

  20. Thermal energy storage using phase change materials fundamentals and applications

    CERN Document Server

    Fleischer, Amy S

    2015-01-01

    This book presents a comprehensive introduction to the use of solid‐liquid phase change materials to store significant amounts of energy in the latent heat of fusion. The proper selection of materials for different applications is covered in detail, as is the use of high conductivity additives to enhance thermal diffusivity. Dr. Fleischer explores how applications of PCMS have expanded over the past 10 years to include the development of high efficiency building materials to reduce heating and cooling needs, smart material design for clothing, portable electronic systems thermal management, solar thermal power plant design and many others. Additional future research directions and challenges are also discussed.

  1. Cryogenic Thermal Conductivity Measurements on Candidate Materials for Space Missions

    Science.gov (United States)

    Tuttle, JIm; Canavan, Ed; Jahromi, Amir

    2017-01-01

    Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. In addition to having mechanical properties appropriate for surviving the launch environment, these materials generally must have thermal conductivity values which meet specific requirements in their operating temperature ranges. Space missions commonly propose to include materials for which the thermal conductivity is not well known at cryogenic temperatures. We developed a test facility in 2004 at NASAs Goddard Space Flight Center to measure material thermal conductivity at temperatures between 4 and 300 Kelvin, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for several materials.

  2. Vacuum plasma spray applications on liquid fuel rocket engines

    Science.gov (United States)

    McKechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-07-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  3. Phase change thermal energy storage material

    Science.gov (United States)

    Benson, David K.; Burrows, Richard W.

    1987-01-01

    A thermal energy storge composition is disclosed. The composition comprises a non-chloride hydrate having a phase change transition temperature in the range of 70.degree.-95.degree. F. and a latent heat of transformation of at least about 35 calories/gram.

  4. Effects of thermal cycling on composite materials for space structures

    Science.gov (United States)

    Tompkins, Stephen S.

    1989-01-01

    The effects of thermal cycling on the thermal and mechanical properties of composite materials that are candidates for space structures are briefly described. The results from a thermal analysis of the orbiting Space Station Freedom is used to define a typical thermal environment and the parameters that cause changes in the thermal history. The interactions of this environment with composite materials are shown and described. The effects of this interaction on the integrity as well as the properties of GR/thermoset, Gr/thermoplastic, Gr/metal and Gr/glass composite materials are discussed. Emphasis is placed on the effects of the interaction that are critical to precision spacecraft. Finally, ground test methodology are briefly discussed.

  5. Numerical Simulation for Thermal Shock Resistance of Thermal Protection Materials Considering Different Operating Environments

    Directory of Open Access Journals (Sweden)

    Weiguo Li

    2013-01-01

    Full Text Available Based on the sensitivities of material properties to temperature and the complexity of service environment of thermal protection system on the spacecraft, ultrahigh-temperature ceramics (UHTCs, which are used as thermal protection materials, cannot simply consider thermal shock resistance (TSR of the material its own but need to take the external constraint conditions and the thermal environment into full account. With the thermal shock numerical simulation on hafnium diboride (HfB2, a detailed study of the effects of the different external constraints and thermal environments on the TSR of UHTCs had been made. The influences of different initial temperatures, constraint strengths, and temperature change rates on the TSR of UHTCs are discussed. This study can provide a more intuitively visual understanding of the evolution of the TSR of UHTCs during actual operation conditions.

  6. Quasi-coherent thermal emitter based on refractory plasmonic materials

    DEFF Research Database (Denmark)

    Liu, Jingjing; Guler, Urcan; Lagutchev, Alexei

    2015-01-01

    The thermal emission of refractory plasmonic metamaterial - a titanium nitride 1D grating - is studied at high operating temperature (540 degrees C). By choosing a refractory material, we fabricate thermal gratings with high brightness that are emitting mid-infrared radiation centered around 3 mu m...

  7. Cryogenic thermal conductivity measurements on candidate materials for space missions

    Science.gov (United States)

    Tuttle, James; Canavan, Edgar; Jahromi, Amir

    2017-12-01

    Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. It is common for NASA engineers to propose new candidate materials which have not been totally characterized at cryogenic temperatures. In many cases a material's cryogenic thermal conductivity must be known before selecting it for a specific space-flight application. We developed a test facility in 2004 at NASA's Goddard Space Flight Center to measure the longitudinal thermal conductivity of materials at temperatures between 4 and 300 K, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for ten engineered materials, including alloys, polymers, composites, and a ceramic.

  8. Advanced Thermal Interface Material Systems for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The ultimate aim of proposed efforts are to develop innovative material and process (M increase thermal cycles before degradation and efforts to ensure ease of...

  9. Structure and thermal stability of nanocrystalline materials

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Taking a cubic unit cell or a regular polyhedron unit cell of nanocrystalline material, the volume fraction of each ... The present article reviews the present states of understanding in these aspects of nanocrystalline materials. ..... Calculations based on the equation of state show 37% reduction in tetragonal shear modulus of ...

  10. Using thermal power plants waste for building materials

    Science.gov (United States)

    Feduik, R. S.; Smoliakov, A. K.; Timokhin, R. A.; Batarshin, V. O.; Yevdokimova, Yu G.

    2017-10-01

    The recycled use of thermal power plants (TPPs) wastes in the building materials production is formulated. The possibility of using of TPPs fly ash as part of the cement composite binder for concrete is assessed. The results of X-ray diffraction and differential thermal analysis as well as and materials photomicrographs are presented. It was revealed that the fly ash of TPPs of Russian Primorsky Krai is suitable for use as a filler in cement binding based on its chemical composition.

  11. Advanced materials for thermal management of electronic packaging

    CERN Document Server

    Tong, Xingcun Colin

    2011-01-01

    The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry's ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility

  12. Graphene-based filament material for thermal ionization

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shick, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Siegfried, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-19

    The use of graphene oxide materials for thermal ionization mass spectrometry analysis of plutonium and uranium has been investigated. Filament made from graphene oxide slurries have been 3-D printed. A method for attaching these filaments to commercial thermal ionization post assemblies has been devised. Resistive heating of the graphene based filaments under high vacuum showed stable operation in excess of 4 hours. Plutonium ion production has been observed in an initial set of filaments spiked with the Pu 128 Certified Reference Material.

  13. Thermal and Thermoelectric Properties of Nanostructured Materials and Interfaces

    Science.gov (United States)

    Liao, Hao-Hsiang

    Many modern technologies are enabled by the use of thin films and/or nanostructured composite materials. For example, many thermoelectric devices, solar cells, power electronics, thermal barrier coatings, and hard disk drives contain nanostructured materials where the thermal conductivity of the material is a critical parameter for the device performance. At the nanoscale, the mean free path and wavelength of heat carriers may become comparable to or smaller than the size of a nanostructured material and/or device. For nanostructured materials made from semiconductors and insulators, the additional phonon scattering mechanisms associated with the high density of interfaces and boundaries introduces additional resistances that can significantly change the thermal conductivity of the material as compared to a macroscale counterpart. Thus, better understanding and control of nanoscale heat conduction in solids is important scientifically and for the engineering applications mentioned above. In this dissertation, I discuss my work in two areas dealing with nanoscale thermal transport: (1) I describe my development and advancement of important thermal characterization tools for measurements of thermal and thermoelectric properties of a variety of materials from thin films to nanostructured bulk systems, and (2) I discuss my measurements on several materials systems done with these characterization tools. First, I describe the development, assembly, and modification of a time-domain thermoreflectance (TDTR) system that we use to measure the thermal conductivity and the interface thermal conductance of a variety of samples including nanocrystalline alloys of Ni-Fe and Co-P, bulk metallic glasses, and other thin films. Next, a unique thermoelectric measurement system was designed and assembled for measurements of electrical resistivity and thermopower of thermoelectric materials in the temperature range of 20 to 350 °C. Finally, a commercial Anter Flashline 3000 thermal

  14. Method and apparatus for implementing material thermal property measurement by flash thermal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiangang

    2017-11-14

    A method and apparatus are provided for implementing measurement of material thermal properties including measurement of thermal effusivity of a coating and/or film or a bulk material of uniform property. The test apparatus includes an infrared camera, a data acquisition and processing computer coupled to the infrared camera for acquiring and processing thermal image data, a flash lamp providing an input of heat onto the surface of a two-layer sample with an enhanced optical filter covering the flash lamp attenuating an entire infrared wavelength range with a series of thermal images is taken of the surface of the two-layer sample.

  15. Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures

    Science.gov (United States)

    Fesmire, James; Sass, Jared; Johnson, Wesley

    2010-01-01

    With the advance of polymer and other non-metallic material sciences, whole new series of polymeric materials and composites are being created. These materials are being optimized for many different applications including cryogenic and low-temperature industrial processes. Engineers need these data to perform detailed system designs and enable new design possibilities for improved control, reliability, and efficiency in specific applications. One main area of interest is cryogenic structural elements and fluid handling components and other parts, films, and coatings for low-temperature application. An important thermal property of these new materials is the apparent thermal conductivity (k-value).

  16. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    Directory of Open Access Journals (Sweden)

    Kalomba Mboyi

    2015-04-01

    Full Text Available A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the emitting material with the radioisotope decay heat and by powering the different valves of the plasma rocket engine with the same radioisotope decay heat using a radioisotope thermoelectric generator. This rocket engine is then benchmarked against a 1 N hydrazine thruster configuration operated on one of the Pleiades-HR-1 constellation spacecraft. A maximal specific impulse and power saving of respectively 529 s and 32% are achieved with helium as propellant. Its advantages are its power saving capability, high specific impulses and simultaneous ease of storage and restart. It can however be extremely voluminous and potentially hazardous. The Kabila rocket is found to bring great benefits to the existing spacecraft and further research should optimize its geometric characteristics and investigate the physical principals of its operation.

  17. Voltage tunability of thermal conductivity in ferroelectric materials

    Science.gov (United States)

    Ihlefeld, Jon; Hopkins, Patrick Edward

    2016-02-09

    A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.

  18. High Strength Carbide-Based Fibrous Monolith Materials for Solid Rocket Nozzles

    National Research Council Canada - National Science Library

    Blaine, Jeanette M; Patterson, Mark; Zhang, Xiaohong; Hilmas, Greg; Fehrenholtz, Bill

    2008-01-01

    .... Additionally, these propellants produce very hostile, abrasive environments; existing materials for boost throat applications have been shown to erode at unacceptable rates, leading to a loss in performance due to throat widening...

  19. Switchable Shape Memory Alloys (SMA) Thermal Materials

    Data.gov (United States)

    National Aeronautics and Space Administration — Materials and systems are being designed and developed to meet complex operational requirements while being kept lightweight, efficient, and robust. Multifunctional...

  20. Estimation technique on thermal properties data of reactor materials

    International Nuclear Information System (INIS)

    Imai, Hidetaka; Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1998-01-01

    This study aims at rapid measurement of thermal properties (thermal conductivity, thermal diffusivity, specific heat capacity, and emissivity) with the highest precision and till ultra high temperature in the world under identifying high temperature materials expected at reactor engineering in future such as plasma facing materials of nuclear fusion reactor. It was conducted by setting some sub-theme such as highly precise measurement and characterization of thermal properties, estimation technique of their data. Thus, precise measurement on specific heat capacity of meso-phase graphite was conducted. Between those at 1000degC and 3000degC a difference of about 5% was observed. As a result, it was found that it was required for highly precise estimation of thermal property data to consider value of the specific heat capacity. (G.K.)

  1. Gas-thermal coating of powdered materials. Communication 2

    International Nuclear Information System (INIS)

    Ermakov, S.S.

    1986-01-01

    This paper investigates the microstructure, microhardness, chemical composition of the transition zone, and also the strength characteristics of gas-thermal coatings including their adhesive power to the substrate (iron brand NC 100.24) and the residual stresses in the coatings. The microstructure of the transition zone was investigated; it was established that on the side of the substrate its density is greater than the mean density of both types of coating. It is shown that the porosity of the substrate has a competing effect on the thermal interaction of materials. Discovered regularities lead to the conclusion that the process of gas-thermal coating of powdered materials is more effective than when compact materials are coated; most effective is the combination of gas-thermal coating with processes of heat treatment of powder-metallurgy products

  2. Seal assembly for materials with different coefficients of thermal expansion

    Science.gov (United States)

    Minford, Eric [Laurys Station, PA

    2009-09-01

    Seal assembly comprising (a) two or more seal elements, each element having having a coefficient of thermal expansion; and (b) a clamping element having a first segment, a second segment, and a connecting segment between and attached to the first and second segments, wherein the two or more seal elements are disposed between the first and second segments of the clamping element. The connecting segment has a central portion extending between the first segment of the clamping element and the second segment of the clamping element, and the connecting segment is made of a material having a coefficient of thermal expansion. The coefficient of thermal expansion of the material of the connecting segment is intermediate the largest and smallest of the coefficients of thermal expansion of the materials of the two or more seal elements.

  3. Phase Change Material Thermal Power Generator

    Science.gov (United States)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor); Valdez, Thomas I. (Inventor)

    2014-01-01

    An energy producing device, for example a submersible vehicle for descending or ascending to different depths within water or ocean, is disclosed. The vehicle comprises a temperature-responsive material to which a hydraulic fluid is associated. A pressurized storage compartment stores the fluid as soon as the temperature-responsive material changes density. The storage compartment is connected with a hydraulic motor, and a valve allows fluid passage from the storage compartment to the hydraulic motor. An energy storage component, e.g. a battery, is connected with the hydraulic motor and is charged by the hydraulic motor when the hydraulic fluid passes through the hydraulic motor. Upon passage in the hydraulic motor, the fluid is stored in a further storage compartment and is then sent back to the area of the temperature-responsive material.

  4. Thermal Materials Drive Professional Apparel Line

    Science.gov (United States)

    2014-01-01

    Johnson Space Center investigated phase change materials (PCMs) to use in spacesuit gloves to help maintain comfortable temperatures. Years later, Boston-based Ministry of Supply developed a dress shirt that incorporated the NASA-derived PCMs, could wick away moisture, and also control odors and bacterial growth. Deemed Apollo, the shirt performs like active wear and is available in white and oxford blue.

  5. Arcjet Testing of Micro-Meteoroid Impacted Thermal Protection Materials

    Science.gov (United States)

    Agrawal, Parul; Munk, Michelle M.; Glaab, Louis J.

    2013-01-01

    There are several harsh space environments that could affect thermal protection systems and in turn pose risks to the atmospheric entry vehicles. These environments include micrometeoroid impact, extreme cold temperatures, and ionizing radiation during deep space cruise, all followed by atmospheric entry heating. To mitigate these risks, different thermal protection material samples were subjected to multiple tests, including hyper velocity impact, cold soak, irradiation, and arcjet testing, at various NASA facilities that simulated these environments. The materials included a variety of honeycomb packed ablative materials as well as carbon-based non-ablative thermal protection systems. The present paper describes the results of the multiple test campaign with a focus on arcjet testing of thermal protection materials. The tests showed promising results for ablative materials. However, the carbon-based non-ablative system presented some concerns regarding the potential risks to an entry vehicle. This study provides valuable information regarding the capability of various thermal protection materials to withstand harsh space environments, which is critical to sample return and planetary entry missions.

  6. Thermal Analysis of Storage Cans Containing Special Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jerrell, J.W.

    2000-11-17

    A series of thermal analyses have been completed for ten storage can configurations representing various cases of materials stored in F-Area. The analyses determine the temperatures of the cans, the special nuclear material, and the air sealed within the cans. Analyses to aid in understanding the effect of oxide accumulation and metal aging on temperatures are also included.

  7. Exercises in 80223 Numerical Modelling of Thermal Processing of Materials

    DEFF Research Database (Denmark)

    Frandsen, Jens Ole

    Processing of Materials'. The original copy is kept in the archives of TM on the ground floor of building 425. A copy of the exercise book can be made available by contacting the secretary on the ground floor of building 425. Please give the following number: TM 00.01 (TM = Thermal processing of Materials)...

  8. Thermal shock behaviour of mullite-cordierite refractory materials

    Czech Academy of Sciences Publication Activity Database

    Boccaccini, D. N.; Leonelli, C.; Romagnoli, M.; Pellacani, G. C.; Veronesi, P.; Dlouhý, Ivo; Boccaccini, A. R.

    2007-01-01

    Roč. 106, č. 3 (2007), s. 142-148 ISSN 1743-6753 R&D Projects: GA AV ČR IAA200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : refraktory materials * thermal shock * fracutre toughness Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.074, year: 2007

  9. Thermal shock analysis of functionally graded materials by micromechanical model

    International Nuclear Information System (INIS)

    Ueda, Sei

    2002-01-01

    The transient thermoelastic behavior of the functionally graded plate due to a thermal shock with temperature dependent properties is studied in this paper. The development of a micromechanical model for the functionally graded materials is presented and its application to thermoelastic analysis is discussed for the case of the W-Cu functionally graded material for the International Thermonuclear Experimental Reactor divertor plate. The divertor plate is made of a graded layer bonded between a homogeneous substrate and a homogeneous coating, and it is subjected to a cycle of heating and cooling on the coating surface of the material. The thermal and elastic properties of the material are dependent on the temperature and the position. Numerical calculations are carried out, and the results for the transient temperature and thermal stress distributions are displayed graphically. (author)

  10. Material science experience gained from the space nuclear rocket program: Insulators

    International Nuclear Information System (INIS)

    Wagner, P.

    1992-07-01

    Although Rover reactors are viewed as the ultimate in high-temperature operating systems, many of the materials used in these reactors (for example, support rods, control drums, and the reflector) have to be held at relatively low temperatures while the reactor operates, in order to maintain their structural integrity. Thus the insulators needed to separate these temperature domains are crucial to the reactor's ultimate operating times and temperatures. All of the reactors that were tested used pyrolytic graphite as the primary insulator. However, it had been long planned to replace the graphite with zirconium carbide and a lengthy and intensive effort to develop the zirconium carbide insulators had been made at the time Rover was terminated. This report details research and development and the experience we gained with both these insulator materials

  11. Round robin testing of thermal conductivity reference materials

    International Nuclear Information System (INIS)

    Hulstrom, L.C.; Tye, R.P.; Smith, S.E.

    1985-07-01

    The Basalt Waste Isolation Project (BWIP), operated by Rockwell Hanford Operations, has a need to determine the thermal properties of basalt in the region being considered for a nuclear waste repository in basalt. Experimental data on thermal conductivity and its variation with temperature are information required for the characterization of basalt. To establish thermal conductivity values for the reference materials, an interlaboratory measurements program was undertaken. The program was planned to meet the objectives of performing an experimental characterization of the new stock and providing a detailed analysis of the results such that reference values of thermal conductivity could be determined. This program of measurements of the thermal conductivity of Pyrex 7740 and Pyroceram 9606 has produced recommended values that are within +- 1% of those accepted previously. These measurements together with those of density indicate that the present lots of material are similar to those previously available. Pyrex 7740 and Pyroceram 9606 can continue to be used with confidence as thermal conductivity reference materials for studies on rocks and minerals and other materials of similar thermal conductivity. The uncertainty range for Pyrex 7740 and Pyroceram 9606 up to 300 0 C is +- 10.3% and +- 5.6%, respectively. This range is similar to that indicated for the previously recommended values proposed some 18 years ago. It would appear that the overall state of the art in thermal conductivity measurements for materials in this range has changed little in the intervening years. The above uncertainties, which would have been greater had not three data sets been eliminated, are greater than those which are normally claimed for each individual method. Analyses of these differences through refinements in techniques and additional measurements to higher temperatures are required. 13 refs., 7 figs., 4 tabs

  12. Scale-Up of GRCop: From Laboratory to Rocket Engines

    Science.gov (United States)

    Ellis, David L.

    2016-01-01

    GRCop is a high temperature, high thermal conductivity copper-based series of alloys designed primarily for use in regeneratively cooled rocket engine liners. It began with laboratory-level production of a few grams of ribbon produced by chill block melt spinning and has grown to commercial-scale production of large-scale rocket engine liners. Along the way, a variety of methods of consolidating and working the alloy were examined, a database of properties was developed and a variety of commercial and government applications were considered. This talk will briefly address the basic material properties used for selection of compositions to scale up, the methods used to go from simple ribbon to rocket engines, the need to develop a suitable database, and the issues related to getting the alloy into a rocket engine or other application.

  13. Porous materials produced from incineration ash using thermal plasma technology.

    Science.gov (United States)

    Yang, Sheng-Fu; Chiu, Wen-Tung; Wang, To-Mai; Chen, Ching-Ting; Tzeng, Chin-Ching

    2014-06-01

    This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9-1.2 g cm(-3) and 50-60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m(-1) K(-1). Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.

    Science.gov (United States)

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran

    2015-06-07

    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials.

  15. Comparative study of hygrothermal properties of five thermal insulation materials

    OpenAIRE

    Laure Ducoulombier; Zoubeir Lafhaj

    2017-01-01

    The objective of this article is to carry out a comparative study of the main hygrothermal properties of five thermal insulation materials for buildings. These properties are necessary for a correct prediction of heat and moisture transfers through the walls and the selection of the most appropriate materials according to the specific buildings. The studied materials were glass wool, rock wool, expanded polystyrene, wood fiberboard and polyester fiberfill. The article is divided into three pa...

  16. Chemical and thermal analysis for characterisation of building materials

    International Nuclear Information System (INIS)

    Kumar, S.C.; Sudersanan, M.; Ravindran, P.V.; Kalekar, B.B.; Mathur, P.K.

    2000-01-01

    Cement and other construction materials are extensively used for the construction of shielding materials for nuclear and high energy radiations. The design and optimum utilisation of such materials need an accurate analysis of their chemical composition. The moisture content and presence of bound water and other volatile materials are also important. The use of thermal analysis supplements the data obtained by chemical analysis and enables a distinction of moisture and chemically bound water. It also enables an identification of the process leading to the loss on ignition. The work carried out on the analysis of sand, cement and other aggregate materials used for the preparation of concrete is described in the paper. (author)

  17. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Gunther, E.

    1987-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and ''Li 6 SiO 5 '' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented

  18. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Guenther, E.

    1986-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and 'Li 6 SiO 5 ' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented. (author)

  19. Thermally joining and/or coating or thermally separating the workpieces having heat-sensitive coating, comprises restoring coating by thermally coating the coating material after thermally joining and/or coating or thermally separating

    OpenAIRE

    Riedel, Frank; Winkelmann, Ralf; Puschmann, Markus

    2011-01-01

    The method for thermally joining and/or coating or thermally separating the workpieces (1), which have a heat-sensitive coating (2), comprises restoring the coating by thermally coating a coating material (3) after thermally joining and/or coating or thermally separating the workpieces. A part of the thermal energy introduced in the workpiece for joining and/or coating or separating or in the workpieces is used for thermally coating the coating material. Two workpieces are welded or soldered ...

  20. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    Science.gov (United States)

    Shen, Fei-Ran; Kuang, Hao; Hu, Feng-Xia; Wu, Hui; Huang, Qing-Zhen; Liang, Fei-Xiang; Qiao, Kai-Ming; Li, Jia; Wang, Jing; Liu, Yao; Zhang, Lei; He, Min; Zhang, Ying; Zuo, Wen-Liang; Sun, Ji-Rong; Shen, Bao-Gen

    2017-10-01

    Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn-Co-Ge-In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE owing to a martensitic magnetostructural transition. The major finding is that the thermal expansion behavior can be totally controlled by modulating the crystallinity degree and phase transition from atomic scale. Self-compensation effect leads to ultra-low thermal expansion with a linear expansion coefficient as small as +0.68 × 10-6/K over a wide temperature range around room temperature. The present study opens an avenue to reach ZTE particularly from the large class of giant NTE materials based on phase transition.

  1. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    Directory of Open Access Journals (Sweden)

    Fei-Ran Shen

    2017-10-01

    Full Text Available Materials with zero thermal expansion (ZTE or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn–Co–Ge–In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE owing to a martensitic magnetostructural transition. The major finding is that the thermal expansion behavior can be totally controlled by modulating the crystallinity degree and phase transition from atomic scale. Self-compensation effect leads to ultra-low thermal expansion with a linear expansion coefficient as small as +0.68 × 10−6/K over a wide temperature range around room temperature. The present study opens an avenue to reach ZTE particularly from the large class of giant NTE materials based on phase transition.

  2. Thermal energy storage based on cementitious materials: A review

    Directory of Open Access Journals (Sweden)

    Khadim Ndiaye

    2018-01-01

    Full Text Available Renewable energy storage is now essential to enhance the energy performance of buildings and to reduce their environmental impact. Many heat storage materials can be used in the building sector in order to avoid the phase shift between solar radiation and thermal energy demand. However, the use of storage material in the building sector is hampered by problems of investment cost, space requirements, mechanical performance, material stability, and high storage temperature. Cementitious material is increasingly being used as a heat storage material thanks to its low price, mechanical performance and low storage temperature (generally lower than 100 °C. In addition, cementitious materials for heat storage have the prominent advantage of being easy to incorporate into the building landscape as self-supporting structures or even supporting structures (walls, floor, etc.. Concrete solutions for thermal energy storage are usually based on sensible heat transfer and thermal inertia. Phase Change Materials (PCM incorporated in concrete wall have been widely investigated in the aim of improving building energy performance. Cementitious material with high ettringite content stores heat by a combination of physical (adsorption and chemical (chemical reaction processes usable in both the short (daily, weekly and long (seasonal term. Ettringite materials have the advantage of high energy storage density at low temperature (around 60 °C. The encouraging experimental results in the literature on heat storage using cementitious materials suggest that they could be attractive in a number of applications. This paper summarizes the investigation and analysis of the available thermal energy storage systems using cementitious materials for use in various applications.

  3. Use of thermal-inertia properties for material identification

    Science.gov (United States)

    Schieldge, J. P.; Kahle, A. B.; Alley, R. E.; Gillespie, A. R.

    1980-01-01

    It is noted that a knowledge of the thermal inertia of the earth's surface can be used in geologic mapping as a complement to surface reflectance data as provided by Landsat. Thermal inertia, which is a body property, cannot be determined directly but can be inferred from radiation temperature measurements made at various times in the diurnal heating cycle, combined with a model of the surface heating processes. A model of this type is developed and applied along with temperature measurements made in the field and by satellite to determine thermal properties of surface materials. An example from a test site in western Nevada is used to demonstrate the utility of this technique.

  4. PHASE CHANGE MATERIALS IN FLOOR TILES FOR THERMAL ENERGY STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Douglas C. Hittle

    2002-10-01

    Passive solar systems integrated into residential structures significantly reduce heating energy consumption. Taking advantage of latent heat storage has further increased energy savings. This is accomplished by the incorporation of phase change materials into building materials used in passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. Increasing the thermal storage of floor tile by the addition of encapsulated paraffin wax is the proposed topic of research. Latent heat storage of a phase change material (PCM) is obtained during a change in phase. Typical materials use the latent heat released when the material changes from a liquid to a solid. Paraffin wax and salt hydrates are examples of such materials. Other PCMs that have been recently investigated undergo a phase transition from one solid form to another. During this process they will release heat. These are known as solid-state phase change materials. All have large latent heats, which makes them ideal for passive solar applications. Easy incorporation into various building materials is must for these materials. This proposal will address the advantages and disadvantages of using these materials in floor tile. Prototype tile will be made from a mixture of quartz, binder and phase change material. The thermal and structural properties of the prototype tiles will be tested fully. It is expected that with the addition of the phase change material the structural properties will be compromised to some extent. The ratio of phase change material in the tile will have to be varied to determine the best mixture to provide significant thermal storage, while maintaining structural properties that meet the industry standards for floor tile.

  5. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers, Phase II Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicided niobium alloy (C103) combustion chambers have been used extensively in both NASA and DoD liquid rocket propulsion systems. Niobium alloys offer a good...

  6. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicided niobium alloy (C103) combustion chambers have been used extensively in both NASA and DoD liquid rocket propulsion systems. Niobium alloys offer a good...

  7. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicided niobium alloy (C103) combustion chambers have been used extensively in both NASA and DoD liquid rocket propulsion systems. Niobium alloys offer a good...

  8. Thermal analysis of charring materials based on pyrolysis interface model

    Directory of Open Access Journals (Sweden)

    Huang Hai-Ming

    2014-01-01

    Full Text Available Charring thermal protection systems have been used to protect hypersonic vehicles from high heat loads. The pyrolysis of charring materials is a complicated physical and chemical phenomenon. Based on the pyrolysis interface model, a simulating approach for charring ablation has been designed in order to obtain one dimensional transient thermal behavior of homogeneous charring materials in reentry capsules. As the numerical results indicate, the pyrolysis rate and the surface temperature under a given heat flux rise abruptly in the beginning, then reach a plateau, but the temperature at the bottom rises very slowly to prevent the structural materials from being heated seriously. Pyrolysis mechanism can play an important role in thermal protection systems subjected to serious aerodynamic heat.

  9. XRD Investigation of Some Thermal Degraded Starch Based Materials

    Directory of Open Access Journals (Sweden)

    Mihai Todica

    2016-01-01

    Full Text Available The thermal degradation of some starch based materials was investigated using XRD method. The samples were obtained by thermal extrusion of mixtures of different proportions of starch, glycerol, and water. Such materials are suitable for the manufacturing of low pollutant packaging. Thermal degradation is one of the simplest ways to destroy such materials and this process is followed by structural modification of the local ordering of samples, water evaporation, crystallization, oxidation, or destruction of the chemical bonds. These modifications need to be studied in order to reduce to the minimum production of pollutant residues by burning process. XRD measurements show modification of the local ordering of the starch molecules depending on the temperature and initial composition of the samples. The molecular ordering perturbation is more pronounced in samples with low content of starch.

  10. Optimal Experiment Design for Thermal Characterization of Functionally Graded Materials

    Science.gov (United States)

    Cole, Kevin D.

    2003-01-01

    The purpose of the project was to investigate methods to accurately verify that designed , materials meet thermal specifications. The project involved heat transfer calculations and optimization studies, and no laboratory experiments were performed. One part of the research involved study of materials in which conduction heat transfer predominates. Results include techniques to choose among several experimental designs, and protocols for determining the optimum experimental conditions for determination of thermal properties. Metal foam materials were also studied in which both conduction and radiation heat transfer are present. Results of this work include procedures to optimize the design of experiments to accurately measure both conductive and radiative thermal properties. Detailed results in the form of three journal papers have been appended to this report.

  11. Thermal interface material characterization for cryogenic electronic packaging solutions

    Science.gov (United States)

    Dillon, A.; McCusker, K.; Van Dyke, J.; Isler, B.; Christiansen, M.

    2017-12-01

    As applications of superconducting logic technologies continue to grow, the need for efficient and reliable cryogenic packaging becomes crucial to development and testing. A trade study of materials was done to develop a practical understanding of the properties of interface materials around 4 K. While literature exists for varying interface tests, discrepancies are found in the reported performance of different materials and in the ranges of applied force in which they are optimal. In considering applications extending from top cooling a silicon chip to clamping a heat sink, a range of forces from approximately 44 N to approximately 445 N was chosen for testing different interface materials. For each range of forces a single material was identified to optimize the thermal conductance of the joint. Of the tested interfaces, indium foil clamped at approximately 445 N showed the highest thermal conductance. Results are presented from these characterizations and useful methodologies for efficient testing are defined.

  12. Thermal expansion of carbon-carbonic composite materials

    International Nuclear Information System (INIS)

    Lukina, Eh.Yu.; Kolesnikov, S.A.; Pechik, V.K.

    1977-01-01

    Carbon-carbon composites present a high anisotropy of thermal expansion; along the fibers, the anisotropy is a function mainly of the thermal expansion of the fibers, and at right angle to the predominant orientation of the fibers, of the thermal expansion of the binder. The value of the volumetric coefficient of thermal expansion of carbon-carbon composites is lower than that of polycrystalline graphites. The binder the nearest to the fibers in value of the thermal expansion is pyrocarbon. The carbon fibers and the composites based on the latter irreversibly change their dimensions when heated to temperature above that of their formation. The coefficient of thermal expansion of composites based on finely divided fibers increases with the density of binding, but the anisotropy of thermal expansion then diminishes; the coefficient of thermal expansion of composites based on the continuous carbon fibers increases with the angle between the direction of fibers and that of the measurement, the value of the coefficient varying from negative values characteristic of highly oriented carbon materials to a value of (7-8) x 10 -6 degree -1

  13. Effective Thermal Expansion Property of Consolidated Granular Materials.

    Science.gov (United States)

    Küçük, Gülşad; Gonzalez, Marcial; Cuitiño, Alberto M

    2017-11-09

    Thermally-assisted compaction of granular materials is of keen interest in many engineering applications. A proper estimation of the material behavior of compacted granular materials is contingent upon the knowledge of microstructure formation, which is highly dependent on the bulk material properties and processing conditions, during the deformation stage. Originating from the pair interactions between particles, the macroscopic properties are obtained using various homogenization techniques and postulating continuum constitutive laws. While pioneers in this field have laid fundamental groundwork regarding effective medium descriptions, there exists a discrepancy between discrete and continuum level solutions. In our previous work, we elaborated a Particle Mechanics Approach (PMA) that integrates thermal contact and Hertzian deformation models to understand the thermo-mechanically-coupled consolidation problem. We also considered the analogous problem from the perspective of the conventional Continuum Mechanics Approach (CMA). In this study, following the multi-scale modeling framework, we propose an effective thermal expansion coefficient for the thermally-assisted compaction of granular materials.

  14. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Cemil; Sari, Ahmet; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey); Uzun, Orhan [Department of Physics, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2009-01-15

    This study is focused on the preparation, characterization, and determination of thermal properties of microencapsulated docosane with polymethylmethacrylate (PMMA) as phase change material for thermal energy storage. Microencapsulation of docosane has been carried out by emulsion polymerization. The microencapsulated phase change material (MEPCM) was characterized using scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Thermal properties and thermal stability of MEPCM were measured by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). DSC analysis indicated that the docosane in the microcapsules melts at 41.0 C and crystallizes at 40.6 C. It has latent heats of 54.6 and -48.7 J/g for melting and crystallization, respectively. TGA showed that the MEPCM degraded in three distinguishable steps and had good chemical stability. Accelerated thermal cycling tests also indicated that the MEPCM had good thermal reliability. Based on all these results, it can be concluded that the microencapsulated docosane as MEPCMs have good potential for thermal energy storage purposes such as solar space heating applications. (author)

  15. A ``NEW'' Solid-Core Reactor Fuel Form that Maximizes the Performance of Nuclear Thermal and Electric Rockets

    Science.gov (United States)

    Rom, Frank E.; Finnegan, Patrick M.

    1994-07-01

    The ``NEW'' solid-core fuel form is the old Vapor Transport (VT) fuel pin investigated at NASA about 30 years ago. It is simply a tube sealed at both ends partially filled with UO2. During operation the UO2 forms an annular layer on the inside of the tube by vaporization and condensation. This form is an ideal structure for overall strength and retention of fission products. All of the structural material lies between the fuel (including fission products) and the reactor coolant. The isothermal inside fuel surface temperature that results from the vaporization and condensation of fuel during operation eliminates hotspots, significantly increasing the design fuel pin surface temperature. For NTP, W-UO2 fuel pins yield higher operating temperatures than for other fuel forms, because W has about a ten-fold lower vaporization rate compared to any other known material. The use of perigee propulsion using W-UO2 fuel pins can result in a more than ten-fold reduction in reactor power. Lower reactor power, together with zero fission product release potential, and the simplicity of fabrication of VT fuel pins should greatly simplify and reduce the cost of development of NTP. For NEP, VT fuel pins can increase fast neutron spectrum reactor life with no fission product release. Thermal spectrum NEP reactors using W184 or Mo VT fuel pins, with only small amounts of high neutron absorbing additives, offer benefits because of much lower fissionable fuel requirements. The VT fuel pin has application to commercial power reactors with similar benefits.

  16. Handbook on dielectric and thermal properties of microwaveable materials

    CERN Document Server

    Komarov, Vyacheslav V

    2012-01-01

    The application of microwave energy for thermal processing of different materials and substances is a rapidly growing trend in modern science and engineering. In fact, optimal design work involving microwaves is impossible without solid knowledge of the properties of these materials. Here s a practical reference that collects essential data on the dielectric and thermal properties of microwaveable materials, saving you countless hours on projects in a wide range of areas, including microwave design and heating, applied electrodynamics, food science, and medical technology. This unique book provides hard-to-find information on complex dielectric permittivity of media at industrial, scientific, and medical frequencies (430 MHz, 915MHz, 2.45GHz, 5.8 GHz, and 24.125GHz). Written by a leading expert in the field, this authoritative book does an exceptional job at presenting critical data on various materials and explaining what their key characteristics are concerning microwaves.

  17. Rapid charging of thermal energy storage materials through plasmonic heating.

    Science.gov (United States)

    Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao

    2014-09-01

    Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites.

