WorldWideScience

Sample records for thermal relic dark

  1. Thermal relic dark matter beyond the unitarity limit

    Energy Technology Data Exchange (ETDEWEB)

    Harigaya, Keisuke [Berkeley Center for Theoretical Physics, Department of Physics, University of California,Berkeley, CA 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, CA 94720 (United States); Ibe, Masahiro [Kavli IPMU (WPI), UTIAS, The University of Tokyo,Kashiwa, Chiba 277-8583 (Japan); ICRR, The University of Tokyo,Kashiwa, Chiba 277-8582 (Japan); Kaneta, Kunio [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon 34051 (Korea, Republic of); Nakano, Wakutaka; Suzuki, Motoo [Kavli IPMU (WPI), UTIAS, The University of Tokyo,Kashiwa, Chiba 277-8583 (Japan); ICRR, The University of Tokyo,Kashiwa, Chiba 277-8582 (Japan)

    2016-08-25

    We discuss a simple model of thermal relic dark matter whose mass can be much larger than the so-called unitarity limit on the mass of point-like particle dark matter. The model consists of new strong dynamics with one flavor of fermions in the fundamental representation which is much heavier than the dynamical scale of the new strong dynamics. Dark matter is identified with the lightest baryonic hadron of the new dynamics. The baryonic hadrons annihilate into the mesonic hadrons of the new strong dynamics when they have large radii. Resultantly, thermal relic dark matter with a mass in the PeV range is possible.

  2. Gravitino dark matter from increased thermal relic particles

    International Nuclear Information System (INIS)

    Okada, Nobuchika; Seto, Osamu

    2008-01-01

    We investigate the so-called superWIMP scenario with the gravitino as the lightest supersymmetric particle (LSP) in the context of nonstandard cosmology, in particular, brane world cosmology. As a candidate of the next-to-LSP (NLSP), we examine the slepton and the sneutrino. Brane world cosmological effects dramatically enhance the relic density of the slepton or sneutrino NLSP, so that the NLSP with mass of order 100 GeV can provide the correct abundance of gravitino dark matter through its decay. We find that with an appropriate five-dimensional Planck mass, this scenario can be realized consistently with the constraints from big bang nucleosynthesis for both NLSP candidates of the slepton and the sneutrino. The big bang nucleosynthesis constraints for the slepton NLSP are more stringent than that for the sneutrino; as the result, the gravitino must be rather warm in the slepton NLSP case. The energy density of the gravitino produced by thermal scattering is highly suppressed and negligible due to the brane world cosmological effects

  3. Bound-state formation for thermal relic dark matter and unitarity

    International Nuclear Information System (INIS)

    Harling, Benedict von; Petraki, Kalliopi

    2014-01-01

    We show that the relic abundance of thermal dark matter annihilating via a long-range interaction, is significantly affected by the formation and decay of dark matter bound states in the early universe, if the dark matter mass is above a few TeV . We determine the coupling required to obtain the observed dark matter density, taking into account both the direct 2-to-2 annihilations and the formation of bound states, and provide an analytical fit. We argue that the unitarity limit on the inelastic cross-section is realized only if dark matter annihilates via a long-range interaction, and we determine the upper bound on the mass of thermal-relic dark matter to be about 197 (139) TeV for (non)-self-conjugate dark matter

  4. Relating the baryon asymmetry to the thermal relic dark matter density

    International Nuclear Information System (INIS)

    McDonald, John

    2011-01-01

    We present a generic framework, baryomorphosis, which modifies the baryon asymmetry to be naturally of the order of a typical thermal relic weakly interacting massive particle (WIMP) density. We consider a simple scalar-based model to show how this is possible. This model introduces a sector in which a large initial baryon asymmetry is injected into particles ('annihilons'), φ B , φ-circumflex B , of mass ∼100 GeV-1 TeV. φ B φ-circumflex B annihilations convert the initial φ B , φ-circumflex B asymmetry to a final asymmetry with a thermal relic WIMP-like density. This subsequently decays to a conventional baryon asymmetry whose magnitude is naturally related to the density of thermal relic WIMP dark matter. In this way the two coincidences of baryons and dark matter, i.e. why their densities are similar to each other and why they are both similar to a WIMP thermal relic density (the 'WIMP miracle'), may be understood. The model may be tested by the production of annihilons at colliders.

  5. Mechanism for thermal relic dark matter of strongly interacting massive particles.

    Science.gov (United States)

    Hochberg, Yonit; Kuflik, Eric; Volansky, Tomer; Wacker, Jay G

    2014-10-24

    We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when a nearly secluded dark sector is thermalized with the standard model after reheating. The freeze-out process is a number-changing 3→2 annihilation of strongly interacting massive particles (SIMPs) in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary for maintaining thermal equilibrium with the standard model, imply measurable signals that will allow coverage of a significant part of the parameter space with future indirect- and direct-detection experiments and via direct production of dark matter at colliders. Moreover, 3→2 annihilations typically predict sizable 2→2 self-interactions which naturally address the "core versus cusp" and "too-big-to-fail" small-scale structure formation problems.

  6. Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds

    Energy Technology Data Exchange (ETDEWEB)

    Baldes, Iason [DESY, Notkestraße 85, Hamburg, D-22607 Germany (Germany); Petraki, Kalliopi, E-mail: iason.baldes@desy.de, E-mail: kpetraki@lpthe.jussieu.fr [Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589 CNRS and UPMC, 4 Place Jussieu, Paris, F-75252 France (France)

    2017-09-01

    Dark matter that possesses a particle-antiparticle asymmetry and has thermalised in the early universe, requires a larger annihilation cross-section compared to symmetric dark matter, in order to deplete the dark antiparticles and account for the observed dark matter density. The annihilation cross-section determines the residual symmetric component of dark matter, which may give rise to annihilation signals during CMB and inside haloes today. We consider dark matter with long-range interactions, in particular dark matter coupled to a light vector or scalar force mediator. We compute the couplings required to attain a final antiparticle-to-particle ratio after the thermal freeze-out of the annihilation processes in the early universe, and then estimate the late-time annihilation signals. We show that, due to the Sommerfeld enhancement, highly asymmetric dark matter with long-range interactions can have a significant annihilation rate, potentially larger than symmetric dark matter of the same mass with contact interactions. We discuss caveats in this estimation, relating to the formation of stable bound states. Finally, we consider the non-relativistic partial-wave unitarity bound on the inelastic cross-section, we discuss why it can be realised only by long-range interactions, and showcase the importance of higher partial waves in this regime of large inelasticity. We derive upper bounds on the mass of symmetric and asymmetric thermal-relic dark matter for s -wave and p -wave annihilation, and exhibit how these bounds strengthen as the dark asymmetry increases.

  7. Asymmetric thermal-relic dark matter. Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds

    International Nuclear Information System (INIS)

    Baldes, Iason; Petraki, Kalliopi

    2017-03-01

    Dark matter that possesses a particle-antiparticle asymmetry and has thermalised in the early universe, requires a larger annihilation cross-section compared to symmetric dark matter, in order to deplete the dark antiparticles and account for the observed dark matter density. The annihilation cross-section determines the residual symmetric component of dark matter, which may give rise to annihilation signals during CMB and inside haloes today. We consider dark matter with long-range interactions, in particular dark matter coupled to a light vector or scalar force mediator. We compute the couplings required to attain a final antiparticle-to-particle ratio after the thermal freeze-out of the annihilation processes in the early universe, and then estimate the late-time annihilation signals. We show that, due to the Sommerfeld enhancement, highly asymmetric dark matter with long-range interactions can have a significant annihilation rate, potentially larger than symmetric dark matter of the same mass with contact interactions. We discuss caveats in this estimation, relating to the formation of stable bound states. Finally, we consider the non-relativistic partial-wave unitarity bound on the inelastic cross-section, we discuss why it can be realised only by long-range interactions, and showcase the importance of higher partial waves in this regime of large inelasticity. We derive upper bounds on the mass of symmetric and asymmetric thermal-relic dark matter for s-wave and p-wave annihilation, and exhibit how these bounds strengthen as the dark asymmetry increases.

  8. Asymmetric thermal-relic dark matter. Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds

    Energy Technology Data Exchange (ETDEWEB)

    Baldes, Iason [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Petraki, Kalliopi [Nationaal Instuut voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands); UMR 7589 CNRS et UPMC, Paris (France). Laboratoire de Physique Theorique et Hautes Energies (LPTHE)

    2017-03-15

    Dark matter that possesses a particle-antiparticle asymmetry and has thermalised in the early universe, requires a larger annihilation cross-section compared to symmetric dark matter, in order to deplete the dark antiparticles and account for the observed dark matter density. The annihilation cross-section determines the residual symmetric component of dark matter, which may give rise to annihilation signals during CMB and inside haloes today. We consider dark matter with long-range interactions, in particular dark matter coupled to a light vector or scalar force mediator. We compute the couplings required to attain a final antiparticle-to-particle ratio after the thermal freeze-out of the annihilation processes in the early universe, and then estimate the late-time annihilation signals. We show that, due to the Sommerfeld enhancement, highly asymmetric dark matter with long-range interactions can have a significant annihilation rate, potentially larger than symmetric dark matter of the same mass with contact interactions. We discuss caveats in this estimation, relating to the formation of stable bound states. Finally, we consider the non-relativistic partial-wave unitarity bound on the inelastic cross-section, we discuss why it can be realised only by long-range interactions, and showcase the importance of higher partial waves in this regime of large inelasticity. We derive upper bounds on the mass of symmetric and asymmetric thermal-relic dark matter for s-wave and p-wave annihilation, and exhibit how these bounds strengthen as the dark asymmetry increases.

  9. Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds

    International Nuclear Information System (INIS)

    Baldes, Iason; Petraki, Kalliopi

    2017-01-01

    Dark matter that possesses a particle-antiparticle asymmetry and has thermalised in the early universe, requires a larger annihilation cross-section compared to symmetric dark matter, in order to deplete the dark antiparticles and account for the observed dark matter density. The annihilation cross-section determines the residual symmetric component of dark matter, which may give rise to annihilation signals during CMB and inside haloes today. We consider dark matter with long-range interactions, in particular dark matter coupled to a light vector or scalar force mediator. We compute the couplings required to attain a final antiparticle-to-particle ratio after the thermal freeze-out of the annihilation processes in the early universe, and then estimate the late-time annihilation signals. We show that, due to the Sommerfeld enhancement, highly asymmetric dark matter with long-range interactions can have a significant annihilation rate, potentially larger than symmetric dark matter of the same mass with contact interactions. We discuss caveats in this estimation, relating to the formation of stable bound states. Finally, we consider the non-relativistic partial-wave unitarity bound on the inelastic cross-section, we discuss why it can be realised only by long-range interactions, and showcase the importance of higher partial waves in this regime of large inelasticity. We derive upper bounds on the mass of symmetric and asymmetric thermal-relic dark matter for s -wave and p -wave annihilation, and exhibit how these bounds strengthen as the dark asymmetry increases.

  10. Cold dark matter plus not-so-clumpy dark relics

    International Nuclear Information System (INIS)

    Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph; Gariazzo, Stefano; Mena, Olga

    2017-01-01

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f ncdm of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f ncdm ≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f ncdm ≤0.43 (0.45), respectively.

  11. Cold dark matter plus not-so-clumpy dark relics

    Energy Technology Data Exchange (ETDEWEB)

    Diamanti, Roberta; Ando, Shin' ichiro; Weniger, Christoph [GRAPPA, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Gariazzo, Stefano; Mena, Olga, E-mail: r.diamanti@uva.nl, E-mail: s.ando@uva.nl, E-mail: gariazzo@to.infn.it, E-mail: omena@ific.uv.es, E-mail: c.weniger@uva.nl [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de Valencia, Apartado de Correos 22085, E-46071, Valencia (Spain)

    2017-06-01

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f {sub ncdm} of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f {sub ncdm}≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f {sub ncdm}≤0.43 (0.45), respectively.

  12. Dark matter relic abundance and light sterile neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yi-Lei [Center for High Energy Physics,Peking University, Beijing 100871 (China); Zhu, Shou-hua [Center for High Energy Physics,Peking University, Beijing 100871 (China); Institute of Theoretical Physics & State Key Laboratory of Nuclear Physics and Technology,Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,Beijing 100871 (China)

    2017-01-09

    In this paper, we calculate the relic abundance of the dark matter particles when they can annihilate into sterile neutrinos with the mass ≲100 GeV in a simple model. Unlike the usual standard calculations, the sterile neutrino may fall out of the thermal equilibrium with the thermal bath before the dark matter freezes out. In such a case, if the Yukawa coupling y{sub N} between the Higgs and the sterile neutrino is small, this process gives rise to a larger Ω{sub DM}h{sup 2} so we need a larger coupling between the dark matter and the sterile neutrino for a correct relic abundance.

  13. Cold dark matter plus not-so-clumpy dark relics

    NARCIS (Netherlands)

    Diamanti, R.; Ando, S.; Gariazzo, S.; Mena, O.; Weniger, C.

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark

  14. Lensing substructure quantification in RXJ1131-1231: a 2 keV lower bound on dark matter thermal relic mass

    Energy Technology Data Exchange (ETDEWEB)

    Birrer, Simon; Amara, Adam; Refregier, Alexandre, E-mail: simon.birrer@phys.ethz.ch, E-mail: adam.amara@phys.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093, Zurich (Switzerland)

    2017-05-01

    We study the substructure content of the strong gravitational lens RXJ1131-1231 through a forward modelling approach that relies on generating an extensive suite of realistic simulations. We use a semi-analytic merger tree prescription that allows us to stochastically generate substructure populations whose properties depend on the dark matter particle mass. These synthetic halos are then used as lenses to produce realistic mock images that have the same features, e.g. luminous arcs, quasar positions, instrumental noise and PSF, as the data. We then analyse the data and the simulations in the same way with summary statistics that are sensitive to the signal being targeted and are able to constrain models of dark matter statistically using Approximate Bayesian Computing (ABC) techniques. (In this work, we focus on the thermal relic mass estimate and fix the semi-analytic descriptions of the substructure evolution based on recent literature.) We are able, based on the HST data for RXJ1131-1231, to rule out a warm dark matter thermal relic mass below 2 keV at the 2σ confidence level.

  15. Cosmic selection rule for the glueball dark matter relic density

    Science.gov (United States)

    Soni, Amarjit; Xiao, Huangyu; Zhang, Yue

    2017-10-01

    We point out a unique mechanism to produce the relic abundance for the glueball dark matter from a gauged SU (N )d hidden sector which is bridged to the standard model sector through heavy vectorlike quarks colored under gauge interactions from both sides. A necessary ingredient of our assumption is that the vectorlike quarks, produced either thermally or nonthermally, are abundant enough to dominate the universe for some time in the early universe. They later undergo dark color confinement and form unstable vectorlike-quarkonium states which annihilate decay and reheat the visible and dark sectors. The ratio of entropy dumped into two sectors and the final energy budget in the dark glueballs is only determined by low energy parameters, including the intrinsic scale of the dark SU (N )d , Λd, and number of dark colors, Nd, but depend weakly on parameters in the ultraviolet such as the vectorlike quark mass or the initial condition. We call this a cosmic selection rule for the glueball dark matter relic density.

  16. Higgs enhancement for the dark matter relic density

    Science.gov (United States)

    Harz, Julia; Petraki, Kalliopi

    2018-04-01

    We consider the long-range effect of the Higgs on the density of thermal-relic dark matter. While the electroweak gauge boson and gluon exchange have been previously studied, the Higgs is typically thought to mediate only contact interactions. We show that the Sommerfeld enhancement due to a 125 GeV Higgs can deplete TeV-scale dark matter significantly and describe how the interplay between the Higgs and other mediators influences this effect. We discuss the importance of the Higgs enhancement in the minimal supersymmetric standard model and its implications for experiments.

  17. Relic abundance of mass-varying cold dark matter particles

    International Nuclear Information System (INIS)

    Rosenfeld, Rogerio

    2005-01-01

    In models of coupled dark energy and dark matter the mass of the dark matter particle depends on the cosmological evolution of the dark energy field. In this Letter we exemplify in a simple model the effects of this mass variation on the relic abundance of cold dark matter

  18. Neutrino Coannihilation on Dark-Matter Relics?

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela; /Valencia U.; Mena Requejo, Olga; Quigg, Chris; /Fermilab

    2006-04-01

    High-energy neutrinos may resonate with relic background neutralinos to form short-lived sneutrinos. In some circumstances, the decay chain that leads back to the lightest supersymmetric particle would yield few-GeV gamma rays or charged-particle signals. Although resonant coannihilation would occur at an appreciable rate in our galaxy, the signal in any foreseeable detector is unobservably small.

  19. Dark matter relics and the expansion rate in scalar-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Bhaskar; Jimenez, Esteban [Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Zavala, Ivonne, E-mail: dutta@physics.tamu.edu, E-mail: este1985@physics.tamu.edu, E-mail: e.i.zavalacarrasco@swansea.ac.uk [Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom)

    2017-06-01

    We study the impact of a modified expansion rate on the dark matter relic abundance in a class of scalar-tensor theories. The scalar-tensor theories we consider are motivated from string theory constructions, which have conformal as well as disformally coupled matter to the scalar. We investigate the effects of such a conformal coupling to the dark matter relic abundance for a wide range of initial conditions, masses and cross-sections. We find that exploiting all possible initial conditions, the annihilation cross-section required to satisfy the dark matter content can differ from the thermal average cross-section in the standard case. We also study the expansion rate in the disformal case and find that physically relevant solutions require a nontrivial relation between the conformal and disformal functions. We study the effects of the disformal coupling in an explicit example where the disformal function is quadratic.

  20. Making the most of the relic density for dark matter searches at the LHC 14 TeV Run

    International Nuclear Information System (INIS)

    Busoni, Giorgio; Simone, Andrea De; Jacques, Thomas; Morgante, Enrico; Riotto, Antonio

    2015-01-01

    As the LHC continues to search for new weakly interacting particles, it is important to remember that the search is strongly motivated by the existence of dark matter. In view of a possible positive signal, it is essential to ask whether the newly discovered weakly interacting particle can be be assigned the label 'dark matter'. Within a given set of simplified models and modest working assumptions, we reinterpret the relic abundance bound as a relic abundance range, and compare the parameter space yielding the correct relic abundance with projections of the Run II exclusion regions. Assuming that dark matter is within the reach of the LHC, we also make the comparison with the potential 5σ discovery regions. Reversing the logic, relic density calculations can be used to optimize dark matter searches by motivating choices of parameters where the LHC can probe most deeply into the dark matter parameter space. In the event that DM is seen outside of the region giving the correct relic abundance, we will learn that either thermal relic DM is ruled out in that model, or the DM-quark coupling is suppressed relative to the DM coupling strength to other SM particles

  1. Effects of QCD bound states on dark matter relic abundance

    Energy Technology Data Exchange (ETDEWEB)

    Liew, Seng Pei [Department of Physics, The University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan); Luo, Feng [Kavli IPMU (WPI), UTIAS, The University of Tokyo,Kashiwa, Chiba 277-8583 (Japan)

    2017-02-17

    We study scenarios where there exists an exotic massive particle charged under QCD in the early Universe. We calculate the formation and dissociation rates of bound states formed by pairs of these particles, and apply the results in dark matter (DM) coannihilation scenarios, including also the Sommerfeld effect. We find that on top of the Sommerfeld enhancement, bound-state effects can further significantly increase the largest possible DM masses which can give the observed DM relic abundance, by ∼30–100% with respect to values obtained by considering the Sommerfeld effect only, for the color triplet or octet exotic particles we consider. In particular, it indicates that the Bino DM mass in the right-handed stop-Bino coannihilation scenario in the Minimal Supersymmetric extension of the Standard Model (MSSM) can reach ∼2.5 TeV, even though the potential between the stop and antistop prior to forming a bound state is repulsive. We also apply the bound-state effects in the calculations of relic abundance of long-lived or metastable massive colored particles, and discuss the implications on the BBN constraints and the abundance of a super-weakly interacting DM. The corrections for the bound-state effect when the exotic massive colored particles also carry electric charges, and the collider bounds are also discussed.

  2. Accurate estimate of the relic density and the kinetic decoupling in nonthermal dark matter models

    International Nuclear Information System (INIS)

    Arcadi, Giorgio; Ullio, Piero

    2011-01-01

    Nonthermal dark matter generation is an appealing alternative to the standard paradigm of thermal WIMP dark matter. We reconsider nonthermal production mechanisms in a systematic way, and develop a numerical code for accurate computations of the dark matter relic density. We discuss, in particular, scenarios with long-lived massive states decaying into dark matter particles, appearing naturally in several beyond the standard model theories, such as supergravity and superstring frameworks. Since nonthermal production favors dark matter candidates with large pair annihilation rates, we analyze the possible connection with the anomalies detected in the lepton cosmic-ray flux by Pamela and Fermi. Concentrating on supersymmetric models, we consider the effect of these nonstandard cosmologies in selecting a preferred mass scale for the lightest supersymmetric particle as a dark matter candidate, and the consequent impact on the interpretation of new physics discovered or excluded at the LHC. Finally, we examine a rather predictive model, the G2-MSSM, investigating some of the standard assumptions usually implemented in the solution of the Boltzmann equation for the dark matter component, including coannihilations. We question the hypothesis that kinetic equilibrium holds along the whole phase of dark matter generation, and the validity of the factorization usually implemented to rewrite the system of a coupled Boltzmann equation for each coannihilating species as a single equation for the sum of all the number densities. As a byproduct we develop here a formalism to compute the kinetic decoupling temperature in case of coannihilating particles, which can also be applied to other particle physics frameworks, and also to standard thermal relics within a standard cosmology.

  3. Superheavy thermal dark matter and primordial asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Bramante, Joseph [Perimeter Institute for Theoretical Physics,31 Caroline St N, Waterloo, ON N2L 2Y5 (Canada); Unwin, James [Department of Physics, University of Illinois at Chicago,845 W Taylor St, Chicago, IL 60607 (United States)

    2017-02-23

    The early universe could feature multiple reheating events, leading to jumps in the visible sector entropy density that dilute both particle asymmetries and the number density of frozen-out states. In fact, late time entropy jumps are usually required in models of Affleck-Dine baryogenesis, which typically produces an initial particle-antiparticle asymmetry that is much too large. An important consequence of late time dilution, is that a smaller dark matter annihilation cross section is needed to obtain the observed dark matter relic density. For cosmologies with high scale baryogenesis, followed by radiation-dominated dark matter freeze-out, we show that the perturbative unitarity mass bound on thermal relic dark matter is relaxed to 10{sup 10} GeV. We proceed to study superheavy asymmetric dark matter models, made possible by a sizable entropy injection after dark matter freeze-out, and identify how the Affleck-Dine mechanism would generate the baryon and dark asymmetries.

  4. Superheavy thermal dark matter and primordial asymmetries

    International Nuclear Information System (INIS)

    Bramante, Joseph; Unwin, James

    2017-01-01

    The early universe could feature multiple reheating events, leading to jumps in the visible sector entropy density that dilute both particle asymmetries and the number density of frozen-out states. In fact, late time entropy jumps are usually required in models of Affleck-Dine baryogenesis, which typically produces an initial particle-antiparticle asymmetry that is much too large. An important consequence of late time dilution, is that a smaller dark matter annihilation cross section is needed to obtain the observed dark matter relic density. For cosmologies with high scale baryogenesis, followed by radiation-dominated dark matter freeze-out, we show that the perturbative unitarity mass bound on thermal relic dark matter is relaxed to 10 10 GeV. We proceed to study superheavy asymmetric dark matter models, made possible by a sizable entropy injection after dark matter freeze-out, and identify how the Affleck-Dine mechanism would generate the baryon and dark asymmetries.

  5. Relic dark energy from the trans-Planckian regime

    International Nuclear Information System (INIS)

    Mersini, Laura; Bastero-Gil, Mar; Kanti, Panagiota

    2001-01-01

    As yet, there is no underlying fundamental theory for the trans-Planckian regime. There is a need to address the issue of how the observables in our present Universe are affected by processes that may have occurred at super-Planckian energies (referred to as the trans-Planckian regime). Specifically, we focus on the impact the trans-Planckian regime has on two observables: namely, dark energy and the cosmic microwave background radiation (CMBR) spectrum. We model the trans-Planckian regime by introducing a 1-parameter family of smooth non-linear dispersion relations which modify the frequencies at very short distances. A particular feature of the family of dispersion functions chosen is the production of ultralow frequencies at very high momenta k (for k>M P ). We name the range of the ultralow energy modes (of very short distances) that have frequencies equal to or less than the current Hubble rate H 0 as the tail modes. These modes are still frozen today due to the expansion of the Universe. We calculate their energy today and show that the tail provides a strong candidate for the dark energy of the Universe. During inflation, their energy is about 122 to 123 orders of magnitude smaller than the total energy, for any random value of the free parameter in the family of dispersion relations. For this family of dispersions, we present the exact solutions and show that the CMBR spectrum is that of a (nearly) blackbody, and that the adiabatic vacuum is the only choice for the initial conditions

  6. From direct detection to relic abundance: the case of proton-philic spin-dependent inelastic Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Scopel, Stefano; Yu, Hyeonhye, E-mail: scopel@sogang.ac.kr, E-mail: skyh2yu@gmail.com [Department of Physics, Sogang University, Seoul (Korea, Republic of)

    2017-04-01

    We discuss strategies to make inferences on the thermal relic abundance of a Weakly Interacting Massive Particle (WIMP) when the same effective dimension-six operator that explains an experimental excess in direct detection is assumed to drive decoupling at freeze-out, and apply them to the explicit scenario of WIMP inelastic up-scattering with spin-dependent couplings to protons (proton-philic Spin-dependent Inelastic Dark Matter, pSIDM), a phenomenological set-up containing two Dark Matter (DM) particles χ{sub 1} and χ{sub 2} with masses m {sub χ}= m {sub χ{sub 1}} and m {sub χ{sub 2}}= m {sub χ}+δ that we have shown in a previous paper to explain the DAMA effect in compliance with the constraints from other detectors. We also update experimental constraints on pSIDM, extend the analysis to the most general spin-dependent momentum-dependent interactions allowed by non-relativistic Effective Field Theory (EFT), and consider for the WIMP velocity distribution in our Galaxy f ( v ) both a halo-independent approach and a standard Maxwellian. Under these conditions we find that the DAMA effect can be explained in terms of the particle χ{sub 1} in compliance with all the other constraints for all the analyzed EFT couplings and also for a Maxwellian f ( v ). As far as the relic abundance is concerned, we show that the problem of calculating it by using direct detection data to fix the model parameters is affected by a strong sensitivity on f ( v ) and by the degeneracy between the WIMP local density ρ{sub χ} and the WIMP-nucleon scattering cross section, since ρ{sub χ} must be rescaled with respect to the observed DM density in the neighborhood of the Sun when the calculated relic density Ω is smaller than the observed one Ω{sub 0}. As a consequence, a DM direct detection experiment is not directly sensitive to the physical cut-off scale of the EFT, but on some dimensional combination that does not depend on the actual value of Ω. However, such degeneracy

  7. Radiative corrections for the direct detection of neutralino dark matter and its relic density

    Energy Technology Data Exchange (ETDEWEB)

    Steppeler, Patrick Norbert

    2016-07-01

    entering the Boltzmann equation in many scenarios of the MSSM. The Boltzmann equation allows to determine the neutralino relic density, i.e. to predict their present abundance. This prediction can be checked experimentally and is thus of great phenomenological relevance. Measurements of the temperature fluctuations of the cosmic microwave background permit to determine the relic density precisely. Comparing the theoretical prediction with the experimental finding allows to exclude large fractions of the MSSM parameter space. In order to maximally benefit from the experimental precision, it is necessary to minimise theoretical uncertainties and to include the aforementioned radiative corrections. The radiative corrections to the elastic neutralino-nucleon scattering and the corresponding relic density have been implemented into the numerical package Dark matter at next-to-leading order. With the help of this program, we perform a phenomenological investigation and analyse the impact of the radiative corrections. It turns out that the neutralino relic density depends not on a single but a multitude of gaugino (co)annihilation processes in parallel quite often. The calculated radiative corrections lead to a relative shift of the relic density of up to 10%, which is significantly larger than the experimental uncertainty (±2% at the 1σ confidence level) and demonstrates that these corrections should be included when identifying the cosmologically preferred region of the MSSM. Moreover, we investigate the relation between the relic density and the neutralino-nucleon cross sections. In the spin-independent case, the inclusion of radiative corrections leads to a relative shift roughly +14% in comparison to a tree-level calculation. This shift is comparable to typical recent nuclear uncertainties, which influence the prediction as well. The spin-dependent cross section is subject to even larger shifts and modified by up to -50% by radiative corrections.

  8. PeV IceCube signals and Dark Matter relic abundance in modified cosmologies

    Science.gov (United States)

    Lambiase, G.; Mohanty, S.; Stabile, An.

    2018-04-01

    The discovery by the IceCube experiment of a high-energy astrophysical neutrino flux with energies of the order of PeV, has opened new scenarios in astroparticles physics. A possibility to explain this phenomenon is to consider the minimal models of Dark Matter (DM) decay, the 4-dimensional operator ˜ y_{α χ }\\overline{{L_{L_{α }}}} H χ , which is also able to generate the correct abundance of DM in the Universe. Assuming that the cosmological background evolves according to the standard cosmological model, it follows that the rate of DM decay Γ _χ ˜ |y_{α χ }|^2 needed to get the correct DM relic abundance (Γ _χ ˜ 10^{-58}) differs by many orders of magnitude with respect that one needed to explain the IceCube data (Γ _χ ˜ 10^{-25}), making the four-dimensional operator unsuitable. In this paper we show that assuming that the early Universe evolution is governed by a modified cosmology, the discrepancy between the two the DM decay rates can be reconciled, and both the IceCube neutrino rate and relic density can be explained in a minimal model.

  9. The long-lived stau as a thermal relic

    Energy Technology Data Exchange (ETDEWEB)

    Pradler, Josef

    2009-07-20

    We consider physics beyond the Standard Model which implies the existence a of long-lived electromagnetically charged massive particle species (CHAMP) which we denote by X{sup {+-}}. We discuss in detail the unique sensitivity the early Universe exhibits on the mere presence and on the decay of such a particle. We carry out a detailed study of gravitino (G) dark matter scenarios in which the lighter scalar tau (stau, {tau}{sub 1}) is the lightest Standard Model superpartner so that {tau}{sub 1}=X. We also provide a thorough investigation of the thermal freeze-out process of {tau}{sub 1}. The thesis is divided into three parts: Part I: In this part we consider a generic but weak-scale CHAMP. In Chapter 1 we set the stage for the coming investigations by shortly reviewing the framework of Big Bang Nucleosynthesis (BBN), by working out the typical CHAMP freeze-out abundance, and by reviewing the stringent constraints arising from such a decaying component during/after BBN. In Chapter 2 we discuss the physics which emerges when the light elements fused in BBN are captured by X{sup -} at the time of primordial nucleosynthesis. In the remainder of this chapter we focus on the catalytic production of {sup 6}Li and {sup 9}Be. The second part is devoted to scenarios in which G is the lightest supersymmetric particle (LSP) and {tau}{sub 1} is the next-to-lightest SUSY particle (NLSP). In Chapter 3 we focus on the gravitino LSP as a dark matter candidate. In Chapter 4 we then focus on gravitino dark matter scenarios in which {tau}{sub 1} is the NLSP. In Part III we take an in-depth look into the chemical decoupling process of the long-lived {tau}{sub 1} from the primordial plasma. The quantity of interest is the thermal freeze-out abundance of the stau. We identify its dependence on the crucial SUSY parameters and also show that it sensitively depends on the details of the Higgs sector. Stau annihilation into final state Higgses as well as resonant annihilation via the heavy

  10. Relic density and CMB constraints on dark matter annihilation with Sommerfeld enhancement

    International Nuclear Information System (INIS)

    Zavala, Jesus; White, Simon D. M.; Vogelsberger, Mark

    2010-01-01

    We calculate how the relic density of dark matter particles is altered when their annihilation is enhanced by the Sommerfeld mechanism due to a Yukawa interaction between the annihilating particles. Maintaining a dark matter abundance consistent with current observational bounds requires the normalization of the s-wave annihilation cross section to be decreased compared to a model without enhancement. The level of suppression depends on the specific parameters of the particle model, with the kinetic decoupling temperature having the most effect. We find that the cross section can be reduced by as much as an order of magnitude for extreme cases. We also compute the μ-type distortion of the CMB energy spectrum caused by energy injection from such Sommerfeld-enhanced annihilation. Our results indicate that in the vicinity of resonances, associated with bound states, distortions can be large enough to be excluded by the upper limit |μ|≤9.0x10 -5 found by the FIRAS (Far Infrared Absolute Spectrophotometer) instrument on the COBE (Cosmic Background Explorer) satellite.

  11. Light higgsino dark matter from non-thermal cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, Luis [ICTP,Strada Costiera 11, Trieste 34014 (Italy); Cicoli, Michele [ICTP,Strada Costiera 11, Trieste 34014 (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, 40126 Bologna (Italy); Dutta, Bhaskar [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy,TAMU, College Station, TX 77843-4242 (United States); Muia, Francesco [Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, 40126 Bologna (Italy); Quevedo, Fernando [ICTP,Strada Costiera 11, Trieste 34014 (Italy); DAMTP, Centre for Mathematical Sciences,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2016-11-08

    We study the scenario of higgsino dark matter in the context of a non-standard cosmology with a period of matter domination prior to Big Bang nucleosynthesis. Matter domination changes the dark matter relic abundance if it ends via reheating to a temperature below the higgsino thermal freeze-out temperature. We perform a model independent analysis of the higgsino dark matter production in such scenario. We show that light higgsino-type dark matter is possible for reheating temperatures close to 1 GeV. We study the impact of dark matter indirect detection and collider physics in this context. We show that Fermi-LAT data rule out non-thermal higgsinos with masses below 300 GeV. Future indirect dark matter searches from Fermi-LAT and CTA will be able to cover essentially the full parameter space. Contrary to the thermal case, collider signals from a 100 TeV collider could fully test the non-thermal higgsino scenario. In the second part of the paper we discuss the motivation of such non-thermal cosmology from the perspective of string theory with late-time decaying moduli for both KKLT and LVS moduli stabilisation mechanisms. We finally describe the impact of embedding higgsino dark matter in these scenarios.

  12. Thermalizing Sterile Neutrino Dark Matter.

    Science.gov (United States)

    Hansen, Rasmus S L; Vogl, Stefan

    2017-12-22

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  13. Thermalizing Sterile Neutrino Dark Matter

    Science.gov (United States)

    Hansen, Rasmus S. L.; Vogl, Stefan

    2017-12-01

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  14. D-brane disformal coupling and thermal dark matter

    Science.gov (United States)

    Dutta, Bhaskar; Jimenez, Esteban; Zavala, Ivonne

    2017-11-01

    Conformal and disformal couplings between a scalar field and matter occur naturally in general scalar-tensor theories. In D-brane models of cosmology and particle physics, these couplings originate from the D-brane action describing the dynamics of its transverse (the scalar) and longitudinal (matter) fluctuations, which are thus coupled. During the post-inflationary regime and before the onset of big bang nucleosynthesis (BBN), these couplings can modify the expansion rate felt by matter, changing the predictions for the thermal relic abundance of dark matter particles and thus the annihilation rate required to satisfy the dark matter content today. We study the D-brane-like conformal and disformal couplings effect on the expansion rate of the Universe prior to BBN and its impact on the dark matter relic abundance and annihilation rate. For a purely disformal coupling, the expansion rate is always enhanced with respect to the standard one. This gives rise to larger cross sections when compared to the standard thermal prediction for a range of dark matter masses, which will be probed by future experiments. In a D-brane-like scenario, the scale at which the expansion rate enhancement occurs depends on the string coupling and the string scale.

  15. Constraining Non-thermal and Thermal properties of Dark Matter

    Directory of Open Access Journals (Sweden)

    Bhupal eDev

    2014-05-01

    Full Text Available We describe the evolution of Dark Matter (DM abundance from the very onset of its creation from inflaton decay under the assumption of an instantaneous reheating. Based on the initial conditions such as the inflaton mass and its decay branching ratio to the DM species, the reheating temperature, and the mass and interaction rate of the DM with the thermal bath, the DM particles can either thermalize (fully/partially with the primordial bath or remain non-thermal throughout their evolution history. In the thermal case, the final abundance is set by the standard freeze-out mechanism for large annihilation rates, irrespective of the initial conditions. For smaller annihilation rates, it can be set by the freeze-in mechanism which also does not depend on the initial abundance, provided it is small to begin with. For even smaller interaction rates, the DM decouples while being non-thermal, and the relic abundance will be essentially set by the initial conditions. We put model-independent constraints on the DM mass and annihilation rate from over-abundance by exactly solving the relevant Boltzmann equations, and identify the thermal freeze-out, freeze-in and non-thermal regions of the allowed parameter space. We highlight a generic fact that inflaton decay to DM inevitably leads to an overclosure of the Universe for a large range of DM parameter space, and thus poses a stringent constraint that must be taken into account while constructing models of DM. For the thermal DM region, we also show the complementary constraints from indirect DM search experiments, Big Bang Nucleosynthesis, Cosmic Microwave Background, Planck measurements, and theoretical limits due to the unitarity of S-matrix. For the non-thermal DM scenario, we show the allowed parameter space in terms of the inflaton and DM masses for a given reheating temperature, and compute the comoving free-streaming length to identify the hot, warm and cold DM regimes.

  16. Big-bang nucleosynthesis and the relic abundance of dark matter in a stau-neutralino coannihilation scenario

    International Nuclear Information System (INIS)

    Jittoh, Toshifumi; Koike, Masafumi; Sato, Joe; Yamanaka, Masato; Kohri, Kazunori; Shimomura, Takashi

    2008-01-01

    A scenario of the big-bang nucleosynthesis is analyzed within the minimal supersymmetric standard model, which is consistent with a stau-neutralino coannihilation scenario to explain the relic abundance of dark matter. We find that we can account for the possible discrepancy of the abundance of 7 Li between the observation and the prediction of the big-bang nucleosynthesis by taking the mass of the neutralino as 300 GeV and the mass difference between the stau and the neutralino as (100-120) MeV. We can therefore simultaneously explain the abundance of the dark matter and that of 7 Li by these values of parameters. The lifetime of staus in this scenario is predicted to be O(100-1000) sec.

  17. Thermal dark matter through the Dirac neutrino portal

    Science.gov (United States)

    Batell, Brian; Han, Tao; McKeen, David; Haghi, Barmak Shams Es

    2018-04-01

    We study a simple model of thermal dark matter annihilating to standard model neutrinos via the neutrino portal. A (pseudo-)Dirac sterile neutrino serves as a mediator between the visible and the dark sectors, while an approximate lepton number symmetry allows for a large neutrino Yukawa coupling and, in turn, efficient dark matter annihilation. The dark sector consists of two particles, a Dirac fermion and complex scalar, charged under a symmetry that ensures the stability of the dark matter. A generic prediction of the model is a sterile neutrino with a large active-sterile mixing angle that decays primarily invisibly. We derive existing constraints and future projections from direct detection experiments, colliders, rare meson and tau decays, electroweak precision tests, and small scale structure observations. Along with these phenomenological tests, we investigate the consequences of perturbativity and scalar mass fine tuning on the model parameter space. A simple, conservative scheme to confront the various tests with the thermal relic target is outlined, and we demonstrate that much of the cosmologically-motivated parameter space is already constrained. We also identify new probes of this scenario such as multibody kaon decays and Drell-Yan production of W bosons at the LHC.

  18. On thermal gravitational contribution to particle production and dark matter

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2017-11-01

    Full Text Available We investigate the particle production from thermal gravitational annihilation in the very early universe, which is an important contribution for particles that might not be in thermal equilibrium or/and might only have gravitational interaction, such as dark matter (DM. For particles with spin 0,1/2 and 1 we calculate the relevant cross sections through gravitational annihilation and give the analytic formulas with full mass-dependent terms. We find that DM with mass between TeV and 1016 GeV could have the relic abundance that fits the observation, with small dependence on its spin. We also discuss the effects of gravitational annihilation from inflatons. Interestingly, contributions from inflatons could be dominant and have the same power dependence on Hubble parameter of inflation as that from vacuum fluctuation. Also, fermion production from inflaton, in comparison to boson, is suppressed by its mass due to helicity selection.

  19. Off-shell dark matter: A cosmological relic of quantum gravity

    Science.gov (United States)

    Saravani, Mehdi; Afshordi, Niayesh

    2017-02-01

    We study a novel proposal for the origin of cosmological cold dark matter (CDM) which is rooted in the quantum nature of spacetime. In this model, off-shell modes of quantum fields can exist in asymptotic states as a result of spacetime nonlocality (expected in generic theories of quantum gravity) and play the role of CDM, which we dub off-shell dark matter (O f DM ). However, their rate of production is suppressed by the scale of nonlocality (e.g. Planck length). As a result, we show that O f DM is only produced in the first moments of big bang, and then effectively decouples (except through its gravitational interactions). We examine the observational predictions of this model: In the context of cosmic inflation, we show that this proposal relates the reheating temperature to the inflaton mass, which narrows down the uncertainty in the number of e -foldings of specific inflationary scenarios. We also demonstrate that O f DM is indeed cold, and discuss potentially observable signatures on small scale matter power spectrum.

  20. Calculation of momentum distribution function of a non-thermal fermionic dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Anirban; Gupta, Aritra, E-mail: anirbanbiswas@hri.res.in, E-mail: aritra@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India)

    2017-03-01

    The most widely studied scenario in dark matter phenomenology is the thermal WIMP scenario. Inspite of numerous efforts to detect WIMP, till now we have no direct evidence for it. A possible explanation for this non-observation of dark matter could be because of its very feeble interaction strength and hence, failing to thermalise with the rest of the cosmic soup. In other words, the dark matter might be of non-thermal origin where the relic density is obtained by the so-called freeze-in mechanism. Furthermore, if this non-thermal dark matter is itself produced substantially from the decay of another non-thermal mother particle, then their distribution functions may differ in both size and shape from the usual equilibrium distribution function. In this work, we have studied such a non-thermal (fermionic) dark matter scenario in the light of a new type of U(1){sub B−L} model. The U(1){sub B−L} model is interesting, since, besides being anomaly free, it can give rise to neutrino mass by Type II see-saw mechanism. Moreover, as we will show, it can accommodate a non-thermal fermionic dark matter as well. Starting from the collision terms, we have calculated the momentum distribution function for the dark matter by solving a coupled system of Boltzmann equations. We then used it to calculate the final relic abundance, as well as other relevant physical quantities. We have also compared our result with that obtained from solving the usual Boltzmann (or rate) equations directly in terms of comoving number density, Y . Our findings suggest that the latter approximation is valid only in cases where the system under study is close to equilibrium, and hence should be used with caution.

  1. Non-thermal production of minimal dark matter via right-handed neutrino decay

    International Nuclear Information System (INIS)

    Aoki, Mayumi; Toma, Takashi; Vicente, Avelino

    2015-01-01

    Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2) L quintuplet and a scalar SU(2) L septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations

  2. Non-thermal production of minimal dark matter via right-handed neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Mayumi [Institute for Theoretical Physics, Kanazawa University,Kanazawa 920-1192 (Japan); Toma, Takashi [Laboratoire de Physique Théorique, CNRS - UMR 8627, Université de Paris-Sud 11,F-91405 Orsay Cedex (France); Vicente, Avelino [IFPA, Dep. AGO, Université de Liège,Bat B5, Sart-Tilman B-4000 Liège 1 (Belgium); Instituto de Física Corpuscular, CSIC-Universitat de València,Apdo. 22085, E-46071 Valencia (Spain)

    2015-09-29

    Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2){sub L} quintuplet and a scalar SU(2){sub L} septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.

  3. Non-thermal production of minimal dark matter via right-handed neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Mayumi [Institute for Theoretical Physics, Kanazawa University, Kanazawa 920-1192 (Japan); Toma, Takashi [Laboratoire de Physique Théorique, CNRS - UMR 8627, Université de Paris-Sud 11, F-91405 Orsay Cedex (France); Vicente, Avelino, E-mail: mayumi@hep.s.kanazawa-u.ac.jp, E-mail: takashi.toma@th.u-psud.fr, E-mail: Avelino.Vicente@ulg.ac.be [IFPA, Dep. AGO, Université de Liège, Bat B5, Sart-Tilman B-4000 Liège 1 (Belgium)

    2015-09-01

    Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2){sub L} quintuplet and a scalar SU(2){sub L} septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.

  4. Relic abundance of WIMPs in non-standard cosmological scenarios

    International Nuclear Information System (INIS)

    Yimingniyazi, W.

    2007-01-01

    In this thesis we study the relic density n χ of non--relativistic long--lived or stable particles χ in various non--standard cosmological scenarios. First, we discuss the relic density in the non--standard cosmological scenario in which the temperature is too low for the particles χ to achieve full chemical equilibrium. We also investigated the case where χ particles are non--thermally produced from the decay of heavier particles in addition to the usual thermal production. In low temperature scenario, we calculate the relic abundance starting from arbitrary initial temperatures T 0 of the radiation--dominated epoch and derive approximate solutions for the temperature dependence of the relic density which can accurately reproduces numerical results when full thermal equilibrium is not achieved. If full equilibrium is reached, our ansatz no longer reproduces the correct temperature dependence of the χ number density. However, we can contrive a semi-analytic formula which gives the correct final relic density, to an accuracy of about 3% or better, for all cross sections and initial temperatures. We also derive the lower bound on the initial temperature T 0 , assuming that the relic particle accounts for the dark matter energy density in the universe. The observed cold dark matter abundance constrains the initial temperature T 0 ≥m χ /23, where m χ is the mass of χ. Second, we discuss the χ density in the scenario where the the Hubble parameter is modified. Even in this case, an approximate formula similar to the standard one is found to be capable of predicting the final relic abundance correctly. Choosing the χ annihilation cross section such that the observed cold dark matter abundance is reproduced in standard cosmology, we constrain possible modifications of the expansion rate at T ∝m χ /20, well before Big Bang Nucleosynthesis. (orig.)

  5. Relic abundance of WIMPs in non-standard cosmological scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Yimingniyazi, W.

    2007-08-06

    In this thesis we study the relic density n{sub {chi}} of non--relativistic long--lived or stable particles {chi} in various non--standard cosmological scenarios. First, we discuss the relic density in the non--standard cosmological scenario in which the temperature is too low for the particles {chi} to achieve full chemical equilibrium. We also investigated the case where {chi} particles are non--thermally produced from the decay of heavier particles in addition to the usual thermal production. In low temperature scenario, we calculate the relic abundance starting from arbitrary initial temperatures T{sub 0} of the radiation--dominated epoch and derive approximate solutions for the temperature dependence of the relic density which can accurately reproduces numerical results when full thermal equilibrium is not achieved. If full equilibrium is reached, our ansatz no longer reproduces the correct temperature dependence of the {chi} number density. However, we can contrive a semi-analytic formula which gives the correct final relic density, to an accuracy of about 3% or better, for all cross sections and initial temperatures. We also derive the lower bound on the initial temperature T{sub 0}, assuming that the relic particle accounts for the dark matter energy density in the universe. The observed cold dark matter abundance constrains the initial temperature T{sub 0} {>=}m{sub {chi}}/23, where m{sub {chi}} is the mass of {chi}. Second, we discuss the {chi} density in the scenario where the the Hubble parameter is modified. Even in this case, an approximate formula similar to the standard one is found to be capable of predicting the final relic abundance correctly. Choosing the {chi} annihilation cross section such that the observed cold dark matter abundance is reproduced in standard cosmology, we constrain possible modifications of the expansion rate at T {proportional_to}m{sub {chi}}/20, well before Big Bang Nucleosynthesis. (orig.)

  6. Dark Relics in Cosmology

    DEFF Research Database (Denmark)

    Tram, Thomas

    2012-01-01

    For 13,7 milliarder år siden befandt Universet sig i en meget varm og tæt tilstand, og siden da har det udvidet sig og er blevet afkølet. Kosmologi forsøger at forklare hvordan vores Univers har udviklet sig fra Big Bang og frem til i dag. Udviklingen afhænger af de fundamentale naturlove, så der...

  7. micrOMEGAs 2.0.7: a program to calculate the relic density of dark matter in a generic model

    Science.gov (United States)

    Bélanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A.

    2007-12-01

    micrOMEGAs2.0.7 is a code which calculates the relic density of a stable massive particle in an arbitrary model. The underlying assumption is that there is a conservation law like R-parity in supersymmetry which guarantees the stability of the lightest odd particle. The new physics model must be incorporated in the notation of CalcHEP, a package for the automatic generation of squared matrix elements. Once this is done, all annihilation and coannihilation channels are included automatically in any model. Cross-sections at v=0, relevant for indirect detection of dark matter, are also computed automatically. The package includes three sample models: the minimal supersymmetric standard model (MSSM), the MSSM with complex phases and the NMSSM. Extension to other models, including non supersymmetric models, is described. Program summaryTitle of program:micrOMEGAs2.0.7 Catalogue identifier:ADQR_v2_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADQR_v2_1.html Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:216 529 No. of bytes in distributed program, including test data, etc.:1 848 816 Distribution format:tar.gz Programming language used:C and Fortran Computer:PC, Alpha, Mac, Sun Operating system:UNIX (Linux, OSF1, SunOS, Darwin, Cygwin) RAM:17 MB depending on the number of processes required Classification:1.9, 11.6 Catalogue identifier of previous version:ADQR_v2_0 Journal version of previous version:Comput. Phys. Comm. 176 (2007) 367 Does the new version supersede the previous version?:Yes Nature of problem:Calculation of the relic density of the lightest stable particle in a generic new model of particle physics. Solution method:In numerically solving the evolution equation for the density of dark matter, relativistic formulae for the thermal average are used. All tree

  8. Cosmic relics from the big bang

    International Nuclear Information System (INIS)

    Hall, L.J.

    1988-12-01

    A brief introduction to the big bang picture of the early universe is given. Dark matter is discussed; particularly its implications for elementary particle physics. A classification scheme for dark matter relics is given. 21 refs., 11 figs., 1 tab

  9. Cosmic relics from the big bang

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.J.

    1988-12-01

    A brief introduction to the big bang picture of the early universe is given. Dark matter is discussed; particularly its implications for elementary particle physics. A classification scheme for dark matter relics is given. 21 refs., 11 figs., 1 tab.

  10. Detection of relic gravitational waves in thermal case by using Adv.LIGO data of GW150914

    Energy Technology Data Exchange (ETDEWEB)

    Ghayour, Basem [University of Hyderabad, School of Physics, Hyderabad (India); Khodagholizadeh, Jafar [Farhangian University, Tehran (Iran, Islamic Republic of)

    2017-08-15

    The thermal spectrum of relic gravitational waves enhances the usual spectrum. Our analysis shows that there exist some chances for detection of the thermal spectrum in addition to the usual spectrum by comparison with sensitivity of Adv.LIGO of GW150914 and detector based on the maser light. The behavior of the inflation and reheating stages are often known as power law expansion like S(η) ∝ η{sup 1+β}, S(η) ∝ η{sup 1+β{sub s}}, respectively, with constraints 1 + β < 0, 1 + β{sub s} > 0. The β and β{sub s} have an unique effect on the shape of the spectrum. We find some values of the β and β{sub s} by considering the mentioned comparison. As obtained, the results give us more information as regards the evolution of inflation and reheating stages. (orig.)

  11. Detection of relic gravitational waves in thermal case by using Adv.LIGO data of GW150914

    International Nuclear Information System (INIS)

    Ghayour, Basem; Khodagholizadeh, Jafar

    2017-01-01

    The thermal spectrum of relic gravitational waves enhances the usual spectrum. Our analysis shows that there exist some chances for detection of the thermal spectrum in addition to the usual spectrum by comparison with sensitivity of Adv.LIGO of GW150914 and detector based on the maser light. The behavior of the inflation and reheating stages are often known as power law expansion like S(η) ∝ η"1"+"β, S(η) ∝ η"1"+"β"_s, respectively, with constraints 1 + β 0. The β and β_s have an unique effect on the shape of the spectrum. We find some values of the β and β_s by considering the mentioned comparison. As obtained, the results give us more information as regards the evolution of inflation and reheating stages. (orig.)

  12. Interacting dark energy model and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Pritikana; Haldar, Sourav; Chakraborty, Subenoy [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India)

    2017-12-15

    In the background of the homogeneous and isotropic FLRW model, the thermodynamics of the interacting DE fluid is investigated in the present work. By studying the thermodynamical parameters, namely the heat capacities and the compressibilities, both thermal and mechanical stability are discussed and the restrictions on the equation of state parameter of the dark fluid are analyzed. (orig.)

  13. Interacting dark energy model and thermal stability

    International Nuclear Information System (INIS)

    Bhandari, Pritikana; Haldar, Sourav; Chakraborty, Subenoy

    2017-01-01

    In the background of the homogeneous and isotropic FLRW model, the thermodynamics of the interacting DE fluid is investigated in the present work. By studying the thermodynamical parameters, namely the heat capacities and the compressibilities, both thermal and mechanical stability are discussed and the restrictions on the equation of state parameter of the dark fluid are analyzed. (orig.)

  14. Codecaying Dark Matter.

    Science.gov (United States)

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  15. Simultaneous Generation of WIMP Miracle-like Densities of Baryons and Dark Matter

    International Nuclear Information System (INIS)

    McDonald, John

    2012-01-01

    The observed density of dark matter is of the magnitude expected for a thermal relic weakly-interacting massive particle (WIMP). In addition, the observed baryon density is within an order of magnitude of the dark matter density. This suggests that the baryon density is physically related to a typical thermal relic WIMP dark matter density. We present a model which simultaneously generates thermal relic WIMP-like densities for both baryons and dark matter by modifying a large initial baryon asymmetry. Production of unstable scalars carrying baryon number at the LHC would be a clear signature of the model.

  16. Dynamic freeze-in: impact of thermal masses and cosmological phase transitions on dark matter production

    Science.gov (United States)

    Baker, Michael J.; Breitbach, Moritz; Kopp, Joachim; Mittnacht, Lukas

    2018-03-01

    The cosmological abundance of dark matter can be significantly influenced by the temperature dependence of particle masses and vacuum expectation values. We illustrate this point in three simple freeze-in models. The first one, which we call kinematically induced freeze-in, is based on the observation that the effective mass of a scalar temporarily becomes very small as the scalar potential undergoes a second order phase transition. This opens dark matter production channels that are otherwise forbidden. The second model we consider, dubbed vev-induced freeze-in, is a fermionic Higgs portal scenario. Its scalar sector is augmented compared to the Standard Model by an additional scalar singlet, S, which couples to dark matter and temporarily acquires a vacuum expectation value (a two-step phase transition or "vev flip-flop"). While ≠ 0, the modified coupling structure in the scalar sector implies that dark matter production is significantly enhanced compared to the = 0 phases realised at very early times and again today. The third model, which we call mixing-induced freeze-in, is similar in spirit, but here it is the mixing of dark sector fermions, induced by non-zero , that temporarily boosts the dark matter production rate. For all three scenarios, we carefully dissect the evolution of the dark sector in the early Universe. We compute the DM relic abundance as a function of the model parameters, emphasising the importance of thermal corrections and the proper treatment of phase transitions in the calculation.

  17. Thermal Dark Matter Below an MeV

    OpenAIRE

    Berlin, Asher; Blinov, Nikita

    2017-01-01

    We consider a class of models in which thermal dark matter is lighter than an MeV. If dark matter thermalizes with the Standard Model below the temperature of neutrino-photon decoupling, equilibration and freeze-out cools and heats the Standard Model bath comparably, alleviating constraints from measurements of the effective number of neutrino species. We demonstrate this mechanism in a model consisting of fermionic dark matter coupled to a light scalar mediator. Thermal dark matter can be as...

  18. The physics of relic neutrinos

    International Nuclear Information System (INIS)

    Dighe, A.; Pastor, S.; Smirnov, A.

    1998-12-01

    We report on the main results presented at the workshop on the Physics of Relic Neutrinos. The study of relic neutrinos involves a broad spectrum of problems in particle physics, astrophysics and cosmology. Features of baryogenesis and leptogenesis could be imprinted in the properties of the relic neutrino sea. Relic neutrinos played a crucial role in the big bang nucleosynthesis. Being the hot component of the dark matter, they have participated in the structure formation in the universe. Although the direct detection of the sea seems impossible at this stage, there could be various indirect manifestations of these neutrinos which would allow us to study the properties of the sea both in the past and at the present epoch. (author)

  19. (N)LSP decays and gravitino dark matter relic abundance in big divisor (nearly) SLagy D3/D7μ-split SUSY

    Science.gov (United States)

    Dhuria, Mansi; Misra, Aalok

    2013-02-01

    Using the (nearly) Ricci-flat Swiss-Cheese metric of Misra (2012) [1], in the context of a mobile space-time filling D3-brane restricted to a nearly special Lagrangian sub-manifold (in the large volume limit, the pull-back of the Kähler form close to zero and the real part of the pull-back of e, θ=π/2 times the nowhere-vanishing holomorphic three-form providing the volume form on the three-cycle) of the "big" divisor with (fluxed stacks of) space-time filling D7-branes also wrapping the "big" divisor (corresponding to a local minimum), we provide an explicit identification of the electron and the u-quark, as well as their SU (2-singlet cousins, with fermionic superpartners of four Wilson line moduli; their superpartners turn out to be very heavy, the Higgsino-mass parameter turns out to be large, one obtains one light (with a mass of 125 GeV) and one heavy Higgs and the gluino is long lived (from a collider point of view) providing a possible realization of "μ-Split Supersymmetry". By explicitly calculating the lifetimes of decays of the co-NLSPs - the first generation squark/slepton and a neutralino - to the LSP - the gravitino - as well as gravitino decays, we verify that BBN constraints relevant to the former as well as the requirement of the latter to be (more than) the age of the universe, are satisfied. For the purpose of calculation of the gravitino relic density in terms of the neutralino/slepton relic density, we evaluate the latter by evaluating the neutralino/slepton (co-)annihilation cross sections and hence show that the former satisfies the requirement for a dark matter candidate.

  20. (N)LSP decays and gravitino dark matter relic abundance in big divisor (nearly) SLagy D3/D7μ-split SUSY

    International Nuclear Information System (INIS)

    Dhuria, Mansi; Misra, Aalok

    2013-01-01

    Using the (nearly) Ricci-flat Swiss-Cheese metric of Misra (2012) [1], in the context of a mobile space–time filling D3-brane restricted to a nearly special Lagrangian sub-manifold (in the large volume limit, the pull-back of the Kähler form close to zero and the real part of the pull-back of e −iθ , θ=(π)/2 times the nowhere-vanishing holomorphic three-form providing the volume form on the three-cycle) of the “big” divisor with (fluxed stacks of) space–time filling D7-branes also wrapping the “big” divisor (corresponding to a local minimum), we provide an explicit identification of the electron and the u-quark, as well as their SU(2) L -singlet cousins, with fermionic superpartners of four Wilson line moduli; their superpartners turn out to be very heavy, the Higgsino-mass parameter turns out to be large, one obtains one light (with a mass of 125 GeV) and one heavy Higgs and the gluino is long lived (from a collider point of view) providing a possible realization of “μ-Split Supersymmetry”. By explicitly calculating the lifetimes of decays of the co-NLSPs – the first generation squark/slepton and a neutralino – to the LSP – the gravitino – as well as gravitino decays, we verify that BBN constraints relevant to the former as well as the requirement of the latter to be (more than) the age of the universe, are satisfied. For the purpose of calculation of the gravitino relic density in terms of the neutralino/slepton relic density, we evaluate the latter by evaluating the neutralino/slepton (co-)annihilation cross sections and hence show that the former satisfies the requirement for a dark matter candidate.