  18. Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Cemil; Sari, Ahmet; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2011-01-15

    This study deals with preparation, characterization, thermal properties and thermal reliability of n-eicosane microcapsules as novel phase change material (PCM) for thermal energy storage. The microcapsulated PCMs were prepared by coating n-eicosane with polymethylmethacrylate (PMMA) shell. Fourier transform infrared (FT-IR), scanning electron microscope (SEM) and particle size distribution (PSD) analysis were used to characterize the PMMA/eicosane microcapsules as microcapsulated PCMs. The PSD analysis indicated that the average diameter of microcapsules was found to be 0.70 {mu}m under the stirring speed of 2000 rpm. Thermal properties and thermal reliability of the microcapsules were determined using differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA) methods. From DSC analysis, the melting and freezing temperatures and the latent heats of the microcapsules were measured as 35.2 C and 34.9 C, 84.2 and -87.5 J/g, respectively. TGA analysis indicated that PMMA/eicosane microcapsules degrade in three steps at considerably high temperatures. Accelerated thermal cycling tests have been also applied to show the thermal reliability of the microcapsules. All results showed that thermal properties make the PMMA/eicosane microcapsules potential PCM for thermal energy storage. (author)

  19. Arc Jet Testing of Thermal Protection Materials: 3 Case Studies

    Science.gov (United States)

    Johnson, Sylvia; Conley, Joe

    2015-01-01

    Arc jet testing is used to simulate entry to test thermal protection materials. This paper discusses the usefulness of arc jet testing for 3 cases. Case 1 is MSL and PICA, Case 2 is Advanced TUFROC, and Case 3 is conformable ablators.

  20. Thermal expansion model for multiphase electronic packaging materials

    International Nuclear Information System (INIS)

    Allred, B.E.; Warren, W.E.

    1991-01-01

    Control of thermal expansion is often necessary in the design and selection of electronic packages. In some instances, it is desirable to have a coefficient of thermal expansion intermediate between values readily attainable with single or two phase materials. The addition of a third phase in the form of fillers, whiskers, or fibers can be used to attain intermediate expansions. To help design the thermal expansion of multiphase materials for specific applications, a closed form model has been developed that accurately predicts the effective elastic properties of isotropic filled materials and transversely isotropic lamina. Properties of filled matrix materials are used as inputs to the lamina model to obtain the composite elastic properties as a function of the volume fraction of each phase. Hybrid composites with two or more fiber types are easily handled with this model. This paper reports that results for glass, quartz, and Kevlar fibers with beta-eucryptite filled polymer matrices show good agreement with experimental results for X, Y, and Z thermal expansion coefficients

  1. Application of thermal neutrons in testing of nuclear facilities materials

    International Nuclear Information System (INIS)

    Milczarek, J.J.

    2008-01-01

    Recent applications of thermal neutrons in testing of materials used in nuclear facilities are presented. The neutron radiography technique, characterization of residual stresses with neutron diffraction and small angle neutron scattering is considered in some detail. The results of testing of fuel elements, steel used for pressurized reactor vessels and changes induced in control rods are discussed. (author)

  2. Characterization of mouthguard materials: thermal properties of commercialized products.

    Science.gov (United States)

    Gould, Trenton E; Piland, Scott G; Shin, Junghwan; McNair, Olivia; Hoyle, Charles E; Nazarenko, Sergei

    2009-12-01

    Several mechanisms have been purported to describe how mouthguards protect the orofacial complex against injury. As the properties needed for these mechanisms to be effective are temperature and frequency dependent, the specific aim of this study was to provide a comprehensive thermal characterization of commercial mouthguard materials. Five commercially representative thermoplastic mouthguard materials (Essix Resin, Erkoflex, Proform-regular, Proform-laminate, and Polyshok) were tested. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) techniques were implemented to measure thermal transitions and mechanical properties. Measurements were conducted three times per sample. One-way ANOVA and one-sample t-tests were used to test for differences between commercial products on selected mean thermal property values. The DSC measurements indicated no differences between commercial materials for mean glass transition (p=0.053), onset melt (p=0.973), or peak melt (p=0.436) temperatures. Likewise, DMA measurements revealed no differences between commercial materials for the mean glass transition (p=0.093), storage modulus (p=0.257), or loss modulus (p=0.172) properties, respectively. The one-sample t-tests revealed that glass transition temperatures were different from intra-oral temperature (psensitive to repetitive heating and cooling cycles, prolonged thermal treatment, and have glass transitions well below their end-use intra-oral temperature. As such, these materials are functioning as elastomers and not optimal mechanical damping materials. Dental clinicians, healthcare practitioners, or end-users should be aware that these materials are at best problematic with respect to this protective mechanism.

  3. Thermal Properties of Consolidated Granular Salt as a Backfill Material

    Science.gov (United States)

    Paneru, Laxmi P.; Bauer, Stephen J.; Stormont, John C.

    2018-03-01

    Granular salt has been proposed as backfill material in drifts and shafts of a nuclear waste disposal facility where it will serve to conduct heat away from the waste to the host rock. Creep closure of excavations in rock salt will consolidate (reduce the porosity of) the granular salt. This study involved measuring the thermal conductivity and specific heat of granular salt as a function of porosity and temperature to aid in understanding how thermal properties will change during granular salt consolidation accomplished at pressures and temperatures consistent with a nuclear waste disposal facility. Thermal properties of samples from laboratory-consolidated granular salt and in situ consolidated granular salt were measured using a transient plane source method at temperatures ranging from 50 to 250 °C. Additional measurements were taken on a single crystal of halite and dilated polycrystalline rock salt. Thermal conductivity of granular salt decreased with increases in temperature and porosity. Specific heat of granular salt at lower temperatures decreased with increasing porosity. At higher temperatures, porosity dependence was not apparent. The thermal conductivity and specific heat data were fit to empirical models and compared with results presented in the literature. At comparable densities, the thermal conductivities of granular salt samples consolidated hydrostatically in this study were greater than those measured previously on samples formed by quasi-static pressing. Petrographic studies of the consolidated salt indicate that the consolidation method influenced the nature of the porosity; these observations are used to explain the variation of measured thermal conductivities between the two consolidation methods. Thermal conductivity of dilated polycrystalline salt was lower than consolidated salt at comparable porosities. The pervasive crack network along grain boundaries in dilated salt impedes heat flow and results in a lower thermal conductivity

  4. Comparative study of hygrothermal properties of five thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Laure Ducoulombier

    2017-09-01

    Full Text Available The objective of this article is to carry out a comparative study of the main hygrothermal properties of five thermal insulation materials for buildings. These properties are necessary for a correct prediction of heat and moisture transfers through the walls and the selection of the most appropriate materials according to the specific buildings. The studied materials were glass wool, rock wool, expanded polystyrene, wood fiberboard and polyester fiberfill. The article is divided into three parts. The first part presents the phenomena of hygrothermal transfers in walls in order to understand the need for determining specific properties of the insulating materials. The second part describes in details the five studied insulating materials and the methods used for the characterization and identification of their main properties. Finally, the last part presents the experimental results and makes comparisons between materials. The differences between the insulating materials are brought out, such as the strong dependence of the thermal conductivity of polystyrene on temperature, or the good permeability of fibrous insulating materials to water vapor. A detailed analysis of the obtained results is presented.

  5. Thermal Management of Concentrated Multi-Junction Solar Cells with Graphene-Enhanced Thermal Interface Materials

    Directory of Open Access Journals (Sweden)

    Mohammed Saadah

    2017-06-01

    Full Text Available We report results of experimental investigation of temperature rise in concentrated multi-junction photovoltaic solar cells with graphene-enhanced thermal interface materials. Graphene and few-layer graphene fillers, produced by a scalable environmentally-friendly liquid-phase exfoliation technique, were incorporated into conventional thermal interface materials. Graphene-enhanced thermal interface materials have been applied between a solar cell and heat sink to improve heat dissipation. The performance of the multi-junction solar cells has been tested using an industry-standard solar simulator under a light concentration of up to 2000 suns. It was found that the application of graphene-enhanced thermal interface materials allows one to reduce the solar cell temperature and increase the open-circuit voltage. We demonstrated that the use of graphene helps in recovering a significant amount of the power loss due to solar cell overheating. The obtained results are important for the development of new technologies for thermal management of concentrated photovoltaic solar cells.

  6. From Tomography to Material Properties of Thermal Protection Systems

    Science.gov (United States)

    Mansour, Nagi N.; Panerai, Francesco; Ferguson, Joseph C.; Borner, Arnaud; Barnhardt, Michael; Wright, Michael

    2017-01-01

    A NASA Ames Research Center (ARC) effort, under the Entry Systems Modeling (ESM) project, aims at developing micro-tomography (micro-CT) experiments and simulations for studying materials used in hypersonic entry systems. X-ray micro-tomography allows for non-destructive 3D imaging of a materials micro-structure at the sub-micron scale, providing fiber-scale representations of porous thermal protection systems (TPS) materials. The technique has also allowed for In-situ experiments that can resolve response phenomena under realistic environmental conditions such as high temperature, mechanical loads, and oxidizing atmospheres. Simulation tools have been developed at the NASA Ames Research Center to determine material properties and material response from the high-fidelity tomographic representations of the porous materials with the goal of informing macroscopic TPS response models and guiding future TPS design.

  7. Outgassing of solid material into vacuum thermal insulation spaces

    Science.gov (United States)

    Wang, Pao-Lien

    1994-01-01

    Many cryogenic storage tanks use vacuum between inner and outer tank for thermal insulation. These cryogenic tanks also use a radiation shield barrier in the vacuum space to prevent radiation heat transfer. This shield is usually constructed by using multiple wraps of aluminized mylar and glass paper as inserts. For obtaining maximum thermal performance, a good vacuum level must be maintained with the insulation system. It has been found that over a period of time solid insulation materials will vaporize into the vacuum space and the vacuum will degrade. In order to determine the degradation of vacuum, the rate of outgassing of the insulation materials must be determined. Outgassing rate of several insulation materials obtained from literature search were listed in tabular form.

  8. Development of thermal energy storage materials for biomedical applications.

    Science.gov (United States)

    Shukla, A; Sharma, Atul; Shukla, Manjari; Chen, C R

    2015-01-01

    The phase change materials (PCMs) have been utilized widely for solar thermal energy storage (TES) devices. The quality of these materials to remain at a particular temperature during solid-liquid, liquid-solid phase transition can also be utilized for many biomedical applications as well and has been explored in recent past already. This study reports some novel PCMs developed by them, along with some existing PCMs, to be used for such biomedical applications. Interestingly, it was observed that the heating/cooling properties of these PCMs enhance the quality of a variety of biomedical applications with many advantages (non-electric, no risk of electric shock, easy to handle, easy to recharge thermally, long life, cheap and easily available, reusable) over existing applications. Results of the present study are quite interesting and exciting, opening a plethora of opportunities for more work on the subject, which require overlapping expertise of material scientists, biochemists and medical experts for broader social benefits.

  9. Thermal response of nanocomposite materials under pulsed laser excitation

    International Nuclear Information System (INIS)

    Rashidi-Huyeh, Majid; Palpant, Bruno

    2004-01-01

    The optical properties of nanocomposite materials made of matrix-embedded noble metal nanoparticles strongly depend on thermal effects from different origins. We propose a classical model describing the energy exchanges within the nanoparticles and between the latter and the surrounding dielectric host subsequent to a light pulse absorption. This model, which accounts for the thermal interactions between neighboring particles, allows us to calculate numerically the temperature dynamics of the electrons, metal lattice and matrix as functions of particle size, and metal concentration of the medium, whatever be the pulsed excitation temporal regime. It is illustrated in the case of Au:SiO 2 materials under femtosecond and nanosecond pulse excitation. It is shown that, in the femtosecond regime, the heat transfer to the matrix cannot be neglected beyond a few picosecond delay from which particle size and metal concentration play a significant role in the electron relaxation. In the nanosecond regime, these morphologic parameters influence crucially the material thermal behavior with the possibility of generating a thermal lens effect. The implications in the analysis of experimental results regarding both the electron relaxation dynamics and the nonlinear optical properties are also discussed. Finally, a method to adapt the model to the case of thin nanocomposite film is proposed

  10. Thermal Fault Tolerance Analysis of Carbon Fiber Rope Barrier Systems for Use in the Reusable Solid Rocket Motor ( RSRM) Nozzle Joints

    Science.gov (United States)

    Clayton, J. Louie; Phelps, Lisa (Technical Monitor)

    2001-01-01

    Carbon Fiber Rope (CFR) thermal barrier systems are being considered for use in several RSRM (Reusable Solid Rocket Motor) nozzle joints as a replacement for the current assembly gap close-out process/design. This study provides for development and test verification of analysis methods used for flow-thermal modeling of a CFR thermal barrier subject to fault conditions such as rope combustion gas blow-by and CFR splice failure. Global model development is based on a 1-D (one dimensional) transient volume filling approach where the flow conditions are calculated as a function of internal 'pipe' and porous media 'Darcy' flow correlations. Combustion gas flow rates are calculated for the CFR on a per-linear inch basis and solved simultaneously with a detailed thermal-gas dynamic model of a local region of gas blow by (or splice fault). Effects of gas compressibility, friction and heat transfer are accounted for the model. Computational Fluid Dynamic (CFD) solutions of the fault regions are used to characterize the local flow field, quantify the amount of free jet spreading and assist in the determination of impingement film coefficients on the nozzle housings. Gas to wall heat transfer is simulated by a large thermal finite element grid of the local structure. The employed numerical technique loosely couples the FE (Finite Element) solution with the gas dynamics solution of the faulted region. All free constants that appear in the governing equations are calibrated by hot fire sub-scale test. The calibrated model is used to make flight predictions using motor aft end environments and timelines. Model results indicate that CFR barrier systems provide a near 'vented joint' style of pressurization. Hypothetical fault conditions considered in this study (blow by, splice defect) are relatively benign in terms of overall heating to nozzle metal housing structures.

  11. Analytical method for thermal stress analysis of plasma facing materials

    International Nuclear Information System (INIS)

    You, J.H.; Bolt, H.

    2001-01-01

    The thermo-mechanical response of plasma facing materials (PFMs) to heat loads from the fusion plasma is one of the crucial issues in fusion technology. In this work, a fully analytical description of the thermal stress distribution in armour tiles of plasma facing components is presented which is expected to occur under typical high heat flux (HHF) loads. The method of stress superposition is applied considering the temperature gradient and thermal expansion mismatch. Several combinations of PFMs and heat sink metals are analysed and compared. In the framework of the present theoretical model, plastic flow and the effect of residual stress can be quantitatively assessed. Possible failure features are discussed

  12. Analytical method for thermal stress analysis of plasma facing materials

    Science.gov (United States)

    You, J. H.; Bolt, H.

    2001-10-01

    The thermo-mechanical response of plasma facing materials (PFMs) to heat loads from the fusion plasma is one of the crucial issues in fusion technology. In this work, a fully analytical description of the thermal stress distribution in armour tiles of plasma facing components is presented which is expected to occur under typical high heat flux (HHF) loads. The method of stress superposition is applied considering the temperature gradient and thermal expansion mismatch. Several combinations of PFMs and heat sink metals are analysed and compared. In the framework of the present theoretical model, plastic flow and the effect of residual stress can be quantitatively assessed. Possible failure features are discussed.

  13. Thermal Damage Detection and Characterization in Porous Materials

    Science.gov (United States)

    2011-11-30

    Thermal Damage Detection and Characterization in Porous Materials H.T. Banks ∗ and Amanda Keck Criner† Center for Research in Scientific Computation...methods described in [3], which are denoted Ωi with boundaries ∂Ωi for i = 1, 2 . . . nr. The undamaged perforated domain Ω is given by Ω̂ \\ (∪ nri =1Ωi... Banks , Brittany Boudreaux, Amanda Keck Criner, Krista Foster, Cerena Uttal, Thomas Vogel, and William P. Winfree, Thermal based damage detection in porous

  14. Low-Thermal-Conductivity Pyrochlore Oxide Materials Developed for Advanced Thermal Barrier Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dong-Ming

    2005-01-01

    When turbine engines operate at higher temperatures, they consume less fuel, have higher efficiencies, and have lower emissions. The upper-use temperatures of the base materials (superalloys, silicon-based ceramics, etc.) used for the hot-section components of turbine engines are limited by the physical, mechanical, and corrosion characteristics of these materials. Thermal barrier coatings (TBCs) are applied as thin layers on the surfaces of these materials to further increase the operating temperatures. The current state-of-the-art TBC material in commercial use is partially yttria-stabilized zirconia (YSZ), which is applied on engine components by plasma spraying or by electron-beam physical vapor deposition. At temperatures higher than 1000 C, YSZ layers are prone to sintering, which increases thermal conductivity and makes them less effective. The sintered and densified coatings can also reduce thermal stress and strain tolerance, which can reduce the coating s durability significantly. Alternate TBC materials with lower thermal conductivity and better sintering resistance are needed to further increase the operating temperature of turbine engines.

  15. Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management

    International Nuclear Information System (INIS)

    Wu, Weixiong; Zhang, Guoqing; Ke, Xiufang; Yang, Xiaoqing; Wang, Ziyuan; Liu, Chenzhen

    2015-01-01

    Highlights: • A kind of composite phase change material board (PCMB) is prepared and tested. • PCMB presents a large thermal storage capacity and enhanced thermal conductivity. • PCMB displays much better cooling effect in comparison to natural air cooling. • PCMB presents different cooling characteristics in comparison to ribbed radiator. - Abstract: A kind of phase change material board (PCMB) was prepared for use in the thermal management of electronics, with paraffin and expanded graphite as the phase change material and matrix, respectively. The as-prepared PCMB presented a large thermal storage capacity of 141.74 J/g and enhanced thermal conductivity of 7.654 W/(m K). As a result, PCMB displayed much better cooling effect in comparison to natural air cooling, i.e., much lower heating rate and better uniformity of temperature distribution. On the other hand, compared with ribbed radiator technology, PCMB also presented different cooling characteristics, demonstrating that they were suitable for different practical application

  16. INVESTIGATION OF THERMAL AND NON-THERMAL INTERACTIONS OF MICROWAVES WITH MATERIALS AND MICROWAVE CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Soner KUŞLU

    2002-03-01

    Full Text Available The use of microwaves in industry has generated interest recently as an alternative to classic thermal heating because of the drastic reduction in the processing time. In spite of the fact that there is a wide application of microwaves, the interaction mechanism between microwaves and materials has not been well understood. Nowadays, the fact that there is a debate on the alternative use of microwaves is on not the dielectric heating which is well known but microwave specific effect. In this article there are reports which show similar kinetic in both microwave and classic thermal methods at similar temperature and simple dielectric heating of materials under microwaves conditions. There are also reports which show a clear reaction rate enhancement by microwave radiation compared to the thermal method under similar reactions conditions and temperatures indicating microwave specific effect. In addition, the study on the effects of microwaves on chemical reactions and hypothesis associated with the microwave effects will discuss.

  17. Influence of thermal stress on marginal integrity of restorative materials

    Directory of Open Access Journals (Sweden)

    Maximiliano Sérgio Cenci

    2008-04-01

    Full Text Available The aim of this study was to evaluate the influence of thermal stress on the marginal integrity of restorative materials with different adhesive and thermal properties. Three hundred and sixty Class V cavities were prepared in buccal and lingual surfaces of 180 bovine incisors. Cervical and incisal walls were located in dentin and enamel, respectively. Specimens were restored with resin composite (RC; glass ionomer (GI or amalgam (AM, and randomly assigned to 18 groups (n=20 according to the material, number of cycles (500 or 1,000 cycles and dwell time (30 s or 60 s. Dry and wet specimens served as controls Specimens were immersed in 1% basic fuchsine solution (24 h, sectioned, and microleakage was evaluated under x40 magnification. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests: Thermal cycling regimens increased leakage in all AM restorations (p<0.05 and its effect on RC and GI restorations was only significant when a 60-s dwell time was used (p<0.05. Marginal integrity was more affected in AM restorations under thermal cycling stress, whereas RC and GI ionomer restoration margins were only significantly affected only under longer dwell times.

  18. Nanoengineered Thermal Materials Based on Carbon Nanotube Array Composites

    Science.gov (United States)

    Li, Jun; Meyyappan, Meyya; Dangelo, Carols

    2012-01-01

    State-of-the-art integrated circuits (ICs) for microprocessors routinely dissipate power densities on the order of 50 W/cm2. This large power is due to the localized heating of ICs operating at high frequencies and must be managed for future high-frequency microelectronic applications. As the size of components and devices for ICs and other appliances becomes smaller, it becomes more difficult to provide heat dissipation and transport for such components and devices. A thermal conductor for a macro-sized thermal conductor is generally inadequate for use with a microsized component or device, in part due to scaling problems. A method has been developed for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler-composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place, and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

  19. A theoretical analysis of local thermal equilibrium in fibrous materials

    Directory of Open Access Journals (Sweden)

    Tian Mingwei

    2015-01-01

    Full Text Available The internal heat exchange between each phase and the Local Thermal Equilibrium (LTE scenarios in multi-phase fibrous materials are considered in this paper. Based on the two-phase heat transfer model, a criterion is proposed to evaluate the LTE condition, using derived characteristic parameters. Furthermore, the LTE situations in isothermal/adiabatic boundary cases with two different heat sources (constant heat flux and constant temperature are assessed as special transient cases to test the proposed criterion system, and the influence of such different cases on their LTE status are elucidated. In addition, it is demonstrated that even the convective boundary problems can be generally estimated using this approach. Finally, effects on LTE of the material properties (thermal conductivity, volumetric heat capacity of each phase, sample porosity and pore hydraulic radius are investigated, illustrated and discussed in our study.

  20. Advanced homogenization strategies in material modeling of thermally sprayed TBCs

    International Nuclear Information System (INIS)

    Bobzin, K.; Lugscheider, E.; Nickel, R.; Kashko, T.

    2006-01-01

    Thermal barrier coatings (TBC), obtained by atmospheric plasma spraying (APS), have a complex microstructure (lamellar, porous, micro-cracked). Process parameters take an influence on this microstructure. Two methods based on the homogenization for periodic structures are presented in this article. The methods are used to calculate the effective material behavior of APS-TBCs made of partially yttria stabilized zirconia (PYSZ) depending on the microstructure. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  1. Impact Testing of Orbiter Thermal Protection System Materials

    Science.gov (United States)

    Kerr, Justin

    2006-01-01

    This viewgraph presentation reviews the impact testing of the materials used in designing the shuttle orbiter thermal protection system (TPS). Pursuant to the Columbia Accident Investigation Board recommendations a testing program of the TPS system was instituted. This involved using various types of impactors in different sizes shot from various sizes and strengths guns to impact the TPS tiles and the Leading Edge Structural Subsystem (LESS). The observed damage is shown, and the resultant lessons learned are reviewed.

  2. The Strutjet Rocket Based Combined Cycle Engine

    Science.gov (United States)

    Siebenhaar, A.; Bulman, M. J.; Bonnar, D. K.

    1998-01-01

    The multi stage chemical rocket has been established over many years as the propulsion System for space transportation vehicles, while, at the same time, there is increasing concern about its continued affordability and rather involved reusability. Two broad approaches to addressing this overall launch cost problem consist in one, the further development of the rocket motor, and two, the use of airbreathing propulsion to the maximum extent possible as a complement to the limited use of a conventional rocket. In both cases, a single-stage-to-orbit (SSTO) vehicle is considered a desirable goal. However, neither the "all-rocket" nor the "all-airbreathing" approach seems realizable and workable in practice without appreciable advances in materials and manufacturing. An affordable system must be reusable with minimal refurbishing on-ground, and large mean time between overhauls, and thus with high margins in design. It has been suggested that one may use different engine cycles, some rocket and others airbreathing, in a combination over a flight trajectory, but this approach does not lead to a converged solution with thrust-to-mass, specific impulse, and other performance and operational characteristics that can be obtained in the different engines. The reason is this type of engine is simply a combination of different engines with no commonality of gas flowpath or components, and therefore tends to have the deficiencies of each of the combined engines. A further development in this approach is a truly combined cycle that incorporates a series of cycles for different modes of propulsion along a flight path with multiple use of a set of components and an essentially single gas flowpath through the engine. This integrated approach is based on realizing the benefits of both a rocket engine and airbreathing engine in various combinations by a systematic functional integration of components in an engine class usually referred to as a rocket-based combined cycle (RBCC) engine

  3. Production of Composite Ceramic Material for Thermal Spraying

    OpenAIRE

    Оковитый, В. А.; Пантелеенко, Ф. И.; Оковитый, В. В.; Асташинский, В. М.

    2017-01-01

    A composite ceramic material has been developed for thermal spraying that permits to increase wear resistance due to introduction of high-chromium steel and molybdenum in its structure, to obtain optimum porosity in the starting charge material while synthesizing  FeCrMo – MoS2/CaF2/С – TiC compositions,  to improve technological parameters of powders and thereby increase coefficient of powder usage in spraying, to reduce cost of wear-resistant coating technology. The paper presents character...

  4. Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dongming

    2006-01-01

    Doped pyrochlore oxides of a type described below are under consideration as alternative materials for high-temperature thermal-barrier coatings (TBCs). In comparison with partially-yttria-stabilized zirconia (YSZ), which is the state-of-the-art TBC material now in commercial use, these doped pyrochlore oxides exhibit lower thermal conductivities, which could be exploited to obtain the following advantages: For a given difference in temperature between an outer coating surface and the coating/substrate interface, the coating could be thinner. Reductions in coating thicknesses could translate to reductions in weight of hot-section components of turbine engines (e.g., combustor liners, blades, and vanes) to which TBCs are typically applied. For a given coating thickness, the difference in temperature between the outer coating surface and the coating/substrate interface could be greater. For turbine engines, this could translate to higher operating temperatures, with consequent increases in efficiency and reductions in polluting emissions. TBCs are needed because the temperatures in some turbine-engine hot sections exceed the maximum temperatures that the substrate materials (superalloys, Si-based ceramics, and others) can withstand. YSZ TBCs are applied to engine components as thin layers by plasma spraying or electron-beam physical vapor deposition. During operation at higher temperatures, YSZ layers undergo sintering, which increases their thermal conductivities and thereby renders them less effective as TBCs. Moreover, the sintered YSZ TBCs are less tolerant of stress and strain and, hence, are less durable.

  5. Metallic Nanocomposites as Next-Generation Thermal Interface Materials

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xuhui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, Charles C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagabandi, Nirup [Texas A& M University; Oh, Jun Kyun [Texas A& M University; Akbulut, Mustafa [Texas A& M University; Yegin, Cengiz [Texas A& M University

    2017-07-27

    Thermal interface materials (TIMs) are an integral and important part of thermal management in electronic devices. The electronic devices are becoming more compact and powerful. This increase in power processed or passing through the devices leads to higher heat fluxes and makes it a challenge to maintain temperatures at the optimal level during operation. Herein, we report a free standing nanocomposite TIM in which boron nitride nanosheets (BNNS) are uniformly dispersed in copper matrices via an organic linker, thiosemicarbazide. Integration of these metal-organic-inorganic nanocomposites was made possible by a novel electrodeposition technique where the functionalized BNNS (f-BNNS) experience the Brownian motion and reach the cathode through diffusion, while the nucleation and growth of the copper on the cathode occurs via the electrochemical reduction. Once the f-BNNS bearing carbonothioyl/thiol groups on the terminal edges come into the contact with copper crystals, the chemisorption reaction takes place. We performed thermal, mechanical, and structural characterization of these nanocomposites using scanning electron microcopy (SEM), diffusive laser flash (DLF) analysis, phase-sensitive transient thermoreflectence (PSTTR), and nanoindentation. The nanocomposites exhibited a thermal conductivity ranging from 211 W/mK to 277 W/mK at a filler mass loading of 0-12 wt.percent. The nanocomposites also have about 4 times lower hardness as compared to copper, with values ranging from 0.27 GPa to 0.41 GPa. The structural characterization studies showed that most of the BNNS are localized at grain boundaries - which enable efficient thermal transport while making the material soft. PSTTR measurements revealed that the synergistic combinations of these properties yielded contact resistances on the order of 0.10 to 0.13 mm2K/W, and the total thermal resistance of 0.38 to 0.56 mm2K/W at bondline thicknesses of 30-50 um. The coefficient of thermal expansion (CTE) of the

  6. Metallic Nanocomposites as Next-Generation Thermal Interface Materials: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xuhui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, Charles C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagabandi, Nirup [Texas A& M University; Oh, Jun K. [Texas A& M University; Akbulut, Mustafa [Texas A& M University; Yegin, Cengiz [Texas A& M University

    2017-09-14

    Thermal interface materials (TIMs) are an integral and important part of thermal management in electronic devices. The electronic devices are becoming more compact and powerful. This increase in power processed or passing through the devices leads to higher heat fluxes and makes it a challenge to maintain temperatures at the optimal level during operation. Herein, we report a free standing nanocomposite TIM in which boron nitride nanosheets (BNNS) are uniformly dispersed in copper matrices via an organic linker, thiosemicarbazide. Integration of these metal-organic-inorganic nanocomposites was made possible by a novel electrodeposition technique where the functionalized BNNS (f-BNNS) experience the Brownian motion and reach the cathode through diffusion, while the nucleation and growth of the copper on the cathode occurs via the electrochemical reduction. Once the f-BNNS bearing carbonothioyl/thiol groups on the terminal edges come into the contact with copper crystals, the chemisorption reaction takes place. We performed thermal, mechanical, and structural characterization of these nanocomposites using scanning electron microcopy (SEM), diffusive laser flash (DLF) analysis, phase-sensitive transient thermoreflectence (PSTTR), and nanoindentation. The nanocomposites exhibited a thermal conductivity ranging from 211 W/mK to 277 W/mK at a filler mass loading of 0-12 wt.percent. The nanocomposites also have about 4 times lower hardness as compared to copper, with values ranging from 0.27 GPa to 0.41 GPa. The structural characterization studies showed that most of the BNNS are localized at grain boundaries - which enable efficient thermal transport while making the material soft. PSTTR measurements revealed that the synergistic combinations of these properties yielded contact resistances on the order of 0.10 to 0.13 mm2K/W, and the total thermal resistance of 0.38 to 0.56 mm2K/W at bondline thicknesses of 30-50 um. The coefficient of thermal expansion (CTE) of the

  7. Testing of High Thermal Cycling Stability of Low Strength Concrete as a Thermal Energy Storage Material

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2016-09-01

    Full Text Available Concrete has the potential to become a solution for thermal energy storage (TES integrated in concentrating solar power (CSP systems due to its good thermal and mechanical properties and low cost of material. In this study, a low strength concrete (C20 is tested at high temperatures up to 600 °C. Specimens are thermally cycled at temperatures in the range of 400–300 °C, 500–300 °C, and 600–300 °C, which TES can reach in operation. For comparison, specimens also cycled at temperature in the range of 400–25 °C (room temperature, 500–25 °C, and 600–25 °C. It is found from the test results that cracks are not observed on the surfaces of concrete specimens until the temperature is elevated up to 500 °C. There is mechanical deterioration of concrete after exposure to high temperature, especially to high thermal cycles. The residual compressive strength of concrete after 10 thermal cycles between 600 °C and 300 °C is about 58.3%, but the specimens remain stable without spalling, indicating possible use of low strength concrete as a TES material.

  8. Applications of graphite-enabled phase change material composites to improve thermal performance of cementitious materials

    Science.gov (United States)

    Li, Mingli; Lin, Zhibin; Wu, Lili; Wang, Jinhui; Gong, Na

    2017-11-01

    Enhancing the thermal efficiency to decrease the energy consumption of structures has been the topic of much research. In this study, a graphite-enabled microencapsulated phase change material (GE-MEPCM) was used in the production of a novel thermal energy storage engineered cementitious composite feathering high heat storage capacity and enhanced thermal conductivity. The surface morphology and particle size of the microencapsulated phase change material (MEPCM) were investigated by scanning electron microscopy (SEM). Thermal properties of MEPCM was determined using differential scanning calorimetry (DSC). In addition, thermal and mechanical properties of the cementitious mortar with different admixtures were explored and compared with those of a cementitious composite. It was shown that the latent heat of MEPCM was 162 J/g, offering much better thermal energy storage capacity to the cementitious composite. However, MEPCM was found to decrease the thermal conductivity of the composite, which can be effectively solved by adding natural graphite (NG). Moreover, the incorporation of MEPCM has a certain decrease in the compressive strength, mainly due to the weak interfaces between MEPCM and cement matrix.

  9. Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage

    International Nuclear Information System (INIS)

    Fuensanta, Mónica; Paiphansiri, Umaporn; Romero-Sánchez, María Dolores; Guillem, Celia; López-Buendía, Ángel M.; Landfester, Katharina

    2013-01-01

    Highlights: • A paraffin wax RT80 was encapsulated in styrene–butyl acrylate copolymer as polymer shell using miniemulsion polymerization process to obtain a novel nanoencapsulated PCM with 80 °C melting temperature. • Nano-PCMs have high compact structure, spherical morphology and thermal stability. • The nano-PCMs have potential applications as thermal energy storage materials. - Abstract: A novel nanoencapsulation of a paraffine type phase change material, RT80, in a styrene–butyl acrylate copolymer shell using the miniemulsion polymerization process was carried out. General characteristics of the RT80 nanoparticles in terms of thermal properties, morphology, chemical composition and particle size distribution were characterized by Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Dynamic Light Scattering (DLS). The influence of different monomers (styrene, butyl acrylate) and the surfactant/paraffin mass ratios on nanoparticles properties such as thermal capacity, particle size and morphology were systematically investigated. In all cases studied, encapsulation efficiency was close to 80 wt% with a particle size distribution between 52 and 112 nm and regular spherical shape and uniform structure. The amount of encapsulated paraffin achieved was comprised between 8 and 20%. Melting and crystallization heats were found to be approximately 5–25 J g −1 , mainly depending on surfactant/paraffin mass ratio. Melting temperature of RT80 nanoparticles slightly decreased (1–7 °C) respect to the raw RT80. In addition, the encapsulated RT80 nanoparticles show thermal stability even after 200 thermal (heat-cooling) cycles

  10. Thermal stresses in functionally graded materials caused by a laser thermal shock

    Science.gov (United States)

    Elperin, T.; Rudin, G.

    Mathematical simulation of a thermal shock method for reliability testing of functionally graded material (FGM) is performed with the end to determine operating parameters of the testing device (power of a laser, laser beam radius, duration of heating) and to investigate the effect of the composition of FGM on a magnitude of thermal stresses in a coating. An analytical method for solution of the thermal elasticity problem is developed whereby the approach of a multilayer plate is used for determining temperature and thermal stresses distributions in a coating. We considered the limiting case of the obtained solution when the thickness of a layer is infinitesimally small and the number of layers tends to infinity. This procedure allowed us to obtain the thermal stresses distribution in a FGM coating. The results for the FGM coating composed of WC (tungsten carbide) ceramics and HS-steel are presented. It is showed that variation of the volume content of ceramics strongly affects thermal stresses in a coating and they decrease significantly in the case of the uniform spatial distribution of ceramics.

  11. Newly developed foam ceramic body shows promise as thermal insulation material at 3000 deg F

    Science.gov (United States)

    Blocker, E. W.; Paul, R. D.

    1967-01-01

    Optimized zirconia foam ceramic body shows promise for use as a thermal insulation material. The insulating media displays low density and thermal conductivity, good thermal shock resistance, high melting point, and mechanical strength.

  12. Investigation of gold as a material for thermal radiation shielding

    Science.gov (United States)

    Munshi, Amit Harenkumar

    CdS/CdTe thin film solar cells technology is one of the fastest growing carbon neutral energy sources in the world today. Manufacturing of CdS/CdTe solar modules is carried out at temperature in the range of 620350°C under a vacuum of 40 millitorr using a Heated Pocket Deposition (HPD) system in the materials engineering laboratory. Since this system operates in vacuum, majority of the heat loss is due to thermal radiation. The concept here is to conserve the heat by reflecting the infrared radiation back into the deposition system thus increasing the thermal efficiency. Various metals may be used but calculations show that using a Gold thin film mirror can effectively reflect almost 97% of the incident radiation, thus conserving energy required for the manufacturing process. However, a phenomenon called thermal grooving or island formation inhibits its use. Thermal grooving occurs when the stress concentration at the grain boundaries causes grain separation. This phenomenon is observed in thin gold films that are exposed to a temperature in excess of 350°C for over 3 to 5 hours. In this study, these films are exposed to temperature upto 620350°C for cycles as long as 200 hours. The goal of this research is to explore the solutions for elimination of the phenomenon of thermal grooving and thus extract maximum life out of these thin gold films for conservation of heat. After carefully exploring literature on past research and conducting experiments it was found that within the range of the films that were tested, a 2000 A350° film with a 150 A350° of Indium underlay showed the best performance after thermal annealing and testing.

  13. Bulk Expansion Effect of Gallium-Based Thermal Interface Material

    Science.gov (United States)

    Ding, Yujie; Deng, Zhongshan; Cai, Changli; Yang, Zejun; Yang, Yingbao; Lu, Jinrong; Gao, Yunxia; Liu, Jing

    2017-06-01

    The bulk expansion effect of gallium-based thermal interface materials (GBTIMs) was experimentally disclosed and clarified for the first time. GBTIMs were prepared under low (26 %) and high (96 %) relative humidity for a short (2 h) and long (5 h) time periods. An evident volume expansion phenomenon was observed with adequate humidity. Higher humidity resulted in bigger expansion rate and expansion coefficient. The expansion coefficient could reach surprisingly large value of 1.5 for GBTIMs under 96% relative humidity. Assuming that the volume change was related to chemical reactions in the mixture, SEM and XRD were adopted to determine the structure and phase components of the samples. The gases produced in the expansion process were detected with gas chromatography and a large amount of hydrogen was found. The results indicated that the hydrogen produced by the reaction between gallium oxide \\hbox {Ga}2\\hbox {O} and water in GBTIMs caused the expansion effect. The corroded GBTIMs were mainly composed of gallium oxide \\hbox {Ga}2\\hbox {O}3 and became loose and porous solids after expansion. Thermal conductivity decreased dramatically after the expansion process due to the composition and structure changes. From the view point of application, the ambient humidity and oxidation degree must be controlled during preparation of such thermal interface material to avoid its bulk expansion effect.

  14. Inductive thermal plasma generation applied for the materials coating

    International Nuclear Information System (INIS)

    Pacheco, J.; Pena, R.; Cota, G.; Segovia, A.; Cruz, A.

    1996-01-01

    The coatings by thermal plasma are carried out introducing particles into a plasma system where they are accelerated and melted (total or partially) before striking the substrate to which they adhere and are suddenly cooled down. The nature of consolidation and solidification of the particles allows to have control upon the microstructure of the deposit. This technique is able to deposit any kind of material that is suitable to be merged (metal, alloy, ceramic, glass) upon any type of substrate (metal, graphite, ceramic, wood) with an adjustable thickness ranging from a few microns up to several millimeters. The applications are particularly focused to the coating of materials in order to improve their properties of resistance to corrosion, thermal and mechanical efforts as well as to preserve the properties of the so formed compound. In this work the electromagnetic induction phenomenon in an ionized medium by means of electric conductivity, is described. Emphasis is made on the devices and control systems employed in order to generate the thermal plasma and in carrying out the coatings of surfaces by the projection of particles based on plasma

  15. Standard Practice for Evaluating Solar Absorptive Materials for Thermal Applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice covers a testing methodology for evaluating absorptive materials used in flat plate or concentrating collectors, with concentrating ratios not to exceed five, for solar thermal applications. This practice is not intended to be used for the evaluation of absorptive surfaces that are (1) used in direct contact with, or suspended in, a heat-transfer liquid, (that is, trickle collectors, direct absorption fluids, etc.); (2) used in evacuated collectors; or (3) used in collectors without cover plate(s). 1.2 Test methods included in this practice are property measurement tests and aging tests. Property measurement tests provide for the determination of various properties of absorptive materials, for example, absorptance, emittance, and appearance. Aging tests provide for exposure of absorptive materials to environments that may induce changes in the properties of test specimens. Measuring properties before and after an aging test provides a means of determining the effect of the exposure. 1.3 Th...

  16. Experimental research of thermal loading of the rocket payload fairing element during the atmospheric phase of the descent trajectory

    Science.gov (United States)

    Trushlyakov, V.; Iordan, Yu; Davydovich, D.; Zharikov, K.; Dron, M.

    2018-01-01

    The thermal loading physical simulation in the experimental wind tunnel on the design element of the payload fairing made of carbon fiber was done. The experimental study is given in the speed range below 70 m/s, which corresponds to the interval of heights of the descent trajectory of the payload fairing half below 10 km. The values of heat transfer coefficient are obtained. The analysis of the results is carried out.

  17. Antioxidant-Based Phase-Change Thermal Interface Materials with High Thermal Stability

    Science.gov (United States)

    Aoyagi, Yasuhiro; Chung, D. D. L.

    2008-04-01

    This work provides phase-change thermal interface materials (TIMs) with high thermal stability and high heat of fusion. They are based on antioxidants mainly in the form of hydrocarbons with linear segments. The thermal stability is superior to paraffin wax and four commercial phase-change materials (PCMs). The use of 98.0 wt.% thiopropionate antioxidant (SUMILIZER TP-D) with 2.0 wt.% sterically half-hindered phenolic antioxidant (GA80) as the matrix and the use of 16 vol.% boron nitride particles as the solid component give a PCM with a 100°C lifetime indicator of 5.3 years, in contrast to 0.95 year or less for the commercial PCMs. The heat of fusion is much higher than those of commercial PCMs; the values for antioxidants with nonbranched molecular structures exceed that of wax; the value for one with a branched structure is slightly below that of wax. The phase-change properties are degraded by heating at 150°C much less than those of the commercial PCMs. The stability of the heat of fusion upon phase-change cycling is also superior. The viscosity is essentially unaffected by heating at 150°C. Commercial PCMs give slightly lower values of the thermal contact conductance for the case of rough (12 μm) mating surfaces, in spite of the lower values of the bond-line thickness.

  18. Current Situation Development of Lightweight Ablation Materials for Thermal Protection

    Directory of Open Access Journals (Sweden)

    XUE Hua- fei

    2017-02-01

    Full Text Available In view of demand of lighter thermal protection system for our national space vehicle,recent development of investigation and practical application of lightweight thermal protection ablation materials are summarized systematically at home and abroad,in which the silicon or resin reinforced with honeycomb structural reinforcement and resin impregnated fibrous substrate ablators are included,focuses On silicone resin reinforced with glass,silica or carbon fiber/phenolic honeycomb as well as silicon,phenolic and Silicone Impregnated Reusable tendency Ceramic Ablator(SIRCA and Phenolic Impregnated Carbon Ablator( in the future of aboard lightweight ablators is proposed,which can PICA,finally the development directly borrow or simply draw inspiration for our country in this field.

  19. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.

    2009-01-01

    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  20. Electric vehicles batteries thermal management systems employing phase change materials

    Science.gov (United States)

    Ianniciello, Lucia; Biwolé, Pascal Henry; Achard, Patrick

    2018-02-01

    Battery thermal management is necessary for electric vehicles (EVs), especially for Li-ion batteries, due to the heat dissipation effects on those batteries. Usually, air or coolant circuits are employed as thermal management systems in Li-ion batteries. However, those systems are expensive in terms of investment and operating costs. Phase change materials (PCMs) may represent an alternative which could be cheaper and easier to operate. In fact, PCMs can be used as passive or semi-passive systems, enabling the global system to sustain near-autonomous operations. This article presents the previous developments introducing PCMs for EVs battery cooling. Different systems are reviewed and solutions are proposed to enhance PCMs efficiency in those systems.

  1. Study of improving the thermal response of a construction material containing a phase change material

    Science.gov (United States)

    Laaouatni, A.; Martaj, N.; Bennacer, R.; Elomari, M.; El Ganaoui, M.

    2016-09-01

    The use of phase change materials (PCMs) for improving the thermal comfort in buildings has become an attractive application. This solution contributes to increasing the thermal inertia of the building envelope and reducing power consumption. A building element filled with a PCM and equipped with ventilation tubes is proposed, both for increasing inertia and contributing to refreshing building envelope. A numerical simulation is conducted by the finite element method in COMSOL Multiphysics, which aims to test the thermal behaviour of the developed solution. An experimental study is carried out on a concrete block containing a PCM with ventilation tubes. The objective is to see the effect of PCM coupled with ventilation on increasing the inertia of the block. The results show the ability of this new solution to ensure an important thermal inertia of a building.

  2. Studies on thermal properties and thermal control effectiveness of a new shape-stabilized phase change material with high thermal conductivity

    International Nuclear Information System (INIS)

    Cheng Wenlong; Liu Na; Wu Wanfan

    2012-01-01

    In order to overcome the difficulty of conventional phase change materials (PCMs) in packaging, the shape-stabilized PCMs are proposed to be used in the electronic device thermal control. However, the conventional shape-stabilized PCMs have the drawback of lower thermal conductivity, so a new shape-stabilized PCM with high thermal conductivity, which is suitable for thermal control of electronic devices, is prepared. The thermal properties of n-octadecane-based shape-stabilized PCM are tested and analyzed. The heat storage/release performance is studied by numerical simulation. Its thermal control effect for electronic devices is also discussed. The results show that the expanded graphite (EG) can greatly improve the thermal conductivity of the material with little effect on latent heat and phase change temperature. When the mass fraction of EG is 5%, thermal conductivity has reached 1.76 W/(m K), which is over 4 times than that of the original one. Moreover, the material has larger latent heat and good thermal stability. The simulation results show that the material can have good heat storage/release performance. The analysis of the effect of thermal parameters on thermal control effect for electronic devices provides references to the design of phase change thermal control unit. - Highlights: ► A new shape-stabilized PCM with higher thermal conductivity is prepared. ► The material overcomes the packaging difficulty of traditional PCMs used in thermal control unit. ► The EG greatly improves thermal conductivity with little effect on latent heat. ► The material has high thermal stability and good heat storage/release performance. ► The effectiveness of the material for electronic device thermal control is proved.

  3. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    Science.gov (United States)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-06-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO2, TiO2, SiO2) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 - 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm.

  4. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    International Nuclear Information System (INIS)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-01-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO 2 , TiO 2 , SiO 2 ) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO 2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 – 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm. (paper)

  5. Thermal Conductivity of Ceramic Thermal Barrier and Environmental Barrier Coating Materials

    Science.gov (United States)

    Zhu, Dong-Ming; Bansal, Narottam P.; Lee, Kang N.; Miller, Robert A.

    2001-01-01

    Thermal barrier and environmental barrier coatings (TBC's and EBC's) have been developed to protect metallic and Si-based ceramic components in gas turbine engines from high temperature attack. Zirconia-yttria based oxides and (Ba,Sr)Al2Si2O8(BSAS)/mullite based silicates have been used as the coating materials. In this study, thermal conductivity values of zirconia-yttria- and BSAS/mullite-based coating materials were determined at high temperatures using a steady-state laser heat flux technique. During the laser conductivity test, the specimen surface was heated by delivering uniformly distributed heat flux from a high power laser. One-dimensional steady-state heating was achieved by using thin disk specimen configuration (25.4 mm diam and 2 to 4 mm thickness) and the appropriate backside air-cooling. The temperature gradient across the specimen thickness was carefully measured by two surface and backside pyrometers. The thermal conductivity values were thus determined as a function of temperature based on the 1-D heat transfer equation. The radiation heat loss and laser absorption corrections of the materials were considered in the conductivity measurements. The effects of specimen porosity and sintering on measured conductivity values were also evaluated.

  6. 24 CFR 3280.207 - Requirements for foam plastic thermal insulating materials.

    Science.gov (United States)

    2010-04-01

    ... mineral fiber insulation or an equivalent thermal barrier; or (3) The foam plastic insulating material has... thermal insulating materials. 3280.207 Section 3280.207 Housing and Urban Development Regulations Relating... SAFETY STANDARDS Fire Safety § 3280.207 Requirements for foam plastic thermal insulating materials. (a...

  7. Analysis of carbon based materials under fusion relevant thermal loads

    International Nuclear Information System (INIS)

    Compan, Jeremie Saint-Helene

    2008-01-01

    Carbon based materials (CBMs) are used in fusion devices as plasma facing materials for decades. They have been selected due to the inherent advantages of carbon for fusion applications. The main ones are its low atomic number and the fact that it does not melt but sublimate (above 3000 C) under the planned working conditions. In addition, graphitic materials retain their mechanical properties at elevated temperatures and their thermal shock resistance is one of the highest, making them suitable for thermal management purpose during long or extremely short heat pulses. Nuclear grade fine grain graphite was the prime form of CBM which was set as a standard but when it comes to large fusion devices created nowadays, thermo-mechanical constraints created during transient heat loads (few GW.m-2 can be deposited in few ms) are so high that carbon/carbon composites (so-called Carbon Fiber Composites (CFCs)) have to be utilized. CFCs can achieve superior thermal conductivity as well as mechanical properties than fine grain graphite. However, all the thermo-mechanical properties of CFCs are highly dependent on the loading direction as a consequence of the graphite structure. In this work, the background on the anisotropy of the graphitic structures but also on the production of fine grain graphite and CFCs is highlighted, showing the major principles which are relevant for the further understanding of the study. Nine advanced CBMs were then compared in terms of microstructure and thermo-mechanical properties. Among them, two fine grain graphites were considered as useful reference materials to allow comparing advantages reached by the developed CFCs. The presented microstructural investigation methods permitted to make statements which can be applied for CFCs presenting similarities in terms of fiber architecture. Determination of the volumetric percentage of the major sub-units of CFCs, i.e. laminates, felt layers or needled fiber groups, lead to a better understanding on

  8. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    expansion, zero thermal expansion, and negative thermal expansion. Assuming linear elasticity, it is shown that materials with effective negative thermal expansion coefficients can be obtained by mixing two phases with positive thermal expansion coefficients and void. We also show......We show how composites with extremal or unusual thermal expansion coefficients can be designed using a numerical topology optimization method. The composites are composed of two different material phases and void. The optimization method is illustrated by designing materials having maximum thermal...... that there is no mechanistic relationship between negative thermal expansion and negative Poisson's ratio....

  9. Workshop on technical assessment of industrial thermal insulation materials: summary

    International Nuclear Information System (INIS)

    Peterson, S.

    1976-07-01

    Over 80 participants representing 50 organizations met to discuss the report, Industrial Thermal Insulation--An Assessment, ORNL/TM-5283. Presentations on the performance of available materials, economic considerations, and measurement problems were followed by discussion. A final wrap-up session concluded that the report was valuable in pointing the direction for needed effort in the area, confirmed the indicated actions needed to further industrial application of insulation, and called for future meetings to continue the dialogue between the various facets of the industry

  10. Exercises in 80223 Numerical Modelling of Thermal Processing of Materials

    DEFF Research Database (Denmark)

    Frandsen, Jens Ole

    , guidelines are given on how to write the report which has to be handed in at the end of the course. The exercise book exists in a newer, updated version from 2000. The original copy is kept in the archives of TM on the ground floor of building 425. A copy of the exercise book can be made available...... by contacting the secretary on the ground floor of building 425. Please give the following number: TM 99.05 (TM = Thermal processing of Materials)...

  11. Mechanical Testing of Carbon Based Woven Thermal Protection Materials

    Science.gov (United States)

    Pham, John; Agrawal, Parul; Arnold, James O.; Peterson, Keith; Venkatapathy, Ethiraj

    2013-01-01

    Three Dimensional Woven thermal protection system (TPS) materials are one of the enabling technologies for mechanically deployable hypersonic decelerator systems. These materials have been shown capable of serving a dual purpose as TPS and as structural load bearing members during entry and descent operations. In order to ensure successful structural performance, it is important to characterize the mechanical properties of these materials prior to and post exposure to entry-like heating conditions. This research focuses on the changes in load bearing capacity of woven TPS materials after being subjected to arcjet simulations of entry heating. Preliminary testing of arcjet tested materials [1] has shown a mechanical degradation. However, their residual strength is significantly more than the requirements for a mission to Venus [2]. A systematic investigation at the macro and microstructural scales is reported here to explore the potential causes of this degradation. The effects of heating on the sizing (an epoxy resin coating used to reduce friction and wear during fiber handling) are discussed as one of the possible causes for the decrease in mechanical properties. This investigation also provides valuable guidelines for margin policies for future mechanically deployable entry systems.

  12. Development of Processing Techniques for Advanced Thermal Protection Materials

    Science.gov (United States)

    Selvaduray, Guna; Cox, Michael; Srinivasan, Vijayakumar

    1997-01-01

    Thermal Protection Materials Branch (TPMB) has been involved in various research programs to improve the properties and structural integrity of the existing aerospace high temperature materials. Specimens from various research programs were brought into the analytical laboratory for the purpose of obtaining and refining the material characterization. The analytical laboratory in TPMB has many different instruments which were utilized to determine the physical and chemical characteristics of materials. Some of the instruments that were utilized by the SJSU students are: Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), X-ray Diffraction Spectrometer (XRD), Fourier Transform-Infrared Spectroscopy (FTIR), Ultra Violet Spectroscopy/Visible Spectroscopy (UV/VIS), Particle Size Analyzer (PSA), and Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). The above mentioned analytical instruments were utilized in the material characterization process of the specimens from research programs such as: aerogel ceramics (I) and (II), X-33 Blankets, ARC-Jet specimens, QUICFIX specimens and gas permeability of lightweight ceramic ablators. In addition to analytical instruments in the analytical laboratory at TPMB, there are several on-going experiments. One particular experiment allows the measurement of permeability of ceramic ablators. From these measurements, physical characteristics of the ceramic ablators can be derived.

  13. Studies on compatibility of energetic materials by thermal methods

    Directory of Open Access Journals (Sweden)

    Maria Alice Carvalho Mazzeu

    2010-04-01

    Full Text Available The chemical compatibility of explosives, pyrotechnics and propellants with those materials is studied to evaluate potential hazards when in contact with other materials during production, storage and handling. Compatibility can be studied by several thermal methods as DSC (differential scanning calorimetry, TG (Thermogravimetry, VST (Vacuum stability test and others. The test methods and well defined criteria are the most important elements when a compatibility study is being accomplished. In this paper, the compatibility of two very important high explosives used in ammunition, RDX (Cyclo-1,3,5-trimethylene-2,4,6-trinitramine and HMX (Cyclotetramethylene tetranitramine was studied with the materials: fluoroelastomer (Viton and powdered aluminum (Al, using DSC and VST methods. The criteria to judge the compatibility between materials is based on a standardization agreement (STANAG 4147, 2001, and the final conclusion is that explosives and this materials are compatible, but in DSC it was observed that the peak of decomposition temperature of the admixture of RDX with Al decreased in 3º C and another peak appeared after the decomposition peak.

  14. Modeling the thermal characteristics of masonry mortar containing recycled materials

    Science.gov (United States)

    Laney, Morgan Gretchen

    As the building industry in the United States rapidly expands, the reuse of recycled demolition waste aggregates is becoming increasingly more important. Currently, the building industry is the largest consumer of natural resources. The constant use of raw virgin aggregate is resulting in depleting resources, lack of space for landfills, increasing costs, and heightened levels of pollution. The use of these recycled aggregates in building envelopes and the study of thermal properties are becoming a popular area of research in order to improve building energy usage. The construction of Zero Energy Buildings (ZEB) is encouraged by the United States government as a result of the unresolved finite resources and environmental pollution. The focus of this research is on the impact of using recycled demolition waste aggregates on thermal properties, including specific heat capacity and thermal conductivity, in masonry mortar applications. The new forms of aggregate were analyzed for efficiency and practical utilization in construction in seven locations across the United States by embedding the new material into the building envelope of a strip mall mercantile build model from the National Renewable Energy Laboratory (NREL) in the EnergyPlus Building Energy Simulation Program (BESP). It was determined that the recycled aggregate mortar mixtures performed as well as or better than the traditional mortar mix. Opportunities for future research in recycled aggregate mortar mixtures exist in a regional analysis, a regional recycled aggregate cost analysis, and a life cycled cost analysis (LCCA).

  15. Thermal Testing of Woven TPS Materials in Extreme Entry Environments

    Science.gov (United States)

    Gonzales, G.; Stackpoole, M.

    2014-01-01

    NASAs future robotic missions to Venus and outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of current mid density ablators (PICA or Avcoat). Therefore mission planners assume the use of a fully dense carbon phenolic heatshield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic (CP) is a robust TPS however its high density and thermal conductivity constrain mission planners to steep entries, high heat fluxes, high pressures and short entry durations, in order for CP to be feasible from a mass perspective. In 2012 the Game Changing Development Program in NASAs Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System to meet the needs of NASAs most challenging entry missions. The high entry conditions pose certification challenges in existing ground based test facilities. Recent updates to NASAs IHF and AEDCs H3 high temperature arcjet test facilities enable higher heatflux (2000 Wcm2) and high pressure (5 atm) testing of TPS. Some recent thermal tests of woven TPS will be discussed in this paper. These upgrades have provided a way to test higher entry conditions of potential outer planet and Venus missions and provided a baseline against carbon phenolic material. The results of these tests have given preliminary insight to sample configuration and physical recession profile characteristics.

  16. Effective Thermal Conductivity of Graphite Materials with Cracks

    Science.gov (United States)

    Pestchaanyi, S. E.; Landman, I. S.

    The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed in J. Linke et al. Fusion Eng. Design, in press, Bazyler et al., these proceedings. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.

  17. Correlation of physical properties of ceramic materials with resistance to fracture by thermal shock

    Science.gov (United States)

    Lidman, W G; Bobrowsky, A R

    1949-01-01

    An analysis is made to determine which properties of materials affect their resistance to fracture by thermal stresses.From this analysis, a parameter is evaluated that is correlated with the resistance of ceramic materials to fracture by thermal shock as experimentally determined. This parameter may be used to predict qualitatively the resistance of a material to fracture by thermal shock. Resistance to fracture by thermal shock is shown to be dependent upon the following material properties: thermal conductivity, tensile strength, thermal expansion, and ductility modulus. For qualitative prediction of resistance of materials to fracture by thermal shock, the parameter may be expressed as the product of thermal conductivity and tensile strength divided by the product of linear coefficient of thermal expansion and ductility modulus of the specimen.

  18. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    Science.gov (United States)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  19. The Thermal State Computational Research of the Low-Thrust Oxygen-Methane Gaseous-Propellant Rocket Engine in the Pulse Mode of Operation

    Directory of Open Access Journals (Sweden)

    O. A. Vorozheeva

    2014-01-01

    Full Text Available Currently promising development direction of space propulsion engineering is to use, as spacecraft controls, low-thrust rocket engines (RDTM on clean fuels, such as oxygen-methane. Modern RDTM are characterized by a lack regenerative cooling and pulse mode of operation, during which there is accumulation of heat energy to lead to the high thermal stress of RDTM structural elements. To get an idea about the thermal state of its elements, which further will reduce the number of fire tests is therefore necessary in the development phase of a new product. Accordingly, the aim of this work is the mathematical modeling and computational study of the thermal state of gaseous oxygen-methane propellant RDMT operating in pulse mode.In this paper we consider a model RDTM working on gaseous propellants oxygen-methane in pulse mode.To calculate the temperature field of the chamber wall of model RDMT under consideration is used the mathematical model of non-stationary heat conduction in a two-dimensional axisymmetric formulation that takes into account both the axial heat leakages and the nonstationary processes occurring inside the chamber during pulse operation of RDMT.As a result of numerical study of the thermal state of model RDMT, are obtained the temperature fields during engine operation based on convective, conductive, and radiative mechanisms of heat transfer from the combustion products to the wall.It is shown that the elements of flanges of combustion chamber of model RDMT act as heat sinks structural elements. Temperatures in the wall of the combustion chamber during the engine mode of operation are considered relatively low.Raised temperatures can also occur in the mixing head in the feeding area of the oxidant into the combustion chamber.During engine operation in the area forming the critical section, there is an intensive heating of a wall, which can result in its melting, which in turn will increase the minimum nozzle throat area and hence

  20. THERMLIB: a material property data library for thermal analysis of radioactive material transport casks

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    The paper describes an heat conduction data library and graphical program for analysis of radioactive material transport casks. More than 1000 of material data are compiled in the data library which was produced by Lawrence Livermore Laboratory. Thermal data such as, density, thermal conductivity, specific heat, phase-change or solid-state, transition temperature and latent heat have been tabulated. Using this data library, a data library processing program THERMLIB for thermal analysis has been developed. Main features of THERMLIB are as follows: (1) data have been tabulated against temperature, (2) more than 1000 material data are available, (3) it is capable of graphical representations for thermal data and (4) not only main frame computer but also work stations (OS UNIX) and personal computer (OS Windows) are available for use of THERMLIB. In the paper, brief illustration of data library is presented in the first section. The second section presents descriptions of structural data. The third section provides an user`s guide for computer program and input data for THERMLIB. (author)

  1. Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials

    International Nuclear Information System (INIS)

    Su, Di; Jia, Yuting; Alva, Guruprasad; Liu, Lingkun; Fang, Guiyin

    2017-01-01

    Highlights: • The dynamic model of photovoltaic–thermal collector with phase change material was developed. • The performances of photovoltaic–thermal collector are performed comparative analyses. • The performances of photovoltaic–thermal collector with phase change material were evaluated. • Upper phase change material mode can improve performances of photovoltaic–thermal collector. - Abstract: The operating conditions (especially temperature) of photovoltaic–thermal solar collectors have significant influence on dynamic performance of the hybrid photovoltaic–thermal solar collectors. Only a small percentage of incoming solar radiation can be converted into electricity, and the rest is converted into heat. This heat leads to a decrease in efficiency of the photovoltaic module. In order to improve the performance of the hybrid photovoltaic–thermal solar collector, we performed comparative analyses on a hybrid photovoltaic–thermal solar collector integrated with phase change material. Electrical and thermal parameters like solar cell temperature, outlet temperature of air, electrical power, thermal power, electrical efficiency, thermal efficiency and overall efficiency are simulated and analyzed to evaluate the dynamic performance of the hybrid photovoltaic–thermal collector. It is found that the position of phase change material layer in the photovoltaic–thermal collector has a significant effect on the performance of the photovoltaic–thermal collector. The results indicate that upper phase change material mode in the photovoltaic–thermal collector can significantly improve the thermal and electrical performance of photovoltaic–thermal collector. It is found that overall efficiency of photovoltaic–thermal collector in ‘upper phase change material’ mode is 10.7% higher than that in ‘no phase change material’ mode. Further, for a photovoltaic–thermal collector with upper phase change material, it is verified that 3 cm

  2. Thermal segregation of asphalt material in road repair

    Directory of Open Access Journals (Sweden)

    Juliana Byzyka

    2017-08-01

    Full Text Available This paper presents results from a field study of asphaltic pavement patching operations performed by three different contractors working in a total of ten sites. It forms part of an ongoing research programme towards improving the performance of pothole repairs. Thermal imaging technology was used to record temperatures of the patching material throughout the entire exercise, from the stage of material collection, through transportation to repair site, patch forming, and compaction. Practical complications occurring during patch repairs were also identified. It was found that depending on the weather conditions, duration of the travel and poor insulation of the transported hot asphalt mix, its temperature can drop as high as 116.6 °C over the period that the reinstatement team travel to the site and prepare the patch. This impacting is on the durability and performance of the executed repairs. Cold spots on the asphalt mat and temperature differentials between the new hot-fill asphalt mix and existing pavement were also identified as poorly compacted areas that were prone to premature failure. For example, over the five-minute period, the temperature at one point reduced by 33% whereas the temperatures of nearby areas decreased by 65% and 71%. A return visit to the repair sites, three months later, revealed that locations where thermal segregation was noted, during the patching operation, had failed prematurely.

  3. Thermal durability of modified Synroc material as reactor fuel matrix

    International Nuclear Information System (INIS)

    Kikuchi, Akira; Kanazawa, Hiroyuki; Togashi, Yoshihiro; Matumoto, Seiichiro; Nishino, Yasuharu; Ohwada, Isao; Nakata, Masahito; Amano, Hidetoshi; Mitamura, Hisayoshi

    1994-08-01

    A Synroc, a polyphase titanate ceramics composed of three mineral phases (perovskite, hollandite and zirconolite), has an excellent performance of immobilization of high level nuclear waste. A working group in the Department of Hot Laboratories paid special attention to this merit and started a development study on a LWR fuel named 'Waste Disposal Possible (WDP) Fuel', which has the two functions of a reactor fuel and a waste form. The present paper mainly describes thermal durability of a modified Synroc material, which is essentially important for applying the material to a fuel matrix. The two kinds of Synroc specimens, designated 'SM' as modified and 'SB' as a reference, were prepared by hot-pressing and annealed at 1200degC to 1500degC for 30 min in air. Unexpected and peculiar spherical voids were observed in the specimen SM at 1400degC and 1500degC, which caused the specimen swelling. The formation of the voids depends significantly on the existence of spherical precipitates seen in the as-fabricated specimen including latent micropores with high pressure. On the other hand, the heat treatment at 1500degC formed additional new phases, designated 'Phase A' for the specimen SB and 'Phase X' for SM. Phase A is a decomposition product of hollandite and Phase X a reaction product of Phase A and perovskite in the spherical voids. Furthermore, additional information and thermal properties examined are presented in Appendix 1 and Appendix 2, respectively. It was recognized that the modified Synroc specimen SM had excellent thermal properties. (author)

  4. Energy Consumption of Insulated Material Using Thermal Effect Analysis

    Directory of Open Access Journals (Sweden)

    Fadzil M. A.

    2017-01-01

    Full Text Available Wall is one of the structures elements that resist direct heat from the atmosphere. Modification on several structures is relevance to reduce filtrate thermal movement on wall. Insulation material seems to be suitable to be implemented since its purpose meets the heat resistance requirement. Insulation material applied as to generate positive impact in energy saving through reduction in total building energy consumption. Fiberglass is one of the insulation materials that can be used to insulate a space from heat and sound. Fiberglass is flammable insulation material with R Value rated of R-2.9 to R-3.8 which meets the requirement in minimizing heat transfer. Finite element software, ABAQUS v6.13 employed for analyze non insulated wall and other insulated wall with different wall thicknesses. The several calculations related to overall heat movement, total energy consumption per unit area of wall, life cycle cost analysis and determination of optimal insulation thickness is calculated due to show the potential of the implementation in minimize heat transfer and generate potential energy saving in building operation. It is hoped that the study can contribute to better understanding on the potential building wall retrofitting works in increasing building serviceability and creating potential benefits for building owner.

  5. A review of phase change materials for vehicle component thermal buffering

    International Nuclear Information System (INIS)

    Jankowski, Nicholas R.; McCluskey, F. Patrick

    2014-01-01

    Highlights: • A review of latent heat thermal energy storage for vehicle thermal load leveling. • Examined vehicle applications with transient thermal profiles from 0 to 800 °C. • >700 materials from over a dozen material classes examined for the applications. • Recommendations made for future application of high power density materials. - Abstract: The use of latent heat thermal energy storage for thermally buffering vehicle systems is reviewed. Vehicle systems with transient thermal profiles are classified according to operating temperatures in the range of 0–800 °C. Thermal conditions of those applications are examined relative to their impact on thermal buffer requirements, and prior phase change thermal enhancement studies for these applications are discussed. In addition a comprehensive overview of phase change materials covering the relevant operating range is given, including selection criteria and a detailed list of over 700 candidate materials from a number of material classes. Promising material candidates are identified for each vehicle system based on system temperature, specific and volumetric latent heat, and thermal conductivity. Based on the results of previous thermal load leveling efforts, there is the potential for making significant improvements in both emissions reduction and overall energy efficiency by further exploration of PCM thermal buffering on vehicles. Recommendations are made for further material characterization, with focus on the need for improved data for metallic and solid-state phase change materials for high energy density applications

  6. Novel Material Systems and Methodologies for Transient Thermal Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Advancements in design and development of evaluation methodologies were made in transient thermal testing. Development of multifunctional and thermally switchable...

  7. Evaluation of different measurements for effective thermal conductivity of fibrous materials

    Directory of Open Access Journals (Sweden)

    Tian Ming-Wei

    2014-01-01

    Full Text Available Effective thermal conductivity is generally recognized as the intrinsic factor to reveal the thermal responses of fibrous materials. Here, two typical measurements, the step-wise transient method and the guarded hot plate method, were utilized to identify their feasibility for the effective thermal conductivity of fibrous materials (non-woven fabric and twill fabric with different stacking layers.

  8. Thermal shock tests of carbon materials with high power beam

    International Nuclear Information System (INIS)

    Akiba, M.; Araki, M.; Ando, T.; Jinbou, R.; Saidoh, M.; Suzuki, S.; Nakamura, K.; Tanaka, S.

    1992-01-01

    In tokamak machines, not only present machine but also future tokamak devices, off-normal events, so called plasma disruption, is considered as unavoidable phenomena. During the plasma disruption, plasma energy will deposit onto the surface of plasma facing components (PFC). Erosion induced by the disruption will be considered as primary limitation factor of life time of the PFCs. To evaluate erosion rate during the disruption, high power beam facilities have strongly been required. JAERI constructed an electron beam test facility to simulate the disruption heat load. The facility can produce an intense electron beam at a heat flux of up to 2000 MW/m 2 from 1 ms. Many carbon based materials, which have regarded at most promising armor materials, have been tested at the facility at a heat flux range from 300 MW/m 2 to 2000 MW/m 2 . The erosion depth of carbon-fiber-carbon composites (C/C composites) is ∼ 3 times larger than that of numerical prediction. Carbon based B 4 C-coated and B 4 C converted materials which have been developed at JAERI have also tested in the facility. The B 4 C converted C/C composites show high thermal shock resistance. (author)

  9. Elasto-plastic damage analysis of functionally graded material disks subjected to thermal shock and thermal cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Myung; Toi, Yutaka [Tokyo Univ. (Japan). Inst. of Industrial Science

    2001-03-01

    The elasto-plastic damage behaviors of functionally graded materials (FGM) subjected to thermal loading are analyzed by the finite element method using continuum damage mechanics. The Lemaitre's damage model is employed to analyze the damage behavior of a FGM disk subjected to thermal shock and a FGM coating subjected to thermal cycle. The effect of FGM on the thermal damage is discussed through some numerical examples for industrial materials. Numerical results show the validity of the present method for the evaluation and the development of new FGM. (author)

  10. Thermal and chemical degradation of inorganic membrane materials. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, G.N.; Sanjurjo, A.; Wood, B.J.; Lau, K.H.

    1994-04-01

    This report describes the results of a literature review to evaluate the long-term thermal and chemical degradation of inorganic membranes that are being developed to separate gaseous products produced by the gasification or combustion of coal in fixed-, fluidized-, and entrained-bed gasifiers, direct coal-fired turbines, and pressurized-fluidized-bed combustors. Several impurities, such as H{sub 2}S, NH{sub 3}, SO{sub 2}, NO{sub x}, and trace metal compounds are generated during coal conversion, and they must be removed from the coal gas or the combustor flue gas to meet environmental standards. The use of membranes to separate these noxious gases is an attractive alternative to their removal by sorbents such as zinc titanate or calcium oxide. Inorganic membranes that have a high separation efficiency and exhibit both thermal and chemical stability would improve the economics of power generation from coal. The U.S. Department of Energy is supporting investigations to develop inorganic membranes for separating hydrogen from coal gas streams and noxious impurities from hot coal- and flue-gas streams. Membrane materials that have been investigated in the past include glass (silica), alumina, zirconia, carbon, and metals (Pd and Pt).

  11. Ceramic materials with low thermal conductivity and low coefficients of thermal expansion

    Science.gov (United States)

    Brown, Jesse; Hirschfeld, Deidre; Liu, Dean-Mo; Yang, Yaping; Li, Tingkai; Swanson, Robert E.; Van Aken, Steven; Kim, Jin-Min

    1992-01-01

    Compositions having the general formula (Ca.sub.x Mg.sub.1-x)Zr.sub.4 (PO.sub.4).sub.6 where x is between 0.5 and 0.99 are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850.degree. C. for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200.degree. C. to 1350.degree. C. to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used.

  12. Advanced Oxide Material Systems for 1650 Deg. C Thermal/Environmental Barrier Coating Applications

    National Research Council Canada - National Science Library

    Zhu, Dongming; Fox, Dennis S; Bansal, Narottam P; Miller, Robert A

    2004-01-01

    ... systems under engine high-heat-flux and severe thermal cycling conditions. In this report, the thermal conductivity and water vapor stability of selected candidate hafnia-, pyrochlore-, and magnetoplumbite-based TEBC materials are evaluated...

  13. Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials

    National Research Council Canada - National Science Library

    Zhu, Dongming

    2004-01-01

    .... In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz...

  14. Calculation of thermal conductivity for new materials used in intake systems of internal combustion engines

    Science.gov (United States)

    Birtok-Bǎneasǎ, Corneliu; RaÅ£iu, Sorin Aurel; HepuÅ£, Teodor

    2017-07-01

    This paper presents a method for reduce thermal losses in the intake system of an internal combustion engine, whit improvement of airflow and thermal protection. The method consists in insulating the intake with a new kind of material. The present paper focuses on calculation of thermal conductivity for a new material developed by the authors, using the heat flux plate method. This experimental method consists in placing the sample of the new material in a calorimetric chamber and heating from underside. As the heat flux which passes through the sample material is constant and knowing the values of the temperatures for the both sides of sample, the sample material thermal conductivity is determined.

  15. Electronic and Thermal Properties of Puckered Orthorhombic Materials

    Science.gov (United States)

    Fei, Ruixiang

    Puckered orthorhombic crystals, such as black phosphorus and group IV monochalcogenides, are attracting tremendous attention because of their new exotic properties, which are of great interests for fundamental science and novel applications. Unlike those well studied layered hexagonal materials such as graphene and transition metal dichalcogenides, the puckered orthorhombic crystals possess highly asymmetrical in-plane crystal structures. Understanding the unique properties emerginge from their low symmetries is an intriguing and useful process, which gives insight into experimental observation and sheds light on manipulating their properties. In this thesis, we study and predict various properties of orthorhombic materials by using appropriate theoretical techniques such as first-principles calculations, Monte-Carlo simulations, and k · p models. In the first part of the thesis, we deal with the anisotropic electric and thermal properties of a typical puckered orthorhombic crystal, black phosphorus. We first study the electric properties in monolayer and few-layer black phosphorus, where the unique, anisotropic electrical conductance is founded. Furthermore, we find that the anisotropy of the electrical conductance can be rotated by 90° through applying appropriate uniaxial or biaxial strain. Beyond electrical conductance, we, for the first time, predict that the thermal conductance of black phosphorus is also anisotropic and, particularly, the preferred conducting direction is perpendicular to the preferred electrical conducting direction. Within the reasonable estimation regime, the thermoelectric figure of merit (ZT) ultimately reaches 1 at room temperature using only moderate doping. The second part of this thesis focuses on the electronic polarization of non-centrosymmetric puckered materials-group IV monochalcogenide. We propose that monolayer group IV monochalcogenides are a new class of two-dimensional (2D) ferroelectric materials with spontaneous in

  16. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    OpenAIRE

    Mboyi, Kalomba; Ren, Junxue; Liu, Yu

    2015-01-01

    A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the e...