  1. (N)LSP decays and gravitino dark matter relic abundance in big divisor (nearly) SLagy D3/D7{mu}-split SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Dhuria, Mansi, E-mail: mansidph@iitr.ernet.in [Department of Physics, Indian Institute of Technology, Roorkee 247 667, Uttaranchal (India); Misra, Aalok, E-mail: aalokfph@iitr.ernet.in [Department of Physics, Indian Institute of Technology, Roorkee 247 667, Uttaranchal (India)

    2013-02-21

    Using the (nearly) Ricci-flat Swiss-Cheese metric of Misra (2012) [1], in the context of a mobile space-time filling D3-brane restricted to a nearly special Lagrangian sub-manifold (in the large volume limit, the pull-back of the Kaehler form close to zero and the real part of the pull-back of e{sup -i{theta}}, {theta}=({pi})/2 times the nowhere-vanishing holomorphic three-form providing the volume form on the three-cycle) of the 'big' divisor with (fluxed stacks of) space-time filling D7-branes also wrapping the 'big' divisor (corresponding to a local minimum), we provide an explicit identification of the electron and the u-quark, as well as their SU(2){sub L}-singlet cousins, with fermionic superpartners of four Wilson line moduli; their superpartners turn out to be very heavy, the Higgsino-mass parameter turns out to be large, one obtains one light (with a mass of 125 GeV) and one heavy Higgs and the gluino is long lived (from a collider point of view) providing a possible realization of '{mu}-Split Supersymmetry'. By explicitly calculating the lifetimes of decays of the co-NLSPs - the first generation squark/slepton and a neutralino - to the LSP - the gravitino - as well as gravitino decays, we verify that BBN constraints relevant to the former as well as the requirement of the latter to be (more than) the age of the universe, are satisfied. For the purpose of calculation of the gravitino relic density in terms of the neutralino/slepton relic density, we evaluate the latter by evaluating the neutralino/slepton (co-)annihilation cross sections and hence show that the former satisfies the requirement for a dark matter candidate.

  2. Higgs portals for thermal Dark Matter. EFT perspectives and the NMSSM

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Sebastian; Carena, Marcela; Shah, Nausheen R.; Wagner, Carlos E. M.

    2018-04-01

    We analyze a low energy effective model of Dark Matter in which the thermal relic density is provided by a singlet Majorana fermion which interacts with the Higgs fields via higher dimensional operators. Direct detection signatures may be reduced if blind spot solutions exist, which naturally appear in models with extended Higgs sectors. Explicit mass terms for the Majorana fermion can be forbidden by a $Z_3$ symmetry, which in addition leads to a reduction of the number of higher dimensional operators. Moreover, a weak scale mass for the Majorana fermion is naturally obtained from the vacuum expectation value of a scalar singlet field. The proper relic density may be obtained by the $s$-channel interchange of Higgs and gauge bosons, with the longitudinal mode of the $Z$ boson (the neutral Goldstone mode) playing a relevant role in the annihilation process. This model shares many properties with the Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM) with light singlinos and heavy scalar and gauge superpartners. In order to test the validity of the low energy effective field theory, we compare its predictions with those of the ultraviolet complete NMSSM. Extending our framework to include $Z_3$ neutral Majorana fermions, analogous to the bino in the NMSSM, we find the appearance of a new bino-singlino well tempered Dark Matter region.

  3. Higgs portals for thermal Dark Matter. EFT perspectives and the NMSSM

    Science.gov (United States)

    Baum, Sebastian; Carena, Marcela; Shah, Nausheen R.; Wagner, Carlos E. M.

    2018-04-01

    We analyze a low energy effective model of Dark Matter in which the thermal relic density is provided by a singlet Majorana fermion which interacts with the Higgs fields via higher dimensional operators. Direct detection signatures may be reduced if blind spot solutions exist, which naturally appear in models with extended Higgs sectors. Explicit mass terms for the Majorana fermion can be forbidden by a Z 3 symmetry, which in addition leads to a reduction of the number of higher dimensional operators. Moreover, a weak scale mass for the Majorana fermion is naturally obtained from the vacuum expectation value of a scalar singlet field. The proper relic density may be obtained by the s-channel interchange of Higgs and gauge bosons, with the longitudinal mode of the Z boson (the neutral Goldstone mode) playing a relevant role in the annihilation process. This model shares many properties with the Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM) with light singlinos and heavy scalar and gauge superpartners. In order to test the validity of the low energy effective field theory, we compare its predictions with those of the ultraviolet complete NMSSM. Extending our framework to include Z 3 neutral Majorana fermions, analogous to the bino in the NMSSM, we find the appearance of a new bino-singlino well tempered Dark Matter region.

  4. Hybrid Dark Matter

    OpenAIRE

    Chao, Wei

    2018-01-01

    Dark matter can be produced in the early universe via the freeze-in or freeze-out mechanisms. Both scenarios were investigated in references, but the production of dark matters via the combination of these two mechanisms are not addressed. In this paper we propose a hybrid dark matter model where dark matters have two components with one component produced thermally and the other one produced non-thermally. We present for the first time the analytical calculation for the relic abundance of th...

  5. A dark mode in scanning thermal microscopy

    Science.gov (United States)

    Ramiandrisoa, Liana; Allard, Alexandre; Joumani, Youssef; Hay, Bruno; Gomés, Séverine

    2017-12-01

    The need for high lateral spatial resolution in thermal science using Scanning Thermal Microscopy (SThM) has pushed researchers to look for more and more tiny probes. SThM probes have consequently become more and more sensitive to the size effects that occur within the probe, the sample, and their interaction. Reducing the tip furthermore induces very small heat flux exchanged between the probe and the sample. The measurement of this flux, which is exploited to characterize the sample thermal properties, requires then an accurate thermal management of the probe-sample system and to reduce any phenomenon parasitic to this system. Classical experimental methodologies must then be constantly questioned to hope for relevant and interpretable results. In this paper, we demonstrate and estimate the influence of the laser of the optical force detection system used in the common SThM setup that is based on atomic-force microscopy equipment on SThM measurements. We highlight the bias induced by the overheating due to the laser illumination on the measurements performed by thermoresistive probes (palladium probe from Kelvin Nanotechnology). To face this issue, we propose a new experimental procedure based on a metrological approach of the measurement: a SThM "dark mode." The comparison with the classical procedure using the laser shows that errors between 14% and 37% can be reached on the experimental data exploited to determine the heat flux transferred from the hot probe to the sample.

  6. Dark energy and dark matter

    International Nuclear Information System (INIS)

    Comelli, D.; Pietroni, M.; Riotto, A.

    2003-01-01

    It is a puzzle why the densities of dark matter and dark energy are nearly equal today when they scale so differently during the expansion of the universe. This conundrum may be solved if there is a coupling between the two dark sectors. In this Letter we assume that dark matter is made of cold relics with masses depending exponentially on the scalar field associated to dark energy. Since the dynamics of the system is dominated by an attractor solution, the dark matter particle mass is forced to change with time as to ensure that the ratio between the energy densities of dark matter and dark energy become a constant at late times and one readily realizes that the present-day dark matter abundance is not very sensitive to its value when dark matter particles decouple from the thermal bath. We show that the dependence of the present abundance of cold dark matter on the parameters of the model differs drastically from the familiar results where no connection between dark energy and dark matter is present. In particular, we analyze the case in which the cold dark matter particle is the lightest supersymmetric particle

  7. Post-inflationary thermal histories and the refractive index of relic gravitons arXiv

    CERN Document Server

    Giovannini, Massimo

    We investigate the impact of the post-inflationary thermal histories on the cosmic graviton spectrum caused by the inflationary variation of their refractive index. Depending on the frequency band, the spectral energy distribution can be mildly red, blue or even violet. Wide portions of the parameter space lead to potentially relevant signals both in the audio range (probed by the advanced generation of terrestrial interferometers) and in the mHz band (where space-borne detectors could be operational within the incoming score year). The description of the refractive index in conformally related frames is clarified.

  8. Thermal right-handed sneutrino dark matter in the NMSSM

    International Nuclear Information System (INIS)

    Cerdeno, David G.

    2009-01-01

    The right-handed sneutrino is a viable WIMP dark matter candidate within the context of the Next-to-MSSM. This is possible through the inclusion of a new singlet superfield with direct coupling to the singlet Higgs. I will review here the main details of this construction, together with the properties of the right-handed sneutrino, including its annihilation channels and direct detection prospects. Sneutrinos within a mass-range of 5-200 GeV can reproduce the correct dark matter relic abundance while not being excluded by current direct searches, and for natural values of the input parameters. Some interesting features regarding collider phenomenology are also pointed out.

  9. Cold dark matter in brane cosmology scenario

    International Nuclear Information System (INIS)

    Dahab, Eiman Abou El; Khalil, Shaaban

    2006-01-01

    We analyze the dark matter problem in the context of brane cosmology. We investigate the impact of the non-conventional brane cosmology on the relic abundance of non-relativistic stable particles in high and low reheating temperature scenarios. We show that in case of high reheating temperature, the brane cosmology may enhance the dark matter relic density by many order of magnitudes and a stringent lower bound on the five dimensional scale is obtained. We also consider low reheating temperature scenarios with chemical equilibrium and non-equilibrium. We emphasize that in non-equilibrium case, the resulting relic density is very small. While with equilibrium, it is increased by a factor of O(10 2 ) with respect to the standard thermal production. Therefore, dark matter particles with large cross section, which is favored by detection expirements, can be consistent with the recent relic density observational limits

  10. Exponentially Light Dark Matter from Coannihilation

    OpenAIRE

    D'Agnolo, Raffaele Tito; Mondino, Cristina; Ruderman, Joshua T.; Wang, Po-Jen

    2018-01-01

    Dark matter may be a thermal relic whose abundance is set by mutual annihilations among multiple species. Traditionally, this coannihilation scenario has been applied to weak scale dark matter that is highly degenerate with other states. We show that coannihilation among states with split masses points to dark matter that is exponentially lighter than the weak scale, down to the keV scale. We highlight the regime where dark matter does not participate in the annihilations that dilute its numb...

  11. arXiv Exponentially Light Dark Matter from Coannihilation

    CERN Document Server

    D'Agnolo, Raffaele Tito; Ruderman, Joshua T.; Wang, Po-Jen

    Dark matter may be a thermal relic whose abundance is set by mutual annihilations among multiple species. Traditionally, this coannihilation scenario has been applied to weak scale dark matter that is highly degenerate with other states. We show that coannihilation among states with split masses points to dark matter that is exponentially lighter than the weak scale, down to the keV scale. We highlight the regime where dark matter does not participate in the annihilations that dilute its number density. In this "sterile coannihilation" limit, the dark matter relic density is independent of its couplings, implying a broad parameter space of thermal relic targets for future experiments. Light dark matter from coannihilation evades stringent bounds from the cosmic microwave background, but will be tested by future direct detection, fixed target, and long-lived particle experiments.

  12. Thermal Dark Matter Below a MeV.

    Science.gov (United States)

    Berlin, Asher; Blinov, Nikita

    2018-01-12

    We consider a class of models in which thermal dark matter is lighter than a MeV. If dark matter thermalizes with the standard model below the temperature of neutrino-photon decoupling, equilibration and freeze-out cool and heat the standard model bath comparably, alleviating constraints from measurements of the effective number of neutrino species. We demonstrate this mechanism in a model consisting of fermionic dark matter coupled to a light scalar mediator. Thermal dark matter can be as light as a few keV, while remaining compatible with existing cosmological and astrophysical observations. This framework motivates new experiments in the direct search for sub-MeV thermal dark matter and light force carriers.

  13. Dark matter assimilation into the baryon asymmetry

    International Nuclear Information System (INIS)

    D'Eramo, Francesco; Fei, Lin; Thaler, Jesse

    2012-01-01

    Pure singlets are typically disfavored as dark matter candidates, since they generically have a thermal relic abundance larger than the observed value. In this paper, we propose a new dark matter mechanism called a ssimilation , which takes advantage of the baryon asymmetry of the universe to generate the correct relic abundance of singlet dark matter. Through assimilation, dark matter itself is efficiently destroyed, but dark matter number is stored in new quasi-stable heavy states which carry the baryon asymmetry. The subsequent annihilation and late-time decay of these heavy states yields (symmetric) dark matter as well as (asymmetric) standard model baryons. We study in detail the case of pure bino dark matter by augmenting the minimal supersymmetric standard model with vector-like chiral multiplets. In the parameter range where this mechanism is effective, the LHC can discover long-lived charged particles which were responsible for assimilating dark matter

  14. Dark Radiation or Warm Dark Matter from long lived particle decays in the light of Planck

    International Nuclear Information System (INIS)

    Di Bari, Pasquale; King, Stephen F.; Merle, Alexander

    2013-01-01

    Although Planck data supports the standard ΛCDM model, it still allows for the presence of Dark Radiation corresponding up to about half an extra standard neutrino species. We propose a scenario for obtaining a fractional “effective neutrino species” from a thermally produced particle which decays into a much lighter stable relic plus standard fermions. At lifetimes much longer than ∼1 s, both the relic particles and the non-thermal neutrino component contribute to Dark Radiation. By increasing the stable-to-unstable particle mass ratio, the relic particle no longer acts as Dark Radiation but instead becomes a candidate for Warm Dark Matter with mass O(1 keV–100 GeV). In both cases it is possible to address the lithium problem

  15. Hidden charged dark matter

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kaplinghat, Manoj; Tu, Huitzu; Yu, Hai-Bo

    2009-01-01

    Can dark matter be stabilized by charge conservation, just as the electron is in the standard model? We examine the possibility that dark matter is hidden, that is, neutral under all standard model gauge interactions, but charged under an exact (\\rm U)(1) gauge symmetry of the hidden sector. Such candidates are predicted in WIMPless models, supersymmetric models in which hidden dark matter has the desired thermal relic density for a wide range of masses. Hidden charged dark matter has many novel properties not shared by neutral dark matter: (1) bound state formation and Sommerfeld-enhanced annihilation after chemical freeze out may reduce its relic density, (2) similar effects greatly enhance dark matter annihilation in protohalos at redshifts of z ∼ 30, (3) Compton scattering off hidden photons delays kinetic decoupling, suppressing small scale structure, and (4) Rutherford scattering makes such dark matter self-interacting and collisional, potentially impacting properties of the Bullet Cluster and the observed morphology of galactic halos. We analyze all of these effects in a WIMPless model in which the hidden sector is a simplified version of the minimal supersymmetric standard model and the dark matter is a hidden sector stau. We find that charged hidden dark matter is viable and consistent with the correct relic density for reasonable model parameters and dark matter masses in the range 1 GeV ∼ X ∼< 10 TeV. At the same time, in the preferred range of parameters, this model predicts cores in the dark matter halos of small galaxies and other halo properties that may be within the reach of future observations. These models therefore provide a viable and well-motivated framework for collisional dark matter with Sommerfeld enhancement, with novel implications for astrophysics and dark matter searches

  16. Thermally Generated Gauge Singlet Scalars as Self-Interacting Dark Matter

    CERN Document Server

    McDonald, J

    2002-01-01

    We show that a gauge singlet scalar S with a coupling to the Higgs doublet of the form lambda_{S} S^{\\dagger}S H^{\\dagger}H and with the S mass entirely generated by the Higgs expectation value has a thermally generated relic density Omega_{S} \\approx 0.3 if m_{S} \\approx (2.9-10.5)(Omega_{S}/0.3)^{1/5}(h/0.7)^{2/5} MeV for Higgs boson masses in the range 115 GeV to 1 TeV. Remarkably, this is very similar to the range (m_{S} = (6.6-15.4)\\eta^{2/3} MeV) required in order for the self-interaction (\\eta/4)(S^{\\dagger}S)^{2} to account for self-interacting dark matter when \\eta is about 1. The corresponding coupling is lambda_{S} \\approx (2.7 \\times 10^{-10} - 3.6 \\times 10^{-9})(Omega_{S}/0.3)^{2/5}(h/0.7)^{4/5}, implying that such scalars are very weakly coupled to the Standard Model sector. More generally, for the case where the S mass is at least partially due to a bare mass term, if m_{S} \\approx 10 \\eta^{2/3} MeV, corresponding to self-interacting dark matter, then in order not to overpopulate the Universe ...

  17. Dynamical Dark Matter from thermal freeze-out

    Science.gov (United States)

    Dienes, Keith R.; Fennick, Jacob; Kumar, Jason; Thomas, Brooks

    2018-03-01

    In the Dynamical Dark-Matter (DDM) framework, the dark sector comprises a large number of constituent dark particles whose individual masses, lifetimes, and cosmological abundances obey specific scaling relations with respect to each other. In particular, the most natural versions of this framework tend to require a spectrum of cosmological abundances which scale inversely with mass, so that dark-sector states with larger masses have smaller abundances. Thus far, DDM model-building has primarily relied on nonthermal mechanisms for abundance generation such as misalignment production, since these mechanisms give rise to abundances that have this property. By contrast, the simplest versions of thermal freeze-out tend to produce abundances that increase, rather than decrease, with the mass of the dark-matter component. In this paper, we demonstrate that there exist relatively simple modifications of the traditional thermal freeze-out mechanism which "flip" the resulting abundance spectrum, producing abundances that scale inversely with mass. Moreover, we demonstrate that a far broader variety of scaling relations between lifetimes, abundances, and masses can emerge through thermal freeze-out than through the nonthermal mechanisms previously considered for DDM ensembles. The results of this paper thus extend the DDM framework into the thermal domain and essentially allow us to "design" our resulting DDM ensembles at will in order to realize a rich array of resulting dark-matter phenomenologies.

  18. Gauge coupling unification and nonequilibrium thermal dark matter.

    Science.gov (United States)

    Mambrini, Yann; Olive, Keith A; Quevillon, Jérémie; Zaldívar, Bryan

    2013-06-14

    We study a new mechanism for the production of dark matter in the Universe which does not rely on thermal equilibrium. Dark matter is populated from the thermal bath subsequent to inflationary reheating via a massive mediator whose mass is above the reheating scale T(RH). To this end, we consider models with an extra U(1) gauge symmetry broken at some intermediate scale (M(int) ≃ 10(10)-10(12) GeV). We show that not only does the model allow for gauge coupling unification (at a higher scale associated with grand unification) but it can provide a dark matter candidate which is a standard model singlet but charged under the extra U(1). The intermediate scale gauge boson(s) which are predicted in several E6/SO(10) constructions can be a natural mediator between dark matter and the thermal bath. We show that the dark matter abundance, while never having achieved thermal equilibrium, is fixed shortly after the reheating epoch by the relation T(RH)(3)/M(int)(4). As a consequence, we show that the unification of gauge couplings which determines M(int) also fixes the reheating temperature, which can be as high as T(RH) ≃ 10(11) GeV.

  19. Mixed dark matter from technicolor

    DEFF Research Database (Denmark)

    Belyaev, Alexander; T. Frandsen, Mads; Sannino, Francesco

    2011-01-01

    We study natural composite cold dark matter candidates which are pseudo Nambu-Goldstone bosons (pNGB) in models of dynamical electroweak symmetry breaking. Some of these can have a significant thermal relic abundance, while others must be mainly asymmetric dark matter. By considering the thermal...... abundance alone we find a lower bound of MW on the pNGB mass when the (composite) Higgs is heavier than 115 GeV. Being pNGBs, the dark matter candidates are in general light enough to be produced at the LHC....

  20. Dark matter and the Higgs in natural SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Basirnia, Aria; Macaluso, Sebastian; Shih, David [NHETC, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States)

    2017-03-14

    Null results from dark matter (DM) direct detection experiments and the 125 GeV Higgs both pose serious challenges to minimal supersymmetry. In this paper, we propose a simple extension of the MSSM that economically solves both problems: a “dark sector” consisting of a singlet and a pair of SU(2) doublets. Loops of the dark sector fields help lift the Higgs mass to 125 GeV consistent with naturalness, while the lightest fermion in the dark sector can be viable thermal relic DM, provided that it is mostly singlet. The DM relic abundance is controlled by s-wave annihilation to tops and Higgsinos, leading to a tight relation between the relic abundance and the spin-dependent direct detection cross section. As a result, the model will be fully probed by the next generation of direct detection experiments. Finally we discuss the discovery potential at LHC Run II.

  1. Di-photon resonance and Dark Matter as heavy pions

    CERN Document Server

    Redi, Michele; Tesi, Andrea; Vigiani, Elena

    2016-05-13

    We analyse confining gauge theories where the 750 GeV di-photon resonance is a composite techni-pion that undergoes anomalous decays into SM vectors. These scenarios naturally contain accidentally stable techni-pions Dark Matter candidates. The di-photon resonance can acquire a larger width by decaying into Dark Matter through the CP-violating $\\theta$-term of the new gauge theory reproducing the cosmological Dark Matter density as thermal relic.

  2. Non-thermal axion dark radiation and constraints

    International Nuclear Information System (INIS)

    Mazumdar, Anupam

    2016-07-01

    The Peccei-Quinn mechanism presents a neat solution to the strong CP problem. As a by-product, it provides an ideal dark matter candidate, ''the axion'', albeit with a tiny mass. Axions therefore can act as dark radiation if excited with large momenta after the end of inflation. Nevertheless, the recent measurement of relativistic degrees of freedom from cosmic microwave background radiation strictly constrains the abundance of such extra relativistic species. We show that ultra-relativistic axions can be abundantly produced if the Peccei-Quinn field was initially displaced from the minimum of the potential. This in lieu places an interesting constraint on the axion dark matter window with large decay constant which is expected to be probed by future experiments. Moreover, an upper bound on the reheating temperature can be placed, which further constrains the thermal history of our Universe.

  3. Supersymmetry, Dark Matter and the LHC

    International Nuclear Information System (INIS)

    Tata, Xerxes

    2010-01-01

    The conceptually simplest scenario for dark matter (DM) is that it is a stable thermal relic from standard Big Bang cosmology, in many SUSY models the lightest neutralino. The relic density determination selects special regions in SUSY model parameter space with concomitant implications for collider physics, dark matter searches and low energy measurements. By studying various one-parameter extensions of the much-studied mSUGRA model (where we relax the untested universality assumptions) constructed to be in accord with the measured relic density, we show that these implications are in general model-dependent, so that LHC and DM measurements will provide clues to how sparticles acquire their masses. We point out some relatively robust implications for LHC and DM searches and conclude with an outlook for the future.

  4. Simplified phenomenology for colored dark sectors

    Energy Technology Data Exchange (ETDEWEB)

    Hedri, Sonia El; Kaminska, Anna; Vries, Maikel de [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,55099 Mainz (Germany); Zurita, Jose [Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology,Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology,Engesserstraße 7, D-76128 Karlsruhe (Germany)

    2017-04-20

    We perform a general study of the relic density and LHC constraints on simplified models where the dark matter coannihilates with a strongly interacting particle X. In these models, the dark matter depletion is driven by the self-annihilation of X to pairs of quarks and gluons through the strong interaction. The phenomenology of these scenarios therefore only depends on the dark matter mass and the mass splitting between dark matter and X as well as the quantum numbers of X. In this paper, we consider simplified models where X can be either a scalar, a fermion or a vector, as well as a color triplet, sextet or octet. We compute the dark matter relic density constraints taking into account Sommerfeld corrections and bound state formation. Furthermore, we examine the restrictions from thermal equilibrium, the lifetime of X and the current and future LHC bounds on X pair production. All constraints are comprehensively presented in the mass splitting versus dark matter mass plane. While the relic density constraints can lead to upper bounds on the dark matter mass ranging from 2 TeV to more than 10 TeV across our models, the prospective LHC bounds range from 800 to 1500 GeV. A full coverage of the strongly coannihilating dark matter parameter space would therefore require hadron colliders with significantly higher center-of-mass energies.

  5. Superheavy dark matter

    CERN Document Server

    Riotto, Antonio

    2000-01-01

    It is usually thought that the present mass density of the Universe is dominated by a weakly interacting massive particle (WIMP), a fossil relic of the early Universe. Theoretical ideas and experimental efforts have focused mostly on production and detection of thermal relics, with mass typically in the range a few GeV to a hundred GeV. Here, we will review scenarios for production of nonthermal dark matter whose mass may be in the range 10/sup 12/ to 10/sup 19/ GeV, much larger than the mass of thermal wimpy WIMPS. We will also review recent related results in understanding the production of very heavy fermions through preheating after inflation. (19 refs).

  6. Atomki anomaly and the Secluded Dark Sector

    OpenAIRE

    Yamamoto, Yasuhiro

    2017-01-01

    The Atomiki anomaly can be interpreted as a new light vector boson. If such a new particle exists, it could be a mediator between the Standard Model sector and the dark sector including the dark matter. We discussed some simple effective models with these particles. In the models, the secluded dark matter models are good candidates to satisfy the thermal relic abundance. In particular, we found that the dark matter self-interaction can be large enough to solve the small scale structure puzzle...

  7. Asymmetric condensed dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  8. Dark matter searches from the galaxy to the LHC - recent hints and coming progress

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    We discuss the possible galactic positron excess and constraints on interpreting it as dark matter annihilation. We consider wino and higgsino wimps that provide the local relic density and a positron excess (which implies the relic density is non-thermal in origin and important consequences for cosmological history and underlying theories), comment on how to confirm and study these issues at LHC, and on the relation to direct detection experiments.

  9. Scalar Dark Matter From Theory Space

    Energy Technology Data Exchange (ETDEWEB)

    Birkedal-Hansen, Andreas; Wacker, Jay G.

    2003-12-26

    The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to a relic density calculation. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass {Omicron}(100 GeV), the second region has a candidate with a mass greater than {Omicron}(500 GeV). The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a possible WIMP (weakly interacting massive particle).

  10. Scalar dark matter from theory space

    International Nuclear Information System (INIS)

    Birkedal-Hansen, Andreas; Wacker, Jay G.

    2004-01-01

    The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to a relic density calculation. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass O(100 GeV), the second region has a candidate with a mass greater than O(500 GeV). The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a possible weakly interacting massive particle

  11. Thermal leptogenesis and the gravitino problem in the Asaka-Yanagida axion/axino dark matter scenario

    International Nuclear Information System (INIS)

    Baer, Howard; Lessa, Andre; Kraml, Sabine; Sekmen, Sezen

    2011-01-01

    A successful implementation of thermal leptogenesis requires the re-heat temperature after inflation T R to exceed ∼ 2 × 10 9 GeV. Such a high T R value typically leads to an overproduction of gravitinos in the early universe, which will cause conflicts, mainly with BBN constraints. Asaka and Yanagida (AY) have proposed that these two issues can be reconciled in the context of the Peccei-Quinn augmented MSSM (PQMSSM) if one adopts a mass hierarchy m(sparticle) > m(gravitino)>m(axino), with m(axino) ∼ keV. In this case, sparticle decays bypass the gravitino, and decay more quickly to the axino LSP, thus avoiding the BBN constraints. In addition, thermally produced gravitinos decay inertly to axion+axino, also avoiding BBN constraints. We calculate the relic abundance of mixed axion/axino dark matter in the AY scenario, and investigate under what conditions a value of T R sufficient for thermal leptogenesis can be generated. A high value of PQ breaking scale f a is needed to suppress overproduction of axinos, while a small vacuum misalignment angle θ i is needed to suppress overproduction of axions. The large value of f a results in late decaying neutralinos. We show that, to avoid BBN constraints, the AY scenario requires a rather low thermal abundance of neutralinos, while higher values of neutralino mass also help. We combine these constraint calculations along with entropy production from late decaying saxions, and find the saxion needs to be typically at least several times heavier than the gravitino. A successful implementation of the AY scenario suggests that LHC should discover a spectrum of SUSY particles consistent with weak scale supergravity; that the apparent neutralino abundance is low; that an axion direct detection signal (probably with m a in the sub-μeV range) may be possible, but no direct or indirect signals for WIMP dark matter should be observed

  12. Inflatable Dark Matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  13. A Zoo of Radio Relics: Cluster Cores to Filaments Ruta Kale1,2 ...

    Indian Academy of Sciences (India)

    Abstract. Radio relics in galaxy clusters can be electrons accelerated at cluster merger shocks or adiabatically compressed fossil radio cocoons or dying radio galaxies. The spectral evolution of radio relics is affected by the surrounding thermal plasma. We present a low frequency study of three radio relics representing ...

  14. Strategies for dark matter detection

    International Nuclear Information System (INIS)

    Silk, J.

    1988-01-01

    The present status of alternative forms of dark matter, both baryonic and nonbaryonic, is reviewed. Alternative arguments are presented for the predominance of either cold dark matter (CDM) or of baryonic dark matter (BDM). Strategies are described for dark matter detection, both for dark matter that consists of weakly interacting relic particles and for dark matter that consists of dark stellar remnants

  15. Compatibility of a dark matter discovery at XENONnT or LZ with the WIMP thermal production mechanism

    Science.gov (United States)

    Catena, Riccardo; Conrad, Jan; Krauss, Martin B.

    2018-05-01

    The discovery of dark matter (DM) at XENONnT or LZ would place constraints on DM particle mass and coupling constants. It is interesting to ask when these constraints can be compatible with the DM thermal production mechanism. We address this question within the most general set of renormalizable models that preserve Lorentz and gauge symmetry, and that extend the standard model by one DM candidate of mass mDM and one particle of mass Mmed mediating DM-quark interactions. Our analysis divides into two parts. First, we postulate that XENONnT/LZ has detected μS˜O (100 ) signal events, and use this input to calculate the DM relic density, ΩDMh2. Then, we identify the regions in the Mmed-ΩDMh2 plane which are compatible with the observed signal and with current CMB data. We find that for most of the models considered here, O (100 ) signal events at XENONnT/LZ and the DM thermal production are only compatible for resonant DM annihilations, i.e. for Mmed≃2 mDM. In this case, XENONnT/LZ would be able to simultaneously measure mDM and Mmed. We also discuss the dependence of our results on mDM, μS and the DM spin, and provide analytic expressions for annihilation cross sections and mediator decay widths for all models considered in this study.

  16. Phenomenology of ELDER dark matter

    Science.gov (United States)

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2017-08-01

    We explore the phenomenology of Elastically Decoupling Relic (ELDER) dark matter. ELDER is a thermal relic whose present density is determined primarily by the cross-section of its elastic scattering off Standard Model (SM) particles. Assuming that this scattering is mediated by a kinetically mixed dark photon, we argue that the ELDER scenario makes robust predictions for electron-recoil direct-detection experiments, as well as for dark photon searches. These predictions are independent of the details of interactions within the dark sector. Together with the closely related Strongly-Interacting Massive Particle (SIMP) scenario, the ELDER predictions provide a physically motivated, well-defined target region, which will be almost entirely accessible to the next generation of searches for sub-GeV dark matter and dark photons. We provide useful analytic approximations for various quantities of interest in the ELDER scenario, and discuss two simple renormalizable toy models which incorporate the required strong number-changing interactions among the ELDERs, as well as explicitly implement the coupling to electrons via the dark photon portal.

  17. Dark matter asymmetry in supersymmetric Dirac leptogenesis

    International Nuclear Information System (INIS)

    Choi, Ki-Young; Chun, Eung Jin; Shin, Chang Sub

    2013-01-01

    We discuss asymmetric or symmetric dark matter candidate in the supersymmetric Dirac leptogenesis scenario. By introducing a singlet superfield coupling to right-handed neutrinos, the overabundance problem of dark matter can be evaded and various possibilities for dark matter candidate arise. If the singlino is the lightest supersymmetric particle (LSP), it becomes naturally asymmetric dark matter. On the other hand, the right-handed sneutrino is a symmetric dark matter candidate whose relic density can be determined by the usual thermal freeze-out process. The conventional neutralino or gravitino LSP can be also a dark matter candidate as its non-thermal production from the right-handed sneutrino can be controlled appropriately. In our scenario, the late-decay of heavy supersymmetric particles mainly produces the right-handed sneutrino and neutrino which is harmless to the standard prediction of the Big-Bang Nucleosynthesis

  18. Self-interacting dark matter with a stable vector mediator

    OpenAIRE

    Duerr, Michael; Schmidt-Hoberg, Kai; Wild, Sebastian

    2018-01-01

    Light vector mediators can naturally induce velocity-dependent dark matter self-interactions while at the same time allowing for the correct dark matter relic abundance via thermal freeze-out. If these mediators subsequently decay into Standard Model states such as electrons or photons however, this is robustly excluded by constraints from the Cosmic Microwave Background. We study to what extent this conclusion can be circumvented if the vector mediator is stable and hence contributes to the ...

  19. Dark Matter from new Technicolor Theories

    DEFF Research Database (Denmark)

    Bjarke Gudnason, Sven; Kouvaris, Christoforos; Sannino, Francesco

    2006-01-01

    We investigate dark matter candidates emerging in recently proposed technicolor theories. We determine the relic density of the lightest, neutral, stable technibaryon having imposed weak thermal equilibrium conditions and overall electric neutrality of the Universe. In addition we consider...... sphaleron processes that violate baryon, lepton and technibaryon number. Our analysis is performed in the case of a first order electroweak phase transition as well as a second order one. We argue that, in both cases, the new technibaryon contributes to the dark matter in the Universe. Finally we examine...... the problem of the constraints on these types of dark matter components from earth based experiments....

  20. Thermal evolution and small scale structure of Sommerfeld enhanced dark matter

    International Nuclear Information System (INIS)

    Aarssen, Laura Gusta van den

    2013-04-01

    Although the existence of Dark Matter (DM) has been confirmed by many independent observations on various scales, its nature still remains a mystery. Leading candidates for the cold, non-baryonic DM are Weakly Interacting Massive Particles (WIMPs), that are well motivated from particle physics and naturally explain the observed relic density by their thermal production mechanism. In this thesis we focus on a particular class of WIMP models in which the Sommerfeld effect has to be taken into account. This is a quantum mechanical phenomenon that can significantly enhance the annihilation cross section in the non-relativistic limit. To describe the non-perturbative effect, we use a non-relativistic effective field theory derived from the full quantum field theory. We include a detailed discussion of the calculation for the righthanded sneutrino, which is the superpartner of the neutrino and a viable DM candidate. The Sommerfeld enhancement can have a profound influence on the thermal evolution of the DM, which can no longer be described by the standard scenario. We introduce a framework to correctly take this effect into account and apply it to a simple leptophilic DM model. A new era of annihilations can decrease the DM density even after usual freeze-out, and in some cases where the Sommerfeld enhancement is especially large, even continue until after matter-radiation equality. The effect on the asymptotic WIMP temperature, which can be directly related to a small scale cutoff in the matter density fluctuations, causes the mass of the smallest gravitationally bound objects to be larger than expected from standard calculations. Furthermore we study the effect of velocity dependent DM self-scattering in relation to the small scale structure formation. Numerical simulations of ΛCDM have shown a remarkable agreement with the large scale structure of the Universe. However, the simulations are in tension with observed abundances, inner densities and velocity profiles of

  1. Thermal evolution and small scale structure of Sommerfeld enhanced dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aarssen, Laura Gusta van den

    2013-04-15

    Although the existence of Dark Matter (DM) has been confirmed by many independent observations on various scales, its nature still remains a mystery. Leading candidates for the cold, non-baryonic DM are Weakly Interacting Massive Particles (WIMPs), that are well motivated from particle physics and naturally explain the observed relic density by their thermal production mechanism. In this thesis we focus on a particular class of WIMP models in which the Sommerfeld effect has to be taken into account. This is a quantum mechanical phenomenon that can significantly enhance the annihilation cross section in the non-relativistic limit. To describe the non-perturbative effect, we use a non-relativistic effective field theory derived from the full quantum field theory. We include a detailed discussion of the calculation for the righthanded sneutrino, which is the superpartner of the neutrino and a viable DM candidate. The Sommerfeld enhancement can have a profound influence on the thermal evolution of the DM, which can no longer be described by the standard scenario. We introduce a framework to correctly take this effect into account and apply it to a simple leptophilic DM model. A new era of annihilations can decrease the DM density even after usual freeze-out, and in some cases where the Sommerfeld enhancement is especially large, even continue until after matter-radiation equality. The effect on the asymptotic WIMP temperature, which can be directly related to a small scale cutoff in the matter density fluctuations, causes the mass of the smallest gravitationally bound objects to be larger than expected from standard calculations. Furthermore we study the effect of velocity dependent DM self-scattering in relation to the small scale structure formation. Numerical simulations of {Lambda}CDM have shown a remarkable agreement with the large scale structure of the Universe. However, the simulations are in tension with observed abundances, inner densities and velocity

  2. Dark Energy Constraints from the Thermal Sunyaev Zeldovich Power Spectrum

    Science.gov (United States)

    Bolliet, Boris; Comis, Barbara; Komatsu, Eiichiro; Macías-Pérez, Juan Francisco

    2018-03-01

    We constrain the dark energy equation of state parameter, w, using the power spectrum of the thermal Sunyaev-Zeldovich (tSZ) effect. We improve upon previous analyses by taking into account the trispectrum in the covariance matrix and marginalising over the foreground parameters, the correlated noise, the mass bias B in the Planck universal pressure profile, and all the relevant cosmological parameters (i.e., not just Ωm and σ8). We find that the amplitude of the tSZ power spectrum at ℓ ≲ 103 depends primarily on F ≡ σ8(Ωm/B)0.40h-0.21, where B is related to more commonly used variable b by B = (1 - b)-1. We measure this parameter with 2.6% precision, F = 0.460 ± 0.012 (68% CL). By fixing the bias to B = 1.25 and adding the local determination of the Hubble constant H0 and the amplitude of the primordial power spectrum constrained by the Planck Cosmic Microwave Background (CMB) data, we find w = -1.10 ± 0.12, σ8 = 0.802 ± 0.037, and Ωm = 0.265 ± 0.022 (68% CL). Our limit on w is consistent with and is as tight as that from the distance-alone constraint from the CMB and H0. Finally, by combining the tSZ power spectrum and the CMB data we find, in the Λ Cold Dark Matter (CDM) model, the mass bias of B = 1.71 ± 0.17, i.e., 1 - b = 0.58 ± 0.06 (68% CL).

  3. Flooded Dark Matter and S level rise

    International Nuclear Information System (INIS)

    Randall, Lisa; Scholtz, Jakub; Unwin, James

    2016-01-01

    Most dark matter models set the dark matter relic density by some interaction with Standard Model particles. Such models generally assume the existence of Standard Model particles early on, with the dark matter relic density a later consequence of those interactions. Perhaps a more compelling assumption is that dark matter is not part of the Standard Model sector and a population of dark matter too is generated at the end of inflation. This democratic assumption about initial conditions does not necessarily provide a natural value for the dark matter relic density, and furthermore superficially leads to too much entropy in the dark sector relative to ordinary matter. We address the latter issue by the late decay of heavy particles produced at early times, thereby associating the dark matter relic density with the lifetime of a long-lived state. This paper investigates what it would take for this scenario to be compatible with observations in what we call Flooded Dark Matter (FDM) models and discusses several interesting consequences. One is that dark matter can be very light and furthermore, light dark matter is in some sense the most natural scenario in FDM as it is compatible with larger couplings of the decaying particle. A related consequence is that the decay of the field with the smallest coupling and hence the longest lifetime dominates the entropy and possibly the matter content of the Universe, a principle we refer to as “Maximum Baroqueness”. We also demonstrate that the dark sector should be colder than the ordinary sector, relaxing the most stringent free-streaming constraints on light dark matter candidates. We will discuss the potential implications for the core-cusp problem in a follow-up paper. The FDM framework will furthermore have interesting baryogenesis implications. One possibility is that dark matter is like the baryon asymmetry and both are simultaneously diluted by a late entropy dump. Alternatively, FDM is compatible with an elegant

  4. Flooded Dark Matter and S level rise

    Energy Technology Data Exchange (ETDEWEB)

    Randall, Lisa; Scholtz, Jakub [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Unwin, James [Department of Physics, University of Illinois at Chicago,Chicago, IL 60607 (United States)

    2016-03-03

    Most dark matter models set the dark matter relic density by some interaction with Standard Model particles. Such models generally assume the existence of Standard Model particles early on, with the dark matter relic density a later consequence of those interactions. Perhaps a more compelling assumption is that dark matter is not part of the Standard Model sector and a population of dark matter too is generated at the end of inflation. This democratic assumption about initial conditions does not necessarily provide a natural value for the dark matter relic density, and furthermore superficially leads to too much entropy in the dark sector relative to ordinary matter. We address the latter issue by the late decay of heavy particles produced at early times, thereby associating the dark matter relic density with the lifetime of a long-lived state. This paper investigates what it would take for this scenario to be compatible with observations in what we call Flooded Dark Matter (FDM) models and discusses several interesting consequences. One is that dark matter can be very light and furthermore, light dark matter is in some sense the most natural scenario in FDM as it is compatible with larger couplings of the decaying particle. A related consequence is that the decay of the field with the smallest coupling and hence the longest lifetime dominates the entropy and possibly the matter content of the Universe, a principle we refer to as “Maximum Baroqueness”. We also demonstrate that the dark sector should be colder than the ordinary sector, relaxing the most stringent free-streaming constraints on light dark matter candidates. We will discuss the potential implications for the core-cusp problem in a follow-up paper. The FDM framework will furthermore have interesting baryogenesis implications. One possibility is that dark matter is like the baryon asymmetry and both are simultaneously diluted by a late entropy dump. Alternatively, FDM is compatible with an elegant

  5. Dark-Matter Particles without Weak-Scale Masses or Weak Interactions

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kumar, Jason

    2008-01-01

    We propose that dark matter is composed of particles that naturally have the correct thermal relic density, but have neither weak-scale masses nor weak interactions. These models emerge naturally from gauge-mediated supersymmetry breaking, where they elegantly solve the dark-matter problem. The framework accommodates single or multiple component dark matter, dark-matter masses from 10 MeV to 10 TeV, and interaction strengths from gravitational to strong. These candidates enhance many direct and indirect signals relative to weakly interacting massive particles and have qualitatively new implications for dark-matter searches and cosmological implications for colliders

  6. Towards understanding thermal history of the Universe through direct and indirect detection of dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Roszkowski, Leszek; Trojanowski, Sebastian [National Centre for Nuclear Research, Hoża 69, 00-681 Warsaw (Poland); Turzyński, Krzysztof, E-mail: leszek.roszkowski@ncbj.gov.pl, E-mail: sebastian.trojanowski@uci.edu, E-mail: Krzysztof-Jan.Turzynski@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland)

    2017-10-01

    We examine the question to what extent prospective detection of dark matter by direct and indirect- detection experiments could shed light on what fraction of dark matter was generated thermally via the freeze-out process in the early Universe. By simulating putative signals that could be seen in the near future and using them to reconstruct WIMP dark matter properties, we show that, in a model- independent approach this could only be achieved in a thin sliver of the parameter space. However, with additional theoretical input the hypothesis about the thermal freeze-out as the dominant mechanism for generating dark matter can potentially be verified. We illustrate this with two examples: an effective field theory of dark matter with a vector messenger and a higgsino or wino dark matter within the MSSM.

  7. Z2 SIMP dark matter

    International Nuclear Information System (INIS)

    Bernal, Nicolás; Chu, Xiaoyong

    2016-01-01

    Dark matter with strong self-interactions provides a compelling solution to several small-scale structure puzzles. Under the assumption that the coupling between dark matter and the Standard Model particles is suppressed, such strongly interacting massive particles (SIMPs) allow for a successful thermal freeze-out through N-to-N' processes, where N dark matter particles annihilate to N' of them. In the most common scenarios, where dark matter stability is guaranteed by a Z 2 symmetry, the seemingly leading annihilating channel, i.e. 3-to-2 process, is forbidden, so the 4-to-2 one dominate the production of the dark matter relic density. Moreover, cosmological observations require that the dark matter sector is colder than the thermal bath of Standard Model particles, a condition that can be dynamically generated via a small portal between dark matter and Standard Model particles, à la freeze-in. This scenario is exemplified in the context of the Singlet Scalar dark matter model

  8. Direct and indirect detection of dissipative dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Fan, JiJi; Katz, Andrey; Shelton, Jessie, E-mail: jijifan1982@gmail.com, E-mail: katz.andrey@gmail.com, E-mail: jshelton137@gmail.com [Department of Physics, Harvard University, Cambridge, MA 02138 (United States)

    2014-06-01

    We study the constraints from direct detection and solar capture on dark matter scenarios with a subdominant dissipative component. This dissipative dark matter component in general has both a symmetric and asymmetric relic abundance. Dissipative dynamics allow this subdominant dark matter component to cool, resulting in its partial or total collapse into a smaller volume inside the halo (e.g., a dark disk) as well as a reduced thermal velocity dispersion compared to that of normal cold dark matter. We first show that these features considerably relax the limits from direct detection experiments on the couplings between standard model (SM) particles and dissipative dark matter. On the other hand, indirect detection of the annihilation of the symmetric dissipative dark matter component inside the Sun sets stringent and robust constraints on the properties of the dissipative dark matter. In particular, IceCube observations force dissipative dark matter particles with mass above 50 GeV to either have a small coupling to the SM or a low local density in the solar system, or to have a nearly asymmetric relic abundance. Possible helioseismology signals associated with purely asymmetric dissipative dark matter are discussed, with no present constraints.

  9. Direct and indirect detection of dissipative dark matter

    International Nuclear Information System (INIS)

    Fan, JiJi; Katz, Andrey; Shelton, Jessie

    2014-01-01

    We study the constraints from direct detection and solar capture on dark matter scenarios with a subdominant dissipative component. This dissipative dark matter component in general has both a symmetric and asymmetric relic abundance. Dissipative dynamics allow this subdominant dark matter component to cool, resulting in its partial or total collapse into a smaller volume inside the halo (e.g., a dark disk) as well as a reduced thermal velocity dispersion compared to that of normal cold dark matter. We first show that these features considerably relax the limits from direct detection experiments on the couplings between standard model (SM) particles and dissipative dark matter. On the other hand, indirect detection of the annihilation of the symmetric dissipative dark matter component inside the Sun sets stringent and robust constraints on the properties of the dissipative dark matter. In particular, IceCube observations force dissipative dark matter particles with mass above 50 GeV to either have a small coupling to the SM or a low local density in the solar system, or to have a nearly asymmetric relic abundance. Possible helioseismology signals associated with purely asymmetric dissipative dark matter are discussed, with no present constraints

  10. Constraints on Leptophilic Dark Matter from the AMS-02 Experiment

    International Nuclear Information System (INIS)

    Cavasonza, Leila Ali; Gast, Henning; Schael, Stefan; Krämer, Michael; Pellen, Mathieu

    2017-01-01

    The annihilation of dark matter particles in the Galactic halo of the Milky Way may lead to cosmic ray signatures that can be probed by the AMS-02 experiment, which has measured the composition and fluxes of charged cosmic rays with unprecedented precision. Given the absence of characteristic spectral features in the electron and positron fluxes measured by AMS-02, we derive upper limits on the dark matter annihilation cross section for leptophilic dark matter models. Our limits are based on a new background model that describes all recent measurements of the energy spectra of cosmic-ray positrons and electrons. For thermal dark matter relics, we can exclude dark matter masses below about 100 GeV. We include the radiation of electroweak gauge bosons in the dark matter annihilation process and compute the antiproton signal that can be expected within leptophilic dark matter models.

  11. Constraints on Leptophilic Dark Matter from the AMS-02 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cavasonza, Leila Ali; Gast, Henning; Schael, Stefan [I. Physikalisches Institut, RWTH Aachen University, D-52074 Aachen (Germany); Krämer, Michael [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, D-52074 Aachen (Germany); Pellen, Mathieu, E-mail: cavasonza@physik.rwth-aachen.de [Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074 Würzburg (Germany)

    2017-04-10

    The annihilation of dark matter particles in the Galactic halo of the Milky Way may lead to cosmic ray signatures that can be probed by the AMS-02 experiment, which has measured the composition and fluxes of charged cosmic rays with unprecedented precision. Given the absence of characteristic spectral features in the electron and positron fluxes measured by AMS-02, we derive upper limits on the dark matter annihilation cross section for leptophilic dark matter models. Our limits are based on a new background model that describes all recent measurements of the energy spectra of cosmic-ray positrons and electrons. For thermal dark matter relics, we can exclude dark matter masses below about 100 GeV. We include the radiation of electroweak gauge bosons in the dark matter annihilation process and compute the antiproton signal that can be expected within leptophilic dark matter models.

  12. Axion as a non-WIMP dark matter candidate

    International Nuclear Information System (INIS)

    Saikawa, Ken'ichi

    2017-09-01

    The axion arises in well-motivated extensions of the Standard Model of particle physics and is regarded as an alternative to the weakly interacting massive particle paradigm to explain the nature of dark matter. In this contribution, we review theoretical aspects of dark matter axions, particularly focusing on recent developments in the estimation of their relic abundance. A closer look at their non-thermal production mechanisms in the early universe reveals the possibility of explaining the observed dark matter abundance in various mass ranges. The mass ranges predicted in various cosmological scenarios are briefly summarized.

  13. Evading direct dark matter detection in Higgs portal models

    Energy Technology Data Exchange (ETDEWEB)

    Arcadi, Giorgio [Max Planck Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Gross, Christian, E-mail: christian.gross@helsinki.fi [Department of Physics and Helsinki Institute of Physics, Gustaf Hällströmin katu 2, FI-00014 Helsinki (Finland); Lebedev, Oleg [Department of Physics and Helsinki Institute of Physics, Gustaf Hällströmin katu 2, FI-00014 Helsinki (Finland); Pokorski, Stefan [Institute of Theoretical Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw (Poland); Toma, Takashi [Physik-Department T30d, Technische Universität München, James-Franck-Straße, D-85748 Garching (Germany)

    2017-06-10

    Many models of Higgs portal Dark Matter (DM) find themselves under pressure from increasingly tight direct detection constraints. In the framework of gauge field DM, we study how such bounds can be relaxed while retaining the thermal WIMP paradigm. When the hidden sector gauge symmetry is broken via the Higgs mechanism, the hidden sector generally contains unstable states which are lighter than dark matter. These states provide DM with an efficient annihilation channel. As a result, the DM relic abundance and the direct detection limits are controlled by different parameters, and the two can easily be reconciled. This simple setup realizes the idea of “secluded” dark matter naturally.

  14. Superheavy dark matter through Higgs portal operators

    Science.gov (United States)

    Kolb, Edward W.; Long, Andrew J.

    2017-11-01

    The WIMPzilla hypothesis is that the dark matter is a super-weakly-interacting and superheavy particle. Conventionally, the WIMPzilla abundance is set by gravitational particle production during or at the end of inflation. In this study we allow the WIMPzilla to interact directly with Standard Model fields through the Higgs portal, and we calculate the thermal production (freeze-in) of WIMPzilla dark matter from the annihilation of Higgs boson pairs in the plasma. The two particle-physics model parameters are the WIMPzilla mass and the Higgs-WIMPzilla coupling. The two cosmological parameters are the reheating temperature and the expansion rate of the universe at the end of inflation. We delineate the regions of parameter space where either gravitational or thermal production is dominant, and within those regions we identify the parameters that predict the observed dark matter relic abundance. Allowing for thermal production opens up the parameter space, even for Planck-suppressed Higgs-WIMPzilla interactions.

  15. WIMPless dark matter from non-Abelian hidden sectors with anomaly-mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Shadmi, Yael

    2011-01-01

    In anomaly-mediated supersymmetry breaking models, superpartner masses are proportional to couplings squared. Their hidden sectors therefore naturally contain WIMPless dark matter, particles whose thermal relic abundance is guaranteed to be of the correct size, even though they are not weakly interacting massive particles. We study viable dark matter candidates in WIMPless anomaly-mediated supersymmetry breaking models with non-Abelian hidden sectors and highlight unusual possibilities that emerge in even the simplest models. In one example with a pure SU(N) hidden sector, stable hidden gluinos freeze out with the correct relic density, but have an extremely low, but natural, confinement scale, providing a framework for self-interacting dark matter. In another simple scenario, hidden gluinos freeze out and decay to visible Winos with the correct relic density, and hidden glueballs may either be stable, providing a natural framework for mixed cold-hot dark matter, or may decay, yielding astrophysical signals. Last, we present a model with light hidden pions that may be tested with improved constraints on the number of nonrelativistic degrees of freedom. All of these scenarios are defined by a small number of parameters, are consistent with gauge coupling unification, preserve the beautiful connection between the weak scale and the observed dark matter relic density, and are natural, with relatively light visible superpartners. We conclude with comments on interesting future directions.

  16. Simultaneous generation of WIMP miracle-like densities of baryons and dark matter

    International Nuclear Information System (INIS)

    McDonald, John

    2011-01-01

    The observed density of dark matter is of the magnitude expected for a thermal relic weakly-interacting massive particle (WIMP). In addition, the observed baryon density is within an order of magnitude of the dark matter density. This suggests that the baryon density is physically related to a typical thermal relic WIMP dark matter density. We present a model which simultaneously generates thermal relic WIMP-like densities for both baryons and dark matter by modifying a large initial baryon asymmetry. Dark matter is due to O(100) GeV gauge singlet scalars produced in the annihilation of the O(TeV) colored scalars which are responsible for the final thermal WIMP-like baryon asymmetry. The requirement of no baryon washout implies that there are two gauge singlet scalars. The low-temperature transfer of the asymmetry to conventional baryons can be understood if the long-lived O(TeV) colored scalars have large hypercharge, |Y|>4/3. Production of such scalars at the LHC would be a clear signature of the model.

  17. Candidates for non-baryonic dark matter

    International Nuclear Information System (INIS)

    Fornengo, Nicolao

    2002-01-01

    This report is a brief review of the efforts to explain the nature of non-baryonic dark matter and of the studies devoted to the search for relic particles. Among the different dark matter candidates, special attention is devoted to relic neutralinos, by giving an overview of the recent calculations of its relic abundance and detection rates in a wide variety of supersymmetric schemes

  18. Candidates for non-baryonic dark matter

    OpenAIRE

    Fornengo, Nicolao

    2002-01-01

    This report is a brief review of the efforts to explain the nature of non-baryonic dark matter and of the studies devoted to the search for relic particles. Among the different dark matter candidates, special attention is devoted to relic neutralinos, by giving an overview of the recent calculations of its relic abundance and detection rates in a wide variety of supersymmetric schemes.

  19. Late decaying 2-component dark matter scenario as an explanation of the AMS-02 positron excess

    Energy Technology Data Exchange (ETDEWEB)

    Buch, Jatan; Ralegankar, Pranjal; Rentala, Vikram, E-mail: jatan_buch@brown.edu, E-mail: pranjal6@illinois.edu, E-mail: rentala@phy.iitb.ac.in [Department of Physics, Indian Institute of Technology - Bombay, Powai, Mumbai 400076 (India)

    2017-10-01

    The long standing anomaly in the positron flux as measured by the PAMELA and AMS-02 experiments could potentially be explained by dark matter (DM) annihilations. This scenario typically requires a large 'boost factor' to be consistent with a thermal relic dark matter candidate produced via freeze-out. However, such an explanation is disfavored by constraints from CMB observations on energy deposition during the epoch of recombination. We discuss a scenario called late-decaying two-component dark matter (LD2DM), where the entire DM consists of two semi-degenerate species. Within this framework, the heavier species is produced as a thermal relic in the early universe and decays to the lighter species over cosmological timescales. Consequently, the lighter species becomes the DM which populates the universe today. We show that annihilation of the lighter DM species with an enhanced cross-section, produced via such a non-thermal mechanism, can explain the observed AMS-02 positron flux while avoiding CMB constraints. The observed DM relic density can be correctly reproduced as well with simple s -wave annihilation cross-sections. We demonstrate that the scenario is safe from CMB constraints on late-time energy depositions during the cosmic 'dark ages'. Interestingly, structure formation constraints force us to consider small mass splittings between the two dark matter species. We explore possible cosmological and particle physics signatures in a toy model that realizes this scenario.

  20. Late decaying 2-component dark matter scenario as an explanation of the AMS-02 positron excess

    International Nuclear Information System (INIS)

    Buch, Jatan; Ralegankar, Pranjal; Rentala, Vikram

    2017-01-01

    The long standing anomaly in the positron flux as measured by the PAMELA and AMS-02 experiments could potentially be explained by dark matter (DM) annihilations. This scenario typically requires a large 'boost factor' to be consistent with a thermal relic dark matter candidate produced via freeze-out. However, such an explanation is disfavored by constraints from CMB observations on energy deposition during the epoch of recombination. We discuss a scenario called late-decaying two-component dark matter (LD2DM), where the entire DM consists of two semi-degenerate species. Within this framework, the heavier species is produced as a thermal relic in the early universe and decays to the lighter species over cosmological timescales. Consequently, the lighter species becomes the DM which populates the universe today. We show that annihilation of the lighter DM species with an enhanced cross-section, produced via such a non-thermal mechanism, can explain the observed AMS-02 positron flux while avoiding CMB constraints. The observed DM relic density can be correctly reproduced as well with simple s -wave annihilation cross-sections. We demonstrate that the scenario is safe from CMB constraints on late-time energy depositions during the cosmic 'dark ages'. Interestingly, structure formation constraints force us to consider small mass splittings between the two dark matter species. We explore possible cosmological and particle physics signatures in a toy model that realizes this scenario.

  1. MHD simulations of coronal dark downflows considering thermal conduction

    Science.gov (United States)

    Zurbriggen, E.; Costa, A.; Esquivel, A.; Schneiter, M.; Cécere, M.

    2017-10-01

    While several scenarios have been proposed to explain supra-arcade downflows (SADs) observed descending through turbulent hot regions, none of them have systematically addressed the consideration of thermal conduction. The SADs are known to be voided cavities. Our model assumes that SADs are triggered by bursty localized reconnection events that produce non-linear waves generating the voided cavity. These subdense cavities are sustained in time because they are hotter than their surrounding medium. Due to the low density and large temperature values of the plasma we expect the thermal conduction to be an important process. Our main aim here is to study if it is possible to generate SADs in the framework of our model considering thermal conduction. We carry on 2D MHD simulations including anisotropic thermal conduction, and find that if the magnetic lines envelope the cavities, they can be isolated from the hot environment and be identified as SADs.

  2. Dark matter and neutrino mass from the smallest non-Abelian chiral dark sector

    Science.gov (United States)

    Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Zhang, Yue

    2017-10-01

    All pieces of concrete evidence for phenomena outside the standard model (SM)—neutrino masses and dark matter—are consistent with the existence of new degrees of freedom that interact very weakly, if at all, with those in the SM. We propose that these new degrees of freedom organize themselves into a simple dark sector, a chiral S U (3 )×S U (2 ) gauge theory with the smallest nontrivial fermion content. Similar to the SM, the dark S U (2 ) is spontaneously broken while the dark S U (3 ) confines at low energies. At the renormalizable level, the dark sector contains massless fermions—dark leptons—and stable massive particles—dark protons. We find that dark protons with masses between 10 and 100 TeV satisfy all current cosmological and astrophysical observations concerning dark matter even if dark protons are a symmetric thermal relic. The dark leptons play the role of right-handed neutrinos and allow simple realizations of the seesaw mechanism or the possibility that neutrinos are Dirac fermions. In the latter case, neutrino masses are also parametrically different from charged-fermion masses and the lightest neutrino is predicted to be massless. Since the new "neutrino" and "dark-matter" degrees of freedom interact with one another, these two new-physics phenomena are intertwined. Dark leptons play a nontrivial role in early Universe cosmology while indirect searches for dark matter involve, decisively, dark-matter annihilations into dark leptons. These, in turn, may lead to observable signatures at high-energy neutrino and gamma-ray observatories, especially once one accounts for the potential Sommerfeld enhancement of the annihilation cross section, derived from the low-energy dark-sector effective theory, a possibility we explore quantitatively in some detail.

  3. Relic gravitational waves and cosmology

    International Nuclear Information System (INIS)

    Grishchuk, Leonid P

    2005-01-01

    The paper begins with a brief recollection of interactions of the author with Ya B Zeldovich in the context of the study of relic gravitational waves. The principles and early results on the quantum-mechanical generation of cosmological perturbations are then summarized. The expected amplitudes of relic gravitational waves differ in various frequency windows, and therefore the techniques and prospects of their detection are distinct. One section of the paper describes the present state of efforts in direct detection of relic gravitational waves. Another section is devoted to indirect detection via the anisotropy and polarization measurements of the cosmic microwave background (CMB) radiation. It is emphasized throughout the paper that the inference about the existence and expected amount of relic gravitational waves is based on a solid theoretical foundation and the best available cosmological observations. It is also explained in great detail what went wrong with the so-called 'inflationary gravitational waves', whose amount is predicted by inflationary theorists to be negligibly small, thus depriving them of any observational significance. (reviews of topical problems)

  4. Natural Dark Matter from an unnatural Higgs boson and new colored particles at the TeV scale

    International Nuclear Information System (INIS)

    Pierce, Aaron; Thaler, Jesse

    2007-01-01

    The thermal relic abundance of Dark Matter motivates the existence of new electroweak scale particles, independent of naturalness considerations. However, most unnatural Dark Matter models do not ensure the presence of new particles charged under SU(3) C , resulting in challenging LHC phenomenology. Here, we present a class of models with scalar electroweak doublet Dark Matter that require a host of colored particles at the TeV scale. In these models, the Higgs boson is apparently fine-tuned, but the Dark Matter doublet is kept light without any additional fine-tuning

  5. Inflationary imprints on dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo, E-mail: sami.nurmi@helsinki.fi, E-mail: tommi.tenkanen@helsinki.fi, E-mail: kimmo.i.tuominen@helsinki.fi [University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FI-00014, University of Helsinki (Finland)

    2015-11-01

    We show that dark matter abundance and the inflationary scale H could be intimately related. Standard Model extensions with Higgs mediated couplings to new physics typically contain extra scalars displaced from vacuum during inflation. If their coupling to Standard Model is weak, they will not thermalize and may easily constitute too much dark matter reminiscent to the moduli problem. As an example we consider Standard Model extended by a Z{sub 2} symmetric singlet s coupled to the Standard Model Higgs Φ via λ Φ{sup †}Φ s{sup 2}. Dark matter relic density is generated non-thermally for λ ∼< 10{sup −7}. We show that the dark matter yield crucially depends on the inflationary scale. For H∼ 10{sup 10} GeV we find that the singlet self-coupling and mass should lie in the regime λ{sub s}∼> 10{sup −9} and m{sub s}∼< 50 GeV to avoid dark matter overproduction.

  6. Analyzing the Discovery Potential for Light Dark Matter.

    Science.gov (United States)

    Izaguirre, Eder; Krnjaic, Gordan; Schuster, Philip; Toro, Natalia

    2015-12-18

    In this Letter, we determine the present status of sub-GeV thermal dark matter annihilating through standard model mixing, with special emphasis on interactions through the vector portal. Within representative simple models, we carry out a complete and precise calculation of the dark matter abundance and of all available constraints. We also introduce a concise framework for comparing different experimental approaches, and use this comparison to identify important ranges of dark matter mass and couplings to better explore in future experiments. The requirement that dark matter be a thermal relic sets a sharp sensitivity target for terrestrial experiments, and so we highlight complementary experimental approaches that can decisively reach this milestone sensitivity over the entire sub-GeV mass range.

  7. Dark matter halos with cores from hierarchical structure formation

    International Nuclear Information System (INIS)

    Strigari, Louis E.; Kaplinghat, Manoj; Bullock, James S.

    2007-01-01

    We show that dark matter emerging from late decays (z or approx. 0.1 Mpc), and simultaneously generates observable constant-density cores in small dark matter halos. We refer to this class of models as meta-cold dark matter (mCDM), because it is born with nonrelativistic velocities from the decays of cold thermal relics. The constant-density cores are a result of the low phase-space density of mCDM at birth. Warm dark matter cannot produce similar size phase-space limited cores without saturating the Lyα power spectrum bounds. Dark matter-dominated galaxy rotation curves and stellar velocity dispersion profiles may provide the best means to discriminate between mCDM and CDM. mCDM candidates are motivated by the particle spectrum of supersymmetric and extra dimensional extensions to the standard model of particle physics

  8. Hypercharged dark matter and direct detection as a probe of reheating.

    Science.gov (United States)

    Feldstein, Brian; Ibe, Masahiro; Yanagida, Tsutomu T

    2014-03-14

    The lack of new physics at the LHC so far weakens the argument for TeV scale thermal dark matter. On the other hand, heavier, nonthermal dark matter is generally difficult to test experimentally. Here we consider the interesting and generic case of hypercharged dark matter, which can allow for heavy dark matter masses without spoiling testability. Planned direct detection experiments will be able to see a signal for masses up to an incredible 1010  GeV, and this can further serve to probe the reheating temperature up to about 109  GeV, as determined by the nonthermal dark matter relic abundance. The Z-mediated nature of the dark matter scattering may be determined in principle by comparing scattering rates on different detector nuclei, which in turn can reveal the dark matter mass. We will discuss the extent to which future experiments may be able to make such a determination.

  9. Direct dark matter searches—Test of the Big Bounce Cosmology

    International Nuclear Information System (INIS)

    Cheung, Yeuk-Kwan E.; Vergados, J.D.

    2015-01-01

    We consider the possibility of using dark matter particle's mass and its interaction cross section as a smoking gun signal of the existence of a Big Bounce at the early stage in the evolution of our currently observed universe. A study of dark matter production in the pre-bounce contraction and the post bounce expansion epochs of this universe reveals a new venue for achieving the observed relic abundance of our present universe. Specifically, it predicts a characteristic relation governing a dark matter mass and interaction cross section and a factor of 1/2 in thermally averaged cross section, as compared to the non-thermal production in standard cosmology, is needed for creating enough dark matter particle to satisfy the currently observed relic abundance because dark matter is being created during the pre-bounce contraction, in addition to the post-bounce expansion. As the production rate is lower than the Hubble expansion rate information of the bounce universe evolution is preserved. Therefore once the value of dark matter mass and interaction cross section are obtained by direct detection in laboratories, this alternative route becomes a signature prediction of the bounce universe scenario. This leads us to consider a scalar dark matter candidate, which if it is light, has important implications on dark matter searches

  10. TeV scale singlet dark matter

    International Nuclear Information System (INIS)

    Ponton, Eduardo; Randall, Lisa

    2009-01-01

    It is well known that stable weak scale particles are viable dark matter candidates since the annihilation cross section is naturally about the right magnitude to leave the correct thermal residual abundance. Many dark matter searches have focused on relatively light dark matter consistent with weak couplings to the Standard Model. However, in a strongly coupled theory, or even if the coupling is just a few times bigger than the Standard Model couplings, dark matter can have TeV-scale mass with the correct thermal relic abundance. Here we consider neutral TeV-mass scalar dark matter, its necessary interactions, and potential signals. We consider signals both with and without higher-dimension operators generated by strong coupling at the TeV scale, as might happen for example in an RS scenario. We find some potential for detection in high energy photons that depends on the dark matter distribution. Detection in positrons at lower energies, such as those PAMELA probes, would be difficult though a higher energy positron signal could in principle be detectable over background. However, a light dark matter particle with higher-dimensional interactions consistent with a TeV cutoff can in principle match PAMELA data.

  11. Probing neutrino dark energy with extremely high-energy cosmic neutrinos

    International Nuclear Information System (INIS)

    Ringwald, A.; Schrempp, L.

    2006-06-01

    Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 10 13 GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR. (Orig.)

  12. When the universe expands too fast: relentless dark matter

    Science.gov (United States)

    D'Eramo, Francesco; Fernandez, Nicolas; Profumo, Stefano

    2017-05-01

    We consider a modification to the standard cosmological history consisting of introducing a new species phi whose energy density red-shifts with the scale factor a like ρphi propto a-(4+n). For 0n>, such a red-shift is faster than radiation, hence the new species dominates the energy budget of the universe at early times while it is completely negligible at late times. If equality with the radiation energy density is achieved at low enough temperatures, dark matter can be produced as a thermal relic during the new cosmological phase. Dark matter freeze-out then occurs at higher temperatures compared to the standard case, implying that reproducing the observed abundance requires significantly larger annihilation rates. Here, we point out a completely new phenomenon, which we refer to as relentless dark matter: for large enough n, unlike the standard case where annihilation ends shortly after the departure from thermal equilibrium, dark matter particles keep annihilating long after leaving chemical equilibrium, with a significant depletion of the final relic abundance. Relentless annihilation occurs for n >= 2 and n >= 4 for s-wave and p-wave annihilation, respectively, and it thus occurs in well motivated scenarios such as a quintessence with a kination phase. We discuss a few microscopic realizations for the new cosmological component and highlight the phenomenological consequences of our calculations for dark matter searches.

  13. When the universe expands too fast: relentless dark matter

    Energy Technology Data Exchange (ETDEWEB)

    D' Eramo, Francesco; Fernandez, Nicolas; Profumo, Stefano, E-mail: fderamo@ucsc.edu, E-mail: nfernan2@ucsc.edu, E-mail: profumo@ucsc.edu [Department of Physics, University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064 (United States)

    2017-05-01

    We consider a modification to the standard cosmological history consisting of introducing a new species φ whose energy density red-shifts with the scale factor a like ρ{sub φ} ∝ a {sup −(4+} {sup n} {sup )}. For 0 n >, such a red-shift is faster than radiation, hence the new species dominates the energy budget of the universe at early times while it is completely negligible at late times. If equality with the radiation energy density is achieved at low enough temperatures, dark matter can be produced as a thermal relic during the new cosmological phase. Dark matter freeze-out then occurs at higher temperatures compared to the standard case, implying that reproducing the observed abundance requires significantly larger annihilation rates. Here, we point out a completely new phenomenon, which we refer to as relentless dark matter: for large enough n , unlike the standard case where annihilation ends shortly after the departure from thermal equilibrium, dark matter particles keep annihilating long after leaving chemical equilibrium, with a significant depletion of the final relic abundance. Relentless annihilation occurs for n ≥ 2 and n ≥ 4 for s -wave and p -wave annihilation, respectively, and it thus occurs in well motivated scenarios such as a quintessence with a kination phase. We discuss a few microscopic realizations for the new cosmological component and highlight the phenomenological consequences of our calculations for dark matter searches.

  14. Scalar modes of the relic gravitons

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    In conformally flat background geometries the long wavelength gravitons can be described in the fluid approximation and they induce scalar fluctuations both during inflation and in the subsequent radiation-dominated epoch. While this effect is minute and suppressed for a de Sitter stage of expansion, the fluctuations of the energy-momentum pseudo-tensor of the graviton fluid lead to curvature perturbations that increase with time all along the post-inflationary evolution. An explicit calculation of these effects is presented for a standard thermal history and it is shown that the growth of the curvature perturbations caused by the long wavelength modes is approximately compensated by the slope of the power spectra of the energy density, pressure and anisotropic stress of the relic gravitons.

  15. Electroweak baryogenesis, large Yukawas and dark matter

    International Nuclear Information System (INIS)

    Provenza, Alessio; Quiros, Mariano; Ullio, Piero

    2005-01-01

    It has recently been shown that the electroweak baryogenesis mechanism is feasible in Standard Model extensions containing extra fermions with large Yukawa couplings. We show here that the lightest of these fermionic fields can naturally be a good candidate for cold dark matter. We find regions in the parameter space where the thermal relic abundance of this particle is compatible with the dark matter density of the Universe as determined by the WMAP experiment. We study direct and indirect dark matter detection for this model and compare with current experimental limits and prospects for upcoming experiments. We find, contrary to the standard lore, that indirect detection searches are more promising than direct ones, and they already exclude part of the parameter space

  16. Elementary Goldstone Higgs Boson and Dark Matter

    DEFF Research Database (Denmark)

    Alanne, Tommi; Gertov, Helene; Sannino, Francesco

    2015-01-01

    We investigate a perturbative extension of the Standard Model featuring elementary pseudo-Goldstone Higgs and dark matter particles. These are two of the five Goldstone bosons parametrising the SU(4)/Sp(4) coset space. They acquire masses, and therefore become pseudo-Goldstone bosons, due...... of the theory, the quantum corrections are precisely calculable. The remaining pseudo-Goldstone boson is identified with the dark matter candidate because it is neutral with respect to the Standard Model and stable. By a direct comparison with the Large Hadron Collider experiments, the model is found...... to be phenomenologically viable. Furthermore the dark matter particle leads to the observed thermal relic density while respecting the most stringent current experimental constraints....

  17. Neutralino dark matter in BMSSM effective theory

    International Nuclear Information System (INIS)

    Berg, Marcus; Edsjö, Joakim; Lundström, Erik; Sjörs, Stefan; Gondolo, Paolo

    2009-01-01

    We study thermal neutralino dark matter in an effective field theory extension of the MSSM, called ''Beyond the MSSM'' (BMSSM) in Dine, Seiberg and Thomas (2007). In this class of effective field theories, the field content of the MSSM is unchanged, but the little hierarchy problem is alleviated by allowing small corrections to the Higgs/higgsino part of the Lagrangian. We perform parameter scans and compute the dark matter relic density. The light higgsino LSP scenario is modified the most; we find new regions of parameter space compared to the standard MSSM. This involves interesting interplay between the WMAP dark matter bounds and the LEP chargino bound. We also find some changes for gaugino LSPs, partly due to annihilation through a Higgs resonance, and partly due to coannihilation with light top squarks in models that are ruled in by the new effective terms

  18. Higgsino-like dark matter from sneutrino late decays

    Directory of Open Access Journals (Sweden)

    Anibal D. Medina

    2017-07-01

    Full Text Available We consider Higgsino-like dark matter (DM in the Minimal Supersymmetric Standard Model (MSSM with additional right-handed neutrino chiral superfields, and propose a new non-thermal way of generating the right amount of relic DM via sneutrino late decays. Due to the large DM annihilation cross-section, decays must occur at lower temperatures than the freeze-out temperature Td≪TF,χ˜10∼μ/25, implying a mostly right-handed lightest sneutrino with very small Yukawa interactions. In that context, the right amount of Higgsino-like DM relic density can be accounted for if sneutrinos are produced via thermal freeze-in in the early Universe.

  19. An intermediate framework between WIMP, FIMP, and EWIP dark matter

    International Nuclear Information System (INIS)

    Yaguna, Carlos E.

    2012-01-01

    WIMP (Weakly Interacting Massive Particle), FIMP (Feebly interacting Massive Particle) and EWIP (Extremely Weakly Interacting Particle) dark matter are different theoretical frameworks that have been postulated to explain the dark matter. In this paper we examine an intermediate scenario that combines features from these three frameworks. It consists of a weakly interacting particle — à la WIMP — that does not reach thermal equilibrium in the early Universe — à la FIMP — and whose relic density is determined by the reheating temperature of the Universe — à la EWIP. As an example, an explicit realization of this framework, based on the singlet scalar model of dark matter, is analyzed in detail. In particular, the relic density is studied as a function of the parameters of the model, and the new viable region within this intermediate scenario is determined. Finally, it is shown that this alternative framework of dark matter allows for arbitrarily heavy dark matter particles and that it suggests a connection between dark matter and inflation

  20. LEP shines light on dark matter

    International Nuclear Information System (INIS)

    Fox, Patrick J.; Harnik, Roni; Kopp, Joachim; Tsai, Yuhsin

    2011-01-01

    Dark matter pair production at high energy colliders may leave observable signatures in the energy and momentum spectra of the objects recoiling against the dark matter. We use LEP data on monophoton events with large missing energy to constrain the coupling of dark matter to electrons. Within a large class of models, our limits are complementary to and competitive with limits on dark matter annihilation and on WIMP-nucleon scattering from indirect and direct searches. Our limits, however, do not suffer from systematic and astrophysical uncertainties associated with direct and indirect limits. For example, we are able to rule out light (< or approx. 10 GeV) thermal relic dark matter with universal couplings exclusively to charged leptons. In addition, for dark matter mass below about 80 GeV, LEP limits are stronger than Fermi constraints on annihilation into charged leptons in dwarf spheroidal galaxies. Within its kinematic reach, LEP also provides the strongest constraints on the spin-dependent direct detection cross section in models with universal couplings to both quarks and leptons. In such models the strongest limit is also set on spin-independent scattering for dark matter masses below ∼4 GeV. Throughout our discussion, we consider both low energy effective theories of dark matter, as well as several motivated renormalizable scenarios involving light mediators.

  1. Light dark Higgs boson in minimal sub-GeV dark matter scenarios

    Science.gov (United States)

    Darmé, Luc; Rao, Soumya; Roszkowski, Leszek

    2018-03-01

    Minimal scenarios with light (sub-GeV) dark matter whose relic density is obtained from thermal freeze-out must include new light mediators. In particular, a very well-motivated case is that of a new "dark" massive vector gauge boson mediator. The mass term for such mediator is most naturally obtained by a "dark Higgs mechanism" which leads to the presence of an often long-lived dark Higgs boson whose mass scale is the same as that of the mediator. We study the phenomenology and experimental constraints on two minimal, self-consistent dark sectors that include such a light dark Higgs boson. In one the dark matter is a pseudo-Dirac fermion, in the other a complex scalar. We find that the constraints from BBN and CMB are considerably relaxed in the framework of such minimal dark sectors. We present detection prospects for the dark Higgs boson in existing and projected proton beam-dump experiments. We show that future searches at experiments like Xenon1T or LDMX can probe all the relevant parameter space, complementing the various upcoming indirect constraints from astrophysical observations.

  2. Thermal conduction by dark matter with velocity and momentum-dependent cross-sections

    OpenAIRE

    Vincent, Aaron C.; Scott, Pat

    2013-01-01

    We use the formalism of Gould and Raffelt to compute the dimensionless thermal conduction coefficients for scattering of dark matter particles with standard model nucleons via cross-sections that depend on the relative velocity or momentum exchanged between particles. Motivated by models invoked to reconcile various recent results in direct detection, we explicitly compute the conduction coefficients $\\alpha$ and $\\kappa$ for cross-sections that go as $v_{\\rm rel}^2$, $v_{\\rm rel}^4$, $v_{\\rm...

  3. Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR

    Science.gov (United States)

    Tosi, Federico; Capria, Maria Teresa; De Sanctis, M.C.; Combe, J.-Ph.; Zambon, F.; Nathues, A.; Schröder, S.E.; Li, J.-Y.; Palomba, E.; Longobardo, A.; Blewett, D.T.; Denevi, B.W.; Palmer, E.; Capaccioni, F.; Ammannito, E.; Titus, Timothy N.; Mittlefehldt, D.W.; Sunshine, J.M.; Russell, C.T.; Raymond, C.A.; Dawn/VIR Team,

    2014-01-01

    Remote sensing data acquired during Dawn’s orbital mission at Vesta showed several local concentrations of high-albedo (bright) and low-albedo (dark) material units, in addition to spectrally distinct meteorite impact ejecta. The thermal behavior of such areas seen at local scale (1-10 km) is related to physical properties that can provide information about the origin of those materials. We use Dawn’s Visible and InfraRed (VIR) mapping spectrometer hyperspectral data to retrieve surface temperatures and emissivities, with high accuracy as long as temperatures are greater than 220 K. Some of the dark and bright features were observed multiple times by VIR in the various mission phases at variable spatial resolution, illumination and observation angles, local solar time, and heliocentric distance. This work presents the first temperature maps and spectral emissivities of several kilometer-scale dark and bright material units on Vesta. Results retrieved from the infrared data acquired by VIR show that bright regions generally correspond to regions with lower temperature, while dark regions correspond to areas with higher temperature. During maximum daily insolation and in the range of heliocentric distances explored by Dawn, i.e. 2.23-2.54 AU, the warmest dark unit found on Vesta rises to a temperature of 273 K, while bright units observed under comparable conditions do not exceed 266 K. Similarly, dark units appear to have higher emissivity on average compared to bright units. Dark-material units show a weak anticorrelation between temperature and albedo, whereas the relation is stronger for bright material units observed under the same conditions. Individual features may show either evanescent or distinct margins in the thermal images, as a consequence of the cohesion of the surface material. Finally, for the two categories of dark and bright materials, we were able to highlight the influence of heliocentric distance on surface temperatures, and estimate an

  4. Dark matter and dark radiation

    International Nuclear Information System (INIS)

    Ackerman, Lotty; Buckley, Matthew R.; Carroll, Sean M.; Kamionkowski, Marc

    2009-01-01

    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ('dark electromagnetism') that couples only to dark matter, not to the standard model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark-matter mass is sufficiently high and the dark fine-structure constant α-circumflex is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on α-circumflex comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies α-circumflex -3 for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark-matter dynamics, which remain to be explored.

  5. Relic gravity waves from braneworld inflation

    International Nuclear Information System (INIS)

    Sahni, Varun; Sami, M.; Souradeep, Tarun

    2002-01-01

    We discuss a scenario in which extra dimensional effects allow a scalar field with a steep potential to play the dual role of the inflaton as well as dark energy (quintessence). The post-inflationary evolution of the universe in this scenario is generically characterized by a 'kinetic regime' during which the kinetic energy of the scalar field greatly exceeds its potential energy resulting in a 'stiff' equation of state for scalar field matter P φ ≅ρ φ . The kinetic regime precedes the radiation dominated epoch and introduces an important new feature into the spectrum of relic gravity waves created quantum mechanically during inflation. The amplitude of the gravity wave spectrum increases with the wave number for wavelengths shorter than the comoving horizon scale at the commencement of the radiative regime. This 'blue tilt' is a generic feature of models with steep potentials and imposes strong constraints on a class of inflationary braneworld models. Prospects for detection of the gravity wave background by terrestrial and space-borne gravity wave observatories such as LIGO II and LISA are discussed

  6. A Search for weakly interacting dark matter particles with low temperature detectors capable of simultaneously measuring ionization and heat

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenschein, Andrew Harry [UC, Santa Barbara

    1999-01-01

    Lots of gravitating material that doesn't emit or absorb light seems to be required in all sensible accounts of the dynamics of large-scale structures in the universe. The nature and extent of this mysterious "dark matter" has been one of the central puzzles in cosmology over the last decade. This dissertation describes an experiment that tests one possibility, that the dark matter is in the form of undiscovered Weakly Interacting Massive Particles (WIMPs) produced as a thermal relic of the big bang. In this chapter, we will review the most important observations that suggest the dark matter must exist and discuss the forms it could take.

  7. Dark energy and dark matter from primordial QGP

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, Vaishali, E-mail: vaidvavaishali24@gmail.com; Upadhyaya, G. K., E-mail: gopalujiain@yahoo.co.in [School of Studies in Physics, Vikram University Ujjain (India)

    2015-07-31

    Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.

  8. Implications of LHC searches for Higgs-portal dark matter

    International Nuclear Information System (INIS)

    Djouadi, Abdelhak; Lebedev, Oleg; Mambrini, Yann; Quevillon, Jeremie

    2011-12-01

    The search for the a Standard Model Higgs boson at the LHC is reaching a critical stage as the possible mass range for the particle has become extremely narrow and some signal at a mass of about 125 GeV is starting to emerge. We study the implications of these LHC Higgs searches for Higgs-portal models of dark matter in a rather model independent way. Their impact on the cosmological relic density and on the direct detection rates are studied in the context of generic scalar, vector and fermionic thermal dark matter particles. Assuming a sufficiently small invisible Higgs decay branching ratio, we find that current data, in particular from the XENON experiment, essentially exclude fermionic dark matter as well as light, i.e. with masses below ∼ 60 GeV, scalar and vector dark matter particles. Possible observation of these particles at the planned upgrade of the XENON experiment as well in collider searches is discussed. (orig.)

  9. Prospects for relic neutrino detection

    International Nuclear Information System (INIS)

    Smith, P.F.

    1991-03-01

    The standard big bang model predicts a universal background of relic neutrinos, comparable in number density to the background microwave photons. This neutrino background is undetectable at the present time firstly because the neutrino energy is very low (10 -4 -10 -5 eV) resulting in a very low energy transfer to any conceivable detector, and secondly the low energy gives a lower interaction cross section and hence a very low event rate per unit mass. These obstacles have so far precluded any realistic proposal for relic neutrino detection. The aim of this paper is to illustrate the difficulties in detecting these neutrinos by summarizing six detection ideas which have been previously considered, indicating in each case the problems which have prevented the idea being developed into an experimental proposal. The most promising direction for further study would appear to be that of coherent interactions. So far, no investigations of this idea have resulted in a practical detection scheme, but in this paper one new variation is suggested which could in principle give an observable effect, if the necessary stringent experimental conditions could be created. It is suggested that this may become possible with the aid of foreseeable 21st century developments in nanotechnology. (author)

  10. Relic gravitons and viscous cosmologies

    International Nuclear Information System (INIS)

    Cataldo, Mauricio; Mella, Patricio

    2006-01-01

    Previously it was shown that there exists a class of viscous cosmological models which violate the dominant energy condition for a limited amount of time after which they are smoothly connected to the ordinary radiation era (which preserves the dominant energy conditions). This violation of the dominant energy condition at an early cosmological epoch may influence the slopes of energy spectra of relic gravitons that might be of experimental relevance. However, the bulk viscosity coefficient of these cosmologies became negative during the ordinary radiation era, and then the entropy of the sources driving the geometry decreases with time. We show that in the presence of viscous sources with a linear barotropic equation of state p=γρ we get viscous cosmological models with positive bulk viscous stress during all their evolution, and hence the matter entropy increases with the expansion time. In other words, in the framework of viscous cosmologies, there exist isotropic models compatible with the standard second law of thermodynamics which also may influence the slopes of energy spectra of relic gravitons

  11. Asymmetric capture of Dirac dark matter by the Sun

    International Nuclear Information System (INIS)

    Blennow, Mattias; Clementz, Stefan

    2015-01-01

    Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles and anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models

  12. Asymmetric capture of Dirac dark matter by the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, Mattias; Clementz, Stefan [Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Albanova University Center,106 91, Stockholm (Sweden)

    2015-08-18

    Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles and anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models.

  13. Asymmetric capture of Dirac dark matter by the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, Mattias; Clementz, Stefan, E-mail: emb@kth.se, E-mail: scl@kth.se [Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Albanova University Center, 106 91, Stockholm (Sweden)

    2015-08-01

    Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles and anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models.

  14. Chilly dark sectors and asymmetric reheating

    International Nuclear Information System (INIS)

    Adshead, Peter; Cui, Yanou; Shelton, Jessie

    2016-01-01

    In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N eff , we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.

  15. Chilly dark sectors and asymmetric reheating

    Energy Technology Data Exchange (ETDEWEB)

    Adshead, Peter [Department of Physics, University of Illinois at Urbana-Champaign,Urbana, IL 61801 (United States); Cui, Yanou [Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada); Maryland Center for Fundamental Physics, University of Maryland,College Park, MD 20742 (United States); Shelton, Jessie [Department of Physics, University of Illinois at Urbana-Champaign,Urbana, IL 61801 (United States)

    2016-06-06

    In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N{sub eff}, we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.

  16. Chilly dark sectors and asymmetric reheating

    Science.gov (United States)

    Adshead, Peter; Cui, Yanou; Shelton, Jessie

    2016-06-01

    In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N eff , we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.

  17. Thermal right-handed sneutrino dark matter with a singlet Higgs

    International Nuclear Information System (INIS)

    Cerdeno, David G.

    2009-01-01

    We report on a model in which the right-handed sneutrino is a viable WIMP dark matter candidate. It consists on an extension of the MSSM with a singlet S with coupling SH 1 H 2 in order to solve the μ problem as in the NMSSM, and right-handed neutrinos N with couplings SNN in order to generate dynamically electroweak-scale Majorana masses. Through the direct coupling to the singlet, the sneutrino can not only be thermally produced in the right amount but also have a large enough scattering cross section with nuclei to detect it directly in near future, in contrast with most of other right-handed sneutrino dark matter models.

  18. Thermal dark matter co-annihilating with a strongly interacting scalar

    Science.gov (United States)

    Biondini, S.; Laine, M.

    2018-04-01

    Recently many investigations have considered Majorana dark matter co-annihilating with bound states formed by a strongly interacting scalar field. However only the gluon radiation contribution to bound state formation and dissociation, which at high temperatures is subleading to soft 2 → 2 scatterings, has been included. Making use of a non-relativistic effective theory framework and solving a plasma-modified Schrödinger equation, we address the effect of soft 2 → 2 scatterings as well as the thermal dissociation of bound states. We argue that the mass splitting between the Majorana and scalar field has in general both a lower and an upper bound, and that the dark matter mass scale can be pushed at least up to 5…6TeV.

  19. Dark catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub, E-mail: prateekagrawal@fas.harvard.edu, E-mail: fcyrraci@physics.harvard.edu, E-mail: randall@physics.harvard.edu, E-mail: jscholtz@physics.harvard.edu [Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138 (United States)

    2017-08-01

    Recently it was shown that dark matter with mass of order the weak scale can be charged under a new long-range force, decoupled from the Standard Model, with only weak constraints from early Universe cosmology. Here we consider the implications of an additional charged particle C that is light enough to lead to significant dissipative dynamics on galactic times scales. We highlight several novel features of this model, which can be relevant even when the C particle constitutes only a small fraction of the number density (and energy density). We assume a small asymmetric abundance of the C particle whose charge is compensated by a heavy X particle so that the relic abundance of dark matter consists mostly of symmetric X and X-bar , with a small asymmetric component made up of X and C . As the universe cools, it undergoes asymmetric recombination binding the free C s into ( XC ) dark atoms efficiently. Even with a tiny asymmetric component, the presence of C particles catalyzes tight coupling between the heavy dark matter X and the dark photon plasma that can lead to a significant suppression of the matter power spectrum on small scales and lead to some of the strongest bounds on such dark matter theories. We find a viable parameter space where structure formation constraints are satisfied and significant dissipative dynamics can occur in galactic haloes but show a large region is excluded. Our model shows that subdominant components in the dark sector can dramatically affect structure formation.

  20. Little composite dark matter.

    Science.gov (United States)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-01-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T -parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T -parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling [Formula: see text], thus evading direct detection.

  1. Dark matter detectors

    International Nuclear Information System (INIS)

    Forster, G.

    1995-01-01

    A fundamental question of astrophysics and cosmology is the nature of dark matter. Astrophysical observations show clearly the existence of some kind of dark matter, though they cannot yet reveal its nature. Dark matter can consist of baryonic particles, or of other (known or unknown) elementary particles. Baryonic dark matter probably exists in the form of dust, gas, or small stars. Other elementary particles constituting the dark matter can possibly be measured in terrestrial experiments. Possibilities for dark matter particles are neutrinos, axions and weakly interacting massive particles (WIMPs). While a direct detection of relic neutrinos seems at the moment impossible, there are experiments looking for baryonic dark matter in the form of Massive Compact Halo Objects, and for particle dark matter in the form of axions and WIMPS. (orig.)

  2. A systematic effective operator analysis of semi-annihilating dark matter

    International Nuclear Information System (INIS)

    Cai, Yi; Spray, Andrew

    2017-01-01

    Semi-annihilation is a generic feature of dark matter theories stabilized by symmetries larger than a ℤ 2 . It contributes to thermal freeze out, but is irrelevant for direct and collider searches. This allows semi-annihilating dark matter to avoid those limits in a natural way. We use an effective operator approach to make the first model-independent study of the associated phenomenology. We enumerate all possible operators that contribute to 2→2 semi-annihilation up to dimension 6, plus leading terms at dimension 7. We find that when the only light states charged under the dark symmetry are dark matter, the model space is highly constrained. Only fifteen operators exist, and just two for single-component dark sectors. If there can be additional light, unstable “dark partner” states the possible phenomenology greatly increases, at the cost of additional model dependence in the dark partner decay modes. We also derive the irreducible constraints on models with single-component dark matter from cosmic ray searches and astrophysical observations. We find that for semi-annihilation to electrons and light quarks, the thermal relic cross sections can be excluded for dark matter masses up to 100 GeV. However, significant model space for semi-annihilating dark matter remains.

  3. Suppressing gravitino thermal production with a temperature-dependent messenger coupling

    International Nuclear Information System (INIS)

    Badziak, Marcin; Dalianis, Ioannis; Lalak, Zygmunt

    2016-01-01

    We show that the constraints on GMSB theories from the gravitino cosmology can be significantly relaxed if the messenger-spurion coupling is temperature dependent. We demonstrate this novel mechanism in a scenario in which this coupling depends on the VEV of an extra singlet field S that interacts with the thermalized plasma which can result in a significantly suppressed gravitino production rate. In such a scenario the relic gravitino abundance is determined by the thermal dynamics of the S field and it is easy to fit the observed dark matter abundance evading the stringent constraints on the reheating temperature, thus making gravitino dark matter consistent with thermal leptogenesis.

  4. Nonthermal production of dark matter from primordial black holes

    Science.gov (United States)

    Allahverdi, Rouzbeh; Dent, James; Osinski, Jacek

    2018-03-01

    We present a scenario for nonthermal production of dark matter from evaporation of primordial black holes. A period of very early matter domination leads to formation of black holes with a maximum mass of ≃2 ×108 g , whose subsequent evaporation prior to big bang nucleosynthesis can produce all of the dark matter in the Universe. We show that the correct relic abundance can be obtained in this way for thermally underproduced dark matter in the 100 GeV-10 TeV mass range. To achieve this, the scalar power spectrum at small scales relevant for black hole formation should be enhanced by a factor of O (105) relative to the scales accessible by the cosmic microwave background experiments.

  5. Dark Matter candidates in a baryogenesis inspired scenario

    International Nuclear Information System (INIS)

    Provenza, A; Quiros, M; Ullio, P

    2006-01-01

    It has recently been shown that the electroweak baryogenesis mechanism is feasible in Standard Model extensions containing extra fermions with large Yukawa couplings. We show that the lightest of these fermionic fields can naturally be a good candidate for cold dark matter. We find regions in the parameter space where the thermal relic abundance of this particle is compatible with the dark matter density of the Universe as determined by the WMAP experiment. We study direct and indirect dark matter detection for this model and compare with current experimental limits and prospects for upcoming experiments. We find, contrary to the standard lore, that indirect detection searches are more promising than direct ones, and they already exclude part of the parameter space

  6. Simplified models of mixed dark matter

    International Nuclear Information System (INIS)

    Cheung, Clifford; Sanford, David

    2014-01-01

    We explore simplified models of mixed dark matter (DM), defined here to be a stable relic composed of a singlet and an electroweak charged state. Our setup describes a broad spectrum of thermal DM candidates that can naturally accommodate the observed DM abundance but are subject to substantial constraints from current and upcoming direct detection experiments. We identify ''blind spots'' at which the DM-Higgs coupling is identically zero, thus nullifying direct detection constraints on spin independent scattering. Furthermore, we characterize the fine-tuning in mixing angles, i.e. well-tempering, required for thermal freeze-out to accommodate the observed abundance. Present and projected limits from LUX and XENON1T force many thermal relic models into blind spot tuning, well-tempering, or both. This simplified model framework generalizes bino-Higgsino DM in the MSSM, singlino-Higgsino DM in the NMSSM, and scalar DM candidates that appear in models of extended Higgs sectors

  7. Hunting the dark Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Michael; Grohsjean, Alexander; Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Schwanenberger, Christian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Penning, Bjoern [Bristol Univ. (United Kingdom). H.H. Wills Physics Lab.

    2017-05-15

    We discuss a novel signature of dark matter production at the LHC resulting from the emission of an additional Higgs boson in the dark sector. The presence of such a dark Higgs boson is motivated simultaneously by the need to generate the masses of the particles in the dark sector and the possibility to relax constraints from the dark matter relic abundance by opening up a new annihilation channel. If the dark Higgs boson decays into Standard Model states via a small mixing with the Standard Model Higgs boson, one obtains characteristic large-radius jets in association with missing transverse momentum that can be used to efficiently discriminate signal from backgrounds. We present the sensitivities achievable in LHC searches for dark Higgs bosons with already collected data and demonstrate that such searches can probe large regions of parameter space that are inaccessible to conventional mono-jet or di-jet searches.

  8. Hunting the dark Higgs

    International Nuclear Information System (INIS)

    Duerr, Michael; Grohsjean, Alexander; Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Schwanenberger, Christian; Penning, Bjoern

    2017-05-01

    We discuss a novel signature of dark matter production at the LHC resulting from the emission of an additional Higgs boson in the dark sector. The presence of such a dark Higgs boson is motivated simultaneously by the need to generate the masses of the particles in the dark sector and the possibility to relax constraints from the dark matter relic abundance by opening up a new annihilation channel. If the dark Higgs boson decays into Standard Model states via a small mixing with the Standard Model Higgs boson, one obtains characteristic large-radius jets in association with missing transverse momentum that can be used to efficiently discriminate signal from backgrounds. We present the sensitivities achievable in LHC searches for dark Higgs bosons with already collected data and demonstrate that such searches can probe large regions of parameter space that are inaccessible to conventional mono-jet or di-jet searches.

  9. Gamma-ray boxes from axion-mediated dark matter

    International Nuclear Information System (INIS)

    Ibarra, Alejandro; Gehler, Sergio López; Pato, Miguel; Lee, Hyun Min; Park, Wan-Il

    2013-01-01

    We compute the gamma-ray output of axion-mediated dark matter and derive the corresponding constraints set by recent data. In such scenarios the dark matter candidate is a Dirac fermion that pair-annihilates into axions and/or scalars. Provided that the axion decays (at least partly) into photons, these models naturally give rise to a box-shaped gamma-ray spectrum that may present two distinct phenomenological behaviours: a narrow box, resembling a line at half the dark matter mass, or a wide box, spanning an extensive energy range up to the dark matter mass. Remarkably, we find that in both cases a sizable gamma-ray flux is predicted for a thermal relic without fine-tuning the model parameters nor invoking boost factors. This large output is in line with recent Fermi-LAT observations towards the galactic centre region and is on the verge of being excluded. We then make use of the Fermi-LAT and H.E.S.S. data to derive robust, model-independent upper limits on the dark matter annihilation cross section for the narrow and wide box scenarios. H.E.S.S. constraints, in particular, turn out to match the ones from Fermi-LAT at hundreds of GeV and extend to multi-TeV masses. Future Čerenkov telescopes will likely probe gamma-ray boxes from thermal dark matter relics in the whole multi-TeV range, a region hardly accessible to direct detection, collider searches and other indirect detection strategies

  10. RELICS of the Cosmic Dawn

    Science.gov (United States)

    Bradac, Marusa; Coe, Dan; Strait, Victoria; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trenti, Michele; Stark, Daniel; Oesch, Pascal; Lam, Danel; Carrasco Nunez, Daniela Patricia; Paterno-Mahler, Rachel; Frye, Brenda

    2018-05-01

    When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose to complete deep Spitzer imaging of the fields behind the 10 most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 440 Spitzer hours). 6 clusters out of 10 are still lacking deep data. This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 60 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.

  11. RELICS of the Cosmic Dawn

    Science.gov (United States)

    Bradac, Marusa; Coe, Dan; Huang, Kuang-Han; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trentu, Michele; Stark, Daniel; Bouwens, Rychard; Oesch, Pascal; Lam, Daniel; Patricia Carasco Nunez, Daniela; Paterno-Mahler, Rachel; Strait, Victoria

    2017-10-01

    When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind the most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 550 Spitzer hours). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 20 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal is a unique opportunity to establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed, this result will require a paradigm shift in our understanding of the earliest star formation.

  12. Perspectives for Detection of a Higgsino-like Relic Neutralino

    CERN Document Server

    Bottino, A; Mignola, G; Olechowski, M; Scopel, S

    1996-01-01

    It has been conjectured by Ambrosanio, Kane, Kribs, Martin and Mrenna (AKM) that the CDF event $p \\bar p \\to e^+ e^- \\gamma \\gamma + missing E_T$ is due to a decay chain involving two neutralino states (the lightest and the next-to-lightest ones). The lightest neutralino ($\\chi_{AKM}$) has been further considered by Kane and Wells as a candidate for cold dark matter. In this paper we examine the properties of relic $\\chi_{AKM}$'s in their full parameter space, and examine the perspectives for detection by comparing theoretical predictions to sensitivities of various experimental searches. We find that for most regions of the parameter space the detectability of a relic $\\chi_{AKM}$ would require quite substantial improvements in current experimental sensitivities. The measurements of neutrino fluxes from the center of the Earth and of an excess of $\\bar{p}/p$ in cosmic rays are shown to offer some favorable perspectives for investigating a region of the the model.

  13. THE DETECTABILITY OF DARK MATTER ANNIHILATION WITH FERMI USING THE ANISOTROPY ENERGY SPECTRUM OF THE GAMMA-RAY BACKGROUND

    International Nuclear Information System (INIS)

    Hensley, Brandon S.; Pavlidou, Vasiliki; Siegal-Gaskins, Jennifer M.

    2010-01-01

    The energy dependence of the anisotropy (the anisotropy energy spectrum) of the large-scale diffuse gamma-ray background can reveal the presence of multiple source populations. Annihilating dark matter in the substructure of the Milky Way halo could give rise to a modulation in the anisotropy energy spectrum of the diffuse gamma-ray emission measured by Fermi, enabling the detection of a dark matter signal. We determine the detectability of a dark-matter-induced modulation for scenarios in which unresolved blazars are the primary contributor to the measured emission above ∼1 GeV and find that in some scenarios pair-annihilation cross sections on the order of the value expected for thermal relic dark matter can produce a detectable feature. We anticipate that the sensitivity of this technique to specific dark matter models could be improved by tailored likelihood analysis methods.

  14. Dark Matter Detection: Current Status

    International Nuclear Information System (INIS)

    Akerib, Daniel S.

    2011-01-01

    Overwhelming observational evidence indicates that most of the matter in the Universe consists of non-baryonic dark matter. One possibility is that the dark matter is Weakly-Interacting Massive Particles (WIMPs) that were produced in the early Universe. These relics could comprise the Milky Way's dark halo and provide evidence for new particle physics, such as Supersymmetry. This talk focuses on the status of current efforts to detect dark matter by testing the hypothesis that WIMPs exist in the galactic halo. WIMP searches have begun to explore the region of parameter space where SUSY particles could provide dark matter candidates.

  15. Unified scenario for composite right-handed neutrinos and dark matter

    Science.gov (United States)

    Davoudiasl, Hooman; Giardino, Pier Paolo; Neil, Ethan T.; Rinaldi, Enrico

    2017-12-01

    We entertain the possibility that neutrino masses and dark matter (DM) originate from a common composite dark sector. A minimal effective theory can be constructed based on a dark S U (3 )D interaction with three flavors of massless dark quarks; electroweak symmetry breaking gives masses to the dark quarks. By assigning a Z2 charge to one flavor, a stable "dark kaon" can provide a good thermal relic DM candidate. We find that "dark neutrons" may be identified as right handed Dirac neutrinos. Some level of "neutron-anti-neutron" oscillation in the dark sector can then result in non-zero Majorana masses for light standard model neutrinos. A simple ultraviolet completion is presented, involving additional heavy S U (3 )D-charged particles with electroweak and lepton Yukawa couplings. At our benchmark point, there are "dark pions" that are much lighter than the Higgs and we expect spectacular collider signals arising from the UV framework. This includes the decay of the Higgs boson to τ τ ℓℓ', where ℓ(ℓ') can be any lepton, with displaced vertices. We discuss the observational signatures of this UV framework in dark matter searches and primordial gravitational wave experiments; the latter signature is potentially correlated with the H →τ τ ℓℓ' decay.

  16. New viable region of an inert Higgs doublet dark matter model with scotogenic extension

    Science.gov (United States)

    Borah, Debasish; Gupta, Aritra

    2017-12-01

    We explore the intermediate dark matter mass regime of the inert Higgs doublet model, approximately between 400 and 550 GeV, which is allowed by latest constraints from direct and indirect detection experiments, but the thermal relic abundance remains suppressed. We extend the model by three copies of right-handed neutrinos, odd under the built-in Z2 symmetry of the model. This discrete Z2 symmetry of the model allows these right-handed neutrinos to couple to the usual lepton doublets through the inert Higgs doublet allowing the possibility of radiative neutrino mass in the scotogenic fashion. Apart from generating nonzero neutrino mass, such an extension can also revive the intermediate dark matter mass regime. The late decay of the lightest right-handed neutrino to dark matter makes it possible for the usual thermally underabundant dark matter in this intermediate mass regime to satisfy the correct relic abundance limit. The revival of this wide intermediate mass range can have relevance not only for direct and indirect search experiments but also for neutrino experiments as the long lifetime of the lightest right-handed neutrino also results in almost vanishing lightest neutrino mass.

  17. Mirage in the sky: Nonthermal dark matter, gravitino problem, and cosmic ray anomalies

    International Nuclear Information System (INIS)

    Dutta, Bhaskar; Sinha, Kuver; Leblond, Louis

    2009-01-01

    Recent anomalies in cosmic rays could be due to dark matter annihilation in our galaxy. In order to get the required large cross section to explain the data while still obtaining the right relic density, we rely on a nonstandard thermal history between dark matter freeze out and big-bang nucleosynthesis. We show that through a reheating phase from the decay of a heavy moduli or even the gravitino, we can produce the right relic density of dark matter if its self-annihilation cross section is large enough. In addition to fitting the recent data, this scenario solves the cosmological moduli and gravitino problems. We illustrate this mechanism with a specific example in the context of U(1) B-L extended minimal supersymmetric standard model where supersymmetry is broken via mirage mediation. These string motivated models naturally contain heavy moduli decaying to the gravitino, whose subsequent decay to the LSP can reheat the Universe at a low temperature. The right-handed sneutrino and the B-L gaugino can both be viable dark matter candidates with a large cross section. They are leptophilic because of B-L charges. We also show that it is possible to distinguish the nonthermal from the thermal scenario (using Sommerfeld enhancement) in direct detection experiments for certain regions of parameter space.

  18. The number density of a charged relic

    International Nuclear Information System (INIS)

    Berger, C.F.; Kraml, S.; Palorini, F.

    2008-07-01

    We investigate scenarios in which a charged, long-lived scalar particle decouples from the primordial plasma in the Early Universe. We compute the number density at time of freeze-out considering both the cases of abelian and non-abelian interactions and including the effect of Sommerfeld enhancement at low initial velocity. We also discuss as extreme case the maximal cross section that fulfils the unitarity bound. We then compare these number densities to the exotic nuclei searches for stable relics and to the BBN bounds on unstable relics and draw conclusions for the cases of a stau or stop NLSP in supersymmetric models with a gravitino or axino LSP. (orig.)

  19. The number density of a charged relic

    Energy Technology Data Exchange (ETDEWEB)

    Berger, C.F. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics]|[California Univ., Santa Barbara, CA (United States). Kavli Inst. for Theoretical Physics; Covi, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kraml, S. [CNRS/IN2P3, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie; Palorini, F. [Lyon Univ., UCBL, CNRS/IN2P3, Villeurbanne (France). IPN de Lyon

    2008-07-15

    We investigate scenarios in which a charged, long-lived scalar particle decouples from the primordial plasma in the Early Universe. We compute the number density at time of freeze-out considering both the cases of abelian and non-abelian interactions and including the effect of Sommerfeld enhancement at low initial velocity. We also discuss as extreme case the maximal cross section that fulfils the unitarity bound. We then compare these number densities to the exotic nuclei searches for stable relics and to the BBN bounds on unstable relics and draw conclusions for the cases of a stau or stop NLSP in supersymmetric models with a gravitino or axino LSP. (orig.)

  20. GALAXY CLUSTER RADIO RELICS IN ADAPTIVE MESH REFINEMENT COSMOLOGICAL SIMULATIONS: RELIC PROPERTIES AND SCALING RELATIONSHIPS

    International Nuclear Information System (INIS)

    Skillman, Samuel W.; Hallman, Eric J.; Burns, Jack O.; Smith, Britton D.; O'Shea, Brian W.; Turk, Matthew J.

    2011-01-01

    Cosmological shocks are a critical part of large-scale structure formation, and are responsible for heating the intracluster medium in galaxy clusters. In addition, they are capable of accelerating non-thermal electrons and protons. In this work, we focus on the acceleration of electrons at shock fronts, which is thought to be responsible for radio relics-extended radio features in the vicinity of merging galaxy clusters. By combining high-resolution adaptive mesh refinement/N-body cosmological simulations with an accurate shock-finding algorithm and a model for electron acceleration, we calculate the expected synchrotron emission resulting from cosmological structure formation. We produce synthetic radio maps of a large sample of galaxy clusters and present luminosity functions and scaling relationships. With upcoming long-wavelength radio telescopes, we expect to see an abundance of radio emission associated with merger shocks in the intracluster medium. By producing observationally motivated statistics, we provide predictions that can be compared with observations to further improve our understanding of magnetic fields and electron shock acceleration.

  1. The 'relics of Joan of Arc'

    DEFF Research Database (Denmark)

    Charlier, P.; Poupon, J.; Eb, A.

    2010-01-01

    Archaeological remains can provide concrete cases, making it possible to develop, refine or validate medico-legal techniques. In the case of the so-called 'Joan of Arc's relics' (a group of bone and archaeological remains known as the 'Bottle of Chinon'), 14 specialists analysed the samples such ...

  2. Mass limits on neutralino dark matter

    International Nuclear Information System (INIS)

    Gilmore, Rudy C.

    2007-01-01

    We set an upper limit on the mass of a supersymmetric neutralino dark matter particle using the MicrOMEGAS and DarkSUSY software packages and the most recent constraints on relic density from combined Wilkinson Microwave Anisotropy Probe and Sloan Digital Sky Survey data. We explore several different possible scenarios within the minimal supersymmetric standard model, including coannihilation with charginos and sfermions and annihilation through a massive Higgs resonance, using low-energy mass inputs. We find that no coannihilation scenario is consistent with dark matter in observed abundance with a mass greater than 2.5 TeV for a W-ino-type particle or 1.8 TeV for a Higgsino-type. Contrived scenarios involving Higgs resonances with finely tuned mass parameters can allow masses as high as 34 TeV. The resulting gamma-ray energy distribution is not in agreement with the recent multi-TeV gamma-ray spectrum observed by H. E. S. S. originating from the center of the Milky Way. Our results are relevant only for dark matter densities resulting from a thermal origin

  3. Baryonic dark matter

    Science.gov (United States)

    Silk, Joseph

    1991-01-01

    Both canonical primordial nucleosynthesis constraints and large-scale structure measurements, as well as observations of the fundamental cosmological parameters, appear to be consistent with the hypothesis that the universe predominantly consists of baryonic dark matter (BDM). The arguments for BDM to consist of compact objects that are either stellar relics or substellar objects are reviewed. Several techniques for searching for halo BDM are described.

  4. Searching for Dark Matter Annihilation in the Smith High-Velocity Cloud

    Science.gov (United States)

    Drlica-Wagner, Alex; Gomez-Vargas, German A.; Hewitt, John W.; Linden, Tim; Tibaldo, Luigi

    2014-01-01

    Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use gamma-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant gamma-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (approximately 3 x 10 (sup -26) cubic centimeters per second) for dark matter masses less than or approximately 30 gigaelectronvolts annihilating via the B/B- bar oscillation or tau/antitau channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.

  5. Cosmological implications of a dark matter self-interaction energy density

    International Nuclear Information System (INIS)

    Stiele, Rainer; Boeckel, Tillmann; Schaffner-Bielich, Juergen

    2010-01-01

    We investigate cosmological constraints on an energy density contribution of elastic dark matter self-interactions characterized by the mass of the exchange particle m SI and coupling constant α SI . Because of the expansion behavior in a Robertson-Walker metric we investigate self-interacting dark matter that is warm in the case of thermal relics. The scaling behavior of dark matter self-interaction energy density (ρ SI ∝a -6 ) shows that it can be the dominant contribution (only) in the very early universe. Thus its impact on primordial nucleosynthesis is used to restrict the interaction strength m SI /√(α SI ), which we find to be at least as strong as the strong interaction. Furthermore we explore dark matter decoupling in a self-interaction dominated universe, which is done for the self-interacting warm dark matter as well as for collisionless cold dark matter in a two component scenario. We find that strong dark matter self-interactions do not contradict superweak inelastic interactions between self-interacting dark matter and baryonic matter (σ A SIDM weak ) and that the natural scale of collisionless cold dark matter decoupling exceeds the weak scale (σ A CDM >σ weak ) and depends linearly on the particle mass. Finally structure formation analysis reveals a linear growing solution during self-interaction domination (δ∝a); however, only noncosmological scales are enhanced.

  6. Searching for dark matter annihilation in the Smith high-velocity cloud

    International Nuclear Information System (INIS)

    Drlica-Wagner, Alex; Gómez-Vargas, Germán A.; Hewitt, John W.; Linden, Tim; Tibaldo, Luigi

    2014-01-01

    Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use γ-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant γ-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (∼ 3 × 10 –26 cm 3 s –1 ) for dark matter masses ≲ 30 GeV annihilating via the b b-bar or τ + τ – channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.

  7. Searching for dark matter annihilation in the Smith high-velocity cloud

    Energy Technology Data Exchange (ETDEWEB)

    Drlica-Wagner, Alex [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Gómez-Vargas, Germán A. [Departamento de Fisíca, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago (Chile); Hewitt, John W. [CRESST, University of Maryland, Baltimore County, Baltimore, MD 21250 (United States); Linden, Tim [The Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Tibaldo, Luigi [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-07-20

    Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use γ-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant γ-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (∼ 3 × 10{sup –26} cm{sup 3} s{sup –1}) for dark matter masses ≲ 30 GeV annihilating via the b b-bar or τ{sup +}τ{sup –} channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.

  8. Resonant SIMP dark matter

    Directory of Open Access Journals (Sweden)

    Soo-Min Choi

    2016-07-01

    Full Text Available We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1D. After the U(1D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3→2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  9. Identifying WIMP dark matter from particle and astroparticle data

    Science.gov (United States)

    Bertone, Gianfranco; Bozorgnia, Nassim; Kim, Jong Soo; Liem, Sebastian; McCabe, Christopher; Otten, Sydney; Ruiz de Austri, Roberto

    2018-03-01

    One of the most promising strategies to identify the nature of dark matter consists in the search for new particles at accelerators and with so-called direct detection experiments. Working within the framework of simplified models, and making use of machine learning tools to speed up statistical inference, we address the question of what we can learn about dark matter from a detection at the LHC and a forthcoming direct detection experiment. We show that with a combination of accelerator and direct detection data, it is possible to identify newly discovered particles as dark matter, by reconstructing their relic density assuming they are weakly interacting massive particles (WIMPs) thermally produced in the early Universe, and demonstrating that it is consistent with the measured dark matter abundance. An inconsistency between these two quantities would instead point either towards additional physics in the dark sector, or towards a non-standard cosmology, with a thermal history substantially different from that of the standard cosmological model.

  10. The last refuge of mixed wino-Higgsino dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Beneke, M. [Physik Department T31, Technische Universität München,James-Franck-Straße 1, D-85748 Garching (Germany); Bharucha, A. [Aix Marseille Univ, Université de Toulon, CNRS, CPT,Marseille (France); Hryczuk, A. [Department of Physics, University of Oslo,Box 1048, NO-0371 Oslo (Norway); National Centre for Nuclear Research,Hoża 69, 00-681, Warsaw (Poland); Recksiegel, S. [Physik Department T31, Technische Universität München,James-Franck-Straße 1, D-85748 Garching (Germany); Ruiz-Femenía, P. [Physik Department T31, Technische Universität München,James-Franck-Straße 1, D-85748 Garching (Germany); Departamento de Física Teórica and Instituto de Física Teórica UAM-CSIC,Universidad Autónoma de Madrid,E-28049 Madrid (Spain)

    2017-01-02

    We delineate the allowed parameter and mass range for a wino-like dark matter particle containing some Higgsino admixture in the MSSM by analysing the constraints from diffuse gamma-rays from the dwarf spheroidal galaxies, galactic cosmic rays, direct detection and cosmic microwave background anisotropies. A complete calculation of the Sommerfeld effect for the mixed-neutralino case is performed. We find that the combination of direct and indirect searches poses significant restrictions on the thermally produced wino-Higgsino dark matter with correct relic density. For μ>0 nearly the entire parameter space considered is excluded, while for μ<0 a substantial region is still allowed, provided conservative assumptions on astrophysical uncertainties are adopted.

  11. Heavy stable charged tracks as signatures of non-thermal dark matter at the LHC: a study in some non-supersymmetric scenarios

    Science.gov (United States)

    Ghosh, Avirup; Mondal, Tanmoy; Mukhopadhyaya, Biswarup

    2017-12-01

    We consider two theoretical scenarios, each including a ℤ 2-odd sector and leading to an elementary dark matter candidate. The first one is a variant of the Type-III seesaw model where one lepton triplet is ℤ 2-odd, together with a heavy sterile neutrino. It leads to a fermionic dark matter, together with the charged component of the triplet being a quasi-stable particle which decays only via a higher-dimensional operator suppressed by a high scale. The second model consists of an inert scalar doublet together with a ℤ 2-odd right-handed Majorana neutrino dark matter. A tiny Yukawa coupling delays the decay of the charged component of the inert doublet into the dark matter candidate, making the former long-lived on the scale of collider detectors. The parameter space of each model has been constrained by big-bang nucleosynthesis constraints, and also by estimating the contribution to the relic density through freeze-out of the long-lived charged particle as well the freeze-in production of the dark matter candidate. We consider two kinds of signals at the Large Hadron Collider for each case. For the first kind of models, namely two charged tracks and single track [InlineMediaObject not available: see fulltext.] and for the second kind, the characteristic signals are opposite as well as same-sign charged track pairs. We perform a detailed analysis using event selection criteria consistent with the current experimental programmes. It is found that the scenario with a lepton triplet can be probed upto 960 (1190) GeV with an integrated luminosity of 300 (3000) fb-1, while the corresponding numbers for the inert doublet scenario are 630 (800) GeV. Furthermore, the second kind of signal mentioned in each case allows us to differentiate different dark matter scenarios from each other.

  12. Dark matter model with non-Abelian gauge symmetry

    International Nuclear Information System (INIS)

    Zhang Hao; Li Chongsheng; Cao Qinghong; Li Zhao

    2010-01-01

    We propose a dark-matter model in which the dark sector is gauged under a new SU(2) group. The dark sector consists of SU(2) dark gauge fields, two triplet dark Higgs fields, and two dark fermion doublets (dark-matter candidates in this model). The dark sector interacts with the standard model sector through kinetic and mass mixing operators. The model explains both PAMELA and Fermi LAT data very well and also satisfies constraints from both the dark-matter relic density and standard model precision observables. The phenomenology of the model at the LHC is also explored.