  17. Porous Materials from Thermally Activated Kaolinite: Preparation, Characterization and Application

    Science.gov (United States)

    Luo, Jun; Jiang, Tao; Li, Guanghui; Peng, Zhiwei; Rao, Mingjun; Zhang, Yuanbo

    2017-01-01

    In the present study, porous alumina/silica materials were prepared by selective leaching of silicon/aluminum constituents from thermal-activated kaolinite in inorganic acid or alkali liquor. The correlations between the characteristics of the prepared porous materials and the dissolution properties of activated kaolinite were also investigated. The results show that the specific surface area (SSA) of porous alumina/silica increases with silica/alumina dissolution, but without marked change of the BJH pore size. Furthermore, change in pore volume is more dependent on activation temperature. The porous alumina and silica obtained from alkali leaching of kaolinite activated at 1150 °C for 15 min and acid leaching of kaolinite activated at 850 °C for 15 min are mesoporous, with SSAs, BJH pore sizes and pore volumes of 55.8 m2/g and 280.3 m2/g, 6.06 nm and 3.06 nm, 0.1455 mL/g and 0.1945 mL/g, respectively. According to the adsorption tests, porous alumina has superior adsorption capacities for Cu2+, Pb2+ and Cd2+ compared with porous silica and activated carbon. The maximum capacities of porous alumina for Cu2+, Pb2+ and Cd2+ are 134 mg/g, 183 mg/g and 195 mg/g, respectively, at 30 °C. PMID:28773002

  18. Thermal properties and thermal reliability of eutectic mixtures of some fatty acids as latent heat storage materials

    International Nuclear Information System (INIS)

    Sari, Ahmet; Sari, Hayati; Oenal, Adem

    2004-01-01

    The present study deals with two subjects. The first one is to determine the thermal properties of lauric acid (LA)-stearic acid (SA), myristic acid (MA)-palmitic acid (PA) and palmitic acid (PA)-stearic acid (SA) eutectic mixtures as latent heat storage material. The properties were measured by the differential scanning calorimetry (DSC) analysis technique. The second one is to study the thermal reliability of these materials in view of the change in their melting temperatures and latent heats of fusion with respect to repeated thermal cycles. For this aim, the eutectic mixtures were subjected to 360 repeated melt/freeze cycles, and their thermal properties were measured after 0, 90,180 and 360 thermal cycles by the technique of DSC analysis. The DSC thermal analysis results show that the binary systems of LA-SA in the ratio of 75.5:24.5 wt.%, MA-PA in the ratio of 58:42 wt.% and PA-SA in the ratio of 64.2:35.8 wt.% form eutectic mixtures with melting temperatures of 37.0, 42.60 and 52.30 deg. C and with latent heats of fusion of 182.7, 169.7 and 181.7 J g -1 , respectively. These thermal properties make them possible for heat storage in passive solar heating applications with respect to climate conditions. The accelerated thermal cycle tests indicate that the changes in the melting temperatures and latent heats of fusion of the studied eutectic mixtures are not regular with increasing number of thermal cycles. However, these materials, latent heat energy storage materials, have good thermal reliability in terms of the change in their thermal properties with respect to thermal cycling for about a one year utility period

  19. Air-Filled Nanopore Based High-Performance Thermal Insulation Materials

    OpenAIRE

    Gangåssæter, Haakon Fossen; Jelle, Bjørn Petter; Alex Mofid, Sohrab; Gao, Tao

    2017-01-01

    State-of-the-art thermal insulation solutions like vacuum insulation panels (VIP) and aerogels have low thermal conductivity, but their drawbacks may make them unable to be the thermal insulation solutions that will revolutionize the building industry regarding energy-efficient building envelopes. Nevertheless, learning from these materials may be crucial to make new and novel high-performance thermal insulation products. This study presents a review on the state-of-the-art air-filled thermal...

  20. Light beam dynamics in materials with radially-inhomogeneous thermal conductivity

    OpenAIRE

    Kartashov, Yaroslav V.; Vysloukh, Victor A.; Torner, Lluis

    2013-01-01

    We study the properties of bright and vortex solitons in thermal media with nonuniform thermal conductivity and homogeneous refractive index, whereby the local modulation of the thermal conductivity strongly affects the entire refractive index distribution. While regions where the thermal conductivity is increased effectively expel light, selftrapping may occur in the regions with reduced thermal conductivity, even if such regions are located close to the material boundary. As a r...

  1. Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials

    International Nuclear Information System (INIS)

    Sarı, Ahmet

    2016-01-01

    Graphical abstract: In this work, novel bentonite-based and form-stable composite phase change materials (Bb-FSPCMs) were produced for LHTES in buildings by impregnation of CA, PEG600, DD and HD with bentonite clay. The microstructures of the compatibility of the Bb-FSPCMs were by using SEM and FT-IR techniques. The DSC results indicated that the produced Bb-FSPCMs composites had suitable phase change temperature of 4–30 °C and good latent heat capacity between 38 and 74 J/g. The TG results demonstrated that all of the fabricated Bb-FSPCMs had good thermal resistance. The Bb-FSPCMs maintained their LHTES properties even after 1000 heating–cooling cycling. The total heating times of the prepared Bb-FSPCMs were reduced noticeably due to their enhanced thermal conductivity after EG (5 wt%) addition. - Highlights: • Bb-FSPCMs were produced by impregnation of CA, PEG600, DD and HD with bentonite. • DSC analysis indicated that Bb-FSPCMs had melting temperature in range of 4–30 °C. • DSC analysis also showed that Bb-FSPCMs had latent heat between 38 and 74 J/g. • The TG analysis demonstrated that Bb-FSPCMs had good thermal resistance. • Thermal conductivity of Bb-FSPCMs were enhanced noticeably with EG (5 wt%) addition. - Abstract: In this work, for latent heat thermal energy storage (LHTES) applications in buildings, bentonite-based form-stable composite phase change materials (Bb-FSPCMs) were produced by impregnation of capric acid (CA), polyethylene glycol (PEG600), dodecanol (DD) and heptadecane (HD) into bentonite clay. The morphological characterization results obtained by scanning electron microscopy (SEM) showed that the bentonite acted as good structural barrier for the organic PCMs homogenously dispersed onto its surface and interlayers. The chemical investigations made by using fourier transform infrared (FT-IR) technique revealed that the attractions between the components of the composites was physical in nature and thus the PCMs were hold

  2. Determination of the Local Thermal Conductivity of Functionally Graded Materials by a Laser Flash Method

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2013-01-01

    Determination of thermal conductivity of construction materials is essential to estimate their insulation capabilities. In most cases, homogenous materials are used and well developed methods exist for measurements of their thermal conductivity. The task becomes more challenging when dealing...... by scanning them point by point and determining the thermal conductivity as a function of the spatial dimensions. The method proves to be repeatable and of reasonable accuracy and can be used to determine the local thermal properties on a scale of millimeters. In this study, the method was successfully...... applied to create a map of thermal conductivity of a functionally graded material sample....

  3. Thermal analysis of a double layer phase change material floor

    International Nuclear Information System (INIS)

    Jin Xing; Zhang Xiaosong

    2011-01-01

    Phase change materials (PCMs) can be used to shift the cooling or heating load from the peak period to the off-peak period. In this paper, a new double layer phase change material (PCM) floor is put forward. The two layers of PCM have different melting temperature. The system is used to store heat or cold energy in the off-peak period and release them in the peak period during heating or cooling. According to the numerical model built in this paper, the thermal performances of the floor are analyzed. The results show that the optimal melting temperatures of PCMs exist. The fluctuations of the floor surface temperatures and the heat fluxes will be reduced and the system still can provide a certain amount of heat or cold energy after the heat pump or chiller has been turned off for a long time. Compared to the floor without PCM, the energy released by the floor with PCM in peak period will be increased by 41.1% and 37.9% during heating and cooling when the heat of fusion of PCM is 150 kJ/kg. - Highlights: → A new double layer phase change material floor is put forward. → The system is used to store heat or cold energy in the off-peak period and release them in the peak period during heating or cooling. → The optimal melting temperatures of PCMs in the system exist. → The heat and cold energy released by the floor with PCM in peak period can be increased by 41.1% and 37.9%.

  4. Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Mehrali, Mohammad; Tahan Latibari, Sara; Mehrali, Mehdi; Mahlia, Teuku Meurah Indra; Cornelis Metselaar, Hendrik Simon

    2014-01-01

    Highlights: • Introducing novel form-stable PCM of stearic acid (SA)/carbon nanospheres (CNSs). • The highest stabilized SA content is 83 wt% in the SA/CNS composites. • Increasing thermal conductivity of composite phase change material with high amount of latent heat. - Abstract: Stearic acid (SA) is one of the main phase change materials (PCMs) for medium temperature thermal energy storage systems. In order to stabilize the shape and enhance the thermal conductivity of SA, the effects of adding carbon nanospheres (CNSs) as a carbon nanofiller were examined experimentally. The maximum mass fraction of SA retained in CNSs was found as 80 wt% without the leakage of SA in a melted state, even when it was heated over the melting point of SA. The dropping point test shows that there was clearly no liquid leakage through the phase change process at the operating temperature range of the composite PCMs. The thermal stability and thermal properties of composite PCMs were investigated with a thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC), respectively. The thermal conductivity of the SA/CNS composite was determined by the laser flash method. The thermal conductivity at 35 °C increased about 105% for the highest loading of CNS (50 wt%). The thermal cycling test proved that form-stable composite PCMs had good thermal reliability and chemical durability after 1000 cycles of melting and freezing, which is advantageous for latent heat thermal energy storage (LHTES)

  5. PRODUCTION OF COMPOSITE CERAMIC MATERIAL FOR THERMAL SPRAYING

    Directory of Open Access Journals (Sweden)

    V. A. Okovity

    2017-01-01

    Full Text Available A composite ceramic material has been developed for thermal spraying that permits to increase wear resistance due to introduction of high-chromium steel and molybdenum in its structure, to obtain optimum porosity in the starting charge material while synthesizing  FeCrMo – MoS2/CaF2/С – TiC compositions,  to improve technological parameters of powders and thereby increase coefficient of powder usage in spraying, to reduce cost of wear-resistant coating technology. The paper presents characteristics and parameters of the developed material and coating which is based on it. Methodology is based on  complex metallographical, X-ray diffraction and electron microscopy investigations of structural elements of composite plasma coatings. Main components of composite particles are solid solutions based on iron, titanium carbides, solid lubricant inclusions in the form of molybdenum disulfide, calcium fluoride, carbon. Presence of such powder particles predetermines obtaining wear-resistant coatings which are rather efficient in case of molecular and mechanical and abrasive wear-out under disadvantageous friction conditions (boundary lubrication or absence of lubrication material, elevated temperature actions.  The contemplated powders are characterized by complex geometric shape and developed surface relief of particles. There has been observed a stable distribution of hard carbide phase in volumes of deposited materials and absence of superficial zone with deficit of TiC inclusions that positively influence on working capacity of the investigated wear-resistant coatings. Plasma coatings which have been deposited with the help of  FeCrMo – MoS2 – TiC powders in accordance with the technology developed by authors have better wear resistance in case of dry friction in a steel 45 (coating wear-out is less by 1.2-fold; scoring load is higher by 1.2-fold than a coating which has been obtained with the help of Ni80Cr20 – 12 % MoS2 – 50

  6. Combinatory Models for Predicting the Effective Thermal Conductivity of Frozen and Unfrozen Food Materials

    OpenAIRE

    K. S. Reddy; P Karthikeyan

    2010-01-01

    A model to predict the effective thermal conductivity of heterogeneous materials is proposed based on unit cell approach. The model is combined with four fundamental effective thermal conductivity models (Parallel, Series, Maxwell-Eucken-I, and Maxwell-Eucken-II) to evolve a unifying equation for the estimation of effective thermal conductivity of porous and nonporous food materials. The effect of volume fraction (ν) on the structure composition factor (ψ) of the food materials is studied. Th...

  7. Study of materials used for the thermal protection of the intake system for internal combustion engines

    Science.gov (United States)

    Birtok-Băneasă, C.; Raţiu, S.; Puţan, V.; Josan, A.

    2018-01-01

    The present paper focuses on calculation of thermal conductivity for a new materials developed by the authors, using the heat flux plate method. This experimental method consists in placing the sample of the new material in a calorimetric chamber and heating from underside. As the heat flux which passes through the sample material is constant and knowing the values of the temperatures for the both sides of sample, the sample material thermal conductivity is determined. Six types of different materials were tested. Based on the experimental data, the values of the thermal conductivity according to the material and the average temperature were calculated and plotted.

  8. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    Composites with extremal or unusual thermal expansion coefficients are designed using a three-phase topology optimization method. The composites are made of two different material phases and a void phase. The topology optimization method consists in finding the distribution of material phases...... materials having maximum directional thermal expansion (thermal actuators), zero isotropic thermal expansion, and negative isotropic thermal expansion. It is shown that materials with effective negative thermal expansion coefficients can be obtained by mixing two phases with positive thermal expansion...... on a finite-element discretization of the base cell. The optimization problem is solved using sequential linear programming. To benchmark the design method we first consider two-phase designs. Our optimal two-phase microstructures are in fine agreement with rigorous bounds and the so-called Vigdergauz...

  9. The Conductive Thermal Control Material Systems for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is submitted to develop and demonstrate the feasibility of processing the space environment stable, multifunctional thermal control material system...

  10. Advanced Thermal Protection Systems (ATPS), Aerospace Grade Carbon Bonded Carbon Fiber Material, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon bonded carbon fiber (CBCF) insulating material is the basis for several highly successful NASA developed thermal protection systems (TPS). Among the...

  11. Advanced Thermal Protection Systems (ATPS), Aerospace Grade Carbon Bonded Carbon Fiber Material, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon bonded carbon fiber (CBCF) insulating material is the basis for several highly successful NASA developed thermal protection systems (TPS). Included among...

  12. Innovations for the Affordable Conductive Thermal Control Material Systems for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is submitted to develop and demonstrate the feasibility of processing the space environment stable, multifunctional thermal control material system...

  13. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking.

    Science.gov (United States)

    Uetani, Kojiro; Ata, Seisuke; Tomonoh, Shigeki; Yamada, Takeo; Yumura, Motoo; Hata, Kenji

    2014-09-03

    Electrostatic flocking is applied to create an array of aligned carbon fibers from which an elastomeric thermal interface material (TIM) can be fabricated with a high through-plane thermal conductivity of 23.3 W/mK. A high thermal conductivity can be achieved with a significantly low filler level (13.2 wt%). As a result, this material retains the intrinsic properties of the matrix, i.e., elastomeric behavior. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Study on the effect of shape-stabilized phase change materials on spacecraft thermal control in extreme thermal environment

    International Nuclear Information System (INIS)

    Wu, Wan-fan; Liu, Na; Cheng, Wen-long; Liu, Yi

    2013-01-01

    Highlights: ► A shape-stabilized PCM is used to protect the spacecraft attacked by high energy. ► Taking a satellite as example, it proves the solution given in the work is feasible. ► Low thermal conductivity makes the material above its thermal stability limit. ► It provides guidance on how to choose the shape-stabilized PCM for similar problems. - Abstract: In space, the emergencies such as short-term high heat flux is prone to cause spacecraft thermal control system faults, resulting in temperature anomalies of electronic equipment of the spacecraft and even failures in them. In order to protect the spacecraft attacked by the high energy, a new guard method is proposed. A shape-stabilized phase change material (PCM), which has high thermal conductivity and does not require being tightly packaged, is proposed to be used on the spacecraft. To prove the feasibility of using the material on spacecraft attacked by high energy, the thermal responses for spacecraft with shape-stabilized PCM are investigated in situations of normal and short-term high heat flux, in contrast to that with conventional thermal control system. The results indicate that the shape-stabilized PCM can effectively absorb the heat to prevent the thermal control system faults when the spacecraft’s outer heat flux changes dramatically and has no negative effect on spacecraft in normal heat flux. Additionally the effect of thermal conductivity of PCM on its application effectiveness is discussed

  15. Effects of Brass (Cu3Zn2) as High Thermal Expansion Material on Shrink Disc Performance During High Thermal Loading

    Science.gov (United States)

    Mazlan, MIS; Mohd, SA; Bahar, ND; Aziz, SAA

    2018-03-01

    This research work is focused on shrink disc operation at high temperature. Geometrical and material design selections have been done by taking into consideration the existing shrink disc operating at high temperature condition. The existing shrink disc confronted slip between shaft and shaft sleeve during thermal loading condition. The assessment has been obtained through virtual experiment by using Finite Element Analysis (FEA) -Thermal Transient Stress for 900 seconds with 300 °C of thermal loading. This investigation consists of the current and improved version of shrink disc, where identical geometries and material properties were utilized. High Thermal Expansion (HTE) material has been introduced to overcome the current design of the shrink disc. Brass (Cu3Zn2) has been selected as the HTE material in the improved shrink disc design due to its high thermal expansion properties. The HTE has shown a significant improvement on the total contact area and contact pressure on the shaft and the shaft sleeve. The improved shrink disc embedded with HTE during thermal loading exhibit a minimum of 1244.1 mm2 of the total area on shaft and shaft sleeve which uninfluenced the total contact area at normal condition which is 1254.3 mm2. Meanwhile, the total pressure of improved shrink disc had an increment of 108.1 MPa while existing shrink disc total pressure has lost 17.2 MPa during thermal loading.

  16. Phosphate sludge: thermal transformation and use as lightweight aggregate material.

    Science.gov (United States)

    Loutou, M; Hajjaji, M; Mansori, M; Favotto, C; Hakkou, R

    2013-11-30

    Phosphate sludge generated from beneficiation plants of Moroccan phosphate rocks was investigated at 900-1200 °C by X-ray diffraction, scanning electron microscopy, thermal analysis and Fourier-transform infrared spectroscopy. Mixtures of the phosphate sludge and a swelling clay (up to 30 wt.%) were investigated and their properties (shrinkage, density, water absorption and compressive strength) were measured as a function of temperature and clay addition. The results showed that gehlenite neoformed from lime of decomposed carbonates and breakdown products of clay minerals and that fluorapatite (original mineral) resisted heating until fusion. The measured properties were mainly controlled by temperature, and the effect of clay addition was less regular, except for water absorption. Considering the mixtures densities (1.44-3.02 g/cm(3)), lightweight agglomerates can be produced at 900 or 1100 °C, but their compressive strengths were relatively low (2-4.5 MPa). Based on SiO2-Al2O3-Fluxes diagram and taking account of the chemical composition of the materials used, the production of expanded aggregates requires clay additions as high as 80 wt.%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Thermal properties of composite materials: a complex systems approximation

    Science.gov (United States)

    Carrillo, J. L.; Bonilla, Beatriz; Reyes, J. J.; Dossetti, Victor

    We propose an effective media approximation to describe the thermal diffusivity of composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy, the thermal diffusivity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal diffusivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a significant difference in the thermal properties of the anisotropic samples, compared to the isotropic randomly distributed. We correlate some measures of the complexity of the inclusion structure with the observed thermal response through a multifractal analysis. In this way, we are able to describe, and at some extent predict, the behavior of the thermal diffusivity in terms of the lacunarity and other measures of the complexity of these samples Partial Financial Support by CONACyT México and VIEP-BUAP.

  18. Packaging material and flexible medical tubing containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A packaging material or flexible medical tubing containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  19. 78 FR 8202 - Meeting of the Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy...

    Science.gov (United States)

    2013-02-05

    ... Hydraulic Phenomena and Materials, Metallurgy and Reactor Fuels; Notice of Meeting The Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy and Reactor Fuels will hold a meeting on...

  20. Thermal shock resistances of a bonding material of C/C composite and copper

    International Nuclear Information System (INIS)

    Kurumada, Akira; Oku, Tatsuo; Kawamata, Kiyohiro; Motojima, Osamu; Noda, Nobuaki; McEnaney, B.

    1997-01-01

    The purpose of this study is to contribute to the development and the safety design of plasma facing components for fusion reactor devices. We evaluated the thermal shock resistance and the thermal shock fracture toughness of a bonding material which was jointed a carbon-fiber-reinforced carbon composite (C/C composite) to oxygen-free copper. We also examined the microstructures of the bonding layers using a scanning electron microscope before and after thermal shock tests. The bonding material did not fracture during thermal shock tests. However, thermal cracks and delamination cracks were observed in the bonding layers. (author)

  1. Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs): Preprint

    Energy Technology Data Exchange (ETDEWEB)

    DeVoto, D.; Paret, P.; Mihalic, M.; Narumanchi, S.; Bar-Cohen, A.; Matin, K.

    2014-08-01

    Thermal interface materials are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistivity (< 1 mm2K/W). However, BIMs induce thermomechanical stresses in the package and can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. DARPA's Thermal Management Technologies program has addressed this challenge, supporting the development of mechanically-compliant, low resistivity nano-thermal interface (NTI) materials. In this work, we describe the testing procedure and report the results of NREL's thermal performance and reliability characterization of an initial sample of four different NTI-BIMs.

  2. Research on technology of evaluating thermal property data of nuclear power materials

    International Nuclear Information System (INIS)

    Imai, Hidetaka; Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1997-01-01

    For the materials of first wall and diverter of nuclear fusion reactor, in order to withstand steady and unsteady high heat flux load, excellent thermal characteristics are required. It is strongly demanded to measure such thermal property values as heat conductivity, heat diffusivity, specific heat capacity, emissivity and so using small test pieces up to higher than 2000degC. As the materials of nuclear reactors are subjected to neutron irradiation, in order to secure the long term reliability of the materials, it is very important to establish the techniques for forecasting the change of the thermal property values due to irradiation effect. Also the establishment of the techniques for estimating the thermal property values of new materials like low radioactivation material is important. In National Research Laboratory of Metrology, the research on the advancement of the measuring technology for high temperature thermal properties has resulted in the considerably successful development of such technologies. In this research, the rapid measurement of thermal property values up to superhigh temperature with highest accuracy, the making of thermal property data set of high level, the analysis and evaluation of the correlation of material characters and thermal property values, and the development of the basic techniques for estimating the thermal property values of solid materials are aimed at and advanced. These are explained. (K.I.)

  3. A finite element thermal analysis of various dowel and core materials

    OpenAIRE

    Shanti Varghese; Padma Ariga; T V Padmanaban; R Subramanian

    2012-01-01

    Aim: Thermal analysis of the temperature and stress distribution of parallel sided, threaded and non-threaded dowels and core materials under thermal loading within a maxillary central incisor using a three dimensional finite element study. Materials and Methods: 3D models of endodontically treated maxillary central incisor with parallel sided, threaded and non- threaded post and core materials were simulated using the ANSYS software. Materials simulated were parallel sided cast gold post...

  4. Preparation, characterization, and thermal properties of starch microencapsulated fatty acids as phase change materials thermal energy storage applications

    Science.gov (United States)

    Stable starch-oil composites can be prepared from renewable resources by excess steam jet-cooking aqueous slurries of starch and vegetable oils or other hydrophobic materials. Fatty acids such as stearic acid are promising phase change materials (PCMs) for latent heat thermal energy storage applica...

  5. Study of Material Compatibility for a Thermal Energy Storage System with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Songgang Qiu

    2018-03-01

    Full Text Available The suitability of stainless steel 316L and Inconel 625 for use in a latent heat thermal energy storage (TES system was investigated. A NaCl–NaF eutectic mixture with a melting temperature of 680 °C was used as the phase change material (PCM. Containers were filled with the PCM prior to heating to 750 °C, then examined after 100 and 2500 h of high-temperature exposure by analyzing the material surface and cross-section areas. A small amount of corrosion was present in both samples after 100 h. Neither sample suffered significant damage after 2500 h. The undesirable inter-granular grain boundary attack found in SS316L samples was in the order of 1–2 µm in depth. On Inconel 625 sample surface, an oxide complex formed, resisting material dissolution into the PCM. The surface morphology of tested samples remained largely unchanged after 2500 h, but the corrosion pattern changed from an initially localized corrosion penetration to a more uniform type. After 2500 h, the corrosion depth of Inconel 625 remained at roughly 1–2 µm, indicating that the corrosion rate decelerated. Both materials demonstrated good compatibility with the chosen NaF–NaCl eutectic salt, but the low corrosion activity in Inconel 625 samples shows a performance advantage for long term operation.

  6. Standard Practice for Evaluating Thermal Insulation Materials for Use in Solar Collectors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 This practice sets forth a testing methodology for evaluating the properties of thermal insulation materials to be used in solar collectors with concentration ratios of less than 10. Tests are given herein to evaluate the pH, surface burning characteristics, moisture adsorption, water absorption, thermal resistance, linear shrinkage (or expansion), hot surface performance, and accelerated aging. This practice provides a test for surface burning characteristics but does not provide a methodology for determining combustibility performance of thermal insulation materials. 1.2 The tests shall apply to blanket, rigid board, loose-fill, and foam thermal insulation materials used in solar collectors. Other thermal insulation materials shall be tested in accordance with the provisions set forth herein and should not be excluded from consideration. 1.3 The assumption is made that elevated temperature, moisture, and applied stresses are the primary factors contributing to the degradation of thermal insulation mat...

  7. A nano-graphite/paraffin phase change material with high thermal conductivity

    International Nuclear Information System (INIS)

    Li, Min

    2013-01-01

    Highlights: ► Paraffin and NG formed a nanoscale compound. ► The thermal conductivity increased gradually with the content of NG. ► The thermal conductivity of the material containing 10% NG were 0.9362 W/m K. - Abstract: Nano-graphite (NG)/paraffin composites were prepared as composite phase change materials. NG has the function of improving the thermal conductivity of the composite. The microstructure and thermal properties of the materials were examined with environmental scanning electron microscopy and differential scanning calorimetry. The results indicated that the NG layers were randomly dispersed in the paraffin, and the thermal conductivity increased gradually with the content of NG. Thermal conductivity of the material containing 10% NG were 0.9362 W/m K

  8. Influence of nanomaterials on properties of latent heat solar thermal energy storage materials – A review

    International Nuclear Information System (INIS)

    Raam Dheep, G.; Sreekumar, A.

    2014-01-01

    Highlights: • Classification of phase change materials. • Studies on phase change properties of various phase change materials. • Influence of nanomaterials on properties of phase change materials. - Abstract: Thermal energy storage system plays a critical role in developing an efficient solar energy device. As far as solar thermal devices are concerned, there is always a mismatch between supply and demand due to intermittent and unpredictable nature of solar radiation. A well designed thermal energy storage system is capable to alleviate this demerit by providing a constant energy delivery to the load. Many research works is being carried out to determine the suitability of thermal energy storage system to integrate with solar thermal gadgets. This review paper summarizes the numerous investigations on latent heat thermal energy storage using phase change materials (PCM) and its classification, properties, selection criteria, potential research areas and studies involved to analyze the thermal–physical properties of PCM

  9. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes

    International Nuclear Information System (INIS)

    Karaipekli, Ali; Biçer, Alper; Sarı, Ahmet; Tyagi, Vineet Veer

    2017-01-01

    Highlights: • Expanded perlite/n-eicosane composite for thermal energy storage was prepared. • Addition of CNTs increases considerably the thermal conductivity of the composite. • The composite PCM including 1 wt% CNTs is promising material. - Abstract: Paraffins constitute a class of solid-liquid organic phase change materials (PCMs). However, low thermal conductivity limits their feasibility in thermal energy storage (TES) applications. Carbon nano tubes (CNTs) are one of the best materials to increase the thermal conductivity of paraffins. In this regard, the present study is focus on the preparation, characterization, and improvement of thermal conductivity using CNTs as well as determination of TES properties of expanded perlite (ExP)/n-eicosane (C20) composite as a novel type of form-stable composite PCM (F-SCPCM). It was found that the ExP could retain C20 at weight fraction of 60% without leakage. The SEM and FTIR analyses were carried out to characterize the microstructure and chemical properties of the composite PCM. The TES properties of the prepared F-SCPCM were determined using DSC and TG analyses. The analysis results showed that the components of the composite are in good compatibleness and C20 used as PCM are well-infiltrated into the structure of ExP/CNTs matrix. The DSC analysis indicated that the ExP/C20/CNTs (1 wt%) composite has a melting point of 36.12 °C and latent heat of 157.43 J/g. The TG analysis indicated that the F-SCPCM has better thermal durability compared with pure C20 and also it has good long term-TES reliability. In addition, the effects of CNTs on the thermal conductivity of the composite PCM were investigated. Compared to ExP/C20 composite, the use of CNTs has apparent improving effect for the thermal conductivity without considerably affecting the compatibility of components, TES properties, and thermal stability.

  10. Effects of Static Tensile Load on the Thermal Expansion of Gr/PI Composite Material.

    Science.gov (United States)

    1981-06-01

    is the effect of load on the thermal expansion. The effects of static tensile load on the coefficient of thermal expansion of mild steel and Invar ...thermally calibrated material ( Invar ) was used to com- pensate for apparent thermal strain. In all tests the specimens were reported to reach a... alloy (Ti-6A1-4V) specimen was performed to establish the general validity of the test method. This test was performed between room temperature and

  11. Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins

    OpenAIRE

    Mu, Mulan; Wan, Chaoying; McNally, Tony

    2017-01-01

    Abstract The outstanding thermal conductivity (λ) of graphene and its derivatives offers a potential route to enhance the thermal conductivity of epoxy resins. Key challenges still need to be overcome to ensure effective dispersion and distribution of 2D graphitic fillers throughout the epoxy matrix. 2D filler type, morphology, surface chemistry and dimensions are all important factors in determining filler thermal conductivity and de facto the thermal conductivity of the composite material. ...

  12. Cordierite production with natural and synthetic raw materials, and evaluation of resistance to thermal shock

    International Nuclear Information System (INIS)

    Buoso, Alberto; Bergmann, Carlos Perez

    1997-01-01

    This work presents a study on the formation of cordierite from raw materials and pure oxides. For this proposal, different formulations and sintering curves were developed. The formation of cordierite was analysed by means of both linear thermal expansion and X-ray diffraction. The performance of these materials under thermal shock was also evaluated. (author)

  13. New Link Finite Element for Electro-Thermal Analyses of FGM Materials

    Directory of Open Access Journals (Sweden)

    Juraj PAULECH

    2013-06-01

    Full Text Available In this contribution, new electro-thermal link finite element for Functionally Graded Materials (FGM will be presented. Spatial variation of material properties as well as varying convection effect will be considered. FEM equations describing the behaviour of the link element will be based on semi-analytical calculation of ordinary differential equations describing coupled electro-thermal problem.

  14. Oxidation of Copper Alloy Candidates for Rocket Engine Applications

    Science.gov (United States)

    Ogbuji, Linus U. Thomas; Humphrey, Donald L.

    2002-01-01

    The gateway to affordable and reliable space transportation in the near future remains long-lived rocket-based propulsion systems; and because of their high conductivities, copper alloys remain the best materials for lining rocket engines and dissipating their enormous thermal loads. However, Cu and its alloys are prone to oxidative degradation -- especially via the ratcheting phenomenon of blanching, which occurs in situations where the local ambient can oscillate between oxidation and reduction, as it does in a H2/02- fuelled rocket engine. Accordingly, resistance to blanching degradation is one of the key requirements for the next generation of reusable launch vehicle (RLV) liner materials. Candidate copper alloys have been studied with a view to comparing their oxidation behavior, and hence resistance to blanching, in ambients corresponding to conditions expected in rocket engine service. These candidate materials include GRCop-84 and GRCop-42 (Cu - Cr-8 - Nb-4 and Cu - Cr-4 - Nb-2 respectively); NARloy-Z (Cu-3%Ag-0.5%Y), and GlidCop (Cu-O.l5%Al2O3 ODS alloy); they represent different approaches to improving the mechanical properties of Cu without incurring a large drop in thermal conductivity. Pure Cu (OFHC-Cu) was included in the study to provide a baseline for comparison. The samples were exposed for 10 hours in the TGA to oxygen partial pressures ranging from 322 ppm to 1.0 atmosphere and at temperatures of up to 700 C, and examined by SEM-EDS and other techniques of metallography. This paper will summarize the results obtained.

  15. Thermal detection of trapped charge carriers in organic transport materials

    Science.gov (United States)

    von Malm, Norwin; Steiger, Juergen; Finnberg, Torsten; Schmechel, Roland; von Seggern, Heinz

    2003-03-01

    The effect of trap states on the transport and luminescence properties of organic light emitting diodes (OLEDs) is studied. For trap level detection energy resolved thermally stimulated current (TSC) measurements known as fractional glow are utilized to determine the density of occupied states (DOOS) in various organic semiconductors such as the small molecule systems Alq3 [aluminum tris(8-hydroxyquinoline)], 1-NaphDATA {4,4',4"-tris-[N-(1-naphtyl)-N-phenylamino]-triphenylamine} and α-NPD [N,N'-di-(1-naphthyl)-N,N'-diphenylbenzidine] and the polymeric semiconductor MDMO-PPV {poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene]}. Characteristic differences in the trap spectra are obtained and interpreted in terms of possible structural and compositional origins of the investigated materials. In order to judge the formation process of traps and their practical consequences on the charge carrier transport I-V and L-V characteristics of 1-NaphDATA doped α-NPD devices and α-NPD doped 1-NaphDATA devices were compared to respective non-doped samples. A clearly reduced current and luminescence was found only in the former case. It was possible to conclude that the detected electronic trap states either act as hole traps or as scattering centers. Furthermore, pulsed transport studies on ITO/α-NPD/Alq3/Al devices show thte critical influence of traps on the dynamical performance of the charge transport. In a two-pulse experiment the carrier injection and trap depletion can be separated.

  16. In-situ measurements of material thermal parameters for accurate LED lamp thermal modelling

    NARCIS (Netherlands)

    Vellvehi, M.; Perpina, X.; Jorda, X.; Werkhoven, R.J.; Kunen, J.M.G.; Jakovenko, J.; Bancken, P.; Bolt, P.J.

    2013-01-01

    This work deals with the extraction of key thermal parameters for accurate thermal modelling of LED lamps: air exchange coefficient around the lamp, emissivity and thermal conductivity of all lamp parts. As a case study, an 8W retrofit lamp is presented. To assess simulation results, temperature is

  17. Elucidation technique on thermal properties data on material for nuclear power

    International Nuclear Information System (INIS)

    Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1999-01-01

    National Research Laboratory of Metrology developed a technology capable of measuring thermal diffusivity with more than 2% in precision at less than 2600degC by using laser flash method, specific heat volume and thermal emissivity with more than 3% in precision at less than 3000degC by using pulse electro-heating method, and thermal conductivity of micro specimen with 3% in precision at a range of room of room temperature to 500degC. On base of such technical potentials, this study aimed at rapidly measuring thermal properties (thermal conductivity, thermal diffusivity specific heat volume, and thermal emissivity) with precision at the highest precision in the world and ranging to ultrahigh temperature under identifying fundamental properties of materials. As a result, a data base on thermal properties capable of collecting all thermal property data obtained at this study and with excellent operability could be developed. (G.K.)

  18. Palmitic acid/polypyrrole composites as form-stable phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Silakhori, Mahyar; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Baradaran, Saeid; Naghavi, Mohammad Sajad

    2014-01-01

    Highlights: • A novel phase change composite of palmitic acid–polypyrrole(PA–PPy) was fabricated. • Thermal properties of PA–PPy are characterized in different mass ratios of PA–PPy. • Thermal cycling test showed that form stable PCM had a favorable thermal reliability. - Abstract: In this study a novel palmitic acid (PA)/polypyrrole (PPy) form-stable PCMs were readily prepared by in situ polymerization method. PA was used as thermal energy storage material and PPy was operated as supporting material. Form-stable PCMs were investigated by SEM (scanning electron microscopy) and FTIR (Fourier transform infrared spectrometer) analysis that illustrated PA Particles were wrapped by PPy particles. XRD (X-ray diffractometer) was used for crystalline phase of PA/PPy composites. Thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC) were used for investigating Thermal stability and thermal energy storage properties of prepared form-stable PCMs. According to the obtained results the form stable PCMs exhibited favorable thermal stability in terms of their phase change temperature. The form-stable PCMs (79.9 wt% loading of PA) were considered as the highest loading PCM with desirable latent heat storage of 166.3 J/g and good thermal stability. Accelerated thermal cycling tests also showed that form stable PCM had an acceptable thermal reliability. As a consequence of acceptable thermal properties, thermal stability and chemical stability, we can consider the new kind of form stable PCMs for low temperature solar thermal energy storage applications

  19. Small rocket research and technology

    Science.gov (United States)

    Schneider, Steven; Biaglow, James

    1993-11-01

    Small chemical rockets are used on nearly all space missions. The small rocket program provides propulsion technology for civil and government space systems. Small rocket concepts are developed for systems which encompass reaction control for launch and orbit transfer systems, as well as on-board propulsion for large space systems and earth orbit and planetary spacecraft. Major roles for on-board propulsion include apogee kick, delta-V, de-orbit, drag makeup, final insertions, north-south stationkeeping, orbit change/trim, perigee kick, and reboost. The program encompasses efforts on earth-storable, space storable, and cryogenic propellants. The earth-storable propellants include nitrogen tetroxide (NTO) as an oxidizer with monomethylhydrazine (MMH) or anhydrous hydrazine (AH) as fuels. The space storable propellants include liquid oxygen (LOX) as an oxidizer with hydrazine or hydrocarbons such as liquid methane, ethane, and ethanol as fuels. Cryogenic propellants are LOX or gaseous oxygen (GOX) as oxidizers and liquid or gaseous hydrogen as fuels. Improved performance and lifetime for small chemical rockets are sought through the development of new predictive tools to understand the combustion and flow physics, the introduction of high temperature materials to eliminate fuel film cooling and its associated combustion inefficiency, and improved component designs to optimize performance. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Results indicate that modeling of the injector and combustion process in small rockets needs improvement. High temperature materials require the development of fabrication processes, a durability data base in both laboratory and rocket environments, and basic engineering property data such as strength, creep, fatigue, and work hardening properties at both room and elevated temperature. Promising materials under development include iridium-coated rhenium and a

  20. Linear analysis using secants for materials with temperature dependent nonlinear elastic modulus and thermal expansion properties

    Science.gov (United States)

    Pepi, John W.