  13. Research on Splicing Method of Digital Relic Fragment Model

    Science.gov (United States)

    Yan, X.; Hu, Y.; Hou, M.

    2018-04-01

    In the course of archaeological excavation, a large number of pieces of cultural relics were unearthed, and the restoration of these fragments was done manually by traditional arts and crafts experts. In this process, cultural relics experts often try to splice the existing cultural relics, and then use adhesive to stick together the fragments of correct location, which will cause irreversible secondary damage to cultural relics. In order to minimize such damage, the surveyors combine 3D laser scanning with computer technology, and use the method of establishing digital cultural relics fragments model to make virtual splicing of cultural relics. The 3D software on the common market can basically achieve the model translation and rotation, using this two functions can be achieved manually splicing between models, mosaic records after the completion of the specific location of each piece of fragments, so as to effectively reduce the damage to the relics had tried splicing process.

  14. Radio observations of the double-relic galaxy cluster Abell 1240

    Science.gov (United States)

    Hoang, D. N.; Shimwell, T. W.; van Weeren, R. J.; Intema, H. T.; Röttgering, H. J. A.; Andrade-Santos, F.; Akamatsu, H.; Bonafede, A.; Brunetti, G.; Dawson, W. A.; Golovich, N.; Best, P. N.; Botteon, A.; Brüggen, M.; Cassano, R.; de Gasperin, F.; Hoeft, M.; Stroe, A.; White, G. J.

    2018-05-01

    We present LOFAR 120 - 168 MHz images of the merging galaxy cluster Abell 1240 that hosts double radio relics. In combination with the GMRT 595 - 629 MHz and VLA 2 - 4 GHz data, we characterised the spectral and polarimetric properties of the radio emission. The spectral indices for the relics steepen from their outer edges towards the cluster centre and the electric field vectors are approximately perpendicular to the major axes of the relics. The results are consistent with the picture that these relics trace large-scale shocks propagating outwards during the merger. Assuming diffusive shock acceleration (DSA), we obtain shock Mach numbers of M=2.4 and 2.3 for the northern and southern shocks, respectively. For M≲ 3 shocks, a pre-existing population of mildly relativistic electrons is required to explain the brightness of the relics due to the high (>10 per cent) particle acceleration efficiency required. However, for M≳ 4 shocks the required efficiency is ≳ 1% and ≳ 0.5%, respectively, which is low enough for shock acceleration directly from the thermal pool. We used the fractional polarization to constrain the viewing angle to ≥53 ± 3° and ≥39 ± 5° for the northern and southern shocks, respectively. We found no evidence for diffuse emission in the cluster central region. If the halo spans the entire region between the relics (˜1.8 Mpc) our upper limit on the power is P1.4GHz = (1.4 ± 0.6) × 1023 W Hz-1 which is approximately equal to the anticipated flux from a cluster of this mass. However, if the halo is smaller than this, our constraints on the power imply that the halo is underluminous.

  15. Supersymmetric model for dark matter and baryogenesis motivated by the recent CDMS result.

    Science.gov (United States)

    Allahverdi, Rouzbeh; Dutta, Bhaskar; Mohapatra, Rabindra N; Sinha, Kuver

    2013-08-02

    We discuss a supersymmetric model for cogenesis of dark and baryonic matter where the dark matter (DM) has mass in the 8-10 GeV range as indicated by several direct detection searches, including most recently the CDMS experiment with the desired cross section. The DM candidate is a real scalar field. Two key distinguishing features of the model are the following: (i) in contrast with the conventional weakly interacting massive particle dark matter scenarios where thermal freeze-out is responsible for the observed relic density, our model uses nonthermal production of dark matter after reheating of the Universe caused by moduli decay at temperatures below the QCD phase transition, a feature which alleviates the relic overabundance problem caused by small annihilation cross section of light DM particles and (ii) baryogenesis occurs also at similar low temperatures from the decay of TeV scale mediator particles arising from moduli decay. A possible test of this model is the existence of colored particles with TeV masses accessible at the LHC.

  16. Light dark matter through assisted annihilation

    International Nuclear Information System (INIS)

    Dey, Ujjal Kumar; Maity, Tarak Nath; Ray, Tirtha Sankar

    2017-01-01

    In this paper we investigate light dark matter scenarios where annihilation to Standard Model particles at tree-level is kinematically forbidden. In such cases annihilation can be aided by massive Standard Model-like species, called assisters , in the initial state that enhances the available phase space opening up novel tree-level processes. We investigate the feasibility of such non-standard assisted annihilation processes to reproduce the observed relic density of dark matter. We present a simple scalar dark matter-scalar assister model where this is realised. We find that if the dark matter and assister are relatively degenerate the required relic density can be achieved for a keV-MeV scale dark matter. We briefly discuss the cosmological constraints on such dark matter scenarios.

  17. The effect of thermal velocities on structure formation in N-body simulations of warm dark matter

    Science.gov (United States)

    Leo, Matteo; Baugh, Carlton M.; Li, Baojiu; Pascoli, Silvia

    2017-11-01

    We investigate the impact of thermal velocities in N-body simulations of structure formation in warm dark matter models. Adopting the commonly used approach of adding thermal velocities, randomly selected from a Fermi-Dirac distribution, to the gravitationally-induced velocities of the simulation particles, we compare the matter and velocity power spectra measured from CDM and WDM simulations, in the latter case with and without thermal velocities. This prescription for adding thermal velocities introduces numerical noise into the initial conditions, which influences structure formation. At early times, the noise affects dramatically the power spectra measured from simulations with thermal velocities, with deviations of the order of ~ Script O(10) (in the matter power spectra) and of the order of ~ Script O(102) (in the velocity power spectra) compared to those extracted from simulations without thermal velocities. At late times, these effects are less pronounced with deviations of less than a few percent. Increasing the resolution of the N-body simulation shifts these discrepancies to higher wavenumbers. We also find that spurious haloes start to appear in simulations which include thermal velocities at a mass that is ~3 times larger than in simulations without thermal velocities.

  18. Relic neutrino asymmetry evolution from first principles

    International Nuclear Information System (INIS)

    Bell, N.F.; Volkas, R.R.; Wong, Y.Y.Y.

    1998-09-01

    The exact Quantum Kinetic Equations for a two-flavour active-sterile neutrino system are used to provide a systematic derivation of approximate evolution equations for the relic neutrino asymmetry. An extension of the adiabatic approximation for matter-affected neutrino oscillations is developed which incorporates decoherence due to collisions. Exact and approximate expressions for the decoherence and repopulation functions are discussed. A first pass is made over the exact treatment of multi-flavour partially incoherent oscillations. (authors)

  19. Quintessential inflation on the brane and the relic gravity wave background

    International Nuclear Information System (INIS)

    Sami, M.; Sahni, V.

    2004-01-01

    Quintessential inflation describes a scenario in which both inflation and dark energy (quintessence) are described by the same scalar field. In conventional braneworld models of quintessential inflation gravitational particle-production is used to reheat the universe. This reheating mechanism is very inefficient and results in an excessive production of gravity waves which violate nucleosynthesis constraints and invalidate the model. We describe a new method of realizing quintessential inflation on the brane in which inflation is followed by 'instant preheating' (Felder, Kofman and Linde 1999). The larger reheating temperature in this model results in a smaller amplitude of relic gravity waves which is consistent with nucleosynthesis bounds. The relic gravity wave background has a 'blue' spectrum at high frequencies and is a generic byproduct of successful quintessential inflation on the brane

  20. Dark matter self-interactions from a general spin-0 mediator

    Energy Technology Data Exchange (ETDEWEB)

    Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Wild, Sebastian, E-mail: felix.kahlhoefer@desy.de, E-mail: kai.schmidt-hoberg@desy.de, E-mail: sebastian.wild@desy.de [DESY, Notkestraße 85, D-22607 Hamburg (Germany)

    2017-08-01

    Dark matter particles interacting via the exchange of very light spin-0 mediators can have large self-interaction rates and obtain their relic abundance from thermal freeze-out. At the same time, these models face strong bounds from direct and indirect probes of dark matter as well as a number of constraints on the properties of the mediator. We investigate whether these constraints can be consistent with having observable effects from dark matter self-interactions in astrophysical systems. For the case of a mediator with purely scalar couplings we point out the highly relevant impact of low-threshold direct detection experiments like CRESST-II, which essentially rule out the simplest realization of this model. These constraints can be significantly relaxed if the mediator has CP-violating couplings, but then the model faces strong constraints from CMB measurements, which can only be avoided in special regions of parameter space.

  1. Dark matter self-interactions from a general spin-0 mediator

    International Nuclear Information System (INIS)

    Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Wild, Sebastian

    2017-01-01

    Dark matter particles interacting via the exchange of very light spin-0 mediators can have large self-interaction rates and obtain their relic abundance from thermal freeze-out. At the same time, these models face strong bounds from direct and indirect probes of dark matter as well as a number of constraints on the properties of the mediator. We investigate whether these constraints can be consistent with having observable effects from dark matter self-interactions in astrophysical systems. For the case of a mediator with purely scalar couplings we point out the highly relevant impact of low-threshold direct detection experiments like CRESST-II, which essentially rule out the simplest realization of this model. These constraints can be significantly relaxed if the mediator has CP-violating couplings, but then the model faces strong constraints from CMB measurements, which can only be avoided in special regions of parameter space.

  2. Dark matter self-interactions from a general spin-0 mediator

    Energy Technology Data Exchange (ETDEWEB)

    Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Wild, Sebastian

    2017-04-15

    Dark matter particles interacting via the exchange of very light spin-0 mediators can have large self-interaction rates and obtain their relic abundance from thermal freeze-out. At the same time, these models face strong bounds from direct and indirect probes of dark matter as well as a number of constraints on the properties of the mediator. We investigate whether these constraints can be consistent with having observable effects from dark matter self-interactions in astrophysical systems. For the case of a mediator with purely scalar couplings we point out the highly relevant impact of low-threshold direct detection experiments like CRESST-II, which essentially rule out the simplest realization of this model. These constraints can be significantly relaxed if the mediator has CP-violating couplings, but then the model faces strong constraints from CMB measurements, which can only be avoided in special regions of parameter space.

  3. Heavy Right-Handed Neutrino Dark Matter and PeV Neutrinos at IceCube

    Science.gov (United States)

    Bhupal Dev, P. S.; Kazanas, D.; Mohapatra, R. N.; Teplitz, V. L.; Zhang, Yongchao

    2016-01-01

    We discuss a simple non-supersymmetric model based on the electroweak gauge group SU(2) (sub L) times SU(2) prime times U(1) (Sub B-L) where the lightest of the right-handed neutrinos, which are part of the leptonic doublet of SU(2) prime, play the role of a long-lived unstable dark matter with mass in the multi-Peta-electronvolt range. We use a resonant s-channel annihilation to obtain the correct thermal relic density and relax the unitarity bound on dark matter mass. In this model, there exists a 3-body dark matter decay mode producing tau leptons and neutrinos, which could be the source for the Peta-electronvolt cascade events observed in the IceCube experiment. The model can be tested with more precise flavor information of the highest-energy neutrino events in future data.

  4. Heavy right-handed neutrino dark matter and PeV neutrinos at IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Dev, P.S. Bhupal [Max-Planck-Institut für Kernphysik,Saupfercheckweg 1, D-69117 Heidelberg (Germany); Kazanas, D. [Astrophysics Science Division, NASA Goddard Space Flight Center,Greenbelt, MD 20771 (United States); Mohapatra, R.N. [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,College Park, MD 20742 (United States); Teplitz, V.L. [Astrophysics Science Division, NASA Goddard Space Flight Center,Greenbelt, MD 20771 (United States); Department of Physics, Southern Methodist University,Dallas, TX 75205 (United States); Zhang, Yongchao [Service de Physique Théorique, Université Libre de Bruxelles,Boulevard du Triomphe, CP225, 1050 Brussels (Belgium); School of Physics, Sun Yat-Sen University,Guangzhou 510275 (China)

    2016-08-17

    We discuss a simple non-supersymmetric model based on the electroweak gauge group SU(2){sub L}×SU(2){sup ′}×U(1){sub B−L} where the lightest of the right-handed neutrinos, which are part of the leptonic doublet of SU(2){sup ′}, play the role of a long-lived unstable dark matter with mass in the multi-PeV range. We use a resonant s-channel annihilation to obtain the correct thermal relic density and relax the unitarity bound on dark matter mass. In this model, there exists a 3-body dark matter decay mode producing tau leptons and neutrinos, which could be the source for the PeV cascade events observed in the IceCube experiment. The model can be tested with more precise flavor information of the highest-energy neutrino events in future data.

  5. Multi-component fermionic dark matter and IceCube PeV scale neutrinos in left-right model with gauge unification

    Science.gov (United States)

    Borah, Debasish; Dasgupta, Arnab; Dey, Ujjal Kumar; Patra, Sudhanwa; Tomar, Gaurav

    2017-09-01

    We consider a simple extension of the minimal left-right symmetric model (LRSM) in order to explain the PeV neutrino events seen at the IceCube experiment from a heavy decaying dark matter. The dark matter sector is composed of two fermions: one at PeV scale and the other at TeV scale such that the heavier one can decay into the lighter one and two neutrinos. The gauge annihilation cross sections of PeV dark matter are not large enough to generate its relic abundance within the observed limit. We include a pair of real scalar triplets Ω L,R which can bring the thermally overproduced PeV dark matter abundance into the observed range through late time decay and consequent entropy release thereby providing a consistent way to obtain the correct relic abundance without violating the unitarity bound on dark matter mass. Another scalar field, a bitriplet under left-right gauge group is added to assist the heavier dark matter decay. The presence of an approximate global U(1) X symmetry can naturally explain the origin of tiny couplings required for long-lived nature of these decaying particles. We also show, how such an extended LRSM can be incorporated within a non-supersymmetric SO(10) model where the gauge coupling unification at a very high scale naturally accommodate a PeV scale intermediate symmetry, required to explain the PeV events at IceCube.

  6. Inelastic dark matter

    International Nuclear Information System (INIS)

    Smith, David; Weiner, Neal

    2001-01-01

    Many observations suggest that much of the matter of the universe is nonbaryonic. Recently, the DAMA NaI dark matter direct detection experiment reported an annual modulation in their event rate consistent with a WIMP relic. However, the Cryogenic Dark Matter Search (CDMS) Ge experiment excludes most of the region preferred by DAMA. We demonstrate that if the dark matter can only scatter by making a transition to a slightly heavier state (Δm∼100 keV), the experiments are no longer in conflict. Moreover, differences in the energy spectrum of nuclear recoil events could distinguish such a scenario from the standard WIMP scenario. Finally, we discuss the sneutrino as a candidate for inelastic dark matter in supersymmetric theories

  7. Constraints on particle dark matter from cosmic-ray antiprotons

    International Nuclear Information System (INIS)

    Fornengo, N.; Vittino, A.; Maccione, L.

    2014-01-01

    Cosmic-ray antiprotons represent an important channel for dark matter indirect-detection studies. Current measurements of the antiproton flux at the top of the atmosphere and theoretical determinations of the secondary antiproton production in the Galaxy are in good agreement, with no manifest deviation which could point to an exotic contribution in this channel. Therefore, antiprotons can be used as a powerful tool for constraining particle dark matter properties. By using the spectrum of PAMELA data from 50 MV to 180 GV in rigidity, we derive bounds on the dark matter annihilation cross section (or decay rate, for decaying dark matter) for the whole spectrum of dark matter annihilation (decay) channels and under different hypotheses of cosmic-rays transport in the Galaxy and in the heliosphere. For typical models of galactic propagation, the constraints are strong, setting a lower bound on the dark matter mass of a ''thermal'' relic at about 40–80 GeV for hadronic annihilation channels. These bounds are enhanced to about 150 GeV on the dark matter mass, when large cosmic-rays confinement volumes in the Galaxy are considered, and are reduced to 3–4 GeV for annihilation to light quarks (no bound for heavy-quark production) when the confinement volume is small. Bounds for dark matter lighter than few tens of GeV are due to the low energy part of the PAMELA spectrum, an energy region where solar modulation is relevant: to this aim, we have implemented a detailed solution of the transport equation in the heliosphere, which allowed us not only to extend bounds to light dark matter, but also to determine the uncertainty on the constraints arising from solar modulation modelling. Finally, we estimate the impact of soon-to-come AMS-02 data on the antiproton constraints

  8. Black hole genesis of dark matter

    Science.gov (United States)

    Lennon, Olivier; March-Russell, John; Petrossian-Byrne, Rudin; Tillim, Hannah

    2018-04-01

    We present a purely gravitational infra-red-calculable production mechanism for dark matter (DM) . The source of both the DM relic abundance and the hot Standard Model (SM) plasma is a primordial density of micro black holes (BHs), which evaporate via Hawking emission into both the dark and SM sectors. The mechanism has four qualitatively different regimes depending upon whether the BH evaporation is 'fast' or 'slow' relative to the initial Hubble rate, and whether the mass of the DM particle is 'light' or 'heavy' compared to the initial BH temperature. For each of these regimes we calculate the DM yield, Y, as a function of the initial state and DM mass and spin. In the 'slow' regime Y depends on only the initial BH mass over a wide range of initial conditions, including scenarios where the BHs are a small fraction of the initial energy density. The DM is produced with a highly non-thermal energy spectrum, leading in the 'light' DM mass regime (~260 eV and above depending on DM spin) to a strong constraint from free-streaming, but also possible observational signatures in structure formation in the spin 3/2 and 2 cases. The 'heavy' regime (~1.2 × 108 GeV to MPl depending on spin) is free of these constraints and provides new possibilities for DM detection. In all cases there is a dark radiation component predicted.

  9. Gamma-ray constraints on dark-matter annihilation to electroweak gauge and Higgs bosons

    Energy Technology Data Exchange (ETDEWEB)

    Fedderke, Michael A.; Kolb, Edward W.; Lin, Tongyan; Wang, Lian-Tao, E-mail: mfedderke@uchicago.edu, E-mail: Rocky.Kolb@uchicago.edu, E-mail: tongyan@kicp.uchicago.edu, E-mail: liantaow@uchicago.edu [Enrico Fermi Institute and Kavli Institute for Cosmological Physics, The University of Chicago, Chicago, Illinois, 60637-1433 (United States)

    2014-01-01

    Dark-matter annihilation into electroweak gauge and Higgs bosons results in γ-ray emission. We use observational upper limits on the fluxes of both line and continuum γ-rays from the Milky Way Galactic Center and from Milky Way dwarf companion galaxies to set exclusion limits on allowed dark-matter masses. (Generally, Galactic Center γ-ray line search limits from the Fermi-LAT and the H.E.S.S. experiments are most restrictive.) Our limits apply under the following assumptions: a) the dark matter species is a cold thermal relic with present mass density equal to the measured dark-matter density of the universe; b) dark-matter annihilation to standard-model particles is described in the non-relativistic limit by a single effective operator O∝J{sub DM}⋅J{sub SM}, where J{sub DM} is a standard-model singlet current consisting of dark-matter fields (Dirac fermions or complex scalars), and J{sub SM} is a standard-model singlet current consisting of electroweak gauge and Higgs bosons; and c) the dark-matter mass is in the range 5 GeV to 20 TeV. We consider, in turn, the 34 possible operators with mass dimension 8 or lower with non-zero s-wave annihilation channels satisfying the above assumptions. Our limits are presented in a large number of figures, one for each of the 34 possible operators; these limits can be grouped into 13 classes determined by the field content and structure of the operators. We also identify three classes of operators (coupling to the Higgs and SU(2){sub L} gauge bosons) that can supply a 130 GeV line with the desired strength to fit the putative line signal in the Fermi-LAT data, while saturating the relic density and satisfying all other indirect constraints we consider.

  10. Search for Dark Matter Annihilation in Galaxy Groups.

    Science.gov (United States)

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L; Safdi, Benjamin R

    2018-03-09

    We use 413 weeks of publicly available Fermi Pass 8 gamma-ray data combined with recently developed galaxy group catalogs to search for evidence of dark matter annihilation in extragalactic halos. In our study, we use luminosity-based mass estimates and mass-to-concentration relations to infer the J factors and associated uncertainties for hundreds of galaxy groups within a redshift range z≲0.03. We employ a conservative substructure boost factor model, which only enhances the sensitivity by an O(1) factor. No significant evidence for dark matter annihilation is found, and we exclude thermal relic cross sections for dark matter masses below ∼30  GeV to 95% confidence in the bb[over ¯] annihilation channel. These bounds are comparable to those from Milky Way dwarf spheroidal satellite galaxies. The results of our analysis increase the tension but do not rule out the dark matter interpretation of the Galactic Center excess. We provide a catalog of the galaxy groups used in this study and their inferred properties, which can be broadly applied to searches for extragalactic dark matter.

  11. Search for Dark Matter Annihilation in Galaxy Groups

    Science.gov (United States)

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R.

    2018-03-01

    We use 413 weeks of publicly available Fermi Pass 8 gamma-ray data combined with recently developed galaxy group catalogs to search for evidence of dark matter annihilation in extragalactic halos. In our study, we use luminosity-based mass estimates and mass-to-concentration relations to infer the J factors and associated uncertainties for hundreds of galaxy groups within a redshift range z ≲0.03 . We employ a conservative substructure boost factor model, which only enhances the sensitivity by an O (1 ) factor. No significant evidence for dark matter annihilation is found, and we exclude thermal relic cross sections for dark matter masses below ˜30 GeV to 95% confidence in the b b ¯ annihilation channel. These bounds are comparable to those from Milky Way dwarf spheroidal satellite galaxies. The results of our analysis increase the tension but do not rule out the dark matter interpretation of the Galactic Center excess. We provide a catalog of the galaxy groups used in this study and their inferred properties, which can be broadly applied to searches for extragalactic dark matter.

  12. Update on hidden sectors with dark forces and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Sarah

    2012-11-15

    Recently there has been much interest in hidden sectors, especially in the context of dark matter and ''dark forces'', since they are a common feature of beyond standard model scenarios like string theory and SUSY and additionally exhibit interesting phenomenological aspects. Various laboratory experiments place limits on the so-called hidden photon and continuously further probe and constrain the parameter space; an updated overview is presented here. Furthermore, for several hidden sector models with light dark matter we study the viability with respect to the relic abundance and direct detection experiments.

  13. Scalar dark matter with type II seesaw

    Directory of Open Access Journals (Sweden)

    Arnab Dasgupta

    2014-12-01

    Full Text Available We study the possibility of generating tiny neutrino mass through a combination of type I and type II seesaw mechanism within the framework of an abelian extension of standard model. The model also provides a naturally stable dark matter candidate in terms of the lightest neutral component of a scalar doublet. We compute the relic abundance of such a dark matter candidate and also point out how the strength of type II seesaw term can affect the relic abundance of dark matter. Such a model which connects neutrino mass and dark matter abundance has the potential of being verified or ruled out in the ongoing neutrino, dark matter, as well as accelerator experiments.

  14. Lepton flavor violation induced by dark matter

    Science.gov (United States)

    Arcadi, Giorgio; Ferreira, C. P.; Goertz, Florian; Guzzo, M. M.; Queiroz, Farinaldo S.; Santos, A. C. O.

    2018-04-01

    Guided by gauge principles we discuss a predictive and falsifiable UV complete model where the Dirac fermion that accounts for the cold dark matter abundance in our Universe induces the lepton flavor violation (LFV) decays μ →e γ and μ →e e e as well as μ -e conversion. We explore the interplay between direct dark matter detection, relic density, collider probes and lepton flavor violation to conclusively show that one may have a viable dark matter candidate yielding flavor violation signatures that can be probed in the upcoming experiments. In fact, keeping the dark matter mass at the TeV scale, a sizable LFV signal is possible, while reproducing the correct dark matter relic density and meeting limits from direct-detection experiments.

  15. Little composite dark matter

    Science.gov (United States)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-02-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T-parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T-parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling λ _{ {DM}}˜ O(1%), thus evading direct detection.

  16. Exceptional composite dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Guillermo [Universite Paris Saclay, CEA, CNRS, Institut de Physique Theorique, Gif-sur-Yvette (France); Carmona, Adrian [CERN, Theoretical Physics Department, Geneva (Switzerland); Chala, Mikael [Universitat de Valencia y IFIC, Universitat de Valencia-CSIC, Departament de Fisica Teorica, Burjassot, Valencia (Spain)

    2017-07-15

    We study the dark matter phenomenology of non-minimal composite Higgs models with SO(7) broken to the exceptional group G{sub 2}. In addition to the Higgs, three pseudo-Nambu-Goldstone bosons arise, one of which is electrically neutral. A parity symmetry is enough to ensure this resonance is stable. In fact, if the breaking of the Goldstone symmetry is driven by the fermion sector, this Z{sub 2} symmetry is automatically unbroken in the electroweak phase. In this case, the relic density, as well as the expected indirect, direct and collider signals are then uniquely determined by the value of the compositeness scale, f. Current experimental bounds allow one to account for a large fraction of the dark matter of the Universe if the dark matter particle is part of an electroweak triplet. The totality of the relic abundance can be accommodated if instead this particle is a composite singlet. In both cases, the scale f and the dark matter mass are of the order of a few TeV. (orig.)

  17. Little composite dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Balkin, Reuven; Weiler, Andreas [Technische Universitaet Muenchen, First Physik-Department, Garching (Germany); Perez, Gilad [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel)

    2018-02-15

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T-parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T-parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling λ{sub DM} ∝ O(1%), thus evading direct detection. (orig.)

  18. The Shroud of Turin: Relic or icon?

    International Nuclear Information System (INIS)

    Dale, W.S.A.

    1987-01-01

    The Shroud of Turin, a linen cloth on which appear the imprints of the front and back of a crucified man, can be historically traced to ca. 1354 A.D. Many believe it to be a true relic of the Passion of Christ. Many others regard it as a fake. This paper suggests a third alternative, that it is an icon dating from the 11th century. If future scientific tests, of which radiocarbon dating will be the most important, support this theory, the Shroud of Turin may well be recognized as one of the masterpieces of Christian art. (orig.)

  19. Relic gravitational waves and extended inflation

    International Nuclear Information System (INIS)

    Turner, M.S.; Wilczek, F.

    1990-01-01

    In extended inflation, a new version of inflation where the transition from an inflationary to a radiation-dominated Universe is accomplished by bubble nucleation, bubble collisions supply a potent---and potentially detectable---source of gravitational waves. The energy density in relic gravitons from bubble collisions is expected to be about 10 -5 of closure density. Their characteristic wavelength depends upon the reheating temperature T RH: λ∼(10 4 cm)[(10 14 GeV)/T RH ]. If black holes are produced by bubble collisions, they will evaporate producing shorter-wavelength gravitons

  20. Asymmetric dark matter

    International Nuclear Information System (INIS)

    Kaplan, David E.; Luty, Markus A.; Zurek, Kathryn M.

    2009-01-01

    We consider a simple class of models in which the relic density of dark matter is determined by the baryon asymmetry of the Universe. In these models a B-L asymmetry generated at high temperatures is transferred to the dark matter, which is charged under B-L. The interactions that transfer the asymmetry decouple at temperatures above the dark matter mass, freezing in a dark matter asymmetry of order the baryon asymmetry. This explains the observed relation between the baryon and dark matter densities for the dark matter mass in the range 5-15 GeV. The symmetric component of the dark matter can annihilate efficiently to light pseudoscalar Higgs particles a or via t-channel exchange of new scalar doublets. The first possibility allows for h 0 →aa decays, while the second predicts a light charged Higgs-like scalar decaying to τν. Direct detection can arise from Higgs exchange in the first model or a nonzero magnetic moment in the second. In supersymmetric models, the would-be lightest supersymmetric partner can decay into pairs of dark matter particles plus standard model particles, possibly with displaced vertices.

  1. Dark Matter Freeze-in Production in Fast-Expanding Universes

    Science.gov (United States)

    D'Eramo, Francesco; Fernandez, Nicolas; Profumo, Stefano

    2018-02-01

    If the dark matter is produced in the early universe prior to Big Bang nucleosynthesis, a modified cosmological history can drastically affect the abundance of relic dark matter particles. Here, we assume that an additional species to radiation dominates at early times, causing the expansion rate at a given temperature to be larger than in the standard radiation-dominated case. We demonstrate that, if this is the case, dark matter production via freeze-in (a scenario when dark matter interacts very weakly, and is dumped in the early universe out of equilibrium by decay or scattering processes involving particles in the thermal bath) is dramatically suppressed. We illustrate and quantitatively and analytically study this phenomenon for three different paradigmatic classes of freeze-in scenarios. For the frozen-in dark matter abundance to be as large as observations, couplings between the dark matter and visible-sector particles must be enhanced by several orders of magnitude. This sheds some optimistic prospects for the otherwise dire experimental and observational outlook of detecting dark matter produced by freeze-in.

  2. Calculation of the local density of relic neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    De Salas, P.F.; Gariazzo, S.; Pastor, S. [Instituto de Física Corpuscular (CSIC-Universitat de València), Parc Científic UV, C/ Catedrático José Beltrán, 2, E-46980 Paterna (Valencia) (Spain); Lesgourgues, J., E-mail: pabferde@ific.uv.es, E-mail: gariazzo@ific.uv.es, E-mail: Julien.Lesgourgues@physik.rwth-aachen.de, E-mail: pastor@ific.uv.es [Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen (Germany)

    2017-09-01

    Nonzero neutrino masses are required by the existence of flavour oscillations, with values of the order of at least 50 meV . We consider the gravitational clustering of relic neutrinos within the Milky Way, and used the N -one-body simulation technique to compute their density enhancement factor in the neighbourhood of the Earth with respect to the average cosmic density. Compared to previous similar studies, we pushed the simulation down to smaller neutrino masses, and included an improved treatment of the baryonic and dark matter distributions in the Milky Way. Our results are important for future experiments aiming at detecting the cosmic neutrino background, such as the Princeton Tritium Observatory for Light, Early-universe, Massive-neutrino Yield (PTOLEMY) proposal. We calculate the impact of neutrino clustering in the Milky Way on the expected event rate for a PTOLEMY-like experiment. We find that the effect of clustering remains negligible for the minimal normal hierarchy scenario, while it enhances the event rate by 10 to 20% (resp. a factor 1.7 to 2.5) for the minimal inverted hierarchy scenario (resp. a degenerate scenario with 150 meV masses). Finally we compute the impact on the event rate of a possible fourth sterile neutrino with a mass of 1.3 eV.

  3. Dark Matter in B – L supersymmetric Standard Model with inverse seesaw

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, W. [Department of Mathematics, Faculty of Science, Cairo University, Giza 12613 (Egypt); Khalil, S., E-mail: awaleed@sci.cu.edu.eg, E-mail: s.khalil@zewailcity.edu.eg [Center for Fundamental Physics, Zewail City of Science and Technology, 6 October City, Giza 12588 (Egypt)

    2017-04-01

    We show that the B – L Supersymmetric Standard Model with Inverse Seesaw (BLSSMIS) provides new Dark Matter (DM) candidates (lightest right-handed sneutrino and lightest B – L neutralino) with mass of order few hundreds GeV, while most of other SUSY spectrum can be quite heavy, consistently with the current Large Hadron Collider (LHC) constraints. We emphasize that the thermal relic abundance and direct detection experiments via relic neutralino scattering with nuclei impose stringent constraints on the B – L neutralinos. These constraints can be satisfied by few points in the parameter space where the B – L lightest neutralino is higgsino-like, which cannot explain the observed Galactic Center (GC) gamma-ray excess measured by Fermi-LAT. The lightest right-handed sneutrino DM is analysed. We show that for a wide region of parameter space the lightest right-handed sneutrino, with mass between 80 GeV and 1.2 TeV, can satisfy the limits of the relic abundance and the scattering cross section with nuclei. We also show that the lightest right-handed sneutrino with mass O(100) GeV can account for the observed GC gamma-ray results.

  4. Connections between the seesaw model and dark matter searches

    International Nuclear Information System (INIS)

    Adulpravitchai, Adisorn; Gu Peihong; Lindner, Manfred

    2010-01-01

    In some dark matter models, the coupling of the dark matter particle to the standard model Higgs determines the dark matter relic density while it is also consistent with dark matter direct-detection experiments. On the other hand, the seesaw model for generating the neutrino masses probably arises from a spontaneous symmetry breaking of global lepton number. The dark matter particle thus can significantly annihilate into massless Majorons when the lepton number-breaking scale and hence the seesaw scale are near the electroweak scale. This leads to an interesting interplay between neutrino physics and dark matter physics, and the annihilation mode has an interesting implication on dark matter searches.

  5. Dilaton could affect abundance of dark matter particles

    CERN Multimedia

    2007-01-01

    "The amount of dark matter left over from the early universe may be less than previously believed. new research shows that the "relic abundance" of stable dark matter particles such as the neutralino may be reduced as compared to standard cosmology theories due to the effects of the "dilaton", a particle with zero spin in the gravitational sector of strings." (1 page)

  6. Light asymmetric dark matter from new strong dynamics

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Sarkar, Subir; Schmidt-Hoberg, Kai

    2011-01-01

    A ~5 GeV `dark baryon' with a cosmic asymmetry similar to that of baryons is a natural candidate for the dark matter. We study the possibility of generating such a state through dynamical electroweak symmetry breaking, and show that it can share the relic baryon asymmetry via sphaleron interactions...

  7. Dark matter that can form dark stars

    International Nuclear Information System (INIS)

    Gondolo, Paolo; Huh, Ji-Haeng; Kim, Hyung Do; Scopel, Stefano

    2010-01-01

    The first stars to form in the Universe may be powered by the annihilation of weakly interacting dark matter particles. These so-called dark stars, if observed, may give us a clue about the nature of dark matter. Here we examine which models for particle dark matter satisfy the conditions for the formation of dark stars. We find that in general models with thermal dark matter lead to the formation of dark stars, with few notable exceptions: heavy neutralinos in the presence of coannihilations, annihilations that are resonant at dark matter freeze-out but not in dark stars, some models of neutrinophilic dark matter annihilating into neutrinos only and lighter than about 50 GeV. In particular, we find that a thermal DM candidate in standard Cosmology always forms a dark star as long as its mass is heavier than ≅ 50 GeV and the thermal average of its annihilation cross section is the same at the decoupling temperature and during the dark star formation, as for instance in the case of an annihilation cross section with a non-vanishing s-wave contribution

  8. The Isotropic Radio Background and Annihilating Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Belikov, Alexander V. [Institut d' Astrophysique (France); Jeltema, Tesla E. [Univ. of California, Santa Cruz, CA (United States); Linden, Tim [Univ. of California, Santa Cruz, CA (United States); Profumo, Stefano [Univ. of California, Santa Cruz, CA (United States); Slatyer, Tracy R. [Princeton Univ., Princeton, NJ (United States)

    2012-11-01

    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.

  9. Observing a light dark matter beam with neutrino experiments

    Science.gov (United States)

    Deniverville, Patrick; Pospelov, Maxim; Ritz, Adam

    2011-10-01

    We consider the sensitivity of fixed-target neutrino experiments at the luminosity frontier to light stable states, such as those present in models of MeV-scale dark matter. To ensure the correct thermal relic abundance, such states must annihilate via light mediators, which in turn provide an access portal for direct production in colliders or fixed targets. Indeed, this framework endows the neutrino beams produced at fixed-target facilities with a companion “dark matter beam,” which may be detected via an excess of elastic scattering events off electrons or nuclei in the (near-)detector. We study the high-luminosity proton fixed-target experiments at LSND and MiniBooNE, and determine that the ensuing sensitivity to light dark matter generally surpasses that of other direct probes. For scenarios with a kinetically-mixed U(1)' vector mediator of mass mV, we find that a large volume of parameter space is excluded for mDM˜1-5MeV, covering vector masses 2mDM≲mV≲mη and a range of kinetic mixing parameters reaching as low as κ˜10-5. The corresponding MeV-scale dark matter scenarios motivated by an explanation of the galactic 511 keV line are thus strongly constrained.

  10. Mixed dark matter in left-right symmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, Asher [Department of Physics, University of Chicago,Chicago, Illinois 60637 (United States); Fox, Patrick J. [Theoretical Physics Department, Fermilab,Batavia, Illinois 60510 (United States); Hooper, Dan [Center for Particle Astrophysics, Fermi National Accelerator Laboratory,Batavia, Illinois 60510 (United States); Department of Astronomy and Astrophysics, University of Chicago,Chicago, Illinois 60637 (United States); Mohlabeng, Gopolang [Center for Particle Astrophysics, Fermi National Accelerator Laboratory,Batavia, Illinois 60510 (United States); Department of Physics and Astronomy, University of Kansas,Lawrence, Kansas 66045 (United States)

    2016-06-08

    Motivated by the recently reported diboson and dijet excesses in Run 1 data at ATLAS and CMS, we explore models of mixed dark matter in left-right symmetric theories. In this study, we calculate the relic abundance and the elastic scattering cross section with nuclei for a number of dark matter candidates that appear within the fermionic multiplets of left-right symmetric models. In contrast to the case of pure multiplets, WIMP-nucleon scattering proceeds at tree-level, and hence the projected reach of future direct detection experiments such as LUX-ZEPLIN and XENON1T will cover large regions of parameter space for TeV-scale thermal dark matter. Decays of the heavy charged W{sup ′} boson to particles in the dark sector can potentially shift the right-handed gauge coupling to larger values when fixed to the rate of the Run 1 excesses, moving towards the theoretically attractive scenario, g{sub R}=g{sub L}. This region of parameter space may be probed by future collider searches for new Higgs bosons or electroweak fermions.

  11. A possible candidate for cold dark matter

    Indian Academy of Sciences (India)

    This additional scalar can be a viable candidate of cold dark matter (CDM) since the stability of is achieved by the application of Z 2 symmetry on . Considering as a possible candidate of CDM, Boltzmann's equation is solved to find the freeze-out temperature and relic density of for Higgs mass 120 GeV in the scalar ...

  12. Relic gravitational waves and extended inflation

    International Nuclear Information System (INIS)

    Turner, M.S.; Wilczek, F.

    1990-08-01

    In extended inflation, a new version of inflation where the transition from the false-vacuum phase to a radiation-dominated Universe is accomplished by bubble nucleation and percolation, bubble collisions supply a potent-and potentially detectable-source of gravitational waves. The present energy density in relic gravity waves from bubble collisions is expected to be about 10(exp -5) of closure density-many orders of magnitude greater than that of the gravity waves produced by quantum fluctuations. Their characteristic wavelength depends upon the reheating temperature T(sub RH): lambda is approximately 10(exp 4) cm (10(exp 14) GeV/T(sub RH)). If large numbers of black holes are produced, a not implausible outcome, they will evaporate producing comparable amounts of shorter wavelength waves, lambda is approximately 10(exp -6) cm (T(sub RH)/10(exp 14) GeV)

  13. The refractive index of relic gravitons

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    The dynamical evolution of the refractive index of the tensor modes of the geometry produces a specific class of power spectra characterized by a blue (i.e. slightly increasing) slope which is directly determined by the competition of the slow-roll parameter and of the rate of variation of the refractive index. Throughout the conventional stages of the inflationary and post-inflationary evolution, the microwave background anisotropies measurements, the pulsar timing limits and the big-bang nucleosythesis constraints set stringent bounds on the refractive index and on its rate of variation. Within the physically allowed region of the parameter space the cosmic background of relic gravitons leads to a potentially large signal for the ground based detectors (in their advanced version) and for the proposed space-borne interferometers. Conversely, the lack of direct detection of the signal will set a qualitatively new bound on the dynamical variation of the refractive index.

  14. Gravitino dark matter in R-parity breaking vacua

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Covi, L.; Ibarra, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamaguchi, K.; Yanagida, T.T. [Tokyo Univ. (Japan). Dept. of Physics

    2007-02-15

    We show that in the case of small R-parity and lepton number breaking couplings, primordial nucleosynthesis, thermal leptogenesis and gravitino dark matter are naturally consistent for gravitino masses m{sub 3/2} >or similar 5 GeV. We present a model where R-parity breaking is tied to B-L breaking, which predicts the needed small couplings. The metastable next-to-lightest superparticle has a decay length that is typically larger than a few centimeters, with characteristic signatures at the LHC. The photon flux produced by relic gravitino decays may be part of the apparent excess in the extragalactic diffuse gamma-ray flux obtained from the EGRET data for a gravitino mass m{sub 3/2}{proportional_to}10 GeV. In this case, a clear signal can be expected from GLAST in the near future. (orig.)

  15. Gravitino dark matter in R-parity breaking vacua

    International Nuclear Information System (INIS)

    Buchmueller, W.; Covi, L.; Ibarra, A.; Hamaguchi, K.; Yanagida, T.T.

    2007-02-01

    We show that in the case of small R-parity and lepton number breaking couplings, primordial nucleosynthesis, thermal leptogenesis and gravitino dark matter are naturally consistent for gravitino masses m 3/2 >or similar 5 GeV. We present a model where R-parity breaking is tied to B-L breaking, which predicts the needed small couplings. The metastable next-to-lightest superparticle has a decay length that is typically larger than a few centimeters, with characteristic signatures at the LHC. The photon flux produced by relic gravitino decays may be part of the apparent excess in the extragalactic diffuse gamma-ray flux obtained from the EGRET data for a gravitino mass m 3/2 ∝10 GeV. In this case, a clear signal can be expected from GLAST in the near future. (orig.)

  16. Fermionic dark matter in a simple t-channel model

    International Nuclear Information System (INIS)

    Goyal, Ashok; Kumar, Mukesh

    2016-01-01

    We consider a fermionic dark matter (DM) particle in renormalizable Standard Model (SM) gauge interactions in a simple t-channel model. The DM particle interactions with SM fermions is through the exchange of scalar and vector mediators which carry colour or lepton number. In the case of coloured mediators considered in this study, we find that if the DM is thermally produced and accounts for the observed relic density almost the entire parameter space is ruled out by the direct detection observations. The bounds from the monojet plus missing energy searches at the Large Hadron Collider are less stringent in this case. In contrast for the case of Majorana DM, we obtain strong bounds from the monojet searches which rule out DM particles of mass less than about a few hundred GeV for both the scalar and vector mediators.

  17. Radiative corrections in supersymmetry and application to relic density calculation beyond leading order

    International Nuclear Information System (INIS)

    Chalons, G.

    2010-07-01

    This thesis focuses on the evaluation of supersymmetric radiative corrections for processes involved in the calculation of the relic density of dark matter, in the MSSM (Minimal Supersymmetric Standard Model) and the standard cosmological scenario, as well as the impact of the choice renormalisation scheme in the neutralino/chargino sector based on the measure of three physical masses. This study has been carried out with the help of an automatic program dedicated the the computation of physical observables at one-loop in the MSSM, called SloopS. For the relic density calculation we investigated scenarios where the most studied dark matter candidate, the neutralino, annihilates into gauge boson pair. We covered cases where its mass was of the order of hundreds of GeV to 2 TeV. The full set of electroweak and strong corrections has been taken into account, involved in sub-leading channels with quarks. In the case of very heavy neutralinos, two important effects were outlined: the Sommerfeld enhancement due to massive gauge bosons and maybe even more important some corrections of Sudakov type. (authors)

  18. Can Planck-mass relics of evaporating black holes close the Universe

    International Nuclear Information System (INIS)

    MacGibbon, J.H.

    1987-01-01

    The authors propose that the cosmological dark matter consists of the Planck-mass remnants of evaporating primordial black holes. Such remnants would be expected to have close to the critical density if the black holes evaporating at the present epoch have the maximum density consistent with cosmic-ray constraints. Primordial black holes of the required density may form naturally at the end of an inflationary epoch. Planck-mass relics would behave dynamically just like 'cold dark matter' and would therefore share the attractions of other 'cold' candidates. In addition, because the baryonic matter in black holes cannot participate in nucleosynthesis the limits on the baryonic content of the Universe set by primordial nucleosynthesis are circumvented. (author)

  19. Non-thermal production of neutralino cold dark matter from cosmic string decays

    International Nuclear Information System (INIS)

    Jeannerot, R.; Zhang, X.; Brandenberger, R.

    1998-12-01

    We propose a mechanism of nonthermal production of a neutralino cold dark matter particle, χ, from the decay of cosmic strings which form from the spontaneous breaking of a U(1) gauge symmetry, such as U B-L (1), in an extension of the minimal supersymmetric standard model (MSSM). By explicit calculation, we point out that with a symmetry breaking scale η of around 10 8 GeV, the decay of cosmic strings can give rise to Ω χ ≅ 1. This gives a new constraint on supersymmetric models. For example, the dark matter produced from strings will over close the universe if η is near the electroweak symmetry breaking scale. To be consistent with Ω χ ≤ 1, the mass of the new U(1) gauge boson must be much larger than the Fermi scale which makes it unobservable in upcoming accelerator experiments. In a supersymmetric model with an extra U B-L (1) symmetry, the requirement of Ω χ ≤ 1 puts an upper bound on the neutrino mass of about 30eV provided neutrino masses are generated by the see-saw mechanisms. (author)

  20. Dark matter and dark forces from a supersymmetric hidden sector

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, S.; Goodsell, M.D.; Ringwald, A.

    2011-09-15

    We show that supersymmetric ''Dark Force'' models with gravity mediation are viable. To this end, we analyse a simple supersymmetric hidden sector model that interacts with the visible sector via kinetic mixing of a light Abelian gauge boson with the hypercharge. We include all induced interactions with the visible sector such as neutralino mass mixing and the Higgs portal term. We perform a detailed parameter space scan comparing the produced dark matter relic abundance and direct detection cross-sections to current experiments. (orig.)

  1. MSSM Dark Matter in Light of Higgs and LUX Results

    Directory of Open Access Journals (Sweden)

    W. Abdallah

    2016-01-01

    Full Text Available The constraints imposed on the Minimal Supersymmetric Standard Model (MSSM parameter space by the Large Hadron Collider (LHC Higgs mass limit and gluino mass lower bound are revisited. We also analyze the thermal relic abundance of lightest neutralino, which is the Lightest Supersymmetric Particle (LSP. We show that the combined LHC and relic abundance constraints rule out most of the MSSM parameter space except a very narrow region with very large tan⁡β  (~50. Within this region, we emphasize that the spin-independent scattering cross section of the LSP with a proton is less than the latest Large Underground Xenon (LUX limit by at least two orders of magnitude. Finally, we argue that nonthermal Dark Matter (DM scenario may relax the constraints imposed on the MSSM parameter space. Namely, the following regions are obtained: m0≃O(4 TeV and m1/2≃600 GeV for low tan⁡β  (~10; m0~m1/2≃O(1 TeV or m0≃O(4 TeV and m1/2≃700 GeV for large tan⁡β  (~50.

  2. Multiwavelength analysis of dark matter annihilation and RX-DMFIT

    International Nuclear Information System (INIS)

    McDaniel, A.; Jeltema, T.; Profumo, S.; Storm, E.

    2017-01-01

    Dark matter (DM) particles are predicted by several well motivated models to yield Standard Model particles through self-annihilation that can potentially be detected by astrophysical observations. In particular, the production of charged particles from DM annihilation in astrophysical systems that contain magnetic fields yields radio emission through synchrotron radiation and X-ray emission through inverse Compton scattering of ambient photons. We introduce RX-DMFIT, a tool used for calculating the expected secondary emission from DM annihilation. RX-DMFIT includes a wide range of customizable astrophysical and particle parameters and incorporates important astrophysics including the diffusion of charged particles, relevant radiative energy losses, and magnetic field modelling. We demonstrate the use and versatility of RX-DMFIT by analyzing the potential radio and X-ray signals for a variety of DM particle models and astrophysical environments including galaxy clusters, dwarf spheroidal galaxies and normal galaxies. We then apply RX-DMFIT to a concrete example using Segue I radio data to place constraints for a range of assumed DM annihilation channels. For WIMP models with M χ ≤ 100 GeV and assuming weak diffusion, we find that the leptonic μ + μ − and τ + τ − final states provide the strongest constraints, placing limits on the DM particle cross-section well below the thermal relic cross-section, while even for the b b-bar channel we find limits close to the thermal relic cross-section. Our analysis shows that radio emission provides a highly competitive avenue for dark matter searches.

  3. Multiwavelength analysis of dark matter annihilation and RX-DMFIT

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, A.; Jeltema, T.; Profumo, S. [Department of Physics, University of California, 1156 High St. Santa Cruz, CA, 95064 (United States); Storm, E., E-mail: alexmcdaniel@ucsc.edu, E-mail: tesla@ucsc.edu, E-mail: profumo@ucsc.edu, E-mail: e.m.storm@uva.nl [GRAPPA, Institute of Physics, Universiteit van Amsterdam Science Park 904, 1098XH Amsterdam (Netherlands)

    2017-09-01

    Dark matter (DM) particles are predicted by several well motivated models to yield Standard Model particles through self-annihilation that can potentially be detected by astrophysical observations. In particular, the production of charged particles from DM annihilation in astrophysical systems that contain magnetic fields yields radio emission through synchrotron radiation and X-ray emission through inverse Compton scattering of ambient photons. We introduce RX-DMFIT, a tool used for calculating the expected secondary emission from DM annihilation. RX-DMFIT includes a wide range of customizable astrophysical and particle parameters and incorporates important astrophysics including the diffusion of charged particles, relevant radiative energy losses, and magnetic field modelling. We demonstrate the use and versatility of RX-DMFIT by analyzing the potential radio and X-ray signals for a variety of DM particle models and astrophysical environments including galaxy clusters, dwarf spheroidal galaxies and normal galaxies. We then apply RX-DMFIT to a concrete example using Segue I radio data to place constraints for a range of assumed DM annihilation channels. For WIMP models with M {sub χ} ≤ 100 GeV and assuming weak diffusion, we find that the leptonic μ{sup +}μ{sup −} and τ{sup +}τ{sup −} final states provide the strongest constraints, placing limits on the DM particle cross-section well below the thermal relic cross-section, while even for the b b-bar channel we find limits close to the thermal relic cross-section. Our analysis shows that radio emission provides a highly competitive avenue for dark matter searches.

  4. Dark matter physics, flavor physics and LHC constraints in the dark matter model with a bottom partner

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Tomohiro [Institute for Advanced Research, Nagoya University,Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe,Nagoya University, Nagoya 464-8602 (Japan); Kawamura, Junichiro [Department of Physics, Waseda University,Tokyo 169-8555 (Japan); Okawa, Shohei [Department of Physics, Nagoya University,Nagoya 464-8602 (Japan); Omura, Yuji [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe,Nagoya University, Nagoya 464-8602 (Japan)

    2017-03-10

    In the scenario that dark matter (DM) is a weakly interacting massive particle, there are many possibilities of the interactions with the Standard Model (SM) particles to achieve the relic density of DM. In this paper, we consider a simple DM model where the DM candidate is a complex scalar boson. The model contains a new complex gauge singlet scalar boson and a new fermion whose gauge charge is the same as the right-handed down-type quark. We dub the new fermion the bottom partner. These new particles have Yukawa interactions with the SM down-type quarks. The DM candidate interacts with the SM particles through the Yukawa interactions. The Yukawa interactions are not only relevant to the annihilation process of the DM but also contribute to the flavor physics, such as the ΔF=2 processes. In addition, the flavor alignment of the Yukawa couplings is related to the decay modes of the bottom partner, and thus we can find the explicit correlations among the physical observables in DM physics, flavor physics, and the signals at the LHC. We survey the ΔF=2 processes based on the numerical analyses of the thermal relic density, the direct detection of the DM, and the current LHC bounds. We investigate the perturbative bound on the Yukawa coupling as well. A Study of a fermionic DM model with extra scalar quarks is also given for comparison.

  5. Invisible Higgs and Dark Matter

    DEFF Research Database (Denmark)

    Heikinheimo, Matti; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2012-01-01

    We investigate the possibility that a massive weakly interacting fermion simultaneously provides for a dominant component of the dark matter relic density and an invisible decay width of the Higgs boson at the LHC. As a concrete model realizing such dynamics we consider the minimal walking...... technicolor, although our results apply more generally. Taking into account the constraints from the electroweak precision measurements and current direct searches for dark matter particles, we find that such scenario is heavily constrained, and large portions of the parameter space are excluded....

  6. Top-flavoured dark matter in Dark Minimal Flavour Violation

    Energy Technology Data Exchange (ETDEWEB)

    Blanke, Monika; Kast, Simon [Institut für Kernphysik, Karlsruhe Institute of Technology,Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology,Engesserstraße 7, D-76128 Karlsruhe (Germany)

    2017-05-31

    We study a simplified model of top-flavoured dark matter in the framework of Dark Minimal Flavour Violation. In this setup the coupling of the dark matter flavour triplet to right-handed up-type quarks constitutes the only new source of flavour and CP violation. The parameter space of the model is restricted by LHC searches with missing energy final states, by neutral D meson mixing data, by the observed dark matter relic abundance, and by the absence of signal in direct detection experiments. We consider all of these constraints in turn, studying their implications for the allowed parameter space. Imposing the mass limits and coupling benchmarks from collider searches, we then conduct a combined analysis of all the other constraints, revealing their non-trivial interplay. Especially interesting is the combination of direct detection and relic abundance constraints, having a severe impact on the structure of the dark matter coupling matrix. We point out that future bounds from upcoming direct detection experiments, such as XENON1T, XENONnT, LUX-ZEPLIN, and DARWIN, will exclude a large part of the parameter space and push the DM mass to higher values.

  7. Relics of the cosmological quark-hadron phase transition

    International Nuclear Information System (INIS)

    Sinha, Bikash

    2001-01-01

    In this talk I will not dwell further on the nature of the Q -> H transition, Instead, I will simply assume that it is a phase transition, and further, a first-order phase transition, in which case, there is a possibility that a particular kind of relics called quark nuggets (QNs) containing a large fraction of the net baryon number of the universe may have been formed at the end of such a phase transition. The QNs would have tremendous implications for cosmology and astrophysics. In particular, they can be a good candidate for the baryonic dark matter in the universe provided they can survive up to the present epoch. The QNs which survived and floating around the universe, is there any connection with the recently discovered MACHOs between the earth and the Large Magellanic clouds. The QNs are hypothesized to be made of 'strange matter' which is composed of a roughly equal mixture of u, d, and s quarks at a density ≥ nuclear density. It has been hypothesized that at zero temperature and zero pressure the true ground state of hadronic matter could be SM rather than 56 Fe, the energy per baryon in SM could be lower that in ordinary nuclear matter. The latter would, however, still be effectively stable against decay would require high order simultaneous weak interaction process with a life-time much greater than the age of the universe. For certain ranges of values of parameters involved, namely, the QCD fine structure constant (α c ), mass of the strange quark (m s ), the vacuum bag energy (B), the hypothesis of SM being the absolutely stable of hadronic matter has been found to be quite plausible. (author)

  8. Secretly asymmetric dark matter

    Science.gov (United States)

    Agrawal, Prateek; Kilic, Can; Swaminathan, Sivaramakrishnan; Trendafilova, Cynthia

    2017-01-01

    We study a mechanism where the dark matter number density today arises from asymmetries generated in the dark sector in the early Universe, even though the total dark matter number remains zero throughout the history of the Universe. The dark matter population today can be completely symmetric, with annihilation rates above those expected from thermal weakly interacting massive particles. We give a simple example of this mechanism using a benchmark model of flavored dark matter. We discuss the experimental signatures of this setup, which arise mainly from the sector that annihilates the symmetric component of dark matter.

  9. Effective field theory of dark matter from membrane inflationary paradigm

    Science.gov (United States)

    Choudhury, Sayantan; Dasgupta, Arnab

    2016-09-01

    In this article, we have studied the cosmological and particle physics constraints on dark matter relic abundance from effective field theory of inflation from tensor-to-scalar ratio (r), in case of Randall-Sundrum single membrane (RSII) paradigm. Using semi-analytical approach we establish a direct connection between the dark matter relic abundance (ΩDMh2) and primordial gravity waves (r), which establishes a precise connection between inflation and generation of dark matter within the framework of effective field theory in RSII membrane. Further assuming the UV completeness of the effective field theory perfectly holds good in the prescribed framework, we have explicitly shown that the membrane tension, σ ≤ O(10-9) Mp4 , bulk mass scale M5 ≤ O(0.04 - 0.05) Mp, and cosmological constant Λ˜5 ≥ - O(10-15) Mp5 , in RSII membrane plays the most significant role to establish the connection between dark matter and inflation, using which we have studied the features of various mediator mass scale suppressed effective field theory "relevant operators" induced from the localized s, t and u channel interactions in RSII membrane. Taking a completely model independent approach, we have studied an exhaustive list of tree-level Feynman diagrams for dark matter annihilation within the prescribed setup and to check the consistency of the obtained results, further we apply the constraints as obtained from recently observed Planck 2015 data and Planck + BICEP2 + Keck Array joint data sets. Using all of these derived results we have shown that to satisfy the bound on, ΩDMh2 = 0.1199 ± 0.0027, as from Planck 2015 data, it is possible to put further stringent constraint on r within, 0.01 ≤ r ≤ 0.12, for thermally averaged annihilation cross-section of dark matter, 〈 σv 〉 ≈ O(10-28 - 10-27) cm3 / s, which are very useful to constrain various membrane inflationary models.

  10. Stochastic backgrounds of relic gravitons: a theoretical appraisal

    CERN Document Server

    Giovannini, Massimo

    2010-01-01

    Stochastic backgrounds or relic gravitons, if ever detected, will constitute a prima facie evidence of physical processes taking place during the earliest stages of the evolution of the plasma. The essentials of the stochastic backgrounds of relic gravitons are hereby introduced and reviewed. The pivotal observables customarily employed to infer the properties of the relic gravitons are discussed both in the framework of the $\\Lambda$CDM paradigm as well as in neighboring contexts. The complementarity between experiments measuring the polarization of the Cosmic Microwave Background (such as, for instance, WMAP, Capmap, Quad, Cbi, just to mention a few) and wide band interferometers (e.g. Virgo, Ligo, Geo, Tama) is emphasized. While the analysis of the microwave sky strongly constrains the low-frequency tail of the relic graviton spectrum, wide-band detectors are sensitive to much higher frequencies where the spectral energy density depends chiefly upon the (poorly known) rate of post-inflationary expansion.

  11. Dark matter from decaying topological defects

    International Nuclear Information System (INIS)

    Hindmarsh, Mark; Kirk, Russell; West, Stephen M.