    2017-08-01

    Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.

  1. Heat transfer and thermal storage performance of an open thermosyphon type thermal storage unit with tubular phase change material canisters

    International Nuclear Information System (INIS)

    Wang, Ping-Yang; Hu, Bo-Wen; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel open heat pipe thermal storage unit is design to improve its performance. • Mechanism of its operation is phase-change heat transfer. • Tubular canisters with phase change material were placed in thermal storage unit. • Experiment and analysis are carried out to investigate its operation properties. - Abstract: A novel open thermosyphon-type thermal storage unit is presented to improve design and performance of heat pipe type thermal storage unit. In the present study, tubular canisters filled with a solid–liquid phase change material are vertically placed in the middle of the thermal storage unit. The phase change material melts at 100 °C. Water is presented as the phase-change heat transfer medium of the thermal storage unit. The tubular canister is wrapped tightly with a layer of stainless steel mesh to increase the surface wettability. The heat transfer mechanism of charging/discharging is similar to that of the thermosyphon. Heat transfer between the heat resource or cold resource and the phase change material in this device occurs in the form of a cyclic phase change of the heat-transfer medium, which occurs on the surface of the copper tubes and has an extremely high heat-transfer coefficient. A series of experiments and theoretical analyses are carried out to investigate the properties of the thermal storage unit, including power distribution, start-up performance, and temperature difference between the phase change material and the surrounding vapor. The results show that the whole system has excellent heat-storage/heat-release performance

  2. Thermal Measurements on Polymeric Epoxy-Expandable Graphite Material

    Directory of Open Access Journals (Sweden)

    Joseph Asante

    2016-01-01

    Full Text Available Combustion measurements, such as heat release rate, critical flux, time-to-ignition, ignition temperature, thermal inertia, and kinematics—activation energy as well as preexponential factor—on epoxy polymer (Prime™ 20LV with expandable graphite (EG inorganic filler of different weight percentage composites, are conducted using the Dual Cone Calorimeter, the thermogravimetric analysis (TGA, and Linseis (Germany THB100 Transient Hot Bridge thermal conductivity analyser. The results indicate that increasing the amount of EG in polymer composite leads to reduction in the critical flux, the time-to-ignition, the ignition temperature, the thermal inertia, the average thermal conductivity, and the activation energy (from 159.1 ± 2.3 to 145.9 ± 3.1 kJ/mol for neat epoxy to 3 wt.% EG-epoxy of the composite samples. There is, however, an increase in the heat of gasification with increasing EG content.

  3. Thermal Protection System Materials (TPSM): 3D MAT

    Data.gov (United States)

    National Aeronautics and Space Administration — The 3D MAT Project seeks to design and develop a game changing Woven Thermal Protection System (TPS) technology tailored to meet the needs of the Orion Multi-Purpose...

  4. Thermal Performance of Microencapsulated Phase Change Material Survey

    National Research Council Canada - National Science Library

    Alvarado, Jorge L; Jones, Barclay G; Marsh, Charles P; Kessler, David A; Sohn, Chang W; Feickert, Carl A; Phetteplace, Gary E; Crowley, Eric D; Franks, Ryan J; Carlson, Thomas A

    2008-01-01

    ...). Because PCMs have greater thermal capacity than the carrier fluid, owing to their latent heat of phase change, they can increase the amount of heat transfer at equivalent volumetric flow in a heat...

  5. Development of a thermal acoustical aircraft insulation material

    Science.gov (United States)

    Lin, R. Y.; Struzik, E. A.

    1974-01-01

    A process was developed for fabricating a light weight foam suitable for thermal and acoustical insulation in aircraft. The procedures and apparatus are discussed, and the foam specimens are characterized by numerous tests and measurements.

  6. Thermal emitter comprising near-zero permittivity materials

    Science.gov (United States)

    Luk, Ting S.; Campione, Salvatore; Sinclair, Michael B.

    2017-10-25

    A novel thermal source comprising a semiconductor hyperbolic metamaterial provides control of the emission spectrum and the angular emission pattern. These properties arise because of epsilon-near-zero conditions in the semiconductor hyperbolic metamaterial. In particular, the thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the semiconductor hyperbolic metamaterial. Furthermore, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy of hyperbolic metamaterials.

  7. Thermal studies on some new inorganic exchange materials

    International Nuclear Information System (INIS)

    Murthy, G.S.; Satyanarayana, J.; Reddy, V.N.

    1998-01-01

    The new inorganic exchangers developed in this laboratory zirconium phosphate-ammonium molybdophosphate (ZrP-AMP), titanium phosphate-ammonium molybdophosphate (TiP-AMP) and alumina-ammonium molybdophosphate (alumina-AMP) have been investigated extensively to study the removal of Cs from high level nuclear waste. As a part of these studies thermal studies on these substances have been carried out to elucidate the information on thermal stability of these exchangers. Results obtained are presented here and discussed. (author)

  8. Rocket Science at the Nanoscale.

    Science.gov (United States)

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  9. Effects of pressure and temperature on thermal contact resistance between different materials

    Directory of Open Access Journals (Sweden)

    Zhao Zhe

    2015-01-01

    Full Text Available To explore whether pressure and temperature can affect thermal contact resistance, we have proposed a new experimental approach for measurement of the thermal contact resistance. Taking the thermal contact resistance between phenolic resin and carbon-carbon composites, cuprum, and aluminum as the examples, the influence of the thermal contact resistance between specimens under pressure is tested by experiment. Two groups of experiments are performed and then an analysis on influencing factors of the thermal contact resistance is presented in this paper. The experimental results reveal that the thermal contact resistance depends not only on the thermal conductivity coefficient of materials, but on the interfacial temperature and pressure. Furthermore, the thermal contact resistance between cuprum and aluminum is more sensitive to pressure and temperature than that between phenolic resin and carbon-carbon composites.

  10. Increasing the structural strength of iron-carbon materials by thermal cycling treatment

    International Nuclear Information System (INIS)

    Fedyukin, V.K.; Platonov, V.N.

    1977-01-01

    Outlined are the principles of a method for thermal cyclic treatment of cast irons, carbon and low-alloy structural steels. It has been found that the thermal cyclic treatment makes it possible either to enhance the strength characteristics of materials parallel with improvements in palsticity and resilience or to substantially raise the plasticity and the resilience (by two, three and more times) while retaining the strength properties. It is shown that the thermal cyclic treatment has a beneficial effect upon the overall service capabilities of the thermally treated materials

  11. Multidimensional Tests of Thermal Protection Materials in the Arcjet Test Facility

    Science.gov (United States)

    Agrawal, Parul; Ellerby, Donald T.; Switzer, Mathew R.; Squire, Thomas H.

    2010-01-01

    Many thermal protection system materials used for spacecraft heatshields have anisotropic thermal properties, causing them to display significantly different thermal characteristics in different directions, when subjected to a heating environment during flight or arcjet tests. This paper investigates the effects of sidewall heating coupled with anisotropic thermal properties of thermal protection materials in the arcjet environment. Phenolic Impregnated Carbon Ablator (PICA) and LI-2200 materials (the insulation material of Shuttle tiles) were used for this study. First, conduction-based thermal response simulations were carried out, using the Marc.Mentat finite element solver, to study the effects of sidewall heating on PICA arcjet coupons. The simulation showed that sidewall heating plays a significant role in thermal response of these models. Arcjet tests at the Aerodynamic Heating Facility (AHF) at NASA Ames Research Center were performed later on instrumented coupons to obtain temperature history at sidewall and various radial locations. The details of instrumentation and experimental technique are the prime focus of this paper. The results obtained from testing confirmed that sidewall heating plays a significant role in thermal response of these models. The test results were later used to verify the two-dimensional ablation, thermal response, and sizing program, TITAN. The test data and model predictions were found to be in excellent agreement

  12. Multidimensional Testing of Thermal Protection Materials in the Arcjet Test Facility

    Science.gov (United States)

    Agrawal, Parul; Ellerby, Donald T.; Switzer, Matt R.; Squire, Thomas Howard

    2010-01-01

    Many thermal protection system materials used for spacecraft heatshields have anisotropic thermal properties, causing them to display significantly different thermal characteristics in different directions, when subjected to a heating environment during flight or arcjet tests. The anisotropic effects are enhanced in the presence of sidewall heating. This paper investigates the effects of anisotropic thermal properties of thermal protection materials coupled with sidewall heating in the arcjet environment. Phenolic Impregnated Carbon Ablator (PICA) and LI-2200 materials (the insulation material of Shuttle tiles) were used for this study. First, conduction-based thermal response simulations were carried out, using the Marc.Mentat finite element solver, to study the effects of sidewall heating on PICA arcjet coupons. The simulation showed that sidewall heating plays a significant role in thermal response of these models. Arcjet tests at the Aerodynamic Heating Facility (AHF) at NASA Ames Research Center were performed later on instrumented coupons to obtain temperature history at sidewall and various radial locations. The details of instrumentation and experimental technique are the prime focus of this paper. The results obtained from testing confirmed that sidewall heating plays a significant role in thermal response of these models. The test results were later used to validate the two-dimensional ablation, thermal response, and sizing program, TITAN. The test data and model predictions were found to be in excellent agreement

  13. Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins

    Science.gov (United States)

    Mu, Mulan; Wan, Chaoying; McNally, Tony

    2017-12-01

    The outstanding thermal conductivity (λ) of graphene and its derivatives offers a potential route to enhance the thermal conductivity of epoxy resins. Key challenges still need to be overcome to ensure effective dispersion and distribution of 2D graphitic fillers throughout the epoxy matrix. 2D filler type, morphology, surface chemistry and dimensions are all important factors in determining filler thermal conductivity and de facto the thermal conductivity of the composite material. To achieve significant enhancement in the thermal conductivity of epoxy composites, different strategies are required to minimise phonon scattering at the interface between the nano-filler and epoxy matrix, including chemical functionalisation of the filler surfaces such that interactions between filler and matrix are promoted and interfacial thermal resistance (ITR) reduced. The combination of graphitic fillers with dimensions on different length scales can potentially form an interconnected multi-dimensional filler network and, thus contribute to enhanced thermal conduction. In this review, we describe the relevant properties of different 2D nano-structured graphitic materials and the factors which determine the translation of the intrinsic thermal conductivity of these 2D materials to epoxy resins. The key challenges and perspectives with regard achieving epoxy composites with significantly enhanced thermal conductivity on addition of 2D graphitic materials are presented.

  14. High temperature insulation materials for reradiative thermal protection systems

    Science.gov (United States)

    Hughes, T. A.

    1972-01-01

    Results are presented of a two year program to evaluate packaged thermal insulations for use under a metallic radiative TPS of a shuttle orbiter vehicle. Evaluations demonstrated their survival for up to 100 mission reuse cycles under shuttle acoustic and thermal loads with peak temperatures of 1000 F, 1800 F, 2000 F, 2200 F and 2500 F. The specimens were composed of low density refractory fiber felts, packaged in thin gage metal foils. In addition, studies were conducted on the venting requirements of the packages, salt spray resistance of the metal foils, and the thermal conductivity of many of the insulations as a function of temperature and ambient air pressure. Data is also presented on the radiant energy transport through insulations, and back-scattering coefficients were experimentally determined as a function of source temperature.

  15. Material property measurements with post-processed thermal image data

    Science.gov (United States)

    Welch, Christopher S.; Winfree, William P.; Heath, D. M.; Cramer, Elliott; Howell, Patricia

    1990-01-01

    Some of the applications to materials evaluation and property determination of thermographic NDE using digital postprocessing of sequences of thermograms are demonstrated. A generic description is given of the steps used in postprocessing for obtaining material property values.

  16. Evaluation of thermal storage materials for solar cooker

    OpenAIRE

    Abate, Solomon

    2014-01-01

    The performance of a solar thermal energy storage system using Lapland granite rock fragments 2-4 cm in diameter were assessed using a scaled-down model. The thesis deals with a selected medium that absorbs and stores solar heat during the day time and releases it when the sun was not shining. A storage rock bed of 5.89 kg with 30 cm x 30 cm base area and 6 cm thickness was placed at the bottom of a solar cooker and painted with black color to increase thermal absorption. The overall performa...

  17. FY 2017 – Thermal Aging Effects on Advanced Structural Materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, K [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Wei-Ying [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    This report provides an update on the evaluation of the effect of thermal aging on tensile properties of existing laboratory-sized heats of Alloy 709 austenitic stainless steel and the completion of effort on the thermal aging effect on the tensile properties of optimized G92 ferritic-martensitic steel. The report is a Level 3 deliverable in FY17 (M3AT-17AN1602081), under the Work Package AT-17AN160208, “Advanced Alloy Testing - ANL” performed by the Argonne National Laboratory (ANL), as part of the Advanced Reactor Technologies Program.

  18. Sub-Kelvin Thermal Conductivity and Radioactivity of Some Useful Materials in Low Background Cryogenic Experiments

    Science.gov (United States)

    Kellaris, N.; Daal, M.; Epland, M.; Pepin, M.; Kamaev, O.; Cushman, P.; Kramer, E.; Sadoulet, B.; Mirabolfathi, N.; Golwala, S.; Runyan, M.

    2014-08-01

    We present measurements of the thermal conductivity between 0.05 and 1 K, and radioactive contamination levels, for some thermally isolating materials. TIMET Ti 15-3-3-3, Mersen grade 2020 graphite, Vespel SP-1, Vespel SP-22, Vespel SCP-5000, Vespel SCP-5050, Graphlite CFRP, and a Kapton/epoxy composite are all investigated. Thermal conductivities were measured using a single-heater longitudinal heat flow method. Material radioactivity was determined for the materials at a low background counting facility using a high-purity gamma detector and GEANT4 Monte Carlo simulations.

  19. VII International scientific conference Radiation-thermal effects and processes in inorganic materials. Proceedings

    International Nuclear Information System (INIS)

    2010-01-01

    In the collection there are the reports of the VII International scientific conference and the VII All-Russian school-conference Radiation-thermal effects and processes in inorganic materials which were conducted on October 2-10, 2010, in Tomsk. The reports deal with new developments of charged particles high-intensity beam sources, high-temperature metrology of high-current beams and work materials, radiation-thermal stimulated effects and processes in inorganic materials, physical basics of technological processes, radiation-thermal technologies and equipment for their realization, allied branches of science and technology, specifically, nanotechnologies [ru

  20. Thermal capacitator design rationale. Part 1: Thermal and mechanical property data for selected materials potentially useful in thermal capacitor design and construction

    Science.gov (United States)

    Bailey, J. A.; Liao, C. K.

    1975-01-01

    The thermal properties of paraffin hydrocarbons and hydrocarbon mixtures which may be used as the phase change material (PCM) in thermal capacitors are discussed. The paraffin hydrocarbons selected for consideration are those in the range from C11H24 (n-Undecane) to C20H42 (n-Eicosane). A limited amount of data is included concerning other properties of paraffin hydrocarbons and the thermal and mechanical properties of several aluminum alloys which may find application as constructional materials. Data concerning the melting temperature, transition temperature, latent heat of fusion, heat of transition, specific heat, and thermal conductivity of pure and commercial grades of paraffin hydrocarbons are given. An index of companies capable of producing paraffin hydrocarbons and information concerning the availability of various grades (purity levels) is provided.

  1. The advantage of selection of mineral thermal insulation materials with the structural properties for thermal insulation in buildings

    Directory of Open Access Journals (Sweden)

    Janžekovič Ines M.

    2014-01-01

    Full Text Available The paper deals with the problem of energy efficiency in Serbia. It gives a general overview of the energy losses and focuses on energy losses in buildings, which is recognized as one of the most problematic sectors as the energy losses concerns. By the very fact there is a need for more efficient implementation of measures to reduce energy losses through education and increased awareness of citizens about the proper ways of performing thermal protection of buildings. The paper points out the problems that arise when selecting the inadequate solutions of performing thermal insulation of buildings and suggests some solutions for the proper selection of materials for thermal insulation and in setting the appropriate requirements for thermal envelope for buildings.

  2. Aluminum and silicon based phase change materials for high capacity thermal energy storage

    International Nuclear Information System (INIS)

    Wang, Zhengyun; Wang, Hui; Li, Xiaobo; Wang, Dezhi; Zhang, Qinyong; Chen, Gang; Ren, Zhifeng

    2015-01-01

    Six compositions of aluminum (Al) and silicon (Si) based materials: 87.8Al-12.2Si, 80Al–20Si, 70Al–30Si, 60Al–40Si, 45Al–40Si–15Fe, and 17Al–53Si–30Ni (atomic ratio), were investigated for potentially high thermal energy storage (TES) application from medium to high temperatures (550–1200 °C) through solid–liquid phase change. Thermal properties such as melting point, latent heat, specific heat, thermal diffusivity and thermal conductivity were investigated by differential scanning calorimetry and laser flash apparatus. The results reveal that the thermal storage capacity of the Al–Si materials increases with increasing Si concentration. The melting point and latent heat of 45Al–40Si–15Fe and 17Al–53Si–30Ni are ∼869 °C and ∼562 J g −1 , and ∼1079 °C and ∼960 J g −1 , respectively. The measured thermal conductivity of Al–Si binary materials depend on Si concentration and is higher than 80 W m −1  K −1 from room temperature to 500 °C, which is almost two orders of magnitude higher than those of salts that are commonly used phase change material for thermal energy storage. - Highlights: • Six kinds of materials were investigated for thermal energy storage (550–1200 °C). • Partial melting of Al–Si materials show progressively changing temperatures. • Studied materials can be used in three different working temperature ranges. • Materials are potentially good candidates for thermal energy storage applications.

  3. Rockets two classic papers

    CERN Document Server

    Goddard, Robert

    2002-01-01

    Rockets, in the primitive form of fireworks, have existed since the Chinese invented them around the thirteenth century. But it was the work of American Robert Hutchings Goddard (1882-1945) and his development of liquid-fueled rockets that first produced a controlled rocket flight. Fascinated by rocketry since boyhood, Goddard designed, built, and launched the world's first liquid-fueled rocket in 1926. Ridiculed by the press for suggesting that rockets could be flown to the moon, he continued his experiments, supported partly by the Smithsonian Institution and defended by Charles Lindbergh. T

  4. Emanation thermal analysis of SiC based materials

    Czech Academy of Sciences Publication Activity Database

    Bálek, V.; Zeleňák, V.; Mitsuhashi, T.; Bakardjieva, Snejana; Šubrt, Jan; Haneda, H.

    2002-01-01

    Roč. 67, č. 1 (2002), s. 83-89 ISSN 1418-2874 R&D Projects: GA MŠk ME 180 Grant - others:EFDA(XE) TTMA-001 Institutional research plan: CEZ:AV0Z4032918 Keywords : emanation thermal analysis * SEM * SiC nanocomposites Subject RIV: CA - Inorganic Chemistry Impact factor: 0.598, year: 2002

  5. Thermal conductivity of food materials at elevated temperatures

    NARCIS (Netherlands)

    Spiess, W.E.L.; Walz, E.; Nesvadba, P.; Morley, M.; Haneghem, van I.A.; Salmon, D.R.

    2001-01-01

    In order to expand the available information on thermal conductivity of foods, within the framework of COST Action 93, a collaborative study was organised. In the first step, typical food components (apple pulp, meat, olive oil, sodium caseinate, starch, tomato paste) were used as standards for

  6. Thermal Pollution: Background Material for a Mock Trial

    Science.gov (United States)

    Armstrong, David G.

    1977-01-01

    Secondary teachers can involve students in a mock trial based on a 1975 New Jersey Superior Court case involving "thermal pollution." Article provides teachers' instructions; background data for plaintiff, defense, and witnesses; debriefing questions; and capstone activity. Available from: Law in American Society Foundation, 33 North LaSalle…

  7. Incorporation of Polymers into Calcined Clays as Improved Thermal Insulating Materials for Construction

    OpenAIRE

    Ng, Serina; Jelle, Bjørn Petter

    2017-01-01

    Calcined clay is a Type Q supplementary cementing material according to EN197-1:2000. It possesses lower thermal conductivity than cement. To further improve its thermal insulation property, polymer-calcined clay complexes (PCCs) were produced in a one-pot synthesis. Two contrasting polymers, polystyrene (PS) and polyethylene glycol (PEG), were employed. The hydrophilicity of the polymers influenced the thermal conductivity of PCC. Hydrophilic PEG entrapped more water molecules on clay layers...

  8. Thermal Response of UHMWPE Materials in a Flash Flame Test Environment

    Science.gov (United States)

    2014-11-13

    COVERED (From - To) October 2012 – April 2014 4. TITLE AND SUBTITLE THERMAL RESPONSE OF UHMWPE MATERIALS IN A FLASH FLAME TEST ENVIRONMENT 5a. CONTRACT ...an FR fabric outer layer of Tencate Defender M. Prior to fabricating test garments , preliminary flash flame testing was conducted with a midscale...test setup, which guided the full-scale thermal manikin test plan. Test garments were fabricated for evaluation on the instrumented thermal test

  9. PROPERTIES OF FIBERBOARD OVERPACK MATERIAL IN THE 9975 SHIPPING PACKAGE FOLLOWING THERMAL AGING

    International Nuclear Information System (INIS)

    Daugherty, W

    2007-01-01

    Many radioactive material shipping packages incorporate cane fiberboard overpacks for thermal insulation and impact resistance. Mechanical, thermal and physical properties have been measured on cane fiberboard following thermal aging in several temperature/humidity environments. Several of the measured properties change significantly over time in the more severe environments, while other properties are relatively constant. These properties continue to be tracked, with the goal of developing a model for predicting a service life under long-term storage conditions

  10. Comments on Thermal Physical Properties Testing Methods of Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Jingchao Xie

    2013-01-01

    Full Text Available There is no standard testing method of the thermal physical properties of phase change materials (PCM. This paper has shown advancements in this field. Developments and achievements in thermal physical properties testing methods of PCM were commented, including differential scanning calorimetry, T-history measurement, the water bath method, and differential thermal analysis. Testing principles, advantages and disadvantages, and important points for attention of each method were discussed. A foundation for standardized testing methods for PCM was made.

  11. DETERMINATION OF THERMAL RESPONSE OF CARRARA AND SNEZNIKOVSKY MARBLE USED AS A BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Veronika Petráňová

    2016-02-01

    Full Text Available Physical weathering of marble, widely used as a cladding material on buildings, is one of the most common damaging mechanism caused by anisotropic thermal expansion of calcite grains. The extent of marble deterioration depends mainly on stone fabric and texture. Dry cuboids of Carrara marble and marble from Dolni Morava quarry were subjected to microscopic analysis and thermal cycling, to determine the thermal expansion related to stone fabric and predominant lattice orientation of grains (i.e. texture.

  12. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material

    International Nuclear Information System (INIS)

    Tao, Y.B.; Lin, C.H.; He, Y.L.

    2015-01-01

    Highlights: • Nanocomposite phase change materials were prepared and characterized. • Larger specific surface area is more efficient to enhance specific heat. • Columnar structure is more efficient to enhance thermal conductivity. • Thermal conductivity enhancement is the key. • Single walled carbon nanotube is the optimal nanomaterial additive. - Abstract: To enhance the performance of high temperature salt phase change material, four kinds of carbon nanomaterials with different microstructures were mixed into binary carbonate eutectic salts to prepare carbonate salt/nanomaterial composite phase change material. The microstructures of the nanomaterial and composite phase change material were characterized by scanning electron microscope. The thermal properties such as melting point, melting enthalpy, specific heat, thermal conductivity and total thermal energy storage capacity were characterized. The results show that the nanomaterial microstructure has great effects on composite phase change material thermal properties. The sheet structure Graphene is the best additive to enhance specific heat, which could be enhanced up to 18.57%. The single walled carbon nanotube with columnar structure is the best additive to enhance thermal conductivity, which could be enhanced up to 56.98%. Melting point increases but melting enthalpy decreases with nanomaterial specific surface area increase. Although the additives decrease the melting enthalpy of composite phase change material, they also enhance the specific heat. As a combined result, the additives have little effects on thermal energy storage capacity. So, for phase change material performance enhancement, more emphasis should be placed on thermal conductivity enhancement and single walled carbon nanotube is the optimal nanomaterial additive

  13. Investigation of Thermal Interface Materials Using Phase-Sensitive Transient Thermoreflectance Technique: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; King, C.; DeVoto, D.; Mihalic, M.; Narumanchi, S.

    2014-08-01

    With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 to 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 μm bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.

  14. Review on factors influencing thermal conductivity of concrete incorporating various type of waste materials

    Science.gov (United States)

    Misri, Z.; Ibrahim, M. H. W.; Awal, A. S. M. A.; Desa, M. S. M.; Ghadzali, N. S.

    2018-04-01

    Concrete is well-known as a construction material which is widely used in building and infrastructure around the world. However, its widespread use has affected the reduction of natural resources. Hence, many approached have been made by researchers to study the incorporation of waste materials in concrete as a substitution for natural resources besides reducing waste disposal problems. Concrete is basically verified by determining its properties; strengths, permeability, shrinkage, durability, thermal properties etc. In various thermal properties of concrete, thermal conductivity (TC) has received a large amount of attention because it is depend upon the composition of concrete. Thermal conductivity is important in building insulation to measure the ability of a material to transfer heat. The aim of this paper is to discuss the methods and influence factors of TC of concrete containing various type of waste materials.

  15. Innovations for the Affordable Conductive Thermal Control Material Systems for Space Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is submitted to develop and validate the innovative concept for the affordable conductive thermal control material systems that are proven feasible...

  16. Utilization of Self-Healing Materials in Thermal Protection System Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is the Utilization of Self-Healing Materials for Thermal Protection System (TPS) Applications. Currently, the technology for repairing TPS from...

  17. Assessment of thermal insulation materials and systems for building applications

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The primary goal of the study was to provide a proper foundation for decision making by the federal government, industry, and consumer. The report may be used to identify areas where new test methods and standards are needed to establish new programs for improving thermal performance of buildings, and as a basis for setting new or improved standards after the recommended test programs have been completed.

  18. Thermal imaging during ballistic testing of armour materials

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2013-01-01

    During the interaction between a projectile and a target material the kinetic energy of the projectile is transferred into elastic and plastic deformation of both the projectile and target materials. Using a rigid penetrator the loss in kinetic energy is fully converted into energy absorbed by the

  19. Nanocellular polymer foams as promising high performance thermal insulation materials

    NARCIS (Netherlands)

    Liu, Shanqiu; Duvigneau, Joost; Vancso, Gyula J.

    2015-01-01

    Low density, nanocellular polymer nanocomposite foams are considered as a promising new class of materials with many promising applications, for example to passively enhance the energy efficiency of buildings. This paper discusses recent developments in this field of polymer materials science.

  20. Thermal Stability Test of Sugar Alcohols as Phase Change Materials for Medium Temperature Energy Storage Application

    OpenAIRE

    Solé, Aran; Neumann, Hannah; Niedermaier, Sophia; Cabeza, Luisa F.; Palomo, Elena

    2014-01-01

    Sugar alcohols are potential phase change materials candidates as they present high phase change enthalpy values, are non-toxic and low cost products. Three promising sugar-alcohols were selected: D-mannitol, myo-inositol and dulcitol under high melting enthalpy and temperature criterion. Thermal cycling tests were performed to study its cycling stability which can be determining when selecting the suitable phase change material. D-mannitol and dulcitol present poor thermal stability...

  1. Characterization of an Integral Thermal Protection and Cryogenic Insulation Material for Advanced Space Transportation Vehicles

    Science.gov (United States)

    Salerno, L. J.; White, S. M.; Helvensteijn, B. P. M.

    2000-01-01

    NASA's planned advanced space transportation vehicles will benefit from the use of integral/conformal cryogenic propellant tanks which will reduce the launch weight and lower the earth-to-orbit costs considerably. To implement the novel concept of integral/conformal tanks requires developing an equally novel concept in thermal protection materials. Providing insulation against reentry heating and preserving propellant mass can no longer be considered separate problems to be handled by separate materials. A new family of materials, Superthermal Insulation (STI), has been conceiving and investigated by NASA's Ames Research Center to simultaneously provide both thermal protection and cryogenic insulation in a single, integral material.

  2. Thermal Analysis and Testing of Candidate Materials for PAIDAE Inflatable Aeroshell

    Science.gov (United States)

    DelCorso, Joseph A.; Bruce, Walter E., III; Liles, Kaitlin A.; Hughes, Stephen J.

    2009-01-01

    The Program to Advance Inflatable-Decelerators for Atmospheric Entry (PAIDAE) is a NASA project tasked with developing and evaluating viable inflatable-decelerator aeroshell geometries and materials. Thermal analysis of material layups supporting an inflatable aeroshell was completed in order to identify expected material response, failure times, and to establish an experimental test matrix to keep barrier layer materials from reaching critical temperature limits during thermal soak. Material layups were then tested in the 8- foot High Temperature Tunnel (8'HTT), where they were subjected to hypersonic aerothermal heating conditions, similar to those expected for a Mars entry. This paper presents a broad overview of the thermal analysis supporting multiple materials, and layup configurations tested in the 8'HTT at flight conditions similar to those that would be experienced during Mars entry trajectories. Direct comparison of TPS samples tested in the 8'HTT verify that the thermal model accurately predicted temperature profiles when there are up to four materials in the test layup. As the number of material layers in each test layup increase (greater than 4), the accuracy of the prediction decreases significantly. The inaccuracy of the model predictions for layups with more than four material layers is believed to be a result of the contact resistance values used throughout the model being inaccurate. In addition, the harsh environment of the 8'HTT, including hot gas penetrating through the material layers, could also be a contributing factor.

  3. Experimental Investigation of Thermal Conductivity of Concrete Containing Micro-Encapsulated Phase Change Materials

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    in this article utilizes integration of the concrete and the microencapsulated Phase Change Material (PCM). PCM has the ability to absorb and release significant amounts of heat at a specific temperature range. As a consequence of admixing PCM to the concrete, new thermal properties like thermal conductivity...... and specific heat capacity have to be defined. This paper presents results from the measurements of the thermal conductivity of various microencapsulated PCM-concrete and PCM-cement-paste mixes. It was discovered that increase of the amount of PCM decreases the thermal conductivity of the concrete PCM mixture...

  4. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  5. Manufacture of Novel Cryogenic Thermal Protection Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc (AMTI) responds to the NASA SBIR solicitation X8 "Space Cryogenic Systems" under subtopic X8.01, "Cryogenic Fluid Transfer and...

  6. Manufacture of Novel Cryogenic Thermal Protection Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc (AMTI) responds to the NASA SBIR solicitation X8 "Space Cryogenic Systems" under subtopic X8.01, "Cryogenic Fluid Transfer and...

  7. Thermal modelling of extrusion based additive manufacturing of composite materials

    DEFF Research Database (Denmark)

    Jensen, Mathias Laustsen; Sonne, Mads Rostgaard; Hattel, Jesper Henri

    One of the hottest topics regarding manufacturing these years is additive manufacturing (AM). AM is a young branch of manufacturing techniques, which by nature is disruptive due to its completely different manufacturing approach, wherein material is added instead of removed. By adding material...... of composite parts not feasible by conventional manufacturing techniques. This sets up new requirements to the part verification and validation, while conventional destructive tests become too expensive. This initial study aims to investigate alternative options to this destructive testing by increasing......-butadiene-styrene (ABS) and thermosetting polyurethane (PU) material extrusion processes. During the experimental evaluation of the produced models it is found that some critical material properties needs to be further investigated to increase the precision of the model. It is however also found that even with only...

  8. Optimal experimental designs for the estimation of thermal properties of composite materials

    Science.gov (United States)

    Scott, Elaine P.; Moncman, Deborah A.

    1994-01-01

    Reliable estimation of thermal properties is extremely important in the utilization of new advanced materials, such as composite materials. The accuracy of these estimates can be increased if the experiments are designed carefully. The objectives of this study are to design optimal experiments to be used in the prediction of these thermal properties and to then utilize these designs in the development of an estimation procedure to determine the effective thermal properties (thermal conductivity and volumetric heat capacity). The experiments were optimized by choosing experimental parameters that maximize the temperature derivatives with respect to all of the unknown thermal properties. This procedure has the effect of minimizing the confidence intervals of the resulting thermal property estimates. Both one-dimensional and two-dimensional experimental designs were optimized. A heat flux boundary condition is required in both analyses for the simultaneous estimation of the thermal properties. For the one-dimensional experiment, the parameters optimized were the heating time of the applied heat flux, the temperature sensor location, and the experimental time. In addition to these parameters, the optimal location of the heat flux was also determined for the two-dimensional experiments. Utilizing the optimal one-dimensional experiment, the effective thermal conductivity perpendicular to the fibers and the effective volumetric heat capacity were then estimated for an IM7-Bismaleimide composite material. The estimation procedure used is based on the minimization of a least squares function which incorporates both calculated and measured temperatures and allows for the parameters to be estimated simultaneously.

  9. METHOD OF TESTING THERMAL NEUTRON FISSIONABLE MATERIAL FOR PURITY

    Science.gov (United States)

    Fermi, E.; Anderson, H.L.

    1961-01-24

    A process is given for determining the neutronic purity of fissionable material by the so-called shotgun test. The effect of a standard neutron absorber of known characteristics and amounts on a neutronic field also of known characteristics is measured and compared with the effect which the impurities derived from a known quantity of fissionable material has on the same neutronic field. The two readings are then made the basis of calculation from which the amount of impurities can be computed.

  10. Performance of buffer material under radiation and thermal conditions

    International Nuclear Information System (INIS)

    Zhao Shuaiwei; Yang Zhongtian; Liu Wei

    2012-01-01

    Bentonite is generally selected as backfill and buffer material for repositories in the world. Radiation and heat release is the intrinsic properties of high level radioactive waste. This paper made a preliminary research on foreign literature about performance of the engineering barrier material under radiation and at higher temperatures (e. g. above 100℃). As our current research is just budding in this area, we need to draw lessons from foreign experience and methods. (authors)

  11. Design of a Protection Thermal Energy Storage Using Phase Change Material Coupled to a Solar Receiver

    Science.gov (United States)

    Verdier, D.; Falcoz, Q.; Ferrière, A.

    2014-12-01

    Thermal Energy Storage (TES) is the key for a stable electricity production in future Concentrated Solar Power (CSP) plants. This work presents a study on the thermal protection of the central receiver of CSP plant using a tower which is subject to considerable thermal stresses in case of cloudy events. The very high temperatures, 800 °C at design point, impose the use of special materials which are able to resist at high temperature and high mechanical constraints and high level of concentrated solar flux. In this paper we investigate a TES coupling a metallic matrix drilled with tubes of Phase Change Material (PCM) in order to store a large amount of thermal energy and release it in a short time. A numerical model is developed to optimize the arrangement of tubes into the TES. Then a methodology is given, based from the need in terms of thermal capacity, in order to help the choice of the geometry.

  12. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    Science.gov (United States)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  13. Thermal investigation of nanostructured bulk thermoelectric materials with hierarchical structures: An effective medium approach

    Science.gov (United States)

    Hao, Qing; Zhao, Hongbo; Xiao, Yue; Xu, Dongchao

    2018-01-01

    In recent years, hierarchical structures have been intensively studied as an effective approach to tailor the electron and phonon transport inside a bulk material for thermoelectric applications. With atomic defects and nano- to micro-scale structures in a bulk material, the lattice thermal conductivity can be effectively suppressed across the whole phonon spectrum, while maintaining or somewhat enhancing the electrical properties. For general materials with superior electrical properties, high thermoelectric performance can be achieved using hierarchical structures to minimize the lattice thermal conductivity. Despite many encouraging experimental results, accurate lattice thermal conductivity predictions are still challenging for a bulk material with hierarchical structures. In this work, an effective medium formulation is developed for nanograined bulk materials with embedded nanostructures for frequency-dependent phonon transport analysis. This new formulation is validated with frequency-dependent phonon Monte Carlo simulations. For high-temperature thermoelectric applications, nanograined bulk ZnO with embedded GaN nanoparticles is studied with the formulation.

  14. Lightweight Ablative and Ceramic Thermal Protection System Materials for NASA Exploration Systems Vehicles

    Science.gov (United States)

    Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2006-01-01

    As a collaborative effort among NASA Centers, the "Lightweight Nonmetallic Thermal Protection Materials Technology" Project was set up to assist mission/vehicle design trade studies, to support risk reduction in thermal protection system (TPS) material selections, to facilitate vehicle mass optimization, and to aid development of human-rated TPS qualification and certification plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on advanced heatshields that allow reductions in spacecraft mass by minimizing propellant requirements. Information will be presented on candidate materials for such reentry approaches and on screening tests conducted (material property and space environmental effects tests) to evaluate viable candidates. Seventeen materials, in three classes (ablatives, tiles, and ceramic matrix composites), were studied. In additional to physical, mechanical, and thermal property tests, high heat flux laser tests and simulated-reentry oxidation tests were performed. Space environmental effects testing, which included exposures to electrons, atomic oxygen, and hypervelocity impacts, was also conducted.

  15. Preparation, microstructure and thermal properties of Mg−Bi alloys as phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Fang, Dong; Sun, Zheng; Li, Yuanyuan; Cheng, Xiaomin

    2016-01-01

    Highlights: • The microstructure and thermal properties of Mg−Bi alloys are determined. • The relationship between melting enthalpies and phase composition are studied. • The activation energy of Mg−54%Bi alloy is calculated by multiple DSC technology. • Mg−54%Bi alloy is proposed as a phase change material at high (>420 °C) temperature. - Abstract: Comparing with Al-based phase change material, Mg-based phase change material is getting more and more attention due to its high corrosion resistance with encapsulation materials based on iron. This study focuses on the characterization of Mg−36%Bi, Mg−54%Bi and Mg−60%Bi (wt. %) alloys as phase change materials for thermal energy storage at high temperature. The phase compositions, microstructure and phase change temperatures were investigated by X-ray diffusion (XRD), electron probe micro-analysis (EPMA) and differential scanning calorimeter (DSC) analysis, respectively. The results indicates that the microstructure of Mg−36%Bi and Mg−54%Bi alloys are mainly composed of α-Mg matrix and α-Mg + Mg 3 Bi 2 eutectic phases, Mg−60%Bi alloy are mainly composed of the Mg 3 Bi 2 phase and α-MgMg 3 Bi 2 eutectic phases. The melting enthalpies of Mg−36%Bi, Mg−54%Bi and Mg−60%Bi alloys are 138.2, 180.5 and 48.7 J/g, with the phase change temperatures of 547.6, 546.3 and 548.1 °C, respectively. The Mg−54%Bi alloy has the highest melting enthalpy in three alloys. The main reason may be that it has more proportion of α-Mg + Mg 3 Bi 2 eutectic phases. The thermal expansion of three alloys increases with increasing temperature. The values of the thermal conductivity decrease with increasing Bi content. Besides, the activation energy of Mg−54%Bi was calculated by multiple DSC technology.

  16. Novel dynamic thermal characterization of multifunctional concretes with microencapsulated phase change materials

    Science.gov (United States)

    Pisello, Anna Laura; Fabiani, Claudia; D'Alessandro, Antonella; Cabeza, Luisa F.; Ubertini, Filippo; Cotana, Franco

    2017-04-01

    Concrete is widely applied in the construction sector for its reliable mechanical performance, its easiness of use and low costs. It also appears promising for enhancing the thermal-energy behavior of buildings thanks to its capability to be doped with multifunctional fillers. In fact, key studies acknowledged the benefits of thermally insulated concretes for applications in ceilings and walls. At the same time, thermal capacity also represents a key property to be optimized, especially for lightweight constructions. In this view, Thermal-Energy Storage (TES) systems have been recently integrated into building envelopes for increasing thermal inertia. More in detail, numerical experimental investigations showed how Phase Change materials (PCMs), as an acknowledged passive TES strategy, can be effectively included in building envelope, with promising results in terms of thermal buffer potentiality. In particular, this work builds upon previous papers aimed at developing the new PCM-filled concretes for structural applications and optimized thermalenergy efficiency, and it is focused on the development of a new experimental method for testing such composite materials in thermal-energy dynamic conditions simulated in laboratory by exposing samples to environmentally controlled microclimate while measuring thermal conductivity and diffusivity by means of transient plane source techniques. The key findings show how the new composites are able to increasingly delay the thermal wave with increasing the PCM concentration and how the thermal conductivity varies during the course of the phase change, in both melting and solidification processes. The new analysis produces useful findings in proposing an effective method for testing composite materials with adaptive thermal performance, much needed by the scientific community willing to study building envelopes dynamics.

  17. Thermal properties of clay-based buffer materials for a nuclear fuel waste disposal vault

    International Nuclear Information System (INIS)

    Radhakrishna, H.S.

    1984-06-01

    The thermal properties of three types of bentonite clay, one illite-rich shale and one kaolin mixed with crushed granite were investigated. Thermal conductivity measurements were made over a range of mix proportions, moisture content, density and ambient temperature using the transient heat-probe method. The effects of thermal drying in the buffer zone prior to water uptake were investigated by means of laboratory-scale heater experiments. Illite-rich shale (Sealbond) and kaolin exhibited better compactability and thermal conductivity than the bentonite clays. The thermal conductivity of all types of clay buffers showed a high degree of moisture dependency and relatively no effect due to elevated temperature under high fluid pressure conditions. Bentonite buffers compacted to a dry density of 1200 to 1400 kg/m 3 showed extensive cracking due to differential shrinkage. Addition of crushed granite, and/or compaction to a higher density, reduced the thermal cracking of the buffer material

  18. Incorporation of Polymers into Calcined Clays as Improved Thermal Insulating Materials for Construction

    Directory of Open Access Journals (Sweden)

    Serina Ng

    2017-01-01

    Full Text Available Calcined clay is a Type Q supplementary cementing material according to EN197-1:2000. It possesses lower thermal conductivity than cement. To further improve its thermal insulation property, polymer-calcined clay complexes (PCCs were produced in a one-pot synthesis. Two contrasting polymers, polystyrene (PS and polyethylene glycol (PEG, were employed. The hydrophilicity of the polymers influenced the thermal conductivity of PCC. Hydrophilic PEG entrapped more water molecules on clay layers than the hydrophobic PS, making PEG-PCC more thermally conducting than PS-PCC. Contaminants in calcined clays played a role in affecting the overall thermal conductivity. PCC can improve thermal insulation properties for future construction applications.

  19. The usage of phase change materials in fire fighter protective clothing: its effect on thermal protection

    Science.gov (United States)

    Zhao, Mengmeng

    2017-12-01

    The thermal protective performance of the fire fighter protective clothing is of vital importance for fire fighters. In the study fabrics treated by phase change materials (PCMs) were applied in the multi-layered fabrics of the fire fighter protective clothing ensemble. The PCM fabrics were placed at the different layers of the clothing and their thermal protective performance were measured by a TPP tester. Results show that with the application of the PCM fabrics the thermal protection of the multi-layered fabrics was greatly increased. The time to reach a second degree burn was largely reduced. The location of the PCM fabrics at the different layers did not affect much on the thermal protective performance. The higher amount of the PCM adds on, the higher thermal protection was brought. The fabrics with PCMs of a higher melting temperature could contribute to higher thermal protection.

  20. Thermal Characteristics of New Building Materials and their Effect upon the Energy Efficiency

    Science.gov (United States)

    Ekmanis, J.; Zebergs, V.; Zeltins, N.; Vrublevski, V.

    2008-09-01

    The paper formulates the role of thermal inertia of the building materials in the energy supply of buildings and in solution of the energy efficiency problems. The evolution of construction entails the application of new building materials as well as of glazed surfaces in the envelopes of buildings. An analysis is made of the influence of the thermal resistance of building materials and their heat capacity on the thermal inertia indicators of buildings. An inertia scale of buildings has been developed for the choice of the heat supply capacities of buildings at low outdoor temperatures under extreme conditions of the Latvian climate. The ratio of the ventilation capacities has been analysed in the total heating balance at a low thermal inertia of buildings. The significance of innovative ventilation technologies for raising the energy efficiency has been considered.

  1. A comparative study of the thermal interface materials with graphene and boron nitride fillers

    Science.gov (United States)

    Kargar, F.; Salgado, R.; Legedza, S.; Renteria, J.; Balandin, A. A.

    2014-09-01

    We report the results of an experimental study that compares the performance of graphene and boron nitride flakes as fillers in the thermal interface materials. The thickness of both fillers varied from a single atomic plane to about a hundred. The measurements have been conducted using a standard TIM tester. Our results show that the addition of a small fraction of graphene (f=4 wt%) to a commercial thermal interface material increases the resulting apparent thermal conductivity substantially stronger than the addition of boron nitride. The obtained data suggest that graphene and fewlayer graphene flakes couple better to the matrix materials than the boron nitride fillers. A combination of both fillers can be used to increase the thermal conductivity while controlling the electrical conduction.

  2. Micromechanical Characterization and Testing of Carbon Based Woven Thermal Protection Materials

    Science.gov (United States)

    Agrawal, Parul; Pham, John T.; Arnold, James O.; Peterson, Keith; Venkatapathy, Ethiraj

    2013-01-01

    Woven thermal protection system (TPS) materials are one of the enabling technologies for mechanically deployable hypersonic decelerator systems. These materials can be simultaneously used for thermal protection and as structural load bearing members during the entry, descent and landing operations. In order to ensure successful thermal and structural performance during the atmospheric entry, it is important to characterize the properties of these materials, once they have been subjected to entry like conditions. The present paper focuses on mechanical characteristics of pre-and post arc-jet tested woven TPS samples at different scales. It also presents the observations from scanning electron microscope and computed tomography images, and explains the changes in microstructure after being subjected to combined thermal-mechanical loading environments.

  3. Combinatory Models for Predicting the Effective Thermal Conductivity of Frozen and Unfrozen Food Materials

    Directory of Open Access Journals (Sweden)

    K. S. Reddy

    2010-01-01

    Full Text Available A model to predict the effective thermal conductivity of heterogeneous materials is proposed based on unit cell approach. The model is combined with four fundamental effective thermal conductivity models (Parallel, Series, Maxwell-Eucken-I, and Maxwell-Eucken-II to evolve a unifying equation for the estimation of effective thermal conductivity of porous and nonporous food materials. The effect of volume fraction (ν on the structure composition factor (ψ of the food materials is studied. The models are compared with the experimental data of various foods at the initial freezing temperature. The effective thermal conductivity estimated by the Maxwell-Eucken-I + Present model shows good agreement with the experimental data with a minimum average deviation of ±8.66% and maximum deviation of ±42.76% of Series + Present Model. The combined models have advantages over other empirical and semiempirical models.

  4. Giant Thermal Expansion in 2D and 3D Cellular Materials.

    Science.gov (United States)

    Zhu, Hanxing; Fan, Tongxiang; Peng, Qing; Zhang, Di

    2018-03-25

    When temperature increases, the volume of an object changes. This property was quantified as the coefficient of thermal expansion only a few hundred years ago. Part of the reason is that the change of volume due to the variation of temperature is in general extremely small and imperceptible. Here, abnormal giant linear thermal expansions in different types of two-ingredient microstructured hierarchical and self-similar cellular materials are reported. The cellular materials can be 2D or 3D, and isotropic or anisotropic, with a positive or negative thermal expansion due to the convex or/and concave shape in their representative volume elements respectively. The magnitude of the thermal expansion coefficient can be several times larger than the highest value reported in the literature. This study suggests an innovative approach to develop temperature-sensitive functional materials and devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Thermal properties of a new ecological building material / Granular cork embedded in white cement

    Directory of Open Access Journals (Sweden)

    Cherki Abou-bakr

    2014-04-01

    Full Text Available Cork, natural and renewable product, has thermal and acoustic properties very interesting because of its microstructure and porosity representing a significant portion of its apparent volume; it’s coming from Moroccan Maamora’s forest. This work is a contribution to understand the thermal behaviour of the composite material based on granular cork embedded in white cement. An experimental investigation of its thermal properties was mainly performed using the asymmetrical device of transient Hot Plate method. The effect of granular cork size on the thermal properties of the mixture was studied. The experimental study of this sustainable material aims to characterize its thermal properties and then compare them with those of white cement without cork for motivate the proposal that this composite material will be used as walls insulator. A comparison of the energy performances of the composite material and white cement was made; it allows deducing a very interesting energy gain. The findings of the experiments indicate that the composite is better than white cement in term of thermal insulation, energy storage capacity and lightness. So, it can be used to realize the internal walls insulation. Its utilization should contribute to the improvement of the energy efficiency in building especially that this is a mixture based on a sustainable and renewable material.

  6. Effects of surface materials on polarimetric-thermal measurements: applications to face recognition.

    Science.gov (United States)

    Short, Nathaniel J; Yuffa, Alex J; Videen, Gorden; Hu, Shuowen

    2016-07-01

    Materials, such as cosmetics, applied to the face can severely inhibit biometric face-recognition systems operating in the visible spectrum. These products are typically made up of materials having different spectral properties and color pigmentation that distorts the perceived shape of the face. The surface of the face emits thermal radiation, due to the living tissue beneath the surface of the skin. The emissivity of skin is approximately 0.99; in comparison, oil- and plastic-based materials, commonly found in cosmetics and face paints, have an emissivity range of 0.9-0.95 in the long-wavelength infrared part of the spectrum. Due to these properties, all three are good thermal emitters and have little impact on the heat transferred from the face. Polarimetric-thermal imaging provides additional details of the face and is also dependent upon the thermal radiation from the face. In this paper, we provide a theoretical analysis on the thermal conductivity of various materials commonly applied to the face using a metallic sphere. Additionally, we observe the impact of environmental conditions on the strength of the polarimetric signature and the ability to recover geometric details. Finally, we show how these materials degrade the performance of traditional face-recognition methods and provide an approach to mitigating this effect using polarimetric-thermal imaging.

  7. Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems

    International Nuclear Information System (INIS)

    Islam, M.M.; Pandey, A.K.; Hasanuzzaman, M.; Rahim, N.A.

    2016-01-01

    Highlights: • Broad summary of phase change materials based cooling for photovoltaic modules. • Compendium on phase change materials that are mostly used in photovoltaic systems. • Extension of heat availability period by 75–100% with phase change material. • Heat storage potential improves by 33–50% more with phase change material. • Future trend and move in photovoltaic thermal research. - Abstract: This communication lays out an appraisal on the recent works of phase change materials based thermal management techniques for photovoltaic systems with special focus on the so called photovoltaic thermal-phase change material system. Attempt has also been made to draw wide-ranging classification of both photovoltaic and photovoltaic thermal systems and their conventional cooling or heat harvesting methods developed so far so that feasible phase change materials application area in these systems can be pointed out. In addition, a brief literature on phase change materials with particular focus on their solar application has also been presented. Overview of the researches and studies establish that using phase change materials for photovoltaic thermal control is technically viable if some issues like thermal conductivity or phase stability are properly addressed. The photovoltaic thermal-phase change material systems are found to offer 33% (maximum 50%) more heat storage potential than the conventional photovoltaic-thermal water system and that with 75–100% extended heat availability period and around 9% escalation in output. Reduction in temperature attained with photovoltaic thermal-phase change material system is better than that with regular photovoltaic-thermal water system, too. Studies also show the potential of another emerging technology of photovoltaic thermal-microencapsulated phase change material system that makes use of microencapsulated phase change materials in thermal regulation. Future focus areas on photovoltaic thermal-phase change

  8. Effect of Material Composition and Environmental Condition on Thermal Characteristics of Conductive Asphalt Concrete

    Science.gov (United States)

    Pan, Pan; Wu, Shaopeng; Hu, Xiaodi; Liu, Gang; Li, Bo

    2017-01-01

    Conductive asphalt concrete with high thermal conductivity has been proposed to improve the solar energy collection and snow melting efficiencies of asphalt solar collector (ASC). This paper aims to provide some insight into choosing the basic materials for preparation of conductive asphalt concrete, as well as determining the evolution of thermal characteristics affected by environmental factors. The thermal properties of conductive asphalt concrete were studied by the Thermal Constants Analyzer. Experimental results showed that aggregate and conductive filler have a significant effect on the thermal properties of asphalt concrete, while the effect of asphalt binder was not evident due to its low proportion. Utilization of mineral aggregate and conductive filler with higher thermal conductivity is an efficient method to prepare conductive asphalt concrete. Moreover, change in thermal properties of asphalt concrete under different temperature and moisture conditions should be taken into account to determine the actual thermal properties of asphalt concrete. There was no noticeable difference in thermal properties of asphalt concrete before and after aging. Furthermore, freezing–thawing cycles strongly affect the thermal properties of conductive asphalt concrete, due to volume expansion and bonding degradation. PMID:28772580

  9. Reentry thermal protection from Pioneer F RTG insulation material

    Science.gov (United States)

    Vorreiter, J. W.

    1972-01-01

    Ablation tests were performed on the insulation material used in the Pioneer F radioisotope thermoelectric generator (RTG) in the Ames Arc-Heated Planetary-Gas Wind Tunnel. Test results indicate that the material, trade name Min-K 1301, should experience little ablation for heat transfer rates below 40 BTU/sq ft-sec. If the current design were to be changed so that the various pieces of Min-K were fastened or interlocked together the total amount of heat delivered to the RTG heat source during an earth orbital decay reentry would be reduced by at least 22.7%.

  10. The flight of uncontrolled rockets

    CERN Document Server

    Gantmakher, F R; Dryden, H L

    1964-01-01

    International Series of Monographs on Aeronautics and Astronautics, Division VII, Volume 5: The Flight of Uncontrolled Rockets focuses on external ballistics of uncontrolled rockets. The book first discusses the equations of motion of rockets. The rocket as a system of changing composition; application of solidification principle to rockets; rotational motion of rockets; and equations of motion of the center of mass of rockets are described. The text looks at the calculation of trajectory of rockets and the fundamentals of rocket dispersion. The selection further focuses on the dispersion of f

  11. Thermal protection for hypervelocity flight in earth's atmosphere by use of radiation backscattering ablating materials

    Science.gov (United States)

    Howe, John T.; Yang, Lily

    1991-01-01

    A heat-shield-material response code predicting the transient performance of a material subject to the combined convective and radiative heating associated with the hypervelocity flight is developed. The code is dynamically interactive to the heating from a transient flow field, including the effects of material ablation on flow field behavior. It accomodates finite time variable material thickness, internal material phase change, wavelength-dependent radiative properties, and temperature-dependent thermal, physical, and radiative properties. The equations of radiative transfer are solved with the material and are coupled to the transfer energy equation containing the radiative flux divergence in addition to the usual energy terms.

  12. Spectrally Selective Materials For Architectural and Photo-thermal ...

    African Journals Online (AJOL)

    The concept of spectal selectivity of solar radiation is discussed with reference to its application in architecture and photothermal uses. A brief account of spectrally selective materials being investigated presently is also given. UNISWA Research Journal of Agriculture, Science and Technology Vol. 4 (1) 2000: pp 5-9 ...

  13. Effects of environmental exposure on cryogenic thermal insulation materials

    Science.gov (United States)

    Parmley, R. T.; Smith, F. J.; Glassford, A. P.; Coleman, J.; Stevenson, D. R.

    1973-01-01

    Investigation was made to optimize selection of insulation materials for reusable space vehicles which will be repeatedly operated over periods of up to ten years. Results of study are summarized in two reports. Volume I describes tests and significant findings. In Volume II, extensive test data obtained are organized in handbook form.

  14. Materials Development for Thermally-Assisted Magnetic Recording Media

    Science.gov (United States)

    2001-04-01

    theory of superparamagnetism establishes a minimum magnetic particle volume for stability of the particle’s magnetization at temperature T...limit. And yet, one can envision medium coercivity rising toward 100 kilo- oersted using known materials [4]. Thus, a writability crisis in magnetic

  15. Thermal effects of water intrusion in hydrophobic nanoporous materials.

    Science.gov (United States)

    Karbowiak, Thomas; Paulin, Christian; Ballandras, Anthony; Weber, Guy; Bellat, Jean-Pierre

    2009-07-29

    Liquid water intrusion in hydrophobic nanoporous silicalite-1, a pure siliceous zeolite, in isothermal conditions under high pressure produces an endothermic effect. After intrusion, confined water in zeolite pores is in a different state from that of the liquid bulk water. Such forced intrusion also chemically modifies the material and tends to render it slightly more hydrophilic.

  16. Thermal and Electrical Properties of Nanocomposites, Including Material Properties

    NARCIS (Netherlands)

    Kochetov, R.

    2012-01-01

    The research described in this thesis is part of a state-funded IOP-EMVT project in cooperation with industrial companies, aiming at the design, assessment and implementation of new, environmental friendly (e.g. oil and SF6 - free) solid dielectric materials. A large disadvantage of solid polymer

  17. Evaluation of thermal energy storage materials for advanced compressed air energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.; Wheeler, K.R.; Marksberry, L.

    1983-03-01

    Advanced Compressed-Air Energy Storage (ACAS) plants have the near-term potential to reduce the fuel consumption of compressed-air plants from 33 to 100%, depending upon their design. Fuel is saved by storing some or all of the heat of compression as sensible heat which is subsequently used to reheat the compressed air prior to expansion in the turbine generator. The thermal storage media required for this application must be low cost and durable. The objective of this project was to screen thermal store materials based on their thermal cycle durability, particulate formation and corrosion resistant characteristics. The materials investigated were iron oxide pellets, Denstone pebbles, cast-iron balls, and Dresser basalt rock. The study specifically addressed the problems of particle formation and thermal ratcheting of the materials during thermal cycling and the chemical attack on the materials by the high temperature and moist environment in an ACAS heat storage bed. The results indicate that from the durability standpoint Denstone, cast iron containing 27% or more chromium, and crushed Dresser basalt would possibly stand up to ACAS conditions. If costs are considered in addition to durability and performance, the crushed Dresser basalt would probably be the most desirable heat storage material for adiabatic and hybrid ACAS plants, and more in-depth longer term thermal cycling and materials testing of Dresser basalt is recommended. Also recommended is the redesign and costing analysis of both the hybrid and adiabatic ACAS facilities based upon the use of Dresser basalt as the thermal store material.

  18. Flight Performance of an Advanced Thermal Protection Material: Toughened Uni-Piece Fibrous Insulation

    Science.gov (United States)

    Leiser, Daniel B.; Gordon, Michael P.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The flight performance of a new class of low density, high temperature thermal protection materials (TPM) is described and compared to "standard" Space Shuttle TPM. This new functionally gradient material designated as Toughened Uni-Piece Fibrous Insulation (TUFI), was bonded on a removable panel attached to the base heat shield of Orbiter 105, Endeavour.

  19. Thermal and mechanical properties of advanced impregnation materials for HTS cables and coils

    International Nuclear Information System (INIS)

    Bagrets, N; Otten, S; Weiss, K-P; Kario, A; Goldacker, W

    2015-01-01

    In the growing field of high-temperature superconducting (HTS) applications, finding an appropriate impregnation material for cables and coils remains a challenging task. In HTS cables and coils, tapes have to be able to withstand mechanical loads during operation. Impregnation is playing a role as mechanical stabilization. However, material properties usually change significantly when going to low temperatures which can decrease performance of superconducting devices. For example, a large mismatch in thermal expansion between a conductor and impregnation material at low temperatures can lead to delamination and to degradation of the critical current. Impregnation materials can insulate tapes thermally which can lead to damage of the superconducting device in case of quench. Thus, thermal conductivity is an important property which is responsible for the temperature distribution in a superconducting cable or in a coil. Due to Lorentz forces acting on structural materials in a superconducting device, the mechanical properties of these materials should be investigated at operating temperatures of this device. Therefore, it is important to identify an advanced impregnation material meeting all specific requirements. In this paper, thermal and mechanical properties of impregnation material candidates with added fillers are presented in a temperature range from 300 K to 4 K. (paper)

  20. Influence Pulse Duration Methodical Error of Determination of Thermal Translucent Materials Laser Flash Method

    Directory of Open Access Journals (Sweden)

    Katz Mark M.

    2016-01-01

    Full Text Available The analysis of errors in the determination of thermal diffusivity of a typical semiconductor material - Germany, due to radiative energy transfer in the heated layer of material, under conditions consistent with the implementation of the method under the influence of the laser pulse on the surface of the collimated laser pulse of finite duration.

  1. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Zalba, Belen; Marin, Jose M. [Dpto. Ingenieria Mecanica, Campus Politecnico, Universidad de Zaragoza, EUITIZ ' EDIFICIO B.3' Maria de Luna 3 (Actur), 50015, Zaragoza (Spain); Cabeza, Luisa F. [Dpt.d' Informatica i Enginyeria Industrial, Escola, Universitaria Politecnica, Universitat de Lleida, CREA, Jaurne 11,69,25001, Lleida (Spain); Mehling, Harald [ZAE Bayem, Division 1: Energy Conversion and Storage, Walther-Meissner-Str. 6, 85748, Garching (Germany)

    2003-02-01

    Thermal energy storage in general, and phase change materials (PCMs) in particular, have been a main topic in research for the last 20 years, but although the information is quantitatively enormous, it is also spread widely in the literature, and difficult to find. In this work, a review has been carried out of the history of thermal energy storage with solid-liquid phase change. Three aspects have been the focus of this review: materials, heat transfer and applications. The paper contains listed over 150 materials used in research as PCMs, and about 45 commercially available PCMs. The paper lists over 230 references. (Author)

  2. Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Pamela M.; Smoyer, Justin L.; Duda, John Charles.; Hopkins, Patrick E.

    2010-06-01

    Due to the high intrinsic thermal conductivity of carbon allotropes, there have been many attempts to incorporate such structures into existing thermal abatement technologies. In particular, carbon nanotubes (CNTs) and graphitic materials (i.e., graphite and graphene flakes or stacks) have garnered much interest due to the combination of both their thermal and mechanical properties. However, the introduction of these carbon-based nanostructures into thermal abatement technologies greatly increases the number of interfaces per unit length within the resulting composite systems. Consequently, thermal transport in these systems is governed as much by the interfaces between the constituent materials as it is by the materials themselves. This paper reports the behavior of phononic thermal transport across interfaces between isotropic thin films and graphite substrates. Elastic and inelastic diffusive transport models are formulated to aid in the prediction of conductance at a metal-graphite interface. The temperature dependence of the thermal conductance at Au-graphite interfaces is measured via transient thermoreflectance from 78 to 400 K. It is found that different substrate surface preparations prior to thin film deposition have a significant effect on the conductance of the interface between film and substrate.

  3. Quantifying the Properties of Elastic, Liquid Metal Based Thermal Interface Materials

    Science.gov (United States)

    Kemme, Nicholas

    Advancements in thermal interface materials (TIMs) allows for the creation of new and more powerful electronics as they increase the heat transfer from the component to the heat sink. Current industrial options provide decent heat transfer, but the creation of TIMs with higher thermal conductivities is needed. In addition, if these TIMs are elastic in nature, their effectiveness can greatly increase as they can deal with changing interfaces without degradation of their properties. The research performed delves into this idea, creating elastic TIMs using liquid metal (LM), in this case galinstan, along with other matrix particles embedded in Polydimethylsiloxane (PDMS) to create an easy to use, relatively inexpensive, thermally conductive, but electrically insulative, pad with increased thermal conductivity from industrial solutions. The pads were created using varying amounts of LM and matrix materials ranging from copper microspheres to diamond powder mixed into PDMS using a high-speed mixer. The material was then cast into molds and cured to create the pads. Once the pads were created, the difficulty came in quantifying their thermal properties. A stepped bar apparatus (SBA) following ASTM D5470 was created to measure the thermal resistance of the pads but it was determined that thermal conductivity was a more usable metric of the pads' performance. This meant that the pad's in-situ thickness was needed during testing, prompting the installation of a linear encoder to measure the thickness. The design and analysis of the necessary modification and proposed future design is further detailed in the following paper.

  4. Thermal stability, swelling behavior and CO 2 absorption properties of Nanoscale Ionic Materials (NIMs)

    KAUST Repository

    Andrew Lin, Kun-Yi

    2014-11-11

    © The Royal Society of Chemistry 2015. Nanoscale Ionic Materials (NIMs) consist of a nanoscale core, a corona of charged brushes tethered on the surface of the core, and a canopy of the oppositely charged species linked to the corona. Unlike conventional polymeric nanocomposites, NIMs can display liquid-like behavior in the absence of solvents, have a negligible vapor pressure and exhibit unique solvation properties. These features enable NIMs to be a promising CO2 capture material. To optimize NIMs for CO2 capture, their structure-property relationships were examined by investigating the roles of the canopy and the core in their thermal stability, and thermally- and CO2-induced swelling behaviors. NIMs with different canopy sizes and core fractions were synthesized and their thermal stability as well as thermally- and CO2-induced swelling behaviors were determined using thermogravimetry, and ATR FT-IR and Raman spectroscopies. It was found that the ionic bonds between the canopy and the corona, as well as covalent bonds between the corona and the core significantly improved the thermal stability compared to pure polymer and polymer/nanofiller mixtures. A smaller canopy size and a larger core fraction led to a greater enhancement in thermal stability. This thermal stability enhancement was responsible for the long-term thermal stability of NIMs over 100 temperature swing cycles. Owing to their ordered structure, NIMs swelled less when heated or when they adsorbed CO2 compared to their corresponding polymers. This journal is

  5. Preparation and thermal properties of form stable paraffin phase change material encapsulation

    International Nuclear Information System (INIS)

    Liu Xing; Liu Hongyan; Wang Shujun; Zhang Lu; Cheng Hua

    2006-01-01

    Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area to be used in energy storage. Form stable paraffin phase change materials (PCM) in which paraffin serves as a latent heat storage material and polyolefins act as a supporting material, because of paraffin leakage, are required to be improved. The form stable paraffin PCM in the present paper was encapsulated in an inorganic silica gel polymer successfully by in situ polymerization. The differential scanning calorimeter (DSC) was used to measure its thermal properties. At the same time, the Washburn equation, which measures the wetting properties of powder materials, was used to test the hydrophilic-lipophilic properties of the PCMs. The result indicated that the enthalpy of the microencapsulated PCMs was reduced little, while their hydrophilic properties were enhanced largely

  6. FGM (Functionally Graded Material) Thermal Barrier Coatings for Hypersonic Structures - Design and Thermal Structural Analysis

    Science.gov (United States)

    2007-06-29

    composites. An earlier work by Wakashima and Tsukamoto1-2 applied the mean-field micromechanical concepts to estimating the thermal stresses in a FGM plate ...some studies24 took into consideration time-dependent deformation such as creep in FGM plates , for which the constitutive relations derived from...OUTLINE OF ANALYSIS 4.1.1 FGM plates and thermo-mechanical loadings The outline of the analytical method mentioned here is based on the study by one

  7. Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials

    International Nuclear Information System (INIS)

    Fang, Guiyin; Li, Hui; Chen, Zhi; Liu, Xu

    2010-01-01

    Stearic acid/expanded graphite composites with different mass ratios were prepared by absorbing liquid stearic acid into the expanded graphite. In the composite materials, the stearic acid was used as the phase change material for thermal energy storage, and the expanded graphite acted as the supporting material. Fourier transformation infrared spectroscopy, X-ray diffraction, scanning electron microscopy and thermal diffusivity measurement were used to determine the chemical structure, crystalline phase, microstructure and thermal diffusivity of the composites, respectively. The thermal properties and thermal stability were investigated by differential scanning calorimetry and thermogravimetric analysis. The thermal analysis results indicated that the materials exhibited the same phase transition characteristics as the stearic acid and their latent heats were approximately the same as the values calculated based on the weight fraction of the stearic acid in the composites. The microstructural analysis results showed that the stearic acid was well absorbed in the porous network of the expanded graphite, and there was no leakage of the stearic acid from the composites even when it was in the molten state.

  8. A thermal porosimetry method to estimate pore size distribution in highly porous insulating materials.

    Science.gov (United States)

    Félix, V; Jannot, Y; Degiovanni, A

    2012-05-01

    Standard pore size determination methods such as mercury porosimetry, nitrogen sorption, microscopy, or x-ray tomography are not always applicable to highly porous, low density, and thus very fragile materials. For this kind of materials, a method based on thermal characterization is proposed. Indeed, the thermal conductivity of a highly porous and insulating medium is significantly dependent on the thermal conductivity of the interstitial gas that depends on both gas pressure and size of the considered pore (Knudsen effect). It is also possible to link the pore size with the thermal conductivity of the medium. Thermal conductivity measurements are realized on specimens placed in an enclosure where the air pressure is successively set to different values varying from 10(-1) to 10(5) Pa. Knowing the global porosity ratio, an effective thermal conductivity model for a two-phase air-solid material based on a combined serial-parallel model is established. Pore size distribution can be identified by minimizing the sum of the quadratic differences between measured values and modeled ones. The results of the estimation process are the volume fractions of the chosen ranges of pore size. In order to validate the method, measurements done on insulating materials are presented. The results are discussed and show that pore size distribution estimated by the proposed method is coherent.

  9. Estimation of the thermal conductivity of hemp based insulation material from 3D tomographic images

    Science.gov (United States)

    El-Sawalhi, R.; Lux, J.; Salagnac, P.

    2016-08-01

    In this work, we are interested in the structural and thermal characterization of natural fiber insulation materials. The thermal performance of these materials depends on the arrangement of fibers, which is the consequence of the manufacturing process. In order to optimize these materials, thermal conductivity models can be used to correlate some relevant structural parameters with the effective thermal conductivity. However, only a few models are able to take into account the anisotropy of such material related to the fibers orientation, and these models still need realistic input data (fiber orientation distribution, porosity, etc.). The structural characteristics are here directly measured on a 3D tomographic image using advanced image analysis techniques. Critical structural parameters like porosity, pore and fiber size distribution as well as local fiber orientation distribution are measured. The results of the tested conductivity models are then compared with the conductivity tensor obtained by numerical simulation on the discretized 3D microstructure, as well as available experimental measurements. We show that 1D analytical models are generally not suitable for assessing the thermal conductivity of such anisotropic media. Yet, a few anisotropic models can still be of interest to relate some structural parameters, like the fiber orientation distribution, to the thermal properties. Finally, our results emphasize that numerical simulations on 3D realistic microstructure is a very interesting alternative to experimental measurements.

  10. Thermal performance of a phase change material on a nickel-plated surface

    International Nuclear Information System (INIS)

    Nurmawati, M.H.; Siow, K.S.; Rasiah, I.J.

    2004-01-01

    Thermal control becomes increasingly vital with IC chips becoming faster and smaller. The need to keep chips within acceptable operating temperatures is a growing challenge. Thermal interface materials (TIM) form the interfaces that improve heat transfer from the heat-generating chip to the heat dissipating thermal solution. One of the most commonly used materials in today's electronics industry is phase change material (PCM). Typically, the heat spreader is a nickel-plated copper surface. The compatibility of the PCM to this surface is crucial to the performance of the TIM. In this paper, we report on the performance of this interface. To that end, an instrument to suitably measure critical parameters, like the apparent and contact thermal resistance of the TIM, is developed according to the ASTM D5470 and calibrated. A brief theory of TIM is described and the properties of the PCM were investigated using the instrument. Thermal resistance measurements were made to investigate the effects of physical parameters like pressure, temperature and supplied power on the thermal performance of the material on nickel-plated surface. Conclusions were drawn on the effectiveness of the interface and their application in IC packages

  11. Laboratory Determination of Thermal Protection System Materials Surface Catalytic Properties

    Science.gov (United States)

    2007-07-01

    Zalar, A., "Recombination of Neutral Hydrogen Atoms on AISI 304 Stainless Steel Surface," Applied Surface Science, Vol. 144-145, 1999, pp. 399-403. 57...and test environments. Typically, these fits contain only the temperature dependence of the loss probability, with no information on pressure or...generated in the MESOX test facility in the PROMES-CNRS laboratory on a variety of ceramic materials.47-50 The MESOX facility uses a flow tube

  12. Composite material of electrocontuctor having controlled coefficient of thermal expansion

    OpenAIRE

    Torrecillas, Ramón; García Moreno, Olga; Borrell, Amparo; Fernández-Camacho, A.

    2009-01-01

    [ES] La presente invención se refiere a un material compuesto que comprende un componente cerámico, caracterizado por tener un coeficiente de expansión térmico negativo, y nano filamentos de carbono, a su procedimiento de obtención y a sus usos como electroconductor en microelectrónica, óptica de precisión, aeronáutica y aeroespacial.

  13. Thermal/Pyrolysis Gas Flow Analysis of Carbon Phenolic Material

    Science.gov (United States)

    Clayton, J. Louie

    2001-01-01

    Provided in this study are predicted in-depth temperature and pyrolysis gas pressure distributions for carbon phenolic materials that are externally heated with a laser source. Governing equations, numerical techniques and comparisons to measured temperature data are also presented. Surface thermochemical conditions were determined using the Aerotherm Chemical Equilibrium (ACE) program. Surface heating simulation used facility calibrated radiative and convective flux levels. Temperatures and pyrolysis gas pressures are predicted using an upgraded form of the SINDA/CMA program that was developed by NASA during the Solid Propulsion Integrity Program (SPIP). Multispecie mass balance, tracking of condensable vapors, high heat rate kinetics, real gas compressibility and reduced mixture viscosity's have been added to the algorithm. In general, surface and in-depth temperature comparisons are very good. Specie partial pressures calculations show that a saturated water-vapor mixture is the main contributor to peak in-depth total pressure. Further, for most of the cases studied, the water-vapor mixture is driven near the critical point and is believed to significantly increase the local heat capacity of the composite material. This phenomenon if not accounted for in analysis models may lead to an over prediction in temperature response in charring regions of the material.

  14. Programmable thermal emissivity structures based on bioinspired self-shape materials

    Science.gov (United States)

    Athanasopoulos, N.; Siakavellas, N. J.

    2015-12-01

    Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable - and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (ɛEff_H/ɛEff_L) equal to 28.