    2014-01-01

    We study dark matter production by decaying topological defects, in particular cosmic strings. In topological defect or ''top-down'' (TD) scenarios, the dark matter injection rate varies as a power law with time with exponent p−4. We find a formula in closed form for the yield for all p < 3/2, which accurately reproduces the solution of the Boltzmann equation. We investigate two scenarios (p = 1, p = 7/6) motivated by cosmic strings which decay into TeV-scale states with a high branching fraction into dark matter particles. For dark matter models annihilating either by s-wave or p-wave, we find the regions of parameter space where the TD model can account for the dark matter relic density as measured by Planck. We find that topological defects can be the principal source of dark matter, even when the standard freeze-out calculation under-predicts the relic density and hence can lead to potentially large ''boost factor'' enhancements in the dark matter annihilation rate. We examine dark matter model-independent limits on this scenario arising from unitarity and discuss example model-dependent limits coming from indirect dark matter search experiments. In the four cases studied, the upper bound on Gμ for strings with an appreciable channel into TeV-scale states is significantly more stringent than the current Cosmic Microwave Background limits

  12. Relic gravitational waves in the accelerating Universe

    International Nuclear Information System (INIS)

    Zhang Yang; Yuan Yefei; Zhao Wen; Chen Yingtian

    2005-01-01

    Recent observations have indicated that the Universe at the present stage is in an accelerating expansion, a process that has great implications. We evaluate the spectrum of relic gravitational waves in the current accelerating Universe and find that there are new features appearing in the resulting spectrum as compared to the decelerating models. In the low-frequency range the peak of the spectrum is now located at a frequency ν E ∼ (OMEGA m /OMEGA Λ ) 1/3 ν H , where ν H is the Hubble frequency, and there appears a new segment of spectrum between ν E and ν H . In all other intervals of frequencies ≥ν H , the spectral amplitude acquires an extra factor (OMEGA m /OMEGA Λ ), due to the current acceleration; otherwise the shape of the spectrum is similar to that in the decelerating models. The recent WMAP result of CMB anisotropies is used to normalize the amplitude for gravitational waves. The slope of the power spectrum depends sensitively on the scale factor a(τ) ∝ vertical bar τ vertical bar 1+β during the inflationary stage with β = -2 for the exact de Sitter space. With increasing β, the resulting spectrum is tilted to be flatter with more power at high frequencies, and the sensitivity of the second science run of the LIGO detectors puts a restriction on the parameter β ≤ -1.8. We also give a numerical solution which confirms these features

  13. RNA Relics and Origin of Life

    Directory of Open Access Journals (Sweden)

    Laurent Vial

    2009-07-01

    Full Text Available A number of small RNA sequences, located in different non-coding sequences and highly preserved across the tree of life, have been suggested to be molecular fossils, of ancient (and possibly primordial origin. On the other hand, recent years have revealed the existence of ubiquitous roles for small RNA sequences in modern organisms, in functions ranging from cell regulation to antiviral activity. We propose that a single thread can be followed from the beginning of life in RNA structures selected only for stability reasons through the RNA relics and up to the current coevolution of RNA sequences; such an understanding would shed light both on the history and on the present development of the RNA machinery and interactions. After presenting the evidence (by comparing their sequences that points toward a common thread, we discuss a scenario of genome coevolution (with emphasis on viral infectious processes and finally propose a plan for the reevaluation of the stereochemical theory of the genetic code; we claim that it may still be relevant, and not only for understanding the origin of life, but also for a comprehensive picture of regulation in present-day cells.

  14. RNA Relics and Origin of Life

    Science.gov (United States)

    Demongeot, Jacques; Glade, Nicolas; Moreira, Andrés; Vial, Laurent

    2009-01-01

    A number of small RNA sequences, located in different non-coding sequences and highly preserved across the tree of life, have been suggested to be molecular fossils, of ancient (and possibly primordial) origin. On the other hand, recent years have revealed the existence of ubiquitous roles for small RNA sequences in modern organisms, in functions ranging from cell regulation to antiviral activity. We propose that a single thread can be followed from the beginning of life in RNA structures selected only for stability reasons through the RNA relics and up to the current coevolution of RNA sequences; such an understanding would shed light both on the history and on the present development of the RNA machinery and interactions. After presenting the evidence (by comparing their sequences) that points toward a common thread, we discuss a scenario of genome coevolution (with emphasis on viral infectious processes) and finally propose a plan for the reevaluation of the stereochemical theory of the genetic code; we claim that it may still be relevant, and not only for understanding the origin of life, but also for a comprehensive picture of regulation in present-day cells. PMID:20111682

  15. Inelastic dark matter at DAMA, CDMS and Future Experiments

    OpenAIRE

    Smith, David R.; Weiner, Neal

    2002-01-01

    The DAMA annual modulation signature, interpreted as evidence for a spin-independent WIMP coupling, seems in conflict with null results from CDMS. However, in models of ``inelastic dark matter'', the experiments are compatible. Inelastic dark matter can arise in supersymmetric theories as the real component of a sneutrino mixed with a singlet scalar. In contrast with ordinary sneutrino dark matter, such particles can satisfy all experimental constraints while giving the appropriate relic abun...

  16. Dark matter from unification

    DEFF Research Database (Denmark)

    Kainulainen, Kimmo; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2013-01-01

    We consider a minimal extension of the Standard Model (SM), which leads to unification of the SM coupling constants, breaks electroweak symmetry dynamically by a new strongly coupled sector and leads to novel dark matter candidates. In this model, the coupling constant unification requires...... eigenstates of this sector and determine the resulting relic density. The results are constrained by available data from colliders and direct and indirect dark matter experiments. We find the model viable and outline briefly future research directions....... the existence of electroweak triplet and doublet fermions singlet under QCD and new strong dynamics underlying the Higgs sector. Among these new matter fields and a new right handed neutrino, we consider the mass and mixing patterns of the neutral states. We argue for a symmetry stabilizing the lightest mass...

  17. Common origin of visible and dark universe

    International Nuclear Information System (INIS)

    Gu Peihong; Sarkar, Utpal

    2010-01-01

    Dark matter, baryonic matter, and dark energy have different properties but contribute comparable energy density to the present Universe. We point out that they may have a common origin. As the dark energy has a scale far lower than all known scales in particle physics but very close to neutrino masses, while the excess matter over antimatter in the baryonic sector is probably related to the neutrino-mass generation, we unify the origin of the dark and visible universe in a variant of the seesaw model. In our model (i) the dark matter relic density is a dark matter asymmetry emerged simultaneously with the baryon asymmetry from leptogenesis; (ii) the dark energy is due to a pseudo-Nambu-Goldstone-Boson associated with the neutrino-mass generation.

  18. Relics in galaxy clusters at high radio frequencies

    Science.gov (United States)

    Kierdorf, M.; Beck, R.; Hoeft, M.; Klein, U.; van Weeren, R. J.; Forman, W. R.; Jones, C.

    2017-04-01

    Aims: We investigated the magnetic properties of radio relics located at the peripheries of galaxy clusters at high radio frequencies, where the emission is expected to be free of Faraday depolarization. The degree of polarization is a measure of the magnetic field compression and, hence, the Mach number. Polarization observations can also be used to confirm relic candidates. Methods: We observed three radio relics in galaxy clusters and one radio relic candidate at 4.85 and 8.35 GHz in total emission and linearly polarized emission with the Effelsberg 100-m telescope. In addition, we observed one radio relic candidate in X-rays with the Chandra telescope. We derived maps of polarization angle, polarization degree, and Faraday rotation measures. Results: The radio spectra of the integrated emission below 8.35 GHz can be well fitted by single power laws for all four relics. The flat spectra (spectral indices of 0.9 and 1.0) for the so-called Sausage relic in cluster CIZA J2242+53 and the so-called Toothbrush relic in cluster 1RXS 06+42 indicate that models describing the origin of relics have to include effects beyond the assumptions of diffuse shock acceleration. The spectra of the radio relics in ZwCl 0008+52 and in Abell 1612 are steep, as expected from weak shocks (Mach number ≈2.4). Polarization observations of radio relics offer a method of measuring the strength and geometry of the shock front. We find polarization degrees of more than 50% in the two prominent Mpc-sized radio relics, the Sausage and the Toothbrush, which are among the highest percentages of linear polarization detected in any extragalactic radio source to date. This is remarkable because the large beam size of the Effelsberg single-dish telescope corresponds to linear extensions of about 300 kpc at 8.35 GHz at the distances of the relics. The high degree of polarization indicates that the magnetic field vectors are almost perfectly aligned along the relic structure, as expected for shock

  19. Direct detection of non-baryonic dark matter

    International Nuclear Information System (INIS)

    Nollez, G.

    2003-01-01

    Baryonic matter, which constitutes stars and galaxies, amounts to a few percents of the mass of the universe in agreement with the theory of the big-bang nucleosynthesis. Most of the matter in the universe (approximately 85%) is then non-baryonic and dark. One of the most favoured hypothesis is that this non-baryonic dark matter is constituted by a new type, still undiscovered, of elementary weakly interacting massive particles (wimps). These hypothetical particles would appear as thermal relics from the big-bang era during which they were created. A rich spectrum of new elementary particles is predicted by supersymmetry, the lightest of which is the neutralino. If the dark matter halo of our Milky-way is made of neutralinos, their detection in terrestrial detectors should be possible. Neutralinos are coupled to matter through the electroweak interaction, this implies that the detection rate is extraordinary low. About 10 experiments in the world are dedicated to the search after wimps. A first group of experiments (HDMS, IGEX, DAMA and Zeplin) use 'classical' detectors of nuclear physics, germanium semiconductor diodes or NaI scintillators. A second group (CDMS, Edelweiss) gathers cryogenic phonon ionisation experiments and a third group (CRESST, Rosebud) is based on cryogenic phonon-light experiments. Till now no wimps has been clearly detected, the direct detection story is obviously not concluded, most of the future experiments aim to reach a sensitivity of 10 -44 cm 2 . (A.C.)

  20. Cosmological and astrophysical signatures of dark matter annihilations into pseudo-Goldstone bosons

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Cely, Camilo; Ibarra, Alejandro; Molinaro, Emiliano, E-mail: camilo.garcia@tum.de, E-mail: alejandro.ibarra@ph.tum.de, E-mail: emiliano.molinaro@tum.de [Physik-Department T30d, Technische Universität München, James-Franck-Straße, Garching, 85748 (Germany)

    2014-02-01

    We investigate a model where the dark matter particle is a chiral fermion field charged under a global U(1) symmetry which is assumed to be spontaneously broken, leading to a pseudo-Goldstone boson (PGB). We argue that the dark matter annihilation into PGBs determine the dark matter relic abundance. Besides, we also note that experimental searches for PGBs allow either for a very long lived PGB, with a lifetime much longer than the age of the Universe, or a relatively short lived PGB, with a lifetime shorter than one minute. Hence, two different scenarios arise, producing very different signatures. In the long lived PGB scenario, the PGB might contribute significantly to the radiation energy density of the Universe. On the other hand, in the short lived PGB scenario, and since the decay length is shorter than one parsec, the s-wave annihilation into a PGB and a CP even dark scalar in the Galactic center might lead to an intense box feature in the gamma-ray energy spectrum, provided the PGB decay branching ratio into two photons is sizable. We also analyze the constraints on these two scenarios from thermal production, the Higgs invisible decay width and direct dark matter searches.

  1. Study of dark matter and QCD-charged mediators in the quasidegenerate regime

    Science.gov (United States)

    Davidson, Andrew; Kelso, Chris; Kumar, Jason; Sandick, Pearl; Stengel, Patrick

    2017-12-01

    We study a scenario in which the only light new particles are a Majorana fermion dark matter candidate and one or more QCD-charged scalars, which couple to light quarks. This scenario has several interesting phenomenological features if the new particles are nearly degenerate in mass. In particular, LHC searches for the light scalars have reduced sensitivity, since the visible and invisible products tend to be softer. Moreover, dark matter-scalar coannihilation can allow even relatively heavy dark matter candidates to be consistent thermal relics. Finally, the dark matter nucleon scattering cross section is enhanced in the quasidegenerate limit, allowing direct detection experiments to use both spin-independent and spin-dependent scattering to probe regions of parameter space beyond those probed by the LHC. Although this scenario has a broad application, we phrase this study in terms of the minimal supersymmetric standard model, in the limit where the only light sparticles are a binolike dark matter candidate and light-flavored squarks.

  2. Search for Non-thermal Dark Matter in Monojet Events in Proton-Proton Collisions at $\\sqrt{s}$ = 13 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Undleeb, Sonaina [Texas Tech Univ., Lubbock, TX (United States)

    2017-01-01

    This dissertation presents a search for dark matter in events with one or more jets and large missing transverse energy using proton-proton collisions at center-of-mass energy of 13 TeV. The data was collected in 2016 by the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) corresponding to an integrated luminosity of 35.9 $fb^{-1}$. The results are interpreted in terms of Light Non-thermal dark matter model which explains presence of dark matter as well as baryon asymmetry in the universe. Model independent limit on narrow resonance is also obtained for monojet dominant coupling parameter space. There is no evidence for an excess of events above the background processes in the signal region, therefore cross section limits are set for different mediator masses.

  3. Ruling out dark matter interpretation of the galactic GeV excess by gamma-ray data of galaxy clusters.

    Science.gov (United States)

    Chan, Man Ho; Leung, Chung Hei

    2017-11-02

    Recently, some very tight constraints of annihilating dark matter have been obtained from gamma-ray data of the Milky Way and Milky Way dwarf spheroidal satellite galaxies. In this article, we report that there are two excellent galaxy clusters (A2877 and Fornax) which can provide interesting constraints for annihilating dark matter. The lower limits of the dark matter mass for the thermal relic annihilation cross section are 25 GeV, 6 GeV, 130 GeV and 100 GeV respectively for the e + e - , μ + μ - , τ + τ - and [Formula: see text] channels. For some configuration of our working assumptions, our results improve the Fermi-LAT upper limits of annihilation cross sections by a factor of 1.3 - 1.8 for wide ranges of dark matter mass for e + e - , μ + μ - and [Formula: see text] channels, and a factor of 1.2-1.8 for τ + τ - channel with dark matter mass ≤100 GeV. These limits basically rule out most of the existing popular dark matter interpretation of the GeV excess in the Milky Way.

  4. Direct and indirect singlet scalar dark matter detection in the lepton-specific two-Higgs-doublet model

    International Nuclear Information System (INIS)

    Boucenna, M. S.; Profumo, S.

    2011-01-01

    A recent study of gamma-ray data from the Galactic center motivates the investigation of light (∼7-10 GeV) particle dark matter models featuring tau-lepton pairs as dominant annihilation final state. The lepton-specific two-Higgs-doublet model provides a natural framework where light, singlet scalar dark matter can pair-annihilate dominantly into tau leptons. We calculate the nucleon-dark matter cross section for singlet scalar dark matter within the lepton-specific two-Higgs-doublet model framework, and compare with recent results from direct detection experiments. We study how direct dark matter searches can be used to constrain the dark matter interpretation of gamma-ray observations, for different dominant annihilation final states. We show that models exist with the correct thermal relic abundance that could fit the claimed gamma-ray excess from the Galactic center region and have direct detection cross sections of the order of what is needed to interpret recent anomalous events reported by direct detection experiments.

  5. SUSY-QCD corrections to the (co)annihilation of neutralino dark matter within the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Meinecke, Moritz

    2015-06-15

    Based on experimental observations, it is nowadays assumed that a large component of the matter content in the universe is comprised of so-called cold dark matter. Furthermore, latest measurements of the temperature fluctuations of the cosmic microwave background provided an estimation of the dark matter relic density at a measurement error of one percent (concerning the experimental 1σ-error). The lightest neutralino χ 0{sub 1}, a particle which subsumes under the phenomenologically interesting category of weakly interacting massive particles, is a viable dark matter candidate for many supersymmetric (SUSY) models whose relic density Ω{sub χ} {sub 0{sub 1}} happens to lie quite naturally within the experimentally favored ballpark of dark matter. The high experimental precision can be used to constrain the SUSY parameter space to its cosmologically favored regions and to pin down phenomenologically interesting scenarios. However, to actually benefit from this progress on the experimental side it is also mandatory to minimize the theoretical uncertainties. An important quantity within the calculation of the neutralino relic density is the thermally averaged sum over different annihilation and coannihilation cross sections of the neutralino and further supersymmetric particles. It is now assumed and also partly proven that these cross sections can be subject to large loop corrections which can even shift the associated Ω{sub χ} {sub 0{sub 1}} by a factor larger than the current experimental error. However, most of these corrections are yet unknown. In this thesis, we calculate higher-order corrections for some of the most important (co)annihilation channels both within the framework of the R-parity conserving Minimal Supersymmetric Standard Model (MSSM) and investigate their impact on the final neutralino relic density Ω{sub χ} {sub 0{sub 1}}. More precisely, this work provides the full O(α{sub s}) corrections of supersymmetric quantum chromodynamics (SUSY

  6. Very heavy dark Skyrmions

    International Nuclear Information System (INIS)

    Dick, Rainer

    2017-01-01

    A dark sector with a solitonic component provides a means to circumvent the problem of generically low annihilation cross sections of very heavy dark matter particles. At the same time, enhanced annihilation cross sections are necessary for indirect detection of very heavy dark matter components beyond 100 TeV. Non-thermally produced dark matter in this mass range could therefore contribute to the cosmic γ-ray and neutrino flux above 100 TeV, and massive Skyrmions provide an interesting framework for the discussion of these scenarios. Therefore a Higgs portal and a neutrino portal for very heavy Skyrmion dark matter are discussed. The Higgs portal model demonstrates a dark mediator bottleneck, where limitations on particle annihilation cross sections will prevent a signal from the potentially large soliton annihilation cross sections. This problem can be avoided in models where the dark mediator decays. This is illustrated by the neutrino portal for Skyrmion dark matter. (orig.)

  7. Very heavy dark Skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Dick, Rainer [University of Saskatchewan, Department of Physics and Engineering Physics, Saskatoon, SK (Canada)

    2017-12-15

    A dark sector with a solitonic component provides a means to circumvent the problem of generically low annihilation cross sections of very heavy dark matter particles. At the same time, enhanced annihilation cross sections are necessary for indirect detection of very heavy dark matter components beyond 100 TeV. Non-thermally produced dark matter in this mass range could therefore contribute to the cosmic γ-ray and neutrino flux above 100 TeV, and massive Skyrmions provide an interesting framework for the discussion of these scenarios. Therefore a Higgs portal and a neutrino portal for very heavy Skyrmion dark matter are discussed. The Higgs portal model demonstrates a dark mediator bottleneck, where limitations on particle annihilation cross sections will prevent a signal from the potentially large soliton annihilation cross sections. This problem can be avoided in models where the dark mediator decays. This is illustrated by the neutrino portal for Skyrmion dark matter. (orig.)

  8. Dark matter in a constrained E6 inspired SUSY model

    International Nuclear Information System (INIS)

    Athron, P.; Harries, D.; Nevzorov, R.; Williams, A.G.

    2016-01-01

    We investigate dark matter in a constrained E 6 inspired supersymmetric model with an exact custodial symmetry and compare with the CMSSM. The breakdown of E 6 leads to an additional U(1) N symmetry and a discrete matter parity. The custodial and matter symmetries imply there are two stable dark matter candidates, though one may be extremely light and contribute negligibly to the relic density. We demonstrate that a predominantly Higgsino, or mixed bino-Higgsino, neutralino can account for all of the relic abundance of dark matter, while fitting a 125 GeV SM-like Higgs and evading LHC limits on new states. However we show that the recent LUX 2016 limit on direct detection places severe constraints on the mixed bino-Higgsino scenarios that explain all of the dark matter. Nonetheless we still reveal interesting scenarios where the gluino, neutralino and chargino are light and discoverable at the LHC, but the full relic abundance is not accounted for. At the same time we also show that there is a huge volume of parameter space, with a predominantly Higgsino dark matter candidate that explains all the relic abundance, that will be discoverable with XENON1T. Finally we demonstrate that for the E 6 inspired model the exotic leptoquarks could still be light and within range of future LHC searches.

  9. Supersymmetric Dark Matter and Prospects for its Detection

    Science.gov (United States)

    Yamamoto, Takahiro

    Dark matter is a prominent and dominant form of matter in the Universe. Yet, despite various intense efforts, its nongravitational effects have not been observed. In this dissertation, we explore the nature of such elusive particles within a supersymmetric SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge theory. Although large regions of parameter space within supersymmetric models have been excluded by recent results from collider experiments and direct and indirect dark matter searches, we find that there is a wide range of viable parameter space once the requirements of minimal flavor violation and mass universality are relaxed. In particular, we focus on a class of models in which electroweak-scale Majorana dark matter has interactions with the Standard Model sector via relatively light charged scalars with large chiral mixing and CP-violation. Our model is shown to lead to enhanced dark matter pair annihilation, and is constrained by precise measurements of the lepton dipole moments. We illustrate that our model satisfies all constraints, including the observed thermal relic density, and investigate prospects for the detection of dark matter annihilation products. We also examine the effects of chiral mixing and CP-violationn on the variation in the ratio of the flux of monoenergetic photons from annihilation to two photons relative to that from annihilation to a photon and a Z boson, as well as the helicity asymmetry in the diphoton final state. We also find the most general spectrum for internal bremsstrahlung, which interpolates between the regimes dominated by virtual internal bremsstrahlung and by final state radiation, and that it provides distinctive gamma-ray signals, which could potentially be observed in the near future.

  10. Dark matter candidates

    International Nuclear Information System (INIS)

    Turner, M.S.

    1989-01-01

    One of the simplest, yet most profound, questions we can ask about the Universe is, how much stuff is in it, and further what is that stuff composed of? Needless to say, the answer to this question has very important implications for the evolution of the Universe, determining both the ultimate fate and the course of structure formation. Remarkably, at this late date in the history of the Universe we still do not have a definitive answer to this simplest of questions---although we have some very intriguing clues. It is known with certainty that most of the material in the Universe is dark, and we have the strong suspicion that the dominant component of material in the Cosmos is not baryons, but rather is exotic relic elementary particles left over from the earliest, very hot epoch of the Universe. If true, the Dark Matter question is a most fundamental one facing both particle physics and cosmology. The leading particle dark matter candidates are: the axion, the neutralino, and a light neutrino species. All three candidates are accessible to experimental tests, and experiments are now in progress. In addition, there are several dark horse, long shot, candidates, including the superheavy magnetic monopole and soliton stars. 13 refs

  11. The radio relics and halo of El Gordo, a massive z = 0.870 cluster merger

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Robert R.; Baker, Andrew J.; Hughes, John P. [Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Battaglia, Nick [McWilliams Center for Cosmology, Wean Hall, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 (United States); Gupta, Neeraj [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo (Netherlands); Knowles, Kenda; Moodley, Kavilan [Astrophysics and Cosmology Research Unit, University of KwaZulu-Natal, Durban 4041 (South Africa); Marriage, Tobias A. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States); Menanteau, Felipe [National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W. Clark St., Urbana, IL 61801 (United States); Reese, Erik D. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd St., Philadelphia, PA 19104 (United States); Srianand, Raghunathan, E-mail: rlindner@astro.wisc.edu [IUCAA, Ganeshkhind, Pune 411007 (India)

    2014-05-01

    with recent energy injection. The spatial and spectral correlation between the halo emission and cluster X-ray properties supports primary-electron processes like turbulent reacceleration as the halo production mechanism. The halo's integrated 610 MHz to 2.1 GHz spectral index is a relatively flat α = 1.2 ± 0.1, consistent with the cluster's high T {sub gas} in view of previously established global scaling relations. El Gordo is the highest-redshift cluster known to host a radio halo and/or radio relics, and provides new constraints on the non-thermal physics in clusters at z > 0.6.

  12. Collider, direct and indirect detection of supersymmetric dark matter

    International Nuclear Information System (INIS)

    Baer, Howard; Park, Eun-Kyung; Tata, Xerxes

    2009-01-01

    We present an overview of supersymmetry (SUSY) searches, both at collider experiments and via searches for dark matter (DM). We focus on three DM possibilities in the SUSY context: the thermally produced neutralino, a mixture of axion and axino, and the gravitino, and compare and contrast signals that may be expected at colliders, in direct detection (DD) experiments searching of DM relics left over from the Big Bang, and indirect detection (ID) experiments designed to detect the products of DM annihilations within the solar interior or galactic halo. Detection of DM particles using multiple strategies provides complementary information that may shed light on the new physics associated with the DM sector. In contrast to the minimal supergravity (mSUGRA) model where the measured cold DM relic density restricts us to special regions mostly on the edge of the m 0 -m 1/2 plane, the entire parameter plane becomes allowed if the universality assumption is relaxed in models with just one additional parameter. Then, thermally produced neutralinos with a well-tempered mix of wino, bino and higgsino components, or with a mass adjusted so that their annihilation in the early Universe is Higgs-resonance-enhanced, can be the DM. Well-tempered neutralinos typically yield heightened rates for DD and ID experiments compared with generic predictions from mSUGRA. If instead DM consists of axinos (possibly together with axions) or gravitinos, then there exists the possibility of detection of quasi-stable next-to-lightest SUSY particles at colliding beam experiments, with especially striking consequences if the next-lightest-supersymmetric-particle (NLSP) is charged, but no DD or ID detection. The exception for mixed axion/axino DM is that DD of axions may be possible.

  13. The role of Dark Matter sub-halos in the non-thermal emission of galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Marchegiani, Paolo; Colafrancesco, Sergio, E-mail: Paolo.Marchegiani@wits.ac.za, E-mail: Sergio.Colafrancesco@wits.ac.za [School of Physics, University of the Witwatersrand, Private Bag 3, WITS-2050, Johannesburg (South Africa)

    2016-11-01

    Annihilation of Dark Matter (DM) particles has been recognized as one of the possible mechanisms for the production of non-thermal particles and radiation in galaxy clusters. Previous studies have shown that, while DM models can reproduce the spectral properties of the radio halo in the Coma cluster, they fail in reproducing the shape of the radio halo surface brightness because they produce a shape that is too concentrated towards the center of the cluster with respect to the observed one. However, in previous studies the DM distribution was modeled as a single spherically symmetric halo, while the DM distribution in Coma is found to have a complex and elongated shape. In this work we calculate a range of non-thermal emissions in the Coma cluster by using the observed distribution of DM sub-halos. We find that, by including the observed sub-halos in the DM model, we obtain a radio surface brightness with a shape similar to the observed one, and that the sub-halos boost the radio emission by a factor between 5 and 20%, thus allowing to reduce the gap between the annihilation cross section required to reproduce the radio halo flux and the upper limits derived from other observations, and that this gap can be explained by realistic values of the boosting factor due to smaller substructures. Models with neutralino mass of 9 GeV and composition τ{sup +} τ{sup −}, and mass of 43 GeV and composition b b-bar can fit the radio halo spectrum using the observed properties of the magnetic field in Coma, and do not predict a gamma-ray emission in excess compared to the recent Fermi-LAT upper limits. These findings make these DM models viable candidate to explain the origin of radio halos in galaxy clusters, avoiding the problems connected to the excessive gamma-ray emission expected from proton acceleration in most of the currently proposed models, where the acceleration of particles is directly or indirectly connected to events related to clusters merging. Therefore, DM

  14. APPLICATION OF 3D MODEL OF CULTURAL RELICS IN VIRTUAL RESTORATION

    Directory of Open Access Journals (Sweden)

    S. Zhao

    2018-04-01

    Full Text Available In the traditional cultural relics splicing process, in order to identify the correct spatial location of the cultural relics debris, experts need to manually splice the existing debris. The repeated contact between debris can easily cause secondary damage to the cultural relics. In this paper, the application process of 3D model of cultural relic in virtual restoration is put forward, and the relevant processes and ideas are verified with the example of Terracotta Warriors data. Through the combination of traditional cultural relics restoration methods and computer virtual reality technology, virtual restoration of high-precision 3D models of cultural relics can provide a scientific reference for virtual restoration, avoiding the secondary damage to the cultural relics caused by improper restoration. The efficiency and safety of the preservation and restoration of cultural relics have been improved.

  15. Application of 3d Model of Cultural Relics in Virtual Restoration

    Science.gov (United States)

    Zhao, S.; Hou, M.; Hu, Y.; Zhao, Q.

    2018-04-01

    In the traditional cultural relics splicing process, in order to identify the correct spatial location of the cultural relics debris, experts need to manually splice the existing debris. The repeated contact between debris can easily cause secondary damage to the cultural relics. In this paper, the application process of 3D model of cultural relic in virtual restoration is put forward, and the relevant processes and ideas are verified with the example of Terracotta Warriors data. Through the combination of traditional cultural relics restoration methods and computer virtual reality technology, virtual restoration of high-precision 3D models of cultural relics can provide a scientific reference for virtual restoration, avoiding the secondary damage to the cultural relics caused by improper restoration. The efficiency and safety of the preservation and restoration of cultural relics have been improved.

  16. Multi-messenger constraints and pressure from dark matter annihilation into e--e+ pairs

    International Nuclear Information System (INIS)

    Wechakama, Maneenate

    2013-01-01

    inner slope of the halo density profile, as well as the mass and the annihilation cross-section of dark matter particles into electron-positron pairs). In the second part, upper limits on the dark matter annihilation cross-section into electron-positron pairs are obtained by combining observed data at different wavelengths (from Haslam, WMAP, and Fermi all-sky intensity maps) with recent measurements of the electron and positron spectra in the solar neighbourhood by PAMELA, Fermi, and H.E.S.S. We consider synchrotron emission in the radio and microwave bands, as well as inverse Compton scattering and final-state radiation at gamma-ray energies. For most values of the model parameters, the tightest constraints are imposed by the local positron spectrum and synchrotron emission from the central regions of the Galaxy. According to our results, the annihilation cross-section should not be higher than the canonical value for a thermal relic if the mass of the dark matter candidate is smaller than a few GeV. In addition, we also derive a stringent upper limit on the inner logarithmic slope α of the density profile of the Milky Way dark matter halo (α dm dm dm e ± =3 x 10 -26 cm 3 s -1 , as predicted for thermal relics from the big bang.

  17. Phases of cannibal dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marco [New High Energy Theory Center, Department of Physics, Rutgers University,136 Frelinghuisen Road, Piscataway, NJ 08854 (United States); Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele [Center for Cosmology and Particle Physics, Department of Physics, New York University,New York, NY 10003 (United States)

    2016-12-13

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.

  18. Dark Matter Searches with the Fermi-LAT in the Direction of Dwarf Spheroidals

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Matthew; Anderson, Brandon; Drlica-Wagner, Alex; Cohen-Tanugi, Johann; Conrad, Jan

    2015-07-13

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma-ray observations of Milky Way dwarf spheroidal satellite galaxies based on 6 years of Fermi Large Area Telescope data processed with the new Pass 8 reconstruction and event-level analysis. None of the dwarf galaxies are significantly detected in gamma rays, and we present upper limits on the dark matter annihilation cross section from a combined analysis of the 15 most promising dwarf galaxies. The constraints derived are among the strongest to date using gamma rays, and lie below the canonical thermal relic cross section for WIMPs of mass ≲ 100GeV annihilating via the bb-bar and τ⁺τ⁻ channels.

  19. Dark Dark Wood

    DEFF Research Database (Denmark)

    2017-01-01

    2017 student Bachelor film. Synopsis: Young princess Maria has had about enough of her royal life – it’s all lesson, responsibilities and duties on top of each other, every hour of every day. Overwhelmed Maria is swept away on an adventure into the monster-filled dark, dark woods. During 2017...

  20. Quantum state correction of relic gravitons from quantum gravity

    OpenAIRE

    Rosales, Jose-Luis

    1996-01-01

    The semiclassical approach to quantum gravity would yield the Schroedinger formalism for the wave function of metric perturbations or gravitons plus quantum gravity correcting terms in pure gravity; thus, in the inflationary scenario, we should expect correcting effects to the relic graviton (Zel'dovich) spectrum of the order (H/mPl)^2.

  1. Radiological data acquisition, investigation and evaluation of mining relics

    International Nuclear Information System (INIS)

    1992-01-01

    Within the scope of a Federal Project, the environmental radioactivity and the radon concentration in buildings caused by mining relics in the new Federal Lands of Germany are investigated. In the first phase of the project, about 8000 relics of former mining were identified by analysing existing documents, categorised, and recorded in a special data bank. Thereby, 'areas of suspicion' of 1500 km 2 spaciously defined in the beginning could be reduced to 'areas of investigation' of 250 km 2 now to be examined in close coordination with the land and district authorities by a programme gradually adapted to the radiological significance of the relics. Experience with site-specific measuring programmes have already been gained through three pilot projects at typical sites of former mining activities. Recommendations of the German Radiation Protection Commission serve for the evaluation of the results. By the measuring programme for radon in buildings of mining and geological predestined regions more than 25000 buildings of 210 communities have been investigated. The results confirm the expected prevailing influence of the geologic underground on the radon concentration. Extreme values are observed where direct connections additionally exist to mining relics in the ground. (orig./HP) With 11 figs. in annex [de

  2. Late Quaternary sea level and environmental changes from relic ...

    Indian Academy of Sciences (India)

    Relic carbonate deposits along the western margin of India occur as dolomite crusts, aragonite sands (pelletal / oolitic) and aragonite-cemented limestones, oyster shells, corals, encrusted coralline algal and foraminiferal-dominated nodules. The petrology and mineralogy of the deposits indicate that except for aragonite ...

  3. Dusty Relic to Shining Treasure: Embedded in a Multicultural Environment

    Science.gov (United States)

    Avery, Beth Fuseler; Batman, Cindy

    2014-01-01

    Far from being dusty old relics who are guardians of the book, embedded librarians need to be proactively leading students through the digital maze of the virtual library. Working with students more than 7,000 miles away changed perceptions of how to teach and learn, and how people interact online. We will share how as embedded librarians we…

  4. Proto-ribosome: a theoretical approach based on RNA relics

    OpenAIRE

    Demongeot, Jacques

    2017-01-01

    We describe in this paper, based on already published articles, a contribution to the theory postulating the existence of a proto-ribosome, which could have appeared early at the origin of life and we discuss the interest of this notion in an evolutionary perspective, taking into account the existence of possible RNA relics of this proto-ribosome.

  5. Relic gravitational waves and the generalized second law

    International Nuclear Information System (INIS)

    Izquierdo, German; Pavon, Diego

    2004-01-01

    The generalized second law of gravitational thermodynamics is applied to the present era of accelerated expansion of the Universe. In spite of the fact that the entropy of matter and relic gravitational waves inside the event horizon diminish, the mentioned law is fulfilled provided that the expression for the entropy density of the gravitational waves satisfies a certain condition

  6. Strongly interacting light dark matter

    International Nuclear Information System (INIS)

    Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo

    2016-07-01

    In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

  7. Detecting Boosted Dark Matter from the Sun with Large Volume Neutrino Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Joshua; /SLAC; Cui, Yanou; /Perimeter Inst. Theor. Phys.; Zhao, Yue; /Stanford U., ITP /Stanford U., Phys. Dept.

    2015-04-02

    We study novel scenarios where thermal dark matter (DM) can be efficiently captured in the Sun and annihilate into boosted dark matter. In models with semi-annihilating DM, where DM has a non-minimal stabilization symmetry, or in models with a multi-component DM sector, annihilations of DM can give rise to stable dark sector particles with moderate Lorentz boosts. We investigate both of these possibilities, presenting concrete models as proofs of concept. Both scenarios can yield viable thermal relic DM with masses O(1)-O(100) GeV. Taking advantage of the energetic proton recoils that arise when the boosted DM scatters off matter, we propose a detection strategy which uses large volume terrestrial detectors, such as those designed to detect neutrinos or proton decays. In particular, we propose a search for proton tracks pointing towards the Sun. We focus on signals at Cherenkov-radiation-based detectors such as Super-Kamiokande (SK) and its upgrade Hyper-Kamiokande (HK). We find that with spin-dependent scattering as the dominant DM-nucleus interaction at low energies, boosted DM can leave detectable signals at SK or HK, with sensitivity comparable to DM direct detection experiments while being consistent with current constraints. Our study provides a new search path for DM sectors with non-minimal structure.

  8. Gravity-mediated (or Composite) Dark Matter

    CERN Document Server

    Lee, Hyun Min; Sanz, Veronica

    2014-01-01

    Dark matter could have an electroweak origin, yet communicate with the visible sector exclusively through gravitational interactions. In a set-up addressing the hierarchy problem, we propose a new dark matter scenario where gravitational mediators, arising from the compactification of extra-dimensions, are responsible for dark matter interactions and its relic abundance in the Universe. We write an explicit example of this mechanism in warped extra-dimensions and work out its constraints. We also develop a dual picture of the model, based on a four-dimensional scenario with partial compositeness. We show that Gravity-mediated Dark Matter is equivalent to a mechanism of generating viable dark matter scenarios in a strongly-coupled, near-conformal theory, such as in composite Higgs models.

  9. Di-photon excess illuminates dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Backović, Mihailo [Center for Cosmology, Particle Physics and Phenomenology - CP3,Universite Catholique de Louvain, Louvain-la-neuve (Belgium); Mariotti, Alberto [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel,Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Redigolo, Diego [Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589,Universiteé Pierre et Marie Curie, 4 place Jussieu, F-75005, Paris (France)

    2016-03-22

    We propose a simplified model of dark matter with a scalar mediator to accommodate the di-photon excess recently observed by the ATLAS and CMS collaborations. Decays of the resonance into dark matter can easily account for a relatively large width of the scalar resonance, while the magnitude of the total width combined with the constraint on dark matter relic density leads to sharp predictions on the parameters of the Dark Sector. Under the assumption of a rather large width, the model predicts a signal consistent with ∼300 GeV dark matter particle and ∼750 GeV scalar mediator in channels with large missing energy. This prediction is not yet severely bounded by LHC Run I searches and will be accessible at the LHC Run II in the jet plus missing energy channel with more luminosity. Our analysis also considers astro-physical constraints, pointing out that future direct detection experiments will be sensitive to this scenario.

  10. Di-photon excess illuminates dark matter

    International Nuclear Information System (INIS)

    Backović, Mihailo; Mariotti, Alberto; Redigolo, Diego

    2016-01-01

    We propose a simplified model of dark matter with a scalar mediator to accommodate the di-photon excess recently observed by the ATLAS and CMS collaborations. Decays of the resonance into dark matter can easily account for a relatively large width of the scalar resonance, while the magnitude of the total width combined with the constraint on dark matter relic density leads to sharp predictions on the parameters of the Dark Sector. Under the assumption of a rather large width, the model predicts a signal consistent with ∼300 GeV dark matter particle and ∼750 GeV scalar mediator in channels with large missing energy. This prediction is not yet severely bounded by LHC Run I searches and will be accessible at the LHC Run II in the jet plus missing energy channel with more luminosity. Our analysis also considers astro-physical constraints, pointing out that future direct detection experiments will be sensitive to this scenario.

  11. Higgsino cold dark matter motivated by collider data

    International Nuclear Information System (INIS)

    Kane, G.L.; Wells, J.D.

    1996-01-01

    Motivated by a supersymmetric interpretation of the CDF eeγγ+E/ T event and the reported Z→ bar bb excess at LEP, we analyze the implied Higgsino-like lightest supersymmetric partner as a cold dark matter candidate. We examine constraints and calculate its relic density, obtaining 0.05 2 <1. Thus it is a viable cold dark matter candidate, and we discuss its favorable prospects for laboratory detection. copyright 1996 The American Physical Society

  12. Imprints of relic gravitational waves in cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Baskaran, D.; Grishchuk, L. P.; Polnarev, A. G.

    2006-01-01

    A strong variable gravitational field of the very early Universe inevitably generates relic gravitational waves by amplifying their zero-point quantum oscillations. We begin our discussion by contrasting the concepts of relic gravitational waves and inflationary 'tensor modes'. We explain and summarize the properties of relic gravitational waves that are needed to derive their effects on cosmic microwave background (CMB) temperature and polarization anisotropies. The radiation field is characterized by four invariants I, V, E, B. We reduce the radiative transfer equations to a single integral equation of Voltairre type and solve it analytically and numerically. We formulate the correlation functions C l XX ' for X, X ' =T, E, B and derive their amplitudes, shapes and oscillatory features. Although all of our main conclusions are supported by exact numerical calculations, we obtain them, in effect, analytically by developing and using accurate approximations. We show that the TE correlation at lower l's must be negative (i.e. an anticorrelation), if it is caused by gravitational waves, and positive if it is caused by density perturbations. This difference in TE correlation may be a signature more valuable observationally than the lack or presence of the BB correlation, since the TE signal is about 100 times stronger than the expected BB signal. We discuss the detection by WMAP of the TE anticorrelation at l≅30 and show that such an anticorrelation is possible only in the presence of a significant amount of relic gravitational waves (within the framework of all other common assumptions). We propose models containing considerable amounts of relic gravitational waves that are consistent with the measured TT, TE and EE correlations

  13. Signals of dark matter in a supersymmetric two dark matter model

    International Nuclear Information System (INIS)

    Fukuoka, Hiroki; Suematsu, Daijiro; Toma, Takashi

    2011-01-01

    Supersymmetric radiative neutrino mass models have often two dark matter candidates. One is the usual lightest neutralino with odd R parity and the other is a new neutral particle whose stability is guaranteed by a discrete symmetry that forbids tree-level neutrino Yukawa couplings. If their relic abundance is comparable, dark matter phenomenology can be largely different from the minimal supersymmetric standard model (MSSM). We study this in a supersymmetric radiative neutrino mass model with the conserved R parity and a Z 2 symmetry weakly broken by the anomaly effect. The second dark matter with odd parity of this new Z 2 is metastable and decays to the neutralino dark matter. Charged particles and photons associated to this decay can cause the deviation from the expected background of the cosmic rays. Direct search of the neutralino dark matter is also expected to show different features from the MSSM since the relic abundance is not composed of the neutralino dark matter only. We discuss the nature of dark matter in this model by analyzing these signals quantitatively

  14. Freeze-in production of sterile neutrino dark matter in U(1){sub B−L} model

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Anirban; Gupta, Aritra [Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad 211 019 (India)

    2016-09-27

    With the advent of new and more sensitive direct detection experiments, scope for a thermal WIMP explanation of dark matter (DM) has become extremely constricted. The non-observation of thermal WIMP in these experiments has put a strong upper bound on WIMP-nucleon scattering cross section and within a few years it is likely to overlap with the coherent neutrino-nucleon cross section. Hence in all probability, DM may have some non-thermal origin. In this work we explore in detail this possibility of a non-thermal sterile neutrino DM within the framework of U(1){sub B−L} model. The U(1){sub B−L} model on the other hand is a well-motivated and minimal way of extending the standard model so that it can explain the neutrino masses via Type-I see-saw mechanism. We have shown, besides explaining the neutrino mass, it can also accommodate a non-thermal sterile neutrino DM with correct relic density. In contrast with the existing literature, we have found that W{sup ±} decay can also be a dominant production mode of the sterile neutrino DM. To obtain the comoving number density of dark matter, we have solved here a coupled set of Boltzmann equations considering all possible decay as well as annihilation production modes of the sterile neutrino dark matter. The framework developed here though has been done for a U(1){sub B−L} model, can be applied quite generally for any models with an extra neutral gauge boson and a fermionic non-thermal dark matter.

  15. Asymmetric dark matter and the Sun

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Sarkar, Subir

    2010-01-01

    Cold dark matter particles with an intrinsic matter-antimatter asymmetry do not annihilate after gravitational capture by the Sun and can affect its interior structure. The rate of capture is exponentially enhanced when such particles have self-interactions of the right order to explain structure...... formation on galactic scales. A `dark baryon' of mass 5 GeV is a natural candidate and has the required relic abundance if its asymmetry is similar to that of ordinary baryons. We show that such particles can solve the `solar composition problem'. The predicted small decrease in the low energy neutrino...

  16. Dark group: dark energy and dark matter

    International Nuclear Information System (INIS)

    Macorra, A. de la

    2004-01-01

    We study the possibility that a dark group, a gauge group with particles interacting with the standard model particles only via gravity, is responsible for containing the dark energy and dark matter required by present day observations. We show that it is indeed possible and we determine the constrains for the dark group. The non-perturbative effects generated by a strong gauge coupling constant can de determined and a inverse power law scalar potential IPL for the dark meson fields is generated parameterizing the dark energy. On the other hand it is the massive particles, e.g., dark baryons, of the dark gauge group that give the corresponding dark matter. The mass of the dark particles is of the order of the condensation scale Λ c and the temperature is smaller then the photon's temperature. The dark matter is of the warm matter type. The only parameters of the model are the number of particles of the dark group. The allowed values of the different parameters are severely restricted. The dark group energy density at Λ c must be Ω DGc ≤0.17 and the evolution and acceptable values of dark matter and dark energy leads to a constrain of Λ c and the IPL parameter n giving Λ c =O(1-10 3 ) eV and 0.28≤n≤1.04

  17. Dark matter at the Fermi scale

    International Nuclear Information System (INIS)

    Feng, Jonathan L

    2006-01-01

    Recent breakthroughs in cosmology reveal that a quarter of the Universe is composed of dark matter, but the microscopic identity of dark matter remains a deep mystery. I review recent progress in resolving this puzzle, focusing on two well-motivated classes of dark matter candidates: weakly interacting massive particles (WIMPs) and superWIMPs. These possibilities have similar motivations: they exist in the same well-motivated particle physics models, the observed dark matter relic density emerges naturally and dark matter particles have mass around 100 GeV, the energy scale identified as interesting over 70 years ago by Fermi. At the same time, they have widely varying implications for direct and indirect dark matter searches, particle colliders, Big Bang nucleosynthesis, the cosmic microwave background, and halo profiles and structure formation. If WIMPs or superWIMPs are a significant component of dark matter, we will soon be entering a golden era in which dark matter will be studied through diverse probes at the interface of particle physics, astroparticle physics and cosmology. I outline a programme of dark matter studies for each of these scenarios and discuss the prospects for identifying dark matter in the coming years. (topical review)

  18. Weakly interacting dark matter and baryogenesis

    International Nuclear Information System (INIS)

    Gu Peihong; Lindner, Manfred; Sarkar, Utpal; Zhang Xinmin

    2011-01-01

    In the present Universe visible and dark matter contribute comparable energy density although they have different properties. This phenomenon can be explained if the dark matter relic density, originating from a dark matter asymmetry, is fully determined by the baryon asymmetry. Thus the dark matter mass is not arbitrary; rather, it becomes predictive. We realize this scenario in baryon (lepton) number conserving models where two or more neutral singlet scalars decay into two or three baryonic (leptonic) dark matter scalars, and also decay into quarks (leptons) through other on-shell and/or off-shell exotic scalar bilinears. The produced baryon (lepton) asymmetries in the dark matter scalar and in the standard model quarks (leptons) are thus equal and opposite. The dark matter mass can be predicted in a range from a few GeV to a few TeV, depending on the baryon (lepton) numbers of the decaying scalars and the dark matter scalar. The dark matter scalar can interact with the visible matter through the exchange of the standard model Higgs boson, opening a window for the dark matter direct detection experiments. These models also provide testable predictions in the searches for the exotic scalar bilinears at LHC.

  19. Indirect search for neutralino dark matter with high energy neutrinos

    International Nuclear Information System (INIS)

    Barger, V.; Halzen, Francis; Hooper, Dan; Kao, Chung

    2002-01-01

    We investigate the prospects of indirect searches for supersymmetric neutralino dark matter. Relic neutralinos gravitationally accumulate in the Sun and their annihilations produce high energy neutrinos. Muon neutrinos of this origin can be seen in large detectors such as AMANDA, IceCube, and ANTARES. We evaluate the relic density and the detection rate in several models--the minimal supersymmetric model, minimal supergravity, and supergravity with nonuniversal Higgs boson masses at the grand unification scale. We make realistic estimates for the indirect detection rates including effects of the muon detection threshold, quark hadronization, and solar absorption. We find good prospects for detection of neutralinos with mass above 200 GeV

  20. Dark Matter Annihilation at the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Timothy Ryan [Univ. of California, Santa Cruz, CA (United States)

    2013-06-01

    Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately ve times as much dark matter as baryonic matter. However, e orts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the rst multiwavelength analysis of the GC, with suitable e ective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing e orts which have successfully detected an excess in -ray emission from the region immediately surrounding the GC, which is di cult to describe in terms of standard di use emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I discuss the

  1. arXiv Squeezed relic photons beyond the horizon

    CERN Document Server

    Giovannini, Massimo

    2017-11-14

    Owing to the analogy with the ordinary photons in the visible range of the electromagnetic spectrum, the Glauber theory is generalized to address the quantum coherence of the gauge field fluctuations parametrically amplified during an inflationary stage of expansion. The first and second degrees of quantum coherence of relic photons are then computed beyond the effective horizon defined by the evolution of the susceptibility. In the zero-delay limit the Hanbury Brown-Twiss correlations exhibit a super-Poissonian statistics which is however different from the conventional results of the single-mode approximation customarily employed, in quantum optics, to classify the coherence properties of visible light. While in the case of large-scale curvature perturbations the degrees of quantum coherence coincide with the naive expectation of the single-mode approximation, the net degree of second-order coherence computed for the relic photons diminishes thanks to the effect of the polarizations. We suggest that the Han...

  2. Cosmological constraints on the amplitude of relic gravitational waves

    International Nuclear Information System (INIS)

    Novosyadlij, B.; Apunevich, S.

    2005-01-01

    The evolution of the amplitude of relic gravitational waves (RGW) generated in early Universe has been analyzed. The analytical approximation is presented for angular power spectrum of cosmic microwave background anisotropies caused by gravitational waves through Sachs-Wolfe effect. The estimate of the most probable value for this amplitude was obtained on the basis of observation data on cosmic microwave background anisotropies from COBE, WMAP and BOOMERanG experiments along with large-scale structure observations

  3. Could unstable relic particles distort the microwave background radiation?

    International Nuclear Information System (INIS)

    Dar, A.; Loeb, A.; Nussinov, S.

    1989-01-01

    Three general classes of possible scenarios for the recently reported distortion of the microwave background radiation (MBR) via decaying relic weakly interacting particles are analyzed. The analysis shows that such particles could not reheat the universe and cause the spectral distortion of the MBR. Gravitational processes such as the early formation of massive black holes may still be plausible energy sources for producing the reported spectral distortion of the MBR at an early cosmological epoch. 24 references

  4. Natural SUSY dark matter model

    International Nuclear Information System (INIS)

    Mohanty, Subhendra; Rao, Soumya; Roy, D.P.

    2013-01-01

    The most natural region of cosmologically compatible dark matter relic density in terms of low fine-tuning in a minimal supersymmetric standard model with nonuniversal gaugino masses is the so called bulk annihilation region. We study this region in a simple and predictive SUSY- GUT model of nonuniversal gaugino masses, where the latter transform as a combination of singlet plus a nonsinglet representation of the GUTgroup SU(5). The model prediction for the direct dark matter detection rates is well below the present CDMS and XENON100 limits, but within the reach of a future 1Ton XENON experiment. The most interesting and robust model prediction is an indirect detection signal of hard positron events, which resembles closely the shape of the observed positron spectrum from the PAMELA experiment. (author)

  5. Stau relic density at the big-bang nucleosynthesis era in the coannihilation scenario and a solution to the Li7 problem

    Science.gov (United States)

    Jittoh, Toshifumi; Kohri, Kazunori; Koike, Masafumi; Sato, Joe; Shimomura, Takashi; Yamanaka, Masato

    2010-12-01

    We calculate the relic density of stau at the big-bang nucleosynthesis era in the coannihilation scenario of the minimal supersymmetric standard model. In this scenario, stau can be long lived and have significance in the remediation of light elements abundances. The freeze-out of stau is corroborated by solving the Boltzmann equation numerically, and the parameter dependence of the relic density is investigated. The possibility of solving the Li7 problem is examined by taking account into the long-lived stau. By adopting an observational value of Li7 in [J. Meléndez and I. Ramírez, Astrophys. J. 615, L33 (2004).ASJOAB0004-637X10.1086/425962], we get minimal supersymmetric standard model parameter space in which abundances of both dark matter and all of the light elements are reproduced in accordance with observations. We also address the influence of intergenerational mixing on our calculation.

  6. Stochastic backgrounds of relic gravitons, T$\\Lambda$CDM paradigm and the stiff ages

    CERN Document Server

    Giovannini, Massimo

    2008-01-01

    Absent any indirect tests on the thermal history of the Universe prior to the formation of light nuclear elements, it is legitimate to investigate situations where, before nucleosyntheis, the sound speed of the plasma was larger than $c/\\sqrt{3}$, at most equalling the speed of light $c$. In this plausible extension of the current cosmological paradigm, hereby dubbed Tensor-$\\Lambda$CDM (i.e. T$\\Lambda$CDM) scenario, high-frequency gravitons are copiously produced. Without conflicting with the bounds on the tensor to scalar ratio stemming from the combined analysis of the three standard cosmological data sets (i.e. cosmic microwave background anisotropies, large-scale structure and supenovae), the spectral energy density of the relic gravitons in the T$\\Lambda$CDM scenario can be potentially observable by wide-band interferometers (in their advanced version) operating in a frequency window which ranges between few Hz and few kHz.

  7. Cross-correlation of weak lensing and gamma rays: implications for the nature of dark matter

    Science.gov (United States)

    Tröster, Tilman; Camera, Stefano; Fornasa, Mattia; Regis, Marco; van Waerbeke, Ludovic; Harnois-Déraps, Joachim; Ando, Shin'ichiro; Bilicki, Maciej; Erben, Thomas; Fornengo, Nicolao; Heymans, Catherine; Hildebrandt, Hendrik; Hoekstra, Henk; Kuijken, Konrad; Viola, Massimo

    2017-05-01

    We measure the cross-correlation between Fermi gamma-ray photons and over 1000 deg2 of weak lensing data from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), the Red Cluster Sequence Lensing Survey (RCSLenS), and the Kilo Degree Survey (KiDS). We present the first measurement of tomographic weak lensing cross-correlations and the first application of spectral binning to cross-correlations between gamma rays and weak lensing. The measurements are performed using an angular power spectrum estimator while the covariance is estimated using an analytical prescription. We verify the accuracy of our covariance estimate by comparing it to two internal covariance estimators. Based on the non-detection of a cross-correlation signal, we derive constraints on weakly interacting massive particle (WIMP) dark matter. We compute exclusion limits on the dark matter annihilation cross-section , decay rate Γdec and particle mass mDM. We find that in the absence of a cross-correlation signal, tomography does not significantly improve the constraining power of the analysis. Assuming a strong contribution to the gamma-ray flux due to small-scale clustering of dark matter and accounting for known astrophysical sources of gamma rays, we exclude the thermal relic cross-section for particle masses of mDM ≲ 20 GeV.

  8. Beyond effective field theory for dark matter searches at the LHC

    International Nuclear Information System (INIS)

    Buchmueller, O.; Dolan, Matthew J.; McCabe, Christopher

    2014-01-01

    We study the validity of effective field theory (EFT) interpretations of monojet searches for dark matter at the LHC for vector and axial-vector interactions. We show that the EFT approach is valid when the mediator has mass m med greater than 2.5 TeV. We find that the current limits on the contact interaction scale Λ in the EFT apply to theories that are perturbative for dark matter mass m DM <800 GeV. However, for all values of m DM in these theories, the mediator width is larger than the mass, so that a particle-like interpretation of the mediator is doubtful. Furthermore, consistency with the thermal relic density occurs only for 170≲m DM ≲510 GeV. For lighter mediator masses, the EFT limit either under-estimates the true limit (because the process is resonantly enhanced) or over-estimates it (because the missing energy distribution is too soft). We give some ‘rules of thumb’ that can be used to estimate the limit on Λ (to an accuracy of ∼50%) for any m DM and m med from knowledge of the EFT limit. We also compare the relative sensitivities of monojet and dark matter direct detection searches finding that both dominate in different regions of the m DM – m med plane. Comparing only the EFT limit with direct searches is misleading and can lead to incorrect conclusions about the relative sensitivity of the two search approaches

  9. Forbidden Channels and SIMP Dark Matter

    OpenAIRE

    Choi Soo-Min; Kang Yoo-Jin; Lee Hyun Min

    2018-01-01

    In this review, we focus on dark matter production from thermal freeze-out with forbidden channels and SIMP processes. We show that forbidden channels can be dominant to produce dark matter depending on the dark photon and / or dark Higgs mass compared to SIMP.

  10. Internal bremsstrahlung signatures in light of direct dark matter searches

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Mathias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan [Technische Univ. Muenchen, Garching (Germany). Physik Dept. T30d

    2013-06-15

    Although proposed long ago, the search for internal bremsstrahlung signatures has only recently been made possible by the excellent energy resolution of ground-based and satellite-borne gamma-ray instruments. Here, we investigate thoroughly the current status of internal bremsstrahlung searches in light of the results of direct dark matter searches and in the framework of minimal mass-degenerate scenarios. The constraints set by Fermi-LAT and H.E.S.S. extend uninterrupted from tens of GeV up to tens of TeV and are rather insensitive to the mass degeneracy in the particle physics model. In contrast, direct searches are best in the moderate to low mass splitting regime, where XENON100 limits overshadow Fermi-LAT and H.E.S.S. up to TeV masses if dark matter couples to (light) quarks. We examine carefully the prospects for GAMMA-400, CTA and XENON1T, all planned to come online in the near future, and find that: (a) CTA and XENON1T are fully complementary, with CTA most sensitive to multi-TeV masses and mass splittings around 10%, and XENON1T probing best small mass splittings up to TeV masses; and (b) current constraints from XENON100 already preclude the observation of any spectral feature with GAMMA-400 in spite of its impressive energy resolution, unless dark matter does not couple to light quarks. Finally, we point out that, unlike for direct searches, the possibility of detecting thermal relics in upcoming internal bremsstrahlung searches requires boost factors larger than {proportional_to}10.

  11. Internal bremsstrahlung signatures in light of direct dark matter searches

    International Nuclear Information System (INIS)

    Garny, Mathias; Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan

    2013-07-01

    Although proposed long ago, the search for internal bremsstrahlung signatures has only recently been made possible by the excellent energy resolution of ground-based and satellite-borne gamma-ray instruments. Here, we investigate thoroughly the current status of internal bremsstrahlung searches in light of the results of direct dark matter searches and in the framework of minimal mass-degenerate scenarios. The constraints set by Fermi-LAT and H.E.S.S. extend uninterrupted from tens of GeV up to tens of TeV and are rather insensitive to the mass degeneracy in the particle physics model. In contrast, direct searches are best in the moderate to low mass splitting regime, where XENON100 limits overshadow Fermi-LAT and H.E.S.S. up to TeV masses if dark matter couples to (light) quarks. We examine carefully the prospects for GAMMA-400, CTA and XENON1T, all planned to come online in the near future, and find that: (a) CTA and XENON1T are fully complementary, with CTA most sensitive to multi-TeV masses and mass splittings around 10%, and XENON1T probing best small mass splittings up to TeV masses; and (b) current constraints from XENON100 already preclude the observation of any spectral feature with GAMMA-400 in spite of its impressive energy resolution, unless dark matter does not couple to light quarks. Finally, we point out that, unlike for direct searches, the possibility of detecting thermal relics in upcoming internal bremsstrahlung searches requires boost factors larger than ∝10.

  12. Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data.

    Science.gov (United States)

    Ackermann, M; Albert, A; Anderson, B; Atwood, W B; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Bissaldi, E; Blandford, R D; Bloom, E D; Bonino, R; Bottacini, E; Brandt, T J; Bregeon, J; Bruel, P; Buehler, R; Caliandro, G A; Cameron, R A; Caputo, R; Caragiulo, M; Caraveo, P A; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cuoco, A; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Desiante, R; Digel, S W; Di Venere, L; Drell, P S; Drlica-Wagner, A; Essig, R; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Guiriec, S; Gustafsson, M; Hays, E; Hewitt, J W; Horan, D; Jogler, T; Jóhannesson, G; Kuss, M; Larsson, S; Latronico, L; Li, J; Li, L; Llena Garde, M; Longo, F; Loparco, F; Lubrano, P; Malyshev, D; Mayer, M; Mazziotta, M N; McEnery, J E; Meyer, M; Michelson, P F; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Murgia, S; Nuss, E; Ohsugi, T; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Sánchez-Conde, M; Schulz, A; Sehgal, N; Sgrò, C; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Strigari, L; Tajima, H; Takahashi, H; Thayer, J B; Tibaldo, L; Torres, D F; Troja, E; Vianello, G; Werner, M; Winer, B L; Wood, K S; Wood, M; Zaharijas, G; Zimmer, S

    2015-12-04

    The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on γ-ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis. None of the dSphs are significantly detected in γ rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs. These constraints are among the strongest and most robust to date and lie below the canonical thermal relic cross section for DM of mass ≲100  GeV annihilating via quark and τ-lepton channels.

  13. A simplified model of top-flavoured dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Kast, Simon; Blanke, Monika [Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2016-07-01

    We present the phenomenology of a new physics simplified model of top-flavoured dark matter. The dark matter particle is the lightest Dirac fermion of a new flavour-triplet coupling to the SM up-triplet via a new scalar mediator. The coupling is left general, following Dark Minimal Flavour Violation introduced in arXiv:1405.6709, and therefore is a new source of flavour violation. We study the impact of constraints from both flavour experiments, relic abundance and direct detection constraints, as well as collider bounds.

  14. Exploration and implementation of ontology-based cultural relic knowledge map integration platform

    Science.gov (United States)

    Yang, Weiqiang; Dong, Yiqiang

    2018-05-01

    To help designers to better carry out creative design and improve the ability of searching traditional cultural relic information, the ontology-based knowledge map construction method was explored and an integrated platform for cultural relic knowledge map was developed. First of all, the construction method of the ontology of cultural relics was put forward, and the construction of the knowledge map of cultural relics was completed based on the constructed cultural relic otology. Then, a personalized semantic retrieval framework for creative design was proposed. Finally, the integrated platform of the knowledge map of cultural relics was designed and realized. The platform was divided into two parts. One was the foreground display system, which was used for designers to search and browse cultural relics. The other was the background management system, which was for cultural experts to manage cultural relics' knowledge. The research results showed that the platform designed could improve the retrieval ability of cultural relic information. To sum up, the platform can provide a good support for the designer's creative design.

  15. Two-singlet model for light cold dark matter

    International Nuclear Information System (INIS)

    Abada, Abdessamad; Ghaffor, Djamal; Nasri, Salah

    2011-01-01

    We extend the standard model by adding two gauge-singlet Z 2 -symmetric scalar fields that interact with visible matter only through the Higgs particle. One is a stable dark matter WIMP, and the other one undergoes a spontaneous breaking of the symmetry that opens new channels for the dark matter annihilation, hence lowering the mass of the WIMP. We study the effects of the observed dark matter relic abundance on the WIMP annihilation cross section and find that in most regions of the parameters' space, light dark matter is viable. We also compare the elastic-scattering cross section of our dark matter candidate off a nucleus with existing (CDMSII and XENON100) and projected (SuperCDMS and XENON1T) experimental exclusion bounds. We find that most of the allowed mass range for light dark matter will be probed by the projected sensitivity of the XENON1T experiment.

  16. Investigation of laser cleaning on bronze cultural relics

    International Nuclear Information System (INIS)

    Ling, Xiulan; Wang, Gao; Zhang, Chen

    2016-01-01

    The effects of laser cleaning on the corrosion layers of bronze cultural relics were studied using a pulsed fiber laser. The laser cleaning threshold value of the corrosion layers was obtained. It was found that the corrosion layer was removed successfully by employing a laser fluence value of 0.32 J cm −2 and scanning for three times. To obtain experimental evidence, laser con-focal scanning microscopy, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), laser induced breakdown spectroscopy (LIBS) and laser Raman spectroscopy were employed to investigate the cleaning efficiency of corrosion layers on specimens. (paper)

  17. Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for heavy mediators of dark matter production in visible and invisible decay channels arXiv

    CERN Document Server

    Albert, Andreas; Boveia, Antonio; Buchmueller, Oliver; Busoni, Giorgio; De Roeck,Albert; Doglioni, Caterina; DuPree, Tristan; Fairbairn, Malcolm; Genest, Marie-Hélène; Gori, Stefania; Gustavino, Giuliano; Hahn, Kristian; Haisch, Ulrich; Harris, Philip C.; Hayden, Dan; Ippolito, Valerio; John, Isabelle; Kahlhoefer, Felix; Kulkarni, Suchita; Landsberg, Greg; Lowette, Steven; Mawatari, Kentarou; Riotto, Antonio; Shepherd, William; Tait, Tim M.P.; Tolley, Emma; Tunney, Patrick; Zaldivar, Bryan; Zinser, Markus

    Weakly-coupled TeV-scale particles may mediate the interactions between normal matter and dark matter. If so, the LHC would produce dark matter through these mediators, leading to the familiar "mono-X" search signatures, but the mediators would also produce signals without missing momentum via the same vertices involved in their production. This document from the LHC Dark Matter Working Group suggests how to compare searches for these two types of signals in case of vector and axial-vector mediators, based on a workshop that took place on September 19/20, 2016 and subsequent discussions. These suggestions include how to extend the spin-1 mediated simplified models already in widespread use to include lepton couplings. This document also provides analytic calculations of the relic density in the simplified models and reports an issue that arose when ATLAS and CMS first began to use preliminary numerical calculations of the dark matter relic density in these models.

  18. A minimal model for two-component dark matter

    International Nuclear Information System (INIS)

    Esch, Sonja; Klasen, Michael; Yaguna, Carlos E.

    2014-01-01

    We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z_2 symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.

  19. How to save the WIMP. Global analysis of a dark matter model with two s-channel mediators

    International Nuclear Information System (INIS)

    Duerr, Michael; Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Schwetz, Thomas; Vogl, Stefan

    2016-06-01

    A reliable comparison of different dark matter (DM) searches requires models that satisfy certain consistency requirements like gauge invariance and perturbative unitarity. As a well-motivated example, we study two-mediator DM (2MDM). The model is based on a spontaneously broken U(1)"' gauge symmetry and contains a Majorana DM particle as well as two s-channel mediators, one vector (the Z"') and one scalar (the dark Higgs). We perform a global scan over the parameters of the model assuming that the DM relic density is obtained by thermal freeze-out in the early Universe and imposing a large set of constraints: direct and indirect DM searches, monojet, dijet and dilepton searches at colliders, Higgs observables, electroweak precision tests and perturbative unitarity. We conclude that thermal DM is only allowed either close to an s-channel resonance or if at least one mediator is lighter than the DM particle. In these cases a thermal DM abundance can be obtained although DM couplings to the Standard Model are tiny. Interestingly, we find that vector-mediated DM-nucleon scattering leads to relevant constraints despite the velocity-suppressed cross section, and that indirect detection can be important if DM annihilations into both mediators are kinematically allowed.

  20. Sensitivity of CTA to dark matter signals from the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Pierre, Mathias [Département Physique, École Normale Supérieure de Cachan, 61 Avenue du Président Wilson, Cachan, 94230 France (France); Siegal-Gaskins, Jennifer M. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125 (United States); Scott, Pat, E-mail: mathias.pierre@ens-cachan.fr, E-mail: jsg@tapir.caltech.edu, E-mail: patscott@physics.mcgill.ca [Department of Physics, McGill University, 3600 Rue University, Montréal, Québec, H3A 2T8 Canada (Canada)

    2014-06-01

    The Galactic Center is one of the most promising targets for indirect detection of dark matter with gamma rays. We investigate the sensitivity of the upcoming Cherenkov Telescope Array (CTA) to dark matter annihilation and decay in the Galactic Center. As the inner density profile of the Milky Way's dark matter halo is uncertain, we study the impact of the slope of the Galactic density profile, inwards of the Sun, on the prospects for detecting a dark matter signal with CTA. Adopting the Ring Method to define the signal and background regions in an ON-OFF analysis approach, we find that the sensitivity achieved by CTA to annihilation signals is strongly dependent on the inner profile slope, whereas the dependence is more mild in the case of dark matter decay. Surprisingly, we find that the optimal choice of signal and background regions is virtually independent of the assumed density profile. For the fiducial case of a Navarro-Frenk-White profile, we find that CTA will be able to probe annihilation cross-sections well below the canonical thermal relic value for dark matter masses from a few tens of GeV up to ∼ 5 TeV for annihilation to τ{sup +}τ{sup −}, and will achieve only a slightly weaker sensitivity for annihilation to b b-bar or μ{sup +}μ{sup −}. CTA will improve significantly on current sensitivity to annihilation signals for dark matter masses above ∼ 100 GeV, covering parameter space that is complementary to that probed by searches with the Fermi Large Area Telescope. The interpretation of apparent excesses in the measured cosmic-ray electron and positron spectra as signals of dark matter decay will also be testable with CTA observations of the Galactic Center. We demonstrate that both for annihilation and for decay, including spectral information for hard channels (such as μ{sup +}μ{sup −} and τ{sup +}τ{sup −}) leads to enhanced sensitivity for dark matter masses above m{sub DM} ∼ 200 GeV.

  1. Sensitivity of CTA to dark matter signals from the Galactic Center

    International Nuclear Information System (INIS)

    Pierre, Mathias; Siegal-Gaskins, Jennifer M.; Scott, Pat

    2014-01-01

    The Galactic Center is one of the most promising targets for indirect detection of dark matter with gamma rays. We investigate the sensitivity of the upcoming Cherenkov Telescope Array (CTA) to dark matter annihilation and decay in the Galactic Center. As the inner density profile of the Milky Way's dark matter halo is uncertain, we study the impact of the slope of the Galactic density profile, inwards of the Sun, on the prospects for detecting a dark matter signal with CTA. Adopting the Ring Method to define the signal and background regions in an ON-OFF analysis approach, we find that the sensitivity achieved by CTA to annihilation signals is strongly dependent on the inner profile slope, whereas the dependence is more mild in the case of dark matter decay. Surprisingly, we find that the optimal choice of signal and background regions is virtually independent of the assumed density profile. For the fiducial case of a Navarro-Frenk-White profile, we find that CTA will be able to probe annihilation cross-sections well below the canonical thermal relic value for dark matter masses from a few tens of GeV up to ∼ 5 TeV for annihilation to τ + τ − , and will achieve only a slightly weaker sensitivity for annihilation to b b-bar or μ + μ − . CTA will improve significantly on current sensitivity to annihilation signals for dark matter masses above ∼ 100 GeV, covering parameter space that is complementary to that probed by searches with the Fermi Large Area Telescope. The interpretation of apparent excesses in the measured cosmic-ray electron and positron spectra as signals of dark matter decay will also be testable with CTA observations of the Galactic Center. We demonstrate that both for annihilation and for decay, including spectral information for hard channels (such as μ + μ − and τ + τ − ) leads to enhanced sensitivity for dark matter masses above m DM ∼ 200 GeV

  2. Seeded hot dark matter models with inflation

    Science.gov (United States)

    Gratsias, John; Scherrer, Robert J.; Steigman, Gary; Villumsen, Jens V.

    1993-01-01

    We examine massive neutrino (hot dark matter) models for large-scale structure in which the density perturbations are produced by randomly distributed relic seeds and by inflation. Power spectra, streaming velocities, and the Sachs-Wolfe quadrupole fluctuation are derived for this model. We find that the pure seeded hot dark matter model without inflation produces Sachs-Wolfe fluctuations far smaller than those seen by COBE. With the addition of inflationary perturbations, fluctuations consistent with COBE can be produced. The COBE results set the normalization of the inflationary component, which determines the large-scale (about 50/h Mpc) streaming velocities. The normalization of the seed power spectrum is a free parameter, which can be adjusted to obtain the desired fluctuations on small scales. The power spectra produced are very similar to those seen in mixed hot and cold dark matter models.

  3. Dark matters

    International Nuclear Information System (INIS)

    Silk, Joseph

    2010-01-01

    One of the greatest mysteries in the cosmos is that it is mostly dark. That is, not only is the night sky dark, but also most of the matter and the energy in the universe is dark. For every atom visible in planets, stars and galaxies today there exists at least five or six times as much 'Dark Matter' in the universe. Astronomers and particle physicists today are seeking to unravel the nature of this mysterious but pervasive dark matter, which has profoundly influenced the formation of structure in the universe. Dark energy remains even more elusive, as we lack candidate fields that emerge from well established physics. I will describe various attempts to measure dark matter by direct and indirect means, and discuss the prospects for progress in unravelling dark energy.

  4. Dark matter as the signal of grand unification

    International Nuclear Information System (INIS)

    Kadastik, Mario; Kannike, Kristjan; Raidal, Martti

    2009-01-01

    We argue that the existence of dark matter (DM) is a possible consequence of grand unification (GUT) symmetry breaking. In GUTs like SO(10), discrete Z 2 matter parity (-1) 3(B-L) survives despite broken B-L, and group theory uniquely determines that the only possible Z 2 -odd matter multiplets belong to representation 16. We construct the minimal nonsupersymmetric SO(10) model containing one scalar 16 for DM and study its predictions below M G . We find that electroweak symmetry breaking occurs radiatively due to DM couplings to the standard model Higgs boson. For thermal relic DM the mass range M DM ∼O(0.1-1) TeV is predicted by model perturbativity up to M G . For M DM ∼O(1) TeV to explain the observed cosmic ray anomalies with DM decays, there exists a lower bound on the spin-independent direct detection cross section within the reach of planned experiments.

  5. Constraints on dark matter annihilation from CMB observations before Planck

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Honorez, Laura [Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Mena, Olga; Palomares-Ruiz, Sergio; Vincent, Aaron C., E-mail: llopezho@vub.ac.be, E-mail: omena@ific.uv.es, E-mail: sergio.palomares.ruiz@ist.utl.pt, E-mail: vincent@ific.uv.es [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain)

    2013-07-01

    We compute the bounds on the dark matter (DM) annihilation cross section using the most recent Cosmic Microwave Background measurements from WMAP9, SPT'11 and ACT'10. We consider DM with mass in the MeV–TeV range annihilating 100% into either an e{sup +}e{sup −} or a μ{sup +}μ{sup −} pair. We consider a realistic energy deposition model, which includes the dependence on the redshift, DM mass and annihilation channel. We exclude the canonical thermal relic abundance cross section ((σv) = 3 × 10{sup −26}cm{sup 3}s{sup −1}) for DM masses below 30 GeV and 15 GeV for the e{sup +}e{sup −} and μ{sup +}μ{sup −} channels, respectively. A priori, DM annihilating in halos could also modify the reionization history of the Universe at late times. We implement a realistic halo model taken from results of state-of-the-art N-body simulations and consider a mixed reionization mechanism, consisting on reionization from DM as well as from first stars. We find that the constraints on DM annihilation remain unchanged, even when large uncertainties on the halo model parameters are considered.

  6. SCRMS: An RFID and Sensor Web-Enabled Smart Cultural Relics Management System.

    Science.gov (United States)

    Xiao, Changjiang; Chen, Nengcheng; Li, Dandan; Lv, You; Gong, Jianya

    2016-12-30

    Cultural relics represent national or even global resources of inestimable value. How to efficiently manage and preserve these cultural relics is a vitally important issue. To achieve this goal, this study proposed, designed, and implemented an RFID and Sensor Web-enabled smart cultural relics management system (SCRMS). In this system, active photovoltaic subtle energy-powered Radio Frequency Identification (RFID) is used for long-range contactless identification and lifecycle management of cultural relics during their storage and circulation. In addition, different types of ambient sensors are integrated with the RFID tags and deployed around cultural relics to monitor their environmental parameters, helping to ensure that they remain in good condition. An Android-based smart mobile application, as middleware, is used in collaboration with RFID readers to collect information and provide convenient management for the circulation of cultural relics. Moreover, multiple sensing techniques are taken advantage of simultaneously for preservation of cultural relics. The proposed system was successfully applied to a museum in the Yongding District, Fujian Province, China, demonstrating its feasibility and advantages for smart and efficient management and preservation of cultural relics.

  7. SCRMS: An RFID and Sensor Web-Enabled Smart Cultural Relics Management System

    Directory of Open Access Journals (Sweden)

    Changjiang Xiao

    2016-12-01

    Full Text Available Cultural relics represent national or even global resources of inestimable value. How to efficiently manage and preserve these cultural relics is a vitally important issue. To achieve this goal, this study proposed, designed, and implemented an RFID and Sensor Web–enabled smart cultural relics management system (SCRMS. In this system, active photovoltaic subtle energy-powered Radio Frequency Identification (RFID is used for long-range contactless identification and lifecycle management of cultural relics during their storage and circulation. In addition, different types of ambient sensors are integrated with the RFID tags and deployed around cultural relics to monitor their environmental parameters, helping to ensure that they remain in good condition. An Android-based smart mobile application, as middleware, is used in collaboration with RFID readers to collect information and provide convenient management for the circulation of cultural relics. Moreover, multiple sensing techniques are taken advantage of simultaneously for preservation of cultural relics. The proposed system was successfully applied to a museum in the Yongding District, Fujian Province, China, demonstrating its feasibility and advantages for smart and efficient management and preservation of cultural relics.

  8. Multi-Messenger Astronomy and Dark Matter

    Science.gov (United States)

    Bergström, Lars

    This chapter presents the elaborated lecture notes on Multi-Messenger Astronomy and Dark Matter given by Lars Bergström at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". One of the main problems of astrophysics and astro-particle physics is that the nature of dark matter remains unsolved. There are basically three complementary approaches to try to solve this problem. One is the detection of new particles with accelerators, the second is the observation of various types of messengers from radio waves to gamma-ray photons and neutrinos, and the third is the use of ingenious experiments for direct detection of dark matter particles. After giving an introduction to the particle universe, the author discusses the relic density of particles, basic cross sections for neutrinos and gamma-rays, supersymmetric dark matter, detection methods for neutralino dark matter, particular dark matter candidates, the status of dark matter detection, a detailled calculation on an hypothetical "Saas-Fee Wimp", primordial black holes, and gravitational waves.

  9. Asymmetric Dark Matter and Dark Radiation

    CERN Document Server

    Blennow, Mattias; Mena, Olga; Redondo, Javier; Serra, Paolo

    2012-01-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, pre...

  10. A two-component dark matter model with real singlet scalars ...

    Indian Academy of Sciences (India)

    2016-01-05

    Jan 5, 2016 ... We propose a two-component dark matter (DM) model, each component of which is a real singlet scalar, to explain results from both direct and indirect detection experiments. We put the constraints on the model parameters from theoretical bounds, PLANCK relic density results and direct DM experiments.

  11. Neutrinophilic two Higgs doublet model with dark matter under an alternative U(1)_{B-L} gauge symmetry

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2018-03-01

    We propose a Dirac type active neutrino with rank two mass matrix and a Majorana fermion dark matter candidate with an alternative local U(1)_{B-L} extension of neutrinophilic two Higgs doublet model. Our dark matter candidate can be stabilized due to charge assignment under the gauge symmetry without imposing extra discrete Z_2 symmetry and the relic density is obtained from an Z' boson exchanging process. Taking into account collider constraints on the Z' boson mass and coupling, we estimate the relic density.

  12. Dark Matter

    Directory of Open Access Journals (Sweden)

    Einasto J.

    2011-06-01

    Full Text Available I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Dark matter is the dominant matter component in the Universe, thus properties of dark matter particles determine the structure of the cosmic web.

  13. Twin radio relics in the nearby low-mass galaxy cluster Abell 168

    Science.gov (United States)

    Dwarakanath, K. S.; Parekh, V.; Kale, R.; George, L. T.

    2018-06-01

    We report the discovery of twin radio relics in the outskirts of the low-mass merging galaxy cluster Abell 168 (redshift=0.045). One of the relics is elongated with a linear extent ˜800 kpc and projected width of ˜80 kpc and is located ˜900 kpc towards the north of the cluster centre, oriented roughly perpendicular to the major axis of the X-ray emission. The second relic is ring-shaped with a size ˜220 kpc and is located near the inner edge of the elongated relic at a distance of ˜600 kpc from the cluster centre. These radio sources were imaged at 323 and 608 MHz with the Giant Meterwave Radio Telescope and at 1520 MHz with the Karl G. Jansky Very Large Array (VLA). The elongated relic was detected at all frequencies, with a radio power of 1.38 ± 0.14 × 1023 W Hz-1 at 1.4 GHz and a power law in the frequency range 70-1500 MHz (S ∝ να, α = -1.1 ± 0.04). This radio power is in good agreement with that expected from the known empirical relation between the radio powers of relics and host cluster masses. This is the lowest mass (M500 = 1.24 × 1014 M⊙) cluster in which relics due to merger shocks are detected. The ring-shaped relic has a steeper spectral index (α) of -1.74 ± 0.29 in the frequency range 100-600 MHz. We propose this relic to be an old plasma, revived due to adiabatic compression by the outgoing shock that produced the elongated relic.

  14. Dark stars

    DEFF Research Database (Denmark)

    Maselli, Andrea; Pnigouras, Pantelis; Nielsen, Niklas Grønlund

    2017-01-01

    to the formation of compact objects predominantly made of dark matter. Considering both fermionic and bosonic (scalar φ4) equations of state, we construct the equilibrium structure of rotating dark stars, focusing on their bulk properties and comparing them with baryonic neutron stars. We also show that these dark......Theoretical models of self-interacting dark matter represent a promising answer to a series of open problems within the so-called collisionless cold dark matter paradigm. In case of asymmetric dark matter, self-interactions might facilitate gravitational collapse and potentially lead...... objects admit the I-Love-Q universal relations, which link their moments of inertia, tidal deformabilities, and quadrupole moments. Finally, we prove that stars built with a dark matter equation of state are not compact enough to mimic black holes in general relativity, thus making them distinguishable...

  15. Asymmetric Dark Matter and Dark Radiation

    International Nuclear Information System (INIS)

    Blennow, Mattias; Martinez, Enrique Fernandez; Mena, Olga; Redondo, Javier; Serra, Paolo

    2012-01-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum

  16. CP violating scalar Dark Matter

    Science.gov (United States)

    Cordero-Cid, A.; Hernández-Sánchez, J.; Keus, V.; King, S. F.; Moretti, S.; Rojas, D.; Sokołowska, D.

    2016-12-01

    We study an extension of the Standard Model (SM) in which two copies of the SM scalar SU(2) doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are inert, are added to the scalar sector. We allow for CP-violation in the inert sector, where the lightest inert state is protected from decaying to SM particles through the conservation of a Z 2 symmetry. The lightest neutral particle from the inert sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.

  17. Dark matter for excess of AMS-02 positrons and antiprotons

    Directory of Open Access Journals (Sweden)

    Chuan-Hung Chen

    2015-07-01

    Full Text Available We propose a dark matter explanation to simultaneously account for the excess of antiproton-to-proton and positron power spectra observed in the AMS-02 experiment while having the right dark matter relic abundance and satisfying the current direct search bounds. We extend the Higgs triplet model with a hidden gauge symmetry of SU(2X that is broken to Z3 by a quadruplet scalar field, rendering the associated gauge bosons stable weakly-interacting massive particle dark matter candidates. By coupling the complex Higgs triplet and the SU(2X quadruplet, the dark matter candidates can annihilate into triplet Higgs bosons each of which in turn decays into lepton or gauge boson final states. Such a mechanism gives rise to correct excess of positrons and antiprotons with an appropriate choice of the triplet vacuum expectation value. Besides, the model provides a link between neutrino mass and dark matter phenomenology.

  18. Dipolar dark matter

    International Nuclear Information System (INIS)

    Masso, Eduard; Mohanty, Subhendra; Rao, Soumya

    2009-01-01

    If dark matter (DM) has nonzero direct or transition, electric or magnetic dipole moment then it can scatter nucleons electromagnetically in direct detection experiments. Using the results from experiments like XENON, CDMS, DAMA, and COGENT, we put bounds on the electric and magnetic dipole moments of DM. If DM consists of Dirac fermions with direct dipole moments, then DM of mass less than 10 GeV is consistent with the DAMA signal and with null results of other experiments. If on the other hand DM consists of Majorana fermions then they can have only nonzero transition moments between different mass eigenstates. We find that Majorana fermions with masses 38 χ < or approx. 100-200 GeV and mass splitting of the order of (150-200) keV can explain the DAMA signal and the null observations from other experiments and in addition give the observed relic density of DM by dipole-mediated annihilation. The absence of the heavier DM state in the present Universe can be explained by dipole-mediated radiative decay. This parameter space for the mass and for dipole moments is allowed by limits from L3 but may have observable signals at LHC.

  19. Dark tourism. The Effects of Motivation and Environmental Attitudes on the Benefits of Experience

    OpenAIRE

    Chang, Te-Yi

    2014-01-01

    This study aims to discuss the experience model for visitors participating in Dark Tourism. The Hsiaolin Village relics, which were destroyed by the 2009 typhoon in Taiwan, are selected as the research subject. A total of 341 visitors to Hsiaolin Village Memorial Park were interviewed through a survey questionnaire. Structural equation models (SEMs) were utilized to verify the causal relationship among the visitors ’Dark Tourism motivation, environmental attitudes, and benefits of experience ...

  20. Molecular relics from chemical evolution and the origin of life

    International Nuclear Information System (INIS)

    Chela Flores, J.

    1994-04-01

    The main hypothesis proposed in this work intends to remove the difficulty that arises from the conjecture that the RNA world may have left molecular relics that may still be extant in the angiosperms. We discuss whether it is possible to envisage a possible evolutionary pathway of the RNA replicators spanning the vast time span separating the first appearance of the angiosperms, late in the Mesozoic era (the Lower Cretaceous), from the most likely suberas in which the RNA world may have occurred, namely the Hadean/Early Archean. In order to address this question we suggest that through horizontal gene transfer, as well as through a series of symbiosis of the precursor cell of the land plants, the genes of the replicases (RNA-directed RNA polymerases) associated with putative DNA-independent RNA replicators may have been transferred vertically, eventually becoming specific to the angiosperms. (author). Refs, 7 tabs

  1. Probing dark matter at the LHC using vector boson fusion processes.

    Science.gov (United States)

    Delannoy, Andres G; Dutta, Bhaskar; Gurrola, Alfredo; Johns, Will; Kamon, Teruki; Luiggi, Eduardo; Melo, Andrew; Sheldon, Paul; Sinha, Kuver; Wang, Kechen; Wu, Sean

    2013-08-09

    Vector boson fusion processes at the Large Hadron Collider (LHC) provide a unique opportunity to search for new physics with electroweak couplings. A feasibility study for the search of supersymmetric dark matter in the final state of two vector boson fusion jets and large missing transverse energy is presented at 14 TeV. Prospects for determining the dark matter relic density are studied for the cases of wino and bino-Higgsino dark matter. The LHC could probe wino dark matter with mass up to approximately 600 GeV with a luminosity of 1000  fb(-1).

  2. Bound-state effects for dark matter with Higgs-like mediators

    OpenAIRE

    Biondini, Simone

    2018-01-01

    In this paper we study the impact of a scalar exchange on the dark matter relic abundance by solving a plasma-modified Schr\\"odinger equation. A simplified model is considered where a Majorana dark matter fermion is embedded in a U(1)$'$ extension of the Standard Model and couples with a dark Higgs via a Yukawa interaction. We find that the dark-Higgs exchange can increase the overclosure bounds significantly. For the largest (smallest) value of the Yukawa coupling examined in this work, the ...

  3. Direct Detection Phenomenology in Models Where the Products of Dark Matter Annihilation Interact with Nuclei

    DEFF Research Database (Denmark)

    Cherry, John F.; Frandsen, Mads T.; Shoemaker, Ian M.

    2015-01-01

    We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, {but rather} the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection...... to nuclei, the limit from annihilation to relativistic particles in the Sun can be stronger than that of conventional non-relativistic direct detection by more than three orders of magnitude for masses in a 2-7 GeV window.......We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, {but rather} the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection...... experiments is controlled by relativistic kinematics. This results in a distinctive recoil spectrum, a non-standard and or even absent annual modulation, and the ability to probe DM masses as low as a $\\sim$10 MeV. We use current LUX data to show that experimental sensitivity to thermal relic annihilation...

  4. Hidden sector dark matter and the Galactic Center gamma-ray excess: a closer look

    Science.gov (United States)

    Escudero, Miguel; Witte, Samuel J.; Hooper, Dan

    2017-11-01

    Stringent constraints from direct detection experiments and the Large Hadron Collider motivate us to consider models in which the dark matter does not directly couple to the Standard Model, but that instead annihilates into hidden sector particles which ultimately decay through small couplings to the Standard Model. We calculate the gamma-ray emission generated within the context of several such hidden sector models, including those in which the hidden sector couples to the Standard Model through the vector portal (kinetic mixing with Standard Model hypercharge), through the Higgs portal (mixing with the Standard Model Higgs boson), or both. In each case, we identify broad regions of parameter space in which the observed spectrum and intensity of the Galactic Center gamma-ray excess can easily be accommodated, while providing an acceptable thermal relic abundance and remaining consistent with all current constraints. We also point out that cosmic-ray antiproton measurements could potentially discriminate some hidden sector models from more conventional dark matter scenarios.

  5. Can sterile neutrinos be ruled out as warm dark matter candidates?

    CERN Document Server

    Viel, M; Hähnelt, M G; Matarrese, S; Riotto, Antonio; Viel, Matteo; Lesgourgues, Julien; Haehnelt, Martin G.; Matarrese, Sabino; Riotto, Antonio

    2006-01-01

    We present constraints on the mass of Warm Dark Matter (WDM) particles from a combined analysis of the matter power spectrum inferred from the SDSS (Sloan Digital Sky Survey) Lyman-alpha flux power spectrum at 2.2 10 keV (2 sigma) if the WDM consists of sterile neutrinos and m_wdm > 2 keV (2 sigma) for early decoupled thermal relics. These results significantly improve our previous estimates based on high-resolution Lyman-alpha forest data at lower redshift. Our new limits are consistent with those of Seljak et al. (2006), albeit ~ 30 % smaller. If we combine this bound with the constraint derived from X-ray flux observations in the Coma cluster periphery (Boyarsky et al.), we find that the only allowed sterile neutrino mass is ~ 10 keV (in the standard production scenario with non-resonant neutrino oscillations). Adding constraints based on X-ray fluxes from the Andromeda galaxy or the Milky Way, we find that dark matter particles cannot be sterile neutrinos, unless the latter are produced by resonant oscill...

  6. Hidden Sector Dark Matter and the Galactic Center Gamma-Ray Excess: A Closer Look

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, Miguel; Witte, Samuel J.; Hooper, Dan

    2017-09-20

    Stringent constraints from direct detection experiments and the Large Hadron Collider motivate us to consider models in which the dark matter does not directly couple to the Standard Model, but that instead annihilates into hidden sector particles which ultimately decay through small couplings to the Standard Model. We calculate the gamma-ray emission generated within the context of several such hidden sector models, including those in which the hidden sector couples to the Standard Model through the vector portal (kinetic mixing with Standard Model hypercharge), through the Higgs portal (mixing with the Standard Model Higgs boson), or both. In each case, we identify broad regions of parameter space in which the observed spectrum and intensity of the Galactic Center gamma-ray excess can easily be accommodated, while providing an acceptable thermal relic abundance and remaining consistent with all current constraints. We also point out that cosmic-ray antiproton measurements could potentially discriminate some hidden sector models from more conventional dark matter scenarios.

  7. Constraining dark matter late-time energy injection: decays and p-wave annihilations

    Energy Technology Data Exchange (ETDEWEB)

    Diamanti, Roberta; Mena, Olga; Palomares-Ruiz, Sergio; Vincent, Aaron C. [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Lopez-Honorez, Laura, E-mail: R.Diamanti@uva.nl, E-mail: llopezho@vub.ac.be, E-mail: omena@ific.uv.es, E-mail: sergio.palomares.ruiz@ific.uv.es, E-mail: vincent@ific.uv.es [Theoretische Natuurkunde Vrije Universiteit Brussel and The International Solvay Institutes Pleinlaan 2, B-1050 Brussels (Belgium)

    2014-02-01

    We use the latest cosmic microwave background (CMB) observations to provide updated constraints on the dark matter lifetime as well as on p-wave suppressed annihilation cross sections in the 1 MeV to 1 TeV mass range. In contrast to scenarios with an s-wave dominated annihilation cross section, which mainly affect the CMB close to the last scattering surface, signatures associated with these scenarios essentially appear at low redshifts (z∼<50) when structure began to form, and thus manifest at lower multipoles in the CMB power spectrum. We use data from Planck, WMAP9, SPT and ACT, as well as Lyman–α measurements of the matter temperature at z ∼ 4 to set a 95% confidence level lower bound on the dark matter lifetime of ∼ 4 × 10{sup 25} s for m{sub χ} = 100 MeV. This bound becomes lower by an order of magnitude at m{sub χ} = 1 TeV due to inefficient energy deposition into the intergalactic medium. We also show that structure formation can enhance the effect of p-wave suppressed annihilation cross sections by many orders of magnitude with respect to the background cosmological rate, although even with this enhancement, CMB constraints are not yet strong enough to reach the thermal relic value of the cross section.

  8. Dark information of black hole radiation raised by dark energy

    Science.gov (United States)

    Ma, Yu-Han; Chen, Jin-Fu; Sun, Chang-Pu

    2018-06-01

    The "lost" information of black hole through the Hawking radiation was discovered being stored in the correlation among the non-thermally radiated particles (Parikh and Wilczek, 2000 [31], Zhang et al., 2009 [16]). This correlation information, which has not yet been proved locally observable in principle, is named by dark information. In this paper, we systematically study the influences of dark energy on black hole radiation, especially on the dark information. Calculating the radiation spectrum in the existence of dark energy by the approach of canonical typicality, which is reconfirmed by the quantum tunneling method, we find that the dark energy will effectively lower the Hawking temperature, and thus makes the black hole has longer life time. It is also discovered that the non-thermal effect of the black hole radiation is enhanced by dark energy so that the dark information of the radiation is increased. Our observation shows that, besides the mechanical effect (e.g., gravitational lensing effect), the dark energy rises the stored dark information, which could be probed by a non-local coincidence measurement similar to the coincidence counting of the Hanbury-Brown-Twiss experiment in quantum optics.

  9. Gravitino dark matter in the CMSSM and implications for leptogenesis and the LHC

    International Nuclear Information System (INIS)

    Roszkowski, Leszek; Austri, Roberto Ruiz de; Choi, Ki-Young

    2005-01-01

    In the framework of the CMSSM we study the gravitino as the lightest supersymmetric particle and the dominant component of cold dark matter in the Universe. We include both a thermal contribution to its relic abundance from scatterings in the plasma and a non-thermal one from neutralino or stau decays after freeze-out. In general both contributions can be important, although in different regions of the parameter space. We further include constraints from BBN on electromagnetic and hadronic showers, from the CMB blackbody spectrum and from collider and non-collider SUSY searches. The region where the neutralino is the next-to-lightest superpartner is severely constrained by a conservative bound from excessive electromagnetic showers and probably basically excluded by the bound from hadronic showers, while the stau case remains mostly allowed. In both regions the constraint from CMB is often important or even dominant. In the stau case, for the assumed reasonable ranges of soft SUSY breaking parameters, we find regions where the gravitino abundance is in agreement with the range inferred from CMB studies, provided that, in many cases, a reheating temperature T R is large, T R ∼ 10 9 GeV. On the other side, we find an upper bound T R ∼ 9 GeV. Less conservative bounds from BBN or an improvement in measuring the CMB spectrum would provide a dramatic squeeze on the whole scenario, in particular it would strongly disfavor the largest values of T R ∼ 10 9 GeV. The regions favored by the gravitino dark matter scenario are very different from standard regions corresponding to the neutralino dark matter, and will be partly probed at the LHC

  10. Dark Matter

    International Nuclear Information System (INIS)

    Holt, S. S.; Bennett, C. L.

    1995-01-01

    These proceedings represent papers presented at the Astrophysics conference in Maryland, organized by NASA Goddard Space Flight Center and the University of Maryland. The topics covered included low mass stars as dark matter, dark matter in galaxies and clusters, cosmic microwave background anisotropy, cold and hot dark matter, and the large scale distribution and motions of galaxies. There were eighty five papers presented. Out of these, 10 have been abstracted for the Energy Science and Technology database

  11. Dark energy

    International Nuclear Information System (INIS)

    Wang, Yun

    2010-01-01

    Dark energy research aims to illuminate the mystery of the observed cosmic acceleration, one of the fundamental problems in physics and astronomy today. This book presents a systematic and detailed review of the current state of dark energy research, with the focus on the examination of the major observational techniques for probing dark energy. It can be used as a textbook to train students and others who wish to enter this extremely active field in cosmology.

  12. Particle Dark Matter (1/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    I review the phenomenology of particle dark matter, including the process of thermal freeze-out in the early universe, and the direct and indirect detection of WIMPs. I also describe some of the most popular particle candidates for dark matter and summarize the current status of the quest to discover dark matter's particle identity.

  13. Late forming dark matter in theories of neutrino dark energy

    International Nuclear Information System (INIS)

    Das, Subinoy; Weiner, Neal

    2011-01-01

    We study the possibility of late forming dark matter, where a scalar field, previously trapped in a metastable state by thermal or finite density effects, goes through a phase transition near the era matter-radiation equality and begins to oscillate about its true minimum. Such a theory is motivated generally if the dark energy is of a similar form, but has not yet made the transition to dark matter, and, in particular, arises automatically in recently considered theories of neutrino dark energy. If such a field comprises the present dark matter, the matter power spectrum typically shows a sharp break at small, presently nonlinear scales, below which power is highly suppressed and previously contained acoustic oscillations. If, instead, such a field forms a subdominant component of the total dark matter, such acoustic oscillations may imprint themselves in the linear regime.

  14. Another shock for the Bullet cluster, and the source of seed electrons for radio relics

    Science.gov (United States)

    Shimwell, Timothy W.; Markevitch, Maxim; Brown, Shea; Feretti, Luigina; Gaensler, B. M.; Johnston-Hollitt, M.; Lage, Craig; Srinivasan, Raghav

    2015-05-01

    With Australia Telescope Compact Array observations, we detect a highly elongated Mpc-scale diffuse radio source on the eastern periphery of the Bullet cluster 1E 0657-55.8, which we argue has the positional, spectral and polarimetric characteristics of a radio relic. This powerful relic (2.3 ± 0.1 × 1025 W Hz-1) consists of a bright northern bulb and a faint linear tail. The bulb emits 94 per cent of the observed radio flux and has the highest surface brightness of any known relic. Exactly coincident with the linear tail, we find a sharp X-ray surface brightness edge in the deep Chandra image of the cluster - a signature of a shock front in the hot intracluster medium (ICM), located on the opposite side of the cluster to the famous bow shock. This new example of an X-ray shock coincident with a relic further supports the hypothesis that shocks in the outer regions of clusters can form relics via diffusive shock (re-)acceleration. Intriguingly, our new relic suggests that seed electrons for reacceleration are coming from a local remnant of a radio galaxy, which we are lucky to catch before its complete disruption. If this scenario, in which a relic forms when a shock crosses a well-defined region of the ICM polluted with aged relativistic plasma - as opposed to the usual assumption that seeds are uniformly mixed in the ICM - is also the case for other relics, this may explain a number of peculiar properties of peripheral relics.

  15. Dark Matter

    International Nuclear Information System (INIS)

    Bashir, A.; Cotti, U.; De Leon, C. L.; Raya, A; Villasenor, L.

    2008-01-01

    One of the biggest scientific mysteries of our time resides in the identification of the particles that constitute a large fraction of the mass of our Universe, generically known as dark matter. We review the observations and the experimental data that imply the existence of dark matter. We briefly discuss the properties of the two best dark-matter candidate particles and the experimental techniques presently used to try to discover them. Finally, we mention a proposed project that has recently emerged within the Mexican community to look for dark matter

  16. Constraining Elko dark matter at the LHC with monophoton events

    Science.gov (United States)

    Alves, Alexandre; Dias, M.; de Campos, F.; Duarte, L.; Hoff da Silva, J. M.

    2018-02-01

    A mass-dimension-one fermion, also known as Elko, constitutes a dark-matter candidate which might interact with photons at the tree level in a specific fashion. In this work, we investigate the constraints imposed by unitarity and LHC data on this type of interactions using the search for new physics in monophoton events. We found that Elkos which can explain the dark matter relic abundance mainly through electromagnetic interactions are excluded at the 95% CL by the 8 TeV LHC data for masses up to 1 TeV.

  17. Constraining dark matter in the MSSM at the LHC

    International Nuclear Information System (INIS)

    Nojiri, Mihoko M.; Polesello, Giacomo; Tovey, Daniel R.

    2006-01-01

    In the event that R-Parity conserving supersymmetry (SUSY) is discovered at the LHC, a key issue which will need to be addressed will be the consistency of that signal with astrophysical and non-accelerator constraints on SUSY Dark Matter. This issue is studied for a benchmark model based on measurements of end-points and thresholds in the invariant mass spectra of various combinations of leptons and jets. These measurements are used to constrain the soft SUSY breaking parameters at the electroweak scale in a general MSSM model. Based on these constraints, we assess the accuracy with which the Dark Matter relic density can be measured

  18. Comprehensive asymmetric dark matter model

    Science.gov (United States)

    Lonsdale, Stephen J.; Volkas, Raymond R.

    2018-05-01

    Asymmetric dark matter (ADM) is motivated by the similar cosmological mass densities measured for ordinary and dark matter. We present a comprehensive theory for ADM that addresses the mass density similarity, going beyond the usual ADM explanations of similar number densities. It features an explicit matter-antimatter asymmetry generation mechanism, has one fully worked out thermal history and suggestions for other possibilities, and meets all phenomenological, cosmological and astrophysical constraints. Importantly, it incorporates a deep reason for why the dark matter mass scale is related to the proton mass, a key consideration in ADM models. Our starting point is the idea of mirror matter, which offers an explanation for dark matter by duplicating the standard model with a dark sector related by a Z2 parity symmetry. However, the dark sector need not manifest as a symmetric copy of the standard model in the present day. By utilizing the mechanism of "asymmetric symmetry breaking" with two Higgs doublets in each sector, we develop a model of ADM where the mirror symmetry is spontaneously broken, leading to an electroweak scale in the dark sector that is significantly larger than that of the visible sector. The weak sensitivity of the ordinary and dark QCD confinement scales to their respective electroweak scales leads to the necessary connection between the dark matter and proton masses. The dark matter is composed of either dark neutrons or a mixture of dark neutrons and metastable dark hydrogen atoms. Lepton asymmetries are generated by the C P -violating decays of heavy Majorana neutrinos in both sectors. These are then converted by sphaleron processes to produce the observed ratio of visible to dark matter in the universe. The dynamics responsible for the kinetic decoupling of the two sectors emerges as an important issue that we only partially solve.

  19. Discussion of impact of relics activation on protection and utilization approaches-take the old summer palace as an example

    Science.gov (United States)

    Xiaoqi, J.

    2015-08-01

    As the popularization of cultural relics and the rapid development of cultural tourism industry, a large number of cultural relic tourism resources goes into public eyes. Activation of relics has became an important way for tourist to contact and understand culture relics. The way of how to properly interpret the historical sense and cultural uniqueness to the masses of tourists in order to achieve social service functions of relic resources has always been research focal point of site protection and utilization, so nowadays it has important significance to protection and utilization of heritage resources in our country. From the point of activation of relics and based on the analysis of resource characteristic, the paper in depth discuss ways of activation of relics of the Old Summer Palace, in order to provide reference for sustainable development of sites tourism in China.

  20. Analysis on the environment of cultural relic as tourist attraction--take Yungang Grottoes as an example

    Science.gov (United States)

    Xiangdong, Zhu; Jie, Bai

    2018-03-01

    Cultural relic resources are precious non-renewable resources and an important cornerstone for the development of cultural relic tourism. With the rapid development of tourism industry, the native environment of cultural relics is being squeezed constantly. Meanwhile, under the economic interests, cultural relic’s protection and heritage tourism contradictions continue to intensify. The present era which the architectural style is convergence, cultural relics protection is simplistic, restore historical sites blindly and other. In the historical process of economic development and the acceleration of new-type urbanization, the heritage industry faces the dual tasks and development challenges. As cultural relic protection workers, investigation of the utilization of cultural relic’s tourist attractions, investigation and analysis of the Yungang Grottoes, indicating cultural relics as a tourist attraction, not only to strengthen the protection of ontology, also should attach importance to the coordinated development of the protection of cultural relics and the utilization of tourism.

  1. A population of relic intermediate-mass black holes in the halo of the Milky Way

    International Nuclear Information System (INIS)

    Rashkov, Valery; Madau, Piero

    2014-01-01

    If 'seed' central black holes were common in the subgalactic building blocks that merged to form present-day massive galaxies, then relic intermediate-mass black holes (IMBHs) should be present in the Galactic bulge and halo. We use a particle tagging technique to dynamically populate the N-body Via Lactea II high-resolution simulation with black holes, and assess the size, properties, and detectability of the leftover population. The method assigns a black hole to the most tightly bound central particle of each subhalo at infall according to an extrapolation of the M BH -σ * relation, and self-consistently follows the accretion and disruption of Milky Way progenitor dwarfs and their holes in a cosmological 'live' host from high redshift to today. We show that, depending on the minimum stellar velocity dispersion, σ m , below which central black holes are assumed to be increasingly rare, as many as ∼2000 (σ m = 3 km s –1 ) or as few as ∼70 (σ m = 12 km s –1 ) IMBHs may be left wandering in the halo of the Milky Way today. The fraction of IMBHs forced from their hosts by gravitational recoil is ≲ 20%. We identify two main Galactic subpopulations, 'naked' IMBHs, whose host subhalos were totally destroyed after infall, and 'clothed' IMBHs residing in dark matter satellites that survived tidal stripping. Naked IMBHs typically constitute 40%-50% of the total and are more centrally concentrated. We show that, in the σ m = 12 km s –1 scenario, the clusters of tightly bound stars that should accompany naked IMBHs would be fainter than m V = 16 mag, spatially resolvable, and have proper motions of 0.1-10 mas yr –1 . Their detection may provide an observational tool to constrain the formation history of massive black holes in the early universe.

  2. Dark Matter

    Indian Academy of Sciences (India)

    What You See Ain't What. You Got, Resonance, Vol.4,. No.9,1999. Dark Matter. 2. Dark Matter in the Universe. Bikram Phookun and Biman Nath. In Part 11 of this article we learnt that there are compelling evidences from dynamics of spiral galaxies, like our own, that there must be non-luminous matter in them. In this.

  3. Unblinding the dark matter blind spots

    International Nuclear Information System (INIS)

    Han, Tao; Kling, Felix

    2017-01-01

    The dark matter (DM) blind spots in the Minimal Supersymmetric Standard Model (MSSM) refer to the parameter regions where the couplings of the DM particles to the Z-boson or the Higgs boson are almost zero, leading to vanishingly small signals for the DM direct detections. In this paper, we carry out comprehensive analyses for the DM searches under the blind-spot scenarios in MSSM. Guided by the requirement of acceptable DM relic abundance, we explore the complementary coverage for the theory parameters at the LHC, the projection for the future underground DM direct searches, and the indirect searches from the relic DM annihilation into photons and neutrinos. We find that (i) the spin-independent (SI) blind spots may be rescued by the spin-dependent (SD) direct detection in the future underground experiments, and possibly by the indirect DM detections from IceCube and SuperK neutrino experiments; (ii) the detection of gamma rays from Fermi-LAT may not reach the desirable sensitivity for searching for the DM blind-spot regions; (iii) the SUSY searches at the LHC will substantially extend the discovery region for the blind-spot parameters. As a result, the dark matter blind spots thus may be unblinded with the collective efforts in future DM searches.

  4. Dark side of the Higgs boson

    International Nuclear Information System (INIS)

    Low, I.; Schwaller, P.; Shaughnessy, G.; Wagner, C.E.M.

    2012-01-01

    Current limits from the Large Hadron Collider exclude a standard model-like Higgs mass above 150 GeV, by placing an upper bound on the Higgs production rate. We emphasize that, alternatively, the limit could be interpreted as a lower bound on the total decay width of the Higgs boson. If the invisible decay width of the Higgs is of the same order as the visible decay width, a heavy Higgs boson could be consistent with null results from current searches. We propose a method to infer the invisible decay of the Higgs by using the width of the measured h → ZZ → 4 (ell) line shape, and study the effect on the width extraction due to a reduced signal strength. Assuming the invisible decay product is the dark matter, we show that minimal models are tightly constrained by limits from Higgs searches at the LHC and direct detection experiments of dark matter, unless the relic density constraint is relaxed.

  5. Massive hidden photons as lukewarm dark matter

    International Nuclear Information System (INIS)

    Redondo, Javier; Postma, Marieke

    2008-11-01

    We study the possibility that a keV-MeV mass hidden photon (HP), i.e. a hidden sector U(1) gauge boson, accounts for the observed amount of dark matter. We focus on the case where the HP interacts with the standard model sector only through kinetic mixing with the photon. The relic abundance is computed including all relevant plasma effects into the photon's self-energy, which leads to a resonant yield almost independent of the HP mass. The HP can decay into three photons. Moreover, if light enough it can be copiously produced in stars. Including bounds from cosmic photon backgrounds and stellar evolution, we find that the hidden photon can only give a subdominant contribution to the dark matter. This negative conclusion may be avoided if another production mechanism besides kinetic mixing is operative. (orig.)

  6. Massive hidden photons as lukewarm dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Postma, Marieke [Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands)

    2008-11-15

    We study the possibility that a keV-MeV mass hidden photon (HP), i.e. a hidden sector U(1) gauge boson, accounts for the observed amount of dark matter. We focus on the case where the HP interacts with the standard model sector only through kinetic mixing with the photon. The relic abundance is computed including all relevant plasma effects into the photon's self-energy, which leads to a resonant yield almost independent of the HP mass. The HP can decay into three photons. Moreover, if light enough it can be copiously produced in stars. Including bounds from cosmic photon backgrounds and stellar evolution, we find that the hidden photon can only give a subdominant contribution to the dark matter. This negative conclusion may be avoided if another production mechanism besides kinetic mixing is operative. (orig.)

  7. Correlation between dark matter and dark radiation in string compactifications

    International Nuclear Information System (INIS)

    Allahverdi, Rouzbeh; Cicoli, Michele; Dutta, Bhaskar; Sinha, Kuver

    2014-01-01

    Reheating in string compactifications is generically driven by the decay of the lightest modulus which produces Standard Model particles, dark matter and light hidden sector degrees of freedom that behave as dark radiation. This common origin allows us to find an interesting correlation between dark matter and dark radiation. By combining present upper bounds on the effective number of neutrino species N eff with lower bounds on the reheating temperature as a function of the dark matter mass m DM from Fermi data, we obtain strong constraints on the (N eff , m DM )-plane. Most of the allowed region in this plane corresponds to non-thermal scenarios with Higgsino-like dark matter. Thermal dark matter can be allowed only if N eff tends to its Standard Model value. We show that the above situation is realised in models with perturbative moduli stabilisation where the production of dark radiation is unavoidable since bulk closed string axions remain light and do not get eaten up by anomalous U(1)s

  8. An Account of Translation of Relics: the Writings of Alonso de Cartagena

    Directory of Open Access Journals (Sweden)

    Luis Fernández Gallardo

    2018-01-01

    Full Text Available The narratives of translation of relics is a genre of devotional literature that didn´t develop extensively in Medieval Castile. But Alonso de Cartagena contributed to it remarkably. In 1453, during a pastoral visit, he decided to move the relics of St. Juliana to a more honorable place. He wrote an account of these facts that adjusts strictly to the features of the genre. This vernacular text contains an exposition about the cult of saints and their relics, which has an intense Thomist inspiration: it sets theological questions with precision and clarity. The provisions on the decoration of the chapel of the relics offer an interesting testimony of the debate on religious image which is then developed in Castile.

  9. a Review of Digital Watermarking and Copyright Control Technology for Cultural Relics

    Science.gov (United States)

    Liu, H.; Hou, M.; Hu, Y.

    2018-04-01

    With the rapid growth of the application and sharing of the 3-D model data in the protection of cultural relics, the problem of Shared security and copyright control of the three-dimensional model of cultural relics is becoming increasingly prominent. Followed by a digital watermarking copyright control has become the frontier technology of 3-D model security protection of cultural relics and effective means, related technology research and application in recent years also got further development. 3-D model based on cultural relics digital watermarking and copyright control technology, introduces the research background and demand, its unique characteristics were described, and its development and application of the algorithm are discussed, and the prospects of the future development trend and some problems and the solution.

  10. “The Godly Greedy Appetite”: New Relic Circulation in the Early Modern World

    Directory of Open Access Journals (Sweden)

    Igor Pérez Tostado

    2017-05-01

    Full Text Available Having lost all monasteries and a good deal of its medieval Christian movable assets, England became one of the greatest producers of new Catholic relics during the sixteenth and seventeenth centuries. This article aims to look, from a material point of view, at the circulation and consumption of English relics on the Catholic continent. In this case, these products were created because of violence and circulated as an answer to it. Gifts and the exchange of relics served to obtain support for the exiled Catholics and for the institutions providing for their education created in the continent, and allowed them to participate in the necropolitics of the Spanish Monarchy. Relics, artifacts and printed and manuscript narratives brought back from all over the world helped construct a selfimage of an English Catholic as a necrocommunity imbued by a sense of historical continuity and connected to a global imagined community.

  11. Relic gravitational waves from light primordial black holes

    International Nuclear Information System (INIS)

    Dolgov, Alexander D.; Ejlli, Damian

    2011-01-01

    The energy density of relic gravitational waves (GWs) emitted by primordial black holes (PBHs) is calculated. We estimate the intensity of GWs produced at quantum and classical scattering of PBHs, the classical graviton emission from the PBH binaries in the early Universe, and the graviton emission due to PBH evaporation. If nonrelativistic PBHs dominated the cosmological energy density prior to their evaporation, the probability of formation of dense clusters of PBHs and their binaries in such clusters would be significant and the energy density of the generated gravitational waves in the present-day universe could exceed that produced by other known mechanisms. The intensity of these gravitational waves would be maximal in the GHz frequency band of the spectrum or higher and makes their observation very difficult by present detectors but also gives a rather good possibility to investigate it by present and future high-frequency gravitational waves electromagnetic detectors. However, the low-frequency part of the spectrum in the range f∼0.1-10 Hz may be detectable by the planned space interferometers DECIGO/BBO. For sufficiently long duration of the PBH matter-dominated stage, the cosmological energy fraction of GWs from inflation would be noticeably diluted.

  12. WISPy cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Cadamuro, Davide; Redondo, Javier [Max-Planck-Institut fuer Physik, Muenchen (Germany); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-01-15

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches - exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques - can probe large parts of this parameter space in the foreseeable future. (orig.)

  13. Signatures of top flavour-changing dark matter

    International Nuclear Information System (INIS)

    Hondt, Jorgen d'; Mariotti, Alberto; Moortgat, Seth; Tziveloglou, Pantelis

    2015-12-01

    We develop the phenomenology of scenarios in which a dark matter candidate interacts with a top quark through flavour-changing couplings, employing a simplified dark matter model with an s-channel vector-like mediator. We study in detail the top-charm flavour-changing interaction, by investigating the single top plus large missing energy signature at the LHC as well as constraints from the relic density and direct and indirect dark matter detection experiments. We present strategies to distinguish between the top-charm and top-up flavour-changing models by taking advantage of the lepton charge asymmetry as well as by using charm-tagging techniques on an extra jet. We also show the complementarity between the LHC and canonical dark matter experiments in exploring the viable parameter space of the models.

  14. Signatures of top flavour-changing dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Hondt, Jorgen d' ; Mariotti, Alberto; Moortgat, Seth; Tziveloglou, Pantelis [Vrieje Univ. Brussel (Belgium). Theoretische Natuurkunde and IIHE/ELEM; Mawatari, Kentarou [Vrieje Univ. Brussel (Belgium). Theoretische Natuurkunde and IIHE/ELEM; Grenoble-Alpes Univ., CNRS/IN2P3 (France). Lab. de Physique Subatomique et de Cosmologie; Onsem, Gerrit van [Vrieje Univ. Brussel (Belgium). Theoretische Natuurkunde and IIHE/ELEM; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-12-15

    We develop the phenomenology of scenarios in which a dark matter candidate interacts with a top quark through flavour-changing couplings, employing a simplified dark matter model with an s-channel vector-like mediator. We study in detail the top-charm flavour-changing interaction, by investigating the single top plus large missing energy signature at the LHC as well as constraints from the relic density and direct and indirect dark matter detection experiments. We present strategies to distinguish between the top-charm and top-up flavour-changing models by taking advantage of the lepton charge asymmetry as well as by using charm-tagging techniques on an extra jet. We also show the complementarity between the LHC and canonical dark matter experiments in exploring the viable parameter space of the models.

  15. Relativistic and nonrelativistic annihilation of dark matter: a sanity check using an effective field theory approach

    Energy Technology Data Exchange (ETDEWEB)

    Cannoni, Mirco [Universidad de Huelva, Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Huelva (Spain)

    2016-03-15

    We find an exact formula for the thermally averaged cross section times the relative velocity left angle σv{sub rel} right angle with relativistic Maxwell-Boltzmann statistics. The formula is valid in the effective field theory approach when the masses of the annihilation products can be neglected compared with the dark matter mass and cut-off scale. The expansion at x = m/T >> 1 directly gives the nonrelativistic limit of left angle σv{sub rel} right angle, which is usually used to compute the relic abundance for heavy particles that decouple when they are nonrelativistic. We compare this expansion with the one obtained by expanding the total cross section σ(s) in powers of the nonrelativistic relative velocity vr. We show the correct invariant procedure that gives the nonrelativistic average left angle σv{sub rel} right angle {sub nr} coinciding with the large x expansion of left angle σv{sub rel} right angle in the comoving frame. We explicitly formulate flux, cross section, thermal average, collision integral of the Boltzmann equation in an invariant way using the true relativistic relative v{sub rel}, showing the uselessness of the Moeller velocity and further elucidating the conceptual and numerical inconsistencies related with its use. (orig.)

  16. Relativistic and nonrelativistic annihilation of dark matter: a sanity check using an effective field theory approach

    International Nuclear Information System (INIS)

    Cannoni, Mirco

    2016-01-01

    We find an exact formula for the thermally averaged cross section times the relative velocity left angle σv rel right angle with relativistic Maxwell-Boltzmann statistics. The formula is valid in the effective field theory approach when the masses of the annihilation products can be neglected compared with the dark matter mass and cut-off scale. The expansion at x = m/T >> 1 directly gives the nonrelativistic limit of left angle σv rel right angle, which is usually used to compute the relic abundance for heavy particles that decouple when they are nonrelativistic. We compare this expansion with the one obtained by expanding the total cross section σ(s) in powers of the nonrelativistic relative velocity vr. We show the correct invariant procedure that gives the nonrelativistic average left angle σv rel right angle nr coinciding with the large x expansion of left angle σv rel right angle in the comoving frame. We explicitly formulate flux, cross section, thermal average, collision integral of the Boltzmann equation in an invariant way using the true relativistic relative v rel , showing the uselessness of the Moeller velocity and further elucidating the conceptual and numerical inconsistencies related with its use. (orig.)

  17. Mapping the ecological dimensions and potential distributions of endangered relic shrubs in western Ordos biodiversity center.