  15. Thermal depth profiling of materials for defect detection using hot disk technique

    Directory of Open Access Journals (Sweden)

    B. M. Mihiretie

    2016-08-01

    Full Text Available A novel application of the hot disk transient plane source technique is described. The new application yields the thermal conductivity of materials as a function of the thermal penetration depth which opens up opportunities in nondestructive testing of inhomogeneous materials. The system uses the hot disk sensor placed on the material surface to create a time varying temperature field. The thermal conductivity is then deduced from temperature evolution of the sensor, whereas the probing depth (the distance the heat front advanced away from the source is related to the product of measurement time and thermal diffusivity. The presence of inhomogeneity in the structure is manifested in thermal conductivity versus probing depth plot. Such a plot for homogeneous materials provides fairly constant value. The deviation from the homogeneous curve caused by defects in the structure is used for inhomogeneity detection. The size and location of the defect in the structure determines the sensitivity and possibility of detection. In addition, a complementary finite element numerical simulation through COMSOL Multiphysics is employed to solve the heat transfer equation. Temperature field profile of a model material is obtained from these simulations. The average rise in temperature of the heat source is calculated and used to demonstrate the effect of the presence of inhomogeneity in the system.

  16. Design and construction of thermal desorption measurement system for tritium contained materials

    International Nuclear Information System (INIS)

    Hara, M.; Hatano, Y.; Calderoni, P.; Shimada, M.

    2014-01-01

    The dual-mode thermal desorption analysis system was designed and built in Idaho National Laboratory (INL) to examine the evolution of the hydrogen isotope gas from materials. The system is equipped with a mass spectrometer for stable hydrogen isotopes and an ionization chamber for tritium components. The performance of the system built was tested with using tritium contained materials. The evolution of tritiated gas species from contaminated materials was measured successfully by using the system. (author)

  17. Materials compatibility issues related to thermal energy storage for a space solar dynamic power system

    Science.gov (United States)

    Faget, N. M.

    1986-01-01

    Attention is given to results obtained to date in developmental investigations of a thermal energy storage (TES) system for the projected NASA Space Station's solar dynamic power system; these tests have concentrated on issues related to materials compatibility for phase change materials (PCMs) and their containment vessels' materials. The five PCMs tested have melting temperatures that correspond to the operating temperatures of either the Brayton or Rankine heat engines, which were independently chosen for their high energy densities.

  18. FGM (Functionally Graded Material) Thermal Barrier Coatings for Hypersonic Structures - Design and Thermal Structural Analysis

    National Research Council Canada - National Science Library

    Ho, Sook-Ying; Kotousov, Andrei; Nguyen, Phuc; Harding, Steven; Codrington, John; Tsukamoto, Hideaki

    2007-01-01

    .... It utilizes a pressurized spray gun to spray a slurry mixture of the powdered coating material suspended in a liquid solution directly onto a substrate surface followed by sintering using an oxyacetylene torch...

  19. Thermal Protection Performance of Carbon Aerogels Filled with Magnesium Chloride Hexahydrate as a Phase Change Material

    Directory of Open Access Journals (Sweden)

    Ali Kazemi

    2014-02-01

    Full Text Available Carbon aerogels are comprised of a class of low density open-cell foams with large void space, nanometer pore size and composed of sparsely semi-colloidal nanometer sized particles forming an open porous structure. Phase change materials are those with high heat of fusion that could absorb and release a large amount of energy at the time of phase transition. These materials are mostly used as thermal energy storage materials but in addition they could serve as an obstacle for passage of heat during phase changes and this has led to their use in thermal protection systems. In this study, the effect of magnesium chloride hexahydrate, as a phase change material (melting point 115°C, on thermal properties of carbon aerogels is investigated. Thermal performance tests are designed and used for comparing the temperature-time behavior of the samples. DSC is applied to obtain the latent heat of melting of the phase change materials and the SEM tests are used to analyze the microstructure and morphology of carbon aerogels. The results show that the low percentage of phase change materials in carbon aerogels does not have any significant positive effect on carbon aerogels thermal properties. However, these properties are improved by increasing the percentage of phase change materials. With high percentage of phase change materials, a sample surface at 300°C would display an opposite surface with a significant drop in temperature increases, while at 115-200°C, with carbon aerogels, having no phase change materials, there is a severe reduction in the rate of temperature increase of the sample.

  20. High-Temperature Material Lattice Combining Low Thermal Expansion, High Stiffness and Strength

    Science.gov (United States)

    2009-01-01

    material with superior properties for the high-temperature 14 applications. Nickel- cobalt superalloys exhibit high strength and good creep resistance at...nickel- cobalt alloys showing yield strength vs temperature……30 Figure 10: Comparison chart of nickel- cobalt alloys showing coefficient of thermal...structures that experience high-temperatures reaching 1000oC that use niobium for the low thermal expansion constituent and a nickel- cobalt alloy for

  1. Ultraviolet photographic pyrometer used in rocket exhaust analysis

    Science.gov (United States)

    Levin, B. P.

    1966-01-01

    Ultraviolet photographic pyrometer investigates the role of carbon as a thermal radiator and determines the geometry, location, and progress of afterburning phenomena in the exhaust plume of rocket engines using liquid oxygen/RP-1 as propellant.

  2. Simulated Solar Flare X-Ray and Thermal Cycling Durability Evaluation of Hubble Space Telescope Thermal Control Candidate Replacement Materials

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Sechkar, Edward A.; Scheiman, David A.

    1998-01-01

    During the Hubble Space Telescope (HST) second servicing mission (SM2), astronauts noticed that the multilayer insulation (MLI) covering the telescope was damaged. Large pieces of the outer layer of MLI (aluminized Teflon fluorinated ethylene propylene (Al-FEP)) were torn in several locations around the telescope. A piece of curled up Al-FEP was retrieved by the astronauts and was found to be severely embrittled, as witnessed by ground testing. Goddard Space Flight Center (GSFC) organized a HST MLI Failure Review Board (FRB) to determine the damage mechanism of FEP in the HST environment, and to recommend replacement insulation material to be installed on HST during the third servicing mission (SM3) in 1999. Candidate thermal control replacement materials were chosen by the FRB and tested for environmental durability under various exposures and durations. This paper describes durability testing of candidate materials which were exposed to charged particle radiation, simulated solar flare x-ray radiation and thermal cycling under load. Samples were evaluated for changes in solar absorptance and tear resistance. Descriptions of environmental exposures and durability evaluations of these materials are presented.

  3. Environmental safety providing during heat insulation works and using thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Velichko Evgeny

    2017-01-01

    Full Text Available This article considers the negative effect of thermal insulating materials and products on human health and environment pollution, particularly in terms of the composition of environmentally hazardous construction products. The authors have analyzed the complex measures for providing ecological safety, sanitary and epidemiological requirements, rules and regulations both during thermal insulation works and throughout the following operation of buildings and premises. The article suggests the protective and preventive measures to reduce and eliminate the negative impact of the proceeding of thermal insulation works on the natural environment and on human health.

  4. ANALYSIS OF THERMAL PROPERTIES AND HEAT LOSS IN CONSTRUCTION AND ISOTHERMAL MATERIALS OF MULTILAYER BUILDING WALLS

    Directory of Open Access Journals (Sweden)

    Arkadiusz Urzędowski

    2017-06-01

    Full Text Available The article discusses the impact of vertical partition, technology on thermal insulation of the building, and the resulting savings and residents thermal comfort. The study is carried out as an analysis of three selected design solutions including such materials as: aerated concrete elements, polystyrene, ceramic elements, concrete, mineral plaster. Simulation results of heat transfer in a multi-layered wall, are subjected to detailed analysis by means of thermal visual methods. The study of existing structures, helped to identify the local point of heat loss by means of infrared technology leading to determination of U-value reduction by 36% in maximum for the described 3 types of structure.

  5. The thermal expansion of hard magnetic materials of the Nd-Fe-B system

    Science.gov (United States)

    Savchenko, Igor; Kozlovskii, Yurii; Samoshkin, Dmitriy; Yatsuk, Oleg

    2017-10-01

    The results of dilatometric measurement of the thermal expansion of hard magnetic materials brands N35M, N35H and N35SH containing as a main component the crystalline phase of Nd2Fe14B type are presented. The temperature range from 200 to 750 K has been investigated by the method of dilatometry with an error of 1.5-2×10-7 K-1. The approximation dependences of the linear thermal expansion coefficient have been obtained. The character of changes of the thermal coefficient of linear expansion in the region of the Curie point has been specified, its critical indices and critical amplitudes have been defined.

  6. Thermal-vacuum facility with in-situ mechanical loading. [for testing space construction materials

    Science.gov (United States)

    Tennyson, R. C.; Hansen, J. S.; Holzer, R. P.; Uffen, B.; Mabson, G.

    1978-01-01

    The paper describes a thermal-vacuum space simulator used to assess property changes of fiber-reinforced polymer composite systems. The facility can achieve a vacuum of approximately .0000001 torr with temperatures ranging from -200 to +300 F. Some preliminary experimental results are presented for materials subjected to thermal loading up to 200 F. The tests conducted include the evaluation of matrix modulus and strength, coefficients of thermal expansion, and fracture toughness. Though the experimental program is at an early stage, the data appear to indicate that these parameters are influenced by hard vacuum.

  7. Nanosecond laser pulses for mimicking thermal effects on nanostructured tungsten-based materials

    Science.gov (United States)

    Besozzi, E.; Maffini, A.; Dellasega, D.; Russo, V.; Facibeni, A.; Pazzaglia, A.; Beghi, M. G.; Passoni, M.

    2018-03-01

    In this work, we exploit nanosecond laser irradiation as a compact solution for investigating the thermomechanical behavior of tungsten materials under extreme thermal loads at the laboratory scale. Heat flux factor thresholds for various thermal effects, such as melting, cracking and recrystallization, are determined under both single and multishot experiments. The use of nanosecond lasers for mimicking thermal effects induced on W by fusion-relevant thermal loads is thus validated by direct comparison of the thresholds obtained in this work and the ones reported in the literature for electron beams and millisecond laser irradiation. Numerical simulations of temperature and thermal stress performed on a 2D thermomechanical code are used to predict the heat flux factor thresholds of the different thermal effects. We also investigate the thermal effect thresholds of various nanostructured W coatings. These coatings are produced by pulsed laser deposition, mimicking W coatings in tokamaks and W redeposited layers. All the coatings show lower damage thresholds with respect to bulk W. In general, thresholds decrease as the porosity degree of the materials increases. We thus propose a model to predict these thresholds for coatings with various morphologies, simply based on their porosity degree, which can be directly estimated by measuring the variation of the coating mass density with respect to that of the bulk.

  8. The effect of thermal change on various dowel-and-core restorative materials.

    Science.gov (United States)

    Yang, H S; Lang, L A; Guckes, A D; Felton, D A

    2001-07-01

    Severe thermal stresses caused by food-induced temperature changes may result in dowel-and-core failure. This study investigated the influence of thermal stresses on various combinations of dowel-and-core materials of a restored endodontically treated incisor. A 2-dimensional finite element model was constructed in a labiolingual cross-sectional view of a maxillary central incisor, a dowel, a core, and the supporting tissues to investigate thermal stress distribution. Four combinations of dowel-and-core materials were used: (1) gold/gold, (2) stainless steel/resin composite, (3) stainless steel/amalgam, and (4) carbon fiber-reinforced composite/resin composite. For thermal analysis, a cold irritant (0 degrees C) was applied on the outer surface of a metal-ceramic crown for 7 seconds. The metal dowel and core generated lower thermal stresses in the restorations and dentin than the nonmetallic dowel and cores. Stress level is closely related to the degree of thermal gradient. The nonmetallic dowel and cores generated greater thermal stresses than metal dowel and cores.

  9. Thermal analysis on organic phase change materials for heat storage applications

    Science.gov (United States)

    Lager, Daniel

    2016-07-01

    In this paper, methodologies based on thermal analysis to evaluate specific heat capacity, phase transition enthalpies, thermal cycling stability and thermal conductivity of organic phase change materials (PCMs) are discussed. Calibration routines for a disc type heat flow differential scanning calorimetry (hf-DSC) are compared and the applied heating rates are adapted due to the low thermal conductivity of the organic PCMs. An assessment of thermal conductivity measurements based on "Laser Flash Analysis" (LFA) and the "Transient Hot Bridge" method (THB) in solid and liquid state has been performed. It could be shown that a disc type hf-DSC is a useful method for measuring specific heat capacity, melting enthalpies and cycling stability of organic PCM if temperature and sensitivity calibration are adapted to the material and quantity to be measured. The LFA method shows repeatable and reproducible thermal diffusivity results in solid state and a high effort for sample preparation in comparison to THB in liquid state. Thermal conductivity results of the two applied methods show large deviations in liquid phase and have to be validated by further experiments.

  10. Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality

    Science.gov (United States)

    Prange, Micah P.; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien

    2017-12-01

    The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of the model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. The details of the Monte Carlo model are presented along with the results for thermalization time and distance distributions. These results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.

  11. Ways to improve physical and thermal performance of refractory lining materials

    Directory of Open Access Journals (Sweden)

    Khlystov A.I.

    2017-01-01

    Full Text Available Refractory lining materials, which include ceramic refractories and nonfired heat-resistant concretes, have a very short lifespan during the turnaround time measured in years and sometimes months. Therefore, increasing the service life of thermal generating units by 1.5-2 times will bring significant economic benefits. The main factor that determines the durability of refractory lining materials is the thermal resistance. It is possible to increase the thermal resistance by improving such physical and mechanical properties as strength and density. As for the ceramic refractory performance improvement, such technological methods as their structural and chemical modification by phosphate binder impregnation, as well as introduction of phosphate components into the ceramic batches during the molding process increase, in particular, their thermal stability. The use of aluminous and high-alumina cements contributes to a significant increase of not only strength, but also physical and thermal performance of heat-resistant concretes with different fillers. Switching to the use of chemical binders in the compositions of heat-resistant concretes (liquid glass with effective hardeners; silicate-block and phosphate binders enables to develop high-heat resistant materials which do not soften in a wide range of heating temperatures from 400 °С to 1600 °С. The positive results on increasing the thermal resistance of heat-resistant composites can be obtained by reinforcing them with high temperature fibers.

  12. Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality

    Energy Technology Data Exchange (ETDEWEB)

    Prange, Micah P. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Xie, YuLong [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Campbell, Luke W. [National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Gao, Fei [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA; Kerisit, Sebastien [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA

    2017-12-21

    The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of the model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. Details of the Monte Carlo model are presented along with results for thermalization time and distance distributions. These results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.

  13. Microencapsulation of phase change materials with carbon nanotubes reinforced shell for enhancement of thermal conductivity

    Science.gov (United States)

    Cui, Weiwei; Xia, Yongpeng; Zhang, Huanzhi; Xu, Fen; Zou, Yongjin; Xiang, Cuili; Chu, Hailiang; Qiu, Shujun; Sun, Lixian

    2017-03-01

    Novel microencapsulated phase change materials (micro-PCMs) were synthesized via in-situ polymerization with modified carbon nanotubes(CNTs) reinforced melamine-formaldehyde resin as shell material and CNTs reinforced n-octadecane as PCMs core. DSC results confirm that the micro-PCMs possess good phase change behavior and excellent thermal cycling stability. Melting enthalpy of the micro-PCMs can achieve 133.1 J/g and has slight changes after 20 times of thermal cyclings. And the incorporation of CNTs supplies the micro-PCMs with fast thermal response rate which increases the crystallization temperature of the micro-PCMs. Moreover, the thermal conductivity of the micro-PCMs has been significantly enhanced by introducing CNTs into their shell and core materials. And the thermal conductivity of micro-PCMs with 1.67 wt.% CNTs can increase by 25%. These results exhibit that the obtained micro-PCMs have a good prospect in thermal energy storage applications.

  14. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix

    International Nuclear Information System (INIS)

    Mesalhy, Osama; Lafdi, Khalid; Elgafy, Ahmed; Bowman, Keith

    2005-01-01

    In this paper, the melting process inside an irregular geometry filled with high thermal conductivity porous matrix saturated with phase change material PCM is investigated numerically. The numerical model is resting on solving the volume averaged conservation equations for mass, momentum and energy with phase change (melting) in the porous medium. The convection motion of the liquid phase inside the porous matrix is solved considering the Darcy, Brinkman and Forchiemer effects. A local thermal non-equilibrium assumption is considered due to the large difference in thermal properties between the solid matrix and PCM by applying a two energy equation model. The numerical code shows good agreement for pure PCM melting with another published numerical work. Through this study it is found that the presence of the porous matrix has a great effect on the heat transfer and melting rate of the PCM energy storage. Decreasing the porosity of the matrix increases the melting rate, but it also damps the convection motion. It is also found that the best technique to enhance the response of the PCM storage is to use a solid matrix with high porosity and high thermal conductivity

  15. Thermal characterization of a new effective building material based on clay and olive waste

    Directory of Open Access Journals (Sweden)

    Mohamed Lamrani

    2018-01-01

    Full Text Available The influence of thermophysical properties of wall materials on energy performance and comfort in traditional building was investigated. The clay is the most commonly used sustainable building material. The study looked at the effects of the addition of pomace olive on the thermophysical properties of clay bricks to improve the energy efficiency of this ecological material. An experimental measurement of thermal properties of clay mixed with pomace olive was carried out by using the transient and steady state hot-plate and flash methods. The experimental methods are applied to measure the thermal properties of the composite material. The estimation of these thermal characteristics is based on a one dimensional model and the experimental errors are found less than 3%. The composite samples were prepared with different granular classes and mass fractions of the pomace olive in the mixture. The results show that the density of the new material was not substantially influenced by the size of the pomace olive. However, the thermal conductivity and diffusivity decrease from 0.65 W.m-1.K-1 and 4.21×10-7 m2.s-1 to 0.29 W.m-1.K-1 and 2.47×10-7m2.s-1, respectively, according to the variation of the volume fraction of pomace olive from 0 (pure clay to 71% showing that the olive pomace can be used as effective secondary raw materials in the making of clay bricks.

  16. Modelling of thermal shock experiments of carbon based materials in JUDITH

    Science.gov (United States)

    Ogorodnikova, O. V.; Pestchanyi, S.; Koza, Y.; Linke, J.

    2005-03-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments.

  17. Modelling of thermal shock experiments of carbon based materials in JUDITH

    International Nuclear Information System (INIS)

    Ogorodnikova, O.V.; Pestchanyi, S.; Koza, Y.; Linke, J.

    2005-01-01

    The interaction of hot plasma with material in fusion devices can result in material erosion and irreversible damage. Carbon based materials are proposed for ITER divertor armour. To simulate carbon erosion under high heat fluxes, electron beam heating in the JUDITH facility has been used. In this paper, carbon erosion under energetic electron impact is modeled by the 3D thermomechanics code 'PEGASUS-3D'. The code is based on a crack generation induced by thermal stress. The particle emission observed in thermal shock experiments is a result of breaking bonds between grains caused by thermal stress. The comparison of calculations with experimental data from JUDITH shows good agreement for various incident power densities and pulse durations. A realistic mean failure stress has been found. Pre-heating of test specimens results in earlier onset of brittle destruction and enhanced particle loss in agreement with experiments

  18. Investigation of thermal effect on exterior wall surface of building material at urban city area

    Energy Technology Data Exchange (ETDEWEB)

    Md Din, Mohd Fadhil; Dzinun, Hazlini; Ponraj, M.; Chelliapan, Shreeshivadasan; Noor, Zainura Zainun [Institute of Environmental Water Resources and Management (IPASA), Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Remaz, Dilshah [Faculty of Built Environment, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Iwao, Kenzo [Nagoya Institute of Technology, Nagoya (Japan)

    2012-07-01

    This paper describes the investigation of heat impact on the vertical surfaces of buildings based on their thermal behavior. The study was performed based on four building materials that is commonly used in Malaysia; brick, concrete, granite and white concrete tiles. The thermal performances on the building materials were investigated using a surface temperature sensor, data logging system and infrared thermography. Results showed that the brick had the capability to absorb and store heat greater than other materials during the investigation period. The normalized heat (total heat/solar radiation) of the brick was 0.093 and produces high heat (51% compared to granite), confirming a substantial amount of heat being released into the atmosphere through radiation and convection. The most sensitive material that absorbs and stores heat was in the following order: brick > concrete > granite > white concrete tiles. It was concluded that the type of exterior wall material used in buildings had significant impact to the environment.

  19. Foam/Aerogel Composite Materials for Thermal and Acoustic Insulation and Cryogen Storage

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Weiser, Erik S. (Inventor); Sass, Jared P. (Inventor)

    2011-01-01

    The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N.sub.2 or H.sub.2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.

  20. A Study on Accelerated Thermal Aging of High Modulus Carbon/Epoxy Composite Material

    Directory of Open Access Journals (Sweden)

    Ju Min Kyung

    2015-01-01

    Full Text Available Composite materials have been used increasingly for various space applications due to the favorable characteristic of high modulus to density ratio and potential for near-zero coefficient of thermal expansion. In composite system, depending on the orientation of fibers, strength and stiffness can be changed so that the optimum structure can be accomplished. This is because the coefficient of thermal expansion (CTE of carbon fibers is negative. For spacecraft and orbiting space structure, which are thermally cycled by moving through the earth' shadow for at least 5 years, it is necessary to investigate the change of properties of the material over time. In this study, thermal aging of epoxy matrix/high modulus carbon fiber composite materials are accelerated to predict the long term creep property. Specimens are tested at various temperatures of 100~140°C with dynamic mechanical analysis to obtain creep compliances that are functions of time and temperature. Using Time Temperature Superposition method, creep compliance curves at each temperature are shifted to the reference temperature by shift factor and a master curve is generated at the reference temperature. This information is useful to predict the long term thermal aging of high modulus composite material for spacecraft application.

  1. An investigation on the effects of phase change material on material components used for high temperature thermal energy storage system

    Science.gov (United States)

    Kim, Taeil; Singh, Dileep; Zhao, Weihuan; Yua, Wenhua; France, David M.

    2016-05-01

    The latent heat thermal energy storage (LHTES) systems for concentrated solar power (CSP) plants with advanced power cycle require high temperature phase change materials (PCMs), Graphite foams with high thermal conductivity to enhance the poor thermal conductivity of PCMs. Brazing of the graphite foams to the structural metals of the LHTES system could be a method to assemble the system and a method to protect the structural metals from the molten salts. In the present study, the LHTES prototype capsules using MgCl2-graphite foam composites were assembled by brazing and welding, and tested to investigate the corrosion attack of the PCM salt on the BNi-4 braze. The microstructural analysis showed that the BNi-4 braze alloy can be used not only for the joining of structure alloy to graphite foams but also for the protecting of structure alloy from the corrosion by PCM.

  2. Thermal conductivity model for powdered materials under vacuum based on experimental studies

    Directory of Open Access Journals (Sweden)

    N. Sakatani

    2017-01-01

    Full Text Available The thermal conductivity of powdered media is characteristically very low in vacuum, and is effectively dependent on many parameters of their constituent particles and packing structure. Understanding of the heat transfer mechanism within powder layers in vacuum and theoretical modeling of their thermal conductivity are of great importance for several scientific and engineering problems. In this paper, we report the results of systematic thermal conductivity measurements of powdered media of varied particle size, porosity, and temperature under vacuum using glass beads as a model material. Based on the obtained experimental data, we investigated the heat transfer mechanism in powdered media in detail, and constructed a new theoretical thermal conductivity model for the vacuum condition. This model enables an absolute thermal conductivity to be calculated for a powder with the input of a set of powder parameters including particle size, porosity, temperature, and compressional stress or gravity, and vice versa. Our model is expected to be a competent tool for several scientific and engineering fields of study related to powders, such as the thermal infrared observation of air-less planetary bodies, thermal evolution of planetesimals, and performance of thermal insulators and heat storage powders.

  3. Status of thermal NDT of space shuttle materials at NASA

    Science.gov (United States)

    Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Reinhardt, Walter W.

    2006-04-01

    Since the Space Shuttle Columbia accident, NASA has focused on improving advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter's wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow in situ inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.

  4. ‘Spacer stitching’, an innovative material feeding technology for improved thermal resistance

    Science.gov (United States)

    Saeed, H.; Rödel, H.; Krzywinski, S.; Hes, L.

    2017-10-01

    This paper investigates the problems associated with heat loss occurring at the points of needle insertion. The insulation material at stitching points is compressed by sewing thread tensions and consequently the air entrapped is forced to leave its structure. It results in poor thermal insulation at the points of needle insertions. An innovative material feeding technology, ‘Spacer stitching’ is developed which addresses the state of the art of cold spots with a simpler and much efficient method. A comparison of sewing samples of conventional sewing technology with the spacer stitching is carried out in this research paper to study the improvement in thermal properties.

  5. High accuracy determination of the thermal properties of supported 2D materials.

    Science.gov (United States)

    Judek, Jarosław; Gertych, Arkadiusz P; Świniarski, Michał; Łapińska, Anna; Dużyńska, Anna; Zdrojek, Mariusz

    2015-07-16

    We present a novel approach for the simultaneous determination of the thermal conductivity κ and the total interface conductance g of supported 2D materials by the enhanced opto-thermal method. We harness the property of the Gaussian laser beam that acts as a heat source, whose size can easily and precisely be controlled. The experimental data for multi-layer graphene and MoS2 flakes are supplemented using numerical simulations of the heat distribution in the Si/SiO2/2D material system. The procedure of κ and g extraction is tested in a statistical approach, demonstrating the high accuracy and repeatability of our method.

  6. Impact of vacancy ordering on thermal transport in crystalline phase-change materials

    International Nuclear Information System (INIS)

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Wuttig, M; Siegrist, T

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge–Sb–Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb 2 Te 3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more ‘crystal-like’ thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials. (key issues review)

  7. Impact of vacancy ordering on thermal transport in crystalline phase-change materials.

    Science.gov (United States)

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Siegrist, T; Wuttig, M

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more 'crystal-like' thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials.

  8. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale

    Science.gov (United States)

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öǧüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F.

    2018-02-01

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2 , MoSe2 , WS2 , or WSe2 , are directly determined and mapped.

  9. Experimental data showing the thermal behavior of a flat roof with phase change material

    Directory of Open Access Journals (Sweden)

    Ayça Tokuç

    2015-12-01

    Full Text Available The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM layer. The temperature and energy given to and taken from the building element are reported. In addition the solid–liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91–104.

  10. Experimental data showing the thermal behavior of a flat roof with phase change material.

    Science.gov (United States)

    Tokuç, Ayça; Başaran, Tahsin; Yesügey, S Cengiz

    2015-12-01

    The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM) layer. The temperature and energy given to and taken from the building element are reported. In addition the solid-liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91-104.

  11. IAEA consultants' meeting on thermal response of plasma facing materials and components

    International Nuclear Information System (INIS)

    Janev, R.K.

    1990-07-01

    The present Summary Report contains brief proceedings and the main conclusions and recommendations of the IAEA Consultants' Meeting on ''Thermal Response of Plasma Facing Materials and Components'', which was organized by the IAEA Atomic and Molecular Data Unit and held on June 11-13, 1990, in Vienna, Austria. The Report also includes a categorization and assessment of currently studied plasma facing materials, a classification scheme of material properties data, required in fusion reactor design, and a survey of the urgently needed material properties data. (author)

  12. Scientific and Technical Challenges in Thermal Transport and Thermoelectric Materials and Devices

    KAUST Repository

    O'Dwyer, Colm

    2017-01-19

    This paper considers the state-of-the-art and open scientific and technological questions in thermoelectric materials and devices, from phonon engineering and scattering methods, to new and complex materials and their thermoelectric behavior. The paper also describes recent approaches to create structural and compositional material systems designed to enhance the thermoelectric figure of merit and power factors. We also summarize and contextualize recent advances in the use of superlattice structures and porosity or roughness to influence phonon scattering mechanisms and detail some advances in integrated thermoelectric materials for generators and coolers for thermally stable photonic devices.

  13. Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage

    OpenAIRE

    Korhammer, Kathrin; Druske, Mona-Maria; Fopah-Lele, Armand; Rammelberg, Holger Urs; Wegscheider, Nina; Opel, Oliver; Osterland, Thomas; Ruck, Wolfgang

    2016-01-01

    International audience; Thermochemical heat storage is a promising technology towards efficient use of renewable energy resources. Materials based on salts and their hydrates have a high potential for a good energy storage density and the benefit of long-term storage ability. However, the process has not yet been successfully implemented due to limitations in mass and heat transfer. This paper investigates how to improve the less desirable properties of CaCl2 and its hydrates such as low melt...

  14. Thermal diffusivity measurements of liquid materials at high temperature with the ''laser flash'' method

    International Nuclear Information System (INIS)

    Otter, Claude; Vandevelde, Jean

    1982-01-01

    Two solutions, one analytical and the other numerical are proposed to solve the thermokinetic problem encountered when measuring the thermal diffusivity of liquid materials at very high temperature (T>3123K). The liquid material is contained in a parallel faced vessel. This liquid is traversed by a short thermal pulse from a relaxed laser. The temperature response of the back face of the measurement cell is analysed. The first model proposed which does not take thermal losses into consideration, is a mathematical model derived from the ''two layer model'' (Larson and Koyama, 1968) extended to ''three layers''. In order to take the possibility of thermal losses to the external environment at high temperature into consideration, a Crank-Nicolson (1947) type numerical model utilizing finite differences is employed. These thermokinetic studies were performed in order to interpret temperature response curves obtained from the back face of a tungsten-liquid UO 2 -tungsten thermal wall, the purpose of the measurements made being to determine the thermal properties of liquid uranium oxide [fr

  15. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    Science.gov (United States)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  16. Experimental study of thermal conductivity of pyrolysised materials by means of a flat layer

    Science.gov (United States)

    Vaniushkin, V. D.; Popov, S. K.; Sidenkov, D. V.

    2017-11-01

    Recycling of tires is currently a very important task. One of the areas of recycling tires is their low-temperature pyrolysis to produce marketable products – liquid fraction and a solid coke residue. For the development of the pyrolysis installation it is important to know the thermal conductivity of the coke residue at different temperatures of pyrolysis of initial material. As a property of matter, thermal conductivity depends in general on temperature and pressure. For materials with some structure, such as porous materials, the thermal conductivity depends on the characteristics of the structure. The thermal conductivity of the porous coke residue at pyrolysis temperatures of 300 0C, 400 0C, 500 0C and atmospheric pressure was studied experimentally at the laboratory unit of the department of “Theoretical basis of heat engineering” using the method of the flat layer in the temperature range 5…100 0C. Experimentally proved temperature dependencies of the coefficient of thermal conductivity of the coke residue are built to improve the accuracy of calculations of constructive and regime parameters of the pyrolysis installation.

  17. Compendium of information on identification and testing of materials for plastic solar thermal collectors

    Energy Technology Data Exchange (ETDEWEB)

    McGinniss, V.D.; Sliemers, F.A.; Landstrom, D.K.; Talbert, S.G.

    1980-07-31

    This report is intended to organize and summarize prior and current literature concerning the weathering, aging, durability, degradation, and testing methodologies as applied to materials for plastic solar thermal collectors. Topics covered include (1) rate of aging of polymeric materials; (2) environmental factors affecting performance; (3) evaluation and prediction of service life; (4) measurement of physical and chemical properties; (5) discussion of evaluation techniques and specific instrumentation; (6) degradation reactions and mechanisms; (7) weathering of specific polymeric materials; and (8) exposure testing methodology. Major emphasis has been placed on defining the current state of the art in plastics degradation and on identifying information that can be utilized in applying appropriate and effective aging tests for use in projecting service life of plastic solar thermal collectors. This information will also be of value where polymeric components are utilized in the construction of conventional solar collectors or any application where plastic degradation and weathering are prime factors in material selection.

  18. Radio-physical properties of radiotransparent thermal protection materials in ablation mode

    Science.gov (United States)

    Petrovskiy, V. P.; Pakhomov, E. P.; Politiko, A. A.; Semenenko, V. N.; Chistyaev, V. A.; Balakirev, B. A.; Pervov, A. Yu; Kamalov, A. D.; Sotskova, L. P.

    2018-01-01

    Experimental method for assessing the impact of the effects of high-temperature ablation processes on the radio physical characteristics of radiotransparent thermal protection materials (RTPM) is developed. Researches for the following RTPM with various structures of glass fillers are completed: press material (radiotransparent thermal protection press material or RTP-200); glass-fiber laminate (glass-fiber radiotransparent organic ceramic matrix or GFR-CM); reinforced composite material of class SiO2–SiO2 (high-temperature radiotransparent ceramic organic matrix or HTRC-OM). The influence of physicochemical transformations in the surface layer of RTPM on transmission and reflection coefficients of electromagnetic waves of RTPM samples and on the value of their complex permittivity is determined.

  19. Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials

    Science.gov (United States)

    Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.

    2007-01-01

    The research testing and demonstration of new bulk-fill materials for cryogenic thermal insulation systems was performed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. Thermal conductivity testing under actual-use cryogenic conditions is a key to understanding the total system performance encompassing engineering, economics, and materials factors. A number of bulk fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, were tested using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boil-off method were 293 K and 78 K. Tests were performed as a function of cold vacuum pressure from high vacuum to no vacuum conditions. Results are compared with other complementary test methods in the range of 300 K to 20 K. Various testing techniques are shown to be required to obtain a complete understanding of the operating performance of a material and to provide data for answers to design engineering questions.

  20. Apparatus and test method for characterizing the temperature regulating properties of thermal functional porous polymeric materials.

    Science.gov (United States)

    Yao, Bao-Guo; Zhang, Shan; Zhang, De-Pin

    2017-05-01

    In order to evaluate the temperature regulating properties of thermal functional porous polymeric materials such as fabrics treated with phase change material microcapsules, a new apparatus was developed. The apparatus and the test method can measure the heat flux, temperature, and displacement signals during the dynamic contact and then quickly give an evaluation for the temperature regulating properties by simulating the dynamic heat transfer and temperature regulating process when the materials contact the body skin. A series of indices including the psychosensory intensity, regulating capability index, and relative regulating index were defined to characterize the temperature regulating properties. The measurement principle, the evaluation criteria and grading method, the experimental setup and the test results discussion, and the gage capability analysis of the apparatus are presented. The new apparatus provides a method for the objective measurement and evaluation of the temperature regulating properties of thermal functional porous polymeric materials.

  1. Packaging strategies for printed circuit board components. Volume I, materials & thermal stresses.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K. (Kansas City Plant, Kansas City, MO); Austin, Kevin N.; Adolf, Douglas Brian; Spangler, Scott W.; Neidigk, Matthew Aaron; Chambers, Robert S.

    2011-09-01

    Decisions on material selections for electronics packaging can be quite complicated by the need to balance the criteria to withstand severe impacts yet survive deep thermal cycles intact. Many times, material choices are based on historical precedence perhaps ignorant of whether those initial choices were carefully investigated or whether the requirements on the new component match those of previous units. The goal of this program focuses on developing both increased intuition for generic packaging guidelines and computational methodologies for optimizing packaging in specific components. Initial efforts centered on characterization of classes of materials common to packaging strategies and computational analyses of stresses generated during thermal cycling to identify strengths and weaknesses of various material choices. Future studies will analyze the same example problems incorporating the effects of curing stresses as needed and analyzing dynamic loadings to compare trends with the quasi-static conclusions.

  2. Material of LAPAN's thermal IR camera equipped with two microbolometers in one aperture

    Science.gov (United States)

    Bustanul, A.; Irwan, P.; Andi M., T.

    2017-11-01

    Besides the wavelength used, there is another factor that we have to notice in designing an optical system. It is material used which is correct for the spectral bands determined. Basically, due the limitation of the available range and expensive, choosing and determining materials for Infra Red (IR) wavelength are more difficult and complex rather than visible spectrum. We also had the same problem while designing our thermal IR camera equipped with two microbolometers sharing aperture. Two spectral bands, 3 - 4 μm (MWIR) and 8 - 12 μm (LWIR), have been decided to be our thermal IR camera spectrum to address missions, i.e., peat land fire, volcanoes activities, and Sea Surface Temperature (SST). Referring those bands, we chose the appropriate material for LAPAN's IR camera optics. This paper describes material of LAPAN's IR camera equipped with two microbolometer in one aperture. First of all, we were learning and understanding of optical materials properties all matters of IR technology including its bandwidths. Considering some aspects, i.e., Transmission, Index of Refraction, Thermal properties covering the index gradient and coefficient of thermal expansion (CTE), the analysis then has been accomplished. Moreover, we were utilizing a commercial software, Thermal Desktop/Sinda Fluint, to strengthen the process. Some restrictions such as space environment, low cost, and performance mainly durability and transmission, were also cared throughout the trade off the works. The results of all those analysis, either in graphs or in measurement, indicate that the lens of LAPAN's IR camera with sharing aperture is based on Germanium/Zinc Selenide materials.

  3. Thermal characteristic investigation of eutectic composite fatty acid as heat storage material for solar heating and cooling application

    Science.gov (United States)

    Thaib, R.; Fauzi, H.; Ong, H. C.; Rizal, S.; Mahlia, T. M. I.; Riza, M.