    Science.gov (United States)

    Zhu, Geng-Ping; Li, Hui-Qi; Zhao, Li; Man, Liang; Liu, Qiang

    2016-05-20

    Potential distributions of endemic relic shrubs in western Ordos were poorly mapped, which hindered our implementation of proper conservation. Here we investigated the applicability of ecological niche modeling for endangered relic shrubs to detect areas of priority for biodiversity conservation and analyze differences in ecological niche spaces used by relic shrubs. We applied ordination and niche modeling techniques to assess main environmental drivers of five endemic relic shrubs in western Ordos, namely, Ammopiptanthus mongolicus, Amygdalus mongolica, Helianthemum songaricum, Potaninia mongolica, and Tetraena mongolica. We calculated niche overlap metrics in gridded environmental spaces and compared geographical projections of ecological niches to determine similarities and differences of niches occupied by relic shrubs. All studied taxa presented different responses to environmental factors, which resulted in a unique combination of niche conditions. Precipitation availability and soil quality characteristics play important roles in the distributions of most shrubs. Each relic shrub is constrained by a unique set of environmental conditions, the distribution of one species cannot be implied by the distribution of another, highlighting the inadequacy of one-fits-all type of conservation measure. Our stacked habitat suitability maps revealed regions around Yellow River, which are highly suitable for most species, thereby providing high conservation value.

  18. Flower symbolism and the cult of relics in medieval Serbia

    Directory of Open Access Journals (Sweden)

    Popović Danica

    2008-01-01

    Full Text Available The Life of archbishop Eustathios I [Jevstatije] (1279-1286, deserving head of the medieval Serbian Church and a saint, is a very interesting source for studying the cult of relics with the Serbs. This is not surprising considering that the Life was penned by one of the most illustrious of Eustathios' successors on the church throne, Daniel II [Danilo], a learned Athonite and unquestionable master of the hagiographie literary genre. In his account of the life of his distinguished predecessor, Daniel describes extensively the events constituting the key stage in the glorification of a saint, namely Eustathios' death and posthumous occurrences at his grave. As most holy men, Eustathios foresaw his own death, and he departed from this world serenely. He was buried, with due honours, in the 'marble grave' he had prepared for himself in the cathedral church of Holy Saviour at Žiča. In keeping with the well-established saint-making process, a few years after the funeral 'extraordinary signs' began to occur at the archbishop's grave, in this particular case, candlelight and a multitude of murmuring voices followed by the miraculous cure of an incurably ill person. These occurrences preceded the great miracle which, to the best of my knowledge, is unparalleled in the medieval Serbian practice of relic veneration. Namely, 'one day they found growing from his marble grave three flowers endowed with wondrous beauty and impossible to liken to anything else. For, indeed, they were not of earthly humidity or of union with flowers that grow from earth; but, o wonder, how a dry stone standing for so long in the church could send forth fragrant flowers, to the renewal of the sanctified one's body'. Flower metaphors occur in the Service to the holy archbishop Eustathios, yet another piece penned by Daniel II, notably in his paraphrases of Psalm 92, 12-14 ('The righteous shall flourish like the palm tree: he shall grow like a cedar in Lebanon. These that be

  19. DarkBit. A GAMBIT module for computing dark matter observables and likelihoods

    Energy Technology Data Exchange (ETDEWEB)

    Bringmann, Torsten; Dal, Lars A. [University of Oslo, Department of Physics, Oslo (Norway); Conrad, Jan; Edsjoe, Joakim; Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Cornell, Jonathan M. [McGill University, Department of Physics, Montreal, QC (Canada); Kahlhoefer, Felix; Wild, Sebastian [DESY, Hamburg (Germany); Kvellestad, Anders; Savage, Christopher [NORDITA, Stockholm (Sweden); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Scott, Pat [Blackett Laboratory, Imperial College London, Department of Physics, London (United Kingdom); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); White, Martin [University of Adelaide, Department of Physics, Adelaide, SA (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale, Parkville (Australia); Collaboration: The GAMBIT Dark Matter Workgroup

    2017-12-15

    We introduce DarkBit, an advanced software code for computing dark matter constraints on various extensions to the Standard Model of particle physics, comprising both new native code and interfaces to external packages. This release includes a dedicated signal yield calculator for gamma-ray observations, which significantly extends current tools by implementing a cascade-decay Monte Carlo, as well as a dedicated likelihood calculator for current and future experiments (gamLike). This provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states. We also supply a direct detection package that models a large range of direct detection experiments (DDCalc), and that provides the corresponding likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes. Finally, we provide custom relic density routines along with interfaces to DarkSUSY, micrOMEGAs, and the neutrino telescope likelihood package nulike. DarkBit is written in the framework of the Global And Modular Beyond the Standard Model Inference Tool (GAMBIT), providing seamless integration into a comprehensive statistical fitting framework that allows users to explore new models with both particle and astrophysics constraints, and a consistent treatment of systematic uncertainties. In this paper we describe its main functionality, provide a guide to getting started quickly, and show illustrative examples for results obtained with DarkBit (both as a stand-alone tool and as a GAMBIT module). This includes a quantitative comparison between two of the main dark matter codes (DarkSUSY and micrOMEGAs), and application of DarkBit's advanced direct and indirect detection routines to a simple effective dark matter model. (orig.)

  20. Prospects for detecting supersymmetric dark matter at Post-LEP benchmark points

    International Nuclear Information System (INIS)

    Ellis, J.; Matchev, K.T.; Feng, J.L.; Ferstl, A.; Olive, K.A.

    2002-01-01

    A new set of supersymmetric benchmark scenarios has recently been proposed in the context of the constrained MSSM (CMSSM) with universal soft supersymmetry-breaking masses, taking into account the constraints from LEP, b→sγ and g μ -2. These points have previously been used to discuss the physics reaches of different accelerators. In this paper, we discuss the prospects for discovering supersymmetric dark matter in these scenarios. We consider direct detection through spin-independent and spin-dependent nuclear scattering, as well as indirect detection through relic annihilations to neutrinos, photons, and positrons. We find that several of the benchmark scenarios offer good prospects for direct detection via spin-independent nuclear scattering and indirect detection via muons produced by neutrinos from relic annihilations inside the Sun, and some models offer good prospects for detecting photons from relic annihilations in the galactic centre. (orig.)

  1. Dark coupling

    International Nuclear Information System (INIS)

    Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S.

    2009-01-01

    The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed

  2. Impact of semi-annihilations on dark matter phenomenology. An example of ZN symmetric scalar dark matter

    International Nuclear Information System (INIS)

    Bélanger, Geneviève; Kannike, Kristjan; Pukhov, Alexander; Raidal, Martti

    2012-01-01

    We study the impact of semi-annihilations x i x j ↔x k X and dark matter conversion x i x j ↔x k x l , where x i is any dark matter and X is any standard model particle, on dark matter phenomenology. We formulate minimal scalar dark matter models with an extra doublet and a complex singlet that predict non-trivial dark matter phenomenology with semi-annihilation processes for different discrete Abelian symmetries Z N , N > 2. We implement two such example models with Z 3 and Z 4 symmetry in micrOMEGAs and work out their phenomenology. We show that both semi-annihilations and dark matter conversion significantly modify the dark matter relic abundance in this type of models. In the Z 4 model, there are two stable neutral particles and therefore multi-component dark matter. We also study the possibility of dark matter direct detection in XENON100 in those models

  3. Dark Matter

    Science.gov (United States)

    Lincoln, Don

    2013-01-01

    It's a dark, dark universe out there, and I don't mean because the night sky is black. After all, once you leave the shadow of the Earth and get out into space, you're surrounded by countless lights glittering everywhere you look. But for all of Sagan's billions and billions of stars and galaxies, it's a jaw-dropping fact that the ordinary kind of…

  4. NMSSM with gravitino dark matter to be tested at LHC

    International Nuclear Information System (INIS)

    Hasenkamp, Jasper

    2013-09-01

    We present a solution to the gravitino problem, which arises in the NMSSM, allowing for sparticle spectra from ordinary gravity-mediated supersymmetry breaking with weak-scale gravitino dark matter. The coupling, which links the singlet to the MSSM sector, enhances the tree-level Higgs mass, providing an attractive explanation why the observed Higgs boson is so heavy. The same coupling induces very efficient pair-annihilation processes of the neutralino NLSP. Its relic abundance can be sufficiently suppressed to satisfy the strong constraints on late decaying relics from primordial nucleosynthesis - even for very long neutralino lifetimes. The striking prediction of this scenario is the detection of a pseudoscalar Higgs boson in the search for top-top resonances at LHC-14, rendering it completely testable.

  5. NMSSM with gravitino dark matter to be tested at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hasenkamp, Jasper [New York Univ., New York, NY (United States). Center for Cosmology and Particle Physics; Hamburg Univ. (Germany). II. Inst. for Theoretical Physics; Winkler, Martin Wolfgang [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-09-15

    We present a solution to the gravitino problem, which arises in the NMSSM, allowing for sparticle spectra from ordinary gravity-mediated supersymmetry breaking with weak-scale gravitino dark matter. The coupling, which links the singlet to the MSSM sector, enhances the tree-level Higgs mass, providing an attractive explanation why the observed Higgs boson is so heavy. The same coupling induces very efficient pair-annihilation processes of the neutralino NLSP. Its relic abundance can be sufficiently suppressed to satisfy the strong constraints on late decaying relics from primordial nucleosynthesis - even for very long neutralino lifetimes. The striking prediction of this scenario is the detection of a pseudoscalar Higgs boson in the search for top-top resonances at LHC-14, rendering it completely testable.

  6. Precision measurements, dark matter direct detection and LHC Higgs searches in a constrained NMSSM

    International Nuclear Information System (INIS)

    Bélanger, G.; Hugonie, C.; Pukhov, A.

    2009-01-01

    We reexamine the constrained version of the Next-to-Minimal Supersymmetric Standard Model with semi universal parameters at the GUT scale (CNMSSM). We include constraints from collider searches for Higgs and susy particles, upper bound on the relic density of dark matter, measurements of the muon anomalous magnetic moment and of B-physics observables as well as direct searches for dark matter. We then study the prospects for direct detection of dark matter in large scale detectors and comment on the prospects for discovery of heavy Higgs states at the LHC

  7. Common origin of neutrino mass, dark matter and Dirac leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Borah, Debasish [Department of Physics, Indian Institute of Technology Guwahati, Assam 781039 (India); Dasgupta, Arnab, E-mail: dborah@iitg.ernet.in, E-mail: arnab.d@iopb.res.in [Institute of Physics, HBNI, Sachivalaya Marg, Bhubaneshwar 751005 (India)

    2016-12-01

    We study the possibility of generating tiny Dirac neutrino masses at one loop level through the scotogenic mechanism such that one of the particles going inside the loop can be a stable cold dark matter (DM) candidate. Majorana mass terms of singlet fermions as well as tree level Dirac neutrino masses are prevented by incorporating the presence of additional discrete symmetries in a minimal fashion, which also guarantee the stability of the dark matter candidate. Due to the absence of total lepton number violation, the observed baryon asymmetry of the Universe is generated through the mechanism of Dirac leptogenesis where an equal and opposite amount of leptonic asymmetry is generated in the left and right handed sectors which are prevented from equilibration due to tiny Dirac Yukawa couplings. Dark matter relic abundance is generated through its usual freeze-out at a temperature much below the scale of leptogenesis. We constrain the relevant parameter space from neutrino mass, baryon asymmetry, Planck bound on dark matter relic abundance, and latest LUX bound on spin independent DM-nucleon scattering cross section. We also discuss the charged lepton flavour violation (μ → e γ) and electric dipole moment of electron in this model in the light of the latest experimental data and constrain the parameter space of the model.

  8. Thermodynamical properties of dark energy

    International Nuclear Information System (INIS)

    Gong Yungui; Wang Bin; Wang Anzhong

    2007-01-01

    We have investigated the thermodynamical properties of dark energy. Assuming that the dark energy temperature T∼a -n and considering that the volume of the Universe enveloped by the apparent horizon relates to the temperature, we have derived the dark energy entropy. For dark energy with constant equation of state w>-1 and the generalized Chaplygin gas, the derived entropy can be positive and satisfy the entropy bound. The total entropy, including those of dark energy, the thermal radiation, and the apparent horizon, satisfies the generalized second law of thermodynamics. However, for the phantom with constant equation of state, the positivity of entropy, the entropy bound, and the generalized second law cannot be satisfied simultaneously

  9. TURBULENT COSMIC-RAY REACCELERATION AT RADIO RELICS AND HALOS IN CLUSTERS OF GALAXIES

    International Nuclear Information System (INIS)

    Fujita, Yutaka; Takizawa, Motokazu; Yamazaki, Ryo; Akamatsu, Hiroki; Ohno, Hiroshi

    2015-01-01

    Radio relics are synchrotron emission found on the periphery of galaxy clusters. From the position and the morphology, it is often believed that the relics are generated by cosmic-ray (CR) electrons accelerated at shocks through a diffusive shock acceleration (DSA) mechanism. However, some radio relics have harder spectra than the prediction of the standard DSA model. One example is observed in the cluster 1RXS J0603.3+4214, which is often called the “Toothbrush Cluster.” Interestingly, the position of the relic is shifted from that of a possible shock. In this study, we show that these discrepancies in the spectrum and the position can be solved if turbulent (re)acceleration is very effective behind the shock. This means that for some relics turbulent reacceleration may be the main mechanism to produce high-energy electrons, contrary to the common belief that it is the DSA. Moreover, we show that for efficient reacceleration, the effective mean free path of the electrons has to be much smaller than their Coulomb mean free path. We also study the merging cluster 1E 0657−56, or the “Bullet Cluster,” in which a radio relic has not been found at the position of the prominent shock ahead of the bullet. We indicate that a possible relic at the shock is obscured by the observed large radio halo that is generated by strong turbulence behind the shock. We propose a simple explanation of the morphological differences of radio emission among the Toothbrush, the Bullet, and the Sausage (CIZA J2242.8+5301) Clusters

  10. Dark Energy and Dark Matter Phenomena and the Universe with Variable Gravitational Mass

    Science.gov (United States)

    Gorkavyi, N.

    2005-12-01

    Generation of high-frequency gravitational waves near the singularity is a crucial factor for understanding the origin and dynamics of the Universe. Emission of gravitational waves increases with a decreasing radius of collapsed object much faster than a gravitational force itself. Gravitationally unstable matter of the Universe will be completely converted into gravitational radiation during the Big Crunch. According to Misner, Thorne & Wheeler (Gravitation, 1977, p.959) plane gravitational waves have not gravitational mass or spacetime is flat everywhere outside the pulse. We can propose that the gravitational mass of the Universe is vanished after converting matter into gravitational waves. This hypothesis in the framework of Einstein's theory of gravitation can solve the problem of singularity without contradiction with theorems by Penrose-Hawking; explain the acceleration of our Universe as the effect of a retarded gravitational potential (Gorkavyi, BAAS, 2003, 35, #3) and the low quadrupole in fluctuations in CMB as result of blue-shift effect in a gravitational field. Proposed solution of dark energy problem free from coincidence problems. The hypothesis keeps best parts of Big Bang theory and inflation model without any unknown physical fields or new dimensions. According to this hypothesis a relic sea of high-frequency gravitational radiation in our Universe can be very dense. Interaction of relic gravitational waves with gravitational fields of galaxies and stars can create an additional dynamical effects like pressure of relic radiation that proportional to gravitational potential GM/(Rc2). This effect can be responsible for dark matter phenomena in galaxies and the Pioneer acceleration in the solar system (Gorkavyi, BAAS, 2005, 37, #2).

  11. Comprehensive asymmetric dark matter model

    OpenAIRE

    Lonsdale, Stephen J.; Volkas, Raymond R.

    2018-01-01

    Asymmetric dark matter (ADM) is motivated by the similar cosmological mass densities measured for ordinary and dark matter. We present a comprehensive theory for ADM that addresses the mass density similarity, going beyond the usual ADM explanations of similar number densities. It features an explicit matter-antimatter asymmetry generation mechanism, has one fully worked out thermal history and suggestions for other possibilities, and meets all phenomenological, cosmological and astrophysical...

  12. Self-interacting warm dark matter

    International Nuclear Information System (INIS)

    Hannestad, Steen; Scherrer, Robert J.

    2000-01-01

    It has been shown by many independent studies that the cold dark matter scenario produces singular galactic dark halos, in strong contrast with observations. Possible remedies are that either the dark matter is warm so that it has significant thermal motion or that the dark matter has strong self-interactions. We combine these ideas to calculate the linear mass power spectrum and the spectrum of cosmic microwave background (CMB) fluctuations for self-interacting warm dark matter. Our results indicate that such models have more power on small scales than is the case for the standard warm dark matter model, with a CMB fluctuation spectrum which is nearly indistinguishable from standard cold dark matter. This enhanced small-scale power may provide better agreement with the observations than does standard warm dark matter. (c) 2000 The American Physical Society

  13. Alternative dark matter candidates. Axions

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2017-01-01

    The axion is arguably one of the best motivated candidates for dark matter. For a decay constant >or similar 10 9 GeV, axions are dominantly produced non-thermally in the early universe and hence are ''cold'', their velocity dispersion being small enough to fit to large scale structure. Moreover, such a large decay constant ensures the stability at cosmological time scales and its behaviour as a collisionless fluid at cosmological length scales. Here, we review the state of the art of axion dark matter predictions and of experimental efforts to search for axion dark matter in laboratory experiments.

  14. Alternative dark matter candidates. Axions

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, Andreas

    2017-01-15

    The axion is arguably one of the best motivated candidates for dark matter. For a decay constant >or similar 10{sup 9} GeV, axions are dominantly produced non-thermally in the early universe and hence are ''cold'', their velocity dispersion being small enough to fit to large scale structure. Moreover, such a large decay constant ensures the stability at cosmological time scales and its behaviour as a collisionless fluid at cosmological length scales. Here, we review the state of the art of axion dark matter predictions and of experimental efforts to search for axion dark matter in laboratory experiments.

  15. SOLAR CONSTRAINTS ON ASYMMETRIC DARK MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilidio [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silk, Joseph, E-mail: ilidio.lopes@ist.utl.pt, E-mail: silk@astro.ox.ac.uk [Institut d' Astrophysique de Paris, F-75014 Paris (France)

    2012-10-01

    The dark matter content of the universe is likely to be a mixture of matter and antimatter, perhaps comparable to the measured asymmetric mixture of baryons and antibaryons. During the early stages of the universe, the dark matter particles are produced in a process similar to baryogenesis, and dark matter freezeout depends on the dark matter asymmetry and the annihilation cross section (s-wave and p-wave annihilation channels) of particles and antiparticles. In these {eta}-parameterized asymmetric dark matter ({eta}ADM) models, the dark matter particles have an annihilation cross section close to the weak interaction cross section, and a value of dark matter asymmetry {eta} close to the baryon asymmetry {eta}{sub B}. Furthermore, we assume that dark matter scattering of baryons, namely, the spin-independent scattering cross section, is of the same order as the range of values suggested by several theoretical particle physics models used to explain the current unexplained events reported in the DAMA/LIBRA, CoGeNT, and CRESST experiments. Here, we constrain {eta}ADM by investigating the impact of such a type of dark matter on the evolution of the Sun, namely, the flux of solar neutrinos and helioseismology. We find that dark matter particles with a mass smaller than 15 GeV, a spin-independent scattering cross section on baryons of the order of a picobarn, and an {eta}-asymmetry with a value in the interval 10{sup -12}-10{sup -10}, would induce a change in solar neutrino fluxes in disagreement with current neutrino flux measurements. This result is also confirmed by helioseismology data. A natural consequence of this model is suppressed annihilation, thereby reducing the tension between indirect and direct dark matter detection experiments, but the model also allows a greatly enhanced annihilation cross section. All the cosmological {eta}ADM scenarios that we discuss have a relic dark matter density {Omega}h {sup 2} and baryon asymmetry {eta}{sub B} in agreement with

  16. SOLAR CONSTRAINTS ON ASYMMETRIC DARK MATTER

    International Nuclear Information System (INIS)

    Lopes, Ilídio; Silk, Joseph

    2012-01-01

    The dark matter content of the universe is likely to be a mixture of matter and antimatter, perhaps comparable to the measured asymmetric mixture of baryons and antibaryons. During the early stages of the universe, the dark matter particles are produced in a process similar to baryogenesis, and dark matter freezeout depends on the dark matter asymmetry and the annihilation cross section (s-wave and p-wave annihilation channels) of particles and antiparticles. In these η-parameterized asymmetric dark matter (ηADM) models, the dark matter particles have an annihilation cross section close to the weak interaction cross section, and a value of dark matter asymmetry η close to the baryon asymmetry η B . Furthermore, we assume that dark matter scattering of baryons, namely, the spin-independent scattering cross section, is of the same order as the range of values suggested by several theoretical particle physics models used to explain the current unexplained events reported in the DAMA/LIBRA, CoGeNT, and CRESST experiments. Here, we constrain ηADM by investigating the impact of such a type of dark matter on the evolution of the Sun, namely, the flux of solar neutrinos and helioseismology. We find that dark matter particles with a mass smaller than 15 GeV, a spin-independent scattering cross section on baryons of the order of a picobarn, and an η-asymmetry with a value in the interval 10 –12 -10 –10 , would induce a change in solar neutrino fluxes in disagreement with current neutrino flux measurements. This result is also confirmed by helioseismology data. A natural consequence of this model is suppressed annihilation, thereby reducing the tension between indirect and direct dark matter detection experiments, but the model also allows a greatly enhanced annihilation cross section. All the cosmological ηADM scenarios that we discuss have a relic dark matter density Ωh 2 and baryon asymmetry η B in agreement with the current WMAP measured values, Ω DM h 2 = 0

  17. Warm and cold fermionic dark matter via freeze-in

    International Nuclear Information System (INIS)

    Klasen, Michael; Yaguna, Carlos E.

    2013-01-01

    The freeze-in mechanism of dark matter production provides a simple and intriguing alternative to the WIMP paradigm. In this paper, we analyze whether freeze-in can be used to account for the dark matter in the so-called singlet fermionic model. In it, the SM is extended with only two additional fields, a singlet scalar that mixes with the Higgs boson, and the dark matter particle, a fermion assumed to be odd under a Z 2 symmetry. After numerically studying the generation of dark matter, we analyze the dependence of the relic density with respect to all the free parameters of the model. These results are then used to obtain the regions of the parameter space that are compatible with the dark matter constraint. We demonstrate that the observed dark matter abundance can be explained via freeze-in over a wide range of masses extending down to the keV range. As a result, warm and cold dark matter can be obtained in this model. It is also possible to have dark matter masses well above the unitarity bound for WIMPs

  18. Dirac dark matter and b →s ℓ+ℓ- with U(1) gauge symmetry

    Science.gov (United States)

    Celis, Alejandro; Feng, Wan-Zhe; Vollmann, Martin

    2017-02-01

    We revisit the possibility of a Dirac fermion dark matter candidate in the light of current b →s ℓ+ℓ- anomalies by investigating a minimal extension of the Standard Model with a horizontal U(1 ) ' local symmetry. Dark matter stability is protected by a remnant Z2 symmetry arising after spontaneous symmetry breaking of U(1 ) '. The associated Z' gauge boson can accommodate current hints of new physics in b →s ℓ+ℓ- decays, and acts as a vector portal between dark matter and the visible sector. We find that the model is severely constrained by a combination of precision measurements at flavor factories, LHC searches for dilepton resonances, as well as direct and indirect dark matter searches. Despite this, viable regions of the parameter space accommodating the observed dark matter relic abundance and the b →s ℓ+ℓ-anomalies still persist for dark matter and Z ' masses in the TeV range.

  19. The dark universe dark matter and dark energy

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    According to the standard cosmological model, 95% of the present mass density of the universe is dark: roughly 70% of the total in the form of dark energy and 25% in the form of dark matter. In a series of four lectures, I will begin by presenting a brief review of cosmology, and then I will review the observational evidence for dark matter and dark energy. I will discuss some of the proposals for dark matter and dark energy, and connect them to high-energy physics. I will also present an overview of an observational program to quantify the properties of dark energy.

  20. Supernova relic electron neutrinos and anti-neutrinos in future large-scale observatories

    International Nuclear Information System (INIS)

    Volpe, C.; Welzel, J.

    2007-01-01

    We investigate the signal from supernova relic neutrinos in future large scale observatories, such as MEMPHYS (UNO, Hyper-K), LENA and GLACIER, at present under study. We discuss that complementary information might be gained from the observation of supernova relic electron antineutrinos and neutrinos using the scattering on protons on one hand, and on nuclei such as oxygen, carbon or argon on the other hand. When determining the relic neutrino fluxes we also include, for the first time, the coupling of the neutrino magnetic moment to magnetic fields within the core collapse supernova. We present numerical results on both the relic ν e and ν-bar e fluxes and on the number of events for ν e + C 12 , ν e + O 16 , ν e + Ar 40 and ν-bar e + p for various oscillation scenarios. The observation of supernova relic neutrinos might provide us with unique information on core-collapse supernova explosions, on the star formation history and on neutrino properties, that still remain unknown. (authors)

  1. Supernova relic electron neutrinos and anti-neutrinos in future large-scale observatories

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, C.; Welzel, J. [Institut de Physique Nuclueaire, 91 - Orsay (France)

    2007-07-01

    We investigate the signal from supernova relic neutrinos in future large scale observatories, such as MEMPHYS (UNO, Hyper-K), LENA and GLACIER, at present under study. We discuss that complementary information might be gained from the observation of supernova relic electron antineutrinos and neutrinos using the scattering on protons on one hand, and on nuclei such as oxygen, carbon or argon on the other hand. When determining the relic neutrino fluxes we also include, for the first time, the coupling of the neutrino magnetic moment to magnetic fields within the core collapse supernova. We present numerical results on both the relic {nu}{sub e} and {nu}-bar{sub e} fluxes and on the number of events for {nu}{sub e} + C{sup 12}, {nu}{sub e} + O{sup 16}, {nu}{sub e} + Ar{sup 40} and {nu}-bar{sub e} + p for various oscillation scenarios. The observation of supernova relic neutrinos might provide us with unique information on core-collapse supernova explosions, on the star formation history and on neutrino properties, that still remain unknown. (authors)

  2. Make dark matter charged again

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub, E-mail: prateekagrawal@fas.harvard.edu, E-mail: fcyrraci@physics.harvard.edu, E-mail: randall@physics.harvard.edu, E-mail: jscholtz@physics.harvard.edu [Department of Physics, Harvard University, Cambridge, MA 02138 (United States)

    2017-05-01

    We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.

  3. Relic right-handed Dirac neutrinos and implications for detection of cosmic neutrino background

    Directory of Open Access Journals (Sweden)

    Jue Zhang

    2016-02-01

    Full Text Available It remains to be determined experimentally if massive neutrinos are Majorana or Dirac particles. In this connection, it has been recently suggested that the detection of cosmic neutrino background of left-handed neutrinos νL and right-handed antineutrinos ν‾R in future experiments of neutrino capture on beta-decaying nuclei (e.g., νe+H3→He3+e− for the PTOLEMY experiment is likely to distinguish between Majorana and Dirac neutrinos, since the capture rate is twice larger in the former case. In this paper, we investigate the possible impact of right-handed neutrinos on the capture rate, assuming that massive neutrinos are Dirac particles and both right-handed neutrinos νR and left-handed antineutrinos ν‾L can be efficiently produced in the early Universe. It turns out that the capture rate can be enhanced at most by 28% due to the presence of relic νR and ν‾L with a total number density of 95 cm−3, which should be compared to the number density 336 cm−3 of cosmic neutrino background. The enhancement has actually been limited by the latest cosmological and astrophysical bounds on the effective number of neutrino generations Neff=3.14−0.43+0.44 at the 95% confidence level. For illustration, two possible scenarios have been proposed for thermal production of right-handed neutrinos in the early Universe.

  4. A search for low-mass dark matter with the cryogenic dark matter search and the development of highly multiplexed phonon-mediated particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Moore, David Craig [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2012-01-01

    A wide variety of astrophysical observations indicate that approximately 85% of the matter in the universe is nonbaryonic and nonluminous. Understanding the nature of this "dark matter" is one of the most important outstanding questions in cosmology. Weakly Interacting Massive Particles (WIMPs) are a leading candidate for dark matter since they would be thermally produced in the early universe in the correct abundance to account for the observed relic density of dark matter. If WIMPs account for the dark matter, then rare interactions from relic WIMPs should be observable in terrestrial detectors. Recently, unexplained excess events in the DAMA/LIBRA, CoGeNT, and CRESST-II experiments have been interpreted as evidence of scattering from WIMPs with masses ~10 GeV and spin-independent scattering cross sections of 10-41-10-40 cm2. The Cryogenic Dark Matter Search (CDMS II) attempts to identify WIMP interactions using an array of cryogenic germanium and silicon particle detectors located at the Soudan Underground Laboratory in northern Minnesota. In this dissertation, data taken by CDMS II are reanalyzed using a 2 keV recoil energy threshold to increase the sensitivity to WIMPs with masses ~10 GeV. These data disfavor an explanation for the DAMA/LIBRA, CoGeNT, and CRESST-II results in terms of spin-independent elastic scattering of WIMPs with masses ≲12 GeV, under standard assumptions. At the time of publication, they provided the strongest constraints on spin-independent elastic scattering from 5-9 GeV, ruling out previously unexplored parameter space. To detect WIMPs or exclude the remaining parameter space favored by the most popular models will ultimately require detectors with target masses ≳1 ton, requiring an increase in mass by more than two orders of magnitude over CDMS II. For cryogenic detectors such as CDMS, scaling to such large target masses will require individual detector elements to be fabricated more quickly and cheaply, while

  5. A lower bound on the mass of dark matter particles

    International Nuclear Information System (INIS)

    Boyarsky, Alexey; Ruchayskiy, Oleg; Iakubovskyi, Dmytro

    2009-01-01

    We discuss the bounds on the mass of Dark Matter (DM) particles, coming from the analysis of DM phase-space distribution in dwarf spheroidal galaxies (dSphs). After reviewing the existing approaches, we choose two methods to derive such a bound. The first one depends on the information about the current phase space distribution of DM particles only, while the second one uses both the initial and final distributions. We discuss the recent data on dSphs as well as astronomical uncertainties in relevant parameters. As an application, we present lower bounds on the mass of DM particles, coming from various dSphs, using both methods. The model-independent bound holds for any type of fermionic DM. Stronger, model-dependent bounds are quoted for several DM models (thermal relics, non-resonantly and resonantly produced sterile neutrinos, etc.). The latter bounds rely on the assumption that baryonic feedback cannot significantly increase the maximum of a distribution function of DM particles. For the scenario in which all the DM is made of sterile neutrinos produced via non-resonant mixing with the active neutrinos (NRP) this gives m NRP > 1.7 keV. Combining these results in their most conservative form with the X-ray bounds of DM decay lines, we conclude that the NRP scenario remains allowed in a very narrow parameter window only. This conclusion is independent of the results of the Lyman-α analysis. The DM model in which sterile neutrinos are resonantly produced in the presence of lepton asymmetry remains viable. Within the minimal neutrino extension of the Standard Model (the νMSM), both mass and the mixing angle of the DM sterile neutrino are bounded from above and below, which suggests the possibility for its experimental search

  6. Light dark sector at colliders and fixed target experiments

    OpenAIRE

    Darmé, Luc; Rao, Soumya; Roszkowski, Leszek

    2018-01-01

    Minimal scenarios with light (sub-GeV) thermal dark matter are usually accompanied by a correspondingly light "dark sector". Taking as an example a simple fermionic dark matter model, we will show that the presence of the dark sector plays a key role in constraining such scenarios at accelerators experiments. The effect of including a dark Higgs boson in the light spectrum is in particular investigated.

  7. The first observations of wide-band interferometers and the spectra of relic gravitons

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    Stochastic backgrounds of relic gravitons of cosmological origin extend from frequencies of the order of the aHz up to the GHz range. Since the temperature and polarization anisotropies constrain the low frequency normalization of the spectra, in the concordance paradigm the strain amplitude corresponding to the frequency window of wide-band interferometers turns out to be, approximately, nine orders of magnitude smaller than the astounding signal recently reported and attributed to a binary black hole merger. The backgrounds of relic gravitons expected from the early Universe are compared with the stochastic foregrounds stemming from the estimated multiplicity of the astrophysical sources. It is suggested that while the astrophysical foregrounds are likely to dominate between few Hz and 10 kHz, relic gravitons with frequencies exceeding 100 kHz represent a potentially uncontaminated signal for the next generation of high-frequency detectors currently under scrutiny.

  8. Dark Matter

    Indian Academy of Sciences (India)

    As if this was not enough, it turns out that if our knowledge of ... are thought to contain dark matter, although the evidences from them are the .... protons, electrons, neutrons ... ratio of protons to neutrons was close to unity then as they were in ...

  9. Dark Matter

    Indian Academy of Sciences (India)

    The study of gas clouds orbiting in the outer regions of spiral galaxies has revealed that their gravitational at- traction is much larger than the stars alone can provide. Over the last twenty years, astronomers have been forced to postulate the presence of large quantities of 'dark matter' to explain their observations. They are ...

  10. Scalar dark matter in leptophilic two-Higgs-doublet model

    Science.gov (United States)

    Bandyopadhyay, Priyotosh; Chun, Eung Jin; Mandal, Rusa

    2018-04-01

    Two-Higgs-Doublet Model of Type-X in the large tan ⁡ β limit becomes leptophilic to allow a light pseudo-scalar A and thus provides an explanation of the muon g - 2 anomaly. Introducing a singlet scalar dark matter S in this context, one finds that two important dark matter properties, nucleonic scattering and self-annihilation, are featured separately by individual couplings of dark matter to the two Higgs doublets. While one of the two couplings is strongly constrained by direct detection experiments, the other remains free to be adjusted for the relic density mainly through the process SS → AA. This leads to the 4τ final states which can be probed by galactic gamma ray detections.

  11. Baryon asymmetry, dark matter and local baryon number

    International Nuclear Information System (INIS)

    Fileviez Pérez, Pavel; Patel, Hiren H.

    2014-01-01

    We propose a new mechanism to understand the relation between baryon and dark matter asymmetries in the universe in theories where the baryon number is a local symmetry. In these scenarios the B−L asymmetry generated through a mechanism such as leptogenesis is transferred to the dark matter and baryonic sectors through sphalerons processes which conserve total baryon number. We show that it is possible to have a consistent relation between the dark matter relic density and the baryon asymmetry in the universe even if the baryon number is broken at the low scale through the Higgs mechanism. We also discuss the case where one uses the Stueckelberg mechanism to understand the conservation of baryon number in nature.

  12. Stable Higgs Bosons - new candidate for cold dark matter

    International Nuclear Information System (INIS)

    Hosotani, Yutaka

    2010-01-01

    The Higgs boson is in the backbone of the standard model of electroweak interactions. It must exist in some form for achieving unification of interactions. In the gauge-Higgs unification scenario the Higgs boson becomes a part of the extra-dimensional component of gauge fields. The Higgs boson becomes absolutely stable in a class of the gauge-Higgs unification models, serving as a promising candidate for cold dark matter in the universe. The observed relic abundance of cold dark matter is obtained with the Higgs mass around 70 GeV. The Higgs-nucleon scattering cross section is found to be close to the recent CDMS II XENON10 bounds in the direct detection of dark matter. In collider experiments stable Higgs bosons are produced in a pair, appearing as missing energies momenta so that the way of detecting Higgs bosons must be altered.

  13. Dark Matter

    International Nuclear Information System (INIS)

    Audouze, J.; Tran Thanh Van, J.

    1988-01-01

    The book begins with the papers devoted to the experimental search of signatures of the dark matter which governs the evolution of the Universe as a whole. A series of contributions describe the presently considered experimental techniques (cryogenic detectors, supraconducting detectors...). A real dialogue concerning these techniques has been instaured between particle physicists and astrophysicists. After the progress report of the particle physicists, the book provides the reader with an updated situation concerning the research in cosmology. The second part of the book is devoted to the analysis of the backgrounds at different energies such as the possible role of the cooling flows in the constitution of massive galactic halos. Any search of dark matter implies necessarily the analysis of the spatial distributions of the large scale structures of the Universe. This report is followed by a series of statistical analyses of these distributions. These analyses concern mainly universes filled up with cold dark matter. The last paper of this third part concerns the search of clustering in the spatial distribution of QSOs. The presence of dark matter should affect the solar neighborhood and related to the existence of galactic haloes. The contributions are devoted to the search of such local dark matter. Primordial nucleosynthesis provides a very powerful tool to set up quite constraining limitations on the overall baryonic density. Even if on takes into account the inhomogeneities in density possibly induced by the Quark-Hadron transition, this baryonic density should be much lower than the overall density deduced from the dynamical models of Universe or the inflationary theories

  14. Dark matter and pulsar model constraints from Galactic Center Fermi-LAT gamma-ray observations

    Science.gov (United States)

    Gordon, Chris; Macías, Oscar

    2013-10-01

    Employing Fermi-LAT gamma-ray observations, several independent groups have found excess extended gamma-ray emission at the Galactic Center (GC). Both annihilating dark matter (DM) or a population of ˜103 unresolved millisecond pulsars (MSPs) are regarded as well-motivated possible explanations. However, there are significant uncertainties in the diffuse galactic background at the GC. We have performed a revaluation of these two models for the extended gamma-ray source at the GC by accounting for the systematic uncertainties of the Galactic diffuse emission model. We also marginalize over point-source and diffuse background parameters in the region of interest. We show that the excess emission is significantly more extended than a point source. We find that the DM (or pulsar-population) signal is larger than the systematic errors and therefore proceed to determine the sectors of parameter space that provide an acceptable fit to the data. We find that a population of 1000-2000 MSPs with parameters consistent with the average spectral shape of Fermi-LAT measured MSPs is able to fit the GC excess emission. For DM, we find that a pure τ+τ- annihilation channel is not a good fit to the data. But a mixture of τ+τ- and bb¯ with a ⟨σv⟩ of order the thermal relic value and a DM mass of around 20 to 60 GeV provides an adequate fit.

  15. Dark matter and pulsar model constraints from Galactic center Fermi/LAT γ-ray observations

    Science.gov (United States)

    Gordon, Chris; Macias, Oscar

    2014-05-01

    Employing Fermi/LAT γ-ray observations, several independent groups have found excess extended γ-ray emission at the Galactic center (GC). Both, annihilating dark matter (DM) or a population of ~ 103 unresolved millisecond pulsars (MSPs) are regarded as well motivated possible explanations. However, there is significant uncertainties in the diffuse Galactic background at the GC. We have performed a revaluation of these two models for the extended γ-ray source at the GC by accounting for the systematic uncertainties of the Galactic diffuse emission model. We also marginalize over point source and diffuse background parameters in the region of interest. We show that the excess emission is significantly more extended than a point source. We find that the DM (or pulsar population) signal is larger than the systematic errors and therefore proceed to determine the sectors of parameter space that provide an acceptable fit to the data. We found that a population of several thousand MSPs with parameters consistent with the average spectral shape of Fermi/LAT measured MSPs was able to fit the GC excess emission. For DM, we found that a pure τ+τ- annihilation channel is not a good fit to the data. But a mixture of τ+τ- and bb with a of order the thermal relic value and a DM mass of around 20 to 60 GeV provides an adequate fit.

  16. Stable Superstring Relics and Ultrahigh Energy Cosmic Rays

    CERN Document Server

    Coriano, Claudio; Plumacher, Michael; Coriano, Claudio; Faraggi, Alon E.; Plumacher, Michael

    2001-01-01

    One of the most intriguing experimental results of recent years is the observation of Ultrahigh Energy Cosmic Rays (UHECRs) above the GZK cutoff. Plausible candidates for the UHECR primaries are the decay products of a meta--stable matter state with mass of order O(10^{12-15 GeV}), which simultaneously is a good cold dark matter candidate. We study possible meta-stable matter states that arise from Wilson line breaking of GUT symmetries in semi-realistic heterotic string models. In the models that we study the exotic matter states can be classified according to patterns of SO(10) symmetry breaking. We show that cryptons, which are states that carry fractional electric charge $\\pm1/2$, and are confined by a hidden gauge group cannot produce viable dark matter. This is due to the fact that, in addition to the lightest neutral bound state, cryptons give rise to meta-stable charged bound states. However, these states may still account for the UHECR events. We argue that the uniton, which is an exotic Standard Mod...

  17. Phenomenology of left-right symmetric dark matter

    International Nuclear Information System (INIS)

    Garcia-Cely, Camilo; Heeck, Julian

    2016-01-01

    We present a detailed study of dark matter phenomenology in low-scale left-right symmetric models. Stability of new fermion or scalar multiplets is ensured by an accidental matter parity that survives the spontaneous symmetry breaking of the gauge group by scalar triplets. The relic abundance of these particles is set by gauge interactions and gives rise to dark matter candidates with masses above the electroweak scale. Dark matter annihilations are thus modified by the Sommerfeld effect, not only in the early Universe, but also today, for instance, in the Center of the Galaxy. Majorana candidates—triplet, quintuplet, bi-doublet, and bi-triplet—bring only one new parameter to the model, their mass, and are hence highly testable at colliders and through astrophysical observations. Scalar candidates—doublet and 7-plet, the latter being only stable at the renormalizable level—have additional scalar-scalar interactions that give rise to rich phenomenology. The particles under discussion share many features with the well-known candidates wino, Higgsino, inert doublet scalar, sneutrino, and Minimal Dark Matter. In particular, they all predict a large gamma-ray flux from dark matter annihilations, which can be searched for with Cherenkov telescopes. We furthermore discuss models with unequal left-right gauge couplings, g R  ≠ g L , taking the recent experimental hints for a charged gauge boson with 2 TeV mass as a benchmark point. In this case, the dark matter mass is determined by the observed relic density

  18. Weak lensing: Dark Matter, Dark Energy and Dark Gravity

    International Nuclear Information System (INIS)

    Heavens, Alan

    2009-01-01

    In this non-specialist review I look at how weak lensing can provide information on the dark sector of the Universe. The review concentrates on what can be learned about Dark Matter, Dark Energy and Dark Gravity, and why. On Dark Matter, results on the confrontation of theoretical profiles with observation are reviewed, and measurements of neutrino masses discussed. On Dark Energy, the interest is whether this could be Einstein's cosmological constant, and prospects for high-precision studies of the equation of state are considered. On Dark Gravity, we consider the exciting prospects for future weak lensing surveys to distinguish General Relativity from extra-dimensional or other gravity theories.

  19. Dark Matter: Looking for WIMPs in the Galactic Halo

    International Nuclear Information System (INIS)

    Akerib, Daniel S.

    2006-01-01

    Overwhelming observational evidence indicates that most of the matter in the Universe consists of non-baryonic dark matter. One possibility is that the dark matter is Weakly-Interacting Massive Particles (WIMPs) that were produced in the early Universe. These relics could comprise the Milky Way's dark halo and provide evidence for new particle physics, such as Supersymmetry. After reviewing some of the evidence for dark matter and the WIMP hypothesis, I will describe the strategy for searching for WIMPs, along with a survey of the current status and outlook. In particular, dark matter searches have begun to explore the region of parameter space where SUSY particles could provide dark matter candidates. I will also mention some of the recent theoretical work on dark matter candidates which is being done in anticipation of the turn-on of the LHC and as part of the active R and D on the ILC. Finally, a vigorous detector development program promises significant advances in WIMP sensitivity in the coming years

  20. Sterile neutrino, hidden dark matter and their cosmological signatures

    International Nuclear Information System (INIS)

    Das, Subinoy

    2012-01-01

    Though thermal dark matter has been the central idea behind the dark matter candidates, it is highly possible that dark matter of the universe is non-thermal in origin or it might be in thermal contact with some hidden or dark sector but not with standard model. Here we explore the cosmological bounds as well as the signatures on two types of non-thermal dark matter candidates. First we discuss a hidden dark matter with almost no interaction (or very feeble) with standard model particles so that it is not in thermal contact with visible sector but we assume it is thermalized with in a hidden sector due to some interaction. While encompassing the standard cold WIMP scenario, we do not require the freeze-out process to be non-relativistic. Rather, freeze-out may also occur when dark matter particles are semi-relativistic or relativistic. Especially we focus on the warm dark matter scenario in this set up and find the constraints on the warm dark matter mass, cross-section and hidden to visible sector temperature ratio which accounts for the observed dark-matter density, satisfies the Tremaine-Gunn bound on dark-matter phase space density and has a free-streaming length consistent with cosmological constraints on the matter power spectrum. Our method can also be applied to keV sterile neutrino dark matter which is not thermalized with standard model but is thermalized with in a dark sector. The second part of this proceeding focuses on an exotic dark matter candidate which arises from the existence of eV mass sterile neutrino through a late phase transition. Due to existence of a strong scalar force the light sterile states get trapped into stable degenerate micro nuggets. We find that its signature in matter power spectra is close to a warm dark matter candidate.

  1. Dark matter physics in neutrino specific two Higgs doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seungwon; Nomura, Takaaki [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul 02455 (Korea, Republic of)

    2017-03-10

    Although the seesaw mechanism is a natural explanation for the small neutrino masses, there are cases when the Majorana mass terms for the right-handed neutrinos are not allowed due to symmetry. In that case, if neutrino-specific Higgs doublet is introduced, neutrinos become Dirac particles and their small masses can be explained by its small VEV. We show that the same symmetry, which we assume a global U(1){sub X}, can also be used to explain the stability of dark matter. In our model, a new singlet scalar breaks the global symmetry spontaneously down to a discrete Z{sub 2} symmetry. The dark matter particle, lightest Z{sub 2}-odd fermion, is stabilized. We discuss the phenomenology of dark matter: relic density, direct detection, and indirect detection. We find that the relic density can be explained by a novel Goldstone boson channel or by resonance channel. In the most region of parameter space considered, the direct detections is suppressed well below the current experimental bound. Our model can be further tested in indirect detection experiments such as FermiLAT gamma ray searches or neutrinoless double beta decay experiments.

  2. Dark-matter QCD-axion searches.

    Science.gov (United States)

    Rosenberg, Leslie J

    2015-10-06

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments

  3. Asymmetric WIMP Dark Matter in the presence of DM/anti-DM oscillations

    International Nuclear Information System (INIS)

    Zaharijas, G.

    2014-01-01

    The general class of 'Asymmetric Dark Matter (DM)' scenarios assumes the existence of a primordial particle/anti-particle asymmetry in the dark matter sector related to the asymmetry in the baryonic one, as a way to achieve the observed similarity between the baryonic and dark matter energy densities today. Focusing on this framework we study the effect of oscillations between dark matter and its anti-particle on the re-equilibration of the initial asymmetry. We calculate the evolution of the dark matter relic abundance and show how oscillations re-open the parameter space of asymmetric dark matter models, in particular in the direction of allowing large (WIMP-scale) DM masses. We found in particular that a typical WIMP with a mass at the EW scale (about 1 TeV) having a primordial asymmetry of the same order as the baryon asymmetry, naturally gets the correct relic abundance if the δm mass term is in the ∼ meV range. This turns out to be a natural value for fermionic DM arising from the higher dimensional operator H 2 DM 2 /Λ where H is the Higgs field and Λ ∼ M Pl . Finally, we constrain the parameter space in this framework by applying up-to-date bounds from indirect detection signals on annihilating DM

  4. Asymmetric dark matter annihilation as a test of non-standard cosmologies

    International Nuclear Information System (INIS)

    Gelmini, Graciela B.; Huh, Ji-Haeng; Rehagen, Thomas

    2013-01-01

    We show that the relic abundance of the minority component of asymmetric dark matter can be very sensitive to the expansion rate of the Universe and the temperature of transition between a non-standard pre-Big Bang Nucleosynthesis cosmological phase and the standard radiation dominated phase, if chemical decoupling happens before this transition. In particular, because the annihilation cross section of asymmetric dark matter is typically larger than that of symmetric dark matter in the standard cosmology, the decrease in relic density of the minority component in non-standard cosmologies with respect to the majority component may be compensated by the increase in annihilation cross section, so that the annihilation rate at present of asymmetric dark matter, contrary to general belief, could be larger than that of symmetric dark matter in the standard cosmology. Thus, if the annihilation cross section of the asymmetric dark matter candidate is known, the annihilation rate at present, if detectable, could be used to test the Universe before Big Bang Nucleosynthesis, an epoch from which we do not yet have any data

  5. Right-handed neutrino dark matter under the B−L gauge interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kaneta, Kunio [Center for Theoretical Physics of the Universe, Institute for Basic Science,Daejeon 34051 (Korea, Republic of); Kang, Zhaofeng [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Lee, Hye-Sung [Center for Theoretical Physics of the Universe, Institute for Basic Science,Daejeon 34051 (Korea, Republic of)

    2017-02-07

    We study the right-handed neutrino (RHN) dark matter candidate in the minimal U(1){sub B−L} gauge extension of the standard model. The U(1){sub B−L} gauge symmetry offers three RHNs which can address the origin of the neutrino mass, the relic dark matter, and the matter-antimatter asymmetry of the universe. The lightest among the three is taken as the dark matter candidate, which is under the B−L gauge interaction. We investigate various scenarios for this dark matter candidate with the correct relic density by means of the freeze-out or freeze-in mechanism. A viable RHN dark matter mass lies in a wide range including keV to TeV scale. We emphasize the sub-electroweak scale light B−L gauge boson case, and identify the parameter region motivated from the dark matter physics, which can be tested with the planned experiments including the CERN SHiP experiment.

  6. Warped unification, proton stability, and dark matter.

    Science.gov (United States)

    Agashe, Kaustubh; Servant, Géraldine

    2004-12-03

    We show that solving the problem of baryon-number violation in nonsupersymmetric grand unified theories (GUT's) in warped higher-dimensional spacetime can lead to a stable Kaluza-Klein particle. This exotic particle has gauge quantum numbers of a right-handed neutrino, but carries fractional baryon number and is related to the top quark within the higher-dimensional GUT. A combination of baryon number and SU(3) color ensures its stability. Its relic density can easily be of the right value for masses in the 10 GeV-few TeV range. An exciting aspect of these models is that the entire parameter space will be tested at near future dark matter direct detection experiments. Other exotic GUT partners of the top quark are also light and can be produced at high energy colliders with distinctive signatures.

  7. The Flavour Portal to Dark Matter

    CERN Document Server

    Calibbi, Lorenzo; Zaldivar, Bryan

    2015-01-01

    We present a class of models in which dark matter (DM) is a fermionic singlet under the Standard Model (SM) gauge group but is charged under a symmetry of flavour that acts as well on the SM fermions. Interactions between DM and SM particles are mediated by the scalar fields that spontaneously break the flavour symmetry, the so-called flavons. In the case of gauged flavour symmetries, the interactions are also mediated by the flavour gauge bosons. We first discuss the construction and the generic features of this class of models. Then a concrete example with an abelian flavour symmetry is considered. We compute the complementary constraints from the relic abundance, direct detection experiments and flavour observables, showing that wide portions of the parameter space are still viable. Other possibilities like non-abelian flavour symmetries can be analysed within the same framework.

  8. Recent results on searches for direct production of dark matter with the CMS detector

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    With observed galactic excesses, tighter constraints from underground experiments, and a precise measurement of the relic density, our understanding of dark matter has greatly improved. As one of the few sources which can potentially produce dark matter, the LHC has the capability of complementing existing measurements. Recently, work by both ATLAS and CMS has been undertaken to unify the presentation of dark matter results, allowing for a robust comparison with other detector experiments. In this new light, we present two new results from CMS: the search for dark matter in Z + MET final state (Z decaying to leptons) and the search for dark matter in the monojet and hadronically decaying vector boson final state. Results are presented for simplified models, EFT and in terms of Higgs to invisible decays.

  9. Anomaly mediated SUSY breaking scenarios in the light of cosmology and in the dark (matter)

    CERN Document Server

    Arbey, A; Tarhini, A

    2011-01-01

    Anomaly mediation is a popular and well motivated supersymmetry breaking scenario. Different possible detailed realisations of this set-up are studied and actively searched for at colliders. Apart from limits coming from flavour, low energy physics and direct collider searches, these models are usually constrained by the requirement of reproducing the observations on dark matter density in the universe. We reanalyse these bounds and in particular we focus on the dark matter bounds both considering the standard cosmological model and alternative cosmological scenarios. These scenarios do not change the observable cosmology but relic dark matter density bounds strongly depend on them. We consider few benchmark points excluded by standard cosmology dark matter bounds and suggest that loosening the dark matter constraints is necessary in order to avoid a too strong (cosmological) model dependence in the limits that are obtained for these models. We also discuss briefly the implications for phenomenology and in pa...

  10. Charged composite scalar dark matter

    Science.gov (United States)

    Balkin, Reuven; Ruhdorfer, Maximilian; Salvioni, Ennio; Weiler, Andreas

    2017-11-01

    We consider a composite model where both the Higgs and a complex scalar χ, which is the dark matter (DM) candidate, arise as light pseudo Nambu-Goldstone bosons (pNGBs) from a strongly coupled sector with TeV scale confinement. The global symmetry structure is SO(7)/SO(6), and the DM is charged under an exact U(1)DM ⊂ SO(6) that ensures its stability. Depending on whether the χ shift symmetry is respected or broken by the coupling of the top quark to the strong sector, the DM can be much lighter than the Higgs or have a weak-scale mass. Here we focus primarily on the latter possibility. We introduce the lowest-lying composite resonances and impose calculability of the scalar potential via generalized Weinberg sum rules. Compared to previous analyses of pNGB DM, the computation of the relic density is improved by fully accounting for the effects of the fermionic top partners. This plays a crucial role in relaxing the tension with the current DM direct detection constraints. The spectrum of resonances contains exotic top partners charged under the U(1)DM, whose LHC phenomenology is analyzed. We identify a region of parameters with f = 1.4 TeV and 200 GeV ≲ m χ ≲ 400 GeV that satisfies all existing bounds. This DM candidate will be tested by XENON1T in the near future.

  11. Conformal complex singlet extension of the Standard Model: scenario for dark matter and a second Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi-Wei; Steele, T.G. [Department of Physics and Engineering Physics, University of Saskatchewan,116 Science Place, Saskatoon, SK, S7N 5E2 (Canada); Hanif, T. [Department of Theoretical Physics, University of Dhaka,Dhaka-1000 (Bangladesh); Mann, R.B. [Department of Physics, University of Waterloo,Waterloo, ON, N2L 3G1 (Canada)

    2016-08-09

    We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. The global U(1) symmetry of the complex singlet can be either broken or unbroken and we study each scenario. In the unbroken case, the global U(1) symmetry protects the complex singlet from decaying, leading to an ideal cold dark matter candidate with approximately 100 GeV mass along with a significant proportion of thermal relic dark matter abundance. In the broken case, we have developed a renormalization-scale optimization technique to significantly narrow the parameter space and in some situations, provide unique predictions for all the model’s couplings and masses. We have found there exists a second Higgs boson with a mass of approximately 550 GeV that mixes with the known 125 GeV Higgs with a large mixing angle sin θ≈0.47 consistent with current experimental limits. The imaginary part of the complex singlet in the broken case could provide axion dark matter for a wide range of models. Upon including interactions of the complex scalar with an additional vector-like fermion, we explore the possibility of a diphoton excess in both the unbroken and the broken cases. In the unbroken case, the model can provide a natural explanation for diphoton excess if extra terms are introduced providing extra contributions to the singlet mass. In the broken case, we find a set of coupling solutions that yield a second Higgs boson of mass 720 GeV and an 830 GeV extra vector-like fermion F, which is able to address the 750 GeV LHC diphoton excess. We also provide criteria to determine the symmetry breaking pattern in both the Higgs and hidden sectors.

  12. Conformal complex singlet extension of the Standard Model: scenario for dark matter and a second Higgs boson

    Science.gov (United States)

    Wang, Zhi-Wei; Steele, T. G.; Hanif, T.; Mann, R. B.

    2016-08-01

    We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. The global U(1) symmetry of the complex singlet can be either broken or unbroken and we study each scenario. In the unbroken case, the global U(1) symmetry protects the complex singlet from decaying, leading to an ideal cold dark matter candidate with approximately 100 GeV mass along with a significant proportion of thermal relic dark matter abundance. In the broken case, we have developed a renormalization-scale optimization technique to significantly narrow the parameter space and in some situations, provide unique predictions for all the model's couplings and masses. We have found there exists a second Higgs boson with a mass of approximately 550 GeV that mixes with the known 125 GeV Higgs with a large mixing angle sin θ ≈ 0.47 consistent with current experimental limits. The imaginary part of the complex singlet in the broken case could provide axion dark matter for a wide range of models. Upon including interactions of the complex scalar with an additional vector-like fermion, we explore the possibility of a diphoton excess in both the unbroken and the broken cases. In the unbroken case, the model can provide a natural explanation for diphoton excess if extra terms are introduced providing extra contributions to the singlet mass. In the broken case, we find a set of coupling solutions that yield a second Higgs boson of mass 720 GeV and an 830 GeV extra vector-like fermion F , which is able to address the 750 GeV LHC diphoton excess. We also provide criteria to determine the symmetry breaking pattern in both the Higgs and hidden sectors.

  13. The Variable and Changing Status of Performance Art Relics and Artifacts in Museum Collections

    DEFF Research Database (Denmark)

    Cone, Louise

    2017-01-01

    The status of an artwork in a museum collection is variable and contingent upon factors and parameters that are specific not only to the logic of the museum world but also to factors extrinsic to the museum. In particular older performance art 'relics' are subject to contextual interpretations...

  14. a Method of 3d Measurement and Reconstruction for Cultural Relics in Museums

    Science.gov (United States)

    Zheng, S.; Zhou, Y.; Huang, R.; Zhou, L.; Xu, X.; Wang, C.

    2012-07-01

    Three-dimensional measurement and reconstruction during conservation and restoration of cultural relics have become an essential part of a modem museum regular work. Although many kinds of methods including laser scanning, computer vision and close-range photogrammetry have been put forward, but problems still exist, such as contradiction between cost and good result, time and fine effect. Aimed at these problems, this paper proposed a structure-light based method for 3D measurement and reconstruction of cultural relics in museums. Firstly, based on structure-light principle, digitalization hardware has been built and with its help, dense point cloud of cultural relics' surface can be easily acquired. To produce accurate 3D geometry model from point cloud data, multi processing algorithms have been developed and corresponding software has been implemented whose functions include blunder detection and removal, point cloud alignment and merge, 3D mesh construction and simplification. Finally, high-resolution images are captured and the alignment of these images and 3D geometry model is conducted and realistic, accurate 3D model is constructed. Based on such method, a complete system including hardware and software are built. Multi-kinds of cultural relics have been used to test this method and results prove its own feature such as high efficiency, high accuracy, easy operation and so on.

  15. Relics of short distance effects for the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Eeg, J.O.

    1982-12-01

    The Feynman diagrams which dominate the estimates of the electric dipole moment of the neutron with Kobayashi-Maskawa CP violation are considered. The extracted long distance contributions and the relics of short distance contributions are shown to be complementary and of the same magnitude, resulting in mod(Dsub(n)/e) approximately = (10 - 31 - 10 - 30 ) cm. (Auth.)

  16. Ultra-cold WIMPs relics of non-standard pre-BBN cosmologies

    CERN Document Server

    Gelmini, Graciela B

    2008-01-01

    We point out that in scenarios in which the Universe evolves in a non-standard manner during and after the kinetic decoupling of weakly interacting massive particles (WIMPs), these relics can be much colder than in standard cosmological scenarios (i.e. can be ultra-cold), possibly leading to the formation of smaller first objects in hierarchical structure formation scenarios.

  17. Interacting agegraphic dark energy

    International Nuclear Information System (INIS)

    Wei, Hao; Cai, Rong-Gen

    2009-01-01

    A new dark energy model, named ''agegraphic dark energy'', has been proposed recently, based on the so-called Karolyhazy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed. (orig.)

  18. Singlet fermionic dark matter with Veltman conditions

    Science.gov (United States)

    Kim, Yeong Gyun; Lee, Kang Young; Nam, Soo-hyeon

    2018-07-01

    We reexamine a renormalizable model of a fermionic dark matter with a gauge singlet Dirac fermion and a real singlet scalar which can ameliorate the scalar mass hierarchy problem of the Standard Model (SM). Our model setup is the minimal extension of the SM for which a realistic dark matter (DM) candidate is provided and the cancellation of one-loop quadratic divergence to the scalar masses can be achieved by the Veltman condition (VC) simultaneously. This model extension, although renormalizable, can be considered as an effective low-energy theory valid up to cut-off energies about 10 TeV. We calculate the one-loop quadratic divergence contributions of the new scalar and fermionic DM singlets, and constrain the model parameters using the VC and the perturbative unitarity conditions. Taking into account the invisible Higgs decay measurement, we show the allowed region of new physics parameters satisfying the recent measurement of relic abundance. With the obtained parameter set, we predict the elastic scattering cross section of the new singlet fermion into target nuclei for a direct detection of the dark matter. We also perform the full analysis with arbitrary set of parameters without the VC as a comparison, and discuss the implication of the constraints by the VC in detail.

  19. On the absence of radio haloes in clusters with double relics

    Science.gov (United States)

    Bonafede, A.; Cassano, R.; Brüggen, M.; Ogrean, G. A.; Riseley, C. J.; Cuciti, V.; de Gasperin, F.; Golovich, N.; Kale, R.; Venturi, T.; van Weeren, R. J.; Wik, D. R.; Wittman, D.

    2017-09-01

    Pairs of radio relics are believed to form during cluster mergers, and are best observed when the merger occurs in the plane of the sky. Mergers can also produce radio haloes, through complex processes likely linked to turbulent re-acceleration of cosmic ray electrons. However, only some clusters with double relics also show a radio halo. Here, we present a novel method to derive upper limits on the radio halo emission, and analyse archival X-ray Chandra data, as well as galaxy velocity dispersions and lensing data, in order to understand the key parameter that switches on radio halo emission. We place upper limits on the halo power below the P1.4 GHz-M500 correlation for some clusters, confirming that clusters with double relics have different radio properties. Computing X-ray morphological indicators, we find that clusters with double relics are associated with the most disturbed clusters. We also investigate the role of different mass-ratios and time-since-merger. Data do not indicate that the merger mass-ratio has an impact on the presence or absence of radio haloes (the null hypothesis that the clusters belong to the same group cannot be rejected). However, the data suggest that the absence of radio haloes could be associated with early and late mergers, but the sample is too small to perform a statistical test. Our study is limited by the small number of clusters with double relics. Future surveys with LOFAR, ASKAP, MeerKat and SKA will provide larger samples to better address this issue.

  20. Dark Matter Coannihilation with a Lighter Species.

    Science.gov (United States)

    Berlin, Asher

    2017-09-22

    We propose a new thermal freeze-out mechanism for ultraheavy dark matter. Dark matter coannihilates with a lighter unstable species that is nearby in mass, leading to an annihilation rate that is exponentially enhanced relative to standard weakly interactive massive particles. This scenario destabilizes any potential dark matter candidate. In order to remain consistent with astrophysical observations, our proposal necessitates very long-lived states, motivating striking phenomenology associated with the late decays of ultraheavy dark matter, potentially as massive as the scale of grand unified theories, M_{GUT}∼10^{16}  GeV.

  1. Dark Tourism

    OpenAIRE

    Bali-Hudáková, Lenka

    2008-01-01

    This thesis is focused on the variability of the demand and the development of new trends in the fields of the tourism industry. Special attention is devoted to a new arising trend of the Dark Tourism. This trend has appeared in the end of the 20th century and it has gained the attraction of media, tourists, tourism specialists and other stakeholders. First part of the thesis is concerned with the variety of the tourism industry and the ethic question of the tourism development. The other par...

  2. Status of the scalar singlet dark matter model

    Energy Technology Data Exchange (ETDEWEB)

    Athron, Peter; Balazs, Csaba [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Bringmann, Torsten; Dal, Lars A.; Krislock, Abram; Raklev, Are [University of Oslo, Department of Physics, Oslo (Norway); Buckley, Andy [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Chrzaszcz, Marcin [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Polish Academy of Sciences, H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Conrad, Jan; Edsjoe, Joakim; Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Cornell, Jonathan M. [McGill University, Department of Physics, Montreal, QC (Canada); Jackson, Paul; White, Martin [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); University of Adelaide, Department of Physics, Adelaide, SA (Australia); Kahlhoefer, Felix [DESY, Hamburg (Germany); Kvellestad, Anders; Savage, Christopher [NORDITA, Stockholm (Sweden); McKay, James; Scott, Pat [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Mahmoudi, Farvah [Univ. Lyon, Univ. Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval (France); CERN, Theoretical Physics Department, Geneva (Switzerland); Martinez, Gregory D. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Rogan, Christopher [Harvard University, Department of Physics, Cambridge, MA (United States); Saavedra, Aldo [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); The University of Sydney, Centre for Translational Data Science, Faculty of Engineering and Information Technologies, School of Physics, Sydney, NSW (Australia); Serra, Nicola [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); Collaboration: The GAMBIT Collaboration

    2017-08-15

    One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a Z{sub 2} symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above ∝ 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned. (orig.)

  3. Light dark matter in NMSSM and implication on Higgs phenomenology

    International Nuclear Information System (INIS)

    Cao Junjie; Hikasa, Ken-ichi; Wang Wenyu; Yang Jinmin

    2011-01-01

    For the experimental search of neutralino dark matter, it is important to know its allowed mass and scattering cross section with the nucleon. In order to figure out how light a neutralino dark matter can be predicted in low energy supersymmetry, we scan over the parameter space of the NMSSM (next-to-minimal supersymmetric model), assuming all the relevant soft mass parameters to be below TeV scale. We find that in the parameter space allowed by current experiments the neutralino dark matter can be as light as a few GeV and its scattering rate off the nucleon can reach the sensitivity of XENON100 and CoGeNT. As a result, a sizable parameter space is excluded by the current XENON100 and CoGeNT data (the plausible CoGeNT dark matter signal can also be explained). The future 6000 kg-days exposure of XENON100 will further explore (but cannot completely cover) the remained parameter space. Moreover, we find that in such a light dark matter scenario a light CP-even or CP-odd Higgs boson must be present to satisfy the measured dark matter relic density. Consequently, the SM-like Higgs boson h SM may decay predominantly into a pair of light Higgs bosons or a pair of neutralinos so that the conventional decays like h SM →γγ is much suppressed.

  4. Implications of a scalar dark force for terrestrial experiments

    International Nuclear Information System (INIS)

    Carroll, Sean M.; Mantry, Sonny; Ramsey-Musolf, Michael J.

    2010-01-01

    A long-range intergalactic force between dark matter (DM) particles, mediated by an ultralight scalar, is tightly constrained by galactic dynamics and large scale structure formation. We examine the implications of such a 'dark force' for several terrestrial experiments, including Eoetvoes tests of the Weak Equivalence Principle (WEP), direct-detection DM searches, and collider studies. The presence of a dark force implies a nonvanishing effect in Eoetvoes tests that could be probed by current and future experiments depending on the DM model. For scalar DM that is a singlet under the standard model gauge groups, a dark force of astrophysically relevant magnitude is ruled out in large regions of parameter space by the DM relic density and WEP constraints. WEP tests also imply constraints on the Higgs-exchange contributions to the spin-independent (SI) DM-nucleus direct-detection cross section. For WIMP scenarios, these considerations constrain Higgs-exchange contributions to the SI cross section to be subleading compared to gauge-boson mediated contributions. In multicomponent DM scenarios, a dark force would preclude large shifts in the rate for Higgs decay to two photons associated with DM-multiplet loops that might otherwise lead to measurable deviations at the LHC or a future linear collider. The combination of observations from galactic dynamics, large scale structure formation, Eoetvoes experiments, DM-direct-detection experiments, and colliders can further constrain the size of new long-range forces in the dark sector.

  5. Status of the scalar singlet dark matter model

    Science.gov (United States)

    Athron, Peter; Balázs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Kahlhoefer, Felix; Krislock, Abram; Kvellestad, Anders; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Serra, Nicola; Weniger, Christoph; White, Martin

    2017-08-01

    One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a Z_2 symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above ˜ 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned.

  6. Constraints on Majorana dark matter from a fourth lepton family

    DEFF Research Database (Denmark)

    Hapola, T.; Jarvinen, M.; Kouvaris, C.

    2014-01-01

    We study the possibility of dark matter in the form of heavy neutrinos from a fourth lepton family with helicity suppressed couplings such that dark matter is produced thermally via annihilations in the early Universe. We present all possible constraints for this scenario coming from LHC...... account for the dark matter abundance....

  7. MULTI-FREQUENCY STUDIES OF RADIO RELICS IN THE GALAXY CLUSTERS A4038, A1664, AND A786

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Ruta; Dwarakanath, K. S., E-mail: ruta@iucaa.ernet.in [Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080 (India)

    2012-01-01

    We present a multi-frequency study of radio relics associated with the galaxy clusters A4038, A1664, and A786. Radio images, integrated spectra, spectral index maps, and fits to the integrated spectra in the framework of the adiabatic compression model are presented. Images of the relic in A4038 at 150, 240, and 606 MHz with the Giant Meterwave Radio Telescope have revealed extended ultra-steep spectrum ({alpha} {approx} -1.8 to -2.7) emission of extent 210 Multiplication-Sign 80 kpc{sup 2}. The model of passively evolving radio lobes compressed by a shock fits the integrated spectrum best. The relic with a circular morphology at the outskirts of the cluster A1664 has an integrated spectral index of {approx} - 1.10 {+-} 0.06 and is best fit by the model of radio lobes lurking for {approx}4 Multiplication-Sign 10{sup 7} yr. The relic near A786 has a curved spectrum and is best fit by a model of radio lobes lurking for {approx}3 Multiplication-Sign 10{sup 7} yr. At 4.7 GHz, a compact radio source, possibly the progenitor of the A786 relic, is detected near the center of the radio relic. The A786 radio relic is thus likely a lurking radio galaxy rather than a site of cosmological shock as has been considered in earlier studies.

  8. Hidden U (1 ) gauge symmetry realizing a neutrinophilic two-Higgs-doublet model with dark matter

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2018-04-01

    We propose a neutrinophilic two-Higgs-doublet model with hidden local U (1 ) symmetry, where active neutrinos are Dirac type, and a fermionic dark matter (DM) candidate is naturally induced as a result of remnant symmetry even after the spontaneous symmetry breaking. In addition, a physical Goldstone boson arises as a consequence of two types of gauge singlet bosons and contributes to the DM phenomenologies as well as an additional neutral gauge boson. Then, we analyze the relic density of DM within the safe range of direct detection searches and show the allowed region of dark matter mass.

  9. Sterile Neutrinos, Dark Matter, and Pulsar Velocities in Models with a Higgs Singlet

    International Nuclear Information System (INIS)

    Kusenko, Alexander

    2006-01-01

    We identify the range of parameters for which the sterile neutrinos can simultaneously explain the cosmological dark matter and the observed velocities of pulsars. To satisfy all cosmological bounds, the relic sterile neutrinos must be produced sufficiently cold. This is possible in a class of models with a gauge-singlet Higgs boson coupled to the neutrinos. Sterile dark matter can be detected by the x-ray telescopes. The presence of the singlet in the Higgs sector can be tested at the CERN Large Hadron Collider

  10. Decaying dark matter from dark instantons

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Erlich, Joshua; Primulando, Reinard

    2010-01-01

    We construct an explicit, TeV-scale model of decaying dark matter in which the approximate stability of the dark matter candidate is a consequence of a global symmetry that is broken only by instanton-induced operators generated by a non-Abelian dark gauge group. The dominant dark matter decay channels are to standard model leptons. Annihilation of the dark matter to standard model states occurs primarily through the Higgs portal. We show that the mass and lifetime of the dark matter candidate in this model can be chosen to be consistent with the values favored by fits to data from the PAMELA and Fermi-LAT experiments.

  11. Dark energy from quantum matter

    International Nuclear Information System (INIS)

    Dappiaggi, Claudio; Hack, Thomas-Paul; Moeller, Jan; Pinamonti, Nicola

    2010-07-01

    We study the backreaction of free quantum fields on a flat Robertson-Walker spacetime. Apart from renormalization freedom, the vacuum energy receives contributions from both the trace anomaly and the thermal nature of the quantum state. The former represents a dynamical realisation of dark energy, while the latter mimics an effective dark matter component. The semiclassical dynamics yield two classes of asymptotically stable solutions. The first reproduces the CDM model in a suitable regime. The second lacks a classical counterpart, but is in excellent agreement with recent observations. (orig.)

  12. Dark energy from quantum matter

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, Claudio; Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Moeller, Jan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Pinamonti, Nicola [Rome-2 Univ. (Italy). Dipt. di Matematica

    2010-07-15

    We study the backreaction of free quantum fields on a flat Robertson-Walker spacetime. Apart from renormalization freedom, the vacuum energy receives contributions from both the trace anomaly and the thermal nature of the quantum state. The former represents a dynamical realisation of dark energy, while the latter mimics an effective dark matter component. The semiclassical dynamics yield two classes of asymptotically stable solutions. The first reproduces the CDM model in a suitable regime. The second lacks a classical counterpart, but is in excellent agreement with recent observations. (orig.)

  13. arXiv Signatures of Dark Radiation in Neutrino and Dark Matter Detectors

    CERN Document Server

    Cui, Yanou; Pradler, Josef

    We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with non-gravitational interactions with Standard Model (SM) particles. Such dark radiation may consist of SM singlets or a non-thermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In pa...

  14. Mixed Wino Dark Matter: consequences for direct, indirect and collider detection

    International Nuclear Information System (INIS)

    Baer, Howard; Mustafayev, Azar; Park, Eun-Kyung; Profumo, Stefano

    2005-01-01

    In supersymmetric models with gravity-mediated SUSY breaking and gaugino mass unification, the predicted relic abundance of neutralinos usually exceeds the strict limits imposed by the WMAP collaboration. One way to obtain the correct relic abundance is to abandon gaugino mass universality and allow a mixed wino-bino lightest SUSY particle (LSP). The enhanced annihilation and scattering cross sections of mixed wino dark matter (MWDM) compared to bino dark matter lead to enhanced rates for direct dark matter detection, as well as for indirect detection at neutrino telescopes and for detection of dark matter annihilation products in the galactic halo. For collider experiments, MWDM leads to a reduced but significant mass gap between the lightest neutralinos so that Z-tilde 2 two-body decay modes are usually closed. This means that dilepton mass edges- the starting point for cascade decay reconstruction at the CERN LHC- should be accessible over almost all of parameter space. Measurement of the m Z-tilde2 -m Z-tilde1 mass gap at LHC plus various sparticle masses and cross sections as a function of beam polarization at the International Linear Collider (ILC) would pinpoint MWDM as the dominant component of dark matter in the universe

  15. Lepton flavor violation and scalar dark matter in a radiative model of neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Esch, Sonja; Klasen, Michael; Lamprea, David R. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Theoretische Physik, Muenster (Germany); Yaguna, Carlos E. [Universidad Pedagogica y Tecnologica de Colombia, Escuela de Fisica, Tunja (Colombia)

    2018-02-15

    We consider a simple extension of the Standard Model that can account for the dark matter and explain the existence of neutrino masses. The model includes a vector-like doublet of SU(2), a singlet fermion, and two scalar singlets, all of them odd under a new Z{sub 2} symmetry. Neutrino masses are generated radiatively by one-loop processes involving the new fields, while the dark matter candidate is the lightest neutral particle among them. We focus specifically on the case where the dark matter particle is one of the scalars and its relic density is determined by its Yukawa interactions. The phenomenology of this setup, including neutrino masses, dark matter and lepton flavor violation, is analyzed in some detail. We find that the dark matter mass must be below 600 GeV to satisfy the relic density constraint. Lepton flavor violating processes are shown to provide the most promising way to test this scenario. Future μ → 3e and μ-e conversion experiments, in particular, have the potential to probe the entire viable parameter space of this model. (orig.)

  16. Partially acoustic dark matter, interacting dark radiation, and large scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Chacko, Zackaria [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,Stadium Dr., College Park, MD 20742 (United States); Cui, Yanou [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,Stadium Dr., College Park, MD 20742 (United States); Department of Physics and Astronomy, University of California-Riverside,University Ave, Riverside, CA 92521 (United States); Perimeter Institute, 31 Caroline Street, North Waterloo, Ontario N2L 2Y5 (Canada); Hong, Sungwoo [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,Stadium Dr., College Park, MD 20742 (United States); Okui, Takemichi [Department of Physics, Florida State University,College Avenue, Tallahassee, FL 32306 (United States); Tsai, Yuhsinz [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,Stadium Dr., College Park, MD 20742 (United States)

    2016-12-21

    The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H{sub 0} and the matter density perturbation σ{sub 8} inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightly coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ{sub 8} problem, while the presence of tightly coupled dark radiation ameliorates the H{sub 0} problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.

  17. Partially acoustic dark matter, interacting dark radiation, and large scale structure

    International Nuclear Information System (INIS)

    Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo; Okui, Takemichi; Tsai, Yuhsinz

    2016-01-01

    The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H 0 and the matter density perturbation σ 8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightly coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ 8 problem, while the presence of tightly coupled dark radiation ameliorates the H 0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.

  18. Majorana dark matter with B+L gauge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Wei [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts-Amherst,Amherst, MA 01003 United States (United States); Center for Advanced Quantum Studies,Department of Physics, Beijing Normal University,Beijing, 100875 (China); Guo, Huai-Ke [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts-Amherst,Amherst, MA 01003 United States (United States); Zhang, Yongchao [Service de Physique Théorique, Université Libre de Bruxelles,Boulevard du Triomphe, CP225, 1050 Brussels (Belgium)

    2017-04-07

    We present a new model that extends the Standard Model (SM) with the local B+L symmetry, and point out that the lightest new fermion ζ, introduced to cancel anomalies and stabilized automatically by the B+L symmetry, can serve as the cold dark matter candidate. We study constraints on the model from Higgs measurements, electroweak precision measurements as well as the relic density and direct detections of the dark matter. Numerical results reveal that the pseudo-vector coupling of ζ with Z and the Yukawa coupling with the SM Higgs are highly constrained by the latest results of LUX, while there are viable parameter space that could satisfy all the constraints and give testable predictions.

  19. Neutralino dark matter with inert higgsinos and singlinos

    International Nuclear Information System (INIS)

    Hall, Jonathan P.; King, Stephen F.

    2009-01-01

    We discuss neutralino dark matter arising from supersymmetric models with extra inert Higgsinos and singlinos, where inert means that their scalar partners do not get vacuum expectation values. As an example, we consider the extended neutralino sector of the E 6 SSM, which predicts three families of Higgs doublet pairs, plus three singlets, plus a Z', together with their fermionic superpartners. We show that the two families of inert doublet Higgsinos and singlinos predicted by this model provide an almost decoupled neutralino sector with a naturally light LSP which can account for the cold dark matter relic abundance independently of the rest of the model, providing that the ratio of the two usual Higgs doublets satisfies tan β < 2.

  20. Dark matter and localised fermions from spherical orbifolds?

    Energy Technology Data Exchange (ETDEWEB)

    Cacciapaglia, Giacomo; Deandrea, Aldo [Université de Lyon,Lyon (France); Université Lyon 1, CNRS/IN2P3, UMR5822 IPNL,F-69622 Villeurbanne Cedex (France); Deutschmann, Nicolas [Université de Lyon,Lyon (France); Université Lyon 1, CNRS/IN2P3, UMR5822 IPNL,F-69622 Villeurbanne Cedex (France); Centre for Cosmology, Particle Physics and Phenomenology (CP3),Université catholique de Louvain,Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve (Belgium)

    2016-04-14

    We study a class of six-dimensional models based on positive curvature surfaces (spherical 2-orbifolds) as extra-spaces. Using the Newman-Penrose formalism, we discuss the particle spectrum in this class of models. The fermion spectrum problem, which has been addressed with flux compactifications in the past, can be avoided using localised fermions. In this framework, we find that there are four types of geometry compatible with the existence of a stable dark matter candidate and we study the simplest case in detail. Using the complementarity between collider resonance searches and relic density constraints, we show that this class of models is under tension, unless the model lies in a funnel region characterised by a resonant Higgs s-channel in the dark matter annihilation.

  1. Interacting Agegraphic Dark Energy

    OpenAIRE

    Wei, Hao; Cai, Rong-Gen

    2007-01-01

    A new dark energy model, named "agegraphic dark energy", has been proposed recently, based on the so-called K\\'{a}rolyh\\'{a}zy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegrap...

  2. Axion dark matter and the 21-cm signal

    OpenAIRE

    Sikivie, Pierre

    2018-01-01

    It was shown in ref. [1] that cold dark matter axions reach thermal contact with baryons, and therefore cool them, shortly after the axions thermalize among themselves and form a Bose-Einstein condensate. The recent observation by the EDGES collaboration of a baryon temperature at cosmic dawn lower than expected under "standard" assumptions is interpreted as new evidence that the dark matter is axions, at least in part. Baryon cooling by dark matter axions is found to be consistent with the o...

  3. Unification of dark energy and dark matter

    International Nuclear Information System (INIS)

    Takahashi, Fuminobu; Yanagida, T.T.

    2006-01-01

    We propose a scenario in which dark energy and dark matter are described in a unified manner. The ultralight pseudo-Nambu-Goldstone (pNG) boson, A, naturally explains the observed magnitude of dark energy, while the bosonic supersymmetry partner of the pNG boson, B, can be a dominant component of dark matter. The decay of B into a pair of electron and positron may explain the 511 keV γ ray from the Galactic Center

  4. Direct detection of projectile relics from the end of the lunar basin-forming epoch.

    Science.gov (United States)

    Joy, Katherine H; Zolensky, Michael E; Nagashima, Kazuhide; Huss, Gary R; Ross, D Kent; McKay, David S; Kring, David A

    2012-06-15

    The lunar surface, a key proxy for the early Earth, contains relics of asteroids and comets that have pummeled terrestrial planetary surfaces. Surviving fragments of projectiles in the lunar regolith provide a direct measure of the types and thus the sources of exogenous material delivered to the Earth-Moon system. In ancient [>3.4 billion years ago (Ga)] regolith breccias from the Apollo 16 landing site, we located mineral and lithologic relics of magnesian chondrules from chondritic impactors. These ancient impactor fragments are not nearly as diverse as those found in younger (3.4 Ga to today) regolith breccias and soils from the Moon or that presently fall as meteorites to Earth. This suggests that primitive chondritic asteroids, originating from a similar source region, were common Earth-Moon-crossing impactors during the latter stages of the basin-forming epoch.

  5. Detecting relic gravitational waves in the CMB: The contamination caused by the cosmological birefringence

    Directory of Open Access Journals (Sweden)

    Wen Zhao

    2014-10-01

    Full Text Available The B-mode polarization of the cosmic microwave background (CMB radiation is an excellent information channel for the detection of relic gravitational waves. However, the detection is contaminated by the B-mode polarization generated by some other effects. In this paper, we discuss the contaminations caused by the cosmological birefringence, which converts the CMB E-mode to the B-mode, and forms the effective noise for the detection of gravitational waves. We find that this contamination is significant, if the rotation angle is large. However, this kind of B-mode can be properly de-rotated, and the effective noises can be greatly reduced. We find that, comparing with the contaminations caused by cosmic weak lensing, the residual polarization generated by the cosmological birefringence is negligible for the detection of relic gravitational waves in the CMB.

  6. Stochastic Background of Relic Scalar Gravitational Waves tuned by Extended Gravity

    International Nuclear Information System (INIS)

    De Laurentis, Mariafelicia; Capozziello, Salvatore

    2009-01-01

    A stochastic background of relic gravitational waves is achieved by the so called adiabatically-amplified zero-point fluctuations process derived from early inflation. It provides a distinctive spectrum of relic gravitational waves. In the framework of scalar-tensor gravity, we discuss the scalar modes of gravitational waves and the primordial production of this scalar component which is generated beside tensorial one. Then analyze seven different viable f(R)-gravities towards the Solar System tests and stochastic gravitational waves background. It is demonstrated that seven viable f(R)-gravities under consideration not only satisfy the local tests, but additionally, pass the above PPN-and stochastic gravitational waves bounds for large classes of parameters.

  7. Unitarity limits on the mass and radius of dark matter particles

    Science.gov (United States)

    Griest, Kim; Kamionkowski, Marc

    1989-01-01

    Using partial wave unitarity and the observed density of the Universe, it is show that a stable elementary particle which was once in thermal equilibrium cannot have a mass greater than 340 TeV. An extended object which was once in thermal equilibrium cannot have a radius less than 7.5 x 10(exp -7) fm. A lower limit to the relic abundance of such particles is also found.

  8. Late Quaternary sea level and environmental changes from relic carbonate deposits of the western margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Rajagopalan, G.; Vora, K.H.; Almeida, F.

    . The petrology and mineralogy of the deposits indicate that except for aragonite sands and foraminiferal nodules, the others were formed in shallow marine conditions and serve as sea level indicators. Radiocarbon dates were measured for 62 relic deposits covering...

  9. The Smell of Relics: Authenticating Saintly Bones and the Role of Scent in the Sensory Experience of Medieval Christian Veneration

    Directory of Open Access Journals (Sweden)

    Paul Anthony Brazinski

    2013-09-01

    Full Text Available ''The archaeology of smell is a burgeoning field in recent scholarship. This paper adds to existing literature by investigating the function of smell in relation to relic sales and veneration in medieval Europe, a hitherto understudied area of research. Collating historical texts concerning the translatio of saintly relics in Western Europe and the Byzantine Empire with archaeological sources associated with relic veneration and religious worship (including ampullae, unguentaria, sarcophagi, holy oils, pillow graves, and silk, this paper suggests that (1 smell was used in the medieval world as a means to challenge or confirm a relic’s authenticity, and (2 olfactory liquids that imbued or permeated material objects in the context of worship functioned as a means of focusing attention on relic veneration and were an essential part of the cult and/or pilgrimage experience.

  10. Laying bare Venus' dark secrets

    International Nuclear Information System (INIS)

    Allen, D.A.

    1987-01-01

    Ground-based IR observations of the dark side of Venus obtained in 1983 and 1985 with the Anglo-Australian Telescope are studied. An IR spectrum of Venus' dark side is analyzed. It is observed that the Venus atmosphere is composed of CO and radiation escapes only at 1.74 microns and 2.2 to 2.4 microns. The possible origin of the radiation, either due to absorbed sunlight or escaping thermal radiation, was investigated. These two hypotheses were eliminated, and it is proposed that the clouds of Venus are transparent and the radiation originates from the same stratum as the brighter portions but is weakened by the passage through the upper layer. The significance of the observed dark side markings is discussed

  11. Flavoured Dark Matter moving left

    Science.gov (United States)

    Blanke, Monika; Das, Satrajit; Kast, Simon

    2018-02-01

    We investigate the phenomenology of a simplified model of flavoured Dark Matter (DM), with a dark fermionic flavour triplet coupling to the left-handed SU(2) L quark doublets via a scalar mediator. The DM-quark coupling matrix is assumed to constitute the only new source of flavour and CP violation, following the hypothesis of Dark Minimal Flavour Violation. We analyse the constraints from LHC searches, from meson mixing data in the K, D, and B d,s meson systems, from thermal DM freeze-out, and from direct detection experiments. Our combined analysis shows that while the experimental constraints are similar to the DMFV models with DM coupling to right-handed quarks, the multitude of couplings between DM and the SM quark sector resulting from the SU(2) L structure implies a richer phenomenology and significantly alters the resulting impact on the viable parameter space.

  12. Superweakly interacting massive particle dark matter signals from the early Universe

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Rajaraman, Arvind; Takayama, Fumihiro

    2003-01-01

    Cold dark matter may be made of superweakly interacting massive particles, super-WIMP's, that naturally inherit the desired relic density from late decays of metastable WIMP's. Well-motivated examples are weak-scale gravitinos in supergravity and Kaluza-Klein gravitons from extra dimensions. These particles are impossible to detect in all dark matter experiments. We find, however, that super-WIMP dark matter may be discovered through cosmological signatures from the early Universe. In particular, super-WIMP dark matter has observable consequences for big bang nucleosynthesis and the cosmic microwave background (CMB), and may explain the observed underabundance of 7 Li without upsetting the concordance between deuterium and CMB baryometers. We discuss the implications for future probes of CMB blackbody distortions and collider searches for new particles. In the course of this study, we also present a model-independent analysis of entropy production from late-decaying particles in light of Wilkinson microwave anisotropy probe data

  13. Constructing Teaching Model for Training English Guides of Stone In-scription Relics

    Institute of Scientific and Technical Information of China (English)

    李慧

    2016-01-01

    A teaching model based on constructivism is proposed in this paper. The model contains five teaching steps, e.g. inter-pretation teaching, questioning-dialogue, knowledge and skills teaching, discussion-collaboration and field training. Practice proves that it can effectively improve the training efficiency of the training of English guides of stone inscription relics and en-hance their interpretation quality and English skills.

  14. Galaxy Cluster Outskirts from the Thermal SZ and Non-Thermal Synchrotron Link

    Directory of Open Access Journals (Sweden)

    Kaustuv Basu

    2016-11-01

    Full Text Available Galaxy cluster merger shocks are the main agent for the thermalization of the intracluster medium and the energization of cosmic ray particles in it. Shock propagation changes the state of the tenuous intracluster plasma, and the corresponding signal variations are measurable with the current generation of X-ray and Sunyaev–Zel’dovich (SZ effect instruments. Additionally, non-thermal electrons (re-energized by the shocks sometimes give rise to extended and luminous synchrotron sources known as radio relics, which are prominent indicators of shocks propagating roughly in the plane of the sky. In this short review, we discuss how the joint modeling of the non-thermal and thermal signal variations across radio relic shock fronts is helping to advance our knowledge of the gas thermodynamical properties and magnetic field strengths in the cluster outskirts. We describe the first use of the SZ effect to measure the Mach numbers of relic shocks, for both the nearest (Coma and the farthest (El Gordo clusters with known radio relics.

  15. RELIC: a novel dye-bias correction method for Illumina Methylation BeadChip.

    Science.gov (United States)

    Xu, Zongli; Langie, Sabine A S; De Boever, Patrick; Taylor, Jack A; Niu, Liang

    2017-01-03

    The Illumina Infinium HumanMethylation450 BeadChip and its successor, Infinium MethylationEPIC BeadChip, have been extensively utilized in epigenome-wide association studies. Both arrays use two fluorescent dyes (Cy3-green/Cy5-red) to measure methylation level at CpG sites. However, performance difference between dyes can result in biased estimates of methylation levels. Here we describe a novel method, called REgression on Logarithm of Internal Control probes (RELIC) to correct for dye bias on whole array by utilizing the intensity values of paired internal control probes that monitor the two color channels. We evaluate the method in several datasets against other widely used dye-bias correction methods. Results on data quality improvement showed that RELIC correction statistically significantly outperforms alternative dye-bias correction methods. We incorporated the method into the R package ENmix, which is freely available from the Bioconductor website ( https://www.bioconductor.org/packages/release/bioc/html/ENmix.html ). RELIC is an efficient and robust method to correct for dye-bias in Illumina Methylation BeadChip data. It outperforms other alternative methods and conveniently implemented in R package ENmix to facilitate DNA methylation studies.

  16. THE SCALING RELATIONS AND THE FUNDAMENTAL PLANE FOR RADIO HALOS AND RELICS OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Yuan, Z. S.; Han, J. L.; Wen, Z. L.

    2015-01-01

    Diffuse radio emission in galaxy clusters is known to be related to cluster mass and cluster dynamical state. We collect the observed fluxes of radio halos, relics, and mini-halos for a sample of galaxy clusters from the literature, and calculate their radio powers. We then obtain the values of cluster mass or mass proxies from previous observations, and also obtain the various dynamical parameters of these galaxy clusters from optical and X-ray data. The radio powers of relics, halos, and mini-halos are correlated with the cluster masses or mass proxies, as found by previous authors, while the correlations concerning giant radio halos are in general the strongest. We found that the inclusion of dynamical parameters as the third dimension can significantly reduce the data scatter for the scaling relations, especially for radio halos. We therefore conclude that the substructures in X-ray images of galaxy clusters and the irregular distributions of optical brightness of member galaxies can be used to quantitatively characterize the shock waves and turbulence in the intracluster medium responsible for re-accelerating particles to generate the observed diffuse radio emission. The power of radio halos and relics is correlated with cluster mass proxies and dynamical parameters in the form of a fundamental plane

  17. Detecting relic gravitational waves in the CMB: Optimal parameters and their constraints

    International Nuclear Information System (INIS)

    Zhao, W.; Baskaran, D.

    2009-01-01

    The prospect of detecting relic gravitational waves, through their imprint in the cosmic microwave background radiation, provides an excellent opportunity to study the very early Universe. In the simplest viable theoretical models the relic gravitational wave background is characterized by two parameters, the tensor-to-scalar ratio r and the tensor spectral index n t . In this paper, we analyze the potential joint constraints on these two parameters, r and n t , using the data from the upcoming cosmic microwave background radiation experiments. Introducing the notion of the best-pivot multipole l t *, we find that at this pivot multipole the parameters r and n t are uncorrelated, and have the smallest variances. We derive the analytical formulas for the best-pivot multipole number l t *, and the variances of the parameters r and n t . We verify these analytical calculations using numerical simulation methods, and find agreement to within 20%. The analytical results provide a simple way to estimate the detection ability for the relic gravitational waves by the future observations of the cosmic microwave background radiation.

  18. Superpixel segmentation and pigment identification of colored relics based on visible spectral image

    Science.gov (United States)

    Li, Junfeng; Wan, Xiaoxia

    2018-01-01

    To enrich the contents of digital archive and to guide the copy and restoration of colored relics, non-invasive methods for extraction of painting boundary and identification of pigment composition are proposed in this study based on the visible spectral images of colored relics. Superpixel concept is applied for the first time to the field of oversegmentation of visible spectral images and implemented on the visible spectral images of colored relics to extract their painting boundary. Since different pigments are characterized by their own spectrum and the same kind of pigment has the similar geometric profile in spectrum, an automatic identification method is established by comparing the proximity between the geometric profiles of the unknown spectrum from each superpixel and the pre-known spectrum from a deliberately prepared database. The methods are validated using the visible spectral images of the ancient wall paintings in Mogao Grottoes. By the way, the visible spectral images are captured by a multispectral imaging system consisting of two broadband filters and a RGB camera with high spatial resolution.

  19. A taste of dark matter. Flavour constraints on pseudoscalar mediators

    International Nuclear Information System (INIS)

    Dolan, Matthew J.; McCabe, Christopher

    2014-12-01

    Dark matter interacting via the exchange of a light pseudoscalar can induce observable signals in indirect detection experiments and experience large self-interactions while evading the strong bounds from direct dark matter searches. The pseudoscalar mediator will however induce flavour-changing interactions in the Standard Model, providing a promising alternative way to test these models. We investigate in detail the constraints arising from rare meson decays and fixed target experiments for different coupling structures between the pseudoscalar and Standard Model fermions. The resulting bounds are highly complementary to the information inferred from the dark matter relic density and the constraints from primordial nucleosynthesis. We discuss the implications of our findings for the dark matter self-interaction cross section and the prospects of probing dark matter coupled to a light pseudoscalar with direct or indirect detection experiments. In particular, we find that a pseudoscalar mediator can only explain the Galactic Centre excess if its mass is above that of the B mesons, and that it is impossible to obtain a sufficiently large direct detection cross section to account for the DAMA modulation.

  20. A comprehensive approach to dark matter studies: exploration of simplified top-philic models

    Energy Technology Data Exchange (ETDEWEB)

    Arina, Chiara; Backović, Mihailo [Centre for Cosmology, Particle Physics and Phenomenology (CP3),Université catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve (Belgium); Conte, Eric [Groupe de Recherche de Physique des Hautes Énergies (GRPHE), Université de Haute-Alsace,IUT Colmar, F-68008 Colmar Cedex (France); Fuks, Benjamin [Sorbonne Universités, UPMC University Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Guo, Jun [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China); Institut Pluridisciplinaire Hubert Curien/Département Recherches Subatomiques,Université de Strasbourg/CNRS-IN2P3, F-67037 Strasbourg (France); Heisig, Jan [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University,Sommerfeldstr. 16, D-52056 Aachen (Germany); Hespel, Benoît [Centre for Cosmology, Particle Physics and Phenomenology (CP3),Université catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve (Belgium); Krämer, Michael [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University,Sommerfeldstr. 16, D-52056 Aachen (Germany); Maltoni, Fabio; Martini, Antony [Centre for Cosmology, Particle Physics and Phenomenology (CP3),Université catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve (Belgium); Mawatari, Kentarou [Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes,CNRS/IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France); Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel andInternational Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Pellen, Mathieu [Universität Würzburg, Institut für Theoretische Physik und Astrophysik,Emil-Hilb-Weg 22, 97074 Würzburg (Germany); Vryonidou, Eleni [Centre for Cosmology, Particle Physics and Phenomenology (CP3),Université catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve (Belgium)

    2016-11-21

    Studies of dark matter lie at the interface of collider physics, astrophysics and cosmology. Constraining models featuring dark matter candidates entails the capability to provide accurate predictions for large sets of observables and compare them to a wide spectrum of data. We present a framework which, starting from a model Lagrangian, allows one to consistently and systematically make predictions, as well as to confront those predictions with a multitude of experimental results. As an application, we consider a class of simplified dark matter models where a scalar mediator couples only to the top quark and a fermionic dark sector (i.e. the simplified top-philic dark matter model). We study in detail the complementarity of relic density, direct/indirect detection and collider searches in constraining the multi-dimensional model parameter space, and efficiently identify regions where individual approaches to dark matter detection provide the most stringent bounds. In the context of collider studies of dark matter, we point out the complementarity of LHC searches in probing different regions of the model parameter space with final states involving top quarks, photons, jets and/or missing energy. Our study of dark matter production at the LHC goes beyond the tree-level approximation and we show examples of how higher-order corrections to dark matter production processes can affect the interpretation of the experimental results.

  1. A Sommerfeld toolbox for colored dark sectors

    Energy Technology Data Exchange (ETDEWEB)

    El Hedri, Sonia; Kaminska, Anna; Vries, Maikel de [Mainz Univ., PRISMA Cluster of Excellence and Mainz Inst. for Theoretical Physics (Germany)

    2017-09-15

    We present analytical formulas for the Sommerfeld corrections to the annihilation of massive colored particles into quarks and gluons through the strong interaction. These corrections are essential to accurately compute the dark matter relic density for coannihilation with colored partners. Our formulas allow us to compute the Sommerfeld effect, not only for the lowest term in the angular momentum expansion of the amplitude, but for all orders in the partial wave expansion. In particular, we carefully account for the effects of the spin of the annihilating particle on the symmetry of the two-particle wave function. This work focuses on strongly interacting particles of arbitrary spin in the triplet, sextet and octet color representations. For typical velocities during freeze-out, we find that including Sommerfeld corrections on the next-to-leading order partial wave leads to modifications of up to 10 to 20 percent on the total annihilation cross section. Complementary to QCD, we generalize our results to particles charged under an arbitrary unbroken SU(N) gauge group, as encountered in dark glueball models. In connection with this paper a Mathematica notebook is provided to compute the Sommerfeld corrections for colored particles up to arbitrary order in the angular momentum expansion. (orig.)

  2. A Sommerfeld toolbox for colored dark sectors

    International Nuclear Information System (INIS)

    El Hedri, Sonia; Kaminska, Anna; Vries, Maikel de

    2017-01-01

    We present analytical formulas for the Sommerfeld corrections to the annihilation of massive colored particles into quarks and gluons through the strong interaction. These corrections are essential to accurately compute the dark matter relic density for coannihilation with colored partners. Our formulas allow us to compute the Sommerfeld effect, not only for the lowest term in the angular momentum expansion of the amplitude, but for all orders in the partial wave expansion. In particular, we carefully account for the effects of the spin of the annihilating particle on the symmetry of the two-particle wave function. This work focuses on strongly interacting particles of arbitrary spin in the triplet, sextet and octet color representations. For typical velocities during freeze-out, we find that including Sommerfeld corrections on the next-to-leading order partial wave leads to modifications of up to 10 to 20 percent on the total annihilation cross section. Complementary to QCD, we generalize our results to particles charged under an arbitrary unbroken SU(N) gauge group, as encountered in dark glueball models. In connection with this paper a Mathematica notebook is provided to compute the Sommerfeld corrections for colored particles up to arbitrary order in the angular momentum expansion. (orig.)

  3. A Sommerfeld toolbox for colored dark sectors

    Science.gov (United States)

    El Hedri, Sonia; Kaminska, Anna; de Vries, Maikel

    2017-09-01

    We present analytical formulas for the Sommerfeld corrections to the annihilation of massive colored particles into quarks and gluons through the strong interaction. These corrections are essential to accurately compute the dark matter relic density for coannihilation with colored partners. Our formulas allow us to compute the Sommerfeld effect, not only for the lowest term in the angular momentum expansion of the amplitude, but for all orders in the partial wave expansion. In particular, we carefully account for the effects of the spin of the annihilating particle on the symmetry of the two-particle wave function. This work focuses on strongly interacting particles of arbitrary spin in the triplet, sextet and octet color representations. For typical velocities during freeze-out, we find that including Sommerfeld corrections on the next-to-leading order partial wave leads to modifications of up to 10 to 20 percent on the total annihilation cross section. Complementary to QCD, we generalize our results to particles charged under an arbitrary unbroken SU( N) gauge group, as encountered in dark glueball models. In connection with this paper a Mathematica notebook is provided to compute the Sommerfeld corrections for colored particles up to arbitrary order in the angular momentum expansion.

  4. Neutralino dark matter in gauge mediation after run I of LHC and LUX

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ran [School of Physics, Nankai University, Tianjin 300071 (China); Wang, Liucheng, E-mail: lcwang@udel.edu [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Zhu, Bin [School of Physics, Nankai University, Tianjin 300071 (China)

    2014-06-02

    Neutralino can be the dark matter candidate in the gauge-mediated supersymmetry breaking models if the conformal sequestered mechanism is assumed in the hidden sector. In this paper, we study this mechanism by using the current experimental results after the run I of LHC and LUX. By adding new Yukawa couplings between the messenger fields and Higgs fields, we find that this mechanism can predict a neutralino dark matter with correct relic density and a Higgs boson with mass around 125 GeV. All our survived points have some common features. First, the Higgs sector falls into the decoupling limit. So the properties of the light Higgs boson are similar to the predictions of the Standard Model one. Second, the correct EWSB hints a relatively small μ-term, which makes the lightest neutralino lighter than the lightest stau. So a bino–higgsino dark matter with correct relic density can be achieved. And the relatively small μ-term results in a small fine-tuning. Finally, this bino–higgsino dark matter can pass all current bounds, including both spin-independent and spin-dependent direct searches. The spin-independent cross section of our points can be examined by further experiments.

  5. Top-philic dark matter within and beyond the WIMP paradigm

    Science.gov (United States)

    Garny, Mathias; Heisig, Jan; Hufnagel, Marco; Lülf, Benedikt

    2018-04-01

    We present a comprehensive analysis of top-philic Majorana dark matter that interacts via a colored t -channel mediator. Despite the simplicity of the model—introducing three parameters only—it provides an extremely rich phenomenology allowing us to accommodate the relic density for a large range of coupling strengths spanning over 6 orders of magnitude. This model features all "exceptional" mechanisms for dark matter freeze-out, including the recently discovered conversion-driven freeze-out mode, with interesting signatures of long-lived colored particles at colliders. We constrain the cosmologically allowed parameter space with current experimental limits from direct, indirect and collider searches, with special emphasis on light dark matter below the top mass. In particular, we explore the interplay between limits from Xenon1T, Fermi-LAT and AMS-02 as well as limits from stop, monojet and Higgs invisible decay searches at the LHC. We find that several blind spots for light dark matter evade current constraints. The region in parameter space where the relic density is set by the mechanism of conversion-driven freeze-out can be conclusively tested by R -hadron searches at the LHC with 300 fb-1 .

  6. SUSY dark matter: Beyond the standard paradigm

    International Nuclear Information System (INIS)

    Sandick, Pearl

    2016-01-01

    Within the framework of the Minimal Supersymmetric Standard Model (MSSM), we explore a decoupling of the parameters into separate sectors that determine consistency with collider data, the abundance of dark matter, and potential signatures at direct dark matter searches. We consider weak-scale bino-like neutralino dark matter, and find that annihilations via light slepton exchange present a viable mechanism for obtaining the appropriate dark matter abundance assuming a thermal history. Constraints and prospects for discovery of these models are discussed, including the possibility that direct dark matter searches may be sensitive to these models if light squarks exhibit left-right mixing. Differences between the scenarios presented here and the typical expectations for the MSSM are discussed.

  7. Dark Tourism in Budapest

    OpenAIRE

    Shen, Cen; Li, Jin

    2011-01-01

    A new trend is developing in the tourism market nowadays – dark tourism. The main purpose of the study was to explore the marketing strategies of dark tourism sites in Budapest based on the theoretical overview of dark tourism and data gathering of quantitative research. The study started with a theoretical overview of dark tourism in Budapest. Then, the authors focused on the case study of House of Terror, one of the most important dark tourism sites in Budapest. Last, the research has ...

  8. Supersymmetric QCD corrections and phenomenological studies in relation to coannihilation of dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Harz, Julia

    2013-11-15

    In this thesis, we assume a minimal supersymmetric extension of the Standard Model (MSSM) with conserved R-parity such that the lightest neutralino is the cold dark matter candidate. A stringent constraint on the MSSM parameter space can be set by the comparison of the predicted neutralino relic density with the experimentally determined value. In order to match the high experimental precision, uncertainties within the theoretical calculation have to be reduced. One of the main uncertainties arises from the cross section of annihilation and coannihilation processes of the dark matter particle. In a phenomenological study we investigate the interplay of neutralino-neutralino annihilation, neutralino-stop coannihilation and stop-stop annihilation. We demonstrate that neutralino-stop coannihilation contributes significantly to the neutralino relic density and is furthermore very well motivated due to the recent discovery of a 125 GeV Higgs boson. Due to this ample motivation we have calculated the full O({alpha}{sub s}) supersymmetric QCD corrections to neutralino-squark coannihilation. We show in detail our DR/on-shell renormalization scheme for the treatment of ultraviolet divergences, and describe the phase space slicing method which is used to handle soft and collinear infrared divergences. Further, we comment on the treatment of occurring intermediate onshell states. The whole calculation is provided within the numerical tool DM rate at NLO that serves as an extension to existing relic density calculators, which consider only an effective tree-level calculation. Based on three example scenarios we study the impact of the NLO corrections on the total (co)annihilation cross section, and observe corrections of up to 30 %. This leads to a correction of 5 - 9 % on the relic density, which is larger than the current experimental uncertainty and is, thus, important to be taken into account.

  9. Cold dark matter from the hidden sector

    International Nuclear Information System (INIS)

    Arias, Paola; Pontificia Univ. Catolica de Chile, Santiago

    2012-02-01

    Weakly interacting slim particles (WISPs) such as hidden photons (HP) and axion-like particles (ALPs) have been proposed as cold dark matter candidates. They might be produced non-thermally via the misalignment mechanism, similarly to cold axions. In this talk we review the main processes of thermalisation of HP and we compute the parameter space that may survive as cold dark matter population until today. Our findings are quite encouraging for experimental searches in the laboratory in the near future.

  10. Cold dark matter from the hidden sector

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica

    2012-02-15

    Weakly interacting slim particles (WISPs) such as hidden photons (HP) and axion-like particles (ALPs) have been proposed as cold dark matter candidates. They might be produced non-thermally via the misalignment mechanism, similarly to cold axions. In this talk we review the main processes of thermalisation of HP and we compute the parameter space that may survive as cold dark matter population until today. Our findings are quite encouraging for experimental searches in the laboratory in the near future.

  11. On baryogenesis from dark matter annihilation

    International Nuclear Information System (INIS)

    Bernal, Nicolás; Colucci, Stefano; Ubaldi, Lorenzo; Josse-Michaux, François-Xavier; Racker, J.

    2013-01-01

    We study in detail the conditions to generate the baryon asymmetry of the universe from the annihilation of dark matter. This scenario requires a low energy mechanism for thermal baryogenesis, hence we first discuss some of these mechanisms together with the specific constraints due to the connection with the dark matter sector. Then we show that, contrary to what stated in previous studies, it is possible to generate the cosmological asymmetry without adding a light sterile dark sector, both in models with violation and with conservation of B−L. In addition, one of the models we propose yields some connection to neutrino masses

  12. The Dark Side of Neutron Stars

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos

    2013-01-01

    We review severe constraints on asymmetric bosonic dark matter based on observations of old neutron stars. Under certain conditions, dark matter particles in the form of asymmetric bosonic WIMPs can be eectively trapped onto nearby neutron stars, where they can rapidly thermalize and concentrate...... in the core of the star. If some conditions are met, the WIMP population can collapse gravitationally and form a black hole that can eventually destroy the star. Based on the existence of old nearby neutron stars, we can exclude certain classes of dark matter candidates....

  13. An argument that the dark matter is axions

    International Nuclear Information System (INIS)

    Sikivie, P.

    2014-01-01

    An argument is presented that the dark matter is axions, at least in part. It has 3 steps. First, axions behave differently from the other forms of cold dark matter because they form a re-thermalizing Bose-Einstein condensate (BEC)). Second, there is a tool to distinguish axion BEC from the other dark matter candidates on the basis of observation, namely the study of the inner caustics of galactic halos. Third, the observational evidence for caustic rings of dark matter is consistent in every aspect with axion BEC, but not with the other proposed forms of dark matter. (author)

  14. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  15. A Thermote, a Novel Thermal Element Simplifying the Finding of a Medium's Entropy Emerges as a Sensible Dark Matter Candidate from Primordial Black Holes with a Mass in Range of Axion's, a Leading Candidate

    Science.gov (United States)

    Feria, Erlan H.

    2017-06-01

    Black holes acting as dark matter have been predicted, e.g., via a duality theory in (Feria 2011, Proc. IEEE Int’l Conf. on SMC, Alaska, USA) and via observations in (Kashlinsky 2016, AJL). Here a thermote, a novel thermal element simplifying the finding of a medium’s entropy, emerges as a dark matter candidate from primordial black holes with a mass in range of axion's, a leading candidate. The thermote energy, eT, is defined as the average thermal energy contributed to a particle’s motion by the medium’s degrees of freedom (DoF) and is thus given by eT=NDoFkBT/2 where NDoF is the DoF number (e.g., NDoF=2 for a black-hole since only in its event-horizon particle motions can occur) and kBT/2 is the thermal energy contributed by each degree of freedom (kB is the Boltzmann constant and T is temperature). The entropy S of a spherical homogeneous medium is then simply stated as S=(kB/2)E/eT where E=Mc2 is the medium's rest-energy, with M its point-mass and c the speed of light, and eT=NDoFkBT/2 is the thermote's kinetic-energy. This simple equation naturally surfaced from a rest/kinetic or retention/motion mass-energy duality theory where, e.g., black-holes and vacuums form together such a duality with black holes offering the least resistance to mass-energy rest, or retention, and vacuums offering the least resistance to mass-energy kinetics, or motions. In turn, this duality theory has roots in the universal cybernetics duality principle (UCDP) stating “synergistic physical and mathematical dualities arise in efficient system designs” (Feria 2014, http://dx.doi.org/10.1117/2.1201407.005429, SPIE Newsroom). Our thermote based entropy finding method is applicable to spherical homogeneous mediums such as black-holes, photon-gases, and flexible-phase (Feria 2016, Proc. IEEE Int’l Conf. on Smart Cloud, Columbia University, NY, USA), where the thermote of a primordial black hole, with NDoF=2 and a CMB radiation temperature of T=2.725 kelvin, emerges as a

  16. Interacting dark sector and precision cosmology

    Science.gov (United States)

    Buen-Abad, Manuel A.; Schmaltz, Martin; Lesgourgues, Julien; Brinckmann, Thejs

    2018-01-01

    We consider a recently proposed model in which dark matter interacts with a thermal background of dark radiation. Dark radiation consists of relativistic degrees of freedom which allow larger values of the expansion rate of the universe today to be consistent with CMB data (H0-problem). Scattering between dark matter and radiation suppresses the matter power spectrum at small scales and can explain the apparent discrepancies between ΛCDM predictions of the matter power spectrum and direct measurements of Large Scale Structure LSS (σ8-problem). We go beyond previous work in two ways: 1. we enlarge the parameter space of our previous model and allow for an arbitrary fraction of the dark matter to be interacting and 2. we update the data sets used in our fits, most importantly we include LSS data with full k-dependence to explore the sensitivity of current data to the shape of the matter power spectrum. We find that LSS data prefer models with overall suppressed matter clustering due to dark matter - dark radiation interactions over ΛCDM at 3–4 σ. However recent weak lensing measurements of the power spectrum are not yet precise enough to clearly distinguish two limits of the model with different predicted shapes for the linear matter power spectrum. In two appendices we give a derivation of the coupled dark matter and dark radiation perturbation equations from the Boltzmann equation in order to clarify a confusion in the recent literature, and we derive analytic approximations to the solutions of the perturbation equations in the two physically interesting limits of all dark matter weakly interacting or a small fraction of dark matter strongly interacting.

  17. [Research Progress of Raman Spectroscopy on Dyestuff Identification of Ancient Relics and Artifacts].

    Science.gov (United States)

    He, Qiu-ju; Wang, Li-qin

    2016-02-01

    As the birthplace of Silk Road, China has a long dyeing history. The valuable information about the production time, the source of dyeing material, dyeing process and preservation status were existed in organic dyestuff deriving from cultural relics and artifacts. However, because of the low contents, complex compositions and easily degraded of dyestuff, it is always a challenging task to identify the dyestuff in relics analyzing field. As a finger-print spectrum, Raman spectroscopy owns unique superiorities in dyestuff identification. Thus, the principle, characteristic, limitation, progress and development direction of micro-Raman spectroscopy (MRS/µ-Raman), near infrared reflection and Fourier transform Raman spectroscopy (NIR-FT-Raman), surface-enhanced Raman spectroscopy (SERS) and resonance raman spectroscopy (RRS) have been introduced in this paper. Furthermore, the features of Raman spectra of gardenia, curcumin and other natural dyestuffs were classified by MRS technology, and then the fluorescence phenomena of purpurin excitated with different wavelength laser was compared and analyzed. At last, gray green silver colloidal particles were made as the base, then the colorant of madder was identified combining with thin layer chromatography (TLC) separation technology and SERS, the result showed that the surface enhancement effect of silver colloidal particles could significantly reduce fluorescence background of the Raman spectra. It is pointed out that Raman spectroscopy is a rapid and convenient molecular structure qualitative methodology, which has broad application prospect in dyestuff analysis of cultural relics and artifacts. We propose that the combination of multi-Raman spectroscopy, separation technology and long distance transmission technology are the development trends of Raman spectroscopy.

  18. NGC 1277: A MASSIVE COMPACT RELIC GALAXY IN THE NEARBY UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, Ignacio; Vazdekis, Alexandre [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205-La Laguna, Tenerife (Spain); Ferré-Mateu, Anna [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Balcells, Marc [Isaac Newton Group of Telescopes, E-38700 Santa Cruz de La Palma, Canary Islands (Spain); Sánchez-Blázquez, Patricia, E-mail: trujillo@iac.es [Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049, Cantoblanco, Madrid (Spain)

    2014-01-10

    As early as 10 Gyr ago, galaxies with more than 10{sup 11} M {sub ☉} of stars already existed. While most of these massive galaxies must have subsequently transformed through on-going star formation and mergers with other galaxies, a small fraction (≲0.1%) may have survived untouched until today. Searches for such relic galaxies, useful windows to explore the early universe, have been inconclusive to date: galaxies with masses and sizes like those observed at high redshift (M {sub *} ≳ 10{sup 11} M {sub ☉}; R{sub e} ≲ 1.5 kpc) have been found in the local universe, but their stars are far too young for the galaxy to be a relic galaxy. This paper explores the first case of a nearby galaxy, NGC 1277 (at a distance of 73 Mpc in the Perseus galaxy cluster), which fulfills many criteria to be considered a relic galaxy. Using deep optical spectroscopy, we derive the star formation history along the structure of the galaxy: the stellar populations are uniformly old (>10 Gyr) with no evidence for more recent star formation episodes. The metallicity of their stars is super-solar ([Fe/H] = 0.20 ± 0.04 with a smooth decline toward the outer regions) and α-enriched ([α/Fe] = 0.4 ± 0.1). This suggests a very short formation time scale for the bulk of the stars in this galaxy. This object also rotates very fast (V {sub rot} ∼ 300 km s{sup –1}) and has a large central velocity dispersion (σ > 300 km s{sup –1}). NGC 1277 allows the exploration in full detail of properties such as the structure, internal dynamics, metallicity, and initial mass function as they were at ∼10-12 Gyr ago when the first massive galaxies were built.

  19. Dark matter from late invisible decays to and of gravitinos

    Science.gov (United States)

    Allahverdi, Rouzbeh; Dutta, Bhaskar; Queiroz, Farinaldo S.; Strigari, Louis E.; Wang, Mei-Yu

    2015-03-01

    In this work, we sift a simple supersymmetric framework of late invisible decays to and of the gravitino. We study a simple extension of the minimal supersymmetric standard model that includes isosinglet color-triplet superfields and a singlet superfield. We investigate two cases where the gravitino is the lightest supersymmetric particle or the next-to-lightest supersymmetric particle. The next-to-lightest supersymmetric particle decays into two dark matter candidates and has a long lifetime due to gravitationally suppressed interactions. However, because of the absence of any hadronic or electromagnetic products, it satisfies the tight bounds set by big bang nucleosynthesis and the cosmic microwave background. One or both of the dark matter candidates produced in invisible decays can contribute to the amount of dark radiation and suppress perturbations at scales that are being probed by the galaxy power spectrum and the Lyman-alpha forest data. We show that these constraints are satisfied in large regions of the parameter space and, as a result, the late invisible decays to and of the gravitino can be responsible for the entire dark matter relic abundance.

  20. Supersymmetric U(1)' model with multiple dark matters

    International Nuclear Information System (INIS)

    Hur, Taeil; Lee, Hye-Sung; Nasri, Salah

    2008-01-01

    We consider a scenario where a supersymmetric model has multiple dark matter particles. Adding a U(1) ' gauge symmetry is a well-motivated extension of the minimal supersymmetric standard model (MSSM). It can cure the problems of the MSSM such as the μ problem or the proton decay problem with high-dimensional lepton number and baryon number violating operators which R parity allows. An extra parity (U parity) may arise as a residual discrete symmetry after U(1) ' gauge symmetry is spontaneously broken. The lightest U-parity particle (LUP) is stable under the new parity becoming a new dark matter candidate. Up to three massive particles can be stable in the presence of the R parity and the U parity. We numerically illustrate that multiple stable particles in our model can satisfy both constraints from the relic density and the direct detection, thus providing a specific scenario where a supersymmetric model has well-motivated multiple dark matters consistent with experimental constraints. The scenario provides new possibilities in the present and upcoming dark matter searches in the direct detection and collider experiments