    2018-03-01

    A composite phase change material (CPCM) of myristic acid/palmitic acid/sodium myristate (MA/PA/SM) and of myristic acid/palmitic acid/sodium laurate (MA/PA/SL) were impregnated with purified damar gum as called Shorea Javanica (SJ) to improve the thermal conductivity of CPCM. The thermal properties, thermal conductivity, and thermal stability of both CPCM have investigated by using a Differential Scanning Calorimetry (DSC) thermal analysis, hot disc thermal conductivity analyzer, and Simultaneous Thermal Analyzer (STA), simultaneously. However, a chemical compatibility between both fatty acid eutectic mixtures and SJ in composite mixtures measured by Fourier Transform Infra-Red (FT-IR) spectrophotometer. The results were obtained that the thermal conductivity of MA/PA/SM/SJ and MA/PA/SL/SJ eutectic composite phase change material (CPCM) were improved by addition 3 wt.% and 2 wt.% of Shorea javanica (SJ), respectively, without occur a significant change on thermal properties of CPCM. Moreover, the absorbance spectrum of FT-IR shows the good compatibility of SJ with both MA/PA/SM and MA/PA/SL eutectic mixtures, the composite PCM also present good thermal performance and good thermal stability. Therefore, it can be noted that the purified Shorea Javanica proposed, the as high conductive material in this study was able to improve the thermal conductivity of eutectic PCM without any significant reduction on its thermo-physical and chemical properties and can be recommended as novelty composite phase change material for thermal energy storage application.

  4. Detection and quantification of defects in composite material by using thermal wave method

    Energy Technology Data Exchange (ETDEWEB)

    Ranjit, Shrestha; Kim, Won Tae [Dept. of Mechanical Engineering, Kongju National University, Cheonan (Korea, Republic of)

    2015-12-15

    This paper explored the results of experimental investigation on carbon fiber reinforced polymer (CFRP) composite sample with thermal wave technique. The thermal wave technique combines the advantages of both conventional thermal wave measurement and thermography using a commercial Infrared camera. The sample comprises the artificial inclusions of foreign material to simulate defects of different shape and size at different depths. Lock-in thermography is employed for the detection of defects. The temperature field of the front surface of sample was observed and analysed at several excitation frequencies ranging from 0.562 Hz down to 0.032 Hz. Four-point methodology was applied to extract the amplitude and phase of thermal wave's harmonic component. The phase images are analyzed to find qualitative and quantitative information about the defects.

  5. A steady-state high-temperature method for measuring thermal conductivity of refractory materials

    Science.gov (United States)

    Manzolaro, M.; Corradetti, S.; Andrighetto, A.; Ferrari, L.

    2013-05-01

    A new methodology and an instrumental setup for the thermal conductivity estimation of isotropic bulk graphite and different carbides at high temperatures are presented. The method proposed in this work is based on the direct measurement of temperature and emissivity on the top surface of a sample disc of known dimensions. Temperatures measured under steady-state thermal equilibrium are then used to estimate the thermal conductivity of the sample by making use of the inverse parameter estimation technique. Thermal conductivity values obtained in this way are then compared to the material data sheets and values found in literature. The reported work has been developed within the Research and Development framework of the SPES (Selective Production of Exotic Species) project at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro).

  6. Filler-depletion layer adjacent to interface impacts performance of thermal interface material

    Directory of Open Access Journals (Sweden)

    Susumu Yada

    2016-01-01

    Full Text Available When installing thermal interface material (TIM between heat source and sink to reduce contact thermal resistance, the interfacial thermal resistance (ITR between the TIM and heat source/sink may become important, especially when the TIM thickness becomes smaller in the next-generation device integration. To this end, we have investigated ITR between TIM and aluminum surface by using the time-domain thermoreflectance method. The measurements reveal large ITR attributed to the depletion of filler particles in TIM adjacent to the aluminum surface. The thickness of the depletion layer is estimated to be about 100 nm. As a consequence, the fraction of ITR to the total contact thermal resistance becomes about 20% when the TIM thickness is about 50 μm (current thickness, and it exceeds 50% when the thickness is smaller than 10 μm (next-generation thickness.

  7. Low thermal conductivity CoSb3 materials prepared by rapid synthesis process

    Science.gov (United States)

    Deng, L.; Ni, J.; Qin, J. M.; Ma, H. A.; Jia, X. P.

    2018-02-01

    Nano-particles and defects have effective influence on reducing the lattice thermal conductivity. In this work, a serious of high concentration Te doping bulk polycrystalline materials Co4Sb11.2Te0.8 has been synthesized successfully at different pressures by the high pressure and high temperature (HPHT) method. All samples were characterized by X-ray diffraction. The Seebeck coefficient α, electrical resistivity ρ and thermal conductivity κ were all measured from 373 K to 673 K. It could be observed obviously that, as the synthesis pressure rised, the thermal conductivity of Co4Sb11.2Te0.8 decreased remarkably. The minimum thermal conductivity of 1.36 W m-1 K-1 was obtained by Co4Sb11.2Te0.8 sample synthesized at 3.7 GPa. The corresponding microstructures were also studied by SEM and HRTEM images.

  8. Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage.

    Science.gov (United States)

    Li, Min; Guo, Qiangang; Nutt, Steven

    2017-04-01

    A composite phase change material (PCM) comprised of organic montmorillonite (OMMT)/paraffin/grafted multi-walled nanotube (MWNT) is synthesized via ultrasonic dispersion and liquid intercalation. The microstructure of the composite PCM has been characterized to determine the phase distribution, and thermal properties (latent heat and thermal conductivity) have been measured by differential scanning calorimetry (DSC) and a thermal constant analyzer. The results show that paraffin molecules are intercalated in the montmorillonite layers and the grafted MWNTs are dispersed in the montmorillonite layers. The latent heat is 47.1 J/g, and the thermal conductivity of the OMMT/paraffin/grafted MWNT composites is 34% higher than that of the OMMT/paraffin composites and 65% higher than that of paraffin.

  9. A new method for measuring the thermal regulatory properties of phase change material (PCM) fabrics

    International Nuclear Information System (INIS)

    Wan, X; Fan, J

    2009-01-01

    Several methods already exist for the measurement of the thermal regulatory properties of fabrics containing phase change materials (PCMs). However, they do not adequately simulate the actual use condition; consequently the measurements may not have relevance to the performance of PCM fabrics in actual use. Here we report on the development of a new method, which better simulates the real use situation. In this method, a hot plate, simulating the human body, generates a constant amount of heat depending on the type of human activity to be simulated. The hot plate covered by the PCM fabric is then exposed to a thermal transient simulating a wearer moving from one thermal environment to another; the changes of surface temperature and heat loss of the hot plate are then recorded and used to characterize the thermal regulatory properties of the PCM fabrics

  10. Facile preparation of carbon microcapsules containing phase-change material with enhanced thermal properties.

    Science.gov (United States)

    Tahan Latibari, Sara; Mehrali, Mohammad; Mehrali, Mehdi; Mahlia, Teuku Meurah Indra; Metselaar, Hendrik Simon Cornelis

    2014-01-01

    This study describes the hydrothermal synthesis of a novel carbon/palmitic acid (PA) microencapsulated phase change material (MEPCM). The field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) images confirm that spherical capsules of uniform size were formed with a mean diameter of 6.42 μm. The melting and freezing temperature were found to be slightly lower than those of pure PA with little undercooling. The composite retained 75% of the latent heat of pure PA. Thermal stability of the MEPCM was found to be better than that of pure PA. The thermal conductivity of MEPCM was increased by as much as 41% at 30°C. Due to its good thermal properties and chemical and mechanical stability, the carbon/PA MEPCM displays a good potential for thermal energy storage systems.

  11. Silicon nitride: A ceramic material with outstanding resistance to thermal shock and corrosion

    Science.gov (United States)

    Huebner, K. H.; Saure, F.

    1983-01-01

    The known physical, mechanical and chemical properties of reaction-sintered silicon nitride are summarized. This material deserves interest especially because of its unusually good resistance to thermal shock and corrosion at high temperatures. Two types are distinguished: reaction-sintered (porous) and hot-pressed (dense) Si3N4. Only the reaction-sintered material which is being produced today in large scale as crucibles, pipes, nozzles and tiles is considered.

  12. Utilization of Baggase Waste Based Materials as Improvement for Thermal Insulation of Cement Brick

    Directory of Open Access Journals (Sweden)

    Aminudin Eeydzah

    2017-01-01

    Full Text Available Building materials having low thermal load and low thermal conductivity will provide thermal comforts to the occupants in building. In an effort to reduce the use of high energy and waste products from the agricultural industry, sugarcane bagasse and banana bagasse has been utilize as an additive in the manufacture of cement brick. The aim of this study is to investigate the insulation and mechanical properties of brick that has been mixed with bagasse and its effectiveness as thermal insulation using heat flow meter. Waste bagasse is being treated using sodium hydroxide (NaOH and is characterized using SEM and XRF. The samples produced with two different dimensions of 50 mm × 50 mm × 50 mm and 215mm × 102.5mm × 65mm for thermal conductivity test. Next, the sample varies from 0% (control sample, 2%, 4%, 6%, 8% and 10% in order to determine the best mix proportion. The compressive strength is being tested for 7, 14 and 28 days of water curing. Results showed that banana bagasse has lower thermal conductivity compared to sugarcane bagasse used, with compressive strength of 15.6MPa with thermal conductivity 0.6W/m.K.

  13. Microencapsulated n-octacosane as phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Ahmet; Alkan, Cemil; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey); Uzun, Orhan [Department of Physics, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2009-10-15

    This study deals with preparation and characterization of polymethylmetracrylate (PMMA) microcapsules containing n-octacosane as phase change material for thermal energy storage. The surface morphology, particle size and particle size distribution (PSD) were studied by scanning electron microscopy (SEM). The chemical characterization of PMMA/octacosane microcapsules was made by FT-IR spectroscopy method. Thermal properties and thermal stability of microencapsulated octacosane were determined using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The melting and freezing temperatures and the latent heats of the microencapsulated octacosane as PCM were measured as 50.6 and 53.2 C, 86.4 and -88.5 J/g, respectively, by DSC analysis. TGA analysis indicated that the microencapsulated octacosane degrade in two steps and had good chemical stability. Thermal cycling test shows that the microcapsules have good thermal reliability with respect to the accelerated thermal cycling. Based on the results, it can be considered that the microencapsulated octacosane have good energy storage potential. (author)

  14. Investigation of thermal conductivity of metal materials on view of influence of ultrasonic waves

    Science.gov (United States)

    Lepeshkin, A. R.; Shcherbakov, P. P.

    2017-11-01

    A devices and methods were developed to determine characteristics of thermal cunductivity in metals materials on view of influence of ultrasonic waves at frequencies of 20 kHz and 2.6 MHz. A thermograph was used for investigation of the nonstationary thermal state of a conical rod and contactless measurements of its surface temperatures. The curves of heating of the tip of the conical rod and the time of heat transfer from the electric heater to the tip of the rod in experiments with an ultrasonic radiator and without it were carried out. According to the results of the research it was obtained that the thermal conductivity of a metal rod is increased by 2 times at a frequency of 20 kHz with an intensity of 50 W. The measure technique and the experimental data on the thermal conductivity of AISI-304 stainless steel in the ultrasonic wave field 2.6 MHz are given. A stationary comparative method for determining the thermal conductivity is used. As a result of the experiments it was established that the thermal conductivity of the rod increases by 2 times in the temperature range 20-100 °C in the field of ultrasonic wave. The obtained results confirm that in the alloys under the influence of ultrasonic waves on electrons and nodes of the crystal structure the contribution of the electron and lattice components of the thermal conductivity increases.

  15. Thermal stability of phenolic based binders and frictional performance of brake composite materials

    Science.gov (United States)

    Pudhota, Madhuri

    To enhance frictional performance, wear and to obtain improved thermal stability with a reduction of noise, vibration, and harshness (NVH) and provide environment friendly brakes for the increasing needs of the population's comfort and safety requirements this study was initiated. The thermal stability of two different phenolic resins as binder on the frictional performance of brake composite material was studied. The two phenolic resins used are Durite phenolic resin and Bakelite phenolic resins. They were tested for friction, wear, thermal stability and degradation. This was executed by using a universal friction tester (UFT) for testing friction and wear, then on thermo gravimetric analysis (TGA) and the TGA results indicate more mass loss of NB samples contrary to test results. When individual materials were heated, Bakelite lost less mass compared to Durite. The friction test indicates more friction when used the NB samples but they had less wear and more stability nevertheless this could vary for other compositions and conditions.

  16. A Negative Thermal Expansion Material of ZrMgMo3O12

    International Nuclear Information System (INIS)

    Song Wen-Bo; Liang Er-Jun; Liu Xian-Sheng; Li Zhi-Yuan; Yuan Bao-He; Wang Jun-Qiao

    2013-01-01

    A material with the formula ZrMgMo 3 O 12 having negative thermal expansion is presented and characterized. It is shown that ZrMgMo 3 O 12 crystallizes in an orthorhombic symmetry with space group Pnma(62) or Pna2 1 (33) and exhibits negative thermal expansion in a large temperature range (α l = −3.8 × 10 −6 K −1 from 300K to 1000K by x-ray diffraction and α l = −3.73 × 10 −6 K −1 from 295K to 775K by dilatometer). ZrMgMo 3 O 12 remains the orthorhombic structure without phase transition or decomposition at least from 123K to 1200K and is not hygroscopic. These properties make it an excellent material with negative thermal expansion for a variety of applications

  17. Thermal Peak Management Using Organic Phase Change Materials for Latent Heat Storage in Electronic Applications

    Directory of Open Access Journals (Sweden)

    Jacob Maxa

    2017-12-01

    Full Text Available Modern high power electronics devices consists of a large amount of integrated circuits for switching and supply applications. Beside the benefits, the technology exhibits the problem of an ever increasing power density. Nowadays, heat sinks that are directly mounted on a device, are used to reduce the on-chip temperature and dissipate the thermal energy to the environment. This paper presents a concept of a composite coating for electronic components on printed circuit boards or electronic assemblies that is able to buffer a certain amount of thermal energy, dissipated from a device. The idea is to suppress temperature peaks in electronic components during load peaks or electronic shorts, which otherwise could damage or destroy the device, by using a phase change material to buffer the thermal energy. The phase change material coating could be directly applied on the chip package or the PCB using different mechanical retaining jigs.

  18. Ternary mixture of fatty acids as phase change materials for thermal energy storage applications

    Directory of Open Access Journals (Sweden)

    Karunesh Kant

    2016-11-01

    Full Text Available The present study deals with the development of ternary mixtures of fatty acids for low temperature thermal energy storage applications. The commercial grade fatty acids such as Capric Acid (CA, Lauric Acid (LA, Palmitic Acid (PA and Stearic Acid (SA, have been used to prepare stable, solid–liquid phase change material (PCM for the same. In this regard, a series of ternary mixture i.e. CA–LA–SA (CLS and CA–PA–SA (CPS have been developed with different weight percentages. Thermal characteristics of these developed ternary mixture i.e. melting temperature and latent heat of fusion have been measured by using Differential Scanning Calorimeter (DSC technique. The synthesized materials are found to have melting temperature in the range of 14–21 °C (along with adequate amount of latent heat of fusion, which may be quite useful for several low temperature thermal energy storage applications.

  19. Thermal Peak Management Using Organic Phase Change Materials for Latent Heat Storage in Electronic Applications

    Science.gov (United States)

    Maxa, Jacob; Novikov, Andrej; Nowottnick, Mathias

    2017-01-01

    Modern high power electronics devices consists of a large amount of integrated circuits for switching and supply applications. Beside the benefits, the technology exhibits the problem of an ever increasing power density. Nowadays, heat sinks that are directly mounted on a device, are used to reduce the on-chip temperature and dissipate the thermal energy to the environment. This paper presents a concept of a composite coating for electronic components on printed circuit boards or electronic assemblies that is able to buffer a certain amount of thermal energy, dissipated from a device. The idea is to suppress temperature peaks in electronic components during load peaks or electronic shorts, which otherwise could damage or destroy the device, by using a phase change material to buffer the thermal energy. The phase change material coating could be directly applied on the chip package or the PCB using different mechanical retaining jigs.

  20. Preparation and Thermal Properties of Eutectic Hydrate Salt Phase Change Thermal Energy Storage Material

    Directory of Open Access Journals (Sweden)

    Lin Liang

    2018-01-01

    Full Text Available In this study, a new cold storage phase change material eutectic hydrate salt (K2HPO4·3H2O–NaH2PO4·2H2O–Na2S2O3·5H2O was prepared, modified, and tested. The modification was performed by adding a nucleating agent and thickener. The physical properties such as viscosity, surface tension, cold storage characteristics, supercooling, and the stability during freeze-thaw cycles were studied. Results show that the use of nucleating agents, such as sodium tetraborate, sodium fluoride, and nanoparticles, are effective. The solidification temperature and latent heat of these materials which was added with 0, 3, and 5 wt% thickeners were −11.9, −10.6, and −14.8°C and 127.2, 118.6, 82.56 J/g, respectively. Adding a nucleating agent can effectively improve the nucleation rate and nucleation stability. Furthermore, increasing viscosity has a positive impact on the solidification rate, supercooling, and the stability during freeze-thaw cycles.

  1. GCD TechPort Data Sheets Thermal Protection System Materials (TPSM) Project

    Science.gov (United States)

    Chinnapongse, Ronald L.

    2014-01-01

    The Thermal Protection System Materials (TPSM) Project consists of three distinct project elements: the 3-Dimensional Multifunctional Ablative Thermal Protection System (3D MAT) project element; the Conformal Ablative Thermal Protection System (CA-TPS) project element; and the Heatshield for Extreme Entry Environment Technology (HEEET) project element. 3D MAT seeks to design, develop and deliver a game changing material solution based on 3-dimensional weaving and resin infusion approach for manufacturing a material that can function as a robust structure as well as a thermal protection system. CA-TPS seeks to develop and deliver a conformal ablative material designed to be efficient and capable of withstanding peak heat flux up to 500 W/ sq cm, peak pressure up to 0.4 atm, and shear up to 500 Pa. HEEET is developing a new ablative TPS that takes advantage of state-of-the-art 3D weaving technologies and traditional manufacturing processes to infuse woven preforms with a resin, machine them to shape, and assemble them as a tiled solution on the entry vehicle substructure or heatshield.

  2. Transient thermal stresses in multiple connected region exhibiting temperature dependence of material properties

    International Nuclear Information System (INIS)

    Sugano, Yoshihiro; Maekawa, Toshiya.

    1983-01-01

    The examples of the analysis of thermal stress in multiple connection regions such as heat exchangers, nuclear reactor cores, ingot cases and polygonal region with elliptic holes are not few, but the temperature dependence of material constants was neglected in these researches because of the difficulty of analysis though the industrial problems related to thermal stress are apt to occur in the condition of relatively large temperature gradient. Also, the analysis of heat conduction problems taking the temperature dependence of material constants into account was limited to one-dimensional problems for which Kirchhoff's transmission can be used. The purpose of this study is to derive the equation of condition which assures the one-value property of rotation and displacement, taking the temperature dependence of material constants into account, and to complete the formulation of the plane thermal stress problems in multiple connection regions by stress function method. Also the method of numerical analysis using difference method is shown to examine the effectiveness of various formulated equations and the effect of the temperature dependence of material constants on temperature and thermal stress. The example of numerical calculation on a thin rectangular plate with a rectangular hole is shown. (Kako, I.)

  3. Do encapsulated heat storage materials really retain their original thermal properties?

    Science.gov (United States)

    Chaiyasat, Preeyaporn; Noppalit, Sayrung; Okubo, Masayoshi; Chaiyasat, Amorn

    2015-01-14

    The encapsulation of Rubitherm®27 (RT27), which is one of the most common commercially supplied heat storage materials, by polystyrene (PS), polydivinyl benzene (PDVB) and polymethyl methacrylate (PMMA) was carried out using conventional radical microsuspension polymerization. The products were purified to remove free RT27 and free polymer particles without RT27. In the cases of PS and PDVB microcapsules, the latent heats of melting and crystallization for RT27 ( and , J/g-RT27) were clearly decreased by the encapsulation. On the other hand, those of the PMMA microcapsules were the same as pure RT27. A supercooling phenomenon was observed not only for PS and PDVB but also for the PMMA microcapsules. These results indicate that the thermal properties of the heat storage materials encapsulated depend on the type of polymer shells, i.e., encapsulation by polymer shell changes the thermal properties of RT27. This is quite different from the idea of other groups in the world, in which they discussed the thermal properties based on the ΔHm and ΔHc values expressed in J/g-capsule, assuming that the thermal properties of the heat storage materials are not changed by the encapsulation. Hereafter, this report should raise an alarm concerning the "wrong" common knowledge behind developing the encapsulation technology of heat storage materials.

  4. Thermally Self-Healing Polymeric Materials : The Next Step to Recycling Thermoset Polymers?

    NARCIS (Netherlands)

    Zhang, Youchun; Broekhuis, Antonius A.; Picchioni, Francesco

    2009-01-01

    We developed thermally self-healing polymeric materials on the basis of furan-functionalized, alternating thermosetting polyketones (PK-furan) and bis-maleimide by using the Diels-Alder (DA) and Retro-Diels-Alder (RDA) reaction sequence. PK-furan can be easily obtained under mild conditions by the

  5. Solar thermal collectors in polymeric materials: A novel approach towards higher operating temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Joao Farinha; Horta, Pedro; Carvalho, Maria Joao [INETI - Inst. Nacional de Engenharia Tecnologia e Inovacao, IP, Lisboa (Portugal); Silva, Paulo [PLASDAN - Maquinas para Plasticos, Marinha Grande (Portugal)

    2008-07-01

    The increasing demand for low temperature solar thermal collectors, especially for hot water production purposes in dwellings, swimming pools, hotels or industry, has lead to the possibility of high scale production, with leading manufacturers presenting yearly productions of hundreds of thousands of square meters. In such conditions, the use of polymeric materials in the manufacturing of solar collectors acquires particular interest, opening a full scope of opportunities for lower production costs, by means of cheaper materials or simpler manufacturing operations. Yet, the use of low cost materials limits the maximum operating temperatures estimated for the collectors (stagnation) to values around 120 C, easily attainable by any simple glazed solar collector. Higher performances, leading to higher stagnation temperatures as those observed for regular metal-based solar thermal collectors, would require high temperature polymers, at a much higher cost. The present paper addresses the manufacturing of a high performance solar thermal collector based in polymeric materials and includes a base thermal study, highlighting the different possibilities to be followed in the production of a polymeric collector, as well as a description of different temperature control strategies. (orig.)

  6. The use of lipids as phase change materials for thermal energy storage

    Science.gov (United States)

    Phase change materials (PCMs) are substances capable of absorbing and releasing large 2 amounts of thermal energy (heat or cold) as latent heat over constant temperature as they 3 undergo a change in state of matter (phase transition), commonly, between solid and 4 liquid phases. Since the late 194...

  7. Rocket University at KSC

    Science.gov (United States)

    Sullivan, Steven J.

    2014-01-01

    "Rocket University" is an exciting new initiative at Kennedy Space Center led by NASA's Engineering and Technology Directorate. This hands-on experience has been established to develop, refine & maintain targeted flight engineering skills to enable the Agency and KSC strategic goals. Through "RocketU", KSC is developing a nimble, rapid flight engineering life cycle systems knowledge base. Ongoing activities in RocketU develop and test new technologies and potential customer systems through small scale vehicles, build and maintain flight experience through balloon and small-scale rocket missions, and enable a revolving fresh perspective of engineers with hands on expertise back into the large scale NASA programs, providing a more experienced multi-disciplined set of systems engineers. This overview will define the Program, highlight aspects of the training curriculum, and identify recent accomplishments and activities.

  8. An active thermography approach for thermal and electrical characterization of thermoelectric materials

    Science.gov (United States)

    Streza, M.; Longuemart, S.; Guilmeau, E.; Strzalkowski, K.; Touati, K.; Depriester, M.; Maignan, A.; Sahraoui, A. Hadj

    2016-07-01

    The enhancement of figure of merit (ZT) of thermoelectrics is becoming extremely important for an efficient conversion of thermal energy into electrical energy. In this respect, reliable measurements of thermal and electrical parameters are of paramount importance in order to characterize thermoelectric materials in terms of their efficiency. In this work, a combined theoretical-experimental active thermography approach is presented. The method consists of selecting the right sequential interdependence between the excitation frequency and the sampling rate of the infrared camera, by computing a temporal Fourier analysis of each pixel of the recorded IR image. The method is validated by using a reference sample which is then applied to a recent synthesized titanium trisulphide thermoelectric material (TiS3). By combining AC and steady-state experiments, one can obtain information on both thermal and electrical parameters of TE materials (namely thermal diffusivity, Seebeck coefficient). The thermal diffusivity and thermal conductivity of TiS3 are also measured using photothermal radiometry technique (PTR) and the resulting values of these parameters are α  =  9.7*10-7 m2 s-1 and k  =  2.2 W m-1 K, respectively. The results obtained with the two techniques are in good agreement. In the case of TE materials, the main benefit of the proposed method is related to its non-contact nature and the possibility of obtaining the electric potential and temperature at the same probes. The Seebeck coefficient obtained by active IR thermography (S  =  -554 μV K-1) is consistent with the one obtained using an ULVAC-ZEM3 system (S  =  -570 μV K-1). For a large number of users of thermographic cameras, which are not equipped with a lock-in thermography module, the present approach provides an affordable and cheaper solution.

  9. Recent Patents on Nano-Enhanced Materials for Use in Thermal Energy Storage (TES).

    Science.gov (United States)

    Ferrer, Gerard; Barreneche, Camila; Solé, Aran; Juliá, José Enrique; Cabeza, Luisa F

    2017-07-10

    Thermal energy storage (TES) systems using phase change materials (PCM) have been lately studied and are presented as one of the key solutions for the implementation of renewable energies. These systems take advantage of the latent heat of phase change of PCM during their melting/ solidification processes to store or release heat depending on the needs and availability. Low thermal conductivity and latent heat are the main disadvantages of organic PCM, while corrosion, subcooling and thermal stability are the prime problems that inorganic PCM present. Nanotechnology can be used to overcome these drawbacks. Nano-enhanced PCM are obtained by the dispersion of nanoparticles in the base material and thermal properties such as thermal conductivity, viscosity and specific heat capacity, within others, can be enhanced. This paper presents a review of the patents regarding the obtaining of nano-enhanced materials for thermal energy storage (TES) in order to realize the development nanotechnologies have gained in the TES field. Patents regarding the synthesis methods to obtain nano-enhanced phase materials (NEPCM) and TES systems using NEPCM have been found and are presented in the paper. The few existing number of patents found is a clear indicator of the recent and thus low development nanotechnology has in the TES field so far. Nevertheless, the results obtained with the reviewed inventions already show the big potential that nanotechnology has in TES and denote a more than probable expansion of its use in the next years. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Materials selection for long life in low earth orbit - A critical evaluation of atomic oxygen testing with thermal atom systems

    Science.gov (United States)

    Koontz, S. L.; Albyn, K.; Leger, L.

    1990-01-01

    The use of thermal atom test methods as a materials selection and screening technique for low-earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined in thermal atom environments are compared with those observed in LEO and in high-quality LEO simulations. Reaction efficiencies (cu cm/atom) measured in a new type of thermal atom apparatus are one-thousandth to one ten-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of eight in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain speciic thermal atom test environments can be used as reliable materials screening tools.

  11. Another Look at Rocket Thrust

    Science.gov (United States)

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  12. Fabrication and properties of microencapsulated-paraffin/gypsum-matrix building materials for thermal energy storage

    International Nuclear Information System (INIS)

    Su Junfeng; Wang Xinyu; Wang Shengbao; Zhao Yunhui; Huang Zhen

    2012-01-01

    Graphical abstract: DSC curves of microPCMs/gypsum composite samples before and after a thermal cycling treatment. Highlights: ► Microcapsules containing paraffin was fabricated by in-situ polymerization. ► Methanol-modified melamine–formaldehyde (MMF) was used as shell material. ► MicroPCMs/gypsum-matrix building materials were applied for solar energy storage. ► The structure and thermal conductivity of composites had been investigated. - Abstract: Microencapsulated phase change materials (microPCMs) have been widely applied in solid matrix as thermal-storage or temperature-controlling functional composites. The aim of this work was to prepare and investigate the properties of microPCMs/gypsum-matrix building materials for thermal energy storage. MicroPCMs contain paraffin was fabricated by in situ polymerization using methanol-modified melamine–formaldehyde (MMF) as shell material. A series of microPCMs samples were prepared under emulsion stirring rates in range of 1000–3000 r min −1 with core/shell weight ratios of 3/1, 2/1, 1/1, 1/2 and 1/3, respectively. The shell of microPCMs was smooth and compact with global shape, its thickness was not greatly affected by the core/shell ratio and emulsion stirring rate. DSC tests showed that the shell of microPCMs did not influence the phase change behavior of pure paraffin. It was found from TGA analysis that microPCMs samples containing paraffin lost their weight at the temperature of nearly 250 °C, which indicated that the PCM had been protected by shell. More shell material in microPCMs could enhance the thermal stability and provide higher compact condition for core material. After a 100-times thermal cycling treatment, the microPCMs contain paraffin also nearly did not change the phase change behaviors of PCM. With the increasing of weight contents of microPCMs in gypsum board, the thermal conductivity (λ) values of composites had decreased. The simulation of temperature tests proved that the

  13. Full-field characterization of thermal diffusivity in continuous-fiber ceramic composite materials and components

    Science.gov (United States)

    Steckenrider, J. Scott; Ellingson, William A.; Rothermel, Scott A.

    1995-03-01

    Continuous-fiber ceramic matrix composites (CFCCs) are currently being developed for various high-temperature applications, including use in advanced heat engines. Among the material classes of interest for such applications are silicon carbide (SiC)-fiber-reinforced SiC (SiC(f)/SiC), SiC-fiber-reinforced silicon nitride (SiC(f)/Si3N4), aluminum oxide (Al2O3)-fiber-reinforced Al2O3 (Al2O3(f)/Al2O3), and others. In such composites, the condition of the interfaces (between the fibers and matrix) are critical to the mechanical and thermal behavior of the component (as are conventional mechanical defects such as cracks, porosity, etc.). For example, oxidation of this interface (especially on carbon coated fibers) can seriously degrade both mechanical and thermal properties. Furthermore, thermal shock damage can degrade the matrix through extensive crack generation. A nondestructive evaluation method that could be used to assess interface condition, thermal shock damage, and to detect other `defects' would thus be very beneficial, especially if applicable to full-scale components. One method under development uses infrared thermal imaging to provide `single-shot' full-field assessment of the distribution of thermal properties in large components by measuring thermal diffusivity. By applying digital image filtering, interpolation, and least-squares-estimation techniques for noise reduction, we can achieve acquisition and analysis times of minutes or less with submillimeter spatial resolution. The system developed at Argonne National Laboratory has been used to examine the effects of thermal shock, oxidation treatment, density variations, and variations in oxidation resistance coatings in a full array of test specimens. Subscale CFCC components with nonplanar geometries have also been studied for manufacturing-induced variations in thermal properties.

  14. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    Science.gov (United States)

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2016-08-02

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  15. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    Science.gov (United States)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  16. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model

    International Nuclear Information System (INIS)

    Ling, Ziye; Chen, Jiajie; Xu, Tao; Fang, Xiaoming; Gao, Xuenong; Zhang, Zhengguo

    2015-01-01

    Highlights: • Expanded graphite can improve thermal conductivity of RT44HC by 20–60 times. • Thermal conductivity of PCM/EG composites keeps constant before/after melting. • Thermal conductivity of PCMs nearly doubled during phase changing. • Thermal conductivity of composite PCM increases with density and percentage of EG. • The simple model predicts thermal conductivity of EG-based composites accurately. - Abstract: This work studies factors that affect the thermal conductivity of an organic phase change material (PCM), RT44HC/expanded graphite (EG) composite, which include: EG mass fraction, composite PCM density and temperature. The increase of EG mass fraction and bulk density will both enhance thermal conductivity of composite PCMs, by up to 60 times. Thermal conductivity of RT44HC/EG composites remains independent on temperature outside the phase change range (40–45 °C), but nearly doubles during the phase change. The narrow temperature change during the phase change allows the maximum heat flux or minimum temperature for heat source if attaching PCMs to a first (constant temperature) or second (constant heat flux) thermal boundary. At last, a simple thermal conductivity model for EG-based composites is put forward, based on only two parameters: mass fraction of EG and bulk density of the composite. This model is validated with experiment data presented in this paper and in literature, showing this model has general applicability to any composite of EG and poor thermal conductive materials

  17. Investigation of Thermal Processes in Two-Layer Materials Exposed to High-Energy Heavy Ions in the Framework of a Thermal Peak Model with Constant Thermal Parameters

    CERN Document Server

    Amirkhanov, I V; Muzafarov, D Z; Puzynin, I V; Puzynina, T P; Sarker, N R; Sarhadov, I; Sharipov, Z A

    2005-01-01

    A system of equations for temperatures of electronic gas and lattice around and along a trajectory of a 710-MeV heavy ion of bismuth $^{209}$Bi in a two-layer material Ni(2 $\\mu $m)/W at constant thermal parameters is solved numerically in an axial-symmetric cylindrical system of coordinates. On the basis of the obtained dependences of lattice temperature on radius around the ion trajectory and depth, one can make a conclusion that the ionization energy losses of bismuth ion in the target material are sufficient for melting. The sizes of regions with maximum radius and depth in the target material, where the phase transformations can take place, are estimated.

  18. Preparation and characterization of macrocapsules containing microencapsulated PCMs (phase change materials) for thermal energy storage

    International Nuclear Information System (INIS)

    Han, Pengju; Lu, Lixin; Qiu, Xiaolin; Tang, Yali; Wang, Jun

    2015-01-01

    This paper was aimed to prepare, characterize and determine the comprehensive evaluation of promising composite macrocapsules containing microencapsulated PCMs (phase change materials) with calcium alginate gels as the matrix material. Macrocapsules containing microcapsules were fabricated by piercing-solidifying incuber method. Two kinds of microcapsules with n-tetradecane as core material, UF (urea-formaldehyde) and PMMA (poly(methyl methacrylate)) respectively as shell materials were prepared initially. For application concerns, thermal durability and mechanical property of macrocapsules were investigated by TGA (thermal gravimetric analysis) and Texture Analyser for the first time, respectively. The results showed excellent thermal stability and the compressive resistance of macrocapsules was sufficient for common application. The morphology and chemical structure of the prepared microcapsules and macrocapsules were characterized by SEM (scanning electron microscopy) and FT-IR (fourier transform infrared) spectroscopy method. Phase change behaviors and thermal durability of microcapsules and macrocapsules were investigated by DSC (differential scanning calorimetry). In order to improve latent heat of composite microcapsules, the core-shell weight ratio of tetradecane/UF shell microcapsules was chosen as 5.5:1 which obtained the phase change enthalpy of 194.1 J g −1 determined by DSC. In conclusion, these properties make it a feasible composite in applications of textile, building and cold-chain transportation. - Highlights: • We improved the phase change enthalpy with a higher core-shell ratio. • Urea-formaldehyde was firstly used as a shell material in the composite. • Mechanical and thermal durability property of the macrocapsules was firstly investigated in our work.

  19. Controlling thermal deformation by using composite materials having variable fiber volume fraction

    International Nuclear Information System (INIS)

    Bouremana, M.; Tounsi, A.; Kaci, A.; Mechab, I.

    2009-01-01

    In application, many thin structural components such as beams, plates and shells experience a through-thickness temperature variation. This temperature variation can produce both an in-plane expansion and an out-of-plane (bending) curvature. Given that these thin components interact with or connect to other components, we often wish to minimize the thermal deformation or match the thermal deformation of another component. This is accomplished by using a composite whose fibers have a negative axial thermal expansion coefficient. By varying the fiber volume fraction within a symmetric laminated beam to create a functionally graded material (FGM), certain thermal deformations can be controlled or tailored. Specifically, a beam can be designed which does not curve under a steady-state through-thickness temperature variation. Continuous gradation of the fiber volume fraction in the FGM layer is modelled in the form of a mth power polynomial of the coordinate axis in thickness direction of the beam. The beam results are independent of the actual temperature values, within the limitations of steady-state heat transfer and constant material properties. The influence of volume fiber fraction distributions are studied to match or eliminate an in-plane expansion coefficient, or to match a desired axial stiffness. Combining two fiber types to create a hybrid FGM can offer desirable increase in axial and bending stiffness while still retaining the useful thermal deformation behavior.

  20. Selection of high temperature thermal energy storage materials for advanced solar dynamic space power systems

    Science.gov (United States)

    Lacy, Dovie E.; Coles-Hamilton, Carolyn; Juhasz, Albert

    1987-01-01

    Under the direction of NASA's Office of Aeronautics and Technology (OAST), the NASA Lewis Research Center has initiated an in-house thermal energy storage program to identify combinations of phase change thermal energy storage media for use with a Brayton and Stirling Advanced Solar Dynamic (ASD) space power system operating between 1070 and 1400 K. A study has been initiated to determine suitable combinations of thermal energy storage (TES) phase change materials (PCM) that result in the smallest and lightest weight ASD power system possible. To date the heats of fusion of several fluoride salt mixtures with melting points greater than 1025 K have been verified experimentally. The study has indicated that these salt systems produce large ASD systems because of their inherent low thermal conductivity and low density. It is desirable to have PCMs with high densities and high thermal conductivities. Therefore, alternate phase change materials based on metallic alloy systems are also being considered as possible TES candidates for future ASD space power systems